audio.c 120 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870
  1. /*****************************************************************************/
  2. /*
  3. * audio.c -- USB Audio Class driver
  4. *
  5. * Copyright (C) 1999, 2000, 2001, 2003, 2004
  6. * Alan Cox (alan@lxorguk.ukuu.org.uk)
  7. * Thomas Sailer (sailer@ife.ee.ethz.ch)
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License as published by
  11. * the Free Software Foundation; either version 2 of the License, or
  12. * (at your option) any later version.
  13. *
  14. * Debugging:
  15. * Use the 'lsusb' utility to dump the descriptors.
  16. *
  17. * 1999-09-07: Alan Cox
  18. * Parsing Audio descriptor patch
  19. * 1999-09-08: Thomas Sailer
  20. * Added OSS compatible data io functions; both parts of the
  21. * driver remain to be glued together
  22. * 1999-09-10: Thomas Sailer
  23. * Beautified the driver. Added sample format conversions.
  24. * Still not properly glued with the parsing code.
  25. * The parsing code seems to have its problems btw,
  26. * Since it parses all available configs but doesn't
  27. * store which iface/altsetting belongs to which config.
  28. * 1999-09-20: Thomas Sailer
  29. * Threw out Alan's parsing code and implemented my own one.
  30. * You cannot reasonnably linearly parse audio descriptors,
  31. * especially the AudioClass descriptors have to be considered
  32. * pointer lists. Mixer parsing untested, due to lack of device.
  33. * First stab at synch pipe implementation, the Dallas USB DAC
  34. * wants to use an Asynch out pipe. usb_audio_state now basically
  35. * only contains lists of mixer and wave devices. We can therefore
  36. * now have multiple mixer/wave devices per USB device.
  37. * 1999-10-28: Thomas Sailer
  38. * Converted to URB API. Fixed a taskstate/wakeup semantics mistake
  39. * that made the driver consume all available CPU cycles.
  40. * Now runs stable on UHCI-Acher/Fliegl/Sailer.
  41. * 1999-10-31: Thomas Sailer
  42. * Audio can now be unloaded if it is not in use by any mixer
  43. * or dsp client (formerly you had to disconnect the audio devices
  44. * from the USB port)
  45. * Finally, about three months after ordering, my "Maxxtro SPK222"
  46. * speakers arrived, isn't disdata a great mail order company 8-)
  47. * Parse class specific endpoint descriptor of the audiostreaming
  48. * interfaces and take the endpoint attributes from there.
  49. * Unbelievably, the Philips USB DAC has a sampling rate range
  50. * of over a decade, yet does not support the sampling rate control!
  51. * No wonder it sounds so bad, has very audible sampling rate
  52. * conversion distortion. Don't try to listen to it using
  53. * decent headphones!
  54. * "Let's make things better" -> but please Philips start with your
  55. * own stuff!!!!
  56. * 1999-11-02: Thomas Sailer
  57. * It takes the Philips boxes several seconds to acquire synchronisation
  58. * that means they won't play short sounds. Should probably maintain
  59. * the ISO datastream even if there's nothing to play.
  60. * Fix counting the total_bytes counter, RealPlayer G2 depends on it.
  61. * 1999-12-20: Thomas Sailer
  62. * Fix bad bug in conversion to per interface probing.
  63. * disconnect was called multiple times for the audio device,
  64. * leading to a premature freeing of the audio structures
  65. * 2000-05-13: Thomas Sailer
  66. * I don't remember who changed the find_format routine,
  67. * but the change was completely broken for the Dallas
  68. * chip. Anyway taking sampling rate into account in find_format
  69. * is bad and should not be done unless there are devices with
  70. * completely broken audio descriptors. Unless someone shows
  71. * me such a descriptor, I will not allow find_format to
  72. * take the sampling rate into account.
  73. * Also, the former find_format made:
  74. * - mpg123 play mono instead of stereo
  75. * - sox completely fail for wav's with sample rates < 44.1kHz
  76. * for the Dallas chip.
  77. * Also fix a rather long standing problem with applications that
  78. * use "small" writes producing no sound at all.
  79. * 2000-05-15: Thomas Sailer
  80. * My fears came true, the Philips camera indeed has pretty stupid
  81. * audio descriptors.
  82. * 2000-05-17: Thomas Sailer
  83. * Nemsoft spotted my stupid last minute change, thanks
  84. * 2000-05-19: Thomas Sailer
  85. * Fixed FEATURE_UNIT thinkos found thanks to the KC Technology
  86. * Xtend device. Basically the driver treated FEATURE_UNIT's sourced
  87. * by mono terminals as stereo.
  88. * 2000-05-20: Thomas Sailer
  89. * SELECTOR support (and thus selecting record channels from the mixer).
  90. * Somewhat peculiar due to OSS interface limitations. Only works
  91. * for channels where a "slider" is already in front of it (i.e.
  92. * a MIXER unit or a FEATURE unit with volume capability).
  93. * 2000-11-26: Thomas Sailer
  94. * Workaround for Dallas DS4201. The DS4201 uses PCM8 as format tag for
  95. * its 8 bit modes, but expects signed data (and should therefore have used PCM).
  96. * 2001-03-10: Thomas Sailer
  97. * provide abs function, prevent picking up a bogus kernel macro
  98. * for abs. Bug report by Andrew Morton <andrewm@uow.edu.au>
  99. * 2001-06-16: Bryce Nesbitt <bryce@obviously.com>
  100. * Fix SNDCTL_DSP_STEREO API violation
  101. * 2003-04-08: Oliver Neukum (oliver@neukum.name):
  102. * Setting a configuration is done by usbcore and must not be overridden
  103. * 2004-02-27: Workaround for broken synch descriptors
  104. * 2004-03-07: Alan Stern <stern@rowland.harvard.edu>
  105. * Add usb_ifnum_to_if() and usb_altnum_to_altsetting() support.
  106. * Use the in-memory descriptors instead of reading them from the device.
  107. *
  108. */
  109. /*
  110. * Strategy:
  111. *
  112. * Alan Cox and Thomas Sailer are starting to dig at opposite ends and
  113. * are hoping to meet in the middle, just like tunnel diggers :)
  114. * Alan tackles the descriptor parsing, Thomas the actual data IO and the
  115. * OSS compatible interface.
  116. *
  117. * Data IO implementation issues
  118. *
  119. * A mmap'able ring buffer per direction is implemented, because
  120. * almost every OSS app expects it. It is however impractical to
  121. * transmit/receive USB data directly into and out of the ring buffer,
  122. * due to alignment and synchronisation issues. Instead, the ring buffer
  123. * feeds a constant time delay line that handles the USB issues.
  124. *
  125. * Now we first try to find an alternate setting that exactly matches
  126. * the sample format requested by the user. If we find one, we do not
  127. * need to perform any sample rate conversions. If there is no matching
  128. * altsetting, we choose the closest one and perform sample format
  129. * conversions. We never do sample rate conversion; these are too
  130. * expensive to be performed in the kernel.
  131. *
  132. * Current status: no known HCD-specific issues.
  133. *
  134. * Generally: Due to the brokenness of the Audio Class spec
  135. * it seems generally impossible to write a generic Audio Class driver,
  136. * so a reasonable driver should implement the features that are actually
  137. * used.
  138. *
  139. * Parsing implementation issues
  140. *
  141. * One cannot reasonably parse the AudioClass descriptors linearly.
  142. * Therefore the current implementation features routines to look
  143. * for a specific descriptor in the descriptor list.
  144. *
  145. * How does the parsing work? First, all interfaces are searched
  146. * for an AudioControl class interface. If found, the config descriptor
  147. * that belongs to the current configuration is searched and
  148. * the HEADER descriptor is found. It contains a list of
  149. * all AudioStreaming and MIDIStreaming devices. This list is then walked,
  150. * and all AudioStreaming interfaces are classified into input and output
  151. * interfaces (according to the endpoint0 direction in altsetting1) (MIDIStreaming
  152. * is currently not supported). The input & output list is then used
  153. * to group inputs and outputs together and issued pairwise to the
  154. * AudioStreaming class parser. Finally, all OUTPUT_TERMINAL descriptors
  155. * are walked and issued to the mixer construction routine.
  156. *
  157. * The AudioStreaming parser simply enumerates all altsettings belonging
  158. * to the specified interface. It looks for AS_GENERAL and FORMAT_TYPE
  159. * class specific descriptors to extract the sample format/sample rate
  160. * data. Only sample format types PCM and PCM8 are supported right now, and
  161. * only FORMAT_TYPE_I is handled. The isochronous data endpoint needs to
  162. * be the first endpoint of the interface, and the optional synchronisation
  163. * isochronous endpoint the second one.
  164. *
  165. * Mixer construction works as follows: The various TERMINAL and UNIT
  166. * descriptors span a tree from the root (OUTPUT_TERMINAL) through the
  167. * intermediate nodes (UNITs) to the leaves (INPUT_TERMINAL). We walk
  168. * that tree in a depth first manner. FEATURE_UNITs may contribute volume,
  169. * bass and treble sliders to the mixer, MIXER_UNITs volume sliders.
  170. * The terminal type encoded in the INPUT_TERMINALs feeds a heuristic
  171. * to determine "meaningful" OSS slider numbers, however we will see
  172. * how well this works in practice. Other features are not used at the
  173. * moment, they seem less often used. Also, it seems difficult at least
  174. * to construct recording source switches from SELECTOR_UNITs, but
  175. * since there are not many USB ADC's available, we leave that for later.
  176. */
  177. /*****************************************************************************/
  178. #include <linux/kernel.h>
  179. #include <linux/slab.h>
  180. #include <linux/string.h>
  181. #include <linux/timer.h>
  182. #include <linux/sched.h>
  183. #include <linux/smp_lock.h>
  184. #include <linux/module.h>
  185. #include <linux/sound.h>
  186. #include <linux/soundcard.h>
  187. #include <linux/list.h>
  188. #include <linux/vmalloc.h>
  189. #include <linux/init.h>
  190. #include <linux/poll.h>
  191. #include <linux/bitops.h>
  192. #include <asm/uaccess.h>
  193. #include <asm/io.h>
  194. #include <linux/usb.h>
  195. #include "audio.h"
  196. /*
  197. * Version Information
  198. */
  199. #define DRIVER_VERSION "v1.0.0"
  200. #define DRIVER_AUTHOR "Alan Cox <alan@lxorguk.ukuu.org.uk>, Thomas Sailer (sailer@ife.ee.ethz.ch)"
  201. #define DRIVER_DESC "USB Audio Class driver"
  202. #define AUDIO_DEBUG 1
  203. #define SND_DEV_DSP16 5
  204. #define dprintk(x)
  205. /* --------------------------------------------------------------------- */
  206. /*
  207. * Linked list of all audio devices...
  208. */
  209. static struct list_head audiodevs = LIST_HEAD_INIT(audiodevs);
  210. static DECLARE_MUTEX(open_sem);
  211. /*
  212. * wait queue for processes wanting to open an USB audio device
  213. */
  214. static DECLARE_WAIT_QUEUE_HEAD(open_wait);
  215. #define MAXFORMATS MAX_ALT
  216. #define DMABUFSHIFT 17 /* 128k worth of DMA buffer */
  217. #define NRSGBUF (1U<<(DMABUFSHIFT-PAGE_SHIFT))
  218. /*
  219. * This influences:
  220. * - Latency
  221. * - Interrupt rate
  222. * - Synchronisation behaviour
  223. * Don't touch this if you don't understand all of the above.
  224. */
  225. #define DESCFRAMES 5
  226. #define SYNCFRAMES DESCFRAMES
  227. #define MIXFLG_STEREOIN 1
  228. #define MIXFLG_STEREOOUT 2
  229. struct mixerchannel {
  230. __u16 value;
  231. __u16 osschannel; /* number of the OSS channel */
  232. __s16 minval, maxval;
  233. __u16 slctunitid;
  234. __u8 unitid;
  235. __u8 selector;
  236. __u8 chnum;
  237. __u8 flags;
  238. };
  239. struct audioformat {
  240. unsigned int format;
  241. unsigned int sratelo;
  242. unsigned int sratehi;
  243. unsigned char altsetting;
  244. unsigned char attributes;
  245. };
  246. struct dmabuf {
  247. /* buffer data format */
  248. unsigned int format;
  249. unsigned int srate;
  250. /* physical buffer */
  251. unsigned char *sgbuf[NRSGBUF];
  252. unsigned bufsize;
  253. unsigned numfrag;
  254. unsigned fragshift;
  255. unsigned wrptr, rdptr;
  256. unsigned total_bytes;
  257. int count;
  258. unsigned error; /* over/underrun */
  259. wait_queue_head_t wait;
  260. /* redundant, but makes calculations easier */
  261. unsigned fragsize;
  262. unsigned dmasize;
  263. /* OSS stuff */
  264. unsigned mapped:1;
  265. unsigned ready:1;
  266. unsigned ossfragshift;
  267. int ossmaxfrags;
  268. unsigned subdivision;
  269. };
  270. struct usb_audio_state;
  271. #define FLG_URB0RUNNING 1
  272. #define FLG_URB1RUNNING 2
  273. #define FLG_SYNC0RUNNING 4
  274. #define FLG_SYNC1RUNNING 8
  275. #define FLG_RUNNING 16
  276. #define FLG_CONNECTED 32
  277. struct my_data_urb {
  278. struct urb *urb;
  279. };
  280. struct my_sync_urb {
  281. struct urb *urb;
  282. };
  283. struct usb_audiodev {
  284. struct list_head list;
  285. struct usb_audio_state *state;
  286. /* soundcore stuff */
  287. int dev_audio;
  288. /* wave stuff */
  289. mode_t open_mode;
  290. spinlock_t lock; /* DMA buffer access spinlock */
  291. struct usbin {
  292. int interface; /* Interface number, -1 means not used */
  293. unsigned int format; /* USB data format */
  294. unsigned int datapipe; /* the data input pipe */
  295. unsigned int syncpipe; /* the synchronisation pipe - 0 for anything but adaptive IN mode */
  296. unsigned int syncinterval; /* P for adaptive IN mode, 0 otherwise */
  297. unsigned int freqn; /* nominal sampling rate in USB format, i.e. fs/1000 in Q10.14 */
  298. unsigned int freqmax; /* maximum sampling rate, used for buffer management */
  299. unsigned int phase; /* phase accumulator */
  300. unsigned int flags; /* see FLG_ defines */
  301. struct my_data_urb durb[2]; /* ISO descriptors for the data endpoint */
  302. struct my_sync_urb surb[2]; /* ISO sync pipe descriptor if needed */
  303. struct dmabuf dma;
  304. } usbin;
  305. struct usbout {
  306. int interface; /* Interface number, -1 means not used */
  307. unsigned int format; /* USB data format */
  308. unsigned int datapipe; /* the data input pipe */
  309. unsigned int syncpipe; /* the synchronisation pipe - 0 for anything but asynchronous OUT mode */
  310. unsigned int syncinterval; /* P for asynchronous OUT mode, 0 otherwise */
  311. unsigned int freqn; /* nominal sampling rate in USB format, i.e. fs/1000 in Q10.14 */
  312. unsigned int freqm; /* momentary sampling rate in USB format, i.e. fs/1000 in Q10.14 */
  313. unsigned int freqmax; /* maximum sampling rate, used for buffer management */
  314. unsigned int phase; /* phase accumulator */
  315. unsigned int flags; /* see FLG_ defines */
  316. struct my_data_urb durb[2]; /* ISO descriptors for the data endpoint */
  317. struct my_sync_urb surb[2]; /* ISO sync pipe descriptor if needed */
  318. struct dmabuf dma;
  319. } usbout;
  320. unsigned int numfmtin, numfmtout;
  321. struct audioformat fmtin[MAXFORMATS];
  322. struct audioformat fmtout[MAXFORMATS];
  323. };
  324. struct usb_mixerdev {
  325. struct list_head list;
  326. struct usb_audio_state *state;
  327. /* soundcore stuff */
  328. int dev_mixer;
  329. unsigned char iface; /* interface number of the AudioControl interface */
  330. /* USB format descriptions */
  331. unsigned int numch, modcnt;
  332. /* mixch is last and gets allocated dynamically */
  333. struct mixerchannel ch[0];
  334. };
  335. struct usb_audio_state {
  336. struct list_head audiodev;
  337. /* USB device */
  338. struct usb_device *usbdev;
  339. struct list_head audiolist;
  340. struct list_head mixerlist;
  341. unsigned count; /* usage counter; NOTE: the usb stack is also considered a user */
  342. };
  343. /* private audio format extensions */
  344. #define AFMT_STEREO 0x80000000
  345. #define AFMT_ISSTEREO(x) ((x) & AFMT_STEREO)
  346. #define AFMT_IS16BIT(x) ((x) & (AFMT_S16_LE|AFMT_S16_BE|AFMT_U16_LE|AFMT_U16_BE))
  347. #define AFMT_ISUNSIGNED(x) ((x) & (AFMT_U8|AFMT_U16_LE|AFMT_U16_BE))
  348. #define AFMT_BYTESSHIFT(x) ((AFMT_ISSTEREO(x) ? 1 : 0) + (AFMT_IS16BIT(x) ? 1 : 0))
  349. #define AFMT_BYTES(x) (1<<AFMT_BYTESSHFIT(x))
  350. /* --------------------------------------------------------------------- */
  351. static inline unsigned ld2(unsigned int x)
  352. {
  353. unsigned r = 0;
  354. if (x >= 0x10000) {
  355. x >>= 16;
  356. r += 16;
  357. }
  358. if (x >= 0x100) {
  359. x >>= 8;
  360. r += 8;
  361. }
  362. if (x >= 0x10) {
  363. x >>= 4;
  364. r += 4;
  365. }
  366. if (x >= 4) {
  367. x >>= 2;
  368. r += 2;
  369. }
  370. if (x >= 2)
  371. r++;
  372. return r;
  373. }
  374. /* --------------------------------------------------------------------- */
  375. /*
  376. * OSS compatible ring buffer management. The ring buffer may be mmap'ed into
  377. * an application address space.
  378. *
  379. * I first used the rvmalloc stuff copied from bttv. Alan Cox did not like it, so
  380. * we now use an array of pointers to a single page each. This saves us the
  381. * kernel page table manipulations, but we have to do a page table alike mechanism
  382. * (though only one indirection) in software.
  383. */
  384. static void dmabuf_release(struct dmabuf *db)
  385. {
  386. unsigned int nr;
  387. void *p;
  388. for(nr = 0; nr < NRSGBUF; nr++) {
  389. if (!(p = db->sgbuf[nr]))
  390. continue;
  391. ClearPageReserved(virt_to_page(p));
  392. free_page((unsigned long)p);
  393. db->sgbuf[nr] = NULL;
  394. }
  395. db->mapped = db->ready = 0;
  396. }
  397. static int dmabuf_init(struct dmabuf *db)
  398. {
  399. unsigned int nr, bytepersec, bufs;
  400. void *p;
  401. /* initialize some fields */
  402. db->rdptr = db->wrptr = db->total_bytes = db->count = db->error = 0;
  403. /* calculate required buffer size */
  404. bytepersec = db->srate << AFMT_BYTESSHIFT(db->format);
  405. bufs = 1U << DMABUFSHIFT;
  406. if (db->ossfragshift) {
  407. if ((1000 << db->ossfragshift) < bytepersec)
  408. db->fragshift = ld2(bytepersec/1000);
  409. else
  410. db->fragshift = db->ossfragshift;
  411. } else {
  412. db->fragshift = ld2(bytepersec/100/(db->subdivision ? db->subdivision : 1));
  413. if (db->fragshift < 3)
  414. db->fragshift = 3;
  415. }
  416. db->numfrag = bufs >> db->fragshift;
  417. while (db->numfrag < 4 && db->fragshift > 3) {
  418. db->fragshift--;
  419. db->numfrag = bufs >> db->fragshift;
  420. }
  421. db->fragsize = 1 << db->fragshift;
  422. if (db->ossmaxfrags >= 4 && db->ossmaxfrags < db->numfrag)
  423. db->numfrag = db->ossmaxfrags;
  424. db->dmasize = db->numfrag << db->fragshift;
  425. for(nr = 0; nr < NRSGBUF; nr++) {
  426. if (!db->sgbuf[nr]) {
  427. p = (void *)get_zeroed_page(GFP_KERNEL);
  428. if (!p)
  429. return -ENOMEM;
  430. db->sgbuf[nr] = p;
  431. SetPageReserved(virt_to_page(p));
  432. }
  433. memset(db->sgbuf[nr], AFMT_ISUNSIGNED(db->format) ? 0x80 : 0, PAGE_SIZE);
  434. if ((nr << PAGE_SHIFT) >= db->dmasize)
  435. break;
  436. }
  437. db->bufsize = nr << PAGE_SHIFT;
  438. db->ready = 1;
  439. dprintk((KERN_DEBUG "usbaudio: dmabuf_init bytepersec %d bufs %d ossfragshift %d ossmaxfrags %d "
  440. "fragshift %d fragsize %d numfrag %d dmasize %d bufsize %d fmt 0x%x srate %d\n",
  441. bytepersec, bufs, db->ossfragshift, db->ossmaxfrags, db->fragshift, db->fragsize,
  442. db->numfrag, db->dmasize, db->bufsize, db->format, db->srate));
  443. return 0;
  444. }
  445. static int dmabuf_mmap(struct vm_area_struct *vma, struct dmabuf *db, unsigned long start, unsigned long size, pgprot_t prot)
  446. {
  447. unsigned int nr;
  448. if (!db->ready || db->mapped || (start | size) & (PAGE_SIZE-1) || size > db->bufsize)
  449. return -EINVAL;
  450. size >>= PAGE_SHIFT;
  451. for(nr = 0; nr < size; nr++)
  452. if (!db->sgbuf[nr])
  453. return -EINVAL;
  454. db->mapped = 1;
  455. for(nr = 0; nr < size; nr++) {
  456. unsigned long pfn;
  457. pfn = virt_to_phys(db->sgbuf[nr]) >> PAGE_SHIFT;
  458. if (remap_pfn_range(vma, start, pfn, PAGE_SIZE, prot))
  459. return -EAGAIN;
  460. start += PAGE_SIZE;
  461. }
  462. return 0;
  463. }
  464. static void dmabuf_copyin(struct dmabuf *db, const void *buffer, unsigned int size)
  465. {
  466. unsigned int pgrem, rem;
  467. db->total_bytes += size;
  468. for (;;) {
  469. if (size <= 0)
  470. return;
  471. pgrem = ((~db->wrptr) & (PAGE_SIZE-1)) + 1;
  472. if (pgrem > size)
  473. pgrem = size;
  474. rem = db->dmasize - db->wrptr;
  475. if (pgrem > rem)
  476. pgrem = rem;
  477. memcpy((db->sgbuf[db->wrptr >> PAGE_SHIFT]) + (db->wrptr & (PAGE_SIZE-1)), buffer, pgrem);
  478. size -= pgrem;
  479. buffer += pgrem;
  480. db->wrptr += pgrem;
  481. if (db->wrptr >= db->dmasize)
  482. db->wrptr = 0;
  483. }
  484. }
  485. static void dmabuf_copyout(struct dmabuf *db, void *buffer, unsigned int size)
  486. {
  487. unsigned int pgrem, rem;
  488. db->total_bytes += size;
  489. for (;;) {
  490. if (size <= 0)
  491. return;
  492. pgrem = ((~db->rdptr) & (PAGE_SIZE-1)) + 1;
  493. if (pgrem > size)
  494. pgrem = size;
  495. rem = db->dmasize - db->rdptr;
  496. if (pgrem > rem)
  497. pgrem = rem;
  498. memcpy(buffer, (db->sgbuf[db->rdptr >> PAGE_SHIFT]) + (db->rdptr & (PAGE_SIZE-1)), pgrem);
  499. size -= pgrem;
  500. buffer += pgrem;
  501. db->rdptr += pgrem;
  502. if (db->rdptr >= db->dmasize)
  503. db->rdptr = 0;
  504. }
  505. }
  506. static int dmabuf_copyin_user(struct dmabuf *db, unsigned int ptr, const void __user *buffer, unsigned int size)
  507. {
  508. unsigned int pgrem, rem;
  509. if (!db->ready || db->mapped)
  510. return -EINVAL;
  511. for (;;) {
  512. if (size <= 0)
  513. return 0;
  514. pgrem = ((~ptr) & (PAGE_SIZE-1)) + 1;
  515. if (pgrem > size)
  516. pgrem = size;
  517. rem = db->dmasize - ptr;
  518. if (pgrem > rem)
  519. pgrem = rem;
  520. if (copy_from_user((db->sgbuf[ptr >> PAGE_SHIFT]) + (ptr & (PAGE_SIZE-1)), buffer, pgrem))
  521. return -EFAULT;
  522. size -= pgrem;
  523. buffer += pgrem;
  524. ptr += pgrem;
  525. if (ptr >= db->dmasize)
  526. ptr = 0;
  527. }
  528. }
  529. static int dmabuf_copyout_user(struct dmabuf *db, unsigned int ptr, void __user *buffer, unsigned int size)
  530. {
  531. unsigned int pgrem, rem;
  532. if (!db->ready || db->mapped)
  533. return -EINVAL;
  534. for (;;) {
  535. if (size <= 0)
  536. return 0;
  537. pgrem = ((~ptr) & (PAGE_SIZE-1)) + 1;
  538. if (pgrem > size)
  539. pgrem = size;
  540. rem = db->dmasize - ptr;
  541. if (pgrem > rem)
  542. pgrem = rem;
  543. if (copy_to_user(buffer, (db->sgbuf[ptr >> PAGE_SHIFT]) + (ptr & (PAGE_SIZE-1)), pgrem))
  544. return -EFAULT;
  545. size -= pgrem;
  546. buffer += pgrem;
  547. ptr += pgrem;
  548. if (ptr >= db->dmasize)
  549. ptr = 0;
  550. }
  551. }
  552. /* --------------------------------------------------------------------- */
  553. /*
  554. * USB I/O code. We do sample format conversion if necessary
  555. */
  556. static void usbin_stop(struct usb_audiodev *as)
  557. {
  558. struct usbin *u = &as->usbin;
  559. unsigned long flags;
  560. unsigned int i, notkilled = 1;
  561. spin_lock_irqsave(&as->lock, flags);
  562. u->flags &= ~FLG_RUNNING;
  563. i = u->flags;
  564. spin_unlock_irqrestore(&as->lock, flags);
  565. while (i & (FLG_URB0RUNNING|FLG_URB1RUNNING|FLG_SYNC0RUNNING|FLG_SYNC1RUNNING)) {
  566. if (notkilled)
  567. schedule_timeout_interruptible(1);
  568. else
  569. schedule_timeout_uninterruptible(1);
  570. spin_lock_irqsave(&as->lock, flags);
  571. i = u->flags;
  572. spin_unlock_irqrestore(&as->lock, flags);
  573. if (notkilled && signal_pending(current)) {
  574. if (i & FLG_URB0RUNNING)
  575. usb_kill_urb(u->durb[0].urb);
  576. if (i & FLG_URB1RUNNING)
  577. usb_kill_urb(u->durb[1].urb);
  578. if (i & FLG_SYNC0RUNNING)
  579. usb_kill_urb(u->surb[0].urb);
  580. if (i & FLG_SYNC1RUNNING)
  581. usb_kill_urb(u->surb[1].urb);
  582. notkilled = 0;
  583. }
  584. }
  585. set_current_state(TASK_RUNNING);
  586. kfree(u->durb[0].urb->transfer_buffer);
  587. kfree(u->durb[1].urb->transfer_buffer);
  588. kfree(u->surb[0].urb->transfer_buffer);
  589. kfree(u->surb[1].urb->transfer_buffer);
  590. u->durb[0].urb->transfer_buffer = u->durb[1].urb->transfer_buffer =
  591. u->surb[0].urb->transfer_buffer = u->surb[1].urb->transfer_buffer = NULL;
  592. }
  593. static inline void usbin_release(struct usb_audiodev *as)
  594. {
  595. usbin_stop(as);
  596. }
  597. static void usbin_disc(struct usb_audiodev *as)
  598. {
  599. struct usbin *u = &as->usbin;
  600. unsigned long flags;
  601. spin_lock_irqsave(&as->lock, flags);
  602. u->flags &= ~(FLG_RUNNING | FLG_CONNECTED);
  603. spin_unlock_irqrestore(&as->lock, flags);
  604. usbin_stop(as);
  605. }
  606. static void conversion(const void *ibuf, unsigned int ifmt, void *obuf, unsigned int ofmt, void *tmp, unsigned int scnt)
  607. {
  608. unsigned int cnt, i;
  609. __s16 *sp, *sp2, s;
  610. unsigned char *bp;
  611. cnt = scnt;
  612. if (AFMT_ISSTEREO(ifmt))
  613. cnt <<= 1;
  614. sp = ((__s16 *)tmp) + cnt;
  615. switch (ifmt & ~AFMT_STEREO) {
  616. case AFMT_U8:
  617. for (bp = ((unsigned char *)ibuf)+cnt, i = 0; i < cnt; i++) {
  618. bp--;
  619. sp--;
  620. *sp = (*bp ^ 0x80) << 8;
  621. }
  622. break;
  623. case AFMT_S8:
  624. for (bp = ((unsigned char *)ibuf)+cnt, i = 0; i < cnt; i++) {
  625. bp--;
  626. sp--;
  627. *sp = *bp << 8;
  628. }
  629. break;
  630. case AFMT_U16_LE:
  631. for (bp = ((unsigned char *)ibuf)+2*cnt, i = 0; i < cnt; i++) {
  632. bp -= 2;
  633. sp--;
  634. *sp = (bp[0] | (bp[1] << 8)) ^ 0x8000;
  635. }
  636. break;
  637. case AFMT_U16_BE:
  638. for (bp = ((unsigned char *)ibuf)+2*cnt, i = 0; i < cnt; i++) {
  639. bp -= 2;
  640. sp--;
  641. *sp = (bp[1] | (bp[0] << 8)) ^ 0x8000;
  642. }
  643. break;
  644. case AFMT_S16_LE:
  645. for (bp = ((unsigned char *)ibuf)+2*cnt, i = 0; i < cnt; i++) {
  646. bp -= 2;
  647. sp--;
  648. *sp = bp[0] | (bp[1] << 8);
  649. }
  650. break;
  651. case AFMT_S16_BE:
  652. for (bp = ((unsigned char *)ibuf)+2*cnt, i = 0; i < cnt; i++) {
  653. bp -= 2;
  654. sp--;
  655. *sp = bp[1] | (bp[0] << 8);
  656. }
  657. break;
  658. }
  659. if (!AFMT_ISSTEREO(ifmt) && AFMT_ISSTEREO(ofmt)) {
  660. /* expand from mono to stereo */
  661. for (sp = ((__s16 *)tmp)+scnt, sp2 = ((__s16 *)tmp)+2*scnt, i = 0; i < scnt; i++) {
  662. sp--;
  663. sp2 -= 2;
  664. sp2[0] = sp2[1] = sp[0];
  665. }
  666. }
  667. if (AFMT_ISSTEREO(ifmt) && !AFMT_ISSTEREO(ofmt)) {
  668. /* contract from stereo to mono */
  669. for (sp = sp2 = ((__s16 *)tmp), i = 0; i < scnt; i++, sp++, sp2 += 2)
  670. sp[0] = (sp2[0] + sp2[1]) >> 1;
  671. }
  672. cnt = scnt;
  673. if (AFMT_ISSTEREO(ofmt))
  674. cnt <<= 1;
  675. sp = ((__s16 *)tmp);
  676. bp = ((unsigned char *)obuf);
  677. switch (ofmt & ~AFMT_STEREO) {
  678. case AFMT_U8:
  679. for (i = 0; i < cnt; i++, sp++, bp++)
  680. *bp = (*sp >> 8) ^ 0x80;
  681. break;
  682. case AFMT_S8:
  683. for (i = 0; i < cnt; i++, sp++, bp++)
  684. *bp = *sp >> 8;
  685. break;
  686. case AFMT_U16_LE:
  687. for (i = 0; i < cnt; i++, sp++, bp += 2) {
  688. s = *sp;
  689. bp[0] = s;
  690. bp[1] = (s >> 8) ^ 0x80;
  691. }
  692. break;
  693. case AFMT_U16_BE:
  694. for (i = 0; i < cnt; i++, sp++, bp += 2) {
  695. s = *sp;
  696. bp[1] = s;
  697. bp[0] = (s >> 8) ^ 0x80;
  698. }
  699. break;
  700. case AFMT_S16_LE:
  701. for (i = 0; i < cnt; i++, sp++, bp += 2) {
  702. s = *sp;
  703. bp[0] = s;
  704. bp[1] = s >> 8;
  705. }
  706. break;
  707. case AFMT_S16_BE:
  708. for (i = 0; i < cnt; i++, sp++, bp += 2) {
  709. s = *sp;
  710. bp[1] = s;
  711. bp[0] = s >> 8;
  712. }
  713. break;
  714. }
  715. }
  716. static void usbin_convert(struct usbin *u, unsigned char *buffer, unsigned int samples)
  717. {
  718. union {
  719. __s16 s[64];
  720. unsigned char b[0];
  721. } tmp;
  722. unsigned int scnt, maxs, ufmtsh, dfmtsh;
  723. ufmtsh = AFMT_BYTESSHIFT(u->format);
  724. dfmtsh = AFMT_BYTESSHIFT(u->dma.format);
  725. maxs = (AFMT_ISSTEREO(u->dma.format | u->format)) ? 32 : 64;
  726. while (samples > 0) {
  727. scnt = samples;
  728. if (scnt > maxs)
  729. scnt = maxs;
  730. conversion(buffer, u->format, tmp.b, u->dma.format, tmp.b, scnt);
  731. dmabuf_copyin(&u->dma, tmp.b, scnt << dfmtsh);
  732. buffer += scnt << ufmtsh;
  733. samples -= scnt;
  734. }
  735. }
  736. static int usbin_prepare_desc(struct usbin *u, struct urb *urb)
  737. {
  738. unsigned int i, maxsize, offs;
  739. maxsize = (u->freqmax + 0x3fff) >> (14 - AFMT_BYTESSHIFT(u->format));
  740. //printk(KERN_DEBUG "usbin_prepare_desc: maxsize %d freq 0x%x format 0x%x\n", maxsize, u->freqn, u->format);
  741. for (i = offs = 0; i < DESCFRAMES; i++, offs += maxsize) {
  742. urb->iso_frame_desc[i].length = maxsize;
  743. urb->iso_frame_desc[i].offset = offs;
  744. }
  745. urb->interval = 1;
  746. return 0;
  747. }
  748. /*
  749. * return value: 0 if descriptor should be restarted, -1 otherwise
  750. * convert sample format on the fly if necessary
  751. */
  752. static int usbin_retire_desc(struct usbin *u, struct urb *urb)
  753. {
  754. unsigned int i, ufmtsh, dfmtsh, err = 0, cnt, scnt, dmafree;
  755. unsigned char *cp;
  756. ufmtsh = AFMT_BYTESSHIFT(u->format);
  757. dfmtsh = AFMT_BYTESSHIFT(u->dma.format);
  758. for (i = 0; i < DESCFRAMES; i++) {
  759. cp = ((unsigned char *)urb->transfer_buffer) + urb->iso_frame_desc[i].offset;
  760. if (urb->iso_frame_desc[i].status) {
  761. dprintk((KERN_DEBUG "usbin_retire_desc: frame %u status %d\n", i, urb->iso_frame_desc[i].status));
  762. continue;
  763. }
  764. scnt = urb->iso_frame_desc[i].actual_length >> ufmtsh;
  765. if (!scnt)
  766. continue;
  767. cnt = scnt << dfmtsh;
  768. if (!u->dma.mapped) {
  769. dmafree = u->dma.dmasize - u->dma.count;
  770. if (cnt > dmafree) {
  771. scnt = dmafree >> dfmtsh;
  772. cnt = scnt << dfmtsh;
  773. err++;
  774. }
  775. }
  776. u->dma.count += cnt;
  777. if (u->format == u->dma.format) {
  778. /* we do not need format conversion */
  779. dprintk((KERN_DEBUG "usbaudio: no sample format conversion\n"));
  780. dmabuf_copyin(&u->dma, cp, cnt);
  781. } else {
  782. /* we need sampling format conversion */
  783. dprintk((KERN_DEBUG "usbaudio: sample format conversion %x != %x\n", u->format, u->dma.format));
  784. usbin_convert(u, cp, scnt);
  785. }
  786. }
  787. if (err)
  788. u->dma.error++;
  789. if (u->dma.count >= (signed)u->dma.fragsize)
  790. wake_up(&u->dma.wait);
  791. return err ? -1 : 0;
  792. }
  793. static void usbin_completed(struct urb *urb, struct pt_regs *regs)
  794. {
  795. struct usb_audiodev *as = (struct usb_audiodev *)urb->context;
  796. struct usbin *u = &as->usbin;
  797. unsigned long flags;
  798. unsigned int mask;
  799. int suret = 0;
  800. #if 0
  801. printk(KERN_DEBUG "usbin_completed: status %d errcnt %d flags 0x%x\n", urb->status, urb->error_count, u->flags);
  802. #endif
  803. if (urb == u->durb[0].urb)
  804. mask = FLG_URB0RUNNING;
  805. else if (urb == u->durb[1].urb)
  806. mask = FLG_URB1RUNNING;
  807. else {
  808. mask = 0;
  809. printk(KERN_ERR "usbin_completed: panic: unknown URB\n");
  810. }
  811. urb->dev = as->state->usbdev;
  812. spin_lock_irqsave(&as->lock, flags);
  813. if (!usbin_retire_desc(u, urb) &&
  814. u->flags & FLG_RUNNING &&
  815. !usbin_prepare_desc(u, urb) &&
  816. (suret = usb_submit_urb(urb, GFP_ATOMIC)) == 0) {
  817. u->flags |= mask;
  818. } else {
  819. u->flags &= ~(mask | FLG_RUNNING);
  820. wake_up(&u->dma.wait);
  821. printk(KERN_DEBUG "usbin_completed: descriptor not restarted (usb_submit_urb: %d)\n", suret);
  822. }
  823. spin_unlock_irqrestore(&as->lock, flags);
  824. }
  825. /*
  826. * we output sync data
  827. */
  828. static int usbin_sync_prepare_desc(struct usbin *u, struct urb *urb)
  829. {
  830. unsigned char *cp = urb->transfer_buffer;
  831. unsigned int i, offs;
  832. for (i = offs = 0; i < SYNCFRAMES; i++, offs += 3, cp += 3) {
  833. urb->iso_frame_desc[i].length = 3;
  834. urb->iso_frame_desc[i].offset = offs;
  835. cp[0] = u->freqn;
  836. cp[1] = u->freqn >> 8;
  837. cp[2] = u->freqn >> 16;
  838. }
  839. urb->interval = 1;
  840. return 0;
  841. }
  842. /*
  843. * return value: 0 if descriptor should be restarted, -1 otherwise
  844. */
  845. static int usbin_sync_retire_desc(struct usbin *u, struct urb *urb)
  846. {
  847. unsigned int i;
  848. for (i = 0; i < SYNCFRAMES; i++)
  849. if (urb->iso_frame_desc[0].status)
  850. dprintk((KERN_DEBUG "usbin_sync_retire_desc: frame %u status %d\n", i, urb->iso_frame_desc[i].status));
  851. return 0;
  852. }
  853. static void usbin_sync_completed(struct urb *urb, struct pt_regs *regs)
  854. {
  855. struct usb_audiodev *as = (struct usb_audiodev *)urb->context;
  856. struct usbin *u = &as->usbin;
  857. unsigned long flags;
  858. unsigned int mask;
  859. int suret = 0;
  860. #if 0
  861. printk(KERN_DEBUG "usbin_sync_completed: status %d errcnt %d flags 0x%x\n", urb->status, urb->error_count, u->flags);
  862. #endif
  863. if (urb == u->surb[0].urb)
  864. mask = FLG_SYNC0RUNNING;
  865. else if (urb == u->surb[1].urb)
  866. mask = FLG_SYNC1RUNNING;
  867. else {
  868. mask = 0;
  869. printk(KERN_ERR "usbin_sync_completed: panic: unknown URB\n");
  870. }
  871. urb->dev = as->state->usbdev;
  872. spin_lock_irqsave(&as->lock, flags);
  873. if (!usbin_sync_retire_desc(u, urb) &&
  874. u->flags & FLG_RUNNING &&
  875. !usbin_sync_prepare_desc(u, urb) &&
  876. (suret = usb_submit_urb(urb, GFP_ATOMIC)) == 0) {
  877. u->flags |= mask;
  878. } else {
  879. u->flags &= ~(mask | FLG_RUNNING);
  880. wake_up(&u->dma.wait);
  881. dprintk((KERN_DEBUG "usbin_sync_completed: descriptor not restarted (usb_submit_urb: %d)\n", suret));
  882. }
  883. spin_unlock_irqrestore(&as->lock, flags);
  884. }
  885. static int usbin_start(struct usb_audiodev *as)
  886. {
  887. struct usb_device *dev = as->state->usbdev;
  888. struct usbin *u = &as->usbin;
  889. struct urb *urb;
  890. unsigned long flags;
  891. unsigned int maxsze, bufsz;
  892. #if 0
  893. printk(KERN_DEBUG "usbin_start: device %d ufmt 0x%08x dfmt 0x%08x srate %d\n",
  894. dev->devnum, u->format, u->dma.format, u->dma.srate);
  895. #endif
  896. /* allocate USB storage if not already done */
  897. spin_lock_irqsave(&as->lock, flags);
  898. if (!(u->flags & FLG_CONNECTED)) {
  899. spin_unlock_irqrestore(&as->lock, flags);
  900. return -EIO;
  901. }
  902. if (!(u->flags & FLG_RUNNING)) {
  903. spin_unlock_irqrestore(&as->lock, flags);
  904. u->freqn = ((u->dma.srate << 11) + 62) / 125; /* this will overflow at approx 2MSPS */
  905. u->freqmax = u->freqn + (u->freqn >> 2);
  906. u->phase = 0;
  907. maxsze = (u->freqmax + 0x3fff) >> (14 - AFMT_BYTESSHIFT(u->format));
  908. bufsz = DESCFRAMES * maxsze;
  909. kfree(u->durb[0].urb->transfer_buffer);
  910. u->durb[0].urb->transfer_buffer = kmalloc(bufsz, GFP_KERNEL);
  911. u->durb[0].urb->transfer_buffer_length = bufsz;
  912. kfree(u->durb[1].urb->transfer_buffer);
  913. u->durb[1].urb->transfer_buffer = kmalloc(bufsz, GFP_KERNEL);
  914. u->durb[1].urb->transfer_buffer_length = bufsz;
  915. if (u->syncpipe) {
  916. kfree(u->surb[0].urb->transfer_buffer);
  917. u->surb[0].urb->transfer_buffer = kmalloc(3*SYNCFRAMES, GFP_KERNEL);
  918. u->surb[0].urb->transfer_buffer_length = 3*SYNCFRAMES;
  919. kfree(u->surb[1].urb->transfer_buffer);
  920. u->surb[1].urb->transfer_buffer = kmalloc(3*SYNCFRAMES, GFP_KERNEL);
  921. u->surb[1].urb->transfer_buffer_length = 3*SYNCFRAMES;
  922. }
  923. if (!u->durb[0].urb->transfer_buffer || !u->durb[1].urb->transfer_buffer ||
  924. (u->syncpipe && (!u->surb[0].urb->transfer_buffer || !u->surb[1].urb->transfer_buffer))) {
  925. printk(KERN_ERR "usbaudio: cannot start playback device %d\n", dev->devnum);
  926. return 0;
  927. }
  928. spin_lock_irqsave(&as->lock, flags);
  929. }
  930. if (u->dma.count >= u->dma.dmasize && !u->dma.mapped) {
  931. spin_unlock_irqrestore(&as->lock, flags);
  932. return 0;
  933. }
  934. u->flags |= FLG_RUNNING;
  935. if (!(u->flags & FLG_URB0RUNNING)) {
  936. urb = u->durb[0].urb;
  937. urb->dev = dev;
  938. urb->pipe = u->datapipe;
  939. urb->transfer_flags = URB_ISO_ASAP;
  940. urb->number_of_packets = DESCFRAMES;
  941. urb->context = as;
  942. urb->complete = usbin_completed;
  943. if (!usbin_prepare_desc(u, urb) && !usb_submit_urb(urb, GFP_KERNEL))
  944. u->flags |= FLG_URB0RUNNING;
  945. else
  946. u->flags &= ~FLG_RUNNING;
  947. }
  948. if (u->flags & FLG_RUNNING && !(u->flags & FLG_URB1RUNNING)) {
  949. urb = u->durb[1].urb;
  950. urb->dev = dev;
  951. urb->pipe = u->datapipe;
  952. urb->transfer_flags = URB_ISO_ASAP;
  953. urb->number_of_packets = DESCFRAMES;
  954. urb->context = as;
  955. urb->complete = usbin_completed;
  956. if (!usbin_prepare_desc(u, urb) && !usb_submit_urb(urb, GFP_KERNEL))
  957. u->flags |= FLG_URB1RUNNING;
  958. else
  959. u->flags &= ~FLG_RUNNING;
  960. }
  961. if (u->syncpipe) {
  962. if (u->flags & FLG_RUNNING && !(u->flags & FLG_SYNC0RUNNING)) {
  963. urb = u->surb[0].urb;
  964. urb->dev = dev;
  965. urb->pipe = u->syncpipe;
  966. urb->transfer_flags = URB_ISO_ASAP;
  967. urb->number_of_packets = SYNCFRAMES;
  968. urb->context = as;
  969. urb->complete = usbin_sync_completed;
  970. /* stride: u->syncinterval */
  971. if (!usbin_sync_prepare_desc(u, urb) && !usb_submit_urb(urb, GFP_KERNEL))
  972. u->flags |= FLG_SYNC0RUNNING;
  973. else
  974. u->flags &= ~FLG_RUNNING;
  975. }
  976. if (u->flags & FLG_RUNNING && !(u->flags & FLG_SYNC1RUNNING)) {
  977. urb = u->surb[1].urb;
  978. urb->dev = dev;
  979. urb->pipe = u->syncpipe;
  980. urb->transfer_flags = URB_ISO_ASAP;
  981. urb->number_of_packets = SYNCFRAMES;
  982. urb->context = as;
  983. urb->complete = usbin_sync_completed;
  984. /* stride: u->syncinterval */
  985. if (!usbin_sync_prepare_desc(u, urb) && !usb_submit_urb(urb, GFP_KERNEL))
  986. u->flags |= FLG_SYNC1RUNNING;
  987. else
  988. u->flags &= ~FLG_RUNNING;
  989. }
  990. }
  991. spin_unlock_irqrestore(&as->lock, flags);
  992. return 0;
  993. }
  994. static void usbout_stop(struct usb_audiodev *as)
  995. {
  996. struct usbout *u = &as->usbout;
  997. unsigned long flags;
  998. unsigned int i, notkilled = 1;
  999. spin_lock_irqsave(&as->lock, flags);
  1000. u->flags &= ~FLG_RUNNING;
  1001. i = u->flags;
  1002. spin_unlock_irqrestore(&as->lock, flags);
  1003. while (i & (FLG_URB0RUNNING|FLG_URB1RUNNING|FLG_SYNC0RUNNING|FLG_SYNC1RUNNING)) {
  1004. if (notkilled)
  1005. schedule_timeout_interruptible(1);
  1006. else
  1007. schedule_timeout_uninterruptible(1);
  1008. spin_lock_irqsave(&as->lock, flags);
  1009. i = u->flags;
  1010. spin_unlock_irqrestore(&as->lock, flags);
  1011. if (notkilled && signal_pending(current)) {
  1012. if (i & FLG_URB0RUNNING)
  1013. usb_kill_urb(u->durb[0].urb);
  1014. if (i & FLG_URB1RUNNING)
  1015. usb_kill_urb(u->durb[1].urb);
  1016. if (i & FLG_SYNC0RUNNING)
  1017. usb_kill_urb(u->surb[0].urb);
  1018. if (i & FLG_SYNC1RUNNING)
  1019. usb_kill_urb(u->surb[1].urb);
  1020. notkilled = 0;
  1021. }
  1022. }
  1023. set_current_state(TASK_RUNNING);
  1024. kfree(u->durb[0].urb->transfer_buffer);
  1025. kfree(u->durb[1].urb->transfer_buffer);
  1026. kfree(u->surb[0].urb->transfer_buffer);
  1027. kfree(u->surb[1].urb->transfer_buffer);
  1028. u->durb[0].urb->transfer_buffer = u->durb[1].urb->transfer_buffer =
  1029. u->surb[0].urb->transfer_buffer = u->surb[1].urb->transfer_buffer = NULL;
  1030. }
  1031. static inline void usbout_release(struct usb_audiodev *as)
  1032. {
  1033. usbout_stop(as);
  1034. }
  1035. static void usbout_disc(struct usb_audiodev *as)
  1036. {
  1037. struct usbout *u = &as->usbout;
  1038. unsigned long flags;
  1039. spin_lock_irqsave(&as->lock, flags);
  1040. u->flags &= ~(FLG_RUNNING | FLG_CONNECTED);
  1041. spin_unlock_irqrestore(&as->lock, flags);
  1042. usbout_stop(as);
  1043. }
  1044. static void usbout_convert(struct usbout *u, unsigned char *buffer, unsigned int samples)
  1045. {
  1046. union {
  1047. __s16 s[64];
  1048. unsigned char b[0];
  1049. } tmp;
  1050. unsigned int scnt, maxs, ufmtsh, dfmtsh;
  1051. ufmtsh = AFMT_BYTESSHIFT(u->format);
  1052. dfmtsh = AFMT_BYTESSHIFT(u->dma.format);
  1053. maxs = (AFMT_ISSTEREO(u->dma.format | u->format)) ? 32 : 64;
  1054. while (samples > 0) {
  1055. scnt = samples;
  1056. if (scnt > maxs)
  1057. scnt = maxs;
  1058. dmabuf_copyout(&u->dma, tmp.b, scnt << dfmtsh);
  1059. conversion(tmp.b, u->dma.format, buffer, u->format, tmp.b, scnt);
  1060. buffer += scnt << ufmtsh;
  1061. samples -= scnt;
  1062. }
  1063. }
  1064. static int usbout_prepare_desc(struct usbout *u, struct urb *urb)
  1065. {
  1066. unsigned int i, ufmtsh, dfmtsh, err = 0, cnt, scnt, offs;
  1067. unsigned char *cp = urb->transfer_buffer;
  1068. ufmtsh = AFMT_BYTESSHIFT(u->format);
  1069. dfmtsh = AFMT_BYTESSHIFT(u->dma.format);
  1070. for (i = offs = 0; i < DESCFRAMES; i++) {
  1071. urb->iso_frame_desc[i].offset = offs;
  1072. u->phase = (u->phase & 0x3fff) + u->freqm;
  1073. scnt = u->phase >> 14;
  1074. if (!scnt) {
  1075. urb->iso_frame_desc[i].length = 0;
  1076. continue;
  1077. }
  1078. cnt = scnt << dfmtsh;
  1079. if (!u->dma.mapped) {
  1080. if (cnt > u->dma.count) {
  1081. scnt = u->dma.count >> dfmtsh;
  1082. cnt = scnt << dfmtsh;
  1083. err++;
  1084. }
  1085. u->dma.count -= cnt;
  1086. } else
  1087. u->dma.count += cnt;
  1088. if (u->format == u->dma.format) {
  1089. /* we do not need format conversion */
  1090. dmabuf_copyout(&u->dma, cp, cnt);
  1091. } else {
  1092. /* we need sampling format conversion */
  1093. usbout_convert(u, cp, scnt);
  1094. }
  1095. cnt = scnt << ufmtsh;
  1096. urb->iso_frame_desc[i].length = cnt;
  1097. offs += cnt;
  1098. cp += cnt;
  1099. }
  1100. urb->interval = 1;
  1101. if (err)
  1102. u->dma.error++;
  1103. if (u->dma.mapped) {
  1104. if (u->dma.count >= (signed)u->dma.fragsize)
  1105. wake_up(&u->dma.wait);
  1106. } else {
  1107. if ((signed)u->dma.dmasize >= u->dma.count + (signed)u->dma.fragsize)
  1108. wake_up(&u->dma.wait);
  1109. }
  1110. return err ? -1 : 0;
  1111. }
  1112. /*
  1113. * return value: 0 if descriptor should be restarted, -1 otherwise
  1114. */
  1115. static int usbout_retire_desc(struct usbout *u, struct urb *urb)
  1116. {
  1117. unsigned int i;
  1118. for (i = 0; i < DESCFRAMES; i++) {
  1119. if (urb->iso_frame_desc[i].status) {
  1120. dprintk((KERN_DEBUG "usbout_retire_desc: frame %u status %d\n", i, urb->iso_frame_desc[i].status));
  1121. continue;
  1122. }
  1123. }
  1124. return 0;
  1125. }
  1126. static void usbout_completed(struct urb *urb, struct pt_regs *regs)
  1127. {
  1128. struct usb_audiodev *as = (struct usb_audiodev *)urb->context;
  1129. struct usbout *u = &as->usbout;
  1130. unsigned long flags;
  1131. unsigned int mask;
  1132. int suret = 0;
  1133. #if 0
  1134. printk(KERN_DEBUG "usbout_completed: status %d errcnt %d flags 0x%x\n", urb->status, urb->error_count, u->flags);
  1135. #endif
  1136. if (urb == u->durb[0].urb)
  1137. mask = FLG_URB0RUNNING;
  1138. else if (urb == u->durb[1].urb)
  1139. mask = FLG_URB1RUNNING;
  1140. else {
  1141. mask = 0;
  1142. printk(KERN_ERR "usbout_completed: panic: unknown URB\n");
  1143. }
  1144. urb->dev = as->state->usbdev;
  1145. spin_lock_irqsave(&as->lock, flags);
  1146. if (!usbout_retire_desc(u, urb) &&
  1147. u->flags & FLG_RUNNING &&
  1148. !usbout_prepare_desc(u, urb) &&
  1149. (suret = usb_submit_urb(urb, GFP_ATOMIC)) == 0) {
  1150. u->flags |= mask;
  1151. } else {
  1152. u->flags &= ~(mask | FLG_RUNNING);
  1153. wake_up(&u->dma.wait);
  1154. dprintk((KERN_DEBUG "usbout_completed: descriptor not restarted (usb_submit_urb: %d)\n", suret));
  1155. }
  1156. spin_unlock_irqrestore(&as->lock, flags);
  1157. }
  1158. static int usbout_sync_prepare_desc(struct usbout *u, struct urb *urb)
  1159. {
  1160. unsigned int i, offs;
  1161. for (i = offs = 0; i < SYNCFRAMES; i++, offs += 3) {
  1162. urb->iso_frame_desc[i].length = 3;
  1163. urb->iso_frame_desc[i].offset = offs;
  1164. }
  1165. urb->interval = 1;
  1166. return 0;
  1167. }
  1168. /*
  1169. * return value: 0 if descriptor should be restarted, -1 otherwise
  1170. */
  1171. static int usbout_sync_retire_desc(struct usbout *u, struct urb *urb)
  1172. {
  1173. unsigned char *cp = urb->transfer_buffer;
  1174. unsigned int f, i;
  1175. for (i = 0; i < SYNCFRAMES; i++, cp += 3) {
  1176. if (urb->iso_frame_desc[i].status) {
  1177. dprintk((KERN_DEBUG "usbout_sync_retire_desc: frame %u status %d\n", i, urb->iso_frame_desc[i].status));
  1178. continue;
  1179. }
  1180. if (urb->iso_frame_desc[i].actual_length < 3) {
  1181. dprintk((KERN_DEBUG "usbout_sync_retire_desc: frame %u length %d\n", i, urb->iso_frame_desc[i].actual_length));
  1182. continue;
  1183. }
  1184. f = cp[0] | (cp[1] << 8) | (cp[2] << 16);
  1185. if (abs(f - u->freqn) > (u->freqn >> 3) || f > u->freqmax) {
  1186. printk(KERN_WARNING "usbout_sync_retire_desc: requested frequency %u (nominal %u) out of range!\n", f, u->freqn);
  1187. continue;
  1188. }
  1189. u->freqm = f;
  1190. }
  1191. return 0;
  1192. }
  1193. static void usbout_sync_completed(struct urb *urb, struct pt_regs *regs)
  1194. {
  1195. struct usb_audiodev *as = (struct usb_audiodev *)urb->context;
  1196. struct usbout *u = &as->usbout;
  1197. unsigned long flags;
  1198. unsigned int mask;
  1199. int suret = 0;
  1200. #if 0
  1201. printk(KERN_DEBUG "usbout_sync_completed: status %d errcnt %d flags 0x%x\n", urb->status, urb->error_count, u->flags);
  1202. #endif
  1203. if (urb == u->surb[0].urb)
  1204. mask = FLG_SYNC0RUNNING;
  1205. else if (urb == u->surb[1].urb)
  1206. mask = FLG_SYNC1RUNNING;
  1207. else {
  1208. mask = 0;
  1209. printk(KERN_ERR "usbout_sync_completed: panic: unknown URB\n");
  1210. }
  1211. urb->dev = as->state->usbdev;
  1212. spin_lock_irqsave(&as->lock, flags);
  1213. if (!usbout_sync_retire_desc(u, urb) &&
  1214. u->flags & FLG_RUNNING &&
  1215. !usbout_sync_prepare_desc(u, urb) &&
  1216. (suret = usb_submit_urb(urb, GFP_ATOMIC)) == 0) {
  1217. u->flags |= mask;
  1218. } else {
  1219. u->flags &= ~(mask | FLG_RUNNING);
  1220. wake_up(&u->dma.wait);
  1221. dprintk((KERN_DEBUG "usbout_sync_completed: descriptor not restarted (usb_submit_urb: %d)\n", suret));
  1222. }
  1223. spin_unlock_irqrestore(&as->lock, flags);
  1224. }
  1225. static int usbout_start(struct usb_audiodev *as)
  1226. {
  1227. struct usb_device *dev = as->state->usbdev;
  1228. struct usbout *u = &as->usbout;
  1229. struct urb *urb;
  1230. unsigned long flags;
  1231. unsigned int maxsze, bufsz;
  1232. #if 0
  1233. printk(KERN_DEBUG "usbout_start: device %d ufmt 0x%08x dfmt 0x%08x srate %d\n",
  1234. dev->devnum, u->format, u->dma.format, u->dma.srate);
  1235. #endif
  1236. /* allocate USB storage if not already done */
  1237. spin_lock_irqsave(&as->lock, flags);
  1238. if (!(u->flags & FLG_CONNECTED)) {
  1239. spin_unlock_irqrestore(&as->lock, flags);
  1240. return -EIO;
  1241. }
  1242. if (!(u->flags & FLG_RUNNING)) {
  1243. spin_unlock_irqrestore(&as->lock, flags);
  1244. u->freqn = u->freqm = ((u->dma.srate << 11) + 62) / 125; /* this will overflow at approx 2MSPS */
  1245. u->freqmax = u->freqn + (u->freqn >> 2);
  1246. u->phase = 0;
  1247. maxsze = (u->freqmax + 0x3fff) >> (14 - AFMT_BYTESSHIFT(u->format));
  1248. bufsz = DESCFRAMES * maxsze;
  1249. kfree(u->durb[0].urb->transfer_buffer);
  1250. u->durb[0].urb->transfer_buffer = kmalloc(bufsz, GFP_KERNEL);
  1251. u->durb[0].urb->transfer_buffer_length = bufsz;
  1252. kfree(u->durb[1].urb->transfer_buffer);
  1253. u->durb[1].urb->transfer_buffer = kmalloc(bufsz, GFP_KERNEL);
  1254. u->durb[1].urb->transfer_buffer_length = bufsz;
  1255. if (u->syncpipe) {
  1256. kfree(u->surb[0].urb->transfer_buffer);
  1257. u->surb[0].urb->transfer_buffer = kmalloc(3*SYNCFRAMES, GFP_KERNEL);
  1258. u->surb[0].urb->transfer_buffer_length = 3*SYNCFRAMES;
  1259. kfree(u->surb[1].urb->transfer_buffer);
  1260. u->surb[1].urb->transfer_buffer = kmalloc(3*SYNCFRAMES, GFP_KERNEL);
  1261. u->surb[1].urb->transfer_buffer_length = 3*SYNCFRAMES;
  1262. }
  1263. if (!u->durb[0].urb->transfer_buffer || !u->durb[1].urb->transfer_buffer ||
  1264. (u->syncpipe && (!u->surb[0].urb->transfer_buffer || !u->surb[1].urb->transfer_buffer))) {
  1265. printk(KERN_ERR "usbaudio: cannot start playback device %d\n", dev->devnum);
  1266. return 0;
  1267. }
  1268. spin_lock_irqsave(&as->lock, flags);
  1269. }
  1270. if (u->dma.count <= 0 && !u->dma.mapped) {
  1271. spin_unlock_irqrestore(&as->lock, flags);
  1272. return 0;
  1273. }
  1274. u->flags |= FLG_RUNNING;
  1275. if (!(u->flags & FLG_URB0RUNNING)) {
  1276. urb = u->durb[0].urb;
  1277. urb->dev = dev;
  1278. urb->pipe = u->datapipe;
  1279. urb->transfer_flags = URB_ISO_ASAP;
  1280. urb->number_of_packets = DESCFRAMES;
  1281. urb->context = as;
  1282. urb->complete = usbout_completed;
  1283. if (!usbout_prepare_desc(u, urb) && !usb_submit_urb(urb, GFP_ATOMIC))
  1284. u->flags |= FLG_URB0RUNNING;
  1285. else
  1286. u->flags &= ~FLG_RUNNING;
  1287. }
  1288. if (u->flags & FLG_RUNNING && !(u->flags & FLG_URB1RUNNING)) {
  1289. urb = u->durb[1].urb;
  1290. urb->dev = dev;
  1291. urb->pipe = u->datapipe;
  1292. urb->transfer_flags = URB_ISO_ASAP;
  1293. urb->number_of_packets = DESCFRAMES;
  1294. urb->context = as;
  1295. urb->complete = usbout_completed;
  1296. if (!usbout_prepare_desc(u, urb) && !usb_submit_urb(urb, GFP_ATOMIC))
  1297. u->flags |= FLG_URB1RUNNING;
  1298. else
  1299. u->flags &= ~FLG_RUNNING;
  1300. }
  1301. if (u->syncpipe) {
  1302. if (u->flags & FLG_RUNNING && !(u->flags & FLG_SYNC0RUNNING)) {
  1303. urb = u->surb[0].urb;
  1304. urb->dev = dev;
  1305. urb->pipe = u->syncpipe;
  1306. urb->transfer_flags = URB_ISO_ASAP;
  1307. urb->number_of_packets = SYNCFRAMES;
  1308. urb->context = as;
  1309. urb->complete = usbout_sync_completed;
  1310. /* stride: u->syncinterval */
  1311. if (!usbout_sync_prepare_desc(u, urb) && !usb_submit_urb(urb, GFP_ATOMIC))
  1312. u->flags |= FLG_SYNC0RUNNING;
  1313. else
  1314. u->flags &= ~FLG_RUNNING;
  1315. }
  1316. if (u->flags & FLG_RUNNING && !(u->flags & FLG_SYNC1RUNNING)) {
  1317. urb = u->surb[1].urb;
  1318. urb->dev = dev;
  1319. urb->pipe = u->syncpipe;
  1320. urb->transfer_flags = URB_ISO_ASAP;
  1321. urb->number_of_packets = SYNCFRAMES;
  1322. urb->context = as;
  1323. urb->complete = usbout_sync_completed;
  1324. /* stride: u->syncinterval */
  1325. if (!usbout_sync_prepare_desc(u, urb) && !usb_submit_urb(urb, GFP_ATOMIC))
  1326. u->flags |= FLG_SYNC1RUNNING;
  1327. else
  1328. u->flags &= ~FLG_RUNNING;
  1329. }
  1330. }
  1331. spin_unlock_irqrestore(&as->lock, flags);
  1332. return 0;
  1333. }
  1334. /* --------------------------------------------------------------------- */
  1335. static unsigned int format_goodness(struct audioformat *afp, unsigned int fmt, unsigned int srate)
  1336. {
  1337. unsigned int g = 0;
  1338. if (srate < afp->sratelo)
  1339. g += afp->sratelo - srate;
  1340. if (srate > afp->sratehi)
  1341. g += srate - afp->sratehi;
  1342. if (AFMT_ISSTEREO(afp->format) && !AFMT_ISSTEREO(fmt))
  1343. g += 0x100000;
  1344. if (!AFMT_ISSTEREO(afp->format) && AFMT_ISSTEREO(fmt))
  1345. g += 0x400000;
  1346. if (AFMT_IS16BIT(afp->format) && !AFMT_IS16BIT(fmt))
  1347. g += 0x100000;
  1348. if (!AFMT_IS16BIT(afp->format) && AFMT_IS16BIT(fmt))
  1349. g += 0x400000;
  1350. return g;
  1351. }
  1352. static int find_format(struct audioformat *afp, unsigned int nr, unsigned int fmt, unsigned int srate)
  1353. {
  1354. unsigned int i, g, gb = ~0;
  1355. int j = -1; /* default to failure */
  1356. /* find "best" format (according to format_goodness) */
  1357. for (i = 0; i < nr; i++) {
  1358. g = format_goodness(&afp[i], fmt, srate);
  1359. if (g >= gb)
  1360. continue;
  1361. j = i;
  1362. gb = g;
  1363. }
  1364. return j;
  1365. }
  1366. static int set_format_in(struct usb_audiodev *as)
  1367. {
  1368. struct usb_device *dev = as->state->usbdev;
  1369. struct usb_host_interface *alts;
  1370. struct usb_interface *iface;
  1371. struct usbin *u = &as->usbin;
  1372. struct dmabuf *d = &u->dma;
  1373. struct audioformat *fmt;
  1374. unsigned int ep;
  1375. unsigned char data[3];
  1376. int fmtnr, ret;
  1377. iface = usb_ifnum_to_if(dev, u->interface);
  1378. if (!iface)
  1379. return 0;
  1380. fmtnr = find_format(as->fmtin, as->numfmtin, d->format, d->srate);
  1381. if (fmtnr < 0) {
  1382. printk(KERN_ERR "usbaudio: set_format_in(): failed to find desired format/speed combination.\n");
  1383. return -1;
  1384. }
  1385. fmt = as->fmtin + fmtnr;
  1386. alts = usb_altnum_to_altsetting(iface, fmt->altsetting);
  1387. u->format = fmt->format;
  1388. u->datapipe = usb_rcvisocpipe(dev, alts->endpoint[0].desc.bEndpointAddress & 0xf);
  1389. u->syncpipe = u->syncinterval = 0;
  1390. if ((alts->endpoint[0].desc.bmAttributes & 0x0c) == 0x08) {
  1391. if (alts->desc.bNumEndpoints < 2 ||
  1392. alts->endpoint[1].desc.bmAttributes != 0x01 ||
  1393. alts->endpoint[1].desc.bSynchAddress != 0 ||
  1394. alts->endpoint[1].desc.bEndpointAddress != (alts->endpoint[0].desc.bSynchAddress & 0x7f)) {
  1395. printk(KERN_WARNING "usbaudio: device %d interface %d altsetting %d claims adaptive in "
  1396. "but has invalid synch pipe; treating as asynchronous in\n",
  1397. dev->devnum, u->interface, fmt->altsetting);
  1398. } else {
  1399. u->syncpipe = usb_sndisocpipe(dev, alts->endpoint[1].desc.bEndpointAddress & 0xf);
  1400. u->syncinterval = alts->endpoint[1].desc.bRefresh;
  1401. }
  1402. }
  1403. if (d->srate < fmt->sratelo)
  1404. d->srate = fmt->sratelo;
  1405. if (d->srate > fmt->sratehi)
  1406. d->srate = fmt->sratehi;
  1407. dprintk((KERN_DEBUG "usbaudio: set_format_in: usb_set_interface %u %u\n",
  1408. u->interface, fmt->altsetting));
  1409. if (usb_set_interface(dev, alts->desc.bInterfaceNumber, fmt->altsetting) < 0) {
  1410. printk(KERN_WARNING "usbaudio: usb_set_interface failed, device %d interface %d altsetting %d\n",
  1411. dev->devnum, u->interface, fmt->altsetting);
  1412. return -1;
  1413. }
  1414. if (fmt->sratelo == fmt->sratehi)
  1415. return 0;
  1416. ep = usb_pipeendpoint(u->datapipe) | (u->datapipe & USB_DIR_IN);
  1417. /* if endpoint has pitch control, enable it */
  1418. if (fmt->attributes & 0x02) {
  1419. data[0] = 1;
  1420. if ((ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), SET_CUR, USB_TYPE_CLASS|USB_RECIP_ENDPOINT|USB_DIR_OUT,
  1421. PITCH_CONTROL << 8, ep, data, 1, 1000)) < 0) {
  1422. printk(KERN_ERR "usbaudio: failure (error %d) to set output pitch control device %d interface %u endpoint 0x%x to %u\n",
  1423. ret, dev->devnum, u->interface, ep, d->srate);
  1424. return -1;
  1425. }
  1426. }
  1427. /* if endpoint has sampling rate control, set it */
  1428. if (fmt->attributes & 0x01) {
  1429. data[0] = d->srate;
  1430. data[1] = d->srate >> 8;
  1431. data[2] = d->srate >> 16;
  1432. if ((ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), SET_CUR, USB_TYPE_CLASS|USB_RECIP_ENDPOINT|USB_DIR_OUT,
  1433. SAMPLING_FREQ_CONTROL << 8, ep, data, 3, 1000)) < 0) {
  1434. printk(KERN_ERR "usbaudio: failure (error %d) to set input sampling frequency device %d interface %u endpoint 0x%x to %u\n",
  1435. ret, dev->devnum, u->interface, ep, d->srate);
  1436. return -1;
  1437. }
  1438. if ((ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), GET_CUR, USB_TYPE_CLASS|USB_RECIP_ENDPOINT|USB_DIR_IN,
  1439. SAMPLING_FREQ_CONTROL << 8, ep, data, 3, 1000)) < 0) {
  1440. printk(KERN_ERR "usbaudio: failure (error %d) to get input sampling frequency device %d interface %u endpoint 0x%x\n",
  1441. ret, dev->devnum, u->interface, ep);
  1442. return -1;
  1443. }
  1444. dprintk((KERN_DEBUG "usbaudio: set_format_in: device %d interface %d altsetting %d srate req: %u real %u\n",
  1445. dev->devnum, u->interface, fmt->altsetting, d->srate, data[0] | (data[1] << 8) | (data[2] << 16)));
  1446. d->srate = data[0] | (data[1] << 8) | (data[2] << 16);
  1447. }
  1448. dprintk((KERN_DEBUG "usbaudio: set_format_in: USB format 0x%x, DMA format 0x%x srate %u\n", u->format, d->format, d->srate));
  1449. return 0;
  1450. }
  1451. static int set_format_out(struct usb_audiodev *as)
  1452. {
  1453. struct usb_device *dev = as->state->usbdev;
  1454. struct usb_host_interface *alts;
  1455. struct usb_interface *iface;
  1456. struct usbout *u = &as->usbout;
  1457. struct dmabuf *d = &u->dma;
  1458. struct audioformat *fmt;
  1459. unsigned int ep;
  1460. unsigned char data[3];
  1461. int fmtnr, ret;
  1462. iface = usb_ifnum_to_if(dev, u->interface);
  1463. if (!iface)
  1464. return 0;
  1465. fmtnr = find_format(as->fmtout, as->numfmtout, d->format, d->srate);
  1466. if (fmtnr < 0) {
  1467. printk(KERN_ERR "usbaudio: set_format_out(): failed to find desired format/speed combination.\n");
  1468. return -1;
  1469. }
  1470. fmt = as->fmtout + fmtnr;
  1471. u->format = fmt->format;
  1472. alts = usb_altnum_to_altsetting(iface, fmt->altsetting);
  1473. u->datapipe = usb_sndisocpipe(dev, alts->endpoint[0].desc.bEndpointAddress & 0xf);
  1474. u->syncpipe = u->syncinterval = 0;
  1475. if ((alts->endpoint[0].desc.bmAttributes & 0x0c) == 0x04) {
  1476. #if 0
  1477. printk(KERN_DEBUG "bNumEndpoints 0x%02x endpoint[1].bmAttributes 0x%02x\n"
  1478. KERN_DEBUG "endpoint[1].bSynchAddress 0x%02x endpoint[1].bEndpointAddress 0x%02x\n"
  1479. KERN_DEBUG "endpoint[0].bSynchAddress 0x%02x\n", alts->bNumEndpoints,
  1480. alts->endpoint[1].bmAttributes, alts->endpoint[1].bSynchAddress,
  1481. alts->endpoint[1].bEndpointAddress, alts->endpoint[0].bSynchAddress);
  1482. #endif
  1483. if (alts->desc.bNumEndpoints < 2 ||
  1484. alts->endpoint[1].desc.bmAttributes != 0x01 ||
  1485. alts->endpoint[1].desc.bSynchAddress != 0 ||
  1486. alts->endpoint[1].desc.bEndpointAddress != (alts->endpoint[0].desc.bSynchAddress | 0x80)) {
  1487. printk(KERN_WARNING "usbaudio: device %d interface %d altsetting %d claims asynch out "
  1488. "but has invalid synch pipe; treating as adaptive out\n",
  1489. dev->devnum, u->interface, fmt->altsetting);
  1490. } else {
  1491. u->syncpipe = usb_rcvisocpipe(dev, alts->endpoint[1].desc.bEndpointAddress & 0xf);
  1492. u->syncinterval = alts->endpoint[1].desc.bRefresh;
  1493. }
  1494. }
  1495. if (d->srate < fmt->sratelo)
  1496. d->srate = fmt->sratelo;
  1497. if (d->srate > fmt->sratehi)
  1498. d->srate = fmt->sratehi;
  1499. dprintk((KERN_DEBUG "usbaudio: set_format_out: usb_set_interface %u %u\n",
  1500. u->interface, fmt->altsetting));
  1501. if (usb_set_interface(dev, u->interface, fmt->altsetting) < 0) {
  1502. printk(KERN_WARNING "usbaudio: usb_set_interface failed, device %d interface %d altsetting %d\n",
  1503. dev->devnum, u->interface, fmt->altsetting);
  1504. return -1;
  1505. }
  1506. if (fmt->sratelo == fmt->sratehi)
  1507. return 0;
  1508. ep = usb_pipeendpoint(u->datapipe) | (u->datapipe & USB_DIR_IN);
  1509. /* if endpoint has pitch control, enable it */
  1510. if (fmt->attributes & 0x02) {
  1511. data[0] = 1;
  1512. if ((ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), SET_CUR, USB_TYPE_CLASS|USB_RECIP_ENDPOINT|USB_DIR_OUT,
  1513. PITCH_CONTROL << 8, ep, data, 1, 1000)) < 0) {
  1514. printk(KERN_ERR "usbaudio: failure (error %d) to set output pitch control device %d interface %u endpoint 0x%x to %u\n",
  1515. ret, dev->devnum, u->interface, ep, d->srate);
  1516. return -1;
  1517. }
  1518. }
  1519. /* if endpoint has sampling rate control, set it */
  1520. if (fmt->attributes & 0x01) {
  1521. data[0] = d->srate;
  1522. data[1] = d->srate >> 8;
  1523. data[2] = d->srate >> 16;
  1524. if ((ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), SET_CUR, USB_TYPE_CLASS|USB_RECIP_ENDPOINT|USB_DIR_OUT,
  1525. SAMPLING_FREQ_CONTROL << 8, ep, data, 3, 1000)) < 0) {
  1526. printk(KERN_ERR "usbaudio: failure (error %d) to set output sampling frequency device %d interface %u endpoint 0x%x to %u\n",
  1527. ret, dev->devnum, u->interface, ep, d->srate);
  1528. return -1;
  1529. }
  1530. if ((ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), GET_CUR, USB_TYPE_CLASS|USB_RECIP_ENDPOINT|USB_DIR_IN,
  1531. SAMPLING_FREQ_CONTROL << 8, ep, data, 3, 1000)) < 0) {
  1532. printk(KERN_ERR "usbaudio: failure (error %d) to get output sampling frequency device %d interface %u endpoint 0x%x\n",
  1533. ret, dev->devnum, u->interface, ep);
  1534. return -1;
  1535. }
  1536. dprintk((KERN_DEBUG "usbaudio: set_format_out: device %d interface %d altsetting %d srate req: %u real %u\n",
  1537. dev->devnum, u->interface, fmt->altsetting, d->srate, data[0] | (data[1] << 8) | (data[2] << 16)));
  1538. d->srate = data[0] | (data[1] << 8) | (data[2] << 16);
  1539. }
  1540. dprintk((KERN_DEBUG "usbaudio: set_format_out: USB format 0x%x, DMA format 0x%x srate %u\n", u->format, d->format, d->srate));
  1541. return 0;
  1542. }
  1543. static int set_format(struct usb_audiodev *s, unsigned int fmode, unsigned int fmt, unsigned int srate)
  1544. {
  1545. int ret1 = 0, ret2 = 0;
  1546. if (!(fmode & (FMODE_READ|FMODE_WRITE)))
  1547. return -EINVAL;
  1548. if (fmode & FMODE_READ) {
  1549. usbin_stop(s);
  1550. s->usbin.dma.ready = 0;
  1551. if (fmt == AFMT_QUERY)
  1552. fmt = s->usbin.dma.format;
  1553. else
  1554. s->usbin.dma.format = fmt;
  1555. if (!srate)
  1556. srate = s->usbin.dma.srate;
  1557. else
  1558. s->usbin.dma.srate = srate;
  1559. }
  1560. if (fmode & FMODE_WRITE) {
  1561. usbout_stop(s);
  1562. s->usbout.dma.ready = 0;
  1563. if (fmt == AFMT_QUERY)
  1564. fmt = s->usbout.dma.format;
  1565. else
  1566. s->usbout.dma.format = fmt;
  1567. if (!srate)
  1568. srate = s->usbout.dma.srate;
  1569. else
  1570. s->usbout.dma.srate = srate;
  1571. }
  1572. if (fmode & FMODE_READ)
  1573. ret1 = set_format_in(s);
  1574. if (fmode & FMODE_WRITE)
  1575. ret2 = set_format_out(s);
  1576. return ret1 ? ret1 : ret2;
  1577. }
  1578. /* --------------------------------------------------------------------- */
  1579. static int wrmixer(struct usb_mixerdev *ms, unsigned mixch, unsigned value)
  1580. {
  1581. struct usb_device *dev = ms->state->usbdev;
  1582. unsigned char data[2];
  1583. struct mixerchannel *ch;
  1584. int v1, v2, v3;
  1585. if (mixch >= ms->numch)
  1586. return -1;
  1587. ch = &ms->ch[mixch];
  1588. v3 = ch->maxval - ch->minval;
  1589. v1 = value & 0xff;
  1590. v2 = (value >> 8) & 0xff;
  1591. if (v1 > 100)
  1592. v1 = 100;
  1593. if (v2 > 100)
  1594. v2 = 100;
  1595. if (!(ch->flags & (MIXFLG_STEREOIN | MIXFLG_STEREOOUT)))
  1596. v2 = v1;
  1597. ch->value = v1 | (v2 << 8);
  1598. v1 = (v1 * v3) / 100 + ch->minval;
  1599. v2 = (v2 * v3) / 100 + ch->minval;
  1600. switch (ch->selector) {
  1601. case 0: /* mixer unit request */
  1602. data[0] = v1;
  1603. data[1] = v1 >> 8;
  1604. if (usb_control_msg(dev, usb_sndctrlpipe(dev, 0), SET_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_OUT,
  1605. (ch->chnum << 8) | 1, ms->iface | (ch->unitid << 8), data, 2, 1000) < 0)
  1606. goto err;
  1607. if (!(ch->flags & (MIXFLG_STEREOIN | MIXFLG_STEREOOUT)))
  1608. return 0;
  1609. data[0] = v2;
  1610. data[1] = v2 >> 8;
  1611. if (usb_control_msg(dev, usb_sndctrlpipe(dev, 0), SET_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_OUT,
  1612. ((ch->chnum + !!(ch->flags & MIXFLG_STEREOIN)) << 8) | (1 + !!(ch->flags & MIXFLG_STEREOOUT)),
  1613. ms->iface | (ch->unitid << 8), data, 2, 1000) < 0)
  1614. goto err;
  1615. return 0;
  1616. /* various feature unit controls */
  1617. case VOLUME_CONTROL:
  1618. data[0] = v1;
  1619. data[1] = v1 >> 8;
  1620. if (usb_control_msg(dev, usb_sndctrlpipe(dev, 0), SET_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_OUT,
  1621. (ch->selector << 8) | ch->chnum, ms->iface | (ch->unitid << 8), data, 2, 1000) < 0)
  1622. goto err;
  1623. if (!(ch->flags & (MIXFLG_STEREOIN | MIXFLG_STEREOOUT)))
  1624. return 0;
  1625. data[0] = v2;
  1626. data[1] = v2 >> 8;
  1627. if (usb_control_msg(dev, usb_sndctrlpipe(dev, 0), SET_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_OUT,
  1628. (ch->selector << 8) | (ch->chnum + 1), ms->iface | (ch->unitid << 8), data, 2, 1000) < 0)
  1629. goto err;
  1630. return 0;
  1631. case BASS_CONTROL:
  1632. case MID_CONTROL:
  1633. case TREBLE_CONTROL:
  1634. data[0] = v1 >> 8;
  1635. if (usb_control_msg(dev, usb_sndctrlpipe(dev, 0), SET_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_OUT,
  1636. (ch->selector << 8) | ch->chnum, ms->iface | (ch->unitid << 8), data, 1, 1000) < 0)
  1637. goto err;
  1638. if (!(ch->flags & (MIXFLG_STEREOIN | MIXFLG_STEREOOUT)))
  1639. return 0;
  1640. data[0] = v2 >> 8;
  1641. if (usb_control_msg(dev, usb_sndctrlpipe(dev, 0), SET_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_OUT,
  1642. (ch->selector << 8) | (ch->chnum + 1), ms->iface | (ch->unitid << 8), data, 1, 1000) < 0)
  1643. goto err;
  1644. return 0;
  1645. default:
  1646. return -1;
  1647. }
  1648. return 0;
  1649. err:
  1650. printk(KERN_ERR "usbaudio: mixer request device %u if %u unit %u ch %u selector %u failed\n",
  1651. dev->devnum, ms->iface, ch->unitid, ch->chnum, ch->selector);
  1652. return -1;
  1653. }
  1654. static int get_rec_src(struct usb_mixerdev *ms)
  1655. {
  1656. struct usb_device *dev = ms->state->usbdev;
  1657. unsigned int mask = 0, retmask = 0;
  1658. unsigned int i, j;
  1659. unsigned char buf;
  1660. int err = 0;
  1661. for (i = 0; i < ms->numch; i++) {
  1662. if (!ms->ch[i].slctunitid || (mask & (1 << i)))
  1663. continue;
  1664. if (usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), GET_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN,
  1665. 0, ms->iface | (ms->ch[i].slctunitid << 8), &buf, 1, 1000) < 0) {
  1666. err = -EIO;
  1667. printk(KERN_ERR "usbaudio: selector read request device %u if %u unit %u failed\n",
  1668. dev->devnum, ms->iface, ms->ch[i].slctunitid & 0xff);
  1669. continue;
  1670. }
  1671. for (j = i; j < ms->numch; j++) {
  1672. if ((ms->ch[i].slctunitid ^ ms->ch[j].slctunitid) & 0xff)
  1673. continue;
  1674. mask |= 1 << j;
  1675. if (buf == (ms->ch[j].slctunitid >> 8))
  1676. retmask |= 1 << ms->ch[j].osschannel;
  1677. }
  1678. }
  1679. if (err)
  1680. return -EIO;
  1681. return retmask;
  1682. }
  1683. static int set_rec_src(struct usb_mixerdev *ms, int srcmask)
  1684. {
  1685. struct usb_device *dev = ms->state->usbdev;
  1686. unsigned int mask = 0, smask, bmask;
  1687. unsigned int i, j;
  1688. unsigned char buf;
  1689. int err = 0;
  1690. for (i = 0; i < ms->numch; i++) {
  1691. if (!ms->ch[i].slctunitid || (mask & (1 << i)))
  1692. continue;
  1693. if (usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), GET_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN,
  1694. 0, ms->iface | (ms->ch[i].slctunitid << 8), &buf, 1, 1000) < 0) {
  1695. err = -EIO;
  1696. printk(KERN_ERR "usbaudio: selector read request device %u if %u unit %u failed\n",
  1697. dev->devnum, ms->iface, ms->ch[i].slctunitid & 0xff);
  1698. continue;
  1699. }
  1700. /* first generate smask */
  1701. smask = bmask = 0;
  1702. for (j = i; j < ms->numch; j++) {
  1703. if ((ms->ch[i].slctunitid ^ ms->ch[j].slctunitid) & 0xff)
  1704. continue;
  1705. smask |= 1 << ms->ch[j].osschannel;
  1706. if (buf == (ms->ch[j].slctunitid >> 8))
  1707. bmask |= 1 << ms->ch[j].osschannel;
  1708. mask |= 1 << j;
  1709. }
  1710. /* check for multiple set sources */
  1711. j = hweight32(srcmask & smask);
  1712. if (j == 0)
  1713. continue;
  1714. if (j > 1)
  1715. srcmask &= ~bmask;
  1716. for (j = i; j < ms->numch; j++) {
  1717. if ((ms->ch[i].slctunitid ^ ms->ch[j].slctunitid) & 0xff)
  1718. continue;
  1719. if (!(srcmask & (1 << ms->ch[j].osschannel)))
  1720. continue;
  1721. buf = ms->ch[j].slctunitid >> 8;
  1722. if (usb_control_msg(dev, usb_sndctrlpipe(dev, 0), SET_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_OUT,
  1723. 0, ms->iface | (ms->ch[j].slctunitid << 8), &buf, 1, 1000) < 0) {
  1724. err = -EIO;
  1725. printk(KERN_ERR "usbaudio: selector write request device %u if %u unit %u failed\n",
  1726. dev->devnum, ms->iface, ms->ch[j].slctunitid & 0xff);
  1727. continue;
  1728. }
  1729. }
  1730. }
  1731. return err ? -EIO : 0;
  1732. }
  1733. /* --------------------------------------------------------------------- */
  1734. /*
  1735. * should be called with open_sem hold, so that no new processes
  1736. * look at the audio device to be destroyed
  1737. */
  1738. static void release(struct usb_audio_state *s)
  1739. {
  1740. struct usb_audiodev *as;
  1741. struct usb_mixerdev *ms;
  1742. s->count--;
  1743. if (s->count) {
  1744. up(&open_sem);
  1745. return;
  1746. }
  1747. up(&open_sem);
  1748. wake_up(&open_wait);
  1749. while (!list_empty(&s->audiolist)) {
  1750. as = list_entry(s->audiolist.next, struct usb_audiodev, list);
  1751. list_del(&as->list);
  1752. usbin_release(as);
  1753. usbout_release(as);
  1754. dmabuf_release(&as->usbin.dma);
  1755. dmabuf_release(&as->usbout.dma);
  1756. usb_free_urb(as->usbin.durb[0].urb);
  1757. usb_free_urb(as->usbin.durb[1].urb);
  1758. usb_free_urb(as->usbin.surb[0].urb);
  1759. usb_free_urb(as->usbin.surb[1].urb);
  1760. usb_free_urb(as->usbout.durb[0].urb);
  1761. usb_free_urb(as->usbout.durb[1].urb);
  1762. usb_free_urb(as->usbout.surb[0].urb);
  1763. usb_free_urb(as->usbout.surb[1].urb);
  1764. kfree(as);
  1765. }
  1766. while (!list_empty(&s->mixerlist)) {
  1767. ms = list_entry(s->mixerlist.next, struct usb_mixerdev, list);
  1768. list_del(&ms->list);
  1769. kfree(ms);
  1770. }
  1771. kfree(s);
  1772. }
  1773. static inline int prog_dmabuf_in(struct usb_audiodev *as)
  1774. {
  1775. usbin_stop(as);
  1776. return dmabuf_init(&as->usbin.dma);
  1777. }
  1778. static inline int prog_dmabuf_out(struct usb_audiodev *as)
  1779. {
  1780. usbout_stop(as);
  1781. return dmabuf_init(&as->usbout.dma);
  1782. }
  1783. /* --------------------------------------------------------------------- */
  1784. static int usb_audio_open_mixdev(struct inode *inode, struct file *file)
  1785. {
  1786. unsigned int minor = iminor(inode);
  1787. struct usb_mixerdev *ms;
  1788. struct usb_audio_state *s;
  1789. down(&open_sem);
  1790. list_for_each_entry(s, &audiodevs, audiodev) {
  1791. list_for_each_entry(ms, &s->mixerlist, list) {
  1792. if (ms->dev_mixer == minor)
  1793. goto mixer_found;
  1794. }
  1795. }
  1796. up(&open_sem);
  1797. return -ENODEV;
  1798. mixer_found:
  1799. if (!s->usbdev) {
  1800. up(&open_sem);
  1801. return -EIO;
  1802. }
  1803. file->private_data = ms;
  1804. s->count++;
  1805. up(&open_sem);
  1806. return nonseekable_open(inode, file);
  1807. }
  1808. static int usb_audio_release_mixdev(struct inode *inode, struct file *file)
  1809. {
  1810. struct usb_mixerdev *ms = (struct usb_mixerdev *)file->private_data;
  1811. struct usb_audio_state *s;
  1812. lock_kernel();
  1813. s = ms->state;
  1814. down(&open_sem);
  1815. release(s);
  1816. unlock_kernel();
  1817. return 0;
  1818. }
  1819. static int usb_audio_ioctl_mixdev(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
  1820. {
  1821. struct usb_mixerdev *ms = (struct usb_mixerdev *)file->private_data;
  1822. int i, j, val;
  1823. int __user *user_arg = (int __user *)arg;
  1824. if (!ms->state->usbdev)
  1825. return -ENODEV;
  1826. if (cmd == SOUND_MIXER_INFO) {
  1827. mixer_info info;
  1828. memset(&info, 0, sizeof(info));
  1829. strncpy(info.id, "USB_AUDIO", sizeof(info.id));
  1830. strncpy(info.name, "USB Audio Class Driver", sizeof(info.name));
  1831. info.modify_counter = ms->modcnt;
  1832. if (copy_to_user((void __user *)arg, &info, sizeof(info)))
  1833. return -EFAULT;
  1834. return 0;
  1835. }
  1836. if (cmd == SOUND_OLD_MIXER_INFO) {
  1837. _old_mixer_info info;
  1838. memset(&info, 0, sizeof(info));
  1839. strncpy(info.id, "USB_AUDIO", sizeof(info.id));
  1840. strncpy(info.name, "USB Audio Class Driver", sizeof(info.name));
  1841. if (copy_to_user((void __user *)arg, &info, sizeof(info)))
  1842. return -EFAULT;
  1843. return 0;
  1844. }
  1845. if (cmd == OSS_GETVERSION)
  1846. return put_user(SOUND_VERSION, user_arg);
  1847. if (_IOC_TYPE(cmd) != 'M' || _IOC_SIZE(cmd) != sizeof(int))
  1848. return -EINVAL;
  1849. if (_IOC_DIR(cmd) == _IOC_READ) {
  1850. switch (_IOC_NR(cmd)) {
  1851. case SOUND_MIXER_RECSRC: /* Arg contains a bit for each recording source */
  1852. val = get_rec_src(ms);
  1853. if (val < 0)
  1854. return val;
  1855. return put_user(val, user_arg);
  1856. case SOUND_MIXER_DEVMASK: /* Arg contains a bit for each supported device */
  1857. for (val = i = 0; i < ms->numch; i++)
  1858. val |= 1 << ms->ch[i].osschannel;
  1859. return put_user(val, user_arg);
  1860. case SOUND_MIXER_RECMASK: /* Arg contains a bit for each supported recording source */
  1861. for (val = i = 0; i < ms->numch; i++)
  1862. if (ms->ch[i].slctunitid)
  1863. val |= 1 << ms->ch[i].osschannel;
  1864. return put_user(val, user_arg);
  1865. case SOUND_MIXER_STEREODEVS: /* Mixer channels supporting stereo */
  1866. for (val = i = 0; i < ms->numch; i++)
  1867. if (ms->ch[i].flags & (MIXFLG_STEREOIN | MIXFLG_STEREOOUT))
  1868. val |= 1 << ms->ch[i].osschannel;
  1869. return put_user(val, user_arg);
  1870. case SOUND_MIXER_CAPS:
  1871. return put_user(SOUND_CAP_EXCL_INPUT, user_arg);
  1872. default:
  1873. i = _IOC_NR(cmd);
  1874. if (i >= SOUND_MIXER_NRDEVICES)
  1875. return -EINVAL;
  1876. for (j = 0; j < ms->numch; j++) {
  1877. if (ms->ch[j].osschannel == i) {
  1878. return put_user(ms->ch[j].value, user_arg);
  1879. }
  1880. }
  1881. return -EINVAL;
  1882. }
  1883. }
  1884. if (_IOC_DIR(cmd) != (_IOC_READ|_IOC_WRITE))
  1885. return -EINVAL;
  1886. ms->modcnt++;
  1887. switch (_IOC_NR(cmd)) {
  1888. case SOUND_MIXER_RECSRC: /* Arg contains a bit for each recording source */
  1889. if (get_user(val, user_arg))
  1890. return -EFAULT;
  1891. return set_rec_src(ms, val);
  1892. default:
  1893. i = _IOC_NR(cmd);
  1894. if (i >= SOUND_MIXER_NRDEVICES)
  1895. return -EINVAL;
  1896. for (j = 0; j < ms->numch && ms->ch[j].osschannel != i; j++);
  1897. if (j >= ms->numch)
  1898. return -EINVAL;
  1899. if (get_user(val, user_arg))
  1900. return -EFAULT;
  1901. if (wrmixer(ms, j, val))
  1902. return -EIO;
  1903. return put_user(ms->ch[j].value, user_arg);
  1904. }
  1905. }
  1906. static /*const*/ struct file_operations usb_mixer_fops = {
  1907. .owner = THIS_MODULE,
  1908. .llseek = no_llseek,
  1909. .ioctl = usb_audio_ioctl_mixdev,
  1910. .open = usb_audio_open_mixdev,
  1911. .release = usb_audio_release_mixdev,
  1912. };
  1913. /* --------------------------------------------------------------------- */
  1914. static int drain_out(struct usb_audiodev *as, int nonblock)
  1915. {
  1916. DECLARE_WAITQUEUE(wait, current);
  1917. unsigned long flags;
  1918. int count, tmo;
  1919. if (as->usbout.dma.mapped || !as->usbout.dma.ready)
  1920. return 0;
  1921. usbout_start(as);
  1922. add_wait_queue(&as->usbout.dma.wait, &wait);
  1923. for (;;) {
  1924. __set_current_state(TASK_INTERRUPTIBLE);
  1925. spin_lock_irqsave(&as->lock, flags);
  1926. count = as->usbout.dma.count;
  1927. spin_unlock_irqrestore(&as->lock, flags);
  1928. if (count <= 0)
  1929. break;
  1930. if (signal_pending(current))
  1931. break;
  1932. if (nonblock) {
  1933. remove_wait_queue(&as->usbout.dma.wait, &wait);
  1934. set_current_state(TASK_RUNNING);
  1935. return -EBUSY;
  1936. }
  1937. tmo = 3 * HZ * count / as->usbout.dma.srate;
  1938. tmo >>= AFMT_BYTESSHIFT(as->usbout.dma.format);
  1939. if (!schedule_timeout(tmo + 1)) {
  1940. printk(KERN_DEBUG "usbaudio: dma timed out??\n");
  1941. break;
  1942. }
  1943. }
  1944. remove_wait_queue(&as->usbout.dma.wait, &wait);
  1945. set_current_state(TASK_RUNNING);
  1946. if (signal_pending(current))
  1947. return -ERESTARTSYS;
  1948. return 0;
  1949. }
  1950. /* --------------------------------------------------------------------- */
  1951. static ssize_t usb_audio_read(struct file *file, char __user *buffer, size_t count, loff_t *ppos)
  1952. {
  1953. struct usb_audiodev *as = (struct usb_audiodev *)file->private_data;
  1954. DECLARE_WAITQUEUE(wait, current);
  1955. ssize_t ret = 0;
  1956. unsigned long flags;
  1957. unsigned int ptr;
  1958. int cnt, err;
  1959. if (as->usbin.dma.mapped)
  1960. return -ENXIO;
  1961. if (!as->usbin.dma.ready && (ret = prog_dmabuf_in(as)))
  1962. return ret;
  1963. if (!access_ok(VERIFY_WRITE, buffer, count))
  1964. return -EFAULT;
  1965. add_wait_queue(&as->usbin.dma.wait, &wait);
  1966. while (count > 0) {
  1967. spin_lock_irqsave(&as->lock, flags);
  1968. ptr = as->usbin.dma.rdptr;
  1969. cnt = as->usbin.dma.count;
  1970. /* set task state early to avoid wakeup races */
  1971. if (cnt <= 0)
  1972. __set_current_state(TASK_INTERRUPTIBLE);
  1973. spin_unlock_irqrestore(&as->lock, flags);
  1974. if (cnt > count)
  1975. cnt = count;
  1976. if (cnt <= 0) {
  1977. if (usbin_start(as)) {
  1978. if (!ret)
  1979. ret = -ENODEV;
  1980. break;
  1981. }
  1982. if (file->f_flags & O_NONBLOCK) {
  1983. if (!ret)
  1984. ret = -EAGAIN;
  1985. break;
  1986. }
  1987. schedule();
  1988. if (signal_pending(current)) {
  1989. if (!ret)
  1990. ret = -ERESTARTSYS;
  1991. break;
  1992. }
  1993. continue;
  1994. }
  1995. if ((err = dmabuf_copyout_user(&as->usbin.dma, ptr, buffer, cnt))) {
  1996. if (!ret)
  1997. ret = err;
  1998. break;
  1999. }
  2000. ptr += cnt;
  2001. if (ptr >= as->usbin.dma.dmasize)
  2002. ptr -= as->usbin.dma.dmasize;
  2003. spin_lock_irqsave(&as->lock, flags);
  2004. as->usbin.dma.rdptr = ptr;
  2005. as->usbin.dma.count -= cnt;
  2006. spin_unlock_irqrestore(&as->lock, flags);
  2007. count -= cnt;
  2008. buffer += cnt;
  2009. ret += cnt;
  2010. }
  2011. __set_current_state(TASK_RUNNING);
  2012. remove_wait_queue(&as->usbin.dma.wait, &wait);
  2013. return ret;
  2014. }
  2015. static ssize_t usb_audio_write(struct file *file, const char __user *buffer, size_t count, loff_t *ppos)
  2016. {
  2017. struct usb_audiodev *as = (struct usb_audiodev *)file->private_data;
  2018. DECLARE_WAITQUEUE(wait, current);
  2019. ssize_t ret = 0;
  2020. unsigned long flags;
  2021. unsigned int ptr;
  2022. unsigned int start_thr;
  2023. int cnt, err;
  2024. if (as->usbout.dma.mapped)
  2025. return -ENXIO;
  2026. if (!as->usbout.dma.ready && (ret = prog_dmabuf_out(as)))
  2027. return ret;
  2028. if (!access_ok(VERIFY_READ, buffer, count))
  2029. return -EFAULT;
  2030. start_thr = (as->usbout.dma.srate << AFMT_BYTESSHIFT(as->usbout.dma.format)) / (1000 / (3 * DESCFRAMES));
  2031. add_wait_queue(&as->usbout.dma.wait, &wait);
  2032. while (count > 0) {
  2033. #if 0
  2034. printk(KERN_DEBUG "usb_audio_write: count %u dma: count %u rdptr %u wrptr %u dmasize %u fragsize %u flags 0x%02x taskst 0x%lx\n",
  2035. count, as->usbout.dma.count, as->usbout.dma.rdptr, as->usbout.dma.wrptr, as->usbout.dma.dmasize, as->usbout.dma.fragsize,
  2036. as->usbout.flags, current->state);
  2037. #endif
  2038. spin_lock_irqsave(&as->lock, flags);
  2039. if (as->usbout.dma.count < 0) {
  2040. as->usbout.dma.count = 0;
  2041. as->usbout.dma.rdptr = as->usbout.dma.wrptr;
  2042. }
  2043. ptr = as->usbout.dma.wrptr;
  2044. cnt = as->usbout.dma.dmasize - as->usbout.dma.count;
  2045. /* set task state early to avoid wakeup races */
  2046. if (cnt <= 0)
  2047. __set_current_state(TASK_INTERRUPTIBLE);
  2048. spin_unlock_irqrestore(&as->lock, flags);
  2049. if (cnt > count)
  2050. cnt = count;
  2051. if (cnt <= 0) {
  2052. if (usbout_start(as)) {
  2053. if (!ret)
  2054. ret = -ENODEV;
  2055. break;
  2056. }
  2057. if (file->f_flags & O_NONBLOCK) {
  2058. if (!ret)
  2059. ret = -EAGAIN;
  2060. break;
  2061. }
  2062. schedule();
  2063. if (signal_pending(current)) {
  2064. if (!ret)
  2065. ret = -ERESTARTSYS;
  2066. break;
  2067. }
  2068. continue;
  2069. }
  2070. if ((err = dmabuf_copyin_user(&as->usbout.dma, ptr, buffer, cnt))) {
  2071. if (!ret)
  2072. ret = err;
  2073. break;
  2074. }
  2075. ptr += cnt;
  2076. if (ptr >= as->usbout.dma.dmasize)
  2077. ptr -= as->usbout.dma.dmasize;
  2078. spin_lock_irqsave(&as->lock, flags);
  2079. as->usbout.dma.wrptr = ptr;
  2080. as->usbout.dma.count += cnt;
  2081. spin_unlock_irqrestore(&as->lock, flags);
  2082. count -= cnt;
  2083. buffer += cnt;
  2084. ret += cnt;
  2085. if (as->usbout.dma.count >= start_thr && usbout_start(as)) {
  2086. if (!ret)
  2087. ret = -ENODEV;
  2088. break;
  2089. }
  2090. }
  2091. __set_current_state(TASK_RUNNING);
  2092. remove_wait_queue(&as->usbout.dma.wait, &wait);
  2093. return ret;
  2094. }
  2095. /* Called without the kernel lock - fine */
  2096. static unsigned int usb_audio_poll(struct file *file, struct poll_table_struct *wait)
  2097. {
  2098. struct usb_audiodev *as = (struct usb_audiodev *)file->private_data;
  2099. unsigned long flags;
  2100. unsigned int mask = 0;
  2101. if (file->f_mode & FMODE_WRITE) {
  2102. if (!as->usbout.dma.ready)
  2103. prog_dmabuf_out(as);
  2104. poll_wait(file, &as->usbout.dma.wait, wait);
  2105. }
  2106. if (file->f_mode & FMODE_READ) {
  2107. if (!as->usbin.dma.ready)
  2108. prog_dmabuf_in(as);
  2109. poll_wait(file, &as->usbin.dma.wait, wait);
  2110. }
  2111. spin_lock_irqsave(&as->lock, flags);
  2112. if (file->f_mode & FMODE_READ) {
  2113. if (as->usbin.dma.count >= (signed)as->usbin.dma.fragsize)
  2114. mask |= POLLIN | POLLRDNORM;
  2115. }
  2116. if (file->f_mode & FMODE_WRITE) {
  2117. if (as->usbout.dma.mapped) {
  2118. if (as->usbout.dma.count >= (signed)as->usbout.dma.fragsize)
  2119. mask |= POLLOUT | POLLWRNORM;
  2120. } else {
  2121. if ((signed)as->usbout.dma.dmasize >= as->usbout.dma.count + (signed)as->usbout.dma.fragsize)
  2122. mask |= POLLOUT | POLLWRNORM;
  2123. }
  2124. }
  2125. spin_unlock_irqrestore(&as->lock, flags);
  2126. return mask;
  2127. }
  2128. static int usb_audio_mmap(struct file *file, struct vm_area_struct *vma)
  2129. {
  2130. struct usb_audiodev *as = (struct usb_audiodev *)file->private_data;
  2131. struct dmabuf *db;
  2132. int ret = -EINVAL;
  2133. lock_kernel();
  2134. if (vma->vm_flags & VM_WRITE) {
  2135. if ((ret = prog_dmabuf_out(as)) != 0)
  2136. goto out;
  2137. db = &as->usbout.dma;
  2138. } else if (vma->vm_flags & VM_READ) {
  2139. if ((ret = prog_dmabuf_in(as)) != 0)
  2140. goto out;
  2141. db = &as->usbin.dma;
  2142. } else
  2143. goto out;
  2144. ret = -EINVAL;
  2145. if (vma->vm_pgoff != 0)
  2146. goto out;
  2147. ret = dmabuf_mmap(vma, db, vma->vm_start, vma->vm_end - vma->vm_start, vma->vm_page_prot);
  2148. out:
  2149. unlock_kernel();
  2150. return ret;
  2151. }
  2152. static int usb_audio_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
  2153. {
  2154. struct usb_audiodev *as = (struct usb_audiodev *)file->private_data;
  2155. struct usb_audio_state *s = as->state;
  2156. int __user *user_arg = (int __user *)arg;
  2157. unsigned long flags;
  2158. audio_buf_info abinfo;
  2159. count_info cinfo;
  2160. int val = 0;
  2161. int val2, mapped, ret;
  2162. if (!s->usbdev)
  2163. return -EIO;
  2164. mapped = ((file->f_mode & FMODE_WRITE) && as->usbout.dma.mapped) ||
  2165. ((file->f_mode & FMODE_READ) && as->usbin.dma.mapped);
  2166. #if 0
  2167. if (arg)
  2168. get_user(val, (int *)arg);
  2169. printk(KERN_DEBUG "usbaudio: usb_audio_ioctl cmd=%x arg=%lx *arg=%d\n", cmd, arg, val)
  2170. #endif
  2171. switch (cmd) {
  2172. case OSS_GETVERSION:
  2173. return put_user(SOUND_VERSION, user_arg);
  2174. case SNDCTL_DSP_SYNC:
  2175. if (file->f_mode & FMODE_WRITE)
  2176. return drain_out(as, 0/*file->f_flags & O_NONBLOCK*/);
  2177. return 0;
  2178. case SNDCTL_DSP_SETDUPLEX:
  2179. return 0;
  2180. case SNDCTL_DSP_GETCAPS:
  2181. return put_user(DSP_CAP_DUPLEX | DSP_CAP_REALTIME | DSP_CAP_TRIGGER |
  2182. DSP_CAP_MMAP | DSP_CAP_BATCH, user_arg);
  2183. case SNDCTL_DSP_RESET:
  2184. if (file->f_mode & FMODE_WRITE) {
  2185. usbout_stop(as);
  2186. as->usbout.dma.rdptr = as->usbout.dma.wrptr = as->usbout.dma.count = as->usbout.dma.total_bytes = 0;
  2187. }
  2188. if (file->f_mode & FMODE_READ) {
  2189. usbin_stop(as);
  2190. as->usbin.dma.rdptr = as->usbin.dma.wrptr = as->usbin.dma.count = as->usbin.dma.total_bytes = 0;
  2191. }
  2192. return 0;
  2193. case SNDCTL_DSP_SPEED:
  2194. if (get_user(val, user_arg))
  2195. return -EFAULT;
  2196. if (val >= 0) {
  2197. if (val < 4000)
  2198. val = 4000;
  2199. if (val > 100000)
  2200. val = 100000;
  2201. if (set_format(as, file->f_mode, AFMT_QUERY, val))
  2202. return -EIO;
  2203. }
  2204. return put_user((file->f_mode & FMODE_READ) ?
  2205. as->usbin.dma.srate : as->usbout.dma.srate,
  2206. user_arg);
  2207. case SNDCTL_DSP_STEREO:
  2208. if (get_user(val, user_arg))
  2209. return -EFAULT;
  2210. val2 = (file->f_mode & FMODE_READ) ? as->usbin.dma.format : as->usbout.dma.format;
  2211. if (val)
  2212. val2 |= AFMT_STEREO;
  2213. else
  2214. val2 &= ~AFMT_STEREO;
  2215. if (set_format(as, file->f_mode, val2, 0))
  2216. return -EIO;
  2217. return 0;
  2218. case SNDCTL_DSP_CHANNELS:
  2219. if (get_user(val, user_arg))
  2220. return -EFAULT;
  2221. if (val != 0) {
  2222. val2 = (file->f_mode & FMODE_READ) ? as->usbin.dma.format : as->usbout.dma.format;
  2223. if (val == 1)
  2224. val2 &= ~AFMT_STEREO;
  2225. else
  2226. val2 |= AFMT_STEREO;
  2227. if (set_format(as, file->f_mode, val2, 0))
  2228. return -EIO;
  2229. }
  2230. val2 = (file->f_mode & FMODE_READ) ? as->usbin.dma.format : as->usbout.dma.format;
  2231. return put_user(AFMT_ISSTEREO(val2) ? 2 : 1, user_arg);
  2232. case SNDCTL_DSP_GETFMTS: /* Returns a mask */
  2233. return put_user(AFMT_U8 | AFMT_U16_LE | AFMT_U16_BE |
  2234. AFMT_S8 | AFMT_S16_LE | AFMT_S16_BE, user_arg);
  2235. case SNDCTL_DSP_SETFMT: /* Selects ONE fmt*/
  2236. if (get_user(val, user_arg))
  2237. return -EFAULT;
  2238. if (val != AFMT_QUERY) {
  2239. if (hweight32(val) != 1)
  2240. return -EINVAL;
  2241. if (!(val & (AFMT_U8 | AFMT_U16_LE | AFMT_U16_BE |
  2242. AFMT_S8 | AFMT_S16_LE | AFMT_S16_BE)))
  2243. return -EINVAL;
  2244. val2 = (file->f_mode & FMODE_READ) ? as->usbin.dma.format : as->usbout.dma.format;
  2245. val |= val2 & AFMT_STEREO;
  2246. if (set_format(as, file->f_mode, val, 0))
  2247. return -EIO;
  2248. }
  2249. val2 = (file->f_mode & FMODE_READ) ? as->usbin.dma.format : as->usbout.dma.format;
  2250. return put_user(val2 & ~AFMT_STEREO, user_arg);
  2251. case SNDCTL_DSP_POST:
  2252. return 0;
  2253. case SNDCTL_DSP_GETTRIGGER:
  2254. val = 0;
  2255. if (file->f_mode & FMODE_READ && as->usbin.flags & FLG_RUNNING)
  2256. val |= PCM_ENABLE_INPUT;
  2257. if (file->f_mode & FMODE_WRITE && as->usbout.flags & FLG_RUNNING)
  2258. val |= PCM_ENABLE_OUTPUT;
  2259. return put_user(val, user_arg);
  2260. case SNDCTL_DSP_SETTRIGGER:
  2261. if (get_user(val, user_arg))
  2262. return -EFAULT;
  2263. if (file->f_mode & FMODE_READ) {
  2264. if (val & PCM_ENABLE_INPUT) {
  2265. if (!as->usbin.dma.ready && (ret = prog_dmabuf_in(as)))
  2266. return ret;
  2267. if (usbin_start(as))
  2268. return -ENODEV;
  2269. } else
  2270. usbin_stop(as);
  2271. }
  2272. if (file->f_mode & FMODE_WRITE) {
  2273. if (val & PCM_ENABLE_OUTPUT) {
  2274. if (!as->usbout.dma.ready && (ret = prog_dmabuf_out(as)))
  2275. return ret;
  2276. if (usbout_start(as))
  2277. return -ENODEV;
  2278. } else
  2279. usbout_stop(as);
  2280. }
  2281. return 0;
  2282. case SNDCTL_DSP_GETOSPACE:
  2283. if (!(file->f_mode & FMODE_WRITE))
  2284. return -EINVAL;
  2285. if (!(as->usbout.flags & FLG_RUNNING) && (val = prog_dmabuf_out(as)) != 0)
  2286. return val;
  2287. spin_lock_irqsave(&as->lock, flags);
  2288. abinfo.fragsize = as->usbout.dma.fragsize;
  2289. abinfo.bytes = as->usbout.dma.dmasize - as->usbout.dma.count;
  2290. abinfo.fragstotal = as->usbout.dma.numfrag;
  2291. abinfo.fragments = abinfo.bytes >> as->usbout.dma.fragshift;
  2292. spin_unlock_irqrestore(&as->lock, flags);
  2293. return copy_to_user((void __user *)arg, &abinfo, sizeof(abinfo)) ? -EFAULT : 0;
  2294. case SNDCTL_DSP_GETISPACE:
  2295. if (!(file->f_mode & FMODE_READ))
  2296. return -EINVAL;
  2297. if (!(as->usbin.flags & FLG_RUNNING) && (val = prog_dmabuf_in(as)) != 0)
  2298. return val;
  2299. spin_lock_irqsave(&as->lock, flags);
  2300. abinfo.fragsize = as->usbin.dma.fragsize;
  2301. abinfo.bytes = as->usbin.dma.count;
  2302. abinfo.fragstotal = as->usbin.dma.numfrag;
  2303. abinfo.fragments = abinfo.bytes >> as->usbin.dma.fragshift;
  2304. spin_unlock_irqrestore(&as->lock, flags);
  2305. return copy_to_user((void __user *)arg, &abinfo, sizeof(abinfo)) ? -EFAULT : 0;
  2306. case SNDCTL_DSP_NONBLOCK:
  2307. file->f_flags |= O_NONBLOCK;
  2308. return 0;
  2309. case SNDCTL_DSP_GETODELAY:
  2310. if (!(file->f_mode & FMODE_WRITE))
  2311. return -EINVAL;
  2312. spin_lock_irqsave(&as->lock, flags);
  2313. val = as->usbout.dma.count;
  2314. spin_unlock_irqrestore(&as->lock, flags);
  2315. return put_user(val, user_arg);
  2316. case SNDCTL_DSP_GETIPTR:
  2317. if (!(file->f_mode & FMODE_READ))
  2318. return -EINVAL;
  2319. spin_lock_irqsave(&as->lock, flags);
  2320. cinfo.bytes = as->usbin.dma.total_bytes;
  2321. cinfo.blocks = as->usbin.dma.count >> as->usbin.dma.fragshift;
  2322. cinfo.ptr = as->usbin.dma.wrptr;
  2323. if (as->usbin.dma.mapped)
  2324. as->usbin.dma.count &= as->usbin.dma.fragsize-1;
  2325. spin_unlock_irqrestore(&as->lock, flags);
  2326. if (copy_to_user((void __user *)arg, &cinfo, sizeof(cinfo)))
  2327. return -EFAULT;
  2328. return 0;
  2329. case SNDCTL_DSP_GETOPTR:
  2330. if (!(file->f_mode & FMODE_WRITE))
  2331. return -EINVAL;
  2332. spin_lock_irqsave(&as->lock, flags);
  2333. cinfo.bytes = as->usbout.dma.total_bytes;
  2334. cinfo.blocks = as->usbout.dma.count >> as->usbout.dma.fragshift;
  2335. cinfo.ptr = as->usbout.dma.rdptr;
  2336. if (as->usbout.dma.mapped)
  2337. as->usbout.dma.count &= as->usbout.dma.fragsize-1;
  2338. spin_unlock_irqrestore(&as->lock, flags);
  2339. if (copy_to_user((void __user *)arg, &cinfo, sizeof(cinfo)))
  2340. return -EFAULT;
  2341. return 0;
  2342. case SNDCTL_DSP_GETBLKSIZE:
  2343. if (file->f_mode & FMODE_WRITE) {
  2344. if ((val = prog_dmabuf_out(as)))
  2345. return val;
  2346. return put_user(as->usbout.dma.fragsize, user_arg);
  2347. }
  2348. if ((val = prog_dmabuf_in(as)))
  2349. return val;
  2350. return put_user(as->usbin.dma.fragsize, user_arg);
  2351. case SNDCTL_DSP_SETFRAGMENT:
  2352. if (get_user(val, user_arg))
  2353. return -EFAULT;
  2354. if (file->f_mode & FMODE_READ) {
  2355. as->usbin.dma.ossfragshift = val & 0xffff;
  2356. as->usbin.dma.ossmaxfrags = (val >> 16) & 0xffff;
  2357. if (as->usbin.dma.ossfragshift < 4)
  2358. as->usbin.dma.ossfragshift = 4;
  2359. if (as->usbin.dma.ossfragshift > 15)
  2360. as->usbin.dma.ossfragshift = 15;
  2361. if (as->usbin.dma.ossmaxfrags < 4)
  2362. as->usbin.dma.ossmaxfrags = 4;
  2363. }
  2364. if (file->f_mode & FMODE_WRITE) {
  2365. as->usbout.dma.ossfragshift = val & 0xffff;
  2366. as->usbout.dma.ossmaxfrags = (val >> 16) & 0xffff;
  2367. if (as->usbout.dma.ossfragshift < 4)
  2368. as->usbout.dma.ossfragshift = 4;
  2369. if (as->usbout.dma.ossfragshift > 15)
  2370. as->usbout.dma.ossfragshift = 15;
  2371. if (as->usbout.dma.ossmaxfrags < 4)
  2372. as->usbout.dma.ossmaxfrags = 4;
  2373. }
  2374. return 0;
  2375. case SNDCTL_DSP_SUBDIVIDE:
  2376. if ((file->f_mode & FMODE_READ && as->usbin.dma.subdivision) ||
  2377. (file->f_mode & FMODE_WRITE && as->usbout.dma.subdivision))
  2378. return -EINVAL;
  2379. if (get_user(val, user_arg))
  2380. return -EFAULT;
  2381. if (val != 1 && val != 2 && val != 4)
  2382. return -EINVAL;
  2383. if (file->f_mode & FMODE_READ)
  2384. as->usbin.dma.subdivision = val;
  2385. if (file->f_mode & FMODE_WRITE)
  2386. as->usbout.dma.subdivision = val;
  2387. return 0;
  2388. case SOUND_PCM_READ_RATE:
  2389. return put_user((file->f_mode & FMODE_READ) ?
  2390. as->usbin.dma.srate : as->usbout.dma.srate,
  2391. user_arg);
  2392. case SOUND_PCM_READ_CHANNELS:
  2393. val2 = (file->f_mode & FMODE_READ) ? as->usbin.dma.format : as->usbout.dma.format;
  2394. return put_user(AFMT_ISSTEREO(val2) ? 2 : 1, user_arg);
  2395. case SOUND_PCM_READ_BITS:
  2396. val2 = (file->f_mode & FMODE_READ) ? as->usbin.dma.format : as->usbout.dma.format;
  2397. return put_user(AFMT_IS16BIT(val2) ? 16 : 8, user_arg);
  2398. case SOUND_PCM_WRITE_FILTER:
  2399. case SNDCTL_DSP_SETSYNCRO:
  2400. case SOUND_PCM_READ_FILTER:
  2401. return -EINVAL;
  2402. }
  2403. dprintk((KERN_DEBUG "usbaudio: usb_audio_ioctl - no command found\n"));
  2404. return -ENOIOCTLCMD;
  2405. }
  2406. static int usb_audio_open(struct inode *inode, struct file *file)
  2407. {
  2408. unsigned int minor = iminor(inode);
  2409. DECLARE_WAITQUEUE(wait, current);
  2410. struct usb_audiodev *as;
  2411. struct usb_audio_state *s;
  2412. for (;;) {
  2413. down(&open_sem);
  2414. list_for_each_entry(s, &audiodevs, audiodev) {
  2415. list_for_each_entry(as, &s->audiolist, list) {
  2416. if (!((as->dev_audio ^ minor) & ~0xf))
  2417. goto device_found;
  2418. }
  2419. }
  2420. up(&open_sem);
  2421. return -ENODEV;
  2422. device_found:
  2423. if (!s->usbdev) {
  2424. up(&open_sem);
  2425. return -EIO;
  2426. }
  2427. /* wait for device to become free */
  2428. if (!(as->open_mode & file->f_mode))
  2429. break;
  2430. if (file->f_flags & O_NONBLOCK) {
  2431. up(&open_sem);
  2432. return -EBUSY;
  2433. }
  2434. __set_current_state(TASK_INTERRUPTIBLE);
  2435. add_wait_queue(&open_wait, &wait);
  2436. up(&open_sem);
  2437. schedule();
  2438. __set_current_state(TASK_RUNNING);
  2439. remove_wait_queue(&open_wait, &wait);
  2440. if (signal_pending(current))
  2441. return -ERESTARTSYS;
  2442. }
  2443. if (file->f_mode & FMODE_READ)
  2444. as->usbin.dma.ossfragshift = as->usbin.dma.ossmaxfrags = as->usbin.dma.subdivision = 0;
  2445. if (file->f_mode & FMODE_WRITE)
  2446. as->usbout.dma.ossfragshift = as->usbout.dma.ossmaxfrags = as->usbout.dma.subdivision = 0;
  2447. if (set_format(as, file->f_mode, ((minor & 0xf) == SND_DEV_DSP16) ? AFMT_S16_LE : AFMT_U8 /* AFMT_ULAW */, 8000)) {
  2448. up(&open_sem);
  2449. return -EIO;
  2450. }
  2451. file->private_data = as;
  2452. as->open_mode |= file->f_mode & (FMODE_READ | FMODE_WRITE);
  2453. s->count++;
  2454. up(&open_sem);
  2455. return nonseekable_open(inode, file);
  2456. }
  2457. static int usb_audio_release(struct inode *inode, struct file *file)
  2458. {
  2459. struct usb_audiodev *as = (struct usb_audiodev *)file->private_data;
  2460. struct usb_audio_state *s;
  2461. struct usb_device *dev;
  2462. lock_kernel();
  2463. s = as->state;
  2464. dev = s->usbdev;
  2465. if (file->f_mode & FMODE_WRITE)
  2466. drain_out(as, file->f_flags & O_NONBLOCK);
  2467. down(&open_sem);
  2468. if (file->f_mode & FMODE_WRITE) {
  2469. usbout_stop(as);
  2470. if (dev && as->usbout.interface >= 0)
  2471. usb_set_interface(dev, as->usbout.interface, 0);
  2472. dmabuf_release(&as->usbout.dma);
  2473. usbout_release(as);
  2474. }
  2475. if (file->f_mode & FMODE_READ) {
  2476. usbin_stop(as);
  2477. if (dev && as->usbin.interface >= 0)
  2478. usb_set_interface(dev, as->usbin.interface, 0);
  2479. dmabuf_release(&as->usbin.dma);
  2480. usbin_release(as);
  2481. }
  2482. as->open_mode &= (~file->f_mode) & (FMODE_READ|FMODE_WRITE);
  2483. release(s);
  2484. wake_up(&open_wait);
  2485. unlock_kernel();
  2486. return 0;
  2487. }
  2488. static /*const*/ struct file_operations usb_audio_fops = {
  2489. .owner = THIS_MODULE,
  2490. .llseek = no_llseek,
  2491. .read = usb_audio_read,
  2492. .write = usb_audio_write,
  2493. .poll = usb_audio_poll,
  2494. .ioctl = usb_audio_ioctl,
  2495. .mmap = usb_audio_mmap,
  2496. .open = usb_audio_open,
  2497. .release = usb_audio_release,
  2498. };
  2499. /* --------------------------------------------------------------------- */
  2500. static int usb_audio_probe(struct usb_interface *iface,
  2501. const struct usb_device_id *id);
  2502. static void usb_audio_disconnect(struct usb_interface *iface);
  2503. static struct usb_device_id usb_audio_ids [] = {
  2504. { .match_flags = (USB_DEVICE_ID_MATCH_INT_CLASS | USB_DEVICE_ID_MATCH_INT_SUBCLASS),
  2505. .bInterfaceClass = USB_CLASS_AUDIO, .bInterfaceSubClass = 1},
  2506. { } /* Terminating entry */
  2507. };
  2508. MODULE_DEVICE_TABLE (usb, usb_audio_ids);
  2509. static struct usb_driver usb_audio_driver = {
  2510. .owner = THIS_MODULE,
  2511. .name = "audio",
  2512. .probe = usb_audio_probe,
  2513. .disconnect = usb_audio_disconnect,
  2514. .id_table = usb_audio_ids,
  2515. };
  2516. static void *find_descriptor(void *descstart, unsigned int desclen, void *after,
  2517. u8 dtype, int iface, int altsetting)
  2518. {
  2519. u8 *p, *end, *next;
  2520. int ifc = -1, as = -1;
  2521. p = descstart;
  2522. end = p + desclen;
  2523. for (; p < end;) {
  2524. if (p[0] < 2)
  2525. return NULL;
  2526. next = p + p[0];
  2527. if (next > end)
  2528. return NULL;
  2529. if (p[1] == USB_DT_INTERFACE) {
  2530. /* minimum length of interface descriptor */
  2531. if (p[0] < 9)
  2532. return NULL;
  2533. ifc = p[2];
  2534. as = p[3];
  2535. }
  2536. if (p[1] == dtype && (!after || (void *)p > after) &&
  2537. (iface == -1 || iface == ifc) && (altsetting == -1 || altsetting == as)) {
  2538. return p;
  2539. }
  2540. p = next;
  2541. }
  2542. return NULL;
  2543. }
  2544. static void *find_csinterface_descriptor(void *descstart, unsigned int desclen, void *after, u8 dsubtype, int iface, int altsetting)
  2545. {
  2546. unsigned char *p;
  2547. p = find_descriptor(descstart, desclen, after, USB_DT_CS_INTERFACE, iface, altsetting);
  2548. while (p) {
  2549. if (p[0] >= 3 && p[2] == dsubtype)
  2550. return p;
  2551. p = find_descriptor(descstart, desclen, p, USB_DT_CS_INTERFACE, iface, altsetting);
  2552. }
  2553. return NULL;
  2554. }
  2555. static void *find_audiocontrol_unit(void *descstart, unsigned int desclen, void *after, u8 unit, int iface)
  2556. {
  2557. unsigned char *p;
  2558. p = find_descriptor(descstart, desclen, after, USB_DT_CS_INTERFACE, iface, -1);
  2559. while (p) {
  2560. if (p[0] >= 4 && p[2] >= INPUT_TERMINAL && p[2] <= EXTENSION_UNIT && p[3] == unit)
  2561. return p;
  2562. p = find_descriptor(descstart, desclen, p, USB_DT_CS_INTERFACE, iface, -1);
  2563. }
  2564. return NULL;
  2565. }
  2566. static void usb_audio_parsestreaming(struct usb_audio_state *s, unsigned char *buffer, unsigned int buflen, int asifin, int asifout)
  2567. {
  2568. struct usb_device *dev = s->usbdev;
  2569. struct usb_audiodev *as;
  2570. struct usb_host_interface *alts;
  2571. struct usb_interface *iface;
  2572. struct audioformat *fp;
  2573. unsigned char *fmt, *csep;
  2574. unsigned int i, j, k, format, idx;
  2575. if (!(as = kmalloc(sizeof(struct usb_audiodev), GFP_KERNEL)))
  2576. return;
  2577. memset(as, 0, sizeof(struct usb_audiodev));
  2578. init_waitqueue_head(&as->usbin.dma.wait);
  2579. init_waitqueue_head(&as->usbout.dma.wait);
  2580. spin_lock_init(&as->lock);
  2581. as->usbin.durb[0].urb = usb_alloc_urb (DESCFRAMES, GFP_KERNEL);
  2582. as->usbin.durb[1].urb = usb_alloc_urb (DESCFRAMES, GFP_KERNEL);
  2583. as->usbin.surb[0].urb = usb_alloc_urb (SYNCFRAMES, GFP_KERNEL);
  2584. as->usbin.surb[1].urb = usb_alloc_urb (SYNCFRAMES, GFP_KERNEL);
  2585. as->usbout.durb[0].urb = usb_alloc_urb (DESCFRAMES, GFP_KERNEL);
  2586. as->usbout.durb[1].urb = usb_alloc_urb (DESCFRAMES, GFP_KERNEL);
  2587. as->usbout.surb[0].urb = usb_alloc_urb (SYNCFRAMES, GFP_KERNEL);
  2588. as->usbout.surb[1].urb = usb_alloc_urb (SYNCFRAMES, GFP_KERNEL);
  2589. if ((!as->usbin.durb[0].urb) ||
  2590. (!as->usbin.durb[1].urb) ||
  2591. (!as->usbin.surb[0].urb) ||
  2592. (!as->usbin.surb[1].urb) ||
  2593. (!as->usbout.durb[0].urb) ||
  2594. (!as->usbout.durb[1].urb) ||
  2595. (!as->usbout.surb[0].urb) ||
  2596. (!as->usbout.surb[1].urb)) {
  2597. usb_free_urb(as->usbin.durb[0].urb);
  2598. usb_free_urb(as->usbin.durb[1].urb);
  2599. usb_free_urb(as->usbin.surb[0].urb);
  2600. usb_free_urb(as->usbin.surb[1].urb);
  2601. usb_free_urb(as->usbout.durb[0].urb);
  2602. usb_free_urb(as->usbout.durb[1].urb);
  2603. usb_free_urb(as->usbout.surb[0].urb);
  2604. usb_free_urb(as->usbout.surb[1].urb);
  2605. kfree(as);
  2606. return;
  2607. }
  2608. as->state = s;
  2609. as->usbin.interface = asifin;
  2610. as->usbout.interface = asifout;
  2611. /* search for input formats */
  2612. if (asifin >= 0) {
  2613. as->usbin.flags = FLG_CONNECTED;
  2614. iface = usb_ifnum_to_if(dev, asifin);
  2615. for (idx = 0; idx < iface->num_altsetting; idx++) {
  2616. alts = &iface->altsetting[idx];
  2617. i = alts->desc.bAlternateSetting;
  2618. if (alts->desc.bInterfaceClass != USB_CLASS_AUDIO || alts->desc.bInterfaceSubClass != 2)
  2619. continue;
  2620. if (alts->desc.bNumEndpoints < 1) {
  2621. if (i != 0) { /* altsetting 0 has no endpoints (Section B.3.4.1) */
  2622. printk(KERN_ERR "usbaudio: device %u interface %u altsetting %u does not have an endpoint\n",
  2623. dev->devnum, asifin, i);
  2624. }
  2625. continue;
  2626. }
  2627. if ((alts->endpoint[0].desc.bmAttributes & 0x03) != 0x01 ||
  2628. !(alts->endpoint[0].desc.bEndpointAddress & 0x80)) {
  2629. printk(KERN_ERR "usbaudio: device %u interface %u altsetting %u first endpoint not isochronous in\n",
  2630. dev->devnum, asifin, i);
  2631. continue;
  2632. }
  2633. fmt = find_csinterface_descriptor(buffer, buflen, NULL, AS_GENERAL, asifin, i);
  2634. if (!fmt) {
  2635. printk(KERN_ERR "usbaudio: device %u interface %u altsetting %u FORMAT_TYPE descriptor not found\n",
  2636. dev->devnum, asifin, i);
  2637. continue;
  2638. }
  2639. if (fmt[0] < 7 || fmt[6] != 0 || (fmt[5] != 1 && fmt[5] != 2)) {
  2640. printk(KERN_ERR "usbaudio: device %u interface %u altsetting %u format not supported\n",
  2641. dev->devnum, asifin, i);
  2642. continue;
  2643. }
  2644. format = (fmt[5] == 2) ? (AFMT_U16_LE | AFMT_U8) : (AFMT_S16_LE | AFMT_S8);
  2645. fmt = find_csinterface_descriptor(buffer, buflen, NULL, FORMAT_TYPE, asifin, i);
  2646. if (!fmt) {
  2647. printk(KERN_ERR "usbaudio: device %u interface %u altsetting %u FORMAT_TYPE descriptor not found\n",
  2648. dev->devnum, asifin, i);
  2649. continue;
  2650. }
  2651. if (fmt[0] < 8+3*(fmt[7] ? fmt[7] : 2) || fmt[3] != 1) {
  2652. printk(KERN_ERR "usbaudio: device %u interface %u altsetting %u FORMAT_TYPE descriptor not supported\n",
  2653. dev->devnum, asifin, i);
  2654. continue;
  2655. }
  2656. if (fmt[4] < 1 || fmt[4] > 2 || fmt[5] < 1 || fmt[5] > 2) {
  2657. printk(KERN_ERR "usbaudio: device %u interface %u altsetting %u unsupported channels %u framesize %u\n",
  2658. dev->devnum, asifin, i, fmt[4], fmt[5]);
  2659. continue;
  2660. }
  2661. csep = find_descriptor(buffer, buflen, NULL, USB_DT_CS_ENDPOINT, asifin, i);
  2662. if (!csep || csep[0] < 7 || csep[2] != EP_GENERAL) {
  2663. printk(KERN_ERR "usbaudio: device %u interface %u altsetting %u no or invalid class specific endpoint descriptor\n",
  2664. dev->devnum, asifin, i);
  2665. continue;
  2666. }
  2667. if (as->numfmtin >= MAXFORMATS)
  2668. continue;
  2669. fp = &as->fmtin[as->numfmtin++];
  2670. if (fmt[5] == 2)
  2671. format &= (AFMT_U16_LE | AFMT_S16_LE);
  2672. else
  2673. format &= (AFMT_U8 | AFMT_S8);
  2674. if (fmt[4] == 2)
  2675. format |= AFMT_STEREO;
  2676. fp->format = format;
  2677. fp->altsetting = i;
  2678. fp->sratelo = fp->sratehi = fmt[8] | (fmt[9] << 8) | (fmt[10] << 16);
  2679. printk(KERN_INFO "usbaudio: valid input sample rate %u\n", fp->sratelo);
  2680. for (j = fmt[7] ? (fmt[7]-1) : 1; j > 0; j--) {
  2681. k = fmt[8+3*j] | (fmt[9+3*j] << 8) | (fmt[10+3*j] << 16);
  2682. printk(KERN_INFO "usbaudio: valid input sample rate %u\n", k);
  2683. if (k > fp->sratehi)
  2684. fp->sratehi = k;
  2685. if (k < fp->sratelo)
  2686. fp->sratelo = k;
  2687. }
  2688. fp->attributes = csep[3];
  2689. printk(KERN_INFO "usbaudio: device %u interface %u altsetting %u: format 0x%08x sratelo %u sratehi %u attributes 0x%02x\n",
  2690. dev->devnum, asifin, i, fp->format, fp->sratelo, fp->sratehi, fp->attributes);
  2691. }
  2692. }
  2693. /* search for output formats */
  2694. if (asifout >= 0) {
  2695. as->usbout.flags = FLG_CONNECTED;
  2696. iface = usb_ifnum_to_if(dev, asifout);
  2697. for (idx = 0; idx < iface->num_altsetting; idx++) {
  2698. alts = &iface->altsetting[idx];
  2699. i = alts->desc.bAlternateSetting;
  2700. if (alts->desc.bInterfaceClass != USB_CLASS_AUDIO || alts->desc.bInterfaceSubClass != 2)
  2701. continue;
  2702. if (alts->desc.bNumEndpoints < 1) {
  2703. /* altsetting 0 should never have iso EPs */
  2704. if (i != 0)
  2705. printk(KERN_ERR "usbaudio: device %u interface %u altsetting %u does not have an endpoint\n",
  2706. dev->devnum, asifout, i);
  2707. continue;
  2708. }
  2709. if ((alts->endpoint[0].desc.bmAttributes & 0x03) != 0x01 ||
  2710. (alts->endpoint[0].desc.bEndpointAddress & 0x80)) {
  2711. printk(KERN_ERR "usbaudio: device %u interface %u altsetting %u first endpoint not isochronous out\n",
  2712. dev->devnum, asifout, i);
  2713. continue;
  2714. }
  2715. /* See USB audio formats manual, section 2 */
  2716. fmt = find_csinterface_descriptor(buffer, buflen, NULL, AS_GENERAL, asifout, i);
  2717. if (!fmt) {
  2718. printk(KERN_ERR "usbaudio: device %u interface %u altsetting %u FORMAT_TYPE descriptor not found\n",
  2719. dev->devnum, asifout, i);
  2720. continue;
  2721. }
  2722. if (fmt[0] < 7 || fmt[6] != 0 || (fmt[5] != 1 && fmt[5] != 2)) {
  2723. printk(KERN_ERR "usbaudio: device %u interface %u altsetting %u format not supported\n",
  2724. dev->devnum, asifout, i);
  2725. continue;
  2726. }
  2727. format = (fmt[5] == 2) ? (AFMT_U16_LE | AFMT_U8) : (AFMT_S16_LE | AFMT_S8);
  2728. /* Dallas DS4201 workaround */
  2729. if (le16_to_cpu(dev->descriptor.idVendor) == 0x04fa &&
  2730. le16_to_cpu(dev->descriptor.idProduct) == 0x4201)
  2731. format = (AFMT_S16_LE | AFMT_S8);
  2732. fmt = find_csinterface_descriptor(buffer, buflen, NULL, FORMAT_TYPE, asifout, i);
  2733. if (!fmt) {
  2734. printk(KERN_ERR "usbaudio: device %u interface %u altsetting %u FORMAT_TYPE descriptor not found\n",
  2735. dev->devnum, asifout, i);
  2736. continue;
  2737. }
  2738. if (fmt[0] < 8+3*(fmt[7] ? fmt[7] : 2) || fmt[3] != 1) {
  2739. printk(KERN_ERR "usbaudio: device %u interface %u altsetting %u FORMAT_TYPE descriptor not supported\n",
  2740. dev->devnum, asifout, i);
  2741. continue;
  2742. }
  2743. if (fmt[4] < 1 || fmt[4] > 2 || fmt[5] < 1 || fmt[5] > 2) {
  2744. printk(KERN_ERR "usbaudio: device %u interface %u altsetting %u unsupported channels %u framesize %u\n",
  2745. dev->devnum, asifout, i, fmt[4], fmt[5]);
  2746. continue;
  2747. }
  2748. csep = find_descriptor(buffer, buflen, NULL, USB_DT_CS_ENDPOINT, asifout, i);
  2749. if (!csep || csep[0] < 7 || csep[2] != EP_GENERAL) {
  2750. printk(KERN_ERR "usbaudio: device %u interface %u altsetting %u no or invalid class specific endpoint descriptor\n",
  2751. dev->devnum, asifout, i);
  2752. continue;
  2753. }
  2754. if (as->numfmtout >= MAXFORMATS)
  2755. continue;
  2756. fp = &as->fmtout[as->numfmtout++];
  2757. if (fmt[5] == 2)
  2758. format &= (AFMT_U16_LE | AFMT_S16_LE);
  2759. else
  2760. format &= (AFMT_U8 | AFMT_S8);
  2761. if (fmt[4] == 2)
  2762. format |= AFMT_STEREO;
  2763. fp->format = format;
  2764. fp->altsetting = i;
  2765. fp->sratelo = fp->sratehi = fmt[8] | (fmt[9] << 8) | (fmt[10] << 16);
  2766. printk(KERN_INFO "usbaudio: valid output sample rate %u\n", fp->sratelo);
  2767. for (j = fmt[7] ? (fmt[7]-1) : 1; j > 0; j--) {
  2768. k = fmt[8+3*j] | (fmt[9+3*j] << 8) | (fmt[10+3*j] << 16);
  2769. printk(KERN_INFO "usbaudio: valid output sample rate %u\n", k);
  2770. if (k > fp->sratehi)
  2771. fp->sratehi = k;
  2772. if (k < fp->sratelo)
  2773. fp->sratelo = k;
  2774. }
  2775. fp->attributes = csep[3];
  2776. printk(KERN_INFO "usbaudio: device %u interface %u altsetting %u: format 0x%08x sratelo %u sratehi %u attributes 0x%02x\n",
  2777. dev->devnum, asifout, i, fp->format, fp->sratelo, fp->sratehi, fp->attributes);
  2778. }
  2779. }
  2780. if (as->numfmtin == 0 && as->numfmtout == 0) {
  2781. usb_free_urb(as->usbin.durb[0].urb);
  2782. usb_free_urb(as->usbin.durb[1].urb);
  2783. usb_free_urb(as->usbin.surb[0].urb);
  2784. usb_free_urb(as->usbin.surb[1].urb);
  2785. usb_free_urb(as->usbout.durb[0].urb);
  2786. usb_free_urb(as->usbout.durb[1].urb);
  2787. usb_free_urb(as->usbout.surb[0].urb);
  2788. usb_free_urb(as->usbout.surb[1].urb);
  2789. kfree(as);
  2790. return;
  2791. }
  2792. if ((as->dev_audio = register_sound_dsp(&usb_audio_fops, -1)) < 0) {
  2793. printk(KERN_ERR "usbaudio: cannot register dsp\n");
  2794. usb_free_urb(as->usbin.durb[0].urb);
  2795. usb_free_urb(as->usbin.durb[1].urb);
  2796. usb_free_urb(as->usbin.surb[0].urb);
  2797. usb_free_urb(as->usbin.surb[1].urb);
  2798. usb_free_urb(as->usbout.durb[0].urb);
  2799. usb_free_urb(as->usbout.durb[1].urb);
  2800. usb_free_urb(as->usbout.surb[0].urb);
  2801. usb_free_urb(as->usbout.surb[1].urb);
  2802. kfree(as);
  2803. return;
  2804. }
  2805. printk(KERN_INFO "usbaudio: registered dsp 14,%d\n", as->dev_audio);
  2806. /* everything successful */
  2807. list_add_tail(&as->list, &s->audiolist);
  2808. }
  2809. struct consmixstate {
  2810. struct usb_audio_state *s;
  2811. unsigned char *buffer;
  2812. unsigned int buflen;
  2813. unsigned int ctrlif;
  2814. struct mixerchannel mixch[SOUND_MIXER_NRDEVICES];
  2815. unsigned int nrmixch;
  2816. unsigned int mixchmask;
  2817. unsigned long unitbitmap[32/sizeof(unsigned long)];
  2818. /* return values */
  2819. unsigned int nrchannels;
  2820. unsigned int termtype;
  2821. unsigned int chconfig;
  2822. };
  2823. static struct mixerchannel *getmixchannel(struct consmixstate *state, unsigned int nr)
  2824. {
  2825. struct mixerchannel *c;
  2826. if (nr >= SOUND_MIXER_NRDEVICES) {
  2827. printk(KERN_ERR "usbaudio: invalid OSS mixer channel %u\n", nr);
  2828. return NULL;
  2829. }
  2830. if (!(state->mixchmask & (1 << nr))) {
  2831. printk(KERN_WARNING "usbaudio: OSS mixer channel %u already in use\n", nr);
  2832. return NULL;
  2833. }
  2834. c = &state->mixch[state->nrmixch++];
  2835. c->osschannel = nr;
  2836. state->mixchmask &= ~(1 << nr);
  2837. return c;
  2838. }
  2839. static unsigned int getvolchannel(struct consmixstate *state)
  2840. {
  2841. unsigned int u;
  2842. if ((state->termtype & 0xff00) == 0x0000 && (state->mixchmask & SOUND_MASK_VOLUME))
  2843. return SOUND_MIXER_VOLUME;
  2844. if ((state->termtype & 0xff00) == 0x0100) {
  2845. if (state->mixchmask & SOUND_MASK_PCM)
  2846. return SOUND_MIXER_PCM;
  2847. if (state->mixchmask & SOUND_MASK_ALTPCM)
  2848. return SOUND_MIXER_ALTPCM;
  2849. }
  2850. if ((state->termtype & 0xff00) == 0x0200 && (state->mixchmask & SOUND_MASK_MIC))
  2851. return SOUND_MIXER_MIC;
  2852. if ((state->termtype & 0xff00) == 0x0300 && (state->mixchmask & SOUND_MASK_SPEAKER))
  2853. return SOUND_MIXER_SPEAKER;
  2854. if ((state->termtype & 0xff00) == 0x0500) {
  2855. if (state->mixchmask & SOUND_MASK_PHONEIN)
  2856. return SOUND_MIXER_PHONEIN;
  2857. if (state->mixchmask & SOUND_MASK_PHONEOUT)
  2858. return SOUND_MIXER_PHONEOUT;
  2859. }
  2860. if (state->termtype >= 0x710 && state->termtype <= 0x711 && (state->mixchmask & SOUND_MASK_RADIO))
  2861. return SOUND_MIXER_RADIO;
  2862. if (state->termtype >= 0x709 && state->termtype <= 0x70f && (state->mixchmask & SOUND_MASK_VIDEO))
  2863. return SOUND_MIXER_VIDEO;
  2864. u = ffs(state->mixchmask & (SOUND_MASK_LINE | SOUND_MASK_CD | SOUND_MASK_LINE1 | SOUND_MASK_LINE2 | SOUND_MASK_LINE3 |
  2865. SOUND_MASK_DIGITAL1 | SOUND_MASK_DIGITAL2 | SOUND_MASK_DIGITAL3));
  2866. return u-1;
  2867. }
  2868. static void prepmixch(struct consmixstate *state)
  2869. {
  2870. struct usb_device *dev = state->s->usbdev;
  2871. struct mixerchannel *ch;
  2872. unsigned char *buf;
  2873. __s16 v1;
  2874. unsigned int v2, v3;
  2875. if (!state->nrmixch || state->nrmixch > SOUND_MIXER_NRDEVICES)
  2876. return;
  2877. buf = kmalloc(sizeof(*buf) * 2, GFP_KERNEL);
  2878. if (!buf) {
  2879. printk(KERN_ERR "prepmixch: out of memory\n") ;
  2880. return;
  2881. }
  2882. ch = &state->mixch[state->nrmixch-1];
  2883. switch (ch->selector) {
  2884. case 0: /* mixer unit request */
  2885. if (usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), GET_MIN, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN,
  2886. (ch->chnum << 8) | 1, state->ctrlif | (ch->unitid << 8), buf, 2, 1000) < 0)
  2887. goto err;
  2888. ch->minval = buf[0] | (buf[1] << 8);
  2889. if (usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), GET_MAX, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN,
  2890. (ch->chnum << 8) | 1, state->ctrlif | (ch->unitid << 8), buf, 2, 1000) < 0)
  2891. goto err;
  2892. ch->maxval = buf[0] | (buf[1] << 8);
  2893. v2 = ch->maxval - ch->minval;
  2894. if (!v2)
  2895. v2 = 1;
  2896. if (usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), GET_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN,
  2897. (ch->chnum << 8) | 1, state->ctrlif | (ch->unitid << 8), buf, 2, 1000) < 0)
  2898. goto err;
  2899. v1 = buf[0] | (buf[1] << 8);
  2900. v3 = v1 - ch->minval;
  2901. v3 = 100 * v3 / v2;
  2902. if (v3 > 100)
  2903. v3 = 100;
  2904. ch->value = v3;
  2905. if (ch->flags & (MIXFLG_STEREOIN | MIXFLG_STEREOOUT)) {
  2906. if (usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), GET_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN,
  2907. ((ch->chnum + !!(ch->flags & MIXFLG_STEREOIN)) << 8) | (1 + !!(ch->flags & MIXFLG_STEREOOUT)),
  2908. state->ctrlif | (ch->unitid << 8), buf, 2, 1000) < 0)
  2909. goto err;
  2910. v1 = buf[0] | (buf[1] << 8);
  2911. v3 = v1 - ch->minval;
  2912. v3 = 100 * v3 / v2;
  2913. if (v3 > 100)
  2914. v3 = 100;
  2915. }
  2916. ch->value |= v3 << 8;
  2917. break;
  2918. /* various feature unit controls */
  2919. case VOLUME_CONTROL:
  2920. if (usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), GET_MIN, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN,
  2921. (ch->selector << 8) | ch->chnum, state->ctrlif | (ch->unitid << 8), buf, 2, 1000) < 0)
  2922. goto err;
  2923. ch->minval = buf[0] | (buf[1] << 8);
  2924. if (usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), GET_MAX, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN,
  2925. (ch->selector << 8) | ch->chnum, state->ctrlif | (ch->unitid << 8), buf, 2, 1000) < 0)
  2926. goto err;
  2927. ch->maxval = buf[0] | (buf[1] << 8);
  2928. if (usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), GET_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN,
  2929. (ch->selector << 8) | ch->chnum, state->ctrlif | (ch->unitid << 8), buf, 2, 1000) < 0)
  2930. goto err;
  2931. v1 = buf[0] | (buf[1] << 8);
  2932. v2 = ch->maxval - ch->minval;
  2933. v3 = v1 - ch->minval;
  2934. if (!v2)
  2935. v2 = 1;
  2936. v3 = 100 * v3 / v2;
  2937. if (v3 > 100)
  2938. v3 = 100;
  2939. ch->value = v3;
  2940. if (ch->flags & (MIXFLG_STEREOIN | MIXFLG_STEREOOUT)) {
  2941. if (usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), GET_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN,
  2942. (ch->selector << 8) | (ch->chnum + 1), state->ctrlif | (ch->unitid << 8), buf, 2, 1000) < 0)
  2943. goto err;
  2944. v1 = buf[0] | (buf[1] << 8);
  2945. v3 = v1 - ch->minval;
  2946. v3 = 100 * v3 / v2;
  2947. if (v3 > 100)
  2948. v3 = 100;
  2949. }
  2950. ch->value |= v3 << 8;
  2951. break;
  2952. case BASS_CONTROL:
  2953. case MID_CONTROL:
  2954. case TREBLE_CONTROL:
  2955. if (usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), GET_MIN, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN,
  2956. (ch->selector << 8) | ch->chnum, state->ctrlif | (ch->unitid << 8), buf, 1, 1000) < 0)
  2957. goto err;
  2958. ch->minval = buf[0] << 8;
  2959. if (usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), GET_MAX, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN,
  2960. (ch->selector << 8) | ch->chnum, state->ctrlif | (ch->unitid << 8), buf, 1, 1000) < 0)
  2961. goto err;
  2962. ch->maxval = buf[0] << 8;
  2963. if (usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), GET_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN,
  2964. (ch->selector << 8) | ch->chnum, state->ctrlif | (ch->unitid << 8), buf, 1, 1000) < 0)
  2965. goto err;
  2966. v1 = buf[0] << 8;
  2967. v2 = ch->maxval - ch->minval;
  2968. v3 = v1 - ch->minval;
  2969. if (!v2)
  2970. v2 = 1;
  2971. v3 = 100 * v3 / v2;
  2972. if (v3 > 100)
  2973. v3 = 100;
  2974. ch->value = v3;
  2975. if (ch->flags & (MIXFLG_STEREOIN | MIXFLG_STEREOOUT)) {
  2976. if (usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), GET_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN,
  2977. (ch->selector << 8) | (ch->chnum + 1), state->ctrlif | (ch->unitid << 8), buf, 1, 1000) < 0)
  2978. goto err;
  2979. v1 = buf[0] << 8;
  2980. v3 = v1 - ch->minval;
  2981. v3 = 100 * v3 / v2;
  2982. if (v3 > 100)
  2983. v3 = 100;
  2984. }
  2985. ch->value |= v3 << 8;
  2986. break;
  2987. default:
  2988. goto err;
  2989. }
  2990. freebuf:
  2991. kfree(buf);
  2992. return;
  2993. err:
  2994. printk(KERN_ERR "usbaudio: mixer request device %u if %u unit %u ch %u selector %u failed\n",
  2995. dev->devnum, state->ctrlif, ch->unitid, ch->chnum, ch->selector);
  2996. if (state->nrmixch)
  2997. state->nrmixch--;
  2998. goto freebuf;
  2999. }
  3000. static void usb_audio_recurseunit(struct consmixstate *state, unsigned char unitid);
  3001. static inline int checkmixbmap(unsigned char *bmap, unsigned char flg, unsigned int inidx, unsigned int numoch)
  3002. {
  3003. unsigned int idx;
  3004. idx = inidx*numoch;
  3005. if (!(bmap[-(idx >> 3)] & (0x80 >> (idx & 7))))
  3006. return 0;
  3007. if (!(flg & (MIXFLG_STEREOIN | MIXFLG_STEREOOUT)))
  3008. return 1;
  3009. idx = (inidx+!!(flg & MIXFLG_STEREOIN))*numoch+!!(flg & MIXFLG_STEREOOUT);
  3010. if (!(bmap[-(idx >> 3)] & (0x80 >> (idx & 7))))
  3011. return 0;
  3012. return 1;
  3013. }
  3014. static void usb_audio_mixerunit(struct consmixstate *state, unsigned char *mixer)
  3015. {
  3016. unsigned int nroutch = mixer[5+mixer[4]];
  3017. unsigned int chidx[SOUND_MIXER_NRDEVICES+1];
  3018. unsigned int termt[SOUND_MIXER_NRDEVICES];
  3019. unsigned char flg = (nroutch >= 2) ? MIXFLG_STEREOOUT : 0;
  3020. unsigned char *bmap = &mixer[9+mixer[4]];
  3021. unsigned int bmapsize;
  3022. struct mixerchannel *ch;
  3023. unsigned int i;
  3024. if (!mixer[4]) {
  3025. printk(KERN_ERR "usbaudio: unit %u invalid MIXER_UNIT descriptor\n", mixer[3]);
  3026. return;
  3027. }
  3028. if (mixer[4] > SOUND_MIXER_NRDEVICES) {
  3029. printk(KERN_ERR "usbaudio: mixer unit %u: too many input pins\n", mixer[3]);
  3030. return;
  3031. }
  3032. chidx[0] = 0;
  3033. for (i = 0; i < mixer[4]; i++) {
  3034. usb_audio_recurseunit(state, mixer[5+i]);
  3035. chidx[i+1] = chidx[i] + state->nrchannels;
  3036. termt[i] = state->termtype;
  3037. }
  3038. state->termtype = 0;
  3039. state->chconfig = mixer[6+mixer[4]] | (mixer[7+mixer[4]] << 8);
  3040. bmapsize = (nroutch * chidx[mixer[4]] + 7) >> 3;
  3041. bmap += bmapsize - 1;
  3042. if (mixer[0] < 10+mixer[4]+bmapsize) {
  3043. printk(KERN_ERR "usbaudio: unit %u invalid MIXER_UNIT descriptor (bitmap too small)\n", mixer[3]);
  3044. return;
  3045. }
  3046. for (i = 0; i < mixer[4]; i++) {
  3047. state->termtype = termt[i];
  3048. if (chidx[i+1]-chidx[i] >= 2) {
  3049. flg |= MIXFLG_STEREOIN;
  3050. if (checkmixbmap(bmap, flg, chidx[i], nroutch)) {
  3051. ch = getmixchannel(state, getvolchannel(state));
  3052. if (ch) {
  3053. ch->unitid = mixer[3];
  3054. ch->selector = 0;
  3055. ch->chnum = chidx[i]+1;
  3056. ch->flags = flg;
  3057. prepmixch(state);
  3058. }
  3059. continue;
  3060. }
  3061. }
  3062. flg &= ~MIXFLG_STEREOIN;
  3063. if (checkmixbmap(bmap, flg, chidx[i], nroutch)) {
  3064. ch = getmixchannel(state, getvolchannel(state));
  3065. if (ch) {
  3066. ch->unitid = mixer[3];
  3067. ch->selector = 0;
  3068. ch->chnum = chidx[i]+1;
  3069. ch->flags = flg;
  3070. prepmixch(state);
  3071. }
  3072. }
  3073. }
  3074. state->termtype = 0;
  3075. }
  3076. static struct mixerchannel *slctsrc_findunit(struct consmixstate *state, __u8 unitid)
  3077. {
  3078. unsigned int i;
  3079. for (i = 0; i < state->nrmixch; i++)
  3080. if (state->mixch[i].unitid == unitid)
  3081. return &state->mixch[i];
  3082. return NULL;
  3083. }
  3084. static void usb_audio_selectorunit(struct consmixstate *state, unsigned char *selector)
  3085. {
  3086. unsigned int chnum, i, mixch;
  3087. struct mixerchannel *mch;
  3088. if (!selector[4]) {
  3089. printk(KERN_ERR "usbaudio: unit %u invalid SELECTOR_UNIT descriptor\n", selector[3]);
  3090. return;
  3091. }
  3092. mixch = state->nrmixch;
  3093. usb_audio_recurseunit(state, selector[5]);
  3094. if (state->nrmixch != mixch) {
  3095. mch = &state->mixch[state->nrmixch-1];
  3096. mch->slctunitid = selector[3] | (1 << 8);
  3097. } else if ((mch = slctsrc_findunit(state, selector[5]))) {
  3098. mch->slctunitid = selector[3] | (1 << 8);
  3099. } else {
  3100. printk(KERN_INFO "usbaudio: selector unit %u: ignoring channel 1\n", selector[3]);
  3101. }
  3102. chnum = state->nrchannels;
  3103. for (i = 1; i < selector[4]; i++) {
  3104. mixch = state->nrmixch;
  3105. usb_audio_recurseunit(state, selector[5+i]);
  3106. if (chnum != state->nrchannels) {
  3107. printk(KERN_ERR "usbaudio: selector unit %u: input pins with varying channel numbers\n", selector[3]);
  3108. state->termtype = 0;
  3109. state->chconfig = 0;
  3110. state->nrchannels = 0;
  3111. return;
  3112. }
  3113. if (state->nrmixch != mixch) {
  3114. mch = &state->mixch[state->nrmixch-1];
  3115. mch->slctunitid = selector[3] | ((i + 1) << 8);
  3116. } else if ((mch = slctsrc_findunit(state, selector[5+i]))) {
  3117. mch->slctunitid = selector[3] | ((i + 1) << 8);
  3118. } else {
  3119. printk(KERN_INFO "usbaudio: selector unit %u: ignoring channel %u\n", selector[3], i+1);
  3120. }
  3121. }
  3122. state->termtype = 0;
  3123. state->chconfig = 0;
  3124. }
  3125. /* in the future we might try to handle 3D etc. effect units */
  3126. static void usb_audio_processingunit(struct consmixstate *state, unsigned char *proc)
  3127. {
  3128. unsigned int i;
  3129. for (i = 0; i < proc[6]; i++)
  3130. usb_audio_recurseunit(state, proc[7+i]);
  3131. state->nrchannels = proc[7+proc[6]];
  3132. state->termtype = 0;
  3133. state->chconfig = proc[8+proc[6]] | (proc[9+proc[6]] << 8);
  3134. }
  3135. /* See Audio Class Spec, section 4.3.2.5 */
  3136. static void usb_audio_featureunit(struct consmixstate *state, unsigned char *ftr)
  3137. {
  3138. struct mixerchannel *ch;
  3139. unsigned short chftr, mchftr;
  3140. #if 0
  3141. struct usb_device *dev = state->s->usbdev;
  3142. unsigned char data[1];
  3143. #endif
  3144. unsigned char nr_logical_channels, i;
  3145. usb_audio_recurseunit(state, ftr[4]);
  3146. if (ftr[5] == 0 ) {
  3147. printk(KERN_ERR "usbaudio: wrong controls size in feature unit %u\n",ftr[3]);
  3148. return;
  3149. }
  3150. if (state->nrchannels == 0) {
  3151. printk(KERN_ERR "usbaudio: feature unit %u source has no channels\n", ftr[3]);
  3152. return;
  3153. }
  3154. if (state->nrchannels > 2)
  3155. printk(KERN_WARNING "usbaudio: feature unit %u: OSS mixer interface does not support more than 2 channels\n", ftr[3]);
  3156. nr_logical_channels=(ftr[0]-7)/ftr[5]-1;
  3157. if (nr_logical_channels != state->nrchannels) {
  3158. printk(KERN_WARNING "usbaudio: warning: found %d of %d logical channels.\n", state->nrchannels,nr_logical_channels);
  3159. if (state->nrchannels == 1 && nr_logical_channels==0) {
  3160. printk(KERN_INFO "usbaudio: assuming the channel found is the master channel (got a Philips camera?). Should be fine.\n");
  3161. } else if (state->nrchannels == 1 && nr_logical_channels==2) {
  3162. printk(KERN_INFO "usbaudio: assuming that a stereo channel connected directly to a mixer is missing in search (got Labtec headset?). Should be fine.\n");
  3163. state->nrchannels=nr_logical_channels;
  3164. } else {
  3165. printk(KERN_WARNING "usbaudio: no idea what's going on..., contact linux-usb-devel@lists.sourceforge.net\n");
  3166. }
  3167. }
  3168. /* There is always a master channel */
  3169. mchftr = ftr[6];
  3170. /* Binary AND over logical channels if they exist */
  3171. if (nr_logical_channels) {
  3172. chftr = ftr[6+ftr[5]];
  3173. for (i = 2; i <= nr_logical_channels; i++)
  3174. chftr &= ftr[6+i*ftr[5]];
  3175. } else {
  3176. chftr = 0;
  3177. }
  3178. /* volume control */
  3179. if (chftr & 2) {
  3180. ch = getmixchannel(state, getvolchannel(state));
  3181. if (ch) {
  3182. ch->unitid = ftr[3];
  3183. ch->selector = VOLUME_CONTROL;
  3184. ch->chnum = 1;
  3185. ch->flags = (state->nrchannels > 1) ? (MIXFLG_STEREOIN | MIXFLG_STEREOOUT) : 0;
  3186. prepmixch(state);
  3187. }
  3188. } else if (mchftr & 2) {
  3189. ch = getmixchannel(state, getvolchannel(state));
  3190. if (ch) {
  3191. ch->unitid = ftr[3];
  3192. ch->selector = VOLUME_CONTROL;
  3193. ch->chnum = 0;
  3194. ch->flags = 0;
  3195. prepmixch(state);
  3196. }
  3197. }
  3198. /* bass control */
  3199. if (chftr & 4) {
  3200. ch = getmixchannel(state, SOUND_MIXER_BASS);
  3201. if (ch) {
  3202. ch->unitid = ftr[3];
  3203. ch->selector = BASS_CONTROL;
  3204. ch->chnum = 1;
  3205. ch->flags = (state->nrchannels > 1) ? (MIXFLG_STEREOIN | MIXFLG_STEREOOUT) : 0;
  3206. prepmixch(state);
  3207. }
  3208. } else if (mchftr & 4) {
  3209. ch = getmixchannel(state, SOUND_MIXER_BASS);
  3210. if (ch) {
  3211. ch->unitid = ftr[3];
  3212. ch->selector = BASS_CONTROL;
  3213. ch->chnum = 0;
  3214. ch->flags = 0;
  3215. prepmixch(state);
  3216. }
  3217. }
  3218. /* treble control */
  3219. if (chftr & 16) {
  3220. ch = getmixchannel(state, SOUND_MIXER_TREBLE);
  3221. if (ch) {
  3222. ch->unitid = ftr[3];
  3223. ch->selector = TREBLE_CONTROL;
  3224. ch->chnum = 1;
  3225. ch->flags = (state->nrchannels > 1) ? (MIXFLG_STEREOIN | MIXFLG_STEREOOUT) : 0;
  3226. prepmixch(state);
  3227. }
  3228. } else if (mchftr & 16) {
  3229. ch = getmixchannel(state, SOUND_MIXER_TREBLE);
  3230. if (ch) {
  3231. ch->unitid = ftr[3];
  3232. ch->selector = TREBLE_CONTROL;
  3233. ch->chnum = 0;
  3234. ch->flags = 0;
  3235. prepmixch(state);
  3236. }
  3237. }
  3238. #if 0
  3239. /* if there are mute controls, unmute them */
  3240. /* does not seem to be necessary, and the Dallas chip does not seem to support the "all" channel (255) */
  3241. if ((chftr & 1) || (mchftr & 1)) {
  3242. printk(KERN_DEBUG "usbaudio: unmuting feature unit %u interface %u\n", ftr[3], state->ctrlif);
  3243. data[0] = 0;
  3244. if (usb_control_msg(dev, usb_sndctrlpipe(dev, 0), SET_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_OUT,
  3245. (MUTE_CONTROL << 8) | 0xff, state->ctrlif | (ftr[3] << 8), data, 1, 1000) < 0)
  3246. printk(KERN_WARNING "usbaudio: failure to unmute feature unit %u interface %u\n", ftr[3], state->ctrlif);
  3247. }
  3248. #endif
  3249. }
  3250. static void usb_audio_recurseunit(struct consmixstate *state, unsigned char unitid)
  3251. {
  3252. unsigned char *p1;
  3253. unsigned int i, j;
  3254. if (test_and_set_bit(unitid, state->unitbitmap)) {
  3255. printk(KERN_INFO "usbaudio: mixer path revisits unit %d\n", unitid);
  3256. return;
  3257. }
  3258. p1 = find_audiocontrol_unit(state->buffer, state->buflen, NULL, unitid, state->ctrlif);
  3259. if (!p1) {
  3260. printk(KERN_ERR "usbaudio: unit %d not found!\n", unitid);
  3261. return;
  3262. }
  3263. state->nrchannels = 0;
  3264. state->termtype = 0;
  3265. state->chconfig = 0;
  3266. switch (p1[2]) {
  3267. case INPUT_TERMINAL:
  3268. if (p1[0] < 12) {
  3269. printk(KERN_ERR "usbaudio: unit %u: invalid INPUT_TERMINAL descriptor\n", unitid);
  3270. return;
  3271. }
  3272. state->nrchannels = p1[7];
  3273. state->termtype = p1[4] | (p1[5] << 8);
  3274. state->chconfig = p1[8] | (p1[9] << 8);
  3275. return;
  3276. case MIXER_UNIT:
  3277. if (p1[0] < 10 || p1[0] < 10+p1[4]) {
  3278. printk(KERN_ERR "usbaudio: unit %u: invalid MIXER_UNIT descriptor\n", unitid);
  3279. return;
  3280. }
  3281. usb_audio_mixerunit(state, p1);
  3282. return;
  3283. case SELECTOR_UNIT:
  3284. if (p1[0] < 6 || p1[0] < 6+p1[4]) {
  3285. printk(KERN_ERR "usbaudio: unit %u: invalid SELECTOR_UNIT descriptor\n", unitid);
  3286. return;
  3287. }
  3288. usb_audio_selectorunit(state, p1);
  3289. return;
  3290. case FEATURE_UNIT: /* See USB Audio Class Spec 4.3.2.5 */
  3291. if (p1[0] < 7 || p1[0] < 7+p1[5]) {
  3292. printk(KERN_ERR "usbaudio: unit %u: invalid FEATURE_UNIT descriptor\n", unitid);
  3293. return;
  3294. }
  3295. usb_audio_featureunit(state, p1);
  3296. return;
  3297. case PROCESSING_UNIT:
  3298. if (p1[0] < 13 || p1[0] < 13+p1[6] || p1[0] < 13+p1[6]+p1[11+p1[6]]) {
  3299. printk(KERN_ERR "usbaudio: unit %u: invalid PROCESSING_UNIT descriptor\n", unitid);
  3300. return;
  3301. }
  3302. usb_audio_processingunit(state, p1);
  3303. return;
  3304. case EXTENSION_UNIT:
  3305. if (p1[0] < 13 || p1[0] < 13+p1[6] || p1[0] < 13+p1[6]+p1[11+p1[6]]) {
  3306. printk(KERN_ERR "usbaudio: unit %u: invalid EXTENSION_UNIT descriptor\n", unitid);
  3307. return;
  3308. }
  3309. for (j = i = 0; i < p1[6]; i++) {
  3310. usb_audio_recurseunit(state, p1[7+i]);
  3311. if (!i)
  3312. j = state->termtype;
  3313. else if (j != state->termtype)
  3314. j = 0;
  3315. }
  3316. state->nrchannels = p1[7+p1[6]];
  3317. state->chconfig = p1[8+p1[6]] | (p1[9+p1[6]] << 8);
  3318. state->termtype = j;
  3319. return;
  3320. default:
  3321. printk(KERN_ERR "usbaudio: unit %u: unexpected type 0x%02x\n", unitid, p1[2]);
  3322. return;
  3323. }
  3324. }
  3325. static void usb_audio_constructmixer(struct usb_audio_state *s, unsigned char *buffer, unsigned int buflen, unsigned int ctrlif, unsigned char *oterm)
  3326. {
  3327. struct usb_mixerdev *ms;
  3328. struct consmixstate state;
  3329. memset(&state, 0, sizeof(state));
  3330. state.s = s;
  3331. state.nrmixch = 0;
  3332. state.mixchmask = ~0;
  3333. state.buffer = buffer;
  3334. state.buflen = buflen;
  3335. state.ctrlif = ctrlif;
  3336. set_bit(oterm[3], state.unitbitmap); /* mark terminal ID as visited */
  3337. printk(KERN_DEBUG "usbaudio: constructing mixer for Terminal %u type 0x%04x\n",
  3338. oterm[3], oterm[4] | (oterm[5] << 8));
  3339. usb_audio_recurseunit(&state, oterm[7]);
  3340. if (!state.nrmixch) {
  3341. printk(KERN_INFO "usbaudio: no mixer controls found for Terminal %u\n", oterm[3]);
  3342. return;
  3343. }
  3344. if (!(ms = kmalloc(sizeof(struct usb_mixerdev)+state.nrmixch*sizeof(struct mixerchannel), GFP_KERNEL)))
  3345. return;
  3346. memset(ms, 0, sizeof(struct usb_mixerdev));
  3347. memcpy(&ms->ch, &state.mixch, state.nrmixch*sizeof(struct mixerchannel));
  3348. ms->state = s;
  3349. ms->iface = ctrlif;
  3350. ms->numch = state.nrmixch;
  3351. if ((ms->dev_mixer = register_sound_mixer(&usb_mixer_fops, -1)) < 0) {
  3352. printk(KERN_ERR "usbaudio: cannot register mixer\n");
  3353. kfree(ms);
  3354. return;
  3355. }
  3356. printk(KERN_INFO "usbaudio: registered mixer 14,%d\n", ms->dev_mixer);
  3357. list_add_tail(&ms->list, &s->mixerlist);
  3358. }
  3359. /* arbitrary limit, we won't check more interfaces than this */
  3360. #define USB_MAXINTERFACES 32
  3361. static struct usb_audio_state *usb_audio_parsecontrol(struct usb_device *dev, unsigned char *buffer, unsigned int buflen, unsigned int ctrlif)
  3362. {
  3363. struct usb_audio_state *s;
  3364. struct usb_interface *iface;
  3365. struct usb_host_interface *alt;
  3366. unsigned char ifin[USB_MAXINTERFACES], ifout[USB_MAXINTERFACES];
  3367. unsigned char *p1;
  3368. unsigned int i, j, k, numifin = 0, numifout = 0;
  3369. if (!(s = kmalloc(sizeof(struct usb_audio_state), GFP_KERNEL)))
  3370. return NULL;
  3371. memset(s, 0, sizeof(struct usb_audio_state));
  3372. INIT_LIST_HEAD(&s->audiolist);
  3373. INIT_LIST_HEAD(&s->mixerlist);
  3374. s->usbdev = dev;
  3375. s->count = 1;
  3376. /* find audiocontrol interface */
  3377. if (!(p1 = find_csinterface_descriptor(buffer, buflen, NULL, HEADER, ctrlif, -1))) {
  3378. printk(KERN_ERR "usbaudio: device %d audiocontrol interface %u no HEADER found\n",
  3379. dev->devnum, ctrlif);
  3380. goto ret;
  3381. }
  3382. if (p1[0] < 8 + p1[7]) {
  3383. printk(KERN_ERR "usbaudio: device %d audiocontrol interface %u HEADER error\n",
  3384. dev->devnum, ctrlif);
  3385. goto ret;
  3386. }
  3387. if (!p1[7])
  3388. printk(KERN_INFO "usbaudio: device %d audiocontrol interface %u has no AudioStreaming and MidiStreaming interfaces\n",
  3389. dev->devnum, ctrlif);
  3390. for (i = 0; i < p1[7]; i++) {
  3391. j = p1[8+i];
  3392. iface = usb_ifnum_to_if(dev, j);
  3393. if (!iface) {
  3394. printk(KERN_ERR "usbaudio: device %d audiocontrol interface %u interface %u does not exist\n",
  3395. dev->devnum, ctrlif, j);
  3396. continue;
  3397. }
  3398. if (iface->num_altsetting == 1) {
  3399. printk(KERN_ERR "usbaudio: device %d audiocontrol interface %u has only 1 altsetting.\n", dev->devnum, ctrlif);
  3400. continue;
  3401. }
  3402. alt = usb_altnum_to_altsetting(iface, 0);
  3403. if (!alt) {
  3404. printk(KERN_ERR "usbaudio: device %d audiocontrol interface %u interface %u has no altsetting 0\n",
  3405. dev->devnum, ctrlif, j);
  3406. continue;
  3407. }
  3408. if (alt->desc.bInterfaceClass != USB_CLASS_AUDIO) {
  3409. printk(KERN_ERR "usbaudio: device %d audiocontrol interface %u interface %u is not an AudioClass interface\n",
  3410. dev->devnum, ctrlif, j);
  3411. continue;
  3412. }
  3413. if (alt->desc.bInterfaceSubClass == 3) {
  3414. printk(KERN_INFO "usbaudio: device %d audiocontrol interface %u interface %u MIDIStreaming not supported\n",
  3415. dev->devnum, ctrlif, j);
  3416. continue;
  3417. }
  3418. if (alt->desc.bInterfaceSubClass != 2) {
  3419. printk(KERN_ERR "usbaudio: device %d audiocontrol interface %u interface %u invalid AudioClass subtype\n",
  3420. dev->devnum, ctrlif, j);
  3421. continue;
  3422. }
  3423. if (alt->desc.bNumEndpoints > 0) {
  3424. /* Check all endpoints; should they all have a bandwidth of 0 ? */
  3425. for (k = 0; k < alt->desc.bNumEndpoints; k++) {
  3426. if (le16_to_cpu(alt->endpoint[k].desc.wMaxPacketSize) > 0) {
  3427. printk(KERN_ERR "usbaudio: device %d audiocontrol interface %u endpoint %d does not have 0 bandwidth at alt[0]\n", dev->devnum, ctrlif, k);
  3428. break;
  3429. }
  3430. }
  3431. if (k < alt->desc.bNumEndpoints)
  3432. continue;
  3433. }
  3434. alt = usb_altnum_to_altsetting(iface, 1);
  3435. if (!alt) {
  3436. printk(KERN_ERR "usbaudio: device %d audiocontrol interface %u interface %u has no altsetting 1\n",
  3437. dev->devnum, ctrlif, j);
  3438. continue;
  3439. }
  3440. if (alt->desc.bNumEndpoints < 1) {
  3441. printk(KERN_ERR "usbaudio: device %d audiocontrol interface %u interface %u has no endpoint\n",
  3442. dev->devnum, ctrlif, j);
  3443. continue;
  3444. }
  3445. /* note: this requires the data endpoint to be ep0 and the optional sync
  3446. ep to be ep1, which seems to be the case */
  3447. if (alt->endpoint[0].desc.bEndpointAddress & USB_DIR_IN) {
  3448. if (numifin < USB_MAXINTERFACES) {
  3449. ifin[numifin++] = j;
  3450. usb_driver_claim_interface(&usb_audio_driver, iface, (void *)-1);
  3451. }
  3452. } else {
  3453. if (numifout < USB_MAXINTERFACES) {
  3454. ifout[numifout++] = j;
  3455. usb_driver_claim_interface(&usb_audio_driver, iface, (void *)-1);
  3456. }
  3457. }
  3458. }
  3459. printk(KERN_INFO "usbaudio: device %d audiocontrol interface %u has %u input and %u output AudioStreaming interfaces\n",
  3460. dev->devnum, ctrlif, numifin, numifout);
  3461. for (i = 0; i < numifin && i < numifout; i++)
  3462. usb_audio_parsestreaming(s, buffer, buflen, ifin[i], ifout[i]);
  3463. for (j = i; j < numifin; j++)
  3464. usb_audio_parsestreaming(s, buffer, buflen, ifin[i], -1);
  3465. for (j = i; j < numifout; j++)
  3466. usb_audio_parsestreaming(s, buffer, buflen, -1, ifout[i]);
  3467. /* now walk through all OUTPUT_TERMINAL descriptors to search for mixers */
  3468. p1 = find_csinterface_descriptor(buffer, buflen, NULL, OUTPUT_TERMINAL, ctrlif, -1);
  3469. while (p1) {
  3470. if (p1[0] >= 9)
  3471. usb_audio_constructmixer(s, buffer, buflen, ctrlif, p1);
  3472. p1 = find_csinterface_descriptor(buffer, buflen, p1, OUTPUT_TERMINAL, ctrlif, -1);
  3473. }
  3474. ret:
  3475. if (list_empty(&s->audiolist) && list_empty(&s->mixerlist)) {
  3476. kfree(s);
  3477. return NULL;
  3478. }
  3479. /* everything successful */
  3480. down(&open_sem);
  3481. list_add_tail(&s->audiodev, &audiodevs);
  3482. up(&open_sem);
  3483. printk(KERN_DEBUG "usb_audio_parsecontrol: usb_audio_state at %p\n", s);
  3484. return s;
  3485. }
  3486. /* we only care for the currently active configuration */
  3487. static int usb_audio_probe(struct usb_interface *intf,
  3488. const struct usb_device_id *id)
  3489. {
  3490. struct usb_device *dev = interface_to_usbdev (intf);
  3491. struct usb_audio_state *s;
  3492. unsigned char *buffer;
  3493. unsigned int buflen;
  3494. #if 0
  3495. printk(KERN_DEBUG "usbaudio: Probing if %i: IC %x, ISC %x\n", ifnum,
  3496. config->interface[ifnum].altsetting[0].desc.bInterfaceClass,
  3497. config->interface[ifnum].altsetting[0].desc.bInterfaceSubClass);
  3498. #endif
  3499. /*
  3500. * audiocontrol interface found
  3501. * find which configuration number is active
  3502. */
  3503. buffer = dev->rawdescriptors[dev->actconfig - dev->config];
  3504. buflen = le16_to_cpu(dev->actconfig->desc.wTotalLength);
  3505. s = usb_audio_parsecontrol(dev, buffer, buflen, intf->altsetting->desc.bInterfaceNumber);
  3506. if (s) {
  3507. usb_set_intfdata (intf, s);
  3508. return 0;
  3509. }
  3510. return -ENODEV;
  3511. }
  3512. /* a revoke facility would make things simpler */
  3513. static void usb_audio_disconnect(struct usb_interface *intf)
  3514. {
  3515. struct usb_audio_state *s = usb_get_intfdata (intf);
  3516. struct usb_audiodev *as;
  3517. struct usb_mixerdev *ms;
  3518. if (!s)
  3519. return;
  3520. /* we get called with -1 for every audiostreaming interface registered */
  3521. if (s == (struct usb_audio_state *)-1) {
  3522. dprintk((KERN_DEBUG "usbaudio: note, usb_audio_disconnect called with -1\n"));
  3523. return;
  3524. }
  3525. if (!s->usbdev) {
  3526. dprintk((KERN_DEBUG "usbaudio: error, usb_audio_disconnect already called for %p!\n", s));
  3527. return;
  3528. }
  3529. down(&open_sem);
  3530. list_del_init(&s->audiodev);
  3531. s->usbdev = NULL;
  3532. usb_set_intfdata (intf, NULL);
  3533. /* deregister all audio and mixer devices, so no new processes can open this device */
  3534. list_for_each_entry(as, &s->audiolist, list) {
  3535. usbin_disc(as);
  3536. usbout_disc(as);
  3537. wake_up(&as->usbin.dma.wait);
  3538. wake_up(&as->usbout.dma.wait);
  3539. if (as->dev_audio >= 0) {
  3540. unregister_sound_dsp(as->dev_audio);
  3541. printk(KERN_INFO "usbaudio: unregister dsp 14,%d\n", as->dev_audio);
  3542. }
  3543. as->dev_audio = -1;
  3544. }
  3545. list_for_each_entry(ms, &s->mixerlist, list) {
  3546. if (ms->dev_mixer >= 0) {
  3547. unregister_sound_mixer(ms->dev_mixer);
  3548. printk(KERN_INFO "usbaudio: unregister mixer 14,%d\n", ms->dev_mixer);
  3549. }
  3550. ms->dev_mixer = -1;
  3551. }
  3552. release(s);
  3553. wake_up(&open_wait);
  3554. }
  3555. static int __init usb_audio_init(void)
  3556. {
  3557. int result = usb_register(&usb_audio_driver);
  3558. if (result == 0)
  3559. info(DRIVER_VERSION ":" DRIVER_DESC);
  3560. return result;
  3561. }
  3562. static void __exit usb_audio_cleanup(void)
  3563. {
  3564. usb_deregister(&usb_audio_driver);
  3565. }
  3566. module_init(usb_audio_init);
  3567. module_exit(usb_audio_cleanup);
  3568. MODULE_AUTHOR( DRIVER_AUTHOR );
  3569. MODULE_DESCRIPTION( DRIVER_DESC );
  3570. MODULE_LICENSE("GPL");