dscore.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796
  1. /*
  2. * dscore.c
  3. *
  4. * Copyright (c) 2004 Evgeniy Polyakov <johnpol@2ka.mipt.ru>
  5. *
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program; if not, write to the Free Software
  19. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  20. */
  21. #include <linux/module.h>
  22. #include <linux/kernel.h>
  23. #include <linux/mod_devicetable.h>
  24. #include <linux/usb.h>
  25. #include "dscore.h"
  26. static struct usb_device_id ds_id_table [] = {
  27. { USB_DEVICE(0x04fa, 0x2490) },
  28. { },
  29. };
  30. MODULE_DEVICE_TABLE(usb, ds_id_table);
  31. static int ds_probe(struct usb_interface *, const struct usb_device_id *);
  32. static void ds_disconnect(struct usb_interface *);
  33. int ds_touch_bit(struct ds_device *, u8, u8 *);
  34. int ds_read_byte(struct ds_device *, u8 *);
  35. int ds_read_bit(struct ds_device *, u8 *);
  36. int ds_write_byte(struct ds_device *, u8);
  37. int ds_write_bit(struct ds_device *, u8);
  38. static int ds_start_pulse(struct ds_device *, int);
  39. int ds_reset(struct ds_device *, struct ds_status *);
  40. struct ds_device * ds_get_device(void);
  41. void ds_put_device(struct ds_device *);
  42. static inline void ds_dump_status(unsigned char *, unsigned char *, int);
  43. static int ds_send_control(struct ds_device *, u16, u16);
  44. static int ds_send_control_mode(struct ds_device *, u16, u16);
  45. static int ds_send_control_cmd(struct ds_device *, u16, u16);
  46. static struct usb_driver ds_driver = {
  47. .owner = THIS_MODULE,
  48. .name = "DS9490R",
  49. .probe = ds_probe,
  50. .disconnect = ds_disconnect,
  51. .id_table = ds_id_table,
  52. };
  53. static struct ds_device *ds_dev;
  54. struct ds_device * ds_get_device(void)
  55. {
  56. if (ds_dev)
  57. atomic_inc(&ds_dev->refcnt);
  58. return ds_dev;
  59. }
  60. void ds_put_device(struct ds_device *dev)
  61. {
  62. atomic_dec(&dev->refcnt);
  63. }
  64. static int ds_send_control_cmd(struct ds_device *dev, u16 value, u16 index)
  65. {
  66. int err;
  67. err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
  68. CONTROL_CMD, 0x40, value, index, NULL, 0, 1000);
  69. if (err < 0) {
  70. printk(KERN_ERR "Failed to send command control message %x.%x: err=%d.\n",
  71. value, index, err);
  72. return err;
  73. }
  74. return err;
  75. }
  76. static int ds_send_control_mode(struct ds_device *dev, u16 value, u16 index)
  77. {
  78. int err;
  79. err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
  80. MODE_CMD, 0x40, value, index, NULL, 0, 1000);
  81. if (err < 0) {
  82. printk(KERN_ERR "Failed to send mode control message %x.%x: err=%d.\n",
  83. value, index, err);
  84. return err;
  85. }
  86. return err;
  87. }
  88. static int ds_send_control(struct ds_device *dev, u16 value, u16 index)
  89. {
  90. int err;
  91. err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
  92. COMM_CMD, 0x40, value, index, NULL, 0, 1000);
  93. if (err < 0) {
  94. printk(KERN_ERR "Failed to send control message %x.%x: err=%d.\n",
  95. value, index, err);
  96. return err;
  97. }
  98. return err;
  99. }
  100. static inline void ds_dump_status(unsigned char *buf, unsigned char *str, int off)
  101. {
  102. printk("%45s: %8x\n", str, buf[off]);
  103. }
  104. static int ds_recv_status_nodump(struct ds_device *dev, struct ds_status *st,
  105. unsigned char *buf, int size)
  106. {
  107. int count, err;
  108. memset(st, 0, sizeof(st));
  109. count = 0;
  110. err = usb_bulk_msg(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_STATUS]), buf, size, &count, 100);
  111. if (err < 0) {
  112. printk(KERN_ERR "Failed to read 1-wire data from 0x%x: err=%d.\n", dev->ep[EP_STATUS], err);
  113. return err;
  114. }
  115. if (count >= sizeof(*st))
  116. memcpy(st, buf, sizeof(*st));
  117. return count;
  118. }
  119. static int ds_recv_status(struct ds_device *dev, struct ds_status *st)
  120. {
  121. unsigned char buf[64];
  122. int count, err = 0, i;
  123. memcpy(st, buf, sizeof(*st));
  124. count = ds_recv_status_nodump(dev, st, buf, sizeof(buf));
  125. if (count < 0)
  126. return err;
  127. printk("0x%x: count=%d, status: ", dev->ep[EP_STATUS], count);
  128. for (i=0; i<count; ++i)
  129. printk("%02x ", buf[i]);
  130. printk("\n");
  131. if (count >= 16) {
  132. ds_dump_status(buf, "enable flag", 0);
  133. ds_dump_status(buf, "1-wire speed", 1);
  134. ds_dump_status(buf, "strong pullup duration", 2);
  135. ds_dump_status(buf, "programming pulse duration", 3);
  136. ds_dump_status(buf, "pulldown slew rate control", 4);
  137. ds_dump_status(buf, "write-1 low time", 5);
  138. ds_dump_status(buf, "data sample offset/write-0 recovery time", 6);
  139. ds_dump_status(buf, "reserved (test register)", 7);
  140. ds_dump_status(buf, "device status flags", 8);
  141. ds_dump_status(buf, "communication command byte 1", 9);
  142. ds_dump_status(buf, "communication command byte 2", 10);
  143. ds_dump_status(buf, "communication command buffer status", 11);
  144. ds_dump_status(buf, "1-wire data output buffer status", 12);
  145. ds_dump_status(buf, "1-wire data input buffer status", 13);
  146. ds_dump_status(buf, "reserved", 14);
  147. ds_dump_status(buf, "reserved", 15);
  148. }
  149. memcpy(st, buf, sizeof(*st));
  150. if (st->status & ST_EPOF) {
  151. printk(KERN_INFO "Resetting device after ST_EPOF.\n");
  152. err = ds_send_control_cmd(dev, CTL_RESET_DEVICE, 0);
  153. if (err)
  154. return err;
  155. count = ds_recv_status_nodump(dev, st, buf, sizeof(buf));
  156. if (count < 0)
  157. return err;
  158. }
  159. #if 0
  160. if (st->status & ST_IDLE) {
  161. printk(KERN_INFO "Resetting pulse after ST_IDLE.\n");
  162. err = ds_start_pulse(dev, PULLUP_PULSE_DURATION);
  163. if (err)
  164. return err;
  165. }
  166. #endif
  167. return err;
  168. }
  169. static int ds_recv_data(struct ds_device *dev, unsigned char *buf, int size)
  170. {
  171. int count, err;
  172. struct ds_status st;
  173. count = 0;
  174. err = usb_bulk_msg(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_DATA_IN]),
  175. buf, size, &count, 1000);
  176. if (err < 0) {
  177. printk(KERN_INFO "Clearing ep0x%x.\n", dev->ep[EP_DATA_IN]);
  178. usb_clear_halt(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_DATA_IN]));
  179. ds_recv_status(dev, &st);
  180. return err;
  181. }
  182. #if 0
  183. {
  184. int i;
  185. printk("%s: count=%d: ", __func__, count);
  186. for (i=0; i<count; ++i)
  187. printk("%02x ", buf[i]);
  188. printk("\n");
  189. }
  190. #endif
  191. return count;
  192. }
  193. static int ds_send_data(struct ds_device *dev, unsigned char *buf, int len)
  194. {
  195. int count, err;
  196. count = 0;
  197. err = usb_bulk_msg(dev->udev, usb_sndbulkpipe(dev->udev, dev->ep[EP_DATA_OUT]), buf, len, &count, 1000);
  198. if (err < 0) {
  199. printk(KERN_ERR "Failed to read 1-wire data from 0x02: err=%d.\n", err);
  200. return err;
  201. }
  202. return err;
  203. }
  204. #if 0
  205. int ds_stop_pulse(struct ds_device *dev, int limit)
  206. {
  207. struct ds_status st;
  208. int count = 0, err = 0;
  209. u8 buf[0x20];
  210. do {
  211. err = ds_send_control(dev, CTL_HALT_EXE_IDLE, 0);
  212. if (err)
  213. break;
  214. err = ds_send_control(dev, CTL_RESUME_EXE, 0);
  215. if (err)
  216. break;
  217. err = ds_recv_status_nodump(dev, &st, buf, sizeof(buf));
  218. if (err)
  219. break;
  220. if ((st.status & ST_SPUA) == 0) {
  221. err = ds_send_control_mode(dev, MOD_PULSE_EN, 0);
  222. if (err)
  223. break;
  224. }
  225. } while(++count < limit);
  226. return err;
  227. }
  228. int ds_detect(struct ds_device *dev, struct ds_status *st)
  229. {
  230. int err;
  231. err = ds_send_control_cmd(dev, CTL_RESET_DEVICE, 0);
  232. if (err)
  233. return err;
  234. err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM, 0);
  235. if (err)
  236. return err;
  237. err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM | COMM_TYPE, 0x40);
  238. if (err)
  239. return err;
  240. err = ds_send_control_mode(dev, MOD_PULSE_EN, PULSE_PROG);
  241. if (err)
  242. return err;
  243. err = ds_recv_status(dev, st);
  244. return err;
  245. }
  246. #endif /* 0 */
  247. static int ds_wait_status(struct ds_device *dev, struct ds_status *st)
  248. {
  249. u8 buf[0x20];
  250. int err, count = 0;
  251. do {
  252. err = ds_recv_status_nodump(dev, st, buf, sizeof(buf));
  253. #if 0
  254. if (err >= 0) {
  255. int i;
  256. printk("0x%x: count=%d, status: ", dev->ep[EP_STATUS], err);
  257. for (i=0; i<err; ++i)
  258. printk("%02x ", buf[i]);
  259. printk("\n");
  260. }
  261. #endif
  262. } while(!(buf[0x08] & 0x20) && !(err < 0) && ++count < 100);
  263. if (((err > 16) && (buf[0x10] & 0x01)) || count >= 100 || err < 0) {
  264. ds_recv_status(dev, st);
  265. return -1;
  266. } else
  267. return 0;
  268. }
  269. int ds_reset(struct ds_device *dev, struct ds_status *st)
  270. {
  271. int err;
  272. //err = ds_send_control(dev, COMM_1_WIRE_RESET | COMM_F | COMM_IM | COMM_SE, SPEED_FLEXIBLE);
  273. err = ds_send_control(dev, 0x43, SPEED_NORMAL);
  274. if (err)
  275. return err;
  276. ds_wait_status(dev, st);
  277. #if 0
  278. if (st->command_buffer_status) {
  279. printk(KERN_INFO "Short circuit.\n");
  280. return -EIO;
  281. }
  282. #endif
  283. return 0;
  284. }
  285. #if 0
  286. int ds_set_speed(struct ds_device *dev, int speed)
  287. {
  288. int err;
  289. if (speed != SPEED_NORMAL && speed != SPEED_FLEXIBLE && speed != SPEED_OVERDRIVE)
  290. return -EINVAL;
  291. if (speed != SPEED_OVERDRIVE)
  292. speed = SPEED_FLEXIBLE;
  293. speed &= 0xff;
  294. err = ds_send_control_mode(dev, MOD_1WIRE_SPEED, speed);
  295. if (err)
  296. return err;
  297. return err;
  298. }
  299. #endif /* 0 */
  300. static int ds_start_pulse(struct ds_device *dev, int delay)
  301. {
  302. int err;
  303. u8 del = 1 + (u8)(delay >> 4);
  304. struct ds_status st;
  305. #if 0
  306. err = ds_stop_pulse(dev, 10);
  307. if (err)
  308. return err;
  309. err = ds_send_control_mode(dev, MOD_PULSE_EN, PULSE_SPUE);
  310. if (err)
  311. return err;
  312. #endif
  313. err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM, del);
  314. if (err)
  315. return err;
  316. err = ds_send_control(dev, COMM_PULSE | COMM_IM | COMM_F, 0);
  317. if (err)
  318. return err;
  319. mdelay(delay);
  320. ds_wait_status(dev, &st);
  321. return err;
  322. }
  323. int ds_touch_bit(struct ds_device *dev, u8 bit, u8 *tbit)
  324. {
  325. int err, count;
  326. struct ds_status st;
  327. u16 value = (COMM_BIT_IO | COMM_IM) | ((bit) ? COMM_D : 0);
  328. u16 cmd;
  329. err = ds_send_control(dev, value, 0);
  330. if (err)
  331. return err;
  332. count = 0;
  333. do {
  334. err = ds_wait_status(dev, &st);
  335. if (err)
  336. return err;
  337. cmd = st.command0 | (st.command1 << 8);
  338. } while (cmd != value && ++count < 10);
  339. if (err < 0 || count >= 10) {
  340. printk(KERN_ERR "Failed to obtain status.\n");
  341. return -EINVAL;
  342. }
  343. err = ds_recv_data(dev, tbit, sizeof(*tbit));
  344. if (err < 0)
  345. return err;
  346. return 0;
  347. }
  348. int ds_write_bit(struct ds_device *dev, u8 bit)
  349. {
  350. int err;
  351. struct ds_status st;
  352. err = ds_send_control(dev, COMM_BIT_IO | COMM_IM | (bit) ? COMM_D : 0, 0);
  353. if (err)
  354. return err;
  355. ds_wait_status(dev, &st);
  356. return 0;
  357. }
  358. int ds_write_byte(struct ds_device *dev, u8 byte)
  359. {
  360. int err;
  361. struct ds_status st;
  362. u8 rbyte;
  363. err = ds_send_control(dev, COMM_BYTE_IO | COMM_IM | COMM_SPU, byte);
  364. if (err)
  365. return err;
  366. err = ds_wait_status(dev, &st);
  367. if (err)
  368. return err;
  369. err = ds_recv_data(dev, &rbyte, sizeof(rbyte));
  370. if (err < 0)
  371. return err;
  372. ds_start_pulse(dev, PULLUP_PULSE_DURATION);
  373. return !(byte == rbyte);
  374. }
  375. int ds_read_bit(struct ds_device *dev, u8 *bit)
  376. {
  377. int err;
  378. err = ds_send_control_mode(dev, MOD_PULSE_EN, PULSE_SPUE);
  379. if (err)
  380. return err;
  381. err = ds_send_control(dev, COMM_BIT_IO | COMM_IM | COMM_SPU | COMM_D, 0);
  382. if (err)
  383. return err;
  384. err = ds_recv_data(dev, bit, sizeof(*bit));
  385. if (err < 0)
  386. return err;
  387. return 0;
  388. }
  389. int ds_read_byte(struct ds_device *dev, u8 *byte)
  390. {
  391. int err;
  392. struct ds_status st;
  393. err = ds_send_control(dev, COMM_BYTE_IO | COMM_IM , 0xff);
  394. if (err)
  395. return err;
  396. ds_wait_status(dev, &st);
  397. err = ds_recv_data(dev, byte, sizeof(*byte));
  398. if (err < 0)
  399. return err;
  400. return 0;
  401. }
  402. int ds_read_block(struct ds_device *dev, u8 *buf, int len)
  403. {
  404. struct ds_status st;
  405. int err;
  406. if (len > 64*1024)
  407. return -E2BIG;
  408. memset(buf, 0xFF, len);
  409. err = ds_send_data(dev, buf, len);
  410. if (err < 0)
  411. return err;
  412. err = ds_send_control(dev, COMM_BLOCK_IO | COMM_IM | COMM_SPU, len);
  413. if (err)
  414. return err;
  415. ds_wait_status(dev, &st);
  416. memset(buf, 0x00, len);
  417. err = ds_recv_data(dev, buf, len);
  418. return err;
  419. }
  420. int ds_write_block(struct ds_device *dev, u8 *buf, int len)
  421. {
  422. int err;
  423. struct ds_status st;
  424. err = ds_send_data(dev, buf, len);
  425. if (err < 0)
  426. return err;
  427. ds_wait_status(dev, &st);
  428. err = ds_send_control(dev, COMM_BLOCK_IO | COMM_IM | COMM_SPU, len);
  429. if (err)
  430. return err;
  431. ds_wait_status(dev, &st);
  432. err = ds_recv_data(dev, buf, len);
  433. if (err < 0)
  434. return err;
  435. ds_start_pulse(dev, PULLUP_PULSE_DURATION);
  436. return !(err == len);
  437. }
  438. #if 0
  439. int ds_search(struct ds_device *dev, u64 init, u64 *buf, u8 id_number, int conditional_search)
  440. {
  441. int err;
  442. u16 value, index;
  443. struct ds_status st;
  444. memset(buf, 0, sizeof(buf));
  445. err = ds_send_data(ds_dev, (unsigned char *)&init, 8);
  446. if (err)
  447. return err;
  448. ds_wait_status(ds_dev, &st);
  449. value = COMM_SEARCH_ACCESS | COMM_IM | COMM_SM | COMM_F | COMM_RTS;
  450. index = (conditional_search ? 0xEC : 0xF0) | (id_number << 8);
  451. err = ds_send_control(ds_dev, value, index);
  452. if (err)
  453. return err;
  454. ds_wait_status(ds_dev, &st);
  455. err = ds_recv_data(ds_dev, (unsigned char *)buf, 8*id_number);
  456. if (err < 0)
  457. return err;
  458. return err/8;
  459. }
  460. int ds_match_access(struct ds_device *dev, u64 init)
  461. {
  462. int err;
  463. struct ds_status st;
  464. err = ds_send_data(dev, (unsigned char *)&init, sizeof(init));
  465. if (err)
  466. return err;
  467. ds_wait_status(dev, &st);
  468. err = ds_send_control(dev, COMM_MATCH_ACCESS | COMM_IM | COMM_RST, 0x0055);
  469. if (err)
  470. return err;
  471. ds_wait_status(dev, &st);
  472. return 0;
  473. }
  474. int ds_set_path(struct ds_device *dev, u64 init)
  475. {
  476. int err;
  477. struct ds_status st;
  478. u8 buf[9];
  479. memcpy(buf, &init, 8);
  480. buf[8] = BRANCH_MAIN;
  481. err = ds_send_data(dev, buf, sizeof(buf));
  482. if (err)
  483. return err;
  484. ds_wait_status(dev, &st);
  485. err = ds_send_control(dev, COMM_SET_PATH | COMM_IM | COMM_RST, 0);
  486. if (err)
  487. return err;
  488. ds_wait_status(dev, &st);
  489. return 0;
  490. }
  491. #endif /* 0 */
  492. static int ds_probe(struct usb_interface *intf,
  493. const struct usb_device_id *udev_id)
  494. {
  495. struct usb_device *udev = interface_to_usbdev(intf);
  496. struct usb_endpoint_descriptor *endpoint;
  497. struct usb_host_interface *iface_desc;
  498. int i, err;
  499. ds_dev = kmalloc(sizeof(struct ds_device), GFP_KERNEL);
  500. if (!ds_dev) {
  501. printk(KERN_INFO "Failed to allocate new DS9490R structure.\n");
  502. return -ENOMEM;
  503. }
  504. ds_dev->udev = usb_get_dev(udev);
  505. usb_set_intfdata(intf, ds_dev);
  506. err = usb_set_interface(ds_dev->udev, intf->altsetting[0].desc.bInterfaceNumber, 3);
  507. if (err) {
  508. printk(KERN_ERR "Failed to set alternative setting 3 for %d interface: err=%d.\n",
  509. intf->altsetting[0].desc.bInterfaceNumber, err);
  510. return err;
  511. }
  512. err = usb_reset_configuration(ds_dev->udev);
  513. if (err) {
  514. printk(KERN_ERR "Failed to reset configuration: err=%d.\n", err);
  515. return err;
  516. }
  517. iface_desc = &intf->altsetting[0];
  518. if (iface_desc->desc.bNumEndpoints != NUM_EP-1) {
  519. printk(KERN_INFO "Num endpoints=%d. It is not DS9490R.\n", iface_desc->desc.bNumEndpoints);
  520. return -ENODEV;
  521. }
  522. atomic_set(&ds_dev->refcnt, 0);
  523. memset(ds_dev->ep, 0, sizeof(ds_dev->ep));
  524. /*
  525. * This loop doesn'd show control 0 endpoint,
  526. * so we will fill only 1-3 endpoints entry.
  527. */
  528. for (i = 0; i < iface_desc->desc.bNumEndpoints; ++i) {
  529. endpoint = &iface_desc->endpoint[i].desc;
  530. ds_dev->ep[i+1] = endpoint->bEndpointAddress;
  531. printk("%d: addr=%x, size=%d, dir=%s, type=%x\n",
  532. i, endpoint->bEndpointAddress, le16_to_cpu(endpoint->wMaxPacketSize),
  533. (endpoint->bEndpointAddress & USB_DIR_IN)?"IN":"OUT",
  534. endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK);
  535. }
  536. #if 0
  537. {
  538. int err, i;
  539. u64 buf[3];
  540. u64 init=0xb30000002078ee81ull;
  541. struct ds_status st;
  542. ds_reset(ds_dev, &st);
  543. err = ds_search(ds_dev, init, buf, 3, 0);
  544. if (err < 0)
  545. return err;
  546. for (i=0; i<err; ++i)
  547. printk("%d: %llx\n", i, buf[i]);
  548. printk("Resetting...\n");
  549. ds_reset(ds_dev, &st);
  550. printk("Setting path for %llx.\n", init);
  551. err = ds_set_path(ds_dev, init);
  552. if (err)
  553. return err;
  554. printk("Calling MATCH_ACCESS.\n");
  555. err = ds_match_access(ds_dev, init);
  556. if (err)
  557. return err;
  558. printk("Searching the bus...\n");
  559. err = ds_search(ds_dev, init, buf, 3, 0);
  560. printk("ds_search() returned %d\n", err);
  561. if (err < 0)
  562. return err;
  563. for (i=0; i<err; ++i)
  564. printk("%d: %llx\n", i, buf[i]);
  565. return 0;
  566. }
  567. #endif
  568. return 0;
  569. }
  570. static void ds_disconnect(struct usb_interface *intf)
  571. {
  572. struct ds_device *dev;
  573. dev = usb_get_intfdata(intf);
  574. usb_set_intfdata(intf, NULL);
  575. while (atomic_read(&dev->refcnt)) {
  576. printk(KERN_INFO "Waiting for DS to become free: refcnt=%d.\n",
  577. atomic_read(&dev->refcnt));
  578. if (msleep_interruptible(1000))
  579. flush_signals(current);
  580. }
  581. usb_put_dev(dev->udev);
  582. kfree(dev);
  583. ds_dev = NULL;
  584. }
  585. static int ds_init(void)
  586. {
  587. int err;
  588. err = usb_register(&ds_driver);
  589. if (err) {
  590. printk(KERN_INFO "Failed to register DS9490R USB device: err=%d.\n", err);
  591. return err;
  592. }
  593. return 0;
  594. }
  595. static void ds_fini(void)
  596. {
  597. usb_deregister(&ds_driver);
  598. }
  599. module_init(ds_init);
  600. module_exit(ds_fini);
  601. MODULE_LICENSE("GPL");
  602. MODULE_AUTHOR("Evgeniy Polyakov <johnpol@2ka.mipt.ru>");
  603. EXPORT_SYMBOL(ds_touch_bit);
  604. EXPORT_SYMBOL(ds_read_byte);
  605. EXPORT_SYMBOL(ds_read_bit);
  606. EXPORT_SYMBOL(ds_read_block);
  607. EXPORT_SYMBOL(ds_write_byte);
  608. EXPORT_SYMBOL(ds_write_bit);
  609. EXPORT_SYMBOL(ds_write_block);
  610. EXPORT_SYMBOL(ds_reset);
  611. EXPORT_SYMBOL(ds_get_device);
  612. EXPORT_SYMBOL(ds_put_device);
  613. /*
  614. * This functions can be used for EEPROM programming,
  615. * when driver will be included into mainline this will
  616. * require uncommenting.
  617. */
  618. #if 0
  619. EXPORT_SYMBOL(ds_start_pulse);
  620. EXPORT_SYMBOL(ds_set_speed);
  621. EXPORT_SYMBOL(ds_detect);
  622. EXPORT_SYMBOL(ds_stop_pulse);
  623. EXPORT_SYMBOL(ds_search);
  624. #endif