bnode.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645
  1. /*
  2. * linux/fs/hfsplus/bnode.c
  3. *
  4. * Copyright (C) 2001
  5. * Brad Boyer (flar@allandria.com)
  6. * (C) 2003 Ardis Technologies <roman@ardistech.com>
  7. *
  8. * Handle basic btree node operations
  9. */
  10. #include <linux/string.h>
  11. #include <linux/slab.h>
  12. #include <linux/pagemap.h>
  13. #include <linux/fs.h>
  14. #include <linux/swap.h>
  15. #include <linux/version.h>
  16. #include "hfsplus_fs.h"
  17. #include "hfsplus_raw.h"
  18. /* Copy a specified range of bytes from the raw data of a node */
  19. void hfs_bnode_read(struct hfs_bnode *node, void *buf, int off, int len)
  20. {
  21. struct page **pagep;
  22. int l;
  23. off += node->page_offset;
  24. pagep = node->page + (off >> PAGE_CACHE_SHIFT);
  25. off &= ~PAGE_CACHE_MASK;
  26. l = min(len, (int)PAGE_CACHE_SIZE - off);
  27. memcpy(buf, kmap(*pagep) + off, l);
  28. kunmap(*pagep);
  29. while ((len -= l) != 0) {
  30. buf += l;
  31. l = min(len, (int)PAGE_CACHE_SIZE);
  32. memcpy(buf, kmap(*++pagep), l);
  33. kunmap(*pagep);
  34. }
  35. }
  36. u16 hfs_bnode_read_u16(struct hfs_bnode *node, int off)
  37. {
  38. __be16 data;
  39. // optimize later...
  40. hfs_bnode_read(node, &data, off, 2);
  41. return be16_to_cpu(data);
  42. }
  43. u8 hfs_bnode_read_u8(struct hfs_bnode *node, int off)
  44. {
  45. u8 data;
  46. // optimize later...
  47. hfs_bnode_read(node, &data, off, 1);
  48. return data;
  49. }
  50. void hfs_bnode_read_key(struct hfs_bnode *node, void *key, int off)
  51. {
  52. struct hfs_btree *tree;
  53. int key_len;
  54. tree = node->tree;
  55. if (node->type == HFS_NODE_LEAF ||
  56. tree->attributes & HFS_TREE_VARIDXKEYS)
  57. key_len = hfs_bnode_read_u16(node, off) + 2;
  58. else
  59. key_len = tree->max_key_len + 2;
  60. hfs_bnode_read(node, key, off, key_len);
  61. }
  62. void hfs_bnode_write(struct hfs_bnode *node, void *buf, int off, int len)
  63. {
  64. struct page **pagep;
  65. int l;
  66. off += node->page_offset;
  67. pagep = node->page + (off >> PAGE_CACHE_SHIFT);
  68. off &= ~PAGE_CACHE_MASK;
  69. l = min(len, (int)PAGE_CACHE_SIZE - off);
  70. memcpy(kmap(*pagep) + off, buf, l);
  71. set_page_dirty(*pagep);
  72. kunmap(*pagep);
  73. while ((len -= l) != 0) {
  74. buf += l;
  75. l = min(len, (int)PAGE_CACHE_SIZE);
  76. memcpy(kmap(*++pagep), buf, l);
  77. set_page_dirty(*pagep);
  78. kunmap(*pagep);
  79. }
  80. }
  81. void hfs_bnode_write_u16(struct hfs_bnode *node, int off, u16 data)
  82. {
  83. __be16 v = cpu_to_be16(data);
  84. // optimize later...
  85. hfs_bnode_write(node, &v, off, 2);
  86. }
  87. void hfs_bnode_clear(struct hfs_bnode *node, int off, int len)
  88. {
  89. struct page **pagep;
  90. int l;
  91. off += node->page_offset;
  92. pagep = node->page + (off >> PAGE_CACHE_SHIFT);
  93. off &= ~PAGE_CACHE_MASK;
  94. l = min(len, (int)PAGE_CACHE_SIZE - off);
  95. memset(kmap(*pagep) + off, 0, l);
  96. set_page_dirty(*pagep);
  97. kunmap(*pagep);
  98. while ((len -= l) != 0) {
  99. l = min(len, (int)PAGE_CACHE_SIZE);
  100. memset(kmap(*++pagep), 0, l);
  101. set_page_dirty(*pagep);
  102. kunmap(*pagep);
  103. }
  104. }
  105. void hfs_bnode_copy(struct hfs_bnode *dst_node, int dst,
  106. struct hfs_bnode *src_node, int src, int len)
  107. {
  108. struct hfs_btree *tree;
  109. struct page **src_page, **dst_page;
  110. int l;
  111. dprint(DBG_BNODE_MOD, "copybytes: %u,%u,%u\n", dst, src, len);
  112. if (!len)
  113. return;
  114. tree = src_node->tree;
  115. src += src_node->page_offset;
  116. dst += dst_node->page_offset;
  117. src_page = src_node->page + (src >> PAGE_CACHE_SHIFT);
  118. src &= ~PAGE_CACHE_MASK;
  119. dst_page = dst_node->page + (dst >> PAGE_CACHE_SHIFT);
  120. dst &= ~PAGE_CACHE_MASK;
  121. if (src == dst) {
  122. l = min(len, (int)PAGE_CACHE_SIZE - src);
  123. memcpy(kmap(*dst_page) + src, kmap(*src_page) + src, l);
  124. kunmap(*src_page);
  125. set_page_dirty(*dst_page);
  126. kunmap(*dst_page);
  127. while ((len -= l) != 0) {
  128. l = min(len, (int)PAGE_CACHE_SIZE);
  129. memcpy(kmap(*++dst_page), kmap(*++src_page), l);
  130. kunmap(*src_page);
  131. set_page_dirty(*dst_page);
  132. kunmap(*dst_page);
  133. }
  134. } else {
  135. void *src_ptr, *dst_ptr;
  136. do {
  137. src_ptr = kmap(*src_page) + src;
  138. dst_ptr = kmap(*dst_page) + dst;
  139. if (PAGE_CACHE_SIZE - src < PAGE_CACHE_SIZE - dst) {
  140. l = PAGE_CACHE_SIZE - src;
  141. src = 0;
  142. dst += l;
  143. } else {
  144. l = PAGE_CACHE_SIZE - dst;
  145. src += l;
  146. dst = 0;
  147. }
  148. l = min(len, l);
  149. memcpy(dst_ptr, src_ptr, l);
  150. kunmap(*src_page);
  151. set_page_dirty(*dst_page);
  152. kunmap(*dst_page);
  153. if (!dst)
  154. dst_page++;
  155. else
  156. src_page++;
  157. } while ((len -= l));
  158. }
  159. }
  160. void hfs_bnode_move(struct hfs_bnode *node, int dst, int src, int len)
  161. {
  162. struct page **src_page, **dst_page;
  163. int l;
  164. dprint(DBG_BNODE_MOD, "movebytes: %u,%u,%u\n", dst, src, len);
  165. if (!len)
  166. return;
  167. src += node->page_offset;
  168. dst += node->page_offset;
  169. if (dst > src) {
  170. src += len - 1;
  171. src_page = node->page + (src >> PAGE_CACHE_SHIFT);
  172. src = (src & ~PAGE_CACHE_MASK) + 1;
  173. dst += len - 1;
  174. dst_page = node->page + (dst >> PAGE_CACHE_SHIFT);
  175. dst = (dst & ~PAGE_CACHE_MASK) + 1;
  176. if (src == dst) {
  177. while (src < len) {
  178. memmove(kmap(*dst_page), kmap(*src_page), src);
  179. kunmap(*src_page);
  180. set_page_dirty(*dst_page);
  181. kunmap(*dst_page);
  182. len -= src;
  183. src = PAGE_CACHE_SIZE;
  184. src_page--;
  185. dst_page--;
  186. }
  187. src -= len;
  188. memmove(kmap(*dst_page) + src, kmap(*src_page) + src, len);
  189. kunmap(*src_page);
  190. set_page_dirty(*dst_page);
  191. kunmap(*dst_page);
  192. } else {
  193. void *src_ptr, *dst_ptr;
  194. do {
  195. src_ptr = kmap(*src_page) + src;
  196. dst_ptr = kmap(*dst_page) + dst;
  197. if (src < dst) {
  198. l = src;
  199. src = PAGE_CACHE_SIZE;
  200. dst -= l;
  201. } else {
  202. l = dst;
  203. src -= l;
  204. dst = PAGE_CACHE_SIZE;
  205. }
  206. l = min(len, l);
  207. memmove(dst_ptr - l, src_ptr - l, l);
  208. kunmap(*src_page);
  209. set_page_dirty(*dst_page);
  210. kunmap(*dst_page);
  211. if (dst == PAGE_CACHE_SIZE)
  212. dst_page--;
  213. else
  214. src_page--;
  215. } while ((len -= l));
  216. }
  217. } else {
  218. src_page = node->page + (src >> PAGE_CACHE_SHIFT);
  219. src &= ~PAGE_CACHE_MASK;
  220. dst_page = node->page + (dst >> PAGE_CACHE_SHIFT);
  221. dst &= ~PAGE_CACHE_MASK;
  222. if (src == dst) {
  223. l = min(len, (int)PAGE_CACHE_SIZE - src);
  224. memmove(kmap(*dst_page) + src, kmap(*src_page) + src, l);
  225. kunmap(*src_page);
  226. set_page_dirty(*dst_page);
  227. kunmap(*dst_page);
  228. while ((len -= l) != 0) {
  229. l = min(len, (int)PAGE_CACHE_SIZE);
  230. memmove(kmap(*++dst_page), kmap(*++src_page), l);
  231. kunmap(*src_page);
  232. set_page_dirty(*dst_page);
  233. kunmap(*dst_page);
  234. }
  235. } else {
  236. void *src_ptr, *dst_ptr;
  237. do {
  238. src_ptr = kmap(*src_page) + src;
  239. dst_ptr = kmap(*dst_page) + dst;
  240. if (PAGE_CACHE_SIZE - src < PAGE_CACHE_SIZE - dst) {
  241. l = PAGE_CACHE_SIZE - src;
  242. src = 0;
  243. dst += l;
  244. } else {
  245. l = PAGE_CACHE_SIZE - dst;
  246. src += l;
  247. dst = 0;
  248. }
  249. l = min(len, l);
  250. memmove(dst_ptr, src_ptr, l);
  251. kunmap(*src_page);
  252. set_page_dirty(*dst_page);
  253. kunmap(*dst_page);
  254. if (!dst)
  255. dst_page++;
  256. else
  257. src_page++;
  258. } while ((len -= l));
  259. }
  260. }
  261. }
  262. void hfs_bnode_dump(struct hfs_bnode *node)
  263. {
  264. struct hfs_bnode_desc desc;
  265. __be32 cnid;
  266. int i, off, key_off;
  267. dprint(DBG_BNODE_MOD, "bnode: %d\n", node->this);
  268. hfs_bnode_read(node, &desc, 0, sizeof(desc));
  269. dprint(DBG_BNODE_MOD, "%d, %d, %d, %d, %d\n",
  270. be32_to_cpu(desc.next), be32_to_cpu(desc.prev),
  271. desc.type, desc.height, be16_to_cpu(desc.num_recs));
  272. off = node->tree->node_size - 2;
  273. for (i = be16_to_cpu(desc.num_recs); i >= 0; off -= 2, i--) {
  274. key_off = hfs_bnode_read_u16(node, off);
  275. dprint(DBG_BNODE_MOD, " %d", key_off);
  276. if (i && node->type == HFS_NODE_INDEX) {
  277. int tmp;
  278. if (node->tree->attributes & HFS_TREE_VARIDXKEYS)
  279. tmp = hfs_bnode_read_u16(node, key_off) + 2;
  280. else
  281. tmp = node->tree->max_key_len + 2;
  282. dprint(DBG_BNODE_MOD, " (%d", tmp);
  283. hfs_bnode_read(node, &cnid, key_off + tmp, 4);
  284. dprint(DBG_BNODE_MOD, ",%d)", be32_to_cpu(cnid));
  285. } else if (i && node->type == HFS_NODE_LEAF) {
  286. int tmp;
  287. tmp = hfs_bnode_read_u16(node, key_off);
  288. dprint(DBG_BNODE_MOD, " (%d)", tmp);
  289. }
  290. }
  291. dprint(DBG_BNODE_MOD, "\n");
  292. }
  293. void hfs_bnode_unlink(struct hfs_bnode *node)
  294. {
  295. struct hfs_btree *tree;
  296. struct hfs_bnode *tmp;
  297. __be32 cnid;
  298. tree = node->tree;
  299. if (node->prev) {
  300. tmp = hfs_bnode_find(tree, node->prev);
  301. if (IS_ERR(tmp))
  302. return;
  303. tmp->next = node->next;
  304. cnid = cpu_to_be32(tmp->next);
  305. hfs_bnode_write(tmp, &cnid, offsetof(struct hfs_bnode_desc, next), 4);
  306. hfs_bnode_put(tmp);
  307. } else if (node->type == HFS_NODE_LEAF)
  308. tree->leaf_head = node->next;
  309. if (node->next) {
  310. tmp = hfs_bnode_find(tree, node->next);
  311. if (IS_ERR(tmp))
  312. return;
  313. tmp->prev = node->prev;
  314. cnid = cpu_to_be32(tmp->prev);
  315. hfs_bnode_write(tmp, &cnid, offsetof(struct hfs_bnode_desc, prev), 4);
  316. hfs_bnode_put(tmp);
  317. } else if (node->type == HFS_NODE_LEAF)
  318. tree->leaf_tail = node->prev;
  319. // move down?
  320. if (!node->prev && !node->next) {
  321. printk("hfs_btree_del_level\n");
  322. }
  323. if (!node->parent) {
  324. tree->root = 0;
  325. tree->depth = 0;
  326. }
  327. set_bit(HFS_BNODE_DELETED, &node->flags);
  328. }
  329. static inline int hfs_bnode_hash(u32 num)
  330. {
  331. num = (num >> 16) + num;
  332. num += num >> 8;
  333. return num & (NODE_HASH_SIZE - 1);
  334. }
  335. struct hfs_bnode *hfs_bnode_findhash(struct hfs_btree *tree, u32 cnid)
  336. {
  337. struct hfs_bnode *node;
  338. if (cnid >= tree->node_count) {
  339. printk("HFS+-fs: request for non-existent node %d in B*Tree\n", cnid);
  340. return NULL;
  341. }
  342. for (node = tree->node_hash[hfs_bnode_hash(cnid)];
  343. node; node = node->next_hash) {
  344. if (node->this == cnid) {
  345. return node;
  346. }
  347. }
  348. return NULL;
  349. }
  350. static struct hfs_bnode *__hfs_bnode_create(struct hfs_btree *tree, u32 cnid)
  351. {
  352. struct super_block *sb;
  353. struct hfs_bnode *node, *node2;
  354. struct address_space *mapping;
  355. struct page *page;
  356. int size, block, i, hash;
  357. loff_t off;
  358. if (cnid >= tree->node_count) {
  359. printk("HFS+-fs: request for non-existent node %d in B*Tree\n", cnid);
  360. return NULL;
  361. }
  362. sb = tree->inode->i_sb;
  363. size = sizeof(struct hfs_bnode) + tree->pages_per_bnode *
  364. sizeof(struct page *);
  365. node = kmalloc(size, GFP_KERNEL);
  366. if (!node)
  367. return NULL;
  368. memset(node, 0, size);
  369. node->tree = tree;
  370. node->this = cnid;
  371. set_bit(HFS_BNODE_NEW, &node->flags);
  372. atomic_set(&node->refcnt, 1);
  373. dprint(DBG_BNODE_REFS, "new_node(%d:%d): 1\n",
  374. node->tree->cnid, node->this);
  375. init_waitqueue_head(&node->lock_wq);
  376. spin_lock(&tree->hash_lock);
  377. node2 = hfs_bnode_findhash(tree, cnid);
  378. if (!node2) {
  379. hash = hfs_bnode_hash(cnid);
  380. node->next_hash = tree->node_hash[hash];
  381. tree->node_hash[hash] = node;
  382. tree->node_hash_cnt++;
  383. } else {
  384. spin_unlock(&tree->hash_lock);
  385. kfree(node);
  386. wait_event(node2->lock_wq, !test_bit(HFS_BNODE_NEW, &node2->flags));
  387. return node2;
  388. }
  389. spin_unlock(&tree->hash_lock);
  390. mapping = tree->inode->i_mapping;
  391. off = (loff_t)cnid << tree->node_size_shift;
  392. block = off >> PAGE_CACHE_SHIFT;
  393. node->page_offset = off & ~PAGE_CACHE_MASK;
  394. for (i = 0; i < tree->pages_per_bnode; block++, i++) {
  395. page = read_cache_page(mapping, block, (filler_t *)mapping->a_ops->readpage, NULL);
  396. if (IS_ERR(page))
  397. goto fail;
  398. if (PageError(page)) {
  399. page_cache_release(page);
  400. goto fail;
  401. }
  402. page_cache_release(page);
  403. node->page[i] = page;
  404. }
  405. return node;
  406. fail:
  407. set_bit(HFS_BNODE_ERROR, &node->flags);
  408. return node;
  409. }
  410. void hfs_bnode_unhash(struct hfs_bnode *node)
  411. {
  412. struct hfs_bnode **p;
  413. dprint(DBG_BNODE_REFS, "remove_node(%d:%d): %d\n",
  414. node->tree->cnid, node->this, atomic_read(&node->refcnt));
  415. for (p = &node->tree->node_hash[hfs_bnode_hash(node->this)];
  416. *p && *p != node; p = &(*p)->next_hash)
  417. ;
  418. if (!*p)
  419. BUG();
  420. *p = node->next_hash;
  421. node->tree->node_hash_cnt--;
  422. }
  423. /* Load a particular node out of a tree */
  424. struct hfs_bnode *hfs_bnode_find(struct hfs_btree *tree, u32 num)
  425. {
  426. struct hfs_bnode *node;
  427. struct hfs_bnode_desc *desc;
  428. int i, rec_off, off, next_off;
  429. int entry_size, key_size;
  430. spin_lock(&tree->hash_lock);
  431. node = hfs_bnode_findhash(tree, num);
  432. if (node) {
  433. hfs_bnode_get(node);
  434. spin_unlock(&tree->hash_lock);
  435. wait_event(node->lock_wq, !test_bit(HFS_BNODE_NEW, &node->flags));
  436. if (test_bit(HFS_BNODE_ERROR, &node->flags))
  437. goto node_error;
  438. return node;
  439. }
  440. spin_unlock(&tree->hash_lock);
  441. node = __hfs_bnode_create(tree, num);
  442. if (!node)
  443. return ERR_PTR(-ENOMEM);
  444. if (test_bit(HFS_BNODE_ERROR, &node->flags))
  445. goto node_error;
  446. if (!test_bit(HFS_BNODE_NEW, &node->flags))
  447. return node;
  448. desc = (struct hfs_bnode_desc *)(kmap(node->page[0]) + node->page_offset);
  449. node->prev = be32_to_cpu(desc->prev);
  450. node->next = be32_to_cpu(desc->next);
  451. node->num_recs = be16_to_cpu(desc->num_recs);
  452. node->type = desc->type;
  453. node->height = desc->height;
  454. kunmap(node->page[0]);
  455. switch (node->type) {
  456. case HFS_NODE_HEADER:
  457. case HFS_NODE_MAP:
  458. if (node->height != 0)
  459. goto node_error;
  460. break;
  461. case HFS_NODE_LEAF:
  462. if (node->height != 1)
  463. goto node_error;
  464. break;
  465. case HFS_NODE_INDEX:
  466. if (node->height <= 1 || node->height > tree->depth)
  467. goto node_error;
  468. break;
  469. default:
  470. goto node_error;
  471. }
  472. rec_off = tree->node_size - 2;
  473. off = hfs_bnode_read_u16(node, rec_off);
  474. if (off != sizeof(struct hfs_bnode_desc))
  475. goto node_error;
  476. for (i = 1; i <= node->num_recs; off = next_off, i++) {
  477. rec_off -= 2;
  478. next_off = hfs_bnode_read_u16(node, rec_off);
  479. if (next_off <= off ||
  480. next_off > tree->node_size ||
  481. next_off & 1)
  482. goto node_error;
  483. entry_size = next_off - off;
  484. if (node->type != HFS_NODE_INDEX &&
  485. node->type != HFS_NODE_LEAF)
  486. continue;
  487. key_size = hfs_bnode_read_u16(node, off) + 2;
  488. if (key_size >= entry_size || key_size & 1)
  489. goto node_error;
  490. }
  491. clear_bit(HFS_BNODE_NEW, &node->flags);
  492. wake_up(&node->lock_wq);
  493. return node;
  494. node_error:
  495. set_bit(HFS_BNODE_ERROR, &node->flags);
  496. clear_bit(HFS_BNODE_NEW, &node->flags);
  497. wake_up(&node->lock_wq);
  498. hfs_bnode_put(node);
  499. return ERR_PTR(-EIO);
  500. }
  501. void hfs_bnode_free(struct hfs_bnode *node)
  502. {
  503. //int i;
  504. //for (i = 0; i < node->tree->pages_per_bnode; i++)
  505. // if (node->page[i])
  506. // page_cache_release(node->page[i]);
  507. kfree(node);
  508. }
  509. struct hfs_bnode *hfs_bnode_create(struct hfs_btree *tree, u32 num)
  510. {
  511. struct hfs_bnode *node;
  512. struct page **pagep;
  513. int i;
  514. spin_lock(&tree->hash_lock);
  515. node = hfs_bnode_findhash(tree, num);
  516. spin_unlock(&tree->hash_lock);
  517. if (node) {
  518. printk("new node %u already hashed?\n", num);
  519. BUG();
  520. }
  521. node = __hfs_bnode_create(tree, num);
  522. if (!node)
  523. return ERR_PTR(-ENOMEM);
  524. if (test_bit(HFS_BNODE_ERROR, &node->flags)) {
  525. hfs_bnode_put(node);
  526. return ERR_PTR(-EIO);
  527. }
  528. pagep = node->page;
  529. memset(kmap(*pagep) + node->page_offset, 0,
  530. min((int)PAGE_CACHE_SIZE, (int)tree->node_size));
  531. set_page_dirty(*pagep);
  532. kunmap(*pagep);
  533. for (i = 1; i < tree->pages_per_bnode; i++) {
  534. memset(kmap(*++pagep), 0, PAGE_CACHE_SIZE);
  535. set_page_dirty(*pagep);
  536. kunmap(*pagep);
  537. }
  538. clear_bit(HFS_BNODE_NEW, &node->flags);
  539. wake_up(&node->lock_wq);
  540. return node;
  541. }
  542. void hfs_bnode_get(struct hfs_bnode *node)
  543. {
  544. if (node) {
  545. atomic_inc(&node->refcnt);
  546. dprint(DBG_BNODE_REFS, "get_node(%d:%d): %d\n",
  547. node->tree->cnid, node->this, atomic_read(&node->refcnt));
  548. }
  549. }
  550. /* Dispose of resources used by a node */
  551. void hfs_bnode_put(struct hfs_bnode *node)
  552. {
  553. if (node) {
  554. struct hfs_btree *tree = node->tree;
  555. int i;
  556. dprint(DBG_BNODE_REFS, "put_node(%d:%d): %d\n",
  557. node->tree->cnid, node->this, atomic_read(&node->refcnt));
  558. if (!atomic_read(&node->refcnt))
  559. BUG();
  560. if (!atomic_dec_and_lock(&node->refcnt, &tree->hash_lock))
  561. return;
  562. for (i = 0; i < tree->pages_per_bnode; i++) {
  563. if (!node->page[i])
  564. continue;
  565. mark_page_accessed(node->page[i]);
  566. }
  567. if (test_bit(HFS_BNODE_DELETED, &node->flags)) {
  568. hfs_bnode_unhash(node);
  569. spin_unlock(&tree->hash_lock);
  570. hfs_bmap_free(node);
  571. hfs_bnode_free(node);
  572. return;
  573. }
  574. spin_unlock(&tree->hash_lock);
  575. }
  576. }