task_mmu.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508
  1. #include <linux/mm.h>
  2. #include <linux/hugetlb.h>
  3. #include <linux/mount.h>
  4. #include <linux/seq_file.h>
  5. #include <linux/highmem.h>
  6. #include <linux/pagemap.h>
  7. #include <linux/mempolicy.h>
  8. #include <asm/elf.h>
  9. #include <asm/uaccess.h>
  10. #include <asm/tlbflush.h>
  11. #include "internal.h"
  12. char *task_mem(struct mm_struct *mm, char *buffer)
  13. {
  14. unsigned long data, text, lib;
  15. data = mm->total_vm - mm->shared_vm - mm->stack_vm;
  16. text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
  17. lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
  18. buffer += sprintf(buffer,
  19. "VmSize:\t%8lu kB\n"
  20. "VmLck:\t%8lu kB\n"
  21. "VmRSS:\t%8lu kB\n"
  22. "VmData:\t%8lu kB\n"
  23. "VmStk:\t%8lu kB\n"
  24. "VmExe:\t%8lu kB\n"
  25. "VmLib:\t%8lu kB\n"
  26. "VmPTE:\t%8lu kB\n",
  27. (mm->total_vm - mm->reserved_vm) << (PAGE_SHIFT-10),
  28. mm->locked_vm << (PAGE_SHIFT-10),
  29. get_mm_counter(mm, rss) << (PAGE_SHIFT-10),
  30. data << (PAGE_SHIFT-10),
  31. mm->stack_vm << (PAGE_SHIFT-10), text, lib,
  32. (PTRS_PER_PTE*sizeof(pte_t)*mm->nr_ptes) >> 10);
  33. return buffer;
  34. }
  35. unsigned long task_vsize(struct mm_struct *mm)
  36. {
  37. return PAGE_SIZE * mm->total_vm;
  38. }
  39. int task_statm(struct mm_struct *mm, int *shared, int *text,
  40. int *data, int *resident)
  41. {
  42. int rss = get_mm_counter(mm, rss);
  43. *shared = rss - get_mm_counter(mm, anon_rss);
  44. *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
  45. >> PAGE_SHIFT;
  46. *data = mm->total_vm - mm->shared_vm;
  47. *resident = rss;
  48. return mm->total_vm;
  49. }
  50. int proc_exe_link(struct inode *inode, struct dentry **dentry, struct vfsmount **mnt)
  51. {
  52. struct vm_area_struct * vma;
  53. int result = -ENOENT;
  54. struct task_struct *task = proc_task(inode);
  55. struct mm_struct * mm = get_task_mm(task);
  56. if (!mm)
  57. goto out;
  58. down_read(&mm->mmap_sem);
  59. vma = mm->mmap;
  60. while (vma) {
  61. if ((vma->vm_flags & VM_EXECUTABLE) && vma->vm_file)
  62. break;
  63. vma = vma->vm_next;
  64. }
  65. if (vma) {
  66. *mnt = mntget(vma->vm_file->f_vfsmnt);
  67. *dentry = dget(vma->vm_file->f_dentry);
  68. result = 0;
  69. }
  70. up_read(&mm->mmap_sem);
  71. mmput(mm);
  72. out:
  73. return result;
  74. }
  75. static void pad_len_spaces(struct seq_file *m, int len)
  76. {
  77. len = 25 + sizeof(void*) * 6 - len;
  78. if (len < 1)
  79. len = 1;
  80. seq_printf(m, "%*c", len, ' ');
  81. }
  82. struct mem_size_stats
  83. {
  84. unsigned long resident;
  85. unsigned long shared_clean;
  86. unsigned long shared_dirty;
  87. unsigned long private_clean;
  88. unsigned long private_dirty;
  89. };
  90. static int show_map_internal(struct seq_file *m, void *v, struct mem_size_stats *mss)
  91. {
  92. struct task_struct *task = m->private;
  93. struct vm_area_struct *vma = v;
  94. struct mm_struct *mm = vma->vm_mm;
  95. struct file *file = vma->vm_file;
  96. int flags = vma->vm_flags;
  97. unsigned long ino = 0;
  98. dev_t dev = 0;
  99. int len;
  100. if (file) {
  101. struct inode *inode = vma->vm_file->f_dentry->d_inode;
  102. dev = inode->i_sb->s_dev;
  103. ino = inode->i_ino;
  104. }
  105. seq_printf(m, "%08lx-%08lx %c%c%c%c %08lx %02x:%02x %lu %n",
  106. vma->vm_start,
  107. vma->vm_end,
  108. flags & VM_READ ? 'r' : '-',
  109. flags & VM_WRITE ? 'w' : '-',
  110. flags & VM_EXEC ? 'x' : '-',
  111. flags & VM_MAYSHARE ? 's' : 'p',
  112. vma->vm_pgoff << PAGE_SHIFT,
  113. MAJOR(dev), MINOR(dev), ino, &len);
  114. /*
  115. * Print the dentry name for named mappings, and a
  116. * special [heap] marker for the heap:
  117. */
  118. if (file) {
  119. pad_len_spaces(m, len);
  120. seq_path(m, file->f_vfsmnt, file->f_dentry, "\n");
  121. } else {
  122. if (mm) {
  123. if (vma->vm_start <= mm->start_brk &&
  124. vma->vm_end >= mm->brk) {
  125. pad_len_spaces(m, len);
  126. seq_puts(m, "[heap]");
  127. } else {
  128. if (vma->vm_start <= mm->start_stack &&
  129. vma->vm_end >= mm->start_stack) {
  130. pad_len_spaces(m, len);
  131. seq_puts(m, "[stack]");
  132. }
  133. }
  134. } else {
  135. pad_len_spaces(m, len);
  136. seq_puts(m, "[vdso]");
  137. }
  138. }
  139. seq_putc(m, '\n');
  140. if (mss)
  141. seq_printf(m,
  142. "Size: %8lu kB\n"
  143. "Rss: %8lu kB\n"
  144. "Shared_Clean: %8lu kB\n"
  145. "Shared_Dirty: %8lu kB\n"
  146. "Private_Clean: %8lu kB\n"
  147. "Private_Dirty: %8lu kB\n",
  148. (vma->vm_end - vma->vm_start) >> 10,
  149. mss->resident >> 10,
  150. mss->shared_clean >> 10,
  151. mss->shared_dirty >> 10,
  152. mss->private_clean >> 10,
  153. mss->private_dirty >> 10);
  154. if (m->count < m->size) /* vma is copied successfully */
  155. m->version = (vma != get_gate_vma(task))? vma->vm_start: 0;
  156. return 0;
  157. }
  158. static int show_map(struct seq_file *m, void *v)
  159. {
  160. return show_map_internal(m, v, 0);
  161. }
  162. static void smaps_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
  163. unsigned long addr, unsigned long end,
  164. struct mem_size_stats *mss)
  165. {
  166. pte_t *pte, ptent;
  167. unsigned long pfn;
  168. struct page *page;
  169. pte = pte_offset_map(pmd, addr);
  170. do {
  171. ptent = *pte;
  172. if (pte_none(ptent) || !pte_present(ptent))
  173. continue;
  174. mss->resident += PAGE_SIZE;
  175. pfn = pte_pfn(ptent);
  176. if (!pfn_valid(pfn))
  177. continue;
  178. page = pfn_to_page(pfn);
  179. if (page_count(page) >= 2) {
  180. if (pte_dirty(ptent))
  181. mss->shared_dirty += PAGE_SIZE;
  182. else
  183. mss->shared_clean += PAGE_SIZE;
  184. } else {
  185. if (pte_dirty(ptent))
  186. mss->private_dirty += PAGE_SIZE;
  187. else
  188. mss->private_clean += PAGE_SIZE;
  189. }
  190. } while (pte++, addr += PAGE_SIZE, addr != end);
  191. pte_unmap(pte - 1);
  192. cond_resched_lock(&vma->vm_mm->page_table_lock);
  193. }
  194. static inline void smaps_pmd_range(struct vm_area_struct *vma, pud_t *pud,
  195. unsigned long addr, unsigned long end,
  196. struct mem_size_stats *mss)
  197. {
  198. pmd_t *pmd;
  199. unsigned long next;
  200. pmd = pmd_offset(pud, addr);
  201. do {
  202. next = pmd_addr_end(addr, end);
  203. if (pmd_none_or_clear_bad(pmd))
  204. continue;
  205. smaps_pte_range(vma, pmd, addr, next, mss);
  206. } while (pmd++, addr = next, addr != end);
  207. }
  208. static inline void smaps_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
  209. unsigned long addr, unsigned long end,
  210. struct mem_size_stats *mss)
  211. {
  212. pud_t *pud;
  213. unsigned long next;
  214. pud = pud_offset(pgd, addr);
  215. do {
  216. next = pud_addr_end(addr, end);
  217. if (pud_none_or_clear_bad(pud))
  218. continue;
  219. smaps_pmd_range(vma, pud, addr, next, mss);
  220. } while (pud++, addr = next, addr != end);
  221. }
  222. static inline void smaps_pgd_range(struct vm_area_struct *vma,
  223. unsigned long addr, unsigned long end,
  224. struct mem_size_stats *mss)
  225. {
  226. pgd_t *pgd;
  227. unsigned long next;
  228. pgd = pgd_offset(vma->vm_mm, addr);
  229. do {
  230. next = pgd_addr_end(addr, end);
  231. if (pgd_none_or_clear_bad(pgd))
  232. continue;
  233. smaps_pud_range(vma, pgd, addr, next, mss);
  234. } while (pgd++, addr = next, addr != end);
  235. }
  236. static int show_smap(struct seq_file *m, void *v)
  237. {
  238. struct vm_area_struct *vma = v;
  239. struct mm_struct *mm = vma->vm_mm;
  240. struct mem_size_stats mss;
  241. memset(&mss, 0, sizeof mss);
  242. if (mm) {
  243. spin_lock(&mm->page_table_lock);
  244. smaps_pgd_range(vma, vma->vm_start, vma->vm_end, &mss);
  245. spin_unlock(&mm->page_table_lock);
  246. }
  247. return show_map_internal(m, v, &mss);
  248. }
  249. static void *m_start(struct seq_file *m, loff_t *pos)
  250. {
  251. struct task_struct *task = m->private;
  252. unsigned long last_addr = m->version;
  253. struct mm_struct *mm;
  254. struct vm_area_struct *vma, *tail_vma;
  255. loff_t l = *pos;
  256. /*
  257. * We remember last_addr rather than next_addr to hit with
  258. * mmap_cache most of the time. We have zero last_addr at
  259. * the beginning and also after lseek. We will have -1 last_addr
  260. * after the end of the vmas.
  261. */
  262. if (last_addr == -1UL)
  263. return NULL;
  264. mm = get_task_mm(task);
  265. if (!mm)
  266. return NULL;
  267. tail_vma = get_gate_vma(task);
  268. down_read(&mm->mmap_sem);
  269. /* Start with last addr hint */
  270. if (last_addr && (vma = find_vma(mm, last_addr))) {
  271. vma = vma->vm_next;
  272. goto out;
  273. }
  274. /*
  275. * Check the vma index is within the range and do
  276. * sequential scan until m_index.
  277. */
  278. vma = NULL;
  279. if ((unsigned long)l < mm->map_count) {
  280. vma = mm->mmap;
  281. while (l-- && vma)
  282. vma = vma->vm_next;
  283. goto out;
  284. }
  285. if (l != mm->map_count)
  286. tail_vma = NULL; /* After gate vma */
  287. out:
  288. if (vma)
  289. return vma;
  290. /* End of vmas has been reached */
  291. m->version = (tail_vma != NULL)? 0: -1UL;
  292. up_read(&mm->mmap_sem);
  293. mmput(mm);
  294. return tail_vma;
  295. }
  296. static void m_stop(struct seq_file *m, void *v)
  297. {
  298. struct task_struct *task = m->private;
  299. struct vm_area_struct *vma = v;
  300. if (vma && vma != get_gate_vma(task)) {
  301. struct mm_struct *mm = vma->vm_mm;
  302. up_read(&mm->mmap_sem);
  303. mmput(mm);
  304. }
  305. }
  306. static void *m_next(struct seq_file *m, void *v, loff_t *pos)
  307. {
  308. struct task_struct *task = m->private;
  309. struct vm_area_struct *vma = v;
  310. struct vm_area_struct *tail_vma = get_gate_vma(task);
  311. (*pos)++;
  312. if (vma && (vma != tail_vma) && vma->vm_next)
  313. return vma->vm_next;
  314. m_stop(m, v);
  315. return (vma != tail_vma)? tail_vma: NULL;
  316. }
  317. struct seq_operations proc_pid_maps_op = {
  318. .start = m_start,
  319. .next = m_next,
  320. .stop = m_stop,
  321. .show = show_map
  322. };
  323. struct seq_operations proc_pid_smaps_op = {
  324. .start = m_start,
  325. .next = m_next,
  326. .stop = m_stop,
  327. .show = show_smap
  328. };
  329. #ifdef CONFIG_NUMA
  330. struct numa_maps {
  331. unsigned long pages;
  332. unsigned long anon;
  333. unsigned long mapped;
  334. unsigned long mapcount_max;
  335. unsigned long node[MAX_NUMNODES];
  336. };
  337. /*
  338. * Calculate numa node maps for a vma
  339. */
  340. static struct numa_maps *get_numa_maps(const struct vm_area_struct *vma)
  341. {
  342. struct page *page;
  343. unsigned long vaddr;
  344. struct mm_struct *mm = vma->vm_mm;
  345. int i;
  346. struct numa_maps *md = kmalloc(sizeof(struct numa_maps), GFP_KERNEL);
  347. if (!md)
  348. return NULL;
  349. md->pages = 0;
  350. md->anon = 0;
  351. md->mapped = 0;
  352. md->mapcount_max = 0;
  353. for_each_node(i)
  354. md->node[i] =0;
  355. spin_lock(&mm->page_table_lock);
  356. for (vaddr = vma->vm_start; vaddr < vma->vm_end; vaddr += PAGE_SIZE) {
  357. page = follow_page(mm, vaddr, 0);
  358. if (page) {
  359. int count = page_mapcount(page);
  360. if (count)
  361. md->mapped++;
  362. if (count > md->mapcount_max)
  363. md->mapcount_max = count;
  364. md->pages++;
  365. if (PageAnon(page))
  366. md->anon++;
  367. md->node[page_to_nid(page)]++;
  368. }
  369. }
  370. spin_unlock(&mm->page_table_lock);
  371. return md;
  372. }
  373. static int show_numa_map(struct seq_file *m, void *v)
  374. {
  375. struct task_struct *task = m->private;
  376. struct vm_area_struct *vma = v;
  377. struct mempolicy *pol;
  378. struct numa_maps *md;
  379. struct zone **z;
  380. int n;
  381. int first;
  382. if (!vma->vm_mm)
  383. return 0;
  384. md = get_numa_maps(vma);
  385. if (!md)
  386. return 0;
  387. seq_printf(m, "%08lx", vma->vm_start);
  388. pol = get_vma_policy(task, vma, vma->vm_start);
  389. /* Print policy */
  390. switch (pol->policy) {
  391. case MPOL_PREFERRED:
  392. seq_printf(m, " prefer=%d", pol->v.preferred_node);
  393. break;
  394. case MPOL_BIND:
  395. seq_printf(m, " bind={");
  396. first = 1;
  397. for (z = pol->v.zonelist->zones; *z; z++) {
  398. if (!first)
  399. seq_putc(m, ',');
  400. else
  401. first = 0;
  402. seq_printf(m, "%d/%s", (*z)->zone_pgdat->node_id,
  403. (*z)->name);
  404. }
  405. seq_putc(m, '}');
  406. break;
  407. case MPOL_INTERLEAVE:
  408. seq_printf(m, " interleave={");
  409. first = 1;
  410. for_each_node(n) {
  411. if (test_bit(n, pol->v.nodes)) {
  412. if (!first)
  413. seq_putc(m,',');
  414. else
  415. first = 0;
  416. seq_printf(m, "%d",n);
  417. }
  418. }
  419. seq_putc(m, '}');
  420. break;
  421. default:
  422. seq_printf(m," default");
  423. break;
  424. }
  425. seq_printf(m, " MaxRef=%lu Pages=%lu Mapped=%lu",
  426. md->mapcount_max, md->pages, md->mapped);
  427. if (md->anon)
  428. seq_printf(m," Anon=%lu",md->anon);
  429. for_each_online_node(n) {
  430. if (md->node[n])
  431. seq_printf(m, " N%d=%lu", n, md->node[n]);
  432. }
  433. seq_putc(m, '\n');
  434. kfree(md);
  435. if (m->count < m->size) /* vma is copied successfully */
  436. m->version = (vma != get_gate_vma(task)) ? vma->vm_start : 0;
  437. return 0;
  438. }
  439. struct seq_operations proc_pid_numa_maps_op = {
  440. .start = m_start,
  441. .next = m_next,
  442. .stop = m_stop,
  443. .show = show_numa_map
  444. };
  445. #endif