sched.c 140 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. */
  20. #include <linux/mm.h>
  21. #include <linux/module.h>
  22. #include <linux/nmi.h>
  23. #include <linux/init.h>
  24. #include <asm/uaccess.h>
  25. #include <linux/highmem.h>
  26. #include <linux/smp_lock.h>
  27. #include <asm/mmu_context.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/completion.h>
  30. #include <linux/kernel_stat.h>
  31. #include <linux/security.h>
  32. #include <linux/notifier.h>
  33. #include <linux/profile.h>
  34. #include <linux/suspend.h>
  35. #include <linux/blkdev.h>
  36. #include <linux/delay.h>
  37. #include <linux/smp.h>
  38. #include <linux/threads.h>
  39. #include <linux/timer.h>
  40. #include <linux/rcupdate.h>
  41. #include <linux/cpu.h>
  42. #include <linux/cpuset.h>
  43. #include <linux/percpu.h>
  44. #include <linux/kthread.h>
  45. #include <linux/seq_file.h>
  46. #include <linux/syscalls.h>
  47. #include <linux/times.h>
  48. #include <linux/acct.h>
  49. #include <asm/tlb.h>
  50. #include <asm/unistd.h>
  51. /*
  52. * Convert user-nice values [ -20 ... 0 ... 19 ]
  53. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  54. * and back.
  55. */
  56. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  57. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  58. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  59. /*
  60. * 'User priority' is the nice value converted to something we
  61. * can work with better when scaling various scheduler parameters,
  62. * it's a [ 0 ... 39 ] range.
  63. */
  64. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  65. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  66. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  67. /*
  68. * Some helpers for converting nanosecond timing to jiffy resolution
  69. */
  70. #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
  71. #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
  72. /*
  73. * These are the 'tuning knobs' of the scheduler:
  74. *
  75. * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
  76. * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
  77. * Timeslices get refilled after they expire.
  78. */
  79. #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
  80. #define DEF_TIMESLICE (100 * HZ / 1000)
  81. #define ON_RUNQUEUE_WEIGHT 30
  82. #define CHILD_PENALTY 95
  83. #define PARENT_PENALTY 100
  84. #define EXIT_WEIGHT 3
  85. #define PRIO_BONUS_RATIO 25
  86. #define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
  87. #define INTERACTIVE_DELTA 2
  88. #define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
  89. #define STARVATION_LIMIT (MAX_SLEEP_AVG)
  90. #define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
  91. /*
  92. * If a task is 'interactive' then we reinsert it in the active
  93. * array after it has expired its current timeslice. (it will not
  94. * continue to run immediately, it will still roundrobin with
  95. * other interactive tasks.)
  96. *
  97. * This part scales the interactivity limit depending on niceness.
  98. *
  99. * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
  100. * Here are a few examples of different nice levels:
  101. *
  102. * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
  103. * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
  104. * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
  105. * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
  106. * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
  107. *
  108. * (the X axis represents the possible -5 ... 0 ... +5 dynamic
  109. * priority range a task can explore, a value of '1' means the
  110. * task is rated interactive.)
  111. *
  112. * Ie. nice +19 tasks can never get 'interactive' enough to be
  113. * reinserted into the active array. And only heavily CPU-hog nice -20
  114. * tasks will be expired. Default nice 0 tasks are somewhere between,
  115. * it takes some effort for them to get interactive, but it's not
  116. * too hard.
  117. */
  118. #define CURRENT_BONUS(p) \
  119. (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
  120. MAX_SLEEP_AVG)
  121. #define GRANULARITY (10 * HZ / 1000 ? : 1)
  122. #ifdef CONFIG_SMP
  123. #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
  124. (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
  125. num_online_cpus())
  126. #else
  127. #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
  128. (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
  129. #endif
  130. #define SCALE(v1,v1_max,v2_max) \
  131. (v1) * (v2_max) / (v1_max)
  132. #define DELTA(p) \
  133. (SCALE(TASK_NICE(p), 40, MAX_BONUS) + INTERACTIVE_DELTA)
  134. #define TASK_INTERACTIVE(p) \
  135. ((p)->prio <= (p)->static_prio - DELTA(p))
  136. #define INTERACTIVE_SLEEP(p) \
  137. (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
  138. (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
  139. #define TASK_PREEMPTS_CURR(p, rq) \
  140. ((p)->prio < (rq)->curr->prio)
  141. /*
  142. * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
  143. * to time slice values: [800ms ... 100ms ... 5ms]
  144. *
  145. * The higher a thread's priority, the bigger timeslices
  146. * it gets during one round of execution. But even the lowest
  147. * priority thread gets MIN_TIMESLICE worth of execution time.
  148. */
  149. #define SCALE_PRIO(x, prio) \
  150. max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE)
  151. static unsigned int task_timeslice(task_t *p)
  152. {
  153. if (p->static_prio < NICE_TO_PRIO(0))
  154. return SCALE_PRIO(DEF_TIMESLICE*4, p->static_prio);
  155. else
  156. return SCALE_PRIO(DEF_TIMESLICE, p->static_prio);
  157. }
  158. #define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran) \
  159. < (long long) (sd)->cache_hot_time)
  160. /*
  161. * These are the runqueue data structures:
  162. */
  163. #define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long))
  164. typedef struct runqueue runqueue_t;
  165. struct prio_array {
  166. unsigned int nr_active;
  167. unsigned long bitmap[BITMAP_SIZE];
  168. struct list_head queue[MAX_PRIO];
  169. };
  170. /*
  171. * This is the main, per-CPU runqueue data structure.
  172. *
  173. * Locking rule: those places that want to lock multiple runqueues
  174. * (such as the load balancing or the thread migration code), lock
  175. * acquire operations must be ordered by ascending &runqueue.
  176. */
  177. struct runqueue {
  178. spinlock_t lock;
  179. /*
  180. * nr_running and cpu_load should be in the same cacheline because
  181. * remote CPUs use both these fields when doing load calculation.
  182. */
  183. unsigned long nr_running;
  184. #ifdef CONFIG_SMP
  185. unsigned long cpu_load[3];
  186. #endif
  187. unsigned long long nr_switches;
  188. /*
  189. * This is part of a global counter where only the total sum
  190. * over all CPUs matters. A task can increase this counter on
  191. * one CPU and if it got migrated afterwards it may decrease
  192. * it on another CPU. Always updated under the runqueue lock:
  193. */
  194. unsigned long nr_uninterruptible;
  195. unsigned long expired_timestamp;
  196. unsigned long long timestamp_last_tick;
  197. task_t *curr, *idle;
  198. struct mm_struct *prev_mm;
  199. prio_array_t *active, *expired, arrays[2];
  200. int best_expired_prio;
  201. atomic_t nr_iowait;
  202. #ifdef CONFIG_SMP
  203. struct sched_domain *sd;
  204. /* For active balancing */
  205. int active_balance;
  206. int push_cpu;
  207. task_t *migration_thread;
  208. struct list_head migration_queue;
  209. #endif
  210. #ifdef CONFIG_SCHEDSTATS
  211. /* latency stats */
  212. struct sched_info rq_sched_info;
  213. /* sys_sched_yield() stats */
  214. unsigned long yld_exp_empty;
  215. unsigned long yld_act_empty;
  216. unsigned long yld_both_empty;
  217. unsigned long yld_cnt;
  218. /* schedule() stats */
  219. unsigned long sched_switch;
  220. unsigned long sched_cnt;
  221. unsigned long sched_goidle;
  222. /* try_to_wake_up() stats */
  223. unsigned long ttwu_cnt;
  224. unsigned long ttwu_local;
  225. #endif
  226. };
  227. static DEFINE_PER_CPU(struct runqueue, runqueues);
  228. /*
  229. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  230. * See detach_destroy_domains: synchronize_sched for details.
  231. *
  232. * The domain tree of any CPU may only be accessed from within
  233. * preempt-disabled sections.
  234. */
  235. #define for_each_domain(cpu, domain) \
  236. for (domain = rcu_dereference(cpu_rq(cpu)->sd); domain; domain = domain->parent)
  237. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  238. #define this_rq() (&__get_cpu_var(runqueues))
  239. #define task_rq(p) cpu_rq(task_cpu(p))
  240. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  241. #ifndef prepare_arch_switch
  242. # define prepare_arch_switch(next) do { } while (0)
  243. #endif
  244. #ifndef finish_arch_switch
  245. # define finish_arch_switch(prev) do { } while (0)
  246. #endif
  247. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  248. static inline int task_running(runqueue_t *rq, task_t *p)
  249. {
  250. return rq->curr == p;
  251. }
  252. static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
  253. {
  254. }
  255. static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
  256. {
  257. spin_unlock_irq(&rq->lock);
  258. }
  259. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  260. static inline int task_running(runqueue_t *rq, task_t *p)
  261. {
  262. #ifdef CONFIG_SMP
  263. return p->oncpu;
  264. #else
  265. return rq->curr == p;
  266. #endif
  267. }
  268. static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
  269. {
  270. #ifdef CONFIG_SMP
  271. /*
  272. * We can optimise this out completely for !SMP, because the
  273. * SMP rebalancing from interrupt is the only thing that cares
  274. * here.
  275. */
  276. next->oncpu = 1;
  277. #endif
  278. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  279. spin_unlock_irq(&rq->lock);
  280. #else
  281. spin_unlock(&rq->lock);
  282. #endif
  283. }
  284. static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
  285. {
  286. #ifdef CONFIG_SMP
  287. /*
  288. * After ->oncpu is cleared, the task can be moved to a different CPU.
  289. * We must ensure this doesn't happen until the switch is completely
  290. * finished.
  291. */
  292. smp_wmb();
  293. prev->oncpu = 0;
  294. #endif
  295. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  296. local_irq_enable();
  297. #endif
  298. }
  299. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  300. /*
  301. * task_rq_lock - lock the runqueue a given task resides on and disable
  302. * interrupts. Note the ordering: we can safely lookup the task_rq without
  303. * explicitly disabling preemption.
  304. */
  305. static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
  306. __acquires(rq->lock)
  307. {
  308. struct runqueue *rq;
  309. repeat_lock_task:
  310. local_irq_save(*flags);
  311. rq = task_rq(p);
  312. spin_lock(&rq->lock);
  313. if (unlikely(rq != task_rq(p))) {
  314. spin_unlock_irqrestore(&rq->lock, *flags);
  315. goto repeat_lock_task;
  316. }
  317. return rq;
  318. }
  319. static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
  320. __releases(rq->lock)
  321. {
  322. spin_unlock_irqrestore(&rq->lock, *flags);
  323. }
  324. #ifdef CONFIG_SCHEDSTATS
  325. /*
  326. * bump this up when changing the output format or the meaning of an existing
  327. * format, so that tools can adapt (or abort)
  328. */
  329. #define SCHEDSTAT_VERSION 12
  330. static int show_schedstat(struct seq_file *seq, void *v)
  331. {
  332. int cpu;
  333. seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
  334. seq_printf(seq, "timestamp %lu\n", jiffies);
  335. for_each_online_cpu(cpu) {
  336. runqueue_t *rq = cpu_rq(cpu);
  337. #ifdef CONFIG_SMP
  338. struct sched_domain *sd;
  339. int dcnt = 0;
  340. #endif
  341. /* runqueue-specific stats */
  342. seq_printf(seq,
  343. "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
  344. cpu, rq->yld_both_empty,
  345. rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
  346. rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
  347. rq->ttwu_cnt, rq->ttwu_local,
  348. rq->rq_sched_info.cpu_time,
  349. rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
  350. seq_printf(seq, "\n");
  351. #ifdef CONFIG_SMP
  352. /* domain-specific stats */
  353. preempt_disable();
  354. for_each_domain(cpu, sd) {
  355. enum idle_type itype;
  356. char mask_str[NR_CPUS];
  357. cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
  358. seq_printf(seq, "domain%d %s", dcnt++, mask_str);
  359. for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
  360. itype++) {
  361. seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
  362. sd->lb_cnt[itype],
  363. sd->lb_balanced[itype],
  364. sd->lb_failed[itype],
  365. sd->lb_imbalance[itype],
  366. sd->lb_gained[itype],
  367. sd->lb_hot_gained[itype],
  368. sd->lb_nobusyq[itype],
  369. sd->lb_nobusyg[itype]);
  370. }
  371. seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
  372. sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
  373. sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
  374. sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
  375. sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
  376. }
  377. preempt_enable();
  378. #endif
  379. }
  380. return 0;
  381. }
  382. static int schedstat_open(struct inode *inode, struct file *file)
  383. {
  384. unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
  385. char *buf = kmalloc(size, GFP_KERNEL);
  386. struct seq_file *m;
  387. int res;
  388. if (!buf)
  389. return -ENOMEM;
  390. res = single_open(file, show_schedstat, NULL);
  391. if (!res) {
  392. m = file->private_data;
  393. m->buf = buf;
  394. m->size = size;
  395. } else
  396. kfree(buf);
  397. return res;
  398. }
  399. struct file_operations proc_schedstat_operations = {
  400. .open = schedstat_open,
  401. .read = seq_read,
  402. .llseek = seq_lseek,
  403. .release = single_release,
  404. };
  405. # define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
  406. # define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
  407. #else /* !CONFIG_SCHEDSTATS */
  408. # define schedstat_inc(rq, field) do { } while (0)
  409. # define schedstat_add(rq, field, amt) do { } while (0)
  410. #endif
  411. /*
  412. * rq_lock - lock a given runqueue and disable interrupts.
  413. */
  414. static inline runqueue_t *this_rq_lock(void)
  415. __acquires(rq->lock)
  416. {
  417. runqueue_t *rq;
  418. local_irq_disable();
  419. rq = this_rq();
  420. spin_lock(&rq->lock);
  421. return rq;
  422. }
  423. #ifdef CONFIG_SCHEDSTATS
  424. /*
  425. * Called when a process is dequeued from the active array and given
  426. * the cpu. We should note that with the exception of interactive
  427. * tasks, the expired queue will become the active queue after the active
  428. * queue is empty, without explicitly dequeuing and requeuing tasks in the
  429. * expired queue. (Interactive tasks may be requeued directly to the
  430. * active queue, thus delaying tasks in the expired queue from running;
  431. * see scheduler_tick()).
  432. *
  433. * This function is only called from sched_info_arrive(), rather than
  434. * dequeue_task(). Even though a task may be queued and dequeued multiple
  435. * times as it is shuffled about, we're really interested in knowing how
  436. * long it was from the *first* time it was queued to the time that it
  437. * finally hit a cpu.
  438. */
  439. static inline void sched_info_dequeued(task_t *t)
  440. {
  441. t->sched_info.last_queued = 0;
  442. }
  443. /*
  444. * Called when a task finally hits the cpu. We can now calculate how
  445. * long it was waiting to run. We also note when it began so that we
  446. * can keep stats on how long its timeslice is.
  447. */
  448. static inline void sched_info_arrive(task_t *t)
  449. {
  450. unsigned long now = jiffies, diff = 0;
  451. struct runqueue *rq = task_rq(t);
  452. if (t->sched_info.last_queued)
  453. diff = now - t->sched_info.last_queued;
  454. sched_info_dequeued(t);
  455. t->sched_info.run_delay += diff;
  456. t->sched_info.last_arrival = now;
  457. t->sched_info.pcnt++;
  458. if (!rq)
  459. return;
  460. rq->rq_sched_info.run_delay += diff;
  461. rq->rq_sched_info.pcnt++;
  462. }
  463. /*
  464. * Called when a process is queued into either the active or expired
  465. * array. The time is noted and later used to determine how long we
  466. * had to wait for us to reach the cpu. Since the expired queue will
  467. * become the active queue after active queue is empty, without dequeuing
  468. * and requeuing any tasks, we are interested in queuing to either. It
  469. * is unusual but not impossible for tasks to be dequeued and immediately
  470. * requeued in the same or another array: this can happen in sched_yield(),
  471. * set_user_nice(), and even load_balance() as it moves tasks from runqueue
  472. * to runqueue.
  473. *
  474. * This function is only called from enqueue_task(), but also only updates
  475. * the timestamp if it is already not set. It's assumed that
  476. * sched_info_dequeued() will clear that stamp when appropriate.
  477. */
  478. static inline void sched_info_queued(task_t *t)
  479. {
  480. if (!t->sched_info.last_queued)
  481. t->sched_info.last_queued = jiffies;
  482. }
  483. /*
  484. * Called when a process ceases being the active-running process, either
  485. * voluntarily or involuntarily. Now we can calculate how long we ran.
  486. */
  487. static inline void sched_info_depart(task_t *t)
  488. {
  489. struct runqueue *rq = task_rq(t);
  490. unsigned long diff = jiffies - t->sched_info.last_arrival;
  491. t->sched_info.cpu_time += diff;
  492. if (rq)
  493. rq->rq_sched_info.cpu_time += diff;
  494. }
  495. /*
  496. * Called when tasks are switched involuntarily due, typically, to expiring
  497. * their time slice. (This may also be called when switching to or from
  498. * the idle task.) We are only called when prev != next.
  499. */
  500. static inline void sched_info_switch(task_t *prev, task_t *next)
  501. {
  502. struct runqueue *rq = task_rq(prev);
  503. /*
  504. * prev now departs the cpu. It's not interesting to record
  505. * stats about how efficient we were at scheduling the idle
  506. * process, however.
  507. */
  508. if (prev != rq->idle)
  509. sched_info_depart(prev);
  510. if (next != rq->idle)
  511. sched_info_arrive(next);
  512. }
  513. #else
  514. #define sched_info_queued(t) do { } while (0)
  515. #define sched_info_switch(t, next) do { } while (0)
  516. #endif /* CONFIG_SCHEDSTATS */
  517. /*
  518. * Adding/removing a task to/from a priority array:
  519. */
  520. static void dequeue_task(struct task_struct *p, prio_array_t *array)
  521. {
  522. array->nr_active--;
  523. list_del(&p->run_list);
  524. if (list_empty(array->queue + p->prio))
  525. __clear_bit(p->prio, array->bitmap);
  526. }
  527. static void enqueue_task(struct task_struct *p, prio_array_t *array)
  528. {
  529. sched_info_queued(p);
  530. list_add_tail(&p->run_list, array->queue + p->prio);
  531. __set_bit(p->prio, array->bitmap);
  532. array->nr_active++;
  533. p->array = array;
  534. }
  535. /*
  536. * Put task to the end of the run list without the overhead of dequeue
  537. * followed by enqueue.
  538. */
  539. static void requeue_task(struct task_struct *p, prio_array_t *array)
  540. {
  541. list_move_tail(&p->run_list, array->queue + p->prio);
  542. }
  543. static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
  544. {
  545. list_add(&p->run_list, array->queue + p->prio);
  546. __set_bit(p->prio, array->bitmap);
  547. array->nr_active++;
  548. p->array = array;
  549. }
  550. /*
  551. * effective_prio - return the priority that is based on the static
  552. * priority but is modified by bonuses/penalties.
  553. *
  554. * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
  555. * into the -5 ... 0 ... +5 bonus/penalty range.
  556. *
  557. * We use 25% of the full 0...39 priority range so that:
  558. *
  559. * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
  560. * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
  561. *
  562. * Both properties are important to certain workloads.
  563. */
  564. static int effective_prio(task_t *p)
  565. {
  566. int bonus, prio;
  567. if (rt_task(p))
  568. return p->prio;
  569. bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
  570. prio = p->static_prio - bonus;
  571. if (prio < MAX_RT_PRIO)
  572. prio = MAX_RT_PRIO;
  573. if (prio > MAX_PRIO-1)
  574. prio = MAX_PRIO-1;
  575. return prio;
  576. }
  577. /*
  578. * __activate_task - move a task to the runqueue.
  579. */
  580. static inline void __activate_task(task_t *p, runqueue_t *rq)
  581. {
  582. enqueue_task(p, rq->active);
  583. rq->nr_running++;
  584. }
  585. /*
  586. * __activate_idle_task - move idle task to the _front_ of runqueue.
  587. */
  588. static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
  589. {
  590. enqueue_task_head(p, rq->active);
  591. rq->nr_running++;
  592. }
  593. static int recalc_task_prio(task_t *p, unsigned long long now)
  594. {
  595. /* Caller must always ensure 'now >= p->timestamp' */
  596. unsigned long long __sleep_time = now - p->timestamp;
  597. unsigned long sleep_time;
  598. if (__sleep_time > NS_MAX_SLEEP_AVG)
  599. sleep_time = NS_MAX_SLEEP_AVG;
  600. else
  601. sleep_time = (unsigned long)__sleep_time;
  602. if (likely(sleep_time > 0)) {
  603. /*
  604. * User tasks that sleep a long time are categorised as
  605. * idle and will get just interactive status to stay active &
  606. * prevent them suddenly becoming cpu hogs and starving
  607. * other processes.
  608. */
  609. if (p->mm && p->activated != -1 &&
  610. sleep_time > INTERACTIVE_SLEEP(p)) {
  611. p->sleep_avg = JIFFIES_TO_NS(MAX_SLEEP_AVG -
  612. DEF_TIMESLICE);
  613. } else {
  614. /*
  615. * The lower the sleep avg a task has the more
  616. * rapidly it will rise with sleep time.
  617. */
  618. sleep_time *= (MAX_BONUS - CURRENT_BONUS(p)) ? : 1;
  619. /*
  620. * Tasks waking from uninterruptible sleep are
  621. * limited in their sleep_avg rise as they
  622. * are likely to be waiting on I/O
  623. */
  624. if (p->activated == -1 && p->mm) {
  625. if (p->sleep_avg >= INTERACTIVE_SLEEP(p))
  626. sleep_time = 0;
  627. else if (p->sleep_avg + sleep_time >=
  628. INTERACTIVE_SLEEP(p)) {
  629. p->sleep_avg = INTERACTIVE_SLEEP(p);
  630. sleep_time = 0;
  631. }
  632. }
  633. /*
  634. * This code gives a bonus to interactive tasks.
  635. *
  636. * The boost works by updating the 'average sleep time'
  637. * value here, based on ->timestamp. The more time a
  638. * task spends sleeping, the higher the average gets -
  639. * and the higher the priority boost gets as well.
  640. */
  641. p->sleep_avg += sleep_time;
  642. if (p->sleep_avg > NS_MAX_SLEEP_AVG)
  643. p->sleep_avg = NS_MAX_SLEEP_AVG;
  644. }
  645. }
  646. return effective_prio(p);
  647. }
  648. /*
  649. * activate_task - move a task to the runqueue and do priority recalculation
  650. *
  651. * Update all the scheduling statistics stuff. (sleep average
  652. * calculation, priority modifiers, etc.)
  653. */
  654. static void activate_task(task_t *p, runqueue_t *rq, int local)
  655. {
  656. unsigned long long now;
  657. now = sched_clock();
  658. #ifdef CONFIG_SMP
  659. if (!local) {
  660. /* Compensate for drifting sched_clock */
  661. runqueue_t *this_rq = this_rq();
  662. now = (now - this_rq->timestamp_last_tick)
  663. + rq->timestamp_last_tick;
  664. }
  665. #endif
  666. p->prio = recalc_task_prio(p, now);
  667. /*
  668. * This checks to make sure it's not an uninterruptible task
  669. * that is now waking up.
  670. */
  671. if (!p->activated) {
  672. /*
  673. * Tasks which were woken up by interrupts (ie. hw events)
  674. * are most likely of interactive nature. So we give them
  675. * the credit of extending their sleep time to the period
  676. * of time they spend on the runqueue, waiting for execution
  677. * on a CPU, first time around:
  678. */
  679. if (in_interrupt())
  680. p->activated = 2;
  681. else {
  682. /*
  683. * Normal first-time wakeups get a credit too for
  684. * on-runqueue time, but it will be weighted down:
  685. */
  686. p->activated = 1;
  687. }
  688. }
  689. p->timestamp = now;
  690. __activate_task(p, rq);
  691. }
  692. /*
  693. * deactivate_task - remove a task from the runqueue.
  694. */
  695. static void deactivate_task(struct task_struct *p, runqueue_t *rq)
  696. {
  697. rq->nr_running--;
  698. dequeue_task(p, p->array);
  699. p->array = NULL;
  700. }
  701. /*
  702. * resched_task - mark a task 'to be rescheduled now'.
  703. *
  704. * On UP this means the setting of the need_resched flag, on SMP it
  705. * might also involve a cross-CPU call to trigger the scheduler on
  706. * the target CPU.
  707. */
  708. #ifdef CONFIG_SMP
  709. static void resched_task(task_t *p)
  710. {
  711. int need_resched, nrpolling;
  712. assert_spin_locked(&task_rq(p)->lock);
  713. /* minimise the chance of sending an interrupt to poll_idle() */
  714. nrpolling = test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
  715. need_resched = test_and_set_tsk_thread_flag(p,TIF_NEED_RESCHED);
  716. nrpolling |= test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
  717. if (!need_resched && !nrpolling && (task_cpu(p) != smp_processor_id()))
  718. smp_send_reschedule(task_cpu(p));
  719. }
  720. #else
  721. static inline void resched_task(task_t *p)
  722. {
  723. set_tsk_need_resched(p);
  724. }
  725. #endif
  726. /**
  727. * task_curr - is this task currently executing on a CPU?
  728. * @p: the task in question.
  729. */
  730. inline int task_curr(const task_t *p)
  731. {
  732. return cpu_curr(task_cpu(p)) == p;
  733. }
  734. #ifdef CONFIG_SMP
  735. typedef struct {
  736. struct list_head list;
  737. task_t *task;
  738. int dest_cpu;
  739. struct completion done;
  740. } migration_req_t;
  741. /*
  742. * The task's runqueue lock must be held.
  743. * Returns true if you have to wait for migration thread.
  744. */
  745. static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
  746. {
  747. runqueue_t *rq = task_rq(p);
  748. /*
  749. * If the task is not on a runqueue (and not running), then
  750. * it is sufficient to simply update the task's cpu field.
  751. */
  752. if (!p->array && !task_running(rq, p)) {
  753. set_task_cpu(p, dest_cpu);
  754. return 0;
  755. }
  756. init_completion(&req->done);
  757. req->task = p;
  758. req->dest_cpu = dest_cpu;
  759. list_add(&req->list, &rq->migration_queue);
  760. return 1;
  761. }
  762. /*
  763. * wait_task_inactive - wait for a thread to unschedule.
  764. *
  765. * The caller must ensure that the task *will* unschedule sometime soon,
  766. * else this function might spin for a *long* time. This function can't
  767. * be called with interrupts off, or it may introduce deadlock with
  768. * smp_call_function() if an IPI is sent by the same process we are
  769. * waiting to become inactive.
  770. */
  771. void wait_task_inactive(task_t *p)
  772. {
  773. unsigned long flags;
  774. runqueue_t *rq;
  775. int preempted;
  776. repeat:
  777. rq = task_rq_lock(p, &flags);
  778. /* Must be off runqueue entirely, not preempted. */
  779. if (unlikely(p->array || task_running(rq, p))) {
  780. /* If it's preempted, we yield. It could be a while. */
  781. preempted = !task_running(rq, p);
  782. task_rq_unlock(rq, &flags);
  783. cpu_relax();
  784. if (preempted)
  785. yield();
  786. goto repeat;
  787. }
  788. task_rq_unlock(rq, &flags);
  789. }
  790. /***
  791. * kick_process - kick a running thread to enter/exit the kernel
  792. * @p: the to-be-kicked thread
  793. *
  794. * Cause a process which is running on another CPU to enter
  795. * kernel-mode, without any delay. (to get signals handled.)
  796. *
  797. * NOTE: this function doesnt have to take the runqueue lock,
  798. * because all it wants to ensure is that the remote task enters
  799. * the kernel. If the IPI races and the task has been migrated
  800. * to another CPU then no harm is done and the purpose has been
  801. * achieved as well.
  802. */
  803. void kick_process(task_t *p)
  804. {
  805. int cpu;
  806. preempt_disable();
  807. cpu = task_cpu(p);
  808. if ((cpu != smp_processor_id()) && task_curr(p))
  809. smp_send_reschedule(cpu);
  810. preempt_enable();
  811. }
  812. /*
  813. * Return a low guess at the load of a migration-source cpu.
  814. *
  815. * We want to under-estimate the load of migration sources, to
  816. * balance conservatively.
  817. */
  818. static inline unsigned long source_load(int cpu, int type)
  819. {
  820. runqueue_t *rq = cpu_rq(cpu);
  821. unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
  822. if (type == 0)
  823. return load_now;
  824. return min(rq->cpu_load[type-1], load_now);
  825. }
  826. /*
  827. * Return a high guess at the load of a migration-target cpu
  828. */
  829. static inline unsigned long target_load(int cpu, int type)
  830. {
  831. runqueue_t *rq = cpu_rq(cpu);
  832. unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
  833. if (type == 0)
  834. return load_now;
  835. return max(rq->cpu_load[type-1], load_now);
  836. }
  837. /*
  838. * find_idlest_group finds and returns the least busy CPU group within the
  839. * domain.
  840. */
  841. static struct sched_group *
  842. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  843. {
  844. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  845. unsigned long min_load = ULONG_MAX, this_load = 0;
  846. int load_idx = sd->forkexec_idx;
  847. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  848. do {
  849. unsigned long load, avg_load;
  850. int local_group;
  851. int i;
  852. /* Skip over this group if it has no CPUs allowed */
  853. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  854. goto nextgroup;
  855. local_group = cpu_isset(this_cpu, group->cpumask);
  856. /* Tally up the load of all CPUs in the group */
  857. avg_load = 0;
  858. for_each_cpu_mask(i, group->cpumask) {
  859. /* Bias balancing toward cpus of our domain */
  860. if (local_group)
  861. load = source_load(i, load_idx);
  862. else
  863. load = target_load(i, load_idx);
  864. avg_load += load;
  865. }
  866. /* Adjust by relative CPU power of the group */
  867. avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
  868. if (local_group) {
  869. this_load = avg_load;
  870. this = group;
  871. } else if (avg_load < min_load) {
  872. min_load = avg_load;
  873. idlest = group;
  874. }
  875. nextgroup:
  876. group = group->next;
  877. } while (group != sd->groups);
  878. if (!idlest || 100*this_load < imbalance*min_load)
  879. return NULL;
  880. return idlest;
  881. }
  882. /*
  883. * find_idlest_queue - find the idlest runqueue among the cpus in group.
  884. */
  885. static int
  886. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  887. {
  888. cpumask_t tmp;
  889. unsigned long load, min_load = ULONG_MAX;
  890. int idlest = -1;
  891. int i;
  892. /* Traverse only the allowed CPUs */
  893. cpus_and(tmp, group->cpumask, p->cpus_allowed);
  894. for_each_cpu_mask(i, tmp) {
  895. load = source_load(i, 0);
  896. if (load < min_load || (load == min_load && i == this_cpu)) {
  897. min_load = load;
  898. idlest = i;
  899. }
  900. }
  901. return idlest;
  902. }
  903. /*
  904. * sched_balance_self: balance the current task (running on cpu) in domains
  905. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  906. * SD_BALANCE_EXEC.
  907. *
  908. * Balance, ie. select the least loaded group.
  909. *
  910. * Returns the target CPU number, or the same CPU if no balancing is needed.
  911. *
  912. * preempt must be disabled.
  913. */
  914. static int sched_balance_self(int cpu, int flag)
  915. {
  916. struct task_struct *t = current;
  917. struct sched_domain *tmp, *sd = NULL;
  918. for_each_domain(cpu, tmp)
  919. if (tmp->flags & flag)
  920. sd = tmp;
  921. while (sd) {
  922. cpumask_t span;
  923. struct sched_group *group;
  924. int new_cpu;
  925. int weight;
  926. span = sd->span;
  927. group = find_idlest_group(sd, t, cpu);
  928. if (!group)
  929. goto nextlevel;
  930. new_cpu = find_idlest_cpu(group, t, cpu);
  931. if (new_cpu == -1 || new_cpu == cpu)
  932. goto nextlevel;
  933. /* Now try balancing at a lower domain level */
  934. cpu = new_cpu;
  935. nextlevel:
  936. sd = NULL;
  937. weight = cpus_weight(span);
  938. for_each_domain(cpu, tmp) {
  939. if (weight <= cpus_weight(tmp->span))
  940. break;
  941. if (tmp->flags & flag)
  942. sd = tmp;
  943. }
  944. /* while loop will break here if sd == NULL */
  945. }
  946. return cpu;
  947. }
  948. #endif /* CONFIG_SMP */
  949. /*
  950. * wake_idle() will wake a task on an idle cpu if task->cpu is
  951. * not idle and an idle cpu is available. The span of cpus to
  952. * search starts with cpus closest then further out as needed,
  953. * so we always favor a closer, idle cpu.
  954. *
  955. * Returns the CPU we should wake onto.
  956. */
  957. #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
  958. static int wake_idle(int cpu, task_t *p)
  959. {
  960. cpumask_t tmp;
  961. struct sched_domain *sd;
  962. int i;
  963. if (idle_cpu(cpu))
  964. return cpu;
  965. for_each_domain(cpu, sd) {
  966. if (sd->flags & SD_WAKE_IDLE) {
  967. cpus_and(tmp, sd->span, p->cpus_allowed);
  968. for_each_cpu_mask(i, tmp) {
  969. if (idle_cpu(i))
  970. return i;
  971. }
  972. }
  973. else
  974. break;
  975. }
  976. return cpu;
  977. }
  978. #else
  979. static inline int wake_idle(int cpu, task_t *p)
  980. {
  981. return cpu;
  982. }
  983. #endif
  984. /***
  985. * try_to_wake_up - wake up a thread
  986. * @p: the to-be-woken-up thread
  987. * @state: the mask of task states that can be woken
  988. * @sync: do a synchronous wakeup?
  989. *
  990. * Put it on the run-queue if it's not already there. The "current"
  991. * thread is always on the run-queue (except when the actual
  992. * re-schedule is in progress), and as such you're allowed to do
  993. * the simpler "current->state = TASK_RUNNING" to mark yourself
  994. * runnable without the overhead of this.
  995. *
  996. * returns failure only if the task is already active.
  997. */
  998. static int try_to_wake_up(task_t *p, unsigned int state, int sync)
  999. {
  1000. int cpu, this_cpu, success = 0;
  1001. unsigned long flags;
  1002. long old_state;
  1003. runqueue_t *rq;
  1004. #ifdef CONFIG_SMP
  1005. unsigned long load, this_load;
  1006. struct sched_domain *sd, *this_sd = NULL;
  1007. int new_cpu;
  1008. #endif
  1009. rq = task_rq_lock(p, &flags);
  1010. old_state = p->state;
  1011. if (!(old_state & state))
  1012. goto out;
  1013. if (p->array)
  1014. goto out_running;
  1015. cpu = task_cpu(p);
  1016. this_cpu = smp_processor_id();
  1017. #ifdef CONFIG_SMP
  1018. if (unlikely(task_running(rq, p)))
  1019. goto out_activate;
  1020. new_cpu = cpu;
  1021. schedstat_inc(rq, ttwu_cnt);
  1022. if (cpu == this_cpu) {
  1023. schedstat_inc(rq, ttwu_local);
  1024. goto out_set_cpu;
  1025. }
  1026. for_each_domain(this_cpu, sd) {
  1027. if (cpu_isset(cpu, sd->span)) {
  1028. schedstat_inc(sd, ttwu_wake_remote);
  1029. this_sd = sd;
  1030. break;
  1031. }
  1032. }
  1033. if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
  1034. goto out_set_cpu;
  1035. /*
  1036. * Check for affine wakeup and passive balancing possibilities.
  1037. */
  1038. if (this_sd) {
  1039. int idx = this_sd->wake_idx;
  1040. unsigned int imbalance;
  1041. imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
  1042. load = source_load(cpu, idx);
  1043. this_load = target_load(this_cpu, idx);
  1044. new_cpu = this_cpu; /* Wake to this CPU if we can */
  1045. if (this_sd->flags & SD_WAKE_AFFINE) {
  1046. unsigned long tl = this_load;
  1047. /*
  1048. * If sync wakeup then subtract the (maximum possible)
  1049. * effect of the currently running task from the load
  1050. * of the current CPU:
  1051. */
  1052. if (sync)
  1053. tl -= SCHED_LOAD_SCALE;
  1054. if ((tl <= load &&
  1055. tl + target_load(cpu, idx) <= SCHED_LOAD_SCALE) ||
  1056. 100*(tl + SCHED_LOAD_SCALE) <= imbalance*load) {
  1057. /*
  1058. * This domain has SD_WAKE_AFFINE and
  1059. * p is cache cold in this domain, and
  1060. * there is no bad imbalance.
  1061. */
  1062. schedstat_inc(this_sd, ttwu_move_affine);
  1063. goto out_set_cpu;
  1064. }
  1065. }
  1066. /*
  1067. * Start passive balancing when half the imbalance_pct
  1068. * limit is reached.
  1069. */
  1070. if (this_sd->flags & SD_WAKE_BALANCE) {
  1071. if (imbalance*this_load <= 100*load) {
  1072. schedstat_inc(this_sd, ttwu_move_balance);
  1073. goto out_set_cpu;
  1074. }
  1075. }
  1076. }
  1077. new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
  1078. out_set_cpu:
  1079. new_cpu = wake_idle(new_cpu, p);
  1080. if (new_cpu != cpu) {
  1081. set_task_cpu(p, new_cpu);
  1082. task_rq_unlock(rq, &flags);
  1083. /* might preempt at this point */
  1084. rq = task_rq_lock(p, &flags);
  1085. old_state = p->state;
  1086. if (!(old_state & state))
  1087. goto out;
  1088. if (p->array)
  1089. goto out_running;
  1090. this_cpu = smp_processor_id();
  1091. cpu = task_cpu(p);
  1092. }
  1093. out_activate:
  1094. #endif /* CONFIG_SMP */
  1095. if (old_state == TASK_UNINTERRUPTIBLE) {
  1096. rq->nr_uninterruptible--;
  1097. /*
  1098. * Tasks on involuntary sleep don't earn
  1099. * sleep_avg beyond just interactive state.
  1100. */
  1101. p->activated = -1;
  1102. }
  1103. /*
  1104. * Tasks that have marked their sleep as noninteractive get
  1105. * woken up without updating their sleep average. (i.e. their
  1106. * sleep is handled in a priority-neutral manner, no priority
  1107. * boost and no penalty.)
  1108. */
  1109. if (old_state & TASK_NONINTERACTIVE)
  1110. __activate_task(p, rq);
  1111. else
  1112. activate_task(p, rq, cpu == this_cpu);
  1113. /*
  1114. * Sync wakeups (i.e. those types of wakeups where the waker
  1115. * has indicated that it will leave the CPU in short order)
  1116. * don't trigger a preemption, if the woken up task will run on
  1117. * this cpu. (in this case the 'I will reschedule' promise of
  1118. * the waker guarantees that the freshly woken up task is going
  1119. * to be considered on this CPU.)
  1120. */
  1121. if (!sync || cpu != this_cpu) {
  1122. if (TASK_PREEMPTS_CURR(p, rq))
  1123. resched_task(rq->curr);
  1124. }
  1125. success = 1;
  1126. out_running:
  1127. p->state = TASK_RUNNING;
  1128. out:
  1129. task_rq_unlock(rq, &flags);
  1130. return success;
  1131. }
  1132. int fastcall wake_up_process(task_t *p)
  1133. {
  1134. return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
  1135. TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
  1136. }
  1137. EXPORT_SYMBOL(wake_up_process);
  1138. int fastcall wake_up_state(task_t *p, unsigned int state)
  1139. {
  1140. return try_to_wake_up(p, state, 0);
  1141. }
  1142. /*
  1143. * Perform scheduler related setup for a newly forked process p.
  1144. * p is forked by current.
  1145. */
  1146. void fastcall sched_fork(task_t *p, int clone_flags)
  1147. {
  1148. int cpu = get_cpu();
  1149. #ifdef CONFIG_SMP
  1150. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  1151. #endif
  1152. set_task_cpu(p, cpu);
  1153. /*
  1154. * We mark the process as running here, but have not actually
  1155. * inserted it onto the runqueue yet. This guarantees that
  1156. * nobody will actually run it, and a signal or other external
  1157. * event cannot wake it up and insert it on the runqueue either.
  1158. */
  1159. p->state = TASK_RUNNING;
  1160. INIT_LIST_HEAD(&p->run_list);
  1161. p->array = NULL;
  1162. #ifdef CONFIG_SCHEDSTATS
  1163. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1164. #endif
  1165. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  1166. p->oncpu = 0;
  1167. #endif
  1168. #ifdef CONFIG_PREEMPT
  1169. /* Want to start with kernel preemption disabled. */
  1170. p->thread_info->preempt_count = 1;
  1171. #endif
  1172. /*
  1173. * Share the timeslice between parent and child, thus the
  1174. * total amount of pending timeslices in the system doesn't change,
  1175. * resulting in more scheduling fairness.
  1176. */
  1177. local_irq_disable();
  1178. p->time_slice = (current->time_slice + 1) >> 1;
  1179. /*
  1180. * The remainder of the first timeslice might be recovered by
  1181. * the parent if the child exits early enough.
  1182. */
  1183. p->first_time_slice = 1;
  1184. current->time_slice >>= 1;
  1185. p->timestamp = sched_clock();
  1186. if (unlikely(!current->time_slice)) {
  1187. /*
  1188. * This case is rare, it happens when the parent has only
  1189. * a single jiffy left from its timeslice. Taking the
  1190. * runqueue lock is not a problem.
  1191. */
  1192. current->time_slice = 1;
  1193. scheduler_tick();
  1194. }
  1195. local_irq_enable();
  1196. put_cpu();
  1197. }
  1198. /*
  1199. * wake_up_new_task - wake up a newly created task for the first time.
  1200. *
  1201. * This function will do some initial scheduler statistics housekeeping
  1202. * that must be done for every newly created context, then puts the task
  1203. * on the runqueue and wakes it.
  1204. */
  1205. void fastcall wake_up_new_task(task_t *p, unsigned long clone_flags)
  1206. {
  1207. unsigned long flags;
  1208. int this_cpu, cpu;
  1209. runqueue_t *rq, *this_rq;
  1210. rq = task_rq_lock(p, &flags);
  1211. BUG_ON(p->state != TASK_RUNNING);
  1212. this_cpu = smp_processor_id();
  1213. cpu = task_cpu(p);
  1214. /*
  1215. * We decrease the sleep average of forking parents
  1216. * and children as well, to keep max-interactive tasks
  1217. * from forking tasks that are max-interactive. The parent
  1218. * (current) is done further down, under its lock.
  1219. */
  1220. p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
  1221. CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
  1222. p->prio = effective_prio(p);
  1223. if (likely(cpu == this_cpu)) {
  1224. if (!(clone_flags & CLONE_VM)) {
  1225. /*
  1226. * The VM isn't cloned, so we're in a good position to
  1227. * do child-runs-first in anticipation of an exec. This
  1228. * usually avoids a lot of COW overhead.
  1229. */
  1230. if (unlikely(!current->array))
  1231. __activate_task(p, rq);
  1232. else {
  1233. p->prio = current->prio;
  1234. list_add_tail(&p->run_list, &current->run_list);
  1235. p->array = current->array;
  1236. p->array->nr_active++;
  1237. rq->nr_running++;
  1238. }
  1239. set_need_resched();
  1240. } else
  1241. /* Run child last */
  1242. __activate_task(p, rq);
  1243. /*
  1244. * We skip the following code due to cpu == this_cpu
  1245. *
  1246. * task_rq_unlock(rq, &flags);
  1247. * this_rq = task_rq_lock(current, &flags);
  1248. */
  1249. this_rq = rq;
  1250. } else {
  1251. this_rq = cpu_rq(this_cpu);
  1252. /*
  1253. * Not the local CPU - must adjust timestamp. This should
  1254. * get optimised away in the !CONFIG_SMP case.
  1255. */
  1256. p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
  1257. + rq->timestamp_last_tick;
  1258. __activate_task(p, rq);
  1259. if (TASK_PREEMPTS_CURR(p, rq))
  1260. resched_task(rq->curr);
  1261. /*
  1262. * Parent and child are on different CPUs, now get the
  1263. * parent runqueue to update the parent's ->sleep_avg:
  1264. */
  1265. task_rq_unlock(rq, &flags);
  1266. this_rq = task_rq_lock(current, &flags);
  1267. }
  1268. current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
  1269. PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
  1270. task_rq_unlock(this_rq, &flags);
  1271. }
  1272. /*
  1273. * Potentially available exiting-child timeslices are
  1274. * retrieved here - this way the parent does not get
  1275. * penalized for creating too many threads.
  1276. *
  1277. * (this cannot be used to 'generate' timeslices
  1278. * artificially, because any timeslice recovered here
  1279. * was given away by the parent in the first place.)
  1280. */
  1281. void fastcall sched_exit(task_t *p)
  1282. {
  1283. unsigned long flags;
  1284. runqueue_t *rq;
  1285. /*
  1286. * If the child was a (relative-) CPU hog then decrease
  1287. * the sleep_avg of the parent as well.
  1288. */
  1289. rq = task_rq_lock(p->parent, &flags);
  1290. if (p->first_time_slice) {
  1291. p->parent->time_slice += p->time_slice;
  1292. if (unlikely(p->parent->time_slice > task_timeslice(p)))
  1293. p->parent->time_slice = task_timeslice(p);
  1294. }
  1295. if (p->sleep_avg < p->parent->sleep_avg)
  1296. p->parent->sleep_avg = p->parent->sleep_avg /
  1297. (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
  1298. (EXIT_WEIGHT + 1);
  1299. task_rq_unlock(rq, &flags);
  1300. }
  1301. /**
  1302. * prepare_task_switch - prepare to switch tasks
  1303. * @rq: the runqueue preparing to switch
  1304. * @next: the task we are going to switch to.
  1305. *
  1306. * This is called with the rq lock held and interrupts off. It must
  1307. * be paired with a subsequent finish_task_switch after the context
  1308. * switch.
  1309. *
  1310. * prepare_task_switch sets up locking and calls architecture specific
  1311. * hooks.
  1312. */
  1313. static inline void prepare_task_switch(runqueue_t *rq, task_t *next)
  1314. {
  1315. prepare_lock_switch(rq, next);
  1316. prepare_arch_switch(next);
  1317. }
  1318. /**
  1319. * finish_task_switch - clean up after a task-switch
  1320. * @rq: runqueue associated with task-switch
  1321. * @prev: the thread we just switched away from.
  1322. *
  1323. * finish_task_switch must be called after the context switch, paired
  1324. * with a prepare_task_switch call before the context switch.
  1325. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1326. * and do any other architecture-specific cleanup actions.
  1327. *
  1328. * Note that we may have delayed dropping an mm in context_switch(). If
  1329. * so, we finish that here outside of the runqueue lock. (Doing it
  1330. * with the lock held can cause deadlocks; see schedule() for
  1331. * details.)
  1332. */
  1333. static inline void finish_task_switch(runqueue_t *rq, task_t *prev)
  1334. __releases(rq->lock)
  1335. {
  1336. struct mm_struct *mm = rq->prev_mm;
  1337. unsigned long prev_task_flags;
  1338. rq->prev_mm = NULL;
  1339. /*
  1340. * A task struct has one reference for the use as "current".
  1341. * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
  1342. * calls schedule one last time. The schedule call will never return,
  1343. * and the scheduled task must drop that reference.
  1344. * The test for EXIT_ZOMBIE must occur while the runqueue locks are
  1345. * still held, otherwise prev could be scheduled on another cpu, die
  1346. * there before we look at prev->state, and then the reference would
  1347. * be dropped twice.
  1348. * Manfred Spraul <manfred@colorfullife.com>
  1349. */
  1350. prev_task_flags = prev->flags;
  1351. #ifdef CONFIG_DEBUG_SPINLOCK
  1352. /* this is a valid case when another task releases the spinlock */
  1353. rq->lock.owner = current;
  1354. #endif
  1355. finish_arch_switch(prev);
  1356. finish_lock_switch(rq, prev);
  1357. if (mm)
  1358. mmdrop(mm);
  1359. if (unlikely(prev_task_flags & PF_DEAD))
  1360. put_task_struct(prev);
  1361. }
  1362. /**
  1363. * schedule_tail - first thing a freshly forked thread must call.
  1364. * @prev: the thread we just switched away from.
  1365. */
  1366. asmlinkage void schedule_tail(task_t *prev)
  1367. __releases(rq->lock)
  1368. {
  1369. runqueue_t *rq = this_rq();
  1370. finish_task_switch(rq, prev);
  1371. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1372. /* In this case, finish_task_switch does not reenable preemption */
  1373. preempt_enable();
  1374. #endif
  1375. if (current->set_child_tid)
  1376. put_user(current->pid, current->set_child_tid);
  1377. }
  1378. /*
  1379. * context_switch - switch to the new MM and the new
  1380. * thread's register state.
  1381. */
  1382. static inline
  1383. task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next)
  1384. {
  1385. struct mm_struct *mm = next->mm;
  1386. struct mm_struct *oldmm = prev->active_mm;
  1387. if (unlikely(!mm)) {
  1388. next->active_mm = oldmm;
  1389. atomic_inc(&oldmm->mm_count);
  1390. enter_lazy_tlb(oldmm, next);
  1391. } else
  1392. switch_mm(oldmm, mm, next);
  1393. if (unlikely(!prev->mm)) {
  1394. prev->active_mm = NULL;
  1395. WARN_ON(rq->prev_mm);
  1396. rq->prev_mm = oldmm;
  1397. }
  1398. /* Here we just switch the register state and the stack. */
  1399. switch_to(prev, next, prev);
  1400. return prev;
  1401. }
  1402. /*
  1403. * nr_running, nr_uninterruptible and nr_context_switches:
  1404. *
  1405. * externally visible scheduler statistics: current number of runnable
  1406. * threads, current number of uninterruptible-sleeping threads, total
  1407. * number of context switches performed since bootup.
  1408. */
  1409. unsigned long nr_running(void)
  1410. {
  1411. unsigned long i, sum = 0;
  1412. for_each_online_cpu(i)
  1413. sum += cpu_rq(i)->nr_running;
  1414. return sum;
  1415. }
  1416. unsigned long nr_uninterruptible(void)
  1417. {
  1418. unsigned long i, sum = 0;
  1419. for_each_cpu(i)
  1420. sum += cpu_rq(i)->nr_uninterruptible;
  1421. /*
  1422. * Since we read the counters lockless, it might be slightly
  1423. * inaccurate. Do not allow it to go below zero though:
  1424. */
  1425. if (unlikely((long)sum < 0))
  1426. sum = 0;
  1427. return sum;
  1428. }
  1429. unsigned long long nr_context_switches(void)
  1430. {
  1431. unsigned long long i, sum = 0;
  1432. for_each_cpu(i)
  1433. sum += cpu_rq(i)->nr_switches;
  1434. return sum;
  1435. }
  1436. unsigned long nr_iowait(void)
  1437. {
  1438. unsigned long i, sum = 0;
  1439. for_each_cpu(i)
  1440. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1441. return sum;
  1442. }
  1443. #ifdef CONFIG_SMP
  1444. /*
  1445. * double_rq_lock - safely lock two runqueues
  1446. *
  1447. * Note this does not disable interrupts like task_rq_lock,
  1448. * you need to do so manually before calling.
  1449. */
  1450. static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
  1451. __acquires(rq1->lock)
  1452. __acquires(rq2->lock)
  1453. {
  1454. if (rq1 == rq2) {
  1455. spin_lock(&rq1->lock);
  1456. __acquire(rq2->lock); /* Fake it out ;) */
  1457. } else {
  1458. if (rq1 < rq2) {
  1459. spin_lock(&rq1->lock);
  1460. spin_lock(&rq2->lock);
  1461. } else {
  1462. spin_lock(&rq2->lock);
  1463. spin_lock(&rq1->lock);
  1464. }
  1465. }
  1466. }
  1467. /*
  1468. * double_rq_unlock - safely unlock two runqueues
  1469. *
  1470. * Note this does not restore interrupts like task_rq_unlock,
  1471. * you need to do so manually after calling.
  1472. */
  1473. static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
  1474. __releases(rq1->lock)
  1475. __releases(rq2->lock)
  1476. {
  1477. spin_unlock(&rq1->lock);
  1478. if (rq1 != rq2)
  1479. spin_unlock(&rq2->lock);
  1480. else
  1481. __release(rq2->lock);
  1482. }
  1483. /*
  1484. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1485. */
  1486. static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
  1487. __releases(this_rq->lock)
  1488. __acquires(busiest->lock)
  1489. __acquires(this_rq->lock)
  1490. {
  1491. if (unlikely(!spin_trylock(&busiest->lock))) {
  1492. if (busiest < this_rq) {
  1493. spin_unlock(&this_rq->lock);
  1494. spin_lock(&busiest->lock);
  1495. spin_lock(&this_rq->lock);
  1496. } else
  1497. spin_lock(&busiest->lock);
  1498. }
  1499. }
  1500. /*
  1501. * If dest_cpu is allowed for this process, migrate the task to it.
  1502. * This is accomplished by forcing the cpu_allowed mask to only
  1503. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  1504. * the cpu_allowed mask is restored.
  1505. */
  1506. static void sched_migrate_task(task_t *p, int dest_cpu)
  1507. {
  1508. migration_req_t req;
  1509. runqueue_t *rq;
  1510. unsigned long flags;
  1511. rq = task_rq_lock(p, &flags);
  1512. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  1513. || unlikely(cpu_is_offline(dest_cpu)))
  1514. goto out;
  1515. /* force the process onto the specified CPU */
  1516. if (migrate_task(p, dest_cpu, &req)) {
  1517. /* Need to wait for migration thread (might exit: take ref). */
  1518. struct task_struct *mt = rq->migration_thread;
  1519. get_task_struct(mt);
  1520. task_rq_unlock(rq, &flags);
  1521. wake_up_process(mt);
  1522. put_task_struct(mt);
  1523. wait_for_completion(&req.done);
  1524. return;
  1525. }
  1526. out:
  1527. task_rq_unlock(rq, &flags);
  1528. }
  1529. /*
  1530. * sched_exec - execve() is a valuable balancing opportunity, because at
  1531. * this point the task has the smallest effective memory and cache footprint.
  1532. */
  1533. void sched_exec(void)
  1534. {
  1535. int new_cpu, this_cpu = get_cpu();
  1536. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  1537. put_cpu();
  1538. if (new_cpu != this_cpu)
  1539. sched_migrate_task(current, new_cpu);
  1540. }
  1541. /*
  1542. * pull_task - move a task from a remote runqueue to the local runqueue.
  1543. * Both runqueues must be locked.
  1544. */
  1545. static inline
  1546. void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
  1547. runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
  1548. {
  1549. dequeue_task(p, src_array);
  1550. src_rq->nr_running--;
  1551. set_task_cpu(p, this_cpu);
  1552. this_rq->nr_running++;
  1553. enqueue_task(p, this_array);
  1554. p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
  1555. + this_rq->timestamp_last_tick;
  1556. /*
  1557. * Note that idle threads have a prio of MAX_PRIO, for this test
  1558. * to be always true for them.
  1559. */
  1560. if (TASK_PREEMPTS_CURR(p, this_rq))
  1561. resched_task(this_rq->curr);
  1562. }
  1563. /*
  1564. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  1565. */
  1566. static inline
  1567. int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
  1568. struct sched_domain *sd, enum idle_type idle,
  1569. int *all_pinned)
  1570. {
  1571. /*
  1572. * We do not migrate tasks that are:
  1573. * 1) running (obviously), or
  1574. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  1575. * 3) are cache-hot on their current CPU.
  1576. */
  1577. if (!cpu_isset(this_cpu, p->cpus_allowed))
  1578. return 0;
  1579. *all_pinned = 0;
  1580. if (task_running(rq, p))
  1581. return 0;
  1582. /*
  1583. * Aggressive migration if:
  1584. * 1) task is cache cold, or
  1585. * 2) too many balance attempts have failed.
  1586. */
  1587. if (sd->nr_balance_failed > sd->cache_nice_tries)
  1588. return 1;
  1589. if (task_hot(p, rq->timestamp_last_tick, sd))
  1590. return 0;
  1591. return 1;
  1592. }
  1593. /*
  1594. * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq,
  1595. * as part of a balancing operation within "domain". Returns the number of
  1596. * tasks moved.
  1597. *
  1598. * Called with both runqueues locked.
  1599. */
  1600. static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
  1601. unsigned long max_nr_move, struct sched_domain *sd,
  1602. enum idle_type idle, int *all_pinned)
  1603. {
  1604. prio_array_t *array, *dst_array;
  1605. struct list_head *head, *curr;
  1606. int idx, pulled = 0, pinned = 0;
  1607. task_t *tmp;
  1608. if (max_nr_move == 0)
  1609. goto out;
  1610. pinned = 1;
  1611. /*
  1612. * We first consider expired tasks. Those will likely not be
  1613. * executed in the near future, and they are most likely to
  1614. * be cache-cold, thus switching CPUs has the least effect
  1615. * on them.
  1616. */
  1617. if (busiest->expired->nr_active) {
  1618. array = busiest->expired;
  1619. dst_array = this_rq->expired;
  1620. } else {
  1621. array = busiest->active;
  1622. dst_array = this_rq->active;
  1623. }
  1624. new_array:
  1625. /* Start searching at priority 0: */
  1626. idx = 0;
  1627. skip_bitmap:
  1628. if (!idx)
  1629. idx = sched_find_first_bit(array->bitmap);
  1630. else
  1631. idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
  1632. if (idx >= MAX_PRIO) {
  1633. if (array == busiest->expired && busiest->active->nr_active) {
  1634. array = busiest->active;
  1635. dst_array = this_rq->active;
  1636. goto new_array;
  1637. }
  1638. goto out;
  1639. }
  1640. head = array->queue + idx;
  1641. curr = head->prev;
  1642. skip_queue:
  1643. tmp = list_entry(curr, task_t, run_list);
  1644. curr = curr->prev;
  1645. if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
  1646. if (curr != head)
  1647. goto skip_queue;
  1648. idx++;
  1649. goto skip_bitmap;
  1650. }
  1651. #ifdef CONFIG_SCHEDSTATS
  1652. if (task_hot(tmp, busiest->timestamp_last_tick, sd))
  1653. schedstat_inc(sd, lb_hot_gained[idle]);
  1654. #endif
  1655. pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
  1656. pulled++;
  1657. /* We only want to steal up to the prescribed number of tasks. */
  1658. if (pulled < max_nr_move) {
  1659. if (curr != head)
  1660. goto skip_queue;
  1661. idx++;
  1662. goto skip_bitmap;
  1663. }
  1664. out:
  1665. /*
  1666. * Right now, this is the only place pull_task() is called,
  1667. * so we can safely collect pull_task() stats here rather than
  1668. * inside pull_task().
  1669. */
  1670. schedstat_add(sd, lb_gained[idle], pulled);
  1671. if (all_pinned)
  1672. *all_pinned = pinned;
  1673. return pulled;
  1674. }
  1675. /*
  1676. * find_busiest_group finds and returns the busiest CPU group within the
  1677. * domain. It calculates and returns the number of tasks which should be
  1678. * moved to restore balance via the imbalance parameter.
  1679. */
  1680. static struct sched_group *
  1681. find_busiest_group(struct sched_domain *sd, int this_cpu,
  1682. unsigned long *imbalance, enum idle_type idle, int *sd_idle)
  1683. {
  1684. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  1685. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  1686. unsigned long max_pull;
  1687. int load_idx;
  1688. max_load = this_load = total_load = total_pwr = 0;
  1689. if (idle == NOT_IDLE)
  1690. load_idx = sd->busy_idx;
  1691. else if (idle == NEWLY_IDLE)
  1692. load_idx = sd->newidle_idx;
  1693. else
  1694. load_idx = sd->idle_idx;
  1695. do {
  1696. unsigned long load;
  1697. int local_group;
  1698. int i;
  1699. local_group = cpu_isset(this_cpu, group->cpumask);
  1700. /* Tally up the load of all CPUs in the group */
  1701. avg_load = 0;
  1702. for_each_cpu_mask(i, group->cpumask) {
  1703. if (*sd_idle && !idle_cpu(i))
  1704. *sd_idle = 0;
  1705. /* Bias balancing toward cpus of our domain */
  1706. if (local_group)
  1707. load = target_load(i, load_idx);
  1708. else
  1709. load = source_load(i, load_idx);
  1710. avg_load += load;
  1711. }
  1712. total_load += avg_load;
  1713. total_pwr += group->cpu_power;
  1714. /* Adjust by relative CPU power of the group */
  1715. avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
  1716. if (local_group) {
  1717. this_load = avg_load;
  1718. this = group;
  1719. } else if (avg_load > max_load) {
  1720. max_load = avg_load;
  1721. busiest = group;
  1722. }
  1723. group = group->next;
  1724. } while (group != sd->groups);
  1725. if (!busiest || this_load >= max_load || max_load <= SCHED_LOAD_SCALE)
  1726. goto out_balanced;
  1727. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  1728. if (this_load >= avg_load ||
  1729. 100*max_load <= sd->imbalance_pct*this_load)
  1730. goto out_balanced;
  1731. /*
  1732. * We're trying to get all the cpus to the average_load, so we don't
  1733. * want to push ourselves above the average load, nor do we wish to
  1734. * reduce the max loaded cpu below the average load, as either of these
  1735. * actions would just result in more rebalancing later, and ping-pong
  1736. * tasks around. Thus we look for the minimum possible imbalance.
  1737. * Negative imbalances (*we* are more loaded than anyone else) will
  1738. * be counted as no imbalance for these purposes -- we can't fix that
  1739. * by pulling tasks to us. Be careful of negative numbers as they'll
  1740. * appear as very large values with unsigned longs.
  1741. */
  1742. /* Don't want to pull so many tasks that a group would go idle */
  1743. max_pull = min(max_load - avg_load, max_load - SCHED_LOAD_SCALE);
  1744. /* How much load to actually move to equalise the imbalance */
  1745. *imbalance = min(max_pull * busiest->cpu_power,
  1746. (avg_load - this_load) * this->cpu_power)
  1747. / SCHED_LOAD_SCALE;
  1748. if (*imbalance < SCHED_LOAD_SCALE) {
  1749. unsigned long pwr_now = 0, pwr_move = 0;
  1750. unsigned long tmp;
  1751. if (max_load - this_load >= SCHED_LOAD_SCALE*2) {
  1752. *imbalance = 1;
  1753. return busiest;
  1754. }
  1755. /*
  1756. * OK, we don't have enough imbalance to justify moving tasks,
  1757. * however we may be able to increase total CPU power used by
  1758. * moving them.
  1759. */
  1760. pwr_now += busiest->cpu_power*min(SCHED_LOAD_SCALE, max_load);
  1761. pwr_now += this->cpu_power*min(SCHED_LOAD_SCALE, this_load);
  1762. pwr_now /= SCHED_LOAD_SCALE;
  1763. /* Amount of load we'd subtract */
  1764. tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/busiest->cpu_power;
  1765. if (max_load > tmp)
  1766. pwr_move += busiest->cpu_power*min(SCHED_LOAD_SCALE,
  1767. max_load - tmp);
  1768. /* Amount of load we'd add */
  1769. if (max_load*busiest->cpu_power <
  1770. SCHED_LOAD_SCALE*SCHED_LOAD_SCALE)
  1771. tmp = max_load*busiest->cpu_power/this->cpu_power;
  1772. else
  1773. tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/this->cpu_power;
  1774. pwr_move += this->cpu_power*min(SCHED_LOAD_SCALE, this_load + tmp);
  1775. pwr_move /= SCHED_LOAD_SCALE;
  1776. /* Move if we gain throughput */
  1777. if (pwr_move <= pwr_now)
  1778. goto out_balanced;
  1779. *imbalance = 1;
  1780. return busiest;
  1781. }
  1782. /* Get rid of the scaling factor, rounding down as we divide */
  1783. *imbalance = *imbalance / SCHED_LOAD_SCALE;
  1784. return busiest;
  1785. out_balanced:
  1786. *imbalance = 0;
  1787. return NULL;
  1788. }
  1789. /*
  1790. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  1791. */
  1792. static runqueue_t *find_busiest_queue(struct sched_group *group)
  1793. {
  1794. unsigned long load, max_load = 0;
  1795. runqueue_t *busiest = NULL;
  1796. int i;
  1797. for_each_cpu_mask(i, group->cpumask) {
  1798. load = source_load(i, 0);
  1799. if (load > max_load) {
  1800. max_load = load;
  1801. busiest = cpu_rq(i);
  1802. }
  1803. }
  1804. return busiest;
  1805. }
  1806. /*
  1807. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  1808. * so long as it is large enough.
  1809. */
  1810. #define MAX_PINNED_INTERVAL 512
  1811. /*
  1812. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  1813. * tasks if there is an imbalance.
  1814. *
  1815. * Called with this_rq unlocked.
  1816. */
  1817. static int load_balance(int this_cpu, runqueue_t *this_rq,
  1818. struct sched_domain *sd, enum idle_type idle)
  1819. {
  1820. struct sched_group *group;
  1821. runqueue_t *busiest;
  1822. unsigned long imbalance;
  1823. int nr_moved, all_pinned = 0;
  1824. int active_balance = 0;
  1825. int sd_idle = 0;
  1826. if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER)
  1827. sd_idle = 1;
  1828. schedstat_inc(sd, lb_cnt[idle]);
  1829. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle);
  1830. if (!group) {
  1831. schedstat_inc(sd, lb_nobusyg[idle]);
  1832. goto out_balanced;
  1833. }
  1834. busiest = find_busiest_queue(group);
  1835. if (!busiest) {
  1836. schedstat_inc(sd, lb_nobusyq[idle]);
  1837. goto out_balanced;
  1838. }
  1839. BUG_ON(busiest == this_rq);
  1840. schedstat_add(sd, lb_imbalance[idle], imbalance);
  1841. nr_moved = 0;
  1842. if (busiest->nr_running > 1) {
  1843. /*
  1844. * Attempt to move tasks. If find_busiest_group has found
  1845. * an imbalance but busiest->nr_running <= 1, the group is
  1846. * still unbalanced. nr_moved simply stays zero, so it is
  1847. * correctly treated as an imbalance.
  1848. */
  1849. double_rq_lock(this_rq, busiest);
  1850. nr_moved = move_tasks(this_rq, this_cpu, busiest,
  1851. imbalance, sd, idle, &all_pinned);
  1852. double_rq_unlock(this_rq, busiest);
  1853. /* All tasks on this runqueue were pinned by CPU affinity */
  1854. if (unlikely(all_pinned))
  1855. goto out_balanced;
  1856. }
  1857. if (!nr_moved) {
  1858. schedstat_inc(sd, lb_failed[idle]);
  1859. sd->nr_balance_failed++;
  1860. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  1861. spin_lock(&busiest->lock);
  1862. /* don't kick the migration_thread, if the curr
  1863. * task on busiest cpu can't be moved to this_cpu
  1864. */
  1865. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  1866. spin_unlock(&busiest->lock);
  1867. all_pinned = 1;
  1868. goto out_one_pinned;
  1869. }
  1870. if (!busiest->active_balance) {
  1871. busiest->active_balance = 1;
  1872. busiest->push_cpu = this_cpu;
  1873. active_balance = 1;
  1874. }
  1875. spin_unlock(&busiest->lock);
  1876. if (active_balance)
  1877. wake_up_process(busiest->migration_thread);
  1878. /*
  1879. * We've kicked active balancing, reset the failure
  1880. * counter.
  1881. */
  1882. sd->nr_balance_failed = sd->cache_nice_tries+1;
  1883. }
  1884. } else
  1885. sd->nr_balance_failed = 0;
  1886. if (likely(!active_balance)) {
  1887. /* We were unbalanced, so reset the balancing interval */
  1888. sd->balance_interval = sd->min_interval;
  1889. } else {
  1890. /*
  1891. * If we've begun active balancing, start to back off. This
  1892. * case may not be covered by the all_pinned logic if there
  1893. * is only 1 task on the busy runqueue (because we don't call
  1894. * move_tasks).
  1895. */
  1896. if (sd->balance_interval < sd->max_interval)
  1897. sd->balance_interval *= 2;
  1898. }
  1899. if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER)
  1900. return -1;
  1901. return nr_moved;
  1902. out_balanced:
  1903. schedstat_inc(sd, lb_balanced[idle]);
  1904. sd->nr_balance_failed = 0;
  1905. out_one_pinned:
  1906. /* tune up the balancing interval */
  1907. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  1908. (sd->balance_interval < sd->max_interval))
  1909. sd->balance_interval *= 2;
  1910. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
  1911. return -1;
  1912. return 0;
  1913. }
  1914. /*
  1915. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  1916. * tasks if there is an imbalance.
  1917. *
  1918. * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
  1919. * this_rq is locked.
  1920. */
  1921. static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
  1922. struct sched_domain *sd)
  1923. {
  1924. struct sched_group *group;
  1925. runqueue_t *busiest = NULL;
  1926. unsigned long imbalance;
  1927. int nr_moved = 0;
  1928. int sd_idle = 0;
  1929. if (sd->flags & SD_SHARE_CPUPOWER)
  1930. sd_idle = 1;
  1931. schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
  1932. group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE, &sd_idle);
  1933. if (!group) {
  1934. schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
  1935. goto out_balanced;
  1936. }
  1937. busiest = find_busiest_queue(group);
  1938. if (!busiest) {
  1939. schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
  1940. goto out_balanced;
  1941. }
  1942. BUG_ON(busiest == this_rq);
  1943. schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
  1944. nr_moved = 0;
  1945. if (busiest->nr_running > 1) {
  1946. /* Attempt to move tasks */
  1947. double_lock_balance(this_rq, busiest);
  1948. nr_moved = move_tasks(this_rq, this_cpu, busiest,
  1949. imbalance, sd, NEWLY_IDLE, NULL);
  1950. spin_unlock(&busiest->lock);
  1951. }
  1952. if (!nr_moved) {
  1953. schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
  1954. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
  1955. return -1;
  1956. } else
  1957. sd->nr_balance_failed = 0;
  1958. return nr_moved;
  1959. out_balanced:
  1960. schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
  1961. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
  1962. return -1;
  1963. sd->nr_balance_failed = 0;
  1964. return 0;
  1965. }
  1966. /*
  1967. * idle_balance is called by schedule() if this_cpu is about to become
  1968. * idle. Attempts to pull tasks from other CPUs.
  1969. */
  1970. static inline void idle_balance(int this_cpu, runqueue_t *this_rq)
  1971. {
  1972. struct sched_domain *sd;
  1973. for_each_domain(this_cpu, sd) {
  1974. if (sd->flags & SD_BALANCE_NEWIDLE) {
  1975. if (load_balance_newidle(this_cpu, this_rq, sd)) {
  1976. /* We've pulled tasks over so stop searching */
  1977. break;
  1978. }
  1979. }
  1980. }
  1981. }
  1982. /*
  1983. * active_load_balance is run by migration threads. It pushes running tasks
  1984. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  1985. * running on each physical CPU where possible, and avoids physical /
  1986. * logical imbalances.
  1987. *
  1988. * Called with busiest_rq locked.
  1989. */
  1990. static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
  1991. {
  1992. struct sched_domain *sd;
  1993. runqueue_t *target_rq;
  1994. int target_cpu = busiest_rq->push_cpu;
  1995. if (busiest_rq->nr_running <= 1)
  1996. /* no task to move */
  1997. return;
  1998. target_rq = cpu_rq(target_cpu);
  1999. /*
  2000. * This condition is "impossible", if it occurs
  2001. * we need to fix it. Originally reported by
  2002. * Bjorn Helgaas on a 128-cpu setup.
  2003. */
  2004. BUG_ON(busiest_rq == target_rq);
  2005. /* move a task from busiest_rq to target_rq */
  2006. double_lock_balance(busiest_rq, target_rq);
  2007. /* Search for an sd spanning us and the target CPU. */
  2008. for_each_domain(target_cpu, sd)
  2009. if ((sd->flags & SD_LOAD_BALANCE) &&
  2010. cpu_isset(busiest_cpu, sd->span))
  2011. break;
  2012. if (unlikely(sd == NULL))
  2013. goto out;
  2014. schedstat_inc(sd, alb_cnt);
  2015. if (move_tasks(target_rq, target_cpu, busiest_rq, 1, sd, SCHED_IDLE, NULL))
  2016. schedstat_inc(sd, alb_pushed);
  2017. else
  2018. schedstat_inc(sd, alb_failed);
  2019. out:
  2020. spin_unlock(&target_rq->lock);
  2021. }
  2022. /*
  2023. * rebalance_tick will get called every timer tick, on every CPU.
  2024. *
  2025. * It checks each scheduling domain to see if it is due to be balanced,
  2026. * and initiates a balancing operation if so.
  2027. *
  2028. * Balancing parameters are set up in arch_init_sched_domains.
  2029. */
  2030. /* Don't have all balancing operations going off at once */
  2031. #define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
  2032. static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
  2033. enum idle_type idle)
  2034. {
  2035. unsigned long old_load, this_load;
  2036. unsigned long j = jiffies + CPU_OFFSET(this_cpu);
  2037. struct sched_domain *sd;
  2038. int i;
  2039. this_load = this_rq->nr_running * SCHED_LOAD_SCALE;
  2040. /* Update our load */
  2041. for (i = 0; i < 3; i++) {
  2042. unsigned long new_load = this_load;
  2043. int scale = 1 << i;
  2044. old_load = this_rq->cpu_load[i];
  2045. /*
  2046. * Round up the averaging division if load is increasing. This
  2047. * prevents us from getting stuck on 9 if the load is 10, for
  2048. * example.
  2049. */
  2050. if (new_load > old_load)
  2051. new_load += scale-1;
  2052. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
  2053. }
  2054. for_each_domain(this_cpu, sd) {
  2055. unsigned long interval;
  2056. if (!(sd->flags & SD_LOAD_BALANCE))
  2057. continue;
  2058. interval = sd->balance_interval;
  2059. if (idle != SCHED_IDLE)
  2060. interval *= sd->busy_factor;
  2061. /* scale ms to jiffies */
  2062. interval = msecs_to_jiffies(interval);
  2063. if (unlikely(!interval))
  2064. interval = 1;
  2065. if (j - sd->last_balance >= interval) {
  2066. if (load_balance(this_cpu, this_rq, sd, idle)) {
  2067. /*
  2068. * We've pulled tasks over so either we're no
  2069. * longer idle, or one of our SMT siblings is
  2070. * not idle.
  2071. */
  2072. idle = NOT_IDLE;
  2073. }
  2074. sd->last_balance += interval;
  2075. }
  2076. }
  2077. }
  2078. #else
  2079. /*
  2080. * on UP we do not need to balance between CPUs:
  2081. */
  2082. static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle)
  2083. {
  2084. }
  2085. static inline void idle_balance(int cpu, runqueue_t *rq)
  2086. {
  2087. }
  2088. #endif
  2089. static inline int wake_priority_sleeper(runqueue_t *rq)
  2090. {
  2091. int ret = 0;
  2092. #ifdef CONFIG_SCHED_SMT
  2093. spin_lock(&rq->lock);
  2094. /*
  2095. * If an SMT sibling task has been put to sleep for priority
  2096. * reasons reschedule the idle task to see if it can now run.
  2097. */
  2098. if (rq->nr_running) {
  2099. resched_task(rq->idle);
  2100. ret = 1;
  2101. }
  2102. spin_unlock(&rq->lock);
  2103. #endif
  2104. return ret;
  2105. }
  2106. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2107. EXPORT_PER_CPU_SYMBOL(kstat);
  2108. /*
  2109. * This is called on clock ticks and on context switches.
  2110. * Bank in p->sched_time the ns elapsed since the last tick or switch.
  2111. */
  2112. static inline void update_cpu_clock(task_t *p, runqueue_t *rq,
  2113. unsigned long long now)
  2114. {
  2115. unsigned long long last = max(p->timestamp, rq->timestamp_last_tick);
  2116. p->sched_time += now - last;
  2117. }
  2118. /*
  2119. * Return current->sched_time plus any more ns on the sched_clock
  2120. * that have not yet been banked.
  2121. */
  2122. unsigned long long current_sched_time(const task_t *tsk)
  2123. {
  2124. unsigned long long ns;
  2125. unsigned long flags;
  2126. local_irq_save(flags);
  2127. ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick);
  2128. ns = tsk->sched_time + (sched_clock() - ns);
  2129. local_irq_restore(flags);
  2130. return ns;
  2131. }
  2132. /*
  2133. * We place interactive tasks back into the active array, if possible.
  2134. *
  2135. * To guarantee that this does not starve expired tasks we ignore the
  2136. * interactivity of a task if the first expired task had to wait more
  2137. * than a 'reasonable' amount of time. This deadline timeout is
  2138. * load-dependent, as the frequency of array switched decreases with
  2139. * increasing number of running tasks. We also ignore the interactivity
  2140. * if a better static_prio task has expired:
  2141. */
  2142. #define EXPIRED_STARVING(rq) \
  2143. ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
  2144. (jiffies - (rq)->expired_timestamp >= \
  2145. STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
  2146. ((rq)->curr->static_prio > (rq)->best_expired_prio))
  2147. /*
  2148. * Account user cpu time to a process.
  2149. * @p: the process that the cpu time gets accounted to
  2150. * @hardirq_offset: the offset to subtract from hardirq_count()
  2151. * @cputime: the cpu time spent in user space since the last update
  2152. */
  2153. void account_user_time(struct task_struct *p, cputime_t cputime)
  2154. {
  2155. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2156. cputime64_t tmp;
  2157. p->utime = cputime_add(p->utime, cputime);
  2158. /* Add user time to cpustat. */
  2159. tmp = cputime_to_cputime64(cputime);
  2160. if (TASK_NICE(p) > 0)
  2161. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2162. else
  2163. cpustat->user = cputime64_add(cpustat->user, tmp);
  2164. }
  2165. /*
  2166. * Account system cpu time to a process.
  2167. * @p: the process that the cpu time gets accounted to
  2168. * @hardirq_offset: the offset to subtract from hardirq_count()
  2169. * @cputime: the cpu time spent in kernel space since the last update
  2170. */
  2171. void account_system_time(struct task_struct *p, int hardirq_offset,
  2172. cputime_t cputime)
  2173. {
  2174. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2175. runqueue_t *rq = this_rq();
  2176. cputime64_t tmp;
  2177. p->stime = cputime_add(p->stime, cputime);
  2178. /* Add system time to cpustat. */
  2179. tmp = cputime_to_cputime64(cputime);
  2180. if (hardirq_count() - hardirq_offset)
  2181. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  2182. else if (softirq_count())
  2183. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  2184. else if (p != rq->idle)
  2185. cpustat->system = cputime64_add(cpustat->system, tmp);
  2186. else if (atomic_read(&rq->nr_iowait) > 0)
  2187. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2188. else
  2189. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2190. /* Account for system time used */
  2191. acct_update_integrals(p);
  2192. /* Update rss highwater mark */
  2193. update_mem_hiwater(p);
  2194. }
  2195. /*
  2196. * Account for involuntary wait time.
  2197. * @p: the process from which the cpu time has been stolen
  2198. * @steal: the cpu time spent in involuntary wait
  2199. */
  2200. void account_steal_time(struct task_struct *p, cputime_t steal)
  2201. {
  2202. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2203. cputime64_t tmp = cputime_to_cputime64(steal);
  2204. runqueue_t *rq = this_rq();
  2205. if (p == rq->idle) {
  2206. p->stime = cputime_add(p->stime, steal);
  2207. if (atomic_read(&rq->nr_iowait) > 0)
  2208. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2209. else
  2210. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2211. } else
  2212. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  2213. }
  2214. /*
  2215. * This function gets called by the timer code, with HZ frequency.
  2216. * We call it with interrupts disabled.
  2217. *
  2218. * It also gets called by the fork code, when changing the parent's
  2219. * timeslices.
  2220. */
  2221. void scheduler_tick(void)
  2222. {
  2223. int cpu = smp_processor_id();
  2224. runqueue_t *rq = this_rq();
  2225. task_t *p = current;
  2226. unsigned long long now = sched_clock();
  2227. update_cpu_clock(p, rq, now);
  2228. rq->timestamp_last_tick = now;
  2229. if (p == rq->idle) {
  2230. if (wake_priority_sleeper(rq))
  2231. goto out;
  2232. rebalance_tick(cpu, rq, SCHED_IDLE);
  2233. return;
  2234. }
  2235. /* Task might have expired already, but not scheduled off yet */
  2236. if (p->array != rq->active) {
  2237. set_tsk_need_resched(p);
  2238. goto out;
  2239. }
  2240. spin_lock(&rq->lock);
  2241. /*
  2242. * The task was running during this tick - update the
  2243. * time slice counter. Note: we do not update a thread's
  2244. * priority until it either goes to sleep or uses up its
  2245. * timeslice. This makes it possible for interactive tasks
  2246. * to use up their timeslices at their highest priority levels.
  2247. */
  2248. if (rt_task(p)) {
  2249. /*
  2250. * RR tasks need a special form of timeslice management.
  2251. * FIFO tasks have no timeslices.
  2252. */
  2253. if ((p->policy == SCHED_RR) && !--p->time_slice) {
  2254. p->time_slice = task_timeslice(p);
  2255. p->first_time_slice = 0;
  2256. set_tsk_need_resched(p);
  2257. /* put it at the end of the queue: */
  2258. requeue_task(p, rq->active);
  2259. }
  2260. goto out_unlock;
  2261. }
  2262. if (!--p->time_slice) {
  2263. dequeue_task(p, rq->active);
  2264. set_tsk_need_resched(p);
  2265. p->prio = effective_prio(p);
  2266. p->time_slice = task_timeslice(p);
  2267. p->first_time_slice = 0;
  2268. if (!rq->expired_timestamp)
  2269. rq->expired_timestamp = jiffies;
  2270. if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
  2271. enqueue_task(p, rq->expired);
  2272. if (p->static_prio < rq->best_expired_prio)
  2273. rq->best_expired_prio = p->static_prio;
  2274. } else
  2275. enqueue_task(p, rq->active);
  2276. } else {
  2277. /*
  2278. * Prevent a too long timeslice allowing a task to monopolize
  2279. * the CPU. We do this by splitting up the timeslice into
  2280. * smaller pieces.
  2281. *
  2282. * Note: this does not mean the task's timeslices expire or
  2283. * get lost in any way, they just might be preempted by
  2284. * another task of equal priority. (one with higher
  2285. * priority would have preempted this task already.) We
  2286. * requeue this task to the end of the list on this priority
  2287. * level, which is in essence a round-robin of tasks with
  2288. * equal priority.
  2289. *
  2290. * This only applies to tasks in the interactive
  2291. * delta range with at least TIMESLICE_GRANULARITY to requeue.
  2292. */
  2293. if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
  2294. p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
  2295. (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
  2296. (p->array == rq->active)) {
  2297. requeue_task(p, rq->active);
  2298. set_tsk_need_resched(p);
  2299. }
  2300. }
  2301. out_unlock:
  2302. spin_unlock(&rq->lock);
  2303. out:
  2304. rebalance_tick(cpu, rq, NOT_IDLE);
  2305. }
  2306. #ifdef CONFIG_SCHED_SMT
  2307. static inline void wakeup_busy_runqueue(runqueue_t *rq)
  2308. {
  2309. /* If an SMT runqueue is sleeping due to priority reasons wake it up */
  2310. if (rq->curr == rq->idle && rq->nr_running)
  2311. resched_task(rq->idle);
  2312. }
  2313. static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
  2314. {
  2315. struct sched_domain *tmp, *sd = NULL;
  2316. cpumask_t sibling_map;
  2317. int i;
  2318. for_each_domain(this_cpu, tmp)
  2319. if (tmp->flags & SD_SHARE_CPUPOWER)
  2320. sd = tmp;
  2321. if (!sd)
  2322. return;
  2323. /*
  2324. * Unlock the current runqueue because we have to lock in
  2325. * CPU order to avoid deadlocks. Caller knows that we might
  2326. * unlock. We keep IRQs disabled.
  2327. */
  2328. spin_unlock(&this_rq->lock);
  2329. sibling_map = sd->span;
  2330. for_each_cpu_mask(i, sibling_map)
  2331. spin_lock(&cpu_rq(i)->lock);
  2332. /*
  2333. * We clear this CPU from the mask. This both simplifies the
  2334. * inner loop and keps this_rq locked when we exit:
  2335. */
  2336. cpu_clear(this_cpu, sibling_map);
  2337. for_each_cpu_mask(i, sibling_map) {
  2338. runqueue_t *smt_rq = cpu_rq(i);
  2339. wakeup_busy_runqueue(smt_rq);
  2340. }
  2341. for_each_cpu_mask(i, sibling_map)
  2342. spin_unlock(&cpu_rq(i)->lock);
  2343. /*
  2344. * We exit with this_cpu's rq still held and IRQs
  2345. * still disabled:
  2346. */
  2347. }
  2348. /*
  2349. * number of 'lost' timeslices this task wont be able to fully
  2350. * utilize, if another task runs on a sibling. This models the
  2351. * slowdown effect of other tasks running on siblings:
  2352. */
  2353. static inline unsigned long smt_slice(task_t *p, struct sched_domain *sd)
  2354. {
  2355. return p->time_slice * (100 - sd->per_cpu_gain) / 100;
  2356. }
  2357. static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
  2358. {
  2359. struct sched_domain *tmp, *sd = NULL;
  2360. cpumask_t sibling_map;
  2361. prio_array_t *array;
  2362. int ret = 0, i;
  2363. task_t *p;
  2364. for_each_domain(this_cpu, tmp)
  2365. if (tmp->flags & SD_SHARE_CPUPOWER)
  2366. sd = tmp;
  2367. if (!sd)
  2368. return 0;
  2369. /*
  2370. * The same locking rules and details apply as for
  2371. * wake_sleeping_dependent():
  2372. */
  2373. spin_unlock(&this_rq->lock);
  2374. sibling_map = sd->span;
  2375. for_each_cpu_mask(i, sibling_map)
  2376. spin_lock(&cpu_rq(i)->lock);
  2377. cpu_clear(this_cpu, sibling_map);
  2378. /*
  2379. * Establish next task to be run - it might have gone away because
  2380. * we released the runqueue lock above:
  2381. */
  2382. if (!this_rq->nr_running)
  2383. goto out_unlock;
  2384. array = this_rq->active;
  2385. if (!array->nr_active)
  2386. array = this_rq->expired;
  2387. BUG_ON(!array->nr_active);
  2388. p = list_entry(array->queue[sched_find_first_bit(array->bitmap)].next,
  2389. task_t, run_list);
  2390. for_each_cpu_mask(i, sibling_map) {
  2391. runqueue_t *smt_rq = cpu_rq(i);
  2392. task_t *smt_curr = smt_rq->curr;
  2393. /* Kernel threads do not participate in dependent sleeping */
  2394. if (!p->mm || !smt_curr->mm || rt_task(p))
  2395. goto check_smt_task;
  2396. /*
  2397. * If a user task with lower static priority than the
  2398. * running task on the SMT sibling is trying to schedule,
  2399. * delay it till there is proportionately less timeslice
  2400. * left of the sibling task to prevent a lower priority
  2401. * task from using an unfair proportion of the
  2402. * physical cpu's resources. -ck
  2403. */
  2404. if (rt_task(smt_curr)) {
  2405. /*
  2406. * With real time tasks we run non-rt tasks only
  2407. * per_cpu_gain% of the time.
  2408. */
  2409. if ((jiffies % DEF_TIMESLICE) >
  2410. (sd->per_cpu_gain * DEF_TIMESLICE / 100))
  2411. ret = 1;
  2412. } else
  2413. if (smt_curr->static_prio < p->static_prio &&
  2414. !TASK_PREEMPTS_CURR(p, smt_rq) &&
  2415. smt_slice(smt_curr, sd) > task_timeslice(p))
  2416. ret = 1;
  2417. check_smt_task:
  2418. if ((!smt_curr->mm && smt_curr != smt_rq->idle) ||
  2419. rt_task(smt_curr))
  2420. continue;
  2421. if (!p->mm) {
  2422. wakeup_busy_runqueue(smt_rq);
  2423. continue;
  2424. }
  2425. /*
  2426. * Reschedule a lower priority task on the SMT sibling for
  2427. * it to be put to sleep, or wake it up if it has been put to
  2428. * sleep for priority reasons to see if it should run now.
  2429. */
  2430. if (rt_task(p)) {
  2431. if ((jiffies % DEF_TIMESLICE) >
  2432. (sd->per_cpu_gain * DEF_TIMESLICE / 100))
  2433. resched_task(smt_curr);
  2434. } else {
  2435. if (TASK_PREEMPTS_CURR(p, smt_rq) &&
  2436. smt_slice(p, sd) > task_timeslice(smt_curr))
  2437. resched_task(smt_curr);
  2438. else
  2439. wakeup_busy_runqueue(smt_rq);
  2440. }
  2441. }
  2442. out_unlock:
  2443. for_each_cpu_mask(i, sibling_map)
  2444. spin_unlock(&cpu_rq(i)->lock);
  2445. return ret;
  2446. }
  2447. #else
  2448. static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
  2449. {
  2450. }
  2451. static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
  2452. {
  2453. return 0;
  2454. }
  2455. #endif
  2456. #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
  2457. void fastcall add_preempt_count(int val)
  2458. {
  2459. /*
  2460. * Underflow?
  2461. */
  2462. BUG_ON((preempt_count() < 0));
  2463. preempt_count() += val;
  2464. /*
  2465. * Spinlock count overflowing soon?
  2466. */
  2467. BUG_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
  2468. }
  2469. EXPORT_SYMBOL(add_preempt_count);
  2470. void fastcall sub_preempt_count(int val)
  2471. {
  2472. /*
  2473. * Underflow?
  2474. */
  2475. BUG_ON(val > preempt_count());
  2476. /*
  2477. * Is the spinlock portion underflowing?
  2478. */
  2479. BUG_ON((val < PREEMPT_MASK) && !(preempt_count() & PREEMPT_MASK));
  2480. preempt_count() -= val;
  2481. }
  2482. EXPORT_SYMBOL(sub_preempt_count);
  2483. #endif
  2484. /*
  2485. * schedule() is the main scheduler function.
  2486. */
  2487. asmlinkage void __sched schedule(void)
  2488. {
  2489. long *switch_count;
  2490. task_t *prev, *next;
  2491. runqueue_t *rq;
  2492. prio_array_t *array;
  2493. struct list_head *queue;
  2494. unsigned long long now;
  2495. unsigned long run_time;
  2496. int cpu, idx, new_prio;
  2497. /*
  2498. * Test if we are atomic. Since do_exit() needs to call into
  2499. * schedule() atomically, we ignore that path for now.
  2500. * Otherwise, whine if we are scheduling when we should not be.
  2501. */
  2502. if (likely(!current->exit_state)) {
  2503. if (unlikely(in_atomic())) {
  2504. printk(KERN_ERR "scheduling while atomic: "
  2505. "%s/0x%08x/%d\n",
  2506. current->comm, preempt_count(), current->pid);
  2507. dump_stack();
  2508. }
  2509. }
  2510. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2511. need_resched:
  2512. preempt_disable();
  2513. prev = current;
  2514. release_kernel_lock(prev);
  2515. need_resched_nonpreemptible:
  2516. rq = this_rq();
  2517. /*
  2518. * The idle thread is not allowed to schedule!
  2519. * Remove this check after it has been exercised a bit.
  2520. */
  2521. if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
  2522. printk(KERN_ERR "bad: scheduling from the idle thread!\n");
  2523. dump_stack();
  2524. }
  2525. schedstat_inc(rq, sched_cnt);
  2526. now = sched_clock();
  2527. if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
  2528. run_time = now - prev->timestamp;
  2529. if (unlikely((long long)(now - prev->timestamp) < 0))
  2530. run_time = 0;
  2531. } else
  2532. run_time = NS_MAX_SLEEP_AVG;
  2533. /*
  2534. * Tasks charged proportionately less run_time at high sleep_avg to
  2535. * delay them losing their interactive status
  2536. */
  2537. run_time /= (CURRENT_BONUS(prev) ? : 1);
  2538. spin_lock_irq(&rq->lock);
  2539. if (unlikely(prev->flags & PF_DEAD))
  2540. prev->state = EXIT_DEAD;
  2541. switch_count = &prev->nivcsw;
  2542. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  2543. switch_count = &prev->nvcsw;
  2544. if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
  2545. unlikely(signal_pending(prev))))
  2546. prev->state = TASK_RUNNING;
  2547. else {
  2548. if (prev->state == TASK_UNINTERRUPTIBLE)
  2549. rq->nr_uninterruptible++;
  2550. deactivate_task(prev, rq);
  2551. }
  2552. }
  2553. cpu = smp_processor_id();
  2554. if (unlikely(!rq->nr_running)) {
  2555. go_idle:
  2556. idle_balance(cpu, rq);
  2557. if (!rq->nr_running) {
  2558. next = rq->idle;
  2559. rq->expired_timestamp = 0;
  2560. wake_sleeping_dependent(cpu, rq);
  2561. /*
  2562. * wake_sleeping_dependent() might have released
  2563. * the runqueue, so break out if we got new
  2564. * tasks meanwhile:
  2565. */
  2566. if (!rq->nr_running)
  2567. goto switch_tasks;
  2568. }
  2569. } else {
  2570. if (dependent_sleeper(cpu, rq)) {
  2571. next = rq->idle;
  2572. goto switch_tasks;
  2573. }
  2574. /*
  2575. * dependent_sleeper() releases and reacquires the runqueue
  2576. * lock, hence go into the idle loop if the rq went
  2577. * empty meanwhile:
  2578. */
  2579. if (unlikely(!rq->nr_running))
  2580. goto go_idle;
  2581. }
  2582. array = rq->active;
  2583. if (unlikely(!array->nr_active)) {
  2584. /*
  2585. * Switch the active and expired arrays.
  2586. */
  2587. schedstat_inc(rq, sched_switch);
  2588. rq->active = rq->expired;
  2589. rq->expired = array;
  2590. array = rq->active;
  2591. rq->expired_timestamp = 0;
  2592. rq->best_expired_prio = MAX_PRIO;
  2593. }
  2594. idx = sched_find_first_bit(array->bitmap);
  2595. queue = array->queue + idx;
  2596. next = list_entry(queue->next, task_t, run_list);
  2597. if (!rt_task(next) && next->activated > 0) {
  2598. unsigned long long delta = now - next->timestamp;
  2599. if (unlikely((long long)(now - next->timestamp) < 0))
  2600. delta = 0;
  2601. if (next->activated == 1)
  2602. delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
  2603. array = next->array;
  2604. new_prio = recalc_task_prio(next, next->timestamp + delta);
  2605. if (unlikely(next->prio != new_prio)) {
  2606. dequeue_task(next, array);
  2607. next->prio = new_prio;
  2608. enqueue_task(next, array);
  2609. } else
  2610. requeue_task(next, array);
  2611. }
  2612. next->activated = 0;
  2613. switch_tasks:
  2614. if (next == rq->idle)
  2615. schedstat_inc(rq, sched_goidle);
  2616. prefetch(next);
  2617. prefetch_stack(next);
  2618. clear_tsk_need_resched(prev);
  2619. rcu_qsctr_inc(task_cpu(prev));
  2620. update_cpu_clock(prev, rq, now);
  2621. prev->sleep_avg -= run_time;
  2622. if ((long)prev->sleep_avg <= 0)
  2623. prev->sleep_avg = 0;
  2624. prev->timestamp = prev->last_ran = now;
  2625. sched_info_switch(prev, next);
  2626. if (likely(prev != next)) {
  2627. next->timestamp = now;
  2628. rq->nr_switches++;
  2629. rq->curr = next;
  2630. ++*switch_count;
  2631. prepare_task_switch(rq, next);
  2632. prev = context_switch(rq, prev, next);
  2633. barrier();
  2634. /*
  2635. * this_rq must be evaluated again because prev may have moved
  2636. * CPUs since it called schedule(), thus the 'rq' on its stack
  2637. * frame will be invalid.
  2638. */
  2639. finish_task_switch(this_rq(), prev);
  2640. } else
  2641. spin_unlock_irq(&rq->lock);
  2642. prev = current;
  2643. if (unlikely(reacquire_kernel_lock(prev) < 0))
  2644. goto need_resched_nonpreemptible;
  2645. preempt_enable_no_resched();
  2646. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  2647. goto need_resched;
  2648. }
  2649. EXPORT_SYMBOL(schedule);
  2650. #ifdef CONFIG_PREEMPT
  2651. /*
  2652. * this is is the entry point to schedule() from in-kernel preemption
  2653. * off of preempt_enable. Kernel preemptions off return from interrupt
  2654. * occur there and call schedule directly.
  2655. */
  2656. asmlinkage void __sched preempt_schedule(void)
  2657. {
  2658. struct thread_info *ti = current_thread_info();
  2659. #ifdef CONFIG_PREEMPT_BKL
  2660. struct task_struct *task = current;
  2661. int saved_lock_depth;
  2662. #endif
  2663. /*
  2664. * If there is a non-zero preempt_count or interrupts are disabled,
  2665. * we do not want to preempt the current task. Just return..
  2666. */
  2667. if (unlikely(ti->preempt_count || irqs_disabled()))
  2668. return;
  2669. need_resched:
  2670. add_preempt_count(PREEMPT_ACTIVE);
  2671. /*
  2672. * We keep the big kernel semaphore locked, but we
  2673. * clear ->lock_depth so that schedule() doesnt
  2674. * auto-release the semaphore:
  2675. */
  2676. #ifdef CONFIG_PREEMPT_BKL
  2677. saved_lock_depth = task->lock_depth;
  2678. task->lock_depth = -1;
  2679. #endif
  2680. schedule();
  2681. #ifdef CONFIG_PREEMPT_BKL
  2682. task->lock_depth = saved_lock_depth;
  2683. #endif
  2684. sub_preempt_count(PREEMPT_ACTIVE);
  2685. /* we could miss a preemption opportunity between schedule and now */
  2686. barrier();
  2687. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  2688. goto need_resched;
  2689. }
  2690. EXPORT_SYMBOL(preempt_schedule);
  2691. /*
  2692. * this is is the entry point to schedule() from kernel preemption
  2693. * off of irq context.
  2694. * Note, that this is called and return with irqs disabled. This will
  2695. * protect us against recursive calling from irq.
  2696. */
  2697. asmlinkage void __sched preempt_schedule_irq(void)
  2698. {
  2699. struct thread_info *ti = current_thread_info();
  2700. #ifdef CONFIG_PREEMPT_BKL
  2701. struct task_struct *task = current;
  2702. int saved_lock_depth;
  2703. #endif
  2704. /* Catch callers which need to be fixed*/
  2705. BUG_ON(ti->preempt_count || !irqs_disabled());
  2706. need_resched:
  2707. add_preempt_count(PREEMPT_ACTIVE);
  2708. /*
  2709. * We keep the big kernel semaphore locked, but we
  2710. * clear ->lock_depth so that schedule() doesnt
  2711. * auto-release the semaphore:
  2712. */
  2713. #ifdef CONFIG_PREEMPT_BKL
  2714. saved_lock_depth = task->lock_depth;
  2715. task->lock_depth = -1;
  2716. #endif
  2717. local_irq_enable();
  2718. schedule();
  2719. local_irq_disable();
  2720. #ifdef CONFIG_PREEMPT_BKL
  2721. task->lock_depth = saved_lock_depth;
  2722. #endif
  2723. sub_preempt_count(PREEMPT_ACTIVE);
  2724. /* we could miss a preemption opportunity between schedule and now */
  2725. barrier();
  2726. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  2727. goto need_resched;
  2728. }
  2729. #endif /* CONFIG_PREEMPT */
  2730. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  2731. void *key)
  2732. {
  2733. task_t *p = curr->private;
  2734. return try_to_wake_up(p, mode, sync);
  2735. }
  2736. EXPORT_SYMBOL(default_wake_function);
  2737. /*
  2738. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  2739. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  2740. * number) then we wake all the non-exclusive tasks and one exclusive task.
  2741. *
  2742. * There are circumstances in which we can try to wake a task which has already
  2743. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  2744. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  2745. */
  2746. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  2747. int nr_exclusive, int sync, void *key)
  2748. {
  2749. struct list_head *tmp, *next;
  2750. list_for_each_safe(tmp, next, &q->task_list) {
  2751. wait_queue_t *curr;
  2752. unsigned flags;
  2753. curr = list_entry(tmp, wait_queue_t, task_list);
  2754. flags = curr->flags;
  2755. if (curr->func(curr, mode, sync, key) &&
  2756. (flags & WQ_FLAG_EXCLUSIVE) &&
  2757. !--nr_exclusive)
  2758. break;
  2759. }
  2760. }
  2761. /**
  2762. * __wake_up - wake up threads blocked on a waitqueue.
  2763. * @q: the waitqueue
  2764. * @mode: which threads
  2765. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  2766. * @key: is directly passed to the wakeup function
  2767. */
  2768. void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
  2769. int nr_exclusive, void *key)
  2770. {
  2771. unsigned long flags;
  2772. spin_lock_irqsave(&q->lock, flags);
  2773. __wake_up_common(q, mode, nr_exclusive, 0, key);
  2774. spin_unlock_irqrestore(&q->lock, flags);
  2775. }
  2776. EXPORT_SYMBOL(__wake_up);
  2777. /*
  2778. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  2779. */
  2780. void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  2781. {
  2782. __wake_up_common(q, mode, 1, 0, NULL);
  2783. }
  2784. /**
  2785. * __wake_up_sync - wake up threads blocked on a waitqueue.
  2786. * @q: the waitqueue
  2787. * @mode: which threads
  2788. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  2789. *
  2790. * The sync wakeup differs that the waker knows that it will schedule
  2791. * away soon, so while the target thread will be woken up, it will not
  2792. * be migrated to another CPU - ie. the two threads are 'synchronized'
  2793. * with each other. This can prevent needless bouncing between CPUs.
  2794. *
  2795. * On UP it can prevent extra preemption.
  2796. */
  2797. void fastcall
  2798. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  2799. {
  2800. unsigned long flags;
  2801. int sync = 1;
  2802. if (unlikely(!q))
  2803. return;
  2804. if (unlikely(!nr_exclusive))
  2805. sync = 0;
  2806. spin_lock_irqsave(&q->lock, flags);
  2807. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  2808. spin_unlock_irqrestore(&q->lock, flags);
  2809. }
  2810. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  2811. void fastcall complete(struct completion *x)
  2812. {
  2813. unsigned long flags;
  2814. spin_lock_irqsave(&x->wait.lock, flags);
  2815. x->done++;
  2816. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  2817. 1, 0, NULL);
  2818. spin_unlock_irqrestore(&x->wait.lock, flags);
  2819. }
  2820. EXPORT_SYMBOL(complete);
  2821. void fastcall complete_all(struct completion *x)
  2822. {
  2823. unsigned long flags;
  2824. spin_lock_irqsave(&x->wait.lock, flags);
  2825. x->done += UINT_MAX/2;
  2826. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  2827. 0, 0, NULL);
  2828. spin_unlock_irqrestore(&x->wait.lock, flags);
  2829. }
  2830. EXPORT_SYMBOL(complete_all);
  2831. void fastcall __sched wait_for_completion(struct completion *x)
  2832. {
  2833. might_sleep();
  2834. spin_lock_irq(&x->wait.lock);
  2835. if (!x->done) {
  2836. DECLARE_WAITQUEUE(wait, current);
  2837. wait.flags |= WQ_FLAG_EXCLUSIVE;
  2838. __add_wait_queue_tail(&x->wait, &wait);
  2839. do {
  2840. __set_current_state(TASK_UNINTERRUPTIBLE);
  2841. spin_unlock_irq(&x->wait.lock);
  2842. schedule();
  2843. spin_lock_irq(&x->wait.lock);
  2844. } while (!x->done);
  2845. __remove_wait_queue(&x->wait, &wait);
  2846. }
  2847. x->done--;
  2848. spin_unlock_irq(&x->wait.lock);
  2849. }
  2850. EXPORT_SYMBOL(wait_for_completion);
  2851. unsigned long fastcall __sched
  2852. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  2853. {
  2854. might_sleep();
  2855. spin_lock_irq(&x->wait.lock);
  2856. if (!x->done) {
  2857. DECLARE_WAITQUEUE(wait, current);
  2858. wait.flags |= WQ_FLAG_EXCLUSIVE;
  2859. __add_wait_queue_tail(&x->wait, &wait);
  2860. do {
  2861. __set_current_state(TASK_UNINTERRUPTIBLE);
  2862. spin_unlock_irq(&x->wait.lock);
  2863. timeout = schedule_timeout(timeout);
  2864. spin_lock_irq(&x->wait.lock);
  2865. if (!timeout) {
  2866. __remove_wait_queue(&x->wait, &wait);
  2867. goto out;
  2868. }
  2869. } while (!x->done);
  2870. __remove_wait_queue(&x->wait, &wait);
  2871. }
  2872. x->done--;
  2873. out:
  2874. spin_unlock_irq(&x->wait.lock);
  2875. return timeout;
  2876. }
  2877. EXPORT_SYMBOL(wait_for_completion_timeout);
  2878. int fastcall __sched wait_for_completion_interruptible(struct completion *x)
  2879. {
  2880. int ret = 0;
  2881. might_sleep();
  2882. spin_lock_irq(&x->wait.lock);
  2883. if (!x->done) {
  2884. DECLARE_WAITQUEUE(wait, current);
  2885. wait.flags |= WQ_FLAG_EXCLUSIVE;
  2886. __add_wait_queue_tail(&x->wait, &wait);
  2887. do {
  2888. if (signal_pending(current)) {
  2889. ret = -ERESTARTSYS;
  2890. __remove_wait_queue(&x->wait, &wait);
  2891. goto out;
  2892. }
  2893. __set_current_state(TASK_INTERRUPTIBLE);
  2894. spin_unlock_irq(&x->wait.lock);
  2895. schedule();
  2896. spin_lock_irq(&x->wait.lock);
  2897. } while (!x->done);
  2898. __remove_wait_queue(&x->wait, &wait);
  2899. }
  2900. x->done--;
  2901. out:
  2902. spin_unlock_irq(&x->wait.lock);
  2903. return ret;
  2904. }
  2905. EXPORT_SYMBOL(wait_for_completion_interruptible);
  2906. unsigned long fastcall __sched
  2907. wait_for_completion_interruptible_timeout(struct completion *x,
  2908. unsigned long timeout)
  2909. {
  2910. might_sleep();
  2911. spin_lock_irq(&x->wait.lock);
  2912. if (!x->done) {
  2913. DECLARE_WAITQUEUE(wait, current);
  2914. wait.flags |= WQ_FLAG_EXCLUSIVE;
  2915. __add_wait_queue_tail(&x->wait, &wait);
  2916. do {
  2917. if (signal_pending(current)) {
  2918. timeout = -ERESTARTSYS;
  2919. __remove_wait_queue(&x->wait, &wait);
  2920. goto out;
  2921. }
  2922. __set_current_state(TASK_INTERRUPTIBLE);
  2923. spin_unlock_irq(&x->wait.lock);
  2924. timeout = schedule_timeout(timeout);
  2925. spin_lock_irq(&x->wait.lock);
  2926. if (!timeout) {
  2927. __remove_wait_queue(&x->wait, &wait);
  2928. goto out;
  2929. }
  2930. } while (!x->done);
  2931. __remove_wait_queue(&x->wait, &wait);
  2932. }
  2933. x->done--;
  2934. out:
  2935. spin_unlock_irq(&x->wait.lock);
  2936. return timeout;
  2937. }
  2938. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  2939. #define SLEEP_ON_VAR \
  2940. unsigned long flags; \
  2941. wait_queue_t wait; \
  2942. init_waitqueue_entry(&wait, current);
  2943. #define SLEEP_ON_HEAD \
  2944. spin_lock_irqsave(&q->lock,flags); \
  2945. __add_wait_queue(q, &wait); \
  2946. spin_unlock(&q->lock);
  2947. #define SLEEP_ON_TAIL \
  2948. spin_lock_irq(&q->lock); \
  2949. __remove_wait_queue(q, &wait); \
  2950. spin_unlock_irqrestore(&q->lock, flags);
  2951. void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
  2952. {
  2953. SLEEP_ON_VAR
  2954. current->state = TASK_INTERRUPTIBLE;
  2955. SLEEP_ON_HEAD
  2956. schedule();
  2957. SLEEP_ON_TAIL
  2958. }
  2959. EXPORT_SYMBOL(interruptible_sleep_on);
  2960. long fastcall __sched
  2961. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  2962. {
  2963. SLEEP_ON_VAR
  2964. current->state = TASK_INTERRUPTIBLE;
  2965. SLEEP_ON_HEAD
  2966. timeout = schedule_timeout(timeout);
  2967. SLEEP_ON_TAIL
  2968. return timeout;
  2969. }
  2970. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  2971. void fastcall __sched sleep_on(wait_queue_head_t *q)
  2972. {
  2973. SLEEP_ON_VAR
  2974. current->state = TASK_UNINTERRUPTIBLE;
  2975. SLEEP_ON_HEAD
  2976. schedule();
  2977. SLEEP_ON_TAIL
  2978. }
  2979. EXPORT_SYMBOL(sleep_on);
  2980. long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  2981. {
  2982. SLEEP_ON_VAR
  2983. current->state = TASK_UNINTERRUPTIBLE;
  2984. SLEEP_ON_HEAD
  2985. timeout = schedule_timeout(timeout);
  2986. SLEEP_ON_TAIL
  2987. return timeout;
  2988. }
  2989. EXPORT_SYMBOL(sleep_on_timeout);
  2990. void set_user_nice(task_t *p, long nice)
  2991. {
  2992. unsigned long flags;
  2993. prio_array_t *array;
  2994. runqueue_t *rq;
  2995. int old_prio, new_prio, delta;
  2996. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  2997. return;
  2998. /*
  2999. * We have to be careful, if called from sys_setpriority(),
  3000. * the task might be in the middle of scheduling on another CPU.
  3001. */
  3002. rq = task_rq_lock(p, &flags);
  3003. /*
  3004. * The RT priorities are set via sched_setscheduler(), but we still
  3005. * allow the 'normal' nice value to be set - but as expected
  3006. * it wont have any effect on scheduling until the task is
  3007. * not SCHED_NORMAL:
  3008. */
  3009. if (rt_task(p)) {
  3010. p->static_prio = NICE_TO_PRIO(nice);
  3011. goto out_unlock;
  3012. }
  3013. array = p->array;
  3014. if (array)
  3015. dequeue_task(p, array);
  3016. old_prio = p->prio;
  3017. new_prio = NICE_TO_PRIO(nice);
  3018. delta = new_prio - old_prio;
  3019. p->static_prio = NICE_TO_PRIO(nice);
  3020. p->prio += delta;
  3021. if (array) {
  3022. enqueue_task(p, array);
  3023. /*
  3024. * If the task increased its priority or is running and
  3025. * lowered its priority, then reschedule its CPU:
  3026. */
  3027. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3028. resched_task(rq->curr);
  3029. }
  3030. out_unlock:
  3031. task_rq_unlock(rq, &flags);
  3032. }
  3033. EXPORT_SYMBOL(set_user_nice);
  3034. /*
  3035. * can_nice - check if a task can reduce its nice value
  3036. * @p: task
  3037. * @nice: nice value
  3038. */
  3039. int can_nice(const task_t *p, const int nice)
  3040. {
  3041. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3042. int nice_rlim = 20 - nice;
  3043. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  3044. capable(CAP_SYS_NICE));
  3045. }
  3046. #ifdef __ARCH_WANT_SYS_NICE
  3047. /*
  3048. * sys_nice - change the priority of the current process.
  3049. * @increment: priority increment
  3050. *
  3051. * sys_setpriority is a more generic, but much slower function that
  3052. * does similar things.
  3053. */
  3054. asmlinkage long sys_nice(int increment)
  3055. {
  3056. int retval;
  3057. long nice;
  3058. /*
  3059. * Setpriority might change our priority at the same moment.
  3060. * We don't have to worry. Conceptually one call occurs first
  3061. * and we have a single winner.
  3062. */
  3063. if (increment < -40)
  3064. increment = -40;
  3065. if (increment > 40)
  3066. increment = 40;
  3067. nice = PRIO_TO_NICE(current->static_prio) + increment;
  3068. if (nice < -20)
  3069. nice = -20;
  3070. if (nice > 19)
  3071. nice = 19;
  3072. if (increment < 0 && !can_nice(current, nice))
  3073. return -EPERM;
  3074. retval = security_task_setnice(current, nice);
  3075. if (retval)
  3076. return retval;
  3077. set_user_nice(current, nice);
  3078. return 0;
  3079. }
  3080. #endif
  3081. /**
  3082. * task_prio - return the priority value of a given task.
  3083. * @p: the task in question.
  3084. *
  3085. * This is the priority value as seen by users in /proc.
  3086. * RT tasks are offset by -200. Normal tasks are centered
  3087. * around 0, value goes from -16 to +15.
  3088. */
  3089. int task_prio(const task_t *p)
  3090. {
  3091. return p->prio - MAX_RT_PRIO;
  3092. }
  3093. /**
  3094. * task_nice - return the nice value of a given task.
  3095. * @p: the task in question.
  3096. */
  3097. int task_nice(const task_t *p)
  3098. {
  3099. return TASK_NICE(p);
  3100. }
  3101. EXPORT_SYMBOL_GPL(task_nice);
  3102. /**
  3103. * idle_cpu - is a given cpu idle currently?
  3104. * @cpu: the processor in question.
  3105. */
  3106. int idle_cpu(int cpu)
  3107. {
  3108. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3109. }
  3110. EXPORT_SYMBOL_GPL(idle_cpu);
  3111. /**
  3112. * idle_task - return the idle task for a given cpu.
  3113. * @cpu: the processor in question.
  3114. */
  3115. task_t *idle_task(int cpu)
  3116. {
  3117. return cpu_rq(cpu)->idle;
  3118. }
  3119. /**
  3120. * find_process_by_pid - find a process with a matching PID value.
  3121. * @pid: the pid in question.
  3122. */
  3123. static inline task_t *find_process_by_pid(pid_t pid)
  3124. {
  3125. return pid ? find_task_by_pid(pid) : current;
  3126. }
  3127. /* Actually do priority change: must hold rq lock. */
  3128. static void __setscheduler(struct task_struct *p, int policy, int prio)
  3129. {
  3130. BUG_ON(p->array);
  3131. p->policy = policy;
  3132. p->rt_priority = prio;
  3133. if (policy != SCHED_NORMAL)
  3134. p->prio = MAX_RT_PRIO-1 - p->rt_priority;
  3135. else
  3136. p->prio = p->static_prio;
  3137. }
  3138. /**
  3139. * sched_setscheduler - change the scheduling policy and/or RT priority of
  3140. * a thread.
  3141. * @p: the task in question.
  3142. * @policy: new policy.
  3143. * @param: structure containing the new RT priority.
  3144. */
  3145. int sched_setscheduler(struct task_struct *p, int policy,
  3146. struct sched_param *param)
  3147. {
  3148. int retval;
  3149. int oldprio, oldpolicy = -1;
  3150. prio_array_t *array;
  3151. unsigned long flags;
  3152. runqueue_t *rq;
  3153. recheck:
  3154. /* double check policy once rq lock held */
  3155. if (policy < 0)
  3156. policy = oldpolicy = p->policy;
  3157. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3158. policy != SCHED_NORMAL)
  3159. return -EINVAL;
  3160. /*
  3161. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3162. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL is 0.
  3163. */
  3164. if (param->sched_priority < 0 ||
  3165. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3166. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3167. return -EINVAL;
  3168. if ((policy == SCHED_NORMAL) != (param->sched_priority == 0))
  3169. return -EINVAL;
  3170. /*
  3171. * Allow unprivileged RT tasks to decrease priority:
  3172. */
  3173. if (!capable(CAP_SYS_NICE)) {
  3174. /* can't change policy */
  3175. if (policy != p->policy &&
  3176. !p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
  3177. return -EPERM;
  3178. /* can't increase priority */
  3179. if (policy != SCHED_NORMAL &&
  3180. param->sched_priority > p->rt_priority &&
  3181. param->sched_priority >
  3182. p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
  3183. return -EPERM;
  3184. /* can't change other user's priorities */
  3185. if ((current->euid != p->euid) &&
  3186. (current->euid != p->uid))
  3187. return -EPERM;
  3188. }
  3189. retval = security_task_setscheduler(p, policy, param);
  3190. if (retval)
  3191. return retval;
  3192. /*
  3193. * To be able to change p->policy safely, the apropriate
  3194. * runqueue lock must be held.
  3195. */
  3196. rq = task_rq_lock(p, &flags);
  3197. /* recheck policy now with rq lock held */
  3198. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3199. policy = oldpolicy = -1;
  3200. task_rq_unlock(rq, &flags);
  3201. goto recheck;
  3202. }
  3203. array = p->array;
  3204. if (array)
  3205. deactivate_task(p, rq);
  3206. oldprio = p->prio;
  3207. __setscheduler(p, policy, param->sched_priority);
  3208. if (array) {
  3209. __activate_task(p, rq);
  3210. /*
  3211. * Reschedule if we are currently running on this runqueue and
  3212. * our priority decreased, or if we are not currently running on
  3213. * this runqueue and our priority is higher than the current's
  3214. */
  3215. if (task_running(rq, p)) {
  3216. if (p->prio > oldprio)
  3217. resched_task(rq->curr);
  3218. } else if (TASK_PREEMPTS_CURR(p, rq))
  3219. resched_task(rq->curr);
  3220. }
  3221. task_rq_unlock(rq, &flags);
  3222. return 0;
  3223. }
  3224. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3225. static int
  3226. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3227. {
  3228. int retval;
  3229. struct sched_param lparam;
  3230. struct task_struct *p;
  3231. if (!param || pid < 0)
  3232. return -EINVAL;
  3233. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3234. return -EFAULT;
  3235. read_lock_irq(&tasklist_lock);
  3236. p = find_process_by_pid(pid);
  3237. if (!p) {
  3238. read_unlock_irq(&tasklist_lock);
  3239. return -ESRCH;
  3240. }
  3241. retval = sched_setscheduler(p, policy, &lparam);
  3242. read_unlock_irq(&tasklist_lock);
  3243. return retval;
  3244. }
  3245. /**
  3246. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3247. * @pid: the pid in question.
  3248. * @policy: new policy.
  3249. * @param: structure containing the new RT priority.
  3250. */
  3251. asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
  3252. struct sched_param __user *param)
  3253. {
  3254. return do_sched_setscheduler(pid, policy, param);
  3255. }
  3256. /**
  3257. * sys_sched_setparam - set/change the RT priority of a thread
  3258. * @pid: the pid in question.
  3259. * @param: structure containing the new RT priority.
  3260. */
  3261. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  3262. {
  3263. return do_sched_setscheduler(pid, -1, param);
  3264. }
  3265. /**
  3266. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3267. * @pid: the pid in question.
  3268. */
  3269. asmlinkage long sys_sched_getscheduler(pid_t pid)
  3270. {
  3271. int retval = -EINVAL;
  3272. task_t *p;
  3273. if (pid < 0)
  3274. goto out_nounlock;
  3275. retval = -ESRCH;
  3276. read_lock(&tasklist_lock);
  3277. p = find_process_by_pid(pid);
  3278. if (p) {
  3279. retval = security_task_getscheduler(p);
  3280. if (!retval)
  3281. retval = p->policy;
  3282. }
  3283. read_unlock(&tasklist_lock);
  3284. out_nounlock:
  3285. return retval;
  3286. }
  3287. /**
  3288. * sys_sched_getscheduler - get the RT priority of a thread
  3289. * @pid: the pid in question.
  3290. * @param: structure containing the RT priority.
  3291. */
  3292. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  3293. {
  3294. struct sched_param lp;
  3295. int retval = -EINVAL;
  3296. task_t *p;
  3297. if (!param || pid < 0)
  3298. goto out_nounlock;
  3299. read_lock(&tasklist_lock);
  3300. p = find_process_by_pid(pid);
  3301. retval = -ESRCH;
  3302. if (!p)
  3303. goto out_unlock;
  3304. retval = security_task_getscheduler(p);
  3305. if (retval)
  3306. goto out_unlock;
  3307. lp.sched_priority = p->rt_priority;
  3308. read_unlock(&tasklist_lock);
  3309. /*
  3310. * This one might sleep, we cannot do it with a spinlock held ...
  3311. */
  3312. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3313. out_nounlock:
  3314. return retval;
  3315. out_unlock:
  3316. read_unlock(&tasklist_lock);
  3317. return retval;
  3318. }
  3319. long sched_setaffinity(pid_t pid, cpumask_t new_mask)
  3320. {
  3321. task_t *p;
  3322. int retval;
  3323. cpumask_t cpus_allowed;
  3324. lock_cpu_hotplug();
  3325. read_lock(&tasklist_lock);
  3326. p = find_process_by_pid(pid);
  3327. if (!p) {
  3328. read_unlock(&tasklist_lock);
  3329. unlock_cpu_hotplug();
  3330. return -ESRCH;
  3331. }
  3332. /*
  3333. * It is not safe to call set_cpus_allowed with the
  3334. * tasklist_lock held. We will bump the task_struct's
  3335. * usage count and then drop tasklist_lock.
  3336. */
  3337. get_task_struct(p);
  3338. read_unlock(&tasklist_lock);
  3339. retval = -EPERM;
  3340. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  3341. !capable(CAP_SYS_NICE))
  3342. goto out_unlock;
  3343. cpus_allowed = cpuset_cpus_allowed(p);
  3344. cpus_and(new_mask, new_mask, cpus_allowed);
  3345. retval = set_cpus_allowed(p, new_mask);
  3346. out_unlock:
  3347. put_task_struct(p);
  3348. unlock_cpu_hotplug();
  3349. return retval;
  3350. }
  3351. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3352. cpumask_t *new_mask)
  3353. {
  3354. if (len < sizeof(cpumask_t)) {
  3355. memset(new_mask, 0, sizeof(cpumask_t));
  3356. } else if (len > sizeof(cpumask_t)) {
  3357. len = sizeof(cpumask_t);
  3358. }
  3359. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3360. }
  3361. /**
  3362. * sys_sched_setaffinity - set the cpu affinity of a process
  3363. * @pid: pid of the process
  3364. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3365. * @user_mask_ptr: user-space pointer to the new cpu mask
  3366. */
  3367. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  3368. unsigned long __user *user_mask_ptr)
  3369. {
  3370. cpumask_t new_mask;
  3371. int retval;
  3372. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  3373. if (retval)
  3374. return retval;
  3375. return sched_setaffinity(pid, new_mask);
  3376. }
  3377. /*
  3378. * Represents all cpu's present in the system
  3379. * In systems capable of hotplug, this map could dynamically grow
  3380. * as new cpu's are detected in the system via any platform specific
  3381. * method, such as ACPI for e.g.
  3382. */
  3383. cpumask_t cpu_present_map;
  3384. EXPORT_SYMBOL(cpu_present_map);
  3385. #ifndef CONFIG_SMP
  3386. cpumask_t cpu_online_map = CPU_MASK_ALL;
  3387. cpumask_t cpu_possible_map = CPU_MASK_ALL;
  3388. #endif
  3389. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  3390. {
  3391. int retval;
  3392. task_t *p;
  3393. lock_cpu_hotplug();
  3394. read_lock(&tasklist_lock);
  3395. retval = -ESRCH;
  3396. p = find_process_by_pid(pid);
  3397. if (!p)
  3398. goto out_unlock;
  3399. retval = 0;
  3400. cpus_and(*mask, p->cpus_allowed, cpu_possible_map);
  3401. out_unlock:
  3402. read_unlock(&tasklist_lock);
  3403. unlock_cpu_hotplug();
  3404. if (retval)
  3405. return retval;
  3406. return 0;
  3407. }
  3408. /**
  3409. * sys_sched_getaffinity - get the cpu affinity of a process
  3410. * @pid: pid of the process
  3411. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3412. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3413. */
  3414. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  3415. unsigned long __user *user_mask_ptr)
  3416. {
  3417. int ret;
  3418. cpumask_t mask;
  3419. if (len < sizeof(cpumask_t))
  3420. return -EINVAL;
  3421. ret = sched_getaffinity(pid, &mask);
  3422. if (ret < 0)
  3423. return ret;
  3424. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  3425. return -EFAULT;
  3426. return sizeof(cpumask_t);
  3427. }
  3428. /**
  3429. * sys_sched_yield - yield the current processor to other threads.
  3430. *
  3431. * this function yields the current CPU by moving the calling thread
  3432. * to the expired array. If there are no other threads running on this
  3433. * CPU then this function will return.
  3434. */
  3435. asmlinkage long sys_sched_yield(void)
  3436. {
  3437. runqueue_t *rq = this_rq_lock();
  3438. prio_array_t *array = current->array;
  3439. prio_array_t *target = rq->expired;
  3440. schedstat_inc(rq, yld_cnt);
  3441. /*
  3442. * We implement yielding by moving the task into the expired
  3443. * queue.
  3444. *
  3445. * (special rule: RT tasks will just roundrobin in the active
  3446. * array.)
  3447. */
  3448. if (rt_task(current))
  3449. target = rq->active;
  3450. if (array->nr_active == 1) {
  3451. schedstat_inc(rq, yld_act_empty);
  3452. if (!rq->expired->nr_active)
  3453. schedstat_inc(rq, yld_both_empty);
  3454. } else if (!rq->expired->nr_active)
  3455. schedstat_inc(rq, yld_exp_empty);
  3456. if (array != target) {
  3457. dequeue_task(current, array);
  3458. enqueue_task(current, target);
  3459. } else
  3460. /*
  3461. * requeue_task is cheaper so perform that if possible.
  3462. */
  3463. requeue_task(current, array);
  3464. /*
  3465. * Since we are going to call schedule() anyway, there's
  3466. * no need to preempt or enable interrupts:
  3467. */
  3468. __release(rq->lock);
  3469. _raw_spin_unlock(&rq->lock);
  3470. preempt_enable_no_resched();
  3471. schedule();
  3472. return 0;
  3473. }
  3474. static inline void __cond_resched(void)
  3475. {
  3476. /*
  3477. * The BKS might be reacquired before we have dropped
  3478. * PREEMPT_ACTIVE, which could trigger a second
  3479. * cond_resched() call.
  3480. */
  3481. if (unlikely(preempt_count()))
  3482. return;
  3483. do {
  3484. add_preempt_count(PREEMPT_ACTIVE);
  3485. schedule();
  3486. sub_preempt_count(PREEMPT_ACTIVE);
  3487. } while (need_resched());
  3488. }
  3489. int __sched cond_resched(void)
  3490. {
  3491. if (need_resched()) {
  3492. __cond_resched();
  3493. return 1;
  3494. }
  3495. return 0;
  3496. }
  3497. EXPORT_SYMBOL(cond_resched);
  3498. /*
  3499. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  3500. * call schedule, and on return reacquire the lock.
  3501. *
  3502. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  3503. * operations here to prevent schedule() from being called twice (once via
  3504. * spin_unlock(), once by hand).
  3505. */
  3506. int cond_resched_lock(spinlock_t *lock)
  3507. {
  3508. int ret = 0;
  3509. if (need_lockbreak(lock)) {
  3510. spin_unlock(lock);
  3511. cpu_relax();
  3512. ret = 1;
  3513. spin_lock(lock);
  3514. }
  3515. if (need_resched()) {
  3516. _raw_spin_unlock(lock);
  3517. preempt_enable_no_resched();
  3518. __cond_resched();
  3519. ret = 1;
  3520. spin_lock(lock);
  3521. }
  3522. return ret;
  3523. }
  3524. EXPORT_SYMBOL(cond_resched_lock);
  3525. int __sched cond_resched_softirq(void)
  3526. {
  3527. BUG_ON(!in_softirq());
  3528. if (need_resched()) {
  3529. __local_bh_enable();
  3530. __cond_resched();
  3531. local_bh_disable();
  3532. return 1;
  3533. }
  3534. return 0;
  3535. }
  3536. EXPORT_SYMBOL(cond_resched_softirq);
  3537. /**
  3538. * yield - yield the current processor to other threads.
  3539. *
  3540. * this is a shortcut for kernel-space yielding - it marks the
  3541. * thread runnable and calls sys_sched_yield().
  3542. */
  3543. void __sched yield(void)
  3544. {
  3545. set_current_state(TASK_RUNNING);
  3546. sys_sched_yield();
  3547. }
  3548. EXPORT_SYMBOL(yield);
  3549. /*
  3550. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  3551. * that process accounting knows that this is a task in IO wait state.
  3552. *
  3553. * But don't do that if it is a deliberate, throttling IO wait (this task
  3554. * has set its backing_dev_info: the queue against which it should throttle)
  3555. */
  3556. void __sched io_schedule(void)
  3557. {
  3558. struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
  3559. atomic_inc(&rq->nr_iowait);
  3560. schedule();
  3561. atomic_dec(&rq->nr_iowait);
  3562. }
  3563. EXPORT_SYMBOL(io_schedule);
  3564. long __sched io_schedule_timeout(long timeout)
  3565. {
  3566. struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
  3567. long ret;
  3568. atomic_inc(&rq->nr_iowait);
  3569. ret = schedule_timeout(timeout);
  3570. atomic_dec(&rq->nr_iowait);
  3571. return ret;
  3572. }
  3573. /**
  3574. * sys_sched_get_priority_max - return maximum RT priority.
  3575. * @policy: scheduling class.
  3576. *
  3577. * this syscall returns the maximum rt_priority that can be used
  3578. * by a given scheduling class.
  3579. */
  3580. asmlinkage long sys_sched_get_priority_max(int policy)
  3581. {
  3582. int ret = -EINVAL;
  3583. switch (policy) {
  3584. case SCHED_FIFO:
  3585. case SCHED_RR:
  3586. ret = MAX_USER_RT_PRIO-1;
  3587. break;
  3588. case SCHED_NORMAL:
  3589. ret = 0;
  3590. break;
  3591. }
  3592. return ret;
  3593. }
  3594. /**
  3595. * sys_sched_get_priority_min - return minimum RT priority.
  3596. * @policy: scheduling class.
  3597. *
  3598. * this syscall returns the minimum rt_priority that can be used
  3599. * by a given scheduling class.
  3600. */
  3601. asmlinkage long sys_sched_get_priority_min(int policy)
  3602. {
  3603. int ret = -EINVAL;
  3604. switch (policy) {
  3605. case SCHED_FIFO:
  3606. case SCHED_RR:
  3607. ret = 1;
  3608. break;
  3609. case SCHED_NORMAL:
  3610. ret = 0;
  3611. }
  3612. return ret;
  3613. }
  3614. /**
  3615. * sys_sched_rr_get_interval - return the default timeslice of a process.
  3616. * @pid: pid of the process.
  3617. * @interval: userspace pointer to the timeslice value.
  3618. *
  3619. * this syscall writes the default timeslice value of a given process
  3620. * into the user-space timespec buffer. A value of '0' means infinity.
  3621. */
  3622. asmlinkage
  3623. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  3624. {
  3625. int retval = -EINVAL;
  3626. struct timespec t;
  3627. task_t *p;
  3628. if (pid < 0)
  3629. goto out_nounlock;
  3630. retval = -ESRCH;
  3631. read_lock(&tasklist_lock);
  3632. p = find_process_by_pid(pid);
  3633. if (!p)
  3634. goto out_unlock;
  3635. retval = security_task_getscheduler(p);
  3636. if (retval)
  3637. goto out_unlock;
  3638. jiffies_to_timespec(p->policy & SCHED_FIFO ?
  3639. 0 : task_timeslice(p), &t);
  3640. read_unlock(&tasklist_lock);
  3641. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  3642. out_nounlock:
  3643. return retval;
  3644. out_unlock:
  3645. read_unlock(&tasklist_lock);
  3646. return retval;
  3647. }
  3648. static inline struct task_struct *eldest_child(struct task_struct *p)
  3649. {
  3650. if (list_empty(&p->children)) return NULL;
  3651. return list_entry(p->children.next,struct task_struct,sibling);
  3652. }
  3653. static inline struct task_struct *older_sibling(struct task_struct *p)
  3654. {
  3655. if (p->sibling.prev==&p->parent->children) return NULL;
  3656. return list_entry(p->sibling.prev,struct task_struct,sibling);
  3657. }
  3658. static inline struct task_struct *younger_sibling(struct task_struct *p)
  3659. {
  3660. if (p->sibling.next==&p->parent->children) return NULL;
  3661. return list_entry(p->sibling.next,struct task_struct,sibling);
  3662. }
  3663. static void show_task(task_t *p)
  3664. {
  3665. task_t *relative;
  3666. unsigned state;
  3667. unsigned long free = 0;
  3668. static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" };
  3669. printk("%-13.13s ", p->comm);
  3670. state = p->state ? __ffs(p->state) + 1 : 0;
  3671. if (state < ARRAY_SIZE(stat_nam))
  3672. printk(stat_nam[state]);
  3673. else
  3674. printk("?");
  3675. #if (BITS_PER_LONG == 32)
  3676. if (state == TASK_RUNNING)
  3677. printk(" running ");
  3678. else
  3679. printk(" %08lX ", thread_saved_pc(p));
  3680. #else
  3681. if (state == TASK_RUNNING)
  3682. printk(" running task ");
  3683. else
  3684. printk(" %016lx ", thread_saved_pc(p));
  3685. #endif
  3686. #ifdef CONFIG_DEBUG_STACK_USAGE
  3687. {
  3688. unsigned long *n = (unsigned long *) (p->thread_info+1);
  3689. while (!*n)
  3690. n++;
  3691. free = (unsigned long) n - (unsigned long)(p->thread_info+1);
  3692. }
  3693. #endif
  3694. printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
  3695. if ((relative = eldest_child(p)))
  3696. printk("%5d ", relative->pid);
  3697. else
  3698. printk(" ");
  3699. if ((relative = younger_sibling(p)))
  3700. printk("%7d", relative->pid);
  3701. else
  3702. printk(" ");
  3703. if ((relative = older_sibling(p)))
  3704. printk(" %5d", relative->pid);
  3705. else
  3706. printk(" ");
  3707. if (!p->mm)
  3708. printk(" (L-TLB)\n");
  3709. else
  3710. printk(" (NOTLB)\n");
  3711. if (state != TASK_RUNNING)
  3712. show_stack(p, NULL);
  3713. }
  3714. void show_state(void)
  3715. {
  3716. task_t *g, *p;
  3717. #if (BITS_PER_LONG == 32)
  3718. printk("\n"
  3719. " sibling\n");
  3720. printk(" task PC pid father child younger older\n");
  3721. #else
  3722. printk("\n"
  3723. " sibling\n");
  3724. printk(" task PC pid father child younger older\n");
  3725. #endif
  3726. read_lock(&tasklist_lock);
  3727. do_each_thread(g, p) {
  3728. /*
  3729. * reset the NMI-timeout, listing all files on a slow
  3730. * console might take alot of time:
  3731. */
  3732. touch_nmi_watchdog();
  3733. show_task(p);
  3734. } while_each_thread(g, p);
  3735. read_unlock(&tasklist_lock);
  3736. }
  3737. /**
  3738. * init_idle - set up an idle thread for a given CPU
  3739. * @idle: task in question
  3740. * @cpu: cpu the idle task belongs to
  3741. *
  3742. * NOTE: this function does not set the idle thread's NEED_RESCHED
  3743. * flag, to make booting more robust.
  3744. */
  3745. void __devinit init_idle(task_t *idle, int cpu)
  3746. {
  3747. runqueue_t *rq = cpu_rq(cpu);
  3748. unsigned long flags;
  3749. idle->sleep_avg = 0;
  3750. idle->array = NULL;
  3751. idle->prio = MAX_PRIO;
  3752. idle->state = TASK_RUNNING;
  3753. idle->cpus_allowed = cpumask_of_cpu(cpu);
  3754. set_task_cpu(idle, cpu);
  3755. spin_lock_irqsave(&rq->lock, flags);
  3756. rq->curr = rq->idle = idle;
  3757. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  3758. idle->oncpu = 1;
  3759. #endif
  3760. spin_unlock_irqrestore(&rq->lock, flags);
  3761. /* Set the preempt count _outside_ the spinlocks! */
  3762. #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
  3763. idle->thread_info->preempt_count = (idle->lock_depth >= 0);
  3764. #else
  3765. idle->thread_info->preempt_count = 0;
  3766. #endif
  3767. }
  3768. /*
  3769. * In a system that switches off the HZ timer nohz_cpu_mask
  3770. * indicates which cpus entered this state. This is used
  3771. * in the rcu update to wait only for active cpus. For system
  3772. * which do not switch off the HZ timer nohz_cpu_mask should
  3773. * always be CPU_MASK_NONE.
  3774. */
  3775. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  3776. #ifdef CONFIG_SMP
  3777. /*
  3778. * This is how migration works:
  3779. *
  3780. * 1) we queue a migration_req_t structure in the source CPU's
  3781. * runqueue and wake up that CPU's migration thread.
  3782. * 2) we down() the locked semaphore => thread blocks.
  3783. * 3) migration thread wakes up (implicitly it forces the migrated
  3784. * thread off the CPU)
  3785. * 4) it gets the migration request and checks whether the migrated
  3786. * task is still in the wrong runqueue.
  3787. * 5) if it's in the wrong runqueue then the migration thread removes
  3788. * it and puts it into the right queue.
  3789. * 6) migration thread up()s the semaphore.
  3790. * 7) we wake up and the migration is done.
  3791. */
  3792. /*
  3793. * Change a given task's CPU affinity. Migrate the thread to a
  3794. * proper CPU and schedule it away if the CPU it's executing on
  3795. * is removed from the allowed bitmask.
  3796. *
  3797. * NOTE: the caller must have a valid reference to the task, the
  3798. * task must not exit() & deallocate itself prematurely. The
  3799. * call is not atomic; no spinlocks may be held.
  3800. */
  3801. int set_cpus_allowed(task_t *p, cpumask_t new_mask)
  3802. {
  3803. unsigned long flags;
  3804. int ret = 0;
  3805. migration_req_t req;
  3806. runqueue_t *rq;
  3807. rq = task_rq_lock(p, &flags);
  3808. if (!cpus_intersects(new_mask, cpu_online_map)) {
  3809. ret = -EINVAL;
  3810. goto out;
  3811. }
  3812. p->cpus_allowed = new_mask;
  3813. /* Can the task run on the task's current CPU? If so, we're done */
  3814. if (cpu_isset(task_cpu(p), new_mask))
  3815. goto out;
  3816. if (migrate_task(p, any_online_cpu(new_mask), &req)) {
  3817. /* Need help from migration thread: drop lock and wait. */
  3818. task_rq_unlock(rq, &flags);
  3819. wake_up_process(rq->migration_thread);
  3820. wait_for_completion(&req.done);
  3821. tlb_migrate_finish(p->mm);
  3822. return 0;
  3823. }
  3824. out:
  3825. task_rq_unlock(rq, &flags);
  3826. return ret;
  3827. }
  3828. EXPORT_SYMBOL_GPL(set_cpus_allowed);
  3829. /*
  3830. * Move (not current) task off this cpu, onto dest cpu. We're doing
  3831. * this because either it can't run here any more (set_cpus_allowed()
  3832. * away from this CPU, or CPU going down), or because we're
  3833. * attempting to rebalance this task on exec (sched_exec).
  3834. *
  3835. * So we race with normal scheduler movements, but that's OK, as long
  3836. * as the task is no longer on this CPU.
  3837. */
  3838. static void __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  3839. {
  3840. runqueue_t *rq_dest, *rq_src;
  3841. if (unlikely(cpu_is_offline(dest_cpu)))
  3842. return;
  3843. rq_src = cpu_rq(src_cpu);
  3844. rq_dest = cpu_rq(dest_cpu);
  3845. double_rq_lock(rq_src, rq_dest);
  3846. /* Already moved. */
  3847. if (task_cpu(p) != src_cpu)
  3848. goto out;
  3849. /* Affinity changed (again). */
  3850. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  3851. goto out;
  3852. set_task_cpu(p, dest_cpu);
  3853. if (p->array) {
  3854. /*
  3855. * Sync timestamp with rq_dest's before activating.
  3856. * The same thing could be achieved by doing this step
  3857. * afterwards, and pretending it was a local activate.
  3858. * This way is cleaner and logically correct.
  3859. */
  3860. p->timestamp = p->timestamp - rq_src->timestamp_last_tick
  3861. + rq_dest->timestamp_last_tick;
  3862. deactivate_task(p, rq_src);
  3863. activate_task(p, rq_dest, 0);
  3864. if (TASK_PREEMPTS_CURR(p, rq_dest))
  3865. resched_task(rq_dest->curr);
  3866. }
  3867. out:
  3868. double_rq_unlock(rq_src, rq_dest);
  3869. }
  3870. /*
  3871. * migration_thread - this is a highprio system thread that performs
  3872. * thread migration by bumping thread off CPU then 'pushing' onto
  3873. * another runqueue.
  3874. */
  3875. static int migration_thread(void *data)
  3876. {
  3877. runqueue_t *rq;
  3878. int cpu = (long)data;
  3879. rq = cpu_rq(cpu);
  3880. BUG_ON(rq->migration_thread != current);
  3881. set_current_state(TASK_INTERRUPTIBLE);
  3882. while (!kthread_should_stop()) {
  3883. struct list_head *head;
  3884. migration_req_t *req;
  3885. try_to_freeze();
  3886. spin_lock_irq(&rq->lock);
  3887. if (cpu_is_offline(cpu)) {
  3888. spin_unlock_irq(&rq->lock);
  3889. goto wait_to_die;
  3890. }
  3891. if (rq->active_balance) {
  3892. active_load_balance(rq, cpu);
  3893. rq->active_balance = 0;
  3894. }
  3895. head = &rq->migration_queue;
  3896. if (list_empty(head)) {
  3897. spin_unlock_irq(&rq->lock);
  3898. schedule();
  3899. set_current_state(TASK_INTERRUPTIBLE);
  3900. continue;
  3901. }
  3902. req = list_entry(head->next, migration_req_t, list);
  3903. list_del_init(head->next);
  3904. spin_unlock(&rq->lock);
  3905. __migrate_task(req->task, cpu, req->dest_cpu);
  3906. local_irq_enable();
  3907. complete(&req->done);
  3908. }
  3909. __set_current_state(TASK_RUNNING);
  3910. return 0;
  3911. wait_to_die:
  3912. /* Wait for kthread_stop */
  3913. set_current_state(TASK_INTERRUPTIBLE);
  3914. while (!kthread_should_stop()) {
  3915. schedule();
  3916. set_current_state(TASK_INTERRUPTIBLE);
  3917. }
  3918. __set_current_state(TASK_RUNNING);
  3919. return 0;
  3920. }
  3921. #ifdef CONFIG_HOTPLUG_CPU
  3922. /* Figure out where task on dead CPU should go, use force if neccessary. */
  3923. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
  3924. {
  3925. int dest_cpu;
  3926. cpumask_t mask;
  3927. /* On same node? */
  3928. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  3929. cpus_and(mask, mask, tsk->cpus_allowed);
  3930. dest_cpu = any_online_cpu(mask);
  3931. /* On any allowed CPU? */
  3932. if (dest_cpu == NR_CPUS)
  3933. dest_cpu = any_online_cpu(tsk->cpus_allowed);
  3934. /* No more Mr. Nice Guy. */
  3935. if (dest_cpu == NR_CPUS) {
  3936. cpus_setall(tsk->cpus_allowed);
  3937. dest_cpu = any_online_cpu(tsk->cpus_allowed);
  3938. /*
  3939. * Don't tell them about moving exiting tasks or
  3940. * kernel threads (both mm NULL), since they never
  3941. * leave kernel.
  3942. */
  3943. if (tsk->mm && printk_ratelimit())
  3944. printk(KERN_INFO "process %d (%s) no "
  3945. "longer affine to cpu%d\n",
  3946. tsk->pid, tsk->comm, dead_cpu);
  3947. }
  3948. __migrate_task(tsk, dead_cpu, dest_cpu);
  3949. }
  3950. /*
  3951. * While a dead CPU has no uninterruptible tasks queued at this point,
  3952. * it might still have a nonzero ->nr_uninterruptible counter, because
  3953. * for performance reasons the counter is not stricly tracking tasks to
  3954. * their home CPUs. So we just add the counter to another CPU's counter,
  3955. * to keep the global sum constant after CPU-down:
  3956. */
  3957. static void migrate_nr_uninterruptible(runqueue_t *rq_src)
  3958. {
  3959. runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
  3960. unsigned long flags;
  3961. local_irq_save(flags);
  3962. double_rq_lock(rq_src, rq_dest);
  3963. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  3964. rq_src->nr_uninterruptible = 0;
  3965. double_rq_unlock(rq_src, rq_dest);
  3966. local_irq_restore(flags);
  3967. }
  3968. /* Run through task list and migrate tasks from the dead cpu. */
  3969. static void migrate_live_tasks(int src_cpu)
  3970. {
  3971. struct task_struct *tsk, *t;
  3972. write_lock_irq(&tasklist_lock);
  3973. do_each_thread(t, tsk) {
  3974. if (tsk == current)
  3975. continue;
  3976. if (task_cpu(tsk) == src_cpu)
  3977. move_task_off_dead_cpu(src_cpu, tsk);
  3978. } while_each_thread(t, tsk);
  3979. write_unlock_irq(&tasklist_lock);
  3980. }
  3981. /* Schedules idle task to be the next runnable task on current CPU.
  3982. * It does so by boosting its priority to highest possible and adding it to
  3983. * the _front_ of runqueue. Used by CPU offline code.
  3984. */
  3985. void sched_idle_next(void)
  3986. {
  3987. int cpu = smp_processor_id();
  3988. runqueue_t *rq = this_rq();
  3989. struct task_struct *p = rq->idle;
  3990. unsigned long flags;
  3991. /* cpu has to be offline */
  3992. BUG_ON(cpu_online(cpu));
  3993. /* Strictly not necessary since rest of the CPUs are stopped by now
  3994. * and interrupts disabled on current cpu.
  3995. */
  3996. spin_lock_irqsave(&rq->lock, flags);
  3997. __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
  3998. /* Add idle task to _front_ of it's priority queue */
  3999. __activate_idle_task(p, rq);
  4000. spin_unlock_irqrestore(&rq->lock, flags);
  4001. }
  4002. /* Ensures that the idle task is using init_mm right before its cpu goes
  4003. * offline.
  4004. */
  4005. void idle_task_exit(void)
  4006. {
  4007. struct mm_struct *mm = current->active_mm;
  4008. BUG_ON(cpu_online(smp_processor_id()));
  4009. if (mm != &init_mm)
  4010. switch_mm(mm, &init_mm, current);
  4011. mmdrop(mm);
  4012. }
  4013. static void migrate_dead(unsigned int dead_cpu, task_t *tsk)
  4014. {
  4015. struct runqueue *rq = cpu_rq(dead_cpu);
  4016. /* Must be exiting, otherwise would be on tasklist. */
  4017. BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD);
  4018. /* Cannot have done final schedule yet: would have vanished. */
  4019. BUG_ON(tsk->flags & PF_DEAD);
  4020. get_task_struct(tsk);
  4021. /*
  4022. * Drop lock around migration; if someone else moves it,
  4023. * that's OK. No task can be added to this CPU, so iteration is
  4024. * fine.
  4025. */
  4026. spin_unlock_irq(&rq->lock);
  4027. move_task_off_dead_cpu(dead_cpu, tsk);
  4028. spin_lock_irq(&rq->lock);
  4029. put_task_struct(tsk);
  4030. }
  4031. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  4032. static void migrate_dead_tasks(unsigned int dead_cpu)
  4033. {
  4034. unsigned arr, i;
  4035. struct runqueue *rq = cpu_rq(dead_cpu);
  4036. for (arr = 0; arr < 2; arr++) {
  4037. for (i = 0; i < MAX_PRIO; i++) {
  4038. struct list_head *list = &rq->arrays[arr].queue[i];
  4039. while (!list_empty(list))
  4040. migrate_dead(dead_cpu,
  4041. list_entry(list->next, task_t,
  4042. run_list));
  4043. }
  4044. }
  4045. }
  4046. #endif /* CONFIG_HOTPLUG_CPU */
  4047. /*
  4048. * migration_call - callback that gets triggered when a CPU is added.
  4049. * Here we can start up the necessary migration thread for the new CPU.
  4050. */
  4051. static int migration_call(struct notifier_block *nfb, unsigned long action,
  4052. void *hcpu)
  4053. {
  4054. int cpu = (long)hcpu;
  4055. struct task_struct *p;
  4056. struct runqueue *rq;
  4057. unsigned long flags;
  4058. switch (action) {
  4059. case CPU_UP_PREPARE:
  4060. p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
  4061. if (IS_ERR(p))
  4062. return NOTIFY_BAD;
  4063. p->flags |= PF_NOFREEZE;
  4064. kthread_bind(p, cpu);
  4065. /* Must be high prio: stop_machine expects to yield to it. */
  4066. rq = task_rq_lock(p, &flags);
  4067. __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
  4068. task_rq_unlock(rq, &flags);
  4069. cpu_rq(cpu)->migration_thread = p;
  4070. break;
  4071. case CPU_ONLINE:
  4072. /* Strictly unneccessary, as first user will wake it. */
  4073. wake_up_process(cpu_rq(cpu)->migration_thread);
  4074. break;
  4075. #ifdef CONFIG_HOTPLUG_CPU
  4076. case CPU_UP_CANCELED:
  4077. /* Unbind it from offline cpu so it can run. Fall thru. */
  4078. kthread_bind(cpu_rq(cpu)->migration_thread,smp_processor_id());
  4079. kthread_stop(cpu_rq(cpu)->migration_thread);
  4080. cpu_rq(cpu)->migration_thread = NULL;
  4081. break;
  4082. case CPU_DEAD:
  4083. migrate_live_tasks(cpu);
  4084. rq = cpu_rq(cpu);
  4085. kthread_stop(rq->migration_thread);
  4086. rq->migration_thread = NULL;
  4087. /* Idle task back to normal (off runqueue, low prio) */
  4088. rq = task_rq_lock(rq->idle, &flags);
  4089. deactivate_task(rq->idle, rq);
  4090. rq->idle->static_prio = MAX_PRIO;
  4091. __setscheduler(rq->idle, SCHED_NORMAL, 0);
  4092. migrate_dead_tasks(cpu);
  4093. task_rq_unlock(rq, &flags);
  4094. migrate_nr_uninterruptible(rq);
  4095. BUG_ON(rq->nr_running != 0);
  4096. /* No need to migrate the tasks: it was best-effort if
  4097. * they didn't do lock_cpu_hotplug(). Just wake up
  4098. * the requestors. */
  4099. spin_lock_irq(&rq->lock);
  4100. while (!list_empty(&rq->migration_queue)) {
  4101. migration_req_t *req;
  4102. req = list_entry(rq->migration_queue.next,
  4103. migration_req_t, list);
  4104. list_del_init(&req->list);
  4105. complete(&req->done);
  4106. }
  4107. spin_unlock_irq(&rq->lock);
  4108. break;
  4109. #endif
  4110. }
  4111. return NOTIFY_OK;
  4112. }
  4113. /* Register at highest priority so that task migration (migrate_all_tasks)
  4114. * happens before everything else.
  4115. */
  4116. static struct notifier_block __devinitdata migration_notifier = {
  4117. .notifier_call = migration_call,
  4118. .priority = 10
  4119. };
  4120. int __init migration_init(void)
  4121. {
  4122. void *cpu = (void *)(long)smp_processor_id();
  4123. /* Start one for boot CPU. */
  4124. migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4125. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4126. register_cpu_notifier(&migration_notifier);
  4127. return 0;
  4128. }
  4129. #endif
  4130. #ifdef CONFIG_SMP
  4131. #undef SCHED_DOMAIN_DEBUG
  4132. #ifdef SCHED_DOMAIN_DEBUG
  4133. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4134. {
  4135. int level = 0;
  4136. if (!sd) {
  4137. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4138. return;
  4139. }
  4140. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4141. do {
  4142. int i;
  4143. char str[NR_CPUS];
  4144. struct sched_group *group = sd->groups;
  4145. cpumask_t groupmask;
  4146. cpumask_scnprintf(str, NR_CPUS, sd->span);
  4147. cpus_clear(groupmask);
  4148. printk(KERN_DEBUG);
  4149. for (i = 0; i < level + 1; i++)
  4150. printk(" ");
  4151. printk("domain %d: ", level);
  4152. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4153. printk("does not load-balance\n");
  4154. if (sd->parent)
  4155. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
  4156. break;
  4157. }
  4158. printk("span %s\n", str);
  4159. if (!cpu_isset(cpu, sd->span))
  4160. printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
  4161. if (!cpu_isset(cpu, group->cpumask))
  4162. printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
  4163. printk(KERN_DEBUG);
  4164. for (i = 0; i < level + 2; i++)
  4165. printk(" ");
  4166. printk("groups:");
  4167. do {
  4168. if (!group) {
  4169. printk("\n");
  4170. printk(KERN_ERR "ERROR: group is NULL\n");
  4171. break;
  4172. }
  4173. if (!group->cpu_power) {
  4174. printk("\n");
  4175. printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
  4176. }
  4177. if (!cpus_weight(group->cpumask)) {
  4178. printk("\n");
  4179. printk(KERN_ERR "ERROR: empty group\n");
  4180. }
  4181. if (cpus_intersects(groupmask, group->cpumask)) {
  4182. printk("\n");
  4183. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4184. }
  4185. cpus_or(groupmask, groupmask, group->cpumask);
  4186. cpumask_scnprintf(str, NR_CPUS, group->cpumask);
  4187. printk(" %s", str);
  4188. group = group->next;
  4189. } while (group != sd->groups);
  4190. printk("\n");
  4191. if (!cpus_equal(sd->span, groupmask))
  4192. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  4193. level++;
  4194. sd = sd->parent;
  4195. if (sd) {
  4196. if (!cpus_subset(groupmask, sd->span))
  4197. printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
  4198. }
  4199. } while (sd);
  4200. }
  4201. #else
  4202. #define sched_domain_debug(sd, cpu) {}
  4203. #endif
  4204. static int sd_degenerate(struct sched_domain *sd)
  4205. {
  4206. if (cpus_weight(sd->span) == 1)
  4207. return 1;
  4208. /* Following flags need at least 2 groups */
  4209. if (sd->flags & (SD_LOAD_BALANCE |
  4210. SD_BALANCE_NEWIDLE |
  4211. SD_BALANCE_FORK |
  4212. SD_BALANCE_EXEC)) {
  4213. if (sd->groups != sd->groups->next)
  4214. return 0;
  4215. }
  4216. /* Following flags don't use groups */
  4217. if (sd->flags & (SD_WAKE_IDLE |
  4218. SD_WAKE_AFFINE |
  4219. SD_WAKE_BALANCE))
  4220. return 0;
  4221. return 1;
  4222. }
  4223. static int sd_parent_degenerate(struct sched_domain *sd,
  4224. struct sched_domain *parent)
  4225. {
  4226. unsigned long cflags = sd->flags, pflags = parent->flags;
  4227. if (sd_degenerate(parent))
  4228. return 1;
  4229. if (!cpus_equal(sd->span, parent->span))
  4230. return 0;
  4231. /* Does parent contain flags not in child? */
  4232. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  4233. if (cflags & SD_WAKE_AFFINE)
  4234. pflags &= ~SD_WAKE_BALANCE;
  4235. /* Flags needing groups don't count if only 1 group in parent */
  4236. if (parent->groups == parent->groups->next) {
  4237. pflags &= ~(SD_LOAD_BALANCE |
  4238. SD_BALANCE_NEWIDLE |
  4239. SD_BALANCE_FORK |
  4240. SD_BALANCE_EXEC);
  4241. }
  4242. if (~cflags & pflags)
  4243. return 0;
  4244. return 1;
  4245. }
  4246. /*
  4247. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  4248. * hold the hotplug lock.
  4249. */
  4250. static void cpu_attach_domain(struct sched_domain *sd, int cpu)
  4251. {
  4252. runqueue_t *rq = cpu_rq(cpu);
  4253. struct sched_domain *tmp;
  4254. /* Remove the sched domains which do not contribute to scheduling. */
  4255. for (tmp = sd; tmp; tmp = tmp->parent) {
  4256. struct sched_domain *parent = tmp->parent;
  4257. if (!parent)
  4258. break;
  4259. if (sd_parent_degenerate(tmp, parent))
  4260. tmp->parent = parent->parent;
  4261. }
  4262. if (sd && sd_degenerate(sd))
  4263. sd = sd->parent;
  4264. sched_domain_debug(sd, cpu);
  4265. rcu_assign_pointer(rq->sd, sd);
  4266. }
  4267. /* cpus with isolated domains */
  4268. static cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
  4269. /* Setup the mask of cpus configured for isolated domains */
  4270. static int __init isolated_cpu_setup(char *str)
  4271. {
  4272. int ints[NR_CPUS], i;
  4273. str = get_options(str, ARRAY_SIZE(ints), ints);
  4274. cpus_clear(cpu_isolated_map);
  4275. for (i = 1; i <= ints[0]; i++)
  4276. if (ints[i] < NR_CPUS)
  4277. cpu_set(ints[i], cpu_isolated_map);
  4278. return 1;
  4279. }
  4280. __setup ("isolcpus=", isolated_cpu_setup);
  4281. /*
  4282. * init_sched_build_groups takes an array of groups, the cpumask we wish
  4283. * to span, and a pointer to a function which identifies what group a CPU
  4284. * belongs to. The return value of group_fn must be a valid index into the
  4285. * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
  4286. * keep track of groups covered with a cpumask_t).
  4287. *
  4288. * init_sched_build_groups will build a circular linked list of the groups
  4289. * covered by the given span, and will set each group's ->cpumask correctly,
  4290. * and ->cpu_power to 0.
  4291. */
  4292. static void init_sched_build_groups(struct sched_group groups[], cpumask_t span,
  4293. int (*group_fn)(int cpu))
  4294. {
  4295. struct sched_group *first = NULL, *last = NULL;
  4296. cpumask_t covered = CPU_MASK_NONE;
  4297. int i;
  4298. for_each_cpu_mask(i, span) {
  4299. int group = group_fn(i);
  4300. struct sched_group *sg = &groups[group];
  4301. int j;
  4302. if (cpu_isset(i, covered))
  4303. continue;
  4304. sg->cpumask = CPU_MASK_NONE;
  4305. sg->cpu_power = 0;
  4306. for_each_cpu_mask(j, span) {
  4307. if (group_fn(j) != group)
  4308. continue;
  4309. cpu_set(j, covered);
  4310. cpu_set(j, sg->cpumask);
  4311. }
  4312. if (!first)
  4313. first = sg;
  4314. if (last)
  4315. last->next = sg;
  4316. last = sg;
  4317. }
  4318. last->next = first;
  4319. }
  4320. #define SD_NODES_PER_DOMAIN 16
  4321. #ifdef CONFIG_NUMA
  4322. /**
  4323. * find_next_best_node - find the next node to include in a sched_domain
  4324. * @node: node whose sched_domain we're building
  4325. * @used_nodes: nodes already in the sched_domain
  4326. *
  4327. * Find the next node to include in a given scheduling domain. Simply
  4328. * finds the closest node not already in the @used_nodes map.
  4329. *
  4330. * Should use nodemask_t.
  4331. */
  4332. static int find_next_best_node(int node, unsigned long *used_nodes)
  4333. {
  4334. int i, n, val, min_val, best_node = 0;
  4335. min_val = INT_MAX;
  4336. for (i = 0; i < MAX_NUMNODES; i++) {
  4337. /* Start at @node */
  4338. n = (node + i) % MAX_NUMNODES;
  4339. if (!nr_cpus_node(n))
  4340. continue;
  4341. /* Skip already used nodes */
  4342. if (test_bit(n, used_nodes))
  4343. continue;
  4344. /* Simple min distance search */
  4345. val = node_distance(node, n);
  4346. if (val < min_val) {
  4347. min_val = val;
  4348. best_node = n;
  4349. }
  4350. }
  4351. set_bit(best_node, used_nodes);
  4352. return best_node;
  4353. }
  4354. /**
  4355. * sched_domain_node_span - get a cpumask for a node's sched_domain
  4356. * @node: node whose cpumask we're constructing
  4357. * @size: number of nodes to include in this span
  4358. *
  4359. * Given a node, construct a good cpumask for its sched_domain to span. It
  4360. * should be one that prevents unnecessary balancing, but also spreads tasks
  4361. * out optimally.
  4362. */
  4363. static cpumask_t sched_domain_node_span(int node)
  4364. {
  4365. int i;
  4366. cpumask_t span, nodemask;
  4367. DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
  4368. cpus_clear(span);
  4369. bitmap_zero(used_nodes, MAX_NUMNODES);
  4370. nodemask = node_to_cpumask(node);
  4371. cpus_or(span, span, nodemask);
  4372. set_bit(node, used_nodes);
  4373. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  4374. int next_node = find_next_best_node(node, used_nodes);
  4375. nodemask = node_to_cpumask(next_node);
  4376. cpus_or(span, span, nodemask);
  4377. }
  4378. return span;
  4379. }
  4380. #endif
  4381. /*
  4382. * At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we
  4383. * can switch it on easily if needed.
  4384. */
  4385. #ifdef CONFIG_SCHED_SMT
  4386. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  4387. static struct sched_group sched_group_cpus[NR_CPUS];
  4388. static int cpu_to_cpu_group(int cpu)
  4389. {
  4390. return cpu;
  4391. }
  4392. #endif
  4393. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  4394. static struct sched_group sched_group_phys[NR_CPUS];
  4395. static int cpu_to_phys_group(int cpu)
  4396. {
  4397. #ifdef CONFIG_SCHED_SMT
  4398. return first_cpu(cpu_sibling_map[cpu]);
  4399. #else
  4400. return cpu;
  4401. #endif
  4402. }
  4403. #ifdef CONFIG_NUMA
  4404. /*
  4405. * The init_sched_build_groups can't handle what we want to do with node
  4406. * groups, so roll our own. Now each node has its own list of groups which
  4407. * gets dynamically allocated.
  4408. */
  4409. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  4410. static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
  4411. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  4412. static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS];
  4413. static int cpu_to_allnodes_group(int cpu)
  4414. {
  4415. return cpu_to_node(cpu);
  4416. }
  4417. #endif
  4418. /*
  4419. * Build sched domains for a given set of cpus and attach the sched domains
  4420. * to the individual cpus
  4421. */
  4422. void build_sched_domains(const cpumask_t *cpu_map)
  4423. {
  4424. int i;
  4425. #ifdef CONFIG_NUMA
  4426. struct sched_group **sched_group_nodes = NULL;
  4427. struct sched_group *sched_group_allnodes = NULL;
  4428. /*
  4429. * Allocate the per-node list of sched groups
  4430. */
  4431. sched_group_nodes = kmalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
  4432. GFP_ATOMIC);
  4433. if (!sched_group_nodes) {
  4434. printk(KERN_WARNING "Can not alloc sched group node list\n");
  4435. return;
  4436. }
  4437. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  4438. #endif
  4439. /*
  4440. * Set up domains for cpus specified by the cpu_map.
  4441. */
  4442. for_each_cpu_mask(i, *cpu_map) {
  4443. int group;
  4444. struct sched_domain *sd = NULL, *p;
  4445. cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
  4446. cpus_and(nodemask, nodemask, *cpu_map);
  4447. #ifdef CONFIG_NUMA
  4448. if (cpus_weight(*cpu_map)
  4449. > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
  4450. if (!sched_group_allnodes) {
  4451. sched_group_allnodes
  4452. = kmalloc(sizeof(struct sched_group)
  4453. * MAX_NUMNODES,
  4454. GFP_KERNEL);
  4455. if (!sched_group_allnodes) {
  4456. printk(KERN_WARNING
  4457. "Can not alloc allnodes sched group\n");
  4458. break;
  4459. }
  4460. sched_group_allnodes_bycpu[i]
  4461. = sched_group_allnodes;
  4462. }
  4463. sd = &per_cpu(allnodes_domains, i);
  4464. *sd = SD_ALLNODES_INIT;
  4465. sd->span = *cpu_map;
  4466. group = cpu_to_allnodes_group(i);
  4467. sd->groups = &sched_group_allnodes[group];
  4468. p = sd;
  4469. } else
  4470. p = NULL;
  4471. sd = &per_cpu(node_domains, i);
  4472. *sd = SD_NODE_INIT;
  4473. sd->span = sched_domain_node_span(cpu_to_node(i));
  4474. sd->parent = p;
  4475. cpus_and(sd->span, sd->span, *cpu_map);
  4476. #endif
  4477. p = sd;
  4478. sd = &per_cpu(phys_domains, i);
  4479. group = cpu_to_phys_group(i);
  4480. *sd = SD_CPU_INIT;
  4481. sd->span = nodemask;
  4482. sd->parent = p;
  4483. sd->groups = &sched_group_phys[group];
  4484. #ifdef CONFIG_SCHED_SMT
  4485. p = sd;
  4486. sd = &per_cpu(cpu_domains, i);
  4487. group = cpu_to_cpu_group(i);
  4488. *sd = SD_SIBLING_INIT;
  4489. sd->span = cpu_sibling_map[i];
  4490. cpus_and(sd->span, sd->span, *cpu_map);
  4491. sd->parent = p;
  4492. sd->groups = &sched_group_cpus[group];
  4493. #endif
  4494. }
  4495. #ifdef CONFIG_SCHED_SMT
  4496. /* Set up CPU (sibling) groups */
  4497. for_each_cpu_mask(i, *cpu_map) {
  4498. cpumask_t this_sibling_map = cpu_sibling_map[i];
  4499. cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
  4500. if (i != first_cpu(this_sibling_map))
  4501. continue;
  4502. init_sched_build_groups(sched_group_cpus, this_sibling_map,
  4503. &cpu_to_cpu_group);
  4504. }
  4505. #endif
  4506. /* Set up physical groups */
  4507. for (i = 0; i < MAX_NUMNODES; i++) {
  4508. cpumask_t nodemask = node_to_cpumask(i);
  4509. cpus_and(nodemask, nodemask, *cpu_map);
  4510. if (cpus_empty(nodemask))
  4511. continue;
  4512. init_sched_build_groups(sched_group_phys, nodemask,
  4513. &cpu_to_phys_group);
  4514. }
  4515. #ifdef CONFIG_NUMA
  4516. /* Set up node groups */
  4517. if (sched_group_allnodes)
  4518. init_sched_build_groups(sched_group_allnodes, *cpu_map,
  4519. &cpu_to_allnodes_group);
  4520. for (i = 0; i < MAX_NUMNODES; i++) {
  4521. /* Set up node groups */
  4522. struct sched_group *sg, *prev;
  4523. cpumask_t nodemask = node_to_cpumask(i);
  4524. cpumask_t domainspan;
  4525. cpumask_t covered = CPU_MASK_NONE;
  4526. int j;
  4527. cpus_and(nodemask, nodemask, *cpu_map);
  4528. if (cpus_empty(nodemask)) {
  4529. sched_group_nodes[i] = NULL;
  4530. continue;
  4531. }
  4532. domainspan = sched_domain_node_span(i);
  4533. cpus_and(domainspan, domainspan, *cpu_map);
  4534. sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
  4535. sched_group_nodes[i] = sg;
  4536. for_each_cpu_mask(j, nodemask) {
  4537. struct sched_domain *sd;
  4538. sd = &per_cpu(node_domains, j);
  4539. sd->groups = sg;
  4540. if (sd->groups == NULL) {
  4541. /* Turn off balancing if we have no groups */
  4542. sd->flags = 0;
  4543. }
  4544. }
  4545. if (!sg) {
  4546. printk(KERN_WARNING
  4547. "Can not alloc domain group for node %d\n", i);
  4548. continue;
  4549. }
  4550. sg->cpu_power = 0;
  4551. sg->cpumask = nodemask;
  4552. cpus_or(covered, covered, nodemask);
  4553. prev = sg;
  4554. for (j = 0; j < MAX_NUMNODES; j++) {
  4555. cpumask_t tmp, notcovered;
  4556. int n = (i + j) % MAX_NUMNODES;
  4557. cpus_complement(notcovered, covered);
  4558. cpus_and(tmp, notcovered, *cpu_map);
  4559. cpus_and(tmp, tmp, domainspan);
  4560. if (cpus_empty(tmp))
  4561. break;
  4562. nodemask = node_to_cpumask(n);
  4563. cpus_and(tmp, tmp, nodemask);
  4564. if (cpus_empty(tmp))
  4565. continue;
  4566. sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
  4567. if (!sg) {
  4568. printk(KERN_WARNING
  4569. "Can not alloc domain group for node %d\n", j);
  4570. break;
  4571. }
  4572. sg->cpu_power = 0;
  4573. sg->cpumask = tmp;
  4574. cpus_or(covered, covered, tmp);
  4575. prev->next = sg;
  4576. prev = sg;
  4577. }
  4578. prev->next = sched_group_nodes[i];
  4579. }
  4580. #endif
  4581. /* Calculate CPU power for physical packages and nodes */
  4582. for_each_cpu_mask(i, *cpu_map) {
  4583. int power;
  4584. struct sched_domain *sd;
  4585. #ifdef CONFIG_SCHED_SMT
  4586. sd = &per_cpu(cpu_domains, i);
  4587. power = SCHED_LOAD_SCALE;
  4588. sd->groups->cpu_power = power;
  4589. #endif
  4590. sd = &per_cpu(phys_domains, i);
  4591. power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
  4592. (cpus_weight(sd->groups->cpumask)-1) / 10;
  4593. sd->groups->cpu_power = power;
  4594. #ifdef CONFIG_NUMA
  4595. sd = &per_cpu(allnodes_domains, i);
  4596. if (sd->groups) {
  4597. power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
  4598. (cpus_weight(sd->groups->cpumask)-1) / 10;
  4599. sd->groups->cpu_power = power;
  4600. }
  4601. #endif
  4602. }
  4603. #ifdef CONFIG_NUMA
  4604. for (i = 0; i < MAX_NUMNODES; i++) {
  4605. struct sched_group *sg = sched_group_nodes[i];
  4606. int j;
  4607. if (sg == NULL)
  4608. continue;
  4609. next_sg:
  4610. for_each_cpu_mask(j, sg->cpumask) {
  4611. struct sched_domain *sd;
  4612. int power;
  4613. sd = &per_cpu(phys_domains, j);
  4614. if (j != first_cpu(sd->groups->cpumask)) {
  4615. /*
  4616. * Only add "power" once for each
  4617. * physical package.
  4618. */
  4619. continue;
  4620. }
  4621. power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
  4622. (cpus_weight(sd->groups->cpumask)-1) / 10;
  4623. sg->cpu_power += power;
  4624. }
  4625. sg = sg->next;
  4626. if (sg != sched_group_nodes[i])
  4627. goto next_sg;
  4628. }
  4629. #endif
  4630. /* Attach the domains */
  4631. for_each_cpu_mask(i, *cpu_map) {
  4632. struct sched_domain *sd;
  4633. #ifdef CONFIG_SCHED_SMT
  4634. sd = &per_cpu(cpu_domains, i);
  4635. #else
  4636. sd = &per_cpu(phys_domains, i);
  4637. #endif
  4638. cpu_attach_domain(sd, i);
  4639. }
  4640. }
  4641. /*
  4642. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  4643. */
  4644. static void arch_init_sched_domains(const cpumask_t *cpu_map)
  4645. {
  4646. cpumask_t cpu_default_map;
  4647. /*
  4648. * Setup mask for cpus without special case scheduling requirements.
  4649. * For now this just excludes isolated cpus, but could be used to
  4650. * exclude other special cases in the future.
  4651. */
  4652. cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
  4653. build_sched_domains(&cpu_default_map);
  4654. }
  4655. static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
  4656. {
  4657. #ifdef CONFIG_NUMA
  4658. int i;
  4659. int cpu;
  4660. for_each_cpu_mask(cpu, *cpu_map) {
  4661. struct sched_group *sched_group_allnodes
  4662. = sched_group_allnodes_bycpu[cpu];
  4663. struct sched_group **sched_group_nodes
  4664. = sched_group_nodes_bycpu[cpu];
  4665. if (sched_group_allnodes) {
  4666. kfree(sched_group_allnodes);
  4667. sched_group_allnodes_bycpu[cpu] = NULL;
  4668. }
  4669. if (!sched_group_nodes)
  4670. continue;
  4671. for (i = 0; i < MAX_NUMNODES; i++) {
  4672. cpumask_t nodemask = node_to_cpumask(i);
  4673. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  4674. cpus_and(nodemask, nodemask, *cpu_map);
  4675. if (cpus_empty(nodemask))
  4676. continue;
  4677. if (sg == NULL)
  4678. continue;
  4679. sg = sg->next;
  4680. next_sg:
  4681. oldsg = sg;
  4682. sg = sg->next;
  4683. kfree(oldsg);
  4684. if (oldsg != sched_group_nodes[i])
  4685. goto next_sg;
  4686. }
  4687. kfree(sched_group_nodes);
  4688. sched_group_nodes_bycpu[cpu] = NULL;
  4689. }
  4690. #endif
  4691. }
  4692. /*
  4693. * Detach sched domains from a group of cpus specified in cpu_map
  4694. * These cpus will now be attached to the NULL domain
  4695. */
  4696. static inline void detach_destroy_domains(const cpumask_t *cpu_map)
  4697. {
  4698. int i;
  4699. for_each_cpu_mask(i, *cpu_map)
  4700. cpu_attach_domain(NULL, i);
  4701. synchronize_sched();
  4702. arch_destroy_sched_domains(cpu_map);
  4703. }
  4704. /*
  4705. * Partition sched domains as specified by the cpumasks below.
  4706. * This attaches all cpus from the cpumasks to the NULL domain,
  4707. * waits for a RCU quiescent period, recalculates sched
  4708. * domain information and then attaches them back to the
  4709. * correct sched domains
  4710. * Call with hotplug lock held
  4711. */
  4712. void partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
  4713. {
  4714. cpumask_t change_map;
  4715. cpus_and(*partition1, *partition1, cpu_online_map);
  4716. cpus_and(*partition2, *partition2, cpu_online_map);
  4717. cpus_or(change_map, *partition1, *partition2);
  4718. /* Detach sched domains from all of the affected cpus */
  4719. detach_destroy_domains(&change_map);
  4720. if (!cpus_empty(*partition1))
  4721. build_sched_domains(partition1);
  4722. if (!cpus_empty(*partition2))
  4723. build_sched_domains(partition2);
  4724. }
  4725. #ifdef CONFIG_HOTPLUG_CPU
  4726. /*
  4727. * Force a reinitialization of the sched domains hierarchy. The domains
  4728. * and groups cannot be updated in place without racing with the balancing
  4729. * code, so we temporarily attach all running cpus to the NULL domain
  4730. * which will prevent rebalancing while the sched domains are recalculated.
  4731. */
  4732. static int update_sched_domains(struct notifier_block *nfb,
  4733. unsigned long action, void *hcpu)
  4734. {
  4735. switch (action) {
  4736. case CPU_UP_PREPARE:
  4737. case CPU_DOWN_PREPARE:
  4738. detach_destroy_domains(&cpu_online_map);
  4739. return NOTIFY_OK;
  4740. case CPU_UP_CANCELED:
  4741. case CPU_DOWN_FAILED:
  4742. case CPU_ONLINE:
  4743. case CPU_DEAD:
  4744. /*
  4745. * Fall through and re-initialise the domains.
  4746. */
  4747. break;
  4748. default:
  4749. return NOTIFY_DONE;
  4750. }
  4751. /* The hotplug lock is already held by cpu_up/cpu_down */
  4752. arch_init_sched_domains(&cpu_online_map);
  4753. return NOTIFY_OK;
  4754. }
  4755. #endif
  4756. void __init sched_init_smp(void)
  4757. {
  4758. lock_cpu_hotplug();
  4759. arch_init_sched_domains(&cpu_online_map);
  4760. unlock_cpu_hotplug();
  4761. /* XXX: Theoretical race here - CPU may be hotplugged now */
  4762. hotcpu_notifier(update_sched_domains, 0);
  4763. }
  4764. #else
  4765. void __init sched_init_smp(void)
  4766. {
  4767. }
  4768. #endif /* CONFIG_SMP */
  4769. int in_sched_functions(unsigned long addr)
  4770. {
  4771. /* Linker adds these: start and end of __sched functions */
  4772. extern char __sched_text_start[], __sched_text_end[];
  4773. return in_lock_functions(addr) ||
  4774. (addr >= (unsigned long)__sched_text_start
  4775. && addr < (unsigned long)__sched_text_end);
  4776. }
  4777. void __init sched_init(void)
  4778. {
  4779. runqueue_t *rq;
  4780. int i, j, k;
  4781. for (i = 0; i < NR_CPUS; i++) {
  4782. prio_array_t *array;
  4783. rq = cpu_rq(i);
  4784. spin_lock_init(&rq->lock);
  4785. rq->nr_running = 0;
  4786. rq->active = rq->arrays;
  4787. rq->expired = rq->arrays + 1;
  4788. rq->best_expired_prio = MAX_PRIO;
  4789. #ifdef CONFIG_SMP
  4790. rq->sd = NULL;
  4791. for (j = 1; j < 3; j++)
  4792. rq->cpu_load[j] = 0;
  4793. rq->active_balance = 0;
  4794. rq->push_cpu = 0;
  4795. rq->migration_thread = NULL;
  4796. INIT_LIST_HEAD(&rq->migration_queue);
  4797. #endif
  4798. atomic_set(&rq->nr_iowait, 0);
  4799. for (j = 0; j < 2; j++) {
  4800. array = rq->arrays + j;
  4801. for (k = 0; k < MAX_PRIO; k++) {
  4802. INIT_LIST_HEAD(array->queue + k);
  4803. __clear_bit(k, array->bitmap);
  4804. }
  4805. // delimiter for bitsearch
  4806. __set_bit(MAX_PRIO, array->bitmap);
  4807. }
  4808. }
  4809. /*
  4810. * The boot idle thread does lazy MMU switching as well:
  4811. */
  4812. atomic_inc(&init_mm.mm_count);
  4813. enter_lazy_tlb(&init_mm, current);
  4814. /*
  4815. * Make us the idle thread. Technically, schedule() should not be
  4816. * called from this thread, however somewhere below it might be,
  4817. * but because we are the idle thread, we just pick up running again
  4818. * when this runqueue becomes "idle".
  4819. */
  4820. init_idle(current, smp_processor_id());
  4821. }
  4822. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  4823. void __might_sleep(char *file, int line)
  4824. {
  4825. #if defined(in_atomic)
  4826. static unsigned long prev_jiffy; /* ratelimiting */
  4827. if ((in_atomic() || irqs_disabled()) &&
  4828. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  4829. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  4830. return;
  4831. prev_jiffy = jiffies;
  4832. printk(KERN_ERR "Debug: sleeping function called from invalid"
  4833. " context at %s:%d\n", file, line);
  4834. printk("in_atomic():%d, irqs_disabled():%d\n",
  4835. in_atomic(), irqs_disabled());
  4836. dump_stack();
  4837. }
  4838. #endif
  4839. }
  4840. EXPORT_SYMBOL(__might_sleep);
  4841. #endif
  4842. #ifdef CONFIG_MAGIC_SYSRQ
  4843. void normalize_rt_tasks(void)
  4844. {
  4845. struct task_struct *p;
  4846. prio_array_t *array;
  4847. unsigned long flags;
  4848. runqueue_t *rq;
  4849. read_lock_irq(&tasklist_lock);
  4850. for_each_process (p) {
  4851. if (!rt_task(p))
  4852. continue;
  4853. rq = task_rq_lock(p, &flags);
  4854. array = p->array;
  4855. if (array)
  4856. deactivate_task(p, task_rq(p));
  4857. __setscheduler(p, SCHED_NORMAL, 0);
  4858. if (array) {
  4859. __activate_task(p, task_rq(p));
  4860. resched_task(rq->curr);
  4861. }
  4862. task_rq_unlock(rq, &flags);
  4863. }
  4864. read_unlock_irq(&tasklist_lock);
  4865. }
  4866. #endif /* CONFIG_MAGIC_SYSRQ */
  4867. #ifdef CONFIG_IA64
  4868. /*
  4869. * These functions are only useful for the IA64 MCA handling.
  4870. *
  4871. * They can only be called when the whole system has been
  4872. * stopped - every CPU needs to be quiescent, and no scheduling
  4873. * activity can take place. Using them for anything else would
  4874. * be a serious bug, and as a result, they aren't even visible
  4875. * under any other configuration.
  4876. */
  4877. /**
  4878. * curr_task - return the current task for a given cpu.
  4879. * @cpu: the processor in question.
  4880. *
  4881. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  4882. */
  4883. task_t *curr_task(int cpu)
  4884. {
  4885. return cpu_curr(cpu);
  4886. }
  4887. /**
  4888. * set_curr_task - set the current task for a given cpu.
  4889. * @cpu: the processor in question.
  4890. * @p: the task pointer to set.
  4891. *
  4892. * Description: This function must only be used when non-maskable interrupts
  4893. * are serviced on a separate stack. It allows the architecture to switch the
  4894. * notion of the current task on a cpu in a non-blocking manner. This function
  4895. * must be called with all CPU's synchronized, and interrupts disabled, the
  4896. * and caller must save the original value of the current task (see
  4897. * curr_task() above) and restore that value before reenabling interrupts and
  4898. * re-starting the system.
  4899. *
  4900. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  4901. */
  4902. void set_curr_task(int cpu, task_t *p)
  4903. {
  4904. cpu_curr(cpu) = p;
  4905. }
  4906. #endif