keyboard.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519
  1. /*
  2. * drivers/s390/char/keyboard.c
  3. * ebcdic keycode functions for s390 console drivers
  4. *
  5. * S390 version
  6. * Copyright (C) 2003 IBM Deutschland Entwicklung GmbH, IBM Corporation
  7. * Author(s): Martin Schwidefsky (schwidefsky@de.ibm.com),
  8. */
  9. #include <linux/config.h>
  10. #include <linux/module.h>
  11. #include <linux/sched.h>
  12. #include <linux/sysrq.h>
  13. #include <linux/kbd_kern.h>
  14. #include <linux/kbd_diacr.h>
  15. #include <asm/uaccess.h>
  16. #include "keyboard.h"
  17. /*
  18. * Handler Tables.
  19. */
  20. #define K_HANDLERS\
  21. k_self, k_fn, k_spec, k_ignore,\
  22. k_dead, k_ignore, k_ignore, k_ignore,\
  23. k_ignore, k_ignore, k_ignore, k_ignore,\
  24. k_ignore, k_ignore, k_ignore, k_ignore
  25. typedef void (k_handler_fn)(struct kbd_data *, unsigned char);
  26. static k_handler_fn K_HANDLERS;
  27. static k_handler_fn *k_handler[16] = { K_HANDLERS };
  28. /* maximum values each key_handler can handle */
  29. static const int kbd_max_vals[] = {
  30. 255, ARRAY_SIZE(func_table) - 1, NR_FN_HANDLER - 1, 0,
  31. NR_DEAD - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0
  32. };
  33. static const int KBD_NR_TYPES = ARRAY_SIZE(kbd_max_vals);
  34. static unsigned char ret_diacr[NR_DEAD] = {
  35. '`', '\'', '^', '~', '"', ','
  36. };
  37. /*
  38. * Alloc/free of kbd_data structures.
  39. */
  40. struct kbd_data *
  41. kbd_alloc(void) {
  42. struct kbd_data *kbd;
  43. int i, len;
  44. kbd = kmalloc(sizeof(struct kbd_data), GFP_KERNEL);
  45. if (!kbd)
  46. goto out;
  47. memset(kbd, 0, sizeof(struct kbd_data));
  48. kbd->key_maps = kmalloc(sizeof(key_maps), GFP_KERNEL);
  49. if (!key_maps)
  50. goto out_kbd;
  51. memset(kbd->key_maps, 0, sizeof(key_maps));
  52. for (i = 0; i < ARRAY_SIZE(key_maps); i++) {
  53. if (key_maps[i]) {
  54. kbd->key_maps[i] =
  55. kmalloc(sizeof(u_short)*NR_KEYS, GFP_KERNEL);
  56. if (!kbd->key_maps[i])
  57. goto out_maps;
  58. memcpy(kbd->key_maps[i], key_maps[i],
  59. sizeof(u_short)*NR_KEYS);
  60. }
  61. }
  62. kbd->func_table = kmalloc(sizeof(func_table), GFP_KERNEL);
  63. if (!kbd->func_table)
  64. goto out_maps;
  65. memset(kbd->func_table, 0, sizeof(func_table));
  66. for (i = 0; i < ARRAY_SIZE(func_table); i++) {
  67. if (func_table[i]) {
  68. len = strlen(func_table[i]) + 1;
  69. kbd->func_table[i] = kmalloc(len, GFP_KERNEL);
  70. if (!kbd->func_table[i])
  71. goto out_func;
  72. memcpy(kbd->func_table[i], func_table[i], len);
  73. }
  74. }
  75. kbd->fn_handler =
  76. kmalloc(sizeof(fn_handler_fn *) * NR_FN_HANDLER, GFP_KERNEL);
  77. if (!kbd->fn_handler)
  78. goto out_func;
  79. memset(kbd->fn_handler, 0, sizeof(fn_handler_fn *) * NR_FN_HANDLER);
  80. kbd->accent_table =
  81. kmalloc(sizeof(struct kbdiacr)*MAX_DIACR, GFP_KERNEL);
  82. if (!kbd->accent_table)
  83. goto out_fn_handler;
  84. memcpy(kbd->accent_table, accent_table,
  85. sizeof(struct kbdiacr)*MAX_DIACR);
  86. kbd->accent_table_size = accent_table_size;
  87. return kbd;
  88. out_fn_handler:
  89. kfree(kbd->fn_handler);
  90. out_func:
  91. for (i = 0; i < ARRAY_SIZE(func_table); i++)
  92. if (kbd->func_table[i])
  93. kfree(kbd->func_table[i]);
  94. kfree(kbd->func_table);
  95. out_maps:
  96. for (i = 0; i < ARRAY_SIZE(key_maps); i++)
  97. if (kbd->key_maps[i])
  98. kfree(kbd->key_maps[i]);
  99. kfree(kbd->key_maps);
  100. out_kbd:
  101. kfree(kbd);
  102. out:
  103. return 0;
  104. }
  105. void
  106. kbd_free(struct kbd_data *kbd)
  107. {
  108. int i;
  109. kfree(kbd->accent_table);
  110. kfree(kbd->fn_handler);
  111. for (i = 0; i < ARRAY_SIZE(func_table); i++)
  112. if (kbd->func_table[i])
  113. kfree(kbd->func_table[i]);
  114. kfree(kbd->func_table);
  115. for (i = 0; i < ARRAY_SIZE(key_maps); i++)
  116. if (kbd->key_maps[i])
  117. kfree(kbd->key_maps[i]);
  118. kfree(kbd->key_maps);
  119. kfree(kbd);
  120. }
  121. /*
  122. * Generate ascii -> ebcdic translation table from kbd_data.
  123. */
  124. void
  125. kbd_ascebc(struct kbd_data *kbd, unsigned char *ascebc)
  126. {
  127. unsigned short *keymap, keysym;
  128. int i, j, k;
  129. memset(ascebc, 0x40, 256);
  130. for (i = 0; i < ARRAY_SIZE(key_maps); i++) {
  131. keymap = kbd->key_maps[i];
  132. if (!keymap)
  133. continue;
  134. for (j = 0; j < NR_KEYS; j++) {
  135. k = ((i & 1) << 7) + j;
  136. keysym = keymap[j];
  137. if (KTYP(keysym) == (KT_LATIN | 0xf0) ||
  138. KTYP(keysym) == (KT_LETTER | 0xf0))
  139. ascebc[KVAL(keysym)] = k;
  140. else if (KTYP(keysym) == (KT_DEAD | 0xf0))
  141. ascebc[ret_diacr[KVAL(keysym)]] = k;
  142. }
  143. }
  144. }
  145. /*
  146. * Generate ebcdic -> ascii translation table from kbd_data.
  147. */
  148. void
  149. kbd_ebcasc(struct kbd_data *kbd, unsigned char *ebcasc)
  150. {
  151. unsigned short *keymap, keysym;
  152. int i, j, k;
  153. memset(ebcasc, ' ', 256);
  154. for (i = 0; i < ARRAY_SIZE(key_maps); i++) {
  155. keymap = kbd->key_maps[i];
  156. if (!keymap)
  157. continue;
  158. for (j = 0; j < NR_KEYS; j++) {
  159. keysym = keymap[j];
  160. k = ((i & 1) << 7) + j;
  161. if (KTYP(keysym) == (KT_LATIN | 0xf0) ||
  162. KTYP(keysym) == (KT_LETTER | 0xf0))
  163. ebcasc[k] = KVAL(keysym);
  164. else if (KTYP(keysym) == (KT_DEAD | 0xf0))
  165. ebcasc[k] = ret_diacr[KVAL(keysym)];
  166. }
  167. }
  168. }
  169. /*
  170. * We have a combining character DIACR here, followed by the character CH.
  171. * If the combination occurs in the table, return the corresponding value.
  172. * Otherwise, if CH is a space or equals DIACR, return DIACR.
  173. * Otherwise, conclude that DIACR was not combining after all,
  174. * queue it and return CH.
  175. */
  176. static unsigned char
  177. handle_diacr(struct kbd_data *kbd, unsigned char ch)
  178. {
  179. int i, d;
  180. d = kbd->diacr;
  181. kbd->diacr = 0;
  182. for (i = 0; i < kbd->accent_table_size; i++) {
  183. if (kbd->accent_table[i].diacr == d &&
  184. kbd->accent_table[i].base == ch)
  185. return kbd->accent_table[i].result;
  186. }
  187. if (ch == ' ' || ch == d)
  188. return d;
  189. kbd_put_queue(kbd->tty, d);
  190. return ch;
  191. }
  192. /*
  193. * Handle dead key.
  194. */
  195. static void
  196. k_dead(struct kbd_data *kbd, unsigned char value)
  197. {
  198. value = ret_diacr[value];
  199. kbd->diacr = (kbd->diacr ? handle_diacr(kbd, value) : value);
  200. }
  201. /*
  202. * Normal character handler.
  203. */
  204. static void
  205. k_self(struct kbd_data *kbd, unsigned char value)
  206. {
  207. if (kbd->diacr)
  208. value = handle_diacr(kbd, value);
  209. kbd_put_queue(kbd->tty, value);
  210. }
  211. /*
  212. * Special key handlers
  213. */
  214. static void
  215. k_ignore(struct kbd_data *kbd, unsigned char value)
  216. {
  217. }
  218. /*
  219. * Function key handler.
  220. */
  221. static void
  222. k_fn(struct kbd_data *kbd, unsigned char value)
  223. {
  224. if (kbd->func_table[value])
  225. kbd_puts_queue(kbd->tty, kbd->func_table[value]);
  226. }
  227. static void
  228. k_spec(struct kbd_data *kbd, unsigned char value)
  229. {
  230. if (value >= NR_FN_HANDLER)
  231. return;
  232. if (kbd->fn_handler[value])
  233. kbd->fn_handler[value](kbd);
  234. }
  235. /*
  236. * Put utf8 character to tty flip buffer.
  237. * UTF-8 is defined for words of up to 31 bits,
  238. * but we need only 16 bits here
  239. */
  240. static void
  241. to_utf8(struct tty_struct *tty, ushort c)
  242. {
  243. if (c < 0x80)
  244. /* 0******* */
  245. kbd_put_queue(tty, c);
  246. else if (c < 0x800) {
  247. /* 110***** 10****** */
  248. kbd_put_queue(tty, 0xc0 | (c >> 6));
  249. kbd_put_queue(tty, 0x80 | (c & 0x3f));
  250. } else {
  251. /* 1110**** 10****** 10****** */
  252. kbd_put_queue(tty, 0xe0 | (c >> 12));
  253. kbd_put_queue(tty, 0x80 | ((c >> 6) & 0x3f));
  254. kbd_put_queue(tty, 0x80 | (c & 0x3f));
  255. }
  256. }
  257. /*
  258. * Process keycode.
  259. */
  260. void
  261. kbd_keycode(struct kbd_data *kbd, unsigned int keycode)
  262. {
  263. unsigned short keysym;
  264. unsigned char type, value;
  265. if (!kbd || !kbd->tty)
  266. return;
  267. if (keycode >= 384)
  268. keysym = kbd->key_maps[5][keycode - 384];
  269. else if (keycode >= 256)
  270. keysym = kbd->key_maps[4][keycode - 256];
  271. else if (keycode >= 128)
  272. keysym = kbd->key_maps[1][keycode - 128];
  273. else
  274. keysym = kbd->key_maps[0][keycode];
  275. type = KTYP(keysym);
  276. if (type >= 0xf0) {
  277. type -= 0xf0;
  278. if (type == KT_LETTER)
  279. type = KT_LATIN;
  280. value = KVAL(keysym);
  281. #ifdef CONFIG_MAGIC_SYSRQ /* Handle the SysRq Hack */
  282. if (kbd->sysrq) {
  283. if (kbd->sysrq == K(KT_LATIN, '-')) {
  284. kbd->sysrq = 0;
  285. handle_sysrq(value, 0, kbd->tty);
  286. return;
  287. }
  288. if (value == '-') {
  289. kbd->sysrq = K(KT_LATIN, '-');
  290. return;
  291. }
  292. /* Incomplete sysrq sequence. */
  293. (*k_handler[KTYP(kbd->sysrq)])(kbd, KVAL(kbd->sysrq));
  294. kbd->sysrq = 0;
  295. } else if ((type == KT_LATIN && value == '^') ||
  296. (type == KT_DEAD && ret_diacr[value] == '^')) {
  297. kbd->sysrq = K(type, value);
  298. return;
  299. }
  300. #endif
  301. (*k_handler[type])(kbd, value);
  302. } else
  303. to_utf8(kbd->tty, keysym);
  304. }
  305. /*
  306. * Ioctl stuff.
  307. */
  308. static int
  309. do_kdsk_ioctl(struct kbd_data *kbd, struct kbentry __user *user_kbe,
  310. int cmd, int perm)
  311. {
  312. struct kbentry tmp;
  313. ushort *key_map, val, ov;
  314. if (copy_from_user(&tmp, user_kbe, sizeof(struct kbentry)))
  315. return -EFAULT;
  316. #if NR_KEYS < 256
  317. if (tmp.kb_index >= NR_KEYS)
  318. return -EINVAL;
  319. #endif
  320. #if MAX_NR_KEYMAPS < 256
  321. if (tmp.kb_table >= MAX_NR_KEYMAPS)
  322. return -EINVAL;
  323. #endif
  324. switch (cmd) {
  325. case KDGKBENT:
  326. key_map = kbd->key_maps[tmp.kb_table];
  327. if (key_map) {
  328. val = U(key_map[tmp.kb_index]);
  329. if (KTYP(val) >= KBD_NR_TYPES)
  330. val = K_HOLE;
  331. } else
  332. val = (tmp.kb_index ? K_HOLE : K_NOSUCHMAP);
  333. return put_user(val, &user_kbe->kb_value);
  334. case KDSKBENT:
  335. if (!perm)
  336. return -EPERM;
  337. if (!tmp.kb_index && tmp.kb_value == K_NOSUCHMAP) {
  338. /* disallocate map */
  339. key_map = kbd->key_maps[tmp.kb_table];
  340. if (key_map) {
  341. kbd->key_maps[tmp.kb_table] = 0;
  342. kfree(key_map);
  343. }
  344. break;
  345. }
  346. if (KTYP(tmp.kb_value) >= KBD_NR_TYPES)
  347. return -EINVAL;
  348. if (KVAL(tmp.kb_value) > kbd_max_vals[KTYP(tmp.kb_value)])
  349. return -EINVAL;
  350. if (!(key_map = kbd->key_maps[tmp.kb_table])) {
  351. int j;
  352. key_map = (ushort *) kmalloc(sizeof(plain_map),
  353. GFP_KERNEL);
  354. if (!key_map)
  355. return -ENOMEM;
  356. kbd->key_maps[tmp.kb_table] = key_map;
  357. for (j = 0; j < NR_KEYS; j++)
  358. key_map[j] = U(K_HOLE);
  359. }
  360. ov = U(key_map[tmp.kb_index]);
  361. if (tmp.kb_value == ov)
  362. break; /* nothing to do */
  363. /*
  364. * Attention Key.
  365. */
  366. if (((ov == K_SAK) || (tmp.kb_value == K_SAK)) &&
  367. !capable(CAP_SYS_ADMIN))
  368. return -EPERM;
  369. key_map[tmp.kb_index] = U(tmp.kb_value);
  370. break;
  371. }
  372. return 0;
  373. }
  374. static int
  375. do_kdgkb_ioctl(struct kbd_data *kbd, struct kbsentry __user *u_kbs,
  376. int cmd, int perm)
  377. {
  378. unsigned char kb_func;
  379. char *p;
  380. int len;
  381. /* Get u_kbs->kb_func. */
  382. if (get_user(kb_func, &u_kbs->kb_func))
  383. return -EFAULT;
  384. #if MAX_NR_FUNC < 256
  385. if (kb_func >= MAX_NR_FUNC)
  386. return -EINVAL;
  387. #endif
  388. switch (cmd) {
  389. case KDGKBSENT:
  390. p = kbd->func_table[kb_func];
  391. if (p) {
  392. len = strlen(p);
  393. if (len >= sizeof(u_kbs->kb_string))
  394. len = sizeof(u_kbs->kb_string) - 1;
  395. if (copy_to_user(u_kbs->kb_string, p, len))
  396. return -EFAULT;
  397. } else
  398. len = 0;
  399. if (put_user('\0', u_kbs->kb_string + len))
  400. return -EFAULT;
  401. break;
  402. case KDSKBSENT:
  403. if (!perm)
  404. return -EPERM;
  405. len = strnlen_user(u_kbs->kb_string,
  406. sizeof(u_kbs->kb_string) - 1);
  407. p = kmalloc(len, GFP_KERNEL);
  408. if (!p)
  409. return -ENOMEM;
  410. if (copy_from_user(p, u_kbs->kb_string, len)) {
  411. kfree(p);
  412. return -EFAULT;
  413. }
  414. p[len] = 0;
  415. if (kbd->func_table[kb_func])
  416. kfree(kbd->func_table[kb_func]);
  417. kbd->func_table[kb_func] = p;
  418. break;
  419. }
  420. return 0;
  421. }
  422. int
  423. kbd_ioctl(struct kbd_data *kbd, struct file *file,
  424. unsigned int cmd, unsigned long arg)
  425. {
  426. struct kbdiacrs __user *a;
  427. void __user *argp;
  428. int ct, perm;
  429. argp = (void __user *)arg;
  430. /*
  431. * To have permissions to do most of the vt ioctls, we either have
  432. * to be the owner of the tty, or have CAP_SYS_TTY_CONFIG.
  433. */
  434. perm = current->signal->tty == kbd->tty || capable(CAP_SYS_TTY_CONFIG);
  435. switch (cmd) {
  436. case KDGKBTYPE:
  437. return put_user(KB_101, (char __user *)argp);
  438. case KDGKBENT:
  439. case KDSKBENT:
  440. return do_kdsk_ioctl(kbd, argp, cmd, perm);
  441. case KDGKBSENT:
  442. case KDSKBSENT:
  443. return do_kdgkb_ioctl(kbd, argp, cmd, perm);
  444. case KDGKBDIACR:
  445. a = argp;
  446. if (put_user(kbd->accent_table_size, &a->kb_cnt))
  447. return -EFAULT;
  448. ct = kbd->accent_table_size;
  449. if (copy_to_user(a->kbdiacr, kbd->accent_table,
  450. ct * sizeof(struct kbdiacr)))
  451. return -EFAULT;
  452. return 0;
  453. case KDSKBDIACR:
  454. a = argp;
  455. if (!perm)
  456. return -EPERM;
  457. if (get_user(ct, &a->kb_cnt))
  458. return -EFAULT;
  459. if (ct >= MAX_DIACR)
  460. return -EINVAL;
  461. kbd->accent_table_size = ct;
  462. if (copy_from_user(kbd->accent_table, a->kbdiacr,
  463. ct * sizeof(struct kbdiacr)))
  464. return -EFAULT;
  465. return 0;
  466. default:
  467. return -ENOIOCTLCMD;
  468. }
  469. }
  470. EXPORT_SYMBOL(kbd_ioctl);
  471. EXPORT_SYMBOL(kbd_ascebc);
  472. EXPORT_SYMBOL(kbd_free);
  473. EXPORT_SYMBOL(kbd_alloc);
  474. EXPORT_SYMBOL(kbd_keycode);