urb.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497
  1. #include <linux/config.h>
  2. #include <linux/module.h>
  3. #include <linux/string.h>
  4. #include <linux/bitops.h>
  5. #include <linux/slab.h>
  6. #include <linux/init.h>
  7. #ifdef CONFIG_USB_DEBUG
  8. #define DEBUG
  9. #else
  10. #undef DEBUG
  11. #endif
  12. #include <linux/usb.h>
  13. #include "hcd.h"
  14. #define to_urb(d) container_of(d, struct urb, kref)
  15. static void urb_destroy(struct kref *kref)
  16. {
  17. struct urb *urb = to_urb(kref);
  18. kfree(urb);
  19. }
  20. /**
  21. * usb_init_urb - initializes a urb so that it can be used by a USB driver
  22. * @urb: pointer to the urb to initialize
  23. *
  24. * Initializes a urb so that the USB subsystem can use it properly.
  25. *
  26. * If a urb is created with a call to usb_alloc_urb() it is not
  27. * necessary to call this function. Only use this if you allocate the
  28. * space for a struct urb on your own. If you call this function, be
  29. * careful when freeing the memory for your urb that it is no longer in
  30. * use by the USB core.
  31. *
  32. * Only use this function if you _really_ understand what you are doing.
  33. */
  34. void usb_init_urb(struct urb *urb)
  35. {
  36. if (urb) {
  37. memset(urb, 0, sizeof(*urb));
  38. kref_init(&urb->kref);
  39. spin_lock_init(&urb->lock);
  40. }
  41. }
  42. /**
  43. * usb_alloc_urb - creates a new urb for a USB driver to use
  44. * @iso_packets: number of iso packets for this urb
  45. * @mem_flags: the type of memory to allocate, see kmalloc() for a list of
  46. * valid options for this.
  47. *
  48. * Creates an urb for the USB driver to use, initializes a few internal
  49. * structures, incrementes the usage counter, and returns a pointer to it.
  50. *
  51. * If no memory is available, NULL is returned.
  52. *
  53. * If the driver want to use this urb for interrupt, control, or bulk
  54. * endpoints, pass '0' as the number of iso packets.
  55. *
  56. * The driver must call usb_free_urb() when it is finished with the urb.
  57. */
  58. struct urb *usb_alloc_urb(int iso_packets, unsigned mem_flags)
  59. {
  60. struct urb *urb;
  61. urb = (struct urb *)kmalloc(sizeof(struct urb) +
  62. iso_packets * sizeof(struct usb_iso_packet_descriptor),
  63. mem_flags);
  64. if (!urb) {
  65. err("alloc_urb: kmalloc failed");
  66. return NULL;
  67. }
  68. usb_init_urb(urb);
  69. return urb;
  70. }
  71. /**
  72. * usb_free_urb - frees the memory used by a urb when all users of it are finished
  73. * @urb: pointer to the urb to free, may be NULL
  74. *
  75. * Must be called when a user of a urb is finished with it. When the last user
  76. * of the urb calls this function, the memory of the urb is freed.
  77. *
  78. * Note: The transfer buffer associated with the urb is not freed, that must be
  79. * done elsewhere.
  80. */
  81. void usb_free_urb(struct urb *urb)
  82. {
  83. if (urb)
  84. kref_put(&urb->kref, urb_destroy);
  85. }
  86. /**
  87. * usb_get_urb - increments the reference count of the urb
  88. * @urb: pointer to the urb to modify, may be NULL
  89. *
  90. * This must be called whenever a urb is transferred from a device driver to a
  91. * host controller driver. This allows proper reference counting to happen
  92. * for urbs.
  93. *
  94. * A pointer to the urb with the incremented reference counter is returned.
  95. */
  96. struct urb * usb_get_urb(struct urb *urb)
  97. {
  98. if (urb)
  99. kref_get(&urb->kref);
  100. return urb;
  101. }
  102. /*-------------------------------------------------------------------*/
  103. /**
  104. * usb_submit_urb - issue an asynchronous transfer request for an endpoint
  105. * @urb: pointer to the urb describing the request
  106. * @mem_flags: the type of memory to allocate, see kmalloc() for a list
  107. * of valid options for this.
  108. *
  109. * This submits a transfer request, and transfers control of the URB
  110. * describing that request to the USB subsystem. Request completion will
  111. * be indicated later, asynchronously, by calling the completion handler.
  112. * The three types of completion are success, error, and unlink
  113. * (a software-induced fault, also called "request cancellation").
  114. *
  115. * URBs may be submitted in interrupt context.
  116. *
  117. * The caller must have correctly initialized the URB before submitting
  118. * it. Functions such as usb_fill_bulk_urb() and usb_fill_control_urb() are
  119. * available to ensure that most fields are correctly initialized, for
  120. * the particular kind of transfer, although they will not initialize
  121. * any transfer flags.
  122. *
  123. * Successful submissions return 0; otherwise this routine returns a
  124. * negative error number. If the submission is successful, the complete()
  125. * callback from the URB will be called exactly once, when the USB core and
  126. * Host Controller Driver (HCD) are finished with the URB. When the completion
  127. * function is called, control of the URB is returned to the device
  128. * driver which issued the request. The completion handler may then
  129. * immediately free or reuse that URB.
  130. *
  131. * With few exceptions, USB device drivers should never access URB fields
  132. * provided by usbcore or the HCD until its complete() is called.
  133. * The exceptions relate to periodic transfer scheduling. For both
  134. * interrupt and isochronous urbs, as part of successful URB submission
  135. * urb->interval is modified to reflect the actual transfer period used
  136. * (normally some power of two units). And for isochronous urbs,
  137. * urb->start_frame is modified to reflect when the URB's transfers were
  138. * scheduled to start. Not all isochronous transfer scheduling policies
  139. * will work, but most host controller drivers should easily handle ISO
  140. * queues going from now until 10-200 msec into the future.
  141. *
  142. * For control endpoints, the synchronous usb_control_msg() call is
  143. * often used (in non-interrupt context) instead of this call.
  144. * That is often used through convenience wrappers, for the requests
  145. * that are standardized in the USB 2.0 specification. For bulk
  146. * endpoints, a synchronous usb_bulk_msg() call is available.
  147. *
  148. * Request Queuing:
  149. *
  150. * URBs may be submitted to endpoints before previous ones complete, to
  151. * minimize the impact of interrupt latencies and system overhead on data
  152. * throughput. With that queuing policy, an endpoint's queue would never
  153. * be empty. This is required for continuous isochronous data streams,
  154. * and may also be required for some kinds of interrupt transfers. Such
  155. * queuing also maximizes bandwidth utilization by letting USB controllers
  156. * start work on later requests before driver software has finished the
  157. * completion processing for earlier (successful) requests.
  158. *
  159. * As of Linux 2.6, all USB endpoint transfer queues support depths greater
  160. * than one. This was previously a HCD-specific behavior, except for ISO
  161. * transfers. Non-isochronous endpoint queues are inactive during cleanup
  162. * after faults (transfer errors or cancellation).
  163. *
  164. * Reserved Bandwidth Transfers:
  165. *
  166. * Periodic transfers (interrupt or isochronous) are performed repeatedly,
  167. * using the interval specified in the urb. Submitting the first urb to
  168. * the endpoint reserves the bandwidth necessary to make those transfers.
  169. * If the USB subsystem can't allocate sufficient bandwidth to perform
  170. * the periodic request, submitting such a periodic request should fail.
  171. *
  172. * Device drivers must explicitly request that repetition, by ensuring that
  173. * some URB is always on the endpoint's queue (except possibly for short
  174. * periods during completion callacks). When there is no longer an urb
  175. * queued, the endpoint's bandwidth reservation is canceled. This means
  176. * drivers can use their completion handlers to ensure they keep bandwidth
  177. * they need, by reinitializing and resubmitting the just-completed urb
  178. * until the driver longer needs that periodic bandwidth.
  179. *
  180. * Memory Flags:
  181. *
  182. * The general rules for how to decide which mem_flags to use
  183. * are the same as for kmalloc. There are four
  184. * different possible values; GFP_KERNEL, GFP_NOFS, GFP_NOIO and
  185. * GFP_ATOMIC.
  186. *
  187. * GFP_NOFS is not ever used, as it has not been implemented yet.
  188. *
  189. * GFP_ATOMIC is used when
  190. * (a) you are inside a completion handler, an interrupt, bottom half,
  191. * tasklet or timer, or
  192. * (b) you are holding a spinlock or rwlock (does not apply to
  193. * semaphores), or
  194. * (c) current->state != TASK_RUNNING, this is the case only after
  195. * you've changed it.
  196. *
  197. * GFP_NOIO is used in the block io path and error handling of storage
  198. * devices.
  199. *
  200. * All other situations use GFP_KERNEL.
  201. *
  202. * Some more specific rules for mem_flags can be inferred, such as
  203. * (1) start_xmit, timeout, and receive methods of network drivers must
  204. * use GFP_ATOMIC (they are called with a spinlock held);
  205. * (2) queuecommand methods of scsi drivers must use GFP_ATOMIC (also
  206. * called with a spinlock held);
  207. * (3) If you use a kernel thread with a network driver you must use
  208. * GFP_NOIO, unless (b) or (c) apply;
  209. * (4) after you have done a down() you can use GFP_KERNEL, unless (b) or (c)
  210. * apply or your are in a storage driver's block io path;
  211. * (5) USB probe and disconnect can use GFP_KERNEL unless (b) or (c) apply; and
  212. * (6) changing firmware on a running storage or net device uses
  213. * GFP_NOIO, unless b) or c) apply
  214. *
  215. */
  216. int usb_submit_urb(struct urb *urb, unsigned mem_flags)
  217. {
  218. int pipe, temp, max;
  219. struct usb_device *dev;
  220. struct usb_operations *op;
  221. int is_out;
  222. if (!urb || urb->hcpriv || !urb->complete)
  223. return -EINVAL;
  224. if (!(dev = urb->dev) ||
  225. (dev->state < USB_STATE_DEFAULT) ||
  226. (!dev->bus) || (dev->devnum <= 0))
  227. return -ENODEV;
  228. if (dev->state == USB_STATE_SUSPENDED)
  229. return -EHOSTUNREACH;
  230. if (!(op = dev->bus->op) || !op->submit_urb)
  231. return -ENODEV;
  232. urb->status = -EINPROGRESS;
  233. urb->actual_length = 0;
  234. urb->bandwidth = 0;
  235. /* Lots of sanity checks, so HCDs can rely on clean data
  236. * and don't need to duplicate tests
  237. */
  238. pipe = urb->pipe;
  239. temp = usb_pipetype (pipe);
  240. is_out = usb_pipeout (pipe);
  241. if (!usb_pipecontrol (pipe) && dev->state < USB_STATE_CONFIGURED)
  242. return -ENODEV;
  243. /* FIXME there should be a sharable lock protecting us against
  244. * config/altsetting changes and disconnects, kicking in here.
  245. * (here == before maxpacket, and eventually endpoint type,
  246. * checks get made.)
  247. */
  248. max = usb_maxpacket (dev, pipe, is_out);
  249. if (max <= 0) {
  250. dev_dbg(&dev->dev,
  251. "bogus endpoint ep%d%s in %s (bad maxpacket %d)\n",
  252. usb_pipeendpoint (pipe), is_out ? "out" : "in",
  253. __FUNCTION__, max);
  254. return -EMSGSIZE;
  255. }
  256. /* periodic transfers limit size per frame/uframe,
  257. * but drivers only control those sizes for ISO.
  258. * while we're checking, initialize return status.
  259. */
  260. if (temp == PIPE_ISOCHRONOUS) {
  261. int n, len;
  262. /* "high bandwidth" mode, 1-3 packets/uframe? */
  263. if (dev->speed == USB_SPEED_HIGH) {
  264. int mult = 1 + ((max >> 11) & 0x03);
  265. max &= 0x07ff;
  266. max *= mult;
  267. }
  268. if (urb->number_of_packets <= 0)
  269. return -EINVAL;
  270. for (n = 0; n < urb->number_of_packets; n++) {
  271. len = urb->iso_frame_desc [n].length;
  272. if (len < 0 || len > max)
  273. return -EMSGSIZE;
  274. urb->iso_frame_desc [n].status = -EXDEV;
  275. urb->iso_frame_desc [n].actual_length = 0;
  276. }
  277. }
  278. /* the I/O buffer must be mapped/unmapped, except when length=0 */
  279. if (urb->transfer_buffer_length < 0)
  280. return -EMSGSIZE;
  281. #ifdef DEBUG
  282. /* stuff that drivers shouldn't do, but which shouldn't
  283. * cause problems in HCDs if they get it wrong.
  284. */
  285. {
  286. unsigned int orig_flags = urb->transfer_flags;
  287. unsigned int allowed;
  288. /* enforce simple/standard policy */
  289. allowed = (URB_NO_TRANSFER_DMA_MAP | URB_NO_SETUP_DMA_MAP |
  290. URB_NO_INTERRUPT);
  291. switch (temp) {
  292. case PIPE_BULK:
  293. if (is_out)
  294. allowed |= URB_ZERO_PACKET;
  295. /* FALLTHROUGH */
  296. case PIPE_CONTROL:
  297. allowed |= URB_NO_FSBR; /* only affects UHCI */
  298. /* FALLTHROUGH */
  299. default: /* all non-iso endpoints */
  300. if (!is_out)
  301. allowed |= URB_SHORT_NOT_OK;
  302. break;
  303. case PIPE_ISOCHRONOUS:
  304. allowed |= URB_ISO_ASAP;
  305. break;
  306. }
  307. urb->transfer_flags &= allowed;
  308. /* fail if submitter gave bogus flags */
  309. if (urb->transfer_flags != orig_flags) {
  310. err ("BOGUS urb flags, %x --> %x",
  311. orig_flags, urb->transfer_flags);
  312. return -EINVAL;
  313. }
  314. }
  315. #endif
  316. /*
  317. * Force periodic transfer intervals to be legal values that are
  318. * a power of two (so HCDs don't need to).
  319. *
  320. * FIXME want bus->{intr,iso}_sched_horizon values here. Each HC
  321. * supports different values... this uses EHCI/UHCI defaults (and
  322. * EHCI can use smaller non-default values).
  323. */
  324. switch (temp) {
  325. case PIPE_ISOCHRONOUS:
  326. case PIPE_INTERRUPT:
  327. /* too small? */
  328. if (urb->interval <= 0)
  329. return -EINVAL;
  330. /* too big? */
  331. switch (dev->speed) {
  332. case USB_SPEED_HIGH: /* units are microframes */
  333. // NOTE usb handles 2^15
  334. if (urb->interval > (1024 * 8))
  335. urb->interval = 1024 * 8;
  336. temp = 1024 * 8;
  337. break;
  338. case USB_SPEED_FULL: /* units are frames/msec */
  339. case USB_SPEED_LOW:
  340. if (temp == PIPE_INTERRUPT) {
  341. if (urb->interval > 255)
  342. return -EINVAL;
  343. // NOTE ohci only handles up to 32
  344. temp = 128;
  345. } else {
  346. if (urb->interval > 1024)
  347. urb->interval = 1024;
  348. // NOTE usb and ohci handle up to 2^15
  349. temp = 1024;
  350. }
  351. break;
  352. default:
  353. return -EINVAL;
  354. }
  355. /* power of two? */
  356. while (temp > urb->interval)
  357. temp >>= 1;
  358. urb->interval = temp;
  359. }
  360. return op->submit_urb (urb, mem_flags);
  361. }
  362. /*-------------------------------------------------------------------*/
  363. /**
  364. * usb_unlink_urb - abort/cancel a transfer request for an endpoint
  365. * @urb: pointer to urb describing a previously submitted request,
  366. * may be NULL
  367. *
  368. * This routine cancels an in-progress request. URBs complete only
  369. * once per submission, and may be canceled only once per submission.
  370. * Successful cancellation means the requests's completion handler will
  371. * be called with a status code indicating that the request has been
  372. * canceled (rather than any other code) and will quickly be removed
  373. * from host controller data structures.
  374. *
  375. * This request is always asynchronous.
  376. * Success is indicated by returning -EINPROGRESS,
  377. * at which time the URB will normally have been unlinked but not yet
  378. * given back to the device driver. When it is called, the completion
  379. * function will see urb->status == -ECONNRESET. Failure is indicated
  380. * by any other return value. Unlinking will fail when the URB is not
  381. * currently "linked" (i.e., it was never submitted, or it was unlinked
  382. * before, or the hardware is already finished with it), even if the
  383. * completion handler has not yet run.
  384. *
  385. * Unlinking and Endpoint Queues:
  386. *
  387. * Host Controller Drivers (HCDs) place all the URBs for a particular
  388. * endpoint in a queue. Normally the queue advances as the controller
  389. * hardware processes each request. But when an URB terminates with an
  390. * error its queue stops, at least until that URB's completion routine
  391. * returns. It is guaranteed that the queue will not restart until all
  392. * its unlinked URBs have been fully retired, with their completion
  393. * routines run, even if that's not until some time after the original
  394. * completion handler returns. Normally the same behavior and guarantees
  395. * apply when an URB terminates because it was unlinked; however if an
  396. * URB is unlinked before the hardware has started to execute it, then
  397. * its queue is not guaranteed to stop until all the preceding URBs have
  398. * completed.
  399. *
  400. * This means that USB device drivers can safely build deep queues for
  401. * large or complex transfers, and clean them up reliably after any sort
  402. * of aborted transfer by unlinking all pending URBs at the first fault.
  403. *
  404. * Note that an URB terminating early because a short packet was received
  405. * will count as an error if and only if the URB_SHORT_NOT_OK flag is set.
  406. * Also, that all unlinks performed in any URB completion handler must
  407. * be asynchronous.
  408. *
  409. * Queues for isochronous endpoints are treated differently, because they
  410. * advance at fixed rates. Such queues do not stop when an URB is unlinked.
  411. * An unlinked URB may leave a gap in the stream of packets. It is undefined
  412. * whether such gaps can be filled in.
  413. *
  414. * When a control URB terminates with an error, it is likely that the
  415. * status stage of the transfer will not take place, even if it is merely
  416. * a soft error resulting from a short-packet with URB_SHORT_NOT_OK set.
  417. */
  418. int usb_unlink_urb(struct urb *urb)
  419. {
  420. if (!urb)
  421. return -EINVAL;
  422. if (!(urb->dev && urb->dev->bus && urb->dev->bus->op))
  423. return -ENODEV;
  424. return urb->dev->bus->op->unlink_urb(urb, -ECONNRESET);
  425. }
  426. /**
  427. * usb_kill_urb - cancel a transfer request and wait for it to finish
  428. * @urb: pointer to URB describing a previously submitted request,
  429. * may be NULL
  430. *
  431. * This routine cancels an in-progress request. It is guaranteed that
  432. * upon return all completion handlers will have finished and the URB
  433. * will be totally idle and available for reuse. These features make
  434. * this an ideal way to stop I/O in a disconnect() callback or close()
  435. * function. If the request has not already finished or been unlinked
  436. * the completion handler will see urb->status == -ENOENT.
  437. *
  438. * While the routine is running, attempts to resubmit the URB will fail
  439. * with error -EPERM. Thus even if the URB's completion handler always
  440. * tries to resubmit, it will not succeed and the URB will become idle.
  441. *
  442. * This routine may not be used in an interrupt context (such as a bottom
  443. * half or a completion handler), or when holding a spinlock, or in other
  444. * situations where the caller can't schedule().
  445. */
  446. void usb_kill_urb(struct urb *urb)
  447. {
  448. if (!(urb && urb->dev && urb->dev->bus && urb->dev->bus->op))
  449. return;
  450. spin_lock_irq(&urb->lock);
  451. ++urb->reject;
  452. spin_unlock_irq(&urb->lock);
  453. urb->dev->bus->op->unlink_urb(urb, -ENOENT);
  454. wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
  455. spin_lock_irq(&urb->lock);
  456. --urb->reject;
  457. spin_unlock_irq(&urb->lock);
  458. }
  459. EXPORT_SYMBOL(usb_init_urb);
  460. EXPORT_SYMBOL(usb_alloc_urb);
  461. EXPORT_SYMBOL(usb_free_urb);
  462. EXPORT_SYMBOL(usb_get_urb);
  463. EXPORT_SYMBOL(usb_submit_urb);
  464. EXPORT_SYMBOL(usb_unlink_urb);
  465. EXPORT_SYMBOL(usb_kill_urb);