ns83820.c 59 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212
  1. #define VERSION "0.22"
  2. /* ns83820.c by Benjamin LaHaise with contributions.
  3. *
  4. * Questions/comments/discussion to linux-ns83820@kvack.org.
  5. *
  6. * $Revision: 1.34.2.23 $
  7. *
  8. * Copyright 2001 Benjamin LaHaise.
  9. * Copyright 2001, 2002 Red Hat.
  10. *
  11. * Mmmm, chocolate vanilla mocha...
  12. *
  13. *
  14. * This program is free software; you can redistribute it and/or modify
  15. * it under the terms of the GNU General Public License as published by
  16. * the Free Software Foundation; either version 2 of the License, or
  17. * (at your option) any later version.
  18. *
  19. * This program is distributed in the hope that it will be useful,
  20. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  21. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  22. * GNU General Public License for more details.
  23. *
  24. * You should have received a copy of the GNU General Public License
  25. * along with this program; if not, write to the Free Software
  26. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  27. *
  28. *
  29. * ChangeLog
  30. * =========
  31. * 20010414 0.1 - created
  32. * 20010622 0.2 - basic rx and tx.
  33. * 20010711 0.3 - added duplex and link state detection support.
  34. * 20010713 0.4 - zero copy, no hangs.
  35. * 0.5 - 64 bit dma support (davem will hate me for this)
  36. * - disable jumbo frames to avoid tx hangs
  37. * - work around tx deadlocks on my 1.02 card via
  38. * fiddling with TXCFG
  39. * 20010810 0.6 - use pci dma api for ringbuffers, work on ia64
  40. * 20010816 0.7 - misc cleanups
  41. * 20010826 0.8 - fix critical zero copy bugs
  42. * 0.9 - internal experiment
  43. * 20010827 0.10 - fix ia64 unaligned access.
  44. * 20010906 0.11 - accept all packets with checksum errors as
  45. * otherwise fragments get lost
  46. * - fix >> 32 bugs
  47. * 0.12 - add statistics counters
  48. * - add allmulti/promisc support
  49. * 20011009 0.13 - hotplug support, other smaller pci api cleanups
  50. * 20011204 0.13a - optical transceiver support added
  51. * by Michael Clark <michael@metaparadigm.com>
  52. * 20011205 0.13b - call register_netdev earlier in initialization
  53. * suppress duplicate link status messages
  54. * 20011117 0.14 - ethtool GDRVINFO, GLINK support from jgarzik
  55. * 20011204 0.15 get ppc (big endian) working
  56. * 20011218 0.16 various cleanups
  57. * 20020310 0.17 speedups
  58. * 20020610 0.18 - actually use the pci dma api for highmem
  59. * - remove pci latency register fiddling
  60. * 0.19 - better bist support
  61. * - add ihr and reset_phy parameters
  62. * - gmii bus probing
  63. * - fix missed txok introduced during performance
  64. * tuning
  65. * 0.20 - fix stupid RFEN thinko. i am such a smurf.
  66. * 20040828 0.21 - add hardware vlan accleration
  67. * by Neil Horman <nhorman@redhat.com>
  68. * 20050406 0.22 - improved DAC ifdefs from Andi Kleen
  69. * - removal of dead code from Adrian Bunk
  70. * - fix half duplex collision behaviour
  71. * Driver Overview
  72. * ===============
  73. *
  74. * This driver was originally written for the National Semiconductor
  75. * 83820 chip, a 10/100/1000 Mbps 64 bit PCI ethernet NIC. Hopefully
  76. * this code will turn out to be a) clean, b) correct, and c) fast.
  77. * With that in mind, I'm aiming to split the code up as much as
  78. * reasonably possible. At present there are X major sections that
  79. * break down into a) packet receive, b) packet transmit, c) link
  80. * management, d) initialization and configuration. Where possible,
  81. * these code paths are designed to run in parallel.
  82. *
  83. * This driver has been tested and found to work with the following
  84. * cards (in no particular order):
  85. *
  86. * Cameo SOHO-GA2000T SOHO-GA2500T
  87. * D-Link DGE-500T
  88. * PureData PDP8023Z-TG
  89. * SMC SMC9452TX SMC9462TX
  90. * Netgear GA621
  91. *
  92. * Special thanks to SMC for providing hardware to test this driver on.
  93. *
  94. * Reports of success or failure would be greatly appreciated.
  95. */
  96. //#define dprintk printk
  97. #define dprintk(x...) do { } while (0)
  98. #include <linux/config.h>
  99. #include <linux/module.h>
  100. #include <linux/moduleparam.h>
  101. #include <linux/types.h>
  102. #include <linux/pci.h>
  103. #include <linux/dma-mapping.h>
  104. #include <linux/netdevice.h>
  105. #include <linux/etherdevice.h>
  106. #include <linux/delay.h>
  107. #include <linux/smp_lock.h>
  108. #include <linux/workqueue.h>
  109. #include <linux/init.h>
  110. #include <linux/ip.h> /* for iph */
  111. #include <linux/in.h> /* for IPPROTO_... */
  112. #include <linux/eeprom.h>
  113. #include <linux/compiler.h>
  114. #include <linux/prefetch.h>
  115. #include <linux/ethtool.h>
  116. #include <linux/timer.h>
  117. #include <linux/if_vlan.h>
  118. #include <asm/io.h>
  119. #include <asm/uaccess.h>
  120. #include <asm/system.h>
  121. #define DRV_NAME "ns83820"
  122. /* Global parameters. See module_param near the bottom. */
  123. static int ihr = 2;
  124. static int reset_phy = 0;
  125. static int lnksts = 0; /* CFG_LNKSTS bit polarity */
  126. /* Dprintk is used for more interesting debug events */
  127. #undef Dprintk
  128. #define Dprintk dprintk
  129. /* tunables */
  130. #define RX_BUF_SIZE 1500 /* 8192 */
  131. #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
  132. #define NS83820_VLAN_ACCEL_SUPPORT
  133. #endif
  134. /* Must not exceed ~65000. */
  135. #define NR_RX_DESC 64
  136. #define NR_TX_DESC 128
  137. /* not tunable */
  138. #define REAL_RX_BUF_SIZE (RX_BUF_SIZE + 14) /* rx/tx mac addr + type */
  139. #define MIN_TX_DESC_FREE 8
  140. /* register defines */
  141. #define CFGCS 0x04
  142. #define CR_TXE 0x00000001
  143. #define CR_TXD 0x00000002
  144. /* Ramit : Here's a tip, don't do a RXD immediately followed by an RXE
  145. * The Receive engine skips one descriptor and moves
  146. * onto the next one!! */
  147. #define CR_RXE 0x00000004
  148. #define CR_RXD 0x00000008
  149. #define CR_TXR 0x00000010
  150. #define CR_RXR 0x00000020
  151. #define CR_SWI 0x00000080
  152. #define CR_RST 0x00000100
  153. #define PTSCR_EEBIST_FAIL 0x00000001
  154. #define PTSCR_EEBIST_EN 0x00000002
  155. #define PTSCR_EELOAD_EN 0x00000004
  156. #define PTSCR_RBIST_FAIL 0x000001b8
  157. #define PTSCR_RBIST_DONE 0x00000200
  158. #define PTSCR_RBIST_EN 0x00000400
  159. #define PTSCR_RBIST_RST 0x00002000
  160. #define MEAR_EEDI 0x00000001
  161. #define MEAR_EEDO 0x00000002
  162. #define MEAR_EECLK 0x00000004
  163. #define MEAR_EESEL 0x00000008
  164. #define MEAR_MDIO 0x00000010
  165. #define MEAR_MDDIR 0x00000020
  166. #define MEAR_MDC 0x00000040
  167. #define ISR_TXDESC3 0x40000000
  168. #define ISR_TXDESC2 0x20000000
  169. #define ISR_TXDESC1 0x10000000
  170. #define ISR_TXDESC0 0x08000000
  171. #define ISR_RXDESC3 0x04000000
  172. #define ISR_RXDESC2 0x02000000
  173. #define ISR_RXDESC1 0x01000000
  174. #define ISR_RXDESC0 0x00800000
  175. #define ISR_TXRCMP 0x00400000
  176. #define ISR_RXRCMP 0x00200000
  177. #define ISR_DPERR 0x00100000
  178. #define ISR_SSERR 0x00080000
  179. #define ISR_RMABT 0x00040000
  180. #define ISR_RTABT 0x00020000
  181. #define ISR_RXSOVR 0x00010000
  182. #define ISR_HIBINT 0x00008000
  183. #define ISR_PHY 0x00004000
  184. #define ISR_PME 0x00002000
  185. #define ISR_SWI 0x00001000
  186. #define ISR_MIB 0x00000800
  187. #define ISR_TXURN 0x00000400
  188. #define ISR_TXIDLE 0x00000200
  189. #define ISR_TXERR 0x00000100
  190. #define ISR_TXDESC 0x00000080
  191. #define ISR_TXOK 0x00000040
  192. #define ISR_RXORN 0x00000020
  193. #define ISR_RXIDLE 0x00000010
  194. #define ISR_RXEARLY 0x00000008
  195. #define ISR_RXERR 0x00000004
  196. #define ISR_RXDESC 0x00000002
  197. #define ISR_RXOK 0x00000001
  198. #define TXCFG_CSI 0x80000000
  199. #define TXCFG_HBI 0x40000000
  200. #define TXCFG_MLB 0x20000000
  201. #define TXCFG_ATP 0x10000000
  202. #define TXCFG_ECRETRY 0x00800000
  203. #define TXCFG_BRST_DIS 0x00080000
  204. #define TXCFG_MXDMA1024 0x00000000
  205. #define TXCFG_MXDMA512 0x00700000
  206. #define TXCFG_MXDMA256 0x00600000
  207. #define TXCFG_MXDMA128 0x00500000
  208. #define TXCFG_MXDMA64 0x00400000
  209. #define TXCFG_MXDMA32 0x00300000
  210. #define TXCFG_MXDMA16 0x00200000
  211. #define TXCFG_MXDMA8 0x00100000
  212. #define CFG_LNKSTS 0x80000000
  213. #define CFG_SPDSTS 0x60000000
  214. #define CFG_SPDSTS1 0x40000000
  215. #define CFG_SPDSTS0 0x20000000
  216. #define CFG_DUPSTS 0x10000000
  217. #define CFG_TBI_EN 0x01000000
  218. #define CFG_MODE_1000 0x00400000
  219. /* Ramit : Dont' ever use AUTO_1000, it never works and is buggy.
  220. * Read the Phy response and then configure the MAC accordingly */
  221. #define CFG_AUTO_1000 0x00200000
  222. #define CFG_PINT_CTL 0x001c0000
  223. #define CFG_PINT_DUPSTS 0x00100000
  224. #define CFG_PINT_LNKSTS 0x00080000
  225. #define CFG_PINT_SPDSTS 0x00040000
  226. #define CFG_TMRTEST 0x00020000
  227. #define CFG_MRM_DIS 0x00010000
  228. #define CFG_MWI_DIS 0x00008000
  229. #define CFG_T64ADDR 0x00004000
  230. #define CFG_PCI64_DET 0x00002000
  231. #define CFG_DATA64_EN 0x00001000
  232. #define CFG_M64ADDR 0x00000800
  233. #define CFG_PHY_RST 0x00000400
  234. #define CFG_PHY_DIS 0x00000200
  235. #define CFG_EXTSTS_EN 0x00000100
  236. #define CFG_REQALG 0x00000080
  237. #define CFG_SB 0x00000040
  238. #define CFG_POW 0x00000020
  239. #define CFG_EXD 0x00000010
  240. #define CFG_PESEL 0x00000008
  241. #define CFG_BROM_DIS 0x00000004
  242. #define CFG_EXT_125 0x00000002
  243. #define CFG_BEM 0x00000001
  244. #define EXTSTS_UDPPKT 0x00200000
  245. #define EXTSTS_TCPPKT 0x00080000
  246. #define EXTSTS_IPPKT 0x00020000
  247. #define EXTSTS_VPKT 0x00010000
  248. #define EXTSTS_VTG_MASK 0x0000ffff
  249. #define SPDSTS_POLARITY (CFG_SPDSTS1 | CFG_SPDSTS0 | CFG_DUPSTS | (lnksts ? CFG_LNKSTS : 0))
  250. #define MIBC_MIBS 0x00000008
  251. #define MIBC_ACLR 0x00000004
  252. #define MIBC_FRZ 0x00000002
  253. #define MIBC_WRN 0x00000001
  254. #define PCR_PSEN (1 << 31)
  255. #define PCR_PS_MCAST (1 << 30)
  256. #define PCR_PS_DA (1 << 29)
  257. #define PCR_STHI_8 (3 << 23)
  258. #define PCR_STLO_4 (1 << 23)
  259. #define PCR_FFHI_8K (3 << 21)
  260. #define PCR_FFLO_4K (1 << 21)
  261. #define PCR_PAUSE_CNT 0xFFFE
  262. #define RXCFG_AEP 0x80000000
  263. #define RXCFG_ARP 0x40000000
  264. #define RXCFG_STRIPCRC 0x20000000
  265. #define RXCFG_RX_FD 0x10000000
  266. #define RXCFG_ALP 0x08000000
  267. #define RXCFG_AIRL 0x04000000
  268. #define RXCFG_MXDMA512 0x00700000
  269. #define RXCFG_DRTH 0x0000003e
  270. #define RXCFG_DRTH0 0x00000002
  271. #define RFCR_RFEN 0x80000000
  272. #define RFCR_AAB 0x40000000
  273. #define RFCR_AAM 0x20000000
  274. #define RFCR_AAU 0x10000000
  275. #define RFCR_APM 0x08000000
  276. #define RFCR_APAT 0x07800000
  277. #define RFCR_APAT3 0x04000000
  278. #define RFCR_APAT2 0x02000000
  279. #define RFCR_APAT1 0x01000000
  280. #define RFCR_APAT0 0x00800000
  281. #define RFCR_AARP 0x00400000
  282. #define RFCR_MHEN 0x00200000
  283. #define RFCR_UHEN 0x00100000
  284. #define RFCR_ULM 0x00080000
  285. #define VRCR_RUDPE 0x00000080
  286. #define VRCR_RTCPE 0x00000040
  287. #define VRCR_RIPE 0x00000020
  288. #define VRCR_IPEN 0x00000010
  289. #define VRCR_DUTF 0x00000008
  290. #define VRCR_DVTF 0x00000004
  291. #define VRCR_VTREN 0x00000002
  292. #define VRCR_VTDEN 0x00000001
  293. #define VTCR_PPCHK 0x00000008
  294. #define VTCR_GCHK 0x00000004
  295. #define VTCR_VPPTI 0x00000002
  296. #define VTCR_VGTI 0x00000001
  297. #define CR 0x00
  298. #define CFG 0x04
  299. #define MEAR 0x08
  300. #define PTSCR 0x0c
  301. #define ISR 0x10
  302. #define IMR 0x14
  303. #define IER 0x18
  304. #define IHR 0x1c
  305. #define TXDP 0x20
  306. #define TXDP_HI 0x24
  307. #define TXCFG 0x28
  308. #define GPIOR 0x2c
  309. #define RXDP 0x30
  310. #define RXDP_HI 0x34
  311. #define RXCFG 0x38
  312. #define PQCR 0x3c
  313. #define WCSR 0x40
  314. #define PCR 0x44
  315. #define RFCR 0x48
  316. #define RFDR 0x4c
  317. #define SRR 0x58
  318. #define VRCR 0xbc
  319. #define VTCR 0xc0
  320. #define VDR 0xc4
  321. #define CCSR 0xcc
  322. #define TBICR 0xe0
  323. #define TBISR 0xe4
  324. #define TANAR 0xe8
  325. #define TANLPAR 0xec
  326. #define TANER 0xf0
  327. #define TESR 0xf4
  328. #define TBICR_MR_AN_ENABLE 0x00001000
  329. #define TBICR_MR_RESTART_AN 0x00000200
  330. #define TBISR_MR_LINK_STATUS 0x00000020
  331. #define TBISR_MR_AN_COMPLETE 0x00000004
  332. #define TANAR_PS2 0x00000100
  333. #define TANAR_PS1 0x00000080
  334. #define TANAR_HALF_DUP 0x00000040
  335. #define TANAR_FULL_DUP 0x00000020
  336. #define GPIOR_GP5_OE 0x00000200
  337. #define GPIOR_GP4_OE 0x00000100
  338. #define GPIOR_GP3_OE 0x00000080
  339. #define GPIOR_GP2_OE 0x00000040
  340. #define GPIOR_GP1_OE 0x00000020
  341. #define GPIOR_GP3_OUT 0x00000004
  342. #define GPIOR_GP1_OUT 0x00000001
  343. #define LINK_AUTONEGOTIATE 0x01
  344. #define LINK_DOWN 0x02
  345. #define LINK_UP 0x04
  346. #define HW_ADDR_LEN sizeof(dma_addr_t)
  347. #define desc_addr_set(desc, addr) \
  348. do { \
  349. ((desc)[0] = cpu_to_le32(addr)); \
  350. if (HW_ADDR_LEN == 8) \
  351. (desc)[1] = cpu_to_le32(((u64)addr) >> 32); \
  352. } while(0)
  353. #define desc_addr_get(desc) \
  354. (le32_to_cpu((desc)[0]) | \
  355. (HW_ADDR_LEN == 8 ? ((dma_addr_t)le32_to_cpu((desc)[1]))<<32 : 0))
  356. #define DESC_LINK 0
  357. #define DESC_BUFPTR (DESC_LINK + HW_ADDR_LEN/4)
  358. #define DESC_CMDSTS (DESC_BUFPTR + HW_ADDR_LEN/4)
  359. #define DESC_EXTSTS (DESC_CMDSTS + 4/4)
  360. #define CMDSTS_OWN 0x80000000
  361. #define CMDSTS_MORE 0x40000000
  362. #define CMDSTS_INTR 0x20000000
  363. #define CMDSTS_ERR 0x10000000
  364. #define CMDSTS_OK 0x08000000
  365. #define CMDSTS_RUNT 0x00200000
  366. #define CMDSTS_LEN_MASK 0x0000ffff
  367. #define CMDSTS_DEST_MASK 0x01800000
  368. #define CMDSTS_DEST_SELF 0x00800000
  369. #define CMDSTS_DEST_MULTI 0x01000000
  370. #define DESC_SIZE 8 /* Should be cache line sized */
  371. struct rx_info {
  372. spinlock_t lock;
  373. int up;
  374. long idle;
  375. struct sk_buff *skbs[NR_RX_DESC];
  376. u32 *next_rx_desc;
  377. u16 next_rx, next_empty;
  378. u32 *descs;
  379. dma_addr_t phy_descs;
  380. };
  381. struct ns83820 {
  382. struct net_device_stats stats;
  383. u8 __iomem *base;
  384. struct pci_dev *pci_dev;
  385. #ifdef NS83820_VLAN_ACCEL_SUPPORT
  386. struct vlan_group *vlgrp;
  387. #endif
  388. struct rx_info rx_info;
  389. struct tasklet_struct rx_tasklet;
  390. unsigned ihr;
  391. struct work_struct tq_refill;
  392. /* protects everything below. irqsave when using. */
  393. spinlock_t misc_lock;
  394. u32 CFG_cache;
  395. u32 MEAR_cache;
  396. u32 IMR_cache;
  397. struct eeprom ee;
  398. unsigned linkstate;
  399. spinlock_t tx_lock;
  400. u16 tx_done_idx;
  401. u16 tx_idx;
  402. volatile u16 tx_free_idx; /* idx of free desc chain */
  403. u16 tx_intr_idx;
  404. atomic_t nr_tx_skbs;
  405. struct sk_buff *tx_skbs[NR_TX_DESC];
  406. char pad[16] __attribute__((aligned(16)));
  407. u32 *tx_descs;
  408. dma_addr_t tx_phy_descs;
  409. struct timer_list tx_watchdog;
  410. };
  411. static inline struct ns83820 *PRIV(struct net_device *dev)
  412. {
  413. return netdev_priv(dev);
  414. }
  415. #define __kick_rx(dev) writel(CR_RXE, dev->base + CR)
  416. static inline void kick_rx(struct net_device *ndev)
  417. {
  418. struct ns83820 *dev = PRIV(ndev);
  419. dprintk("kick_rx: maybe kicking\n");
  420. if (test_and_clear_bit(0, &dev->rx_info.idle)) {
  421. dprintk("actually kicking\n");
  422. writel(dev->rx_info.phy_descs +
  423. (4 * DESC_SIZE * dev->rx_info.next_rx),
  424. dev->base + RXDP);
  425. if (dev->rx_info.next_rx == dev->rx_info.next_empty)
  426. printk(KERN_DEBUG "%s: uh-oh: next_rx == next_empty???\n",
  427. ndev->name);
  428. __kick_rx(dev);
  429. }
  430. }
  431. //free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC
  432. #define start_tx_okay(dev) \
  433. (((NR_TX_DESC-2 + dev->tx_done_idx - dev->tx_free_idx) % NR_TX_DESC) > MIN_TX_DESC_FREE)
  434. #ifdef NS83820_VLAN_ACCEL_SUPPORT
  435. static void ns83820_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
  436. {
  437. struct ns83820 *dev = PRIV(ndev);
  438. spin_lock_irq(&dev->misc_lock);
  439. spin_lock(&dev->tx_lock);
  440. dev->vlgrp = grp;
  441. spin_unlock(&dev->tx_lock);
  442. spin_unlock_irq(&dev->misc_lock);
  443. }
  444. static void ns83820_vlan_rx_kill_vid(struct net_device *ndev, unsigned short vid)
  445. {
  446. struct ns83820 *dev = PRIV(ndev);
  447. spin_lock_irq(&dev->misc_lock);
  448. spin_lock(&dev->tx_lock);
  449. if (dev->vlgrp)
  450. dev->vlgrp->vlan_devices[vid] = NULL;
  451. spin_unlock(&dev->tx_lock);
  452. spin_unlock_irq(&dev->misc_lock);
  453. }
  454. #endif
  455. /* Packet Receiver
  456. *
  457. * The hardware supports linked lists of receive descriptors for
  458. * which ownership is transfered back and forth by means of an
  459. * ownership bit. While the hardware does support the use of a
  460. * ring for receive descriptors, we only make use of a chain in
  461. * an attempt to reduce bus traffic under heavy load scenarios.
  462. * This will also make bugs a bit more obvious. The current code
  463. * only makes use of a single rx chain; I hope to implement
  464. * priority based rx for version 1.0. Goal: even under overload
  465. * conditions, still route realtime traffic with as low jitter as
  466. * possible.
  467. */
  468. static inline void build_rx_desc(struct ns83820 *dev, u32 *desc, dma_addr_t link, dma_addr_t buf, u32 cmdsts, u32 extsts)
  469. {
  470. desc_addr_set(desc + DESC_LINK, link);
  471. desc_addr_set(desc + DESC_BUFPTR, buf);
  472. desc[DESC_EXTSTS] = cpu_to_le32(extsts);
  473. mb();
  474. desc[DESC_CMDSTS] = cpu_to_le32(cmdsts);
  475. }
  476. #define nr_rx_empty(dev) ((NR_RX_DESC-2 + dev->rx_info.next_rx - dev->rx_info.next_empty) % NR_RX_DESC)
  477. static inline int ns83820_add_rx_skb(struct ns83820 *dev, struct sk_buff *skb)
  478. {
  479. unsigned next_empty;
  480. u32 cmdsts;
  481. u32 *sg;
  482. dma_addr_t buf;
  483. next_empty = dev->rx_info.next_empty;
  484. /* don't overrun last rx marker */
  485. if (unlikely(nr_rx_empty(dev) <= 2)) {
  486. kfree_skb(skb);
  487. return 1;
  488. }
  489. #if 0
  490. dprintk("next_empty[%d] nr_used[%d] next_rx[%d]\n",
  491. dev->rx_info.next_empty,
  492. dev->rx_info.nr_used,
  493. dev->rx_info.next_rx
  494. );
  495. #endif
  496. sg = dev->rx_info.descs + (next_empty * DESC_SIZE);
  497. if (unlikely(NULL != dev->rx_info.skbs[next_empty]))
  498. BUG();
  499. dev->rx_info.skbs[next_empty] = skb;
  500. dev->rx_info.next_empty = (next_empty + 1) % NR_RX_DESC;
  501. cmdsts = REAL_RX_BUF_SIZE | CMDSTS_INTR;
  502. buf = pci_map_single(dev->pci_dev, skb->data,
  503. REAL_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
  504. build_rx_desc(dev, sg, 0, buf, cmdsts, 0);
  505. /* update link of previous rx */
  506. if (likely(next_empty != dev->rx_info.next_rx))
  507. dev->rx_info.descs[((NR_RX_DESC + next_empty - 1) % NR_RX_DESC) * DESC_SIZE] = cpu_to_le32(dev->rx_info.phy_descs + (next_empty * DESC_SIZE * 4));
  508. return 0;
  509. }
  510. static inline int rx_refill(struct net_device *ndev, int gfp)
  511. {
  512. struct ns83820 *dev = PRIV(ndev);
  513. unsigned i;
  514. unsigned long flags = 0;
  515. if (unlikely(nr_rx_empty(dev) <= 2))
  516. return 0;
  517. dprintk("rx_refill(%p)\n", ndev);
  518. if (gfp == GFP_ATOMIC)
  519. spin_lock_irqsave(&dev->rx_info.lock, flags);
  520. for (i=0; i<NR_RX_DESC; i++) {
  521. struct sk_buff *skb;
  522. long res;
  523. /* extra 16 bytes for alignment */
  524. skb = __dev_alloc_skb(REAL_RX_BUF_SIZE+16, gfp);
  525. if (unlikely(!skb))
  526. break;
  527. res = (long)skb->data & 0xf;
  528. res = 0x10 - res;
  529. res &= 0xf;
  530. skb_reserve(skb, res);
  531. skb->dev = ndev;
  532. if (gfp != GFP_ATOMIC)
  533. spin_lock_irqsave(&dev->rx_info.lock, flags);
  534. res = ns83820_add_rx_skb(dev, skb);
  535. if (gfp != GFP_ATOMIC)
  536. spin_unlock_irqrestore(&dev->rx_info.lock, flags);
  537. if (res) {
  538. i = 1;
  539. break;
  540. }
  541. }
  542. if (gfp == GFP_ATOMIC)
  543. spin_unlock_irqrestore(&dev->rx_info.lock, flags);
  544. return i ? 0 : -ENOMEM;
  545. }
  546. static void FASTCALL(rx_refill_atomic(struct net_device *ndev));
  547. static void fastcall rx_refill_atomic(struct net_device *ndev)
  548. {
  549. rx_refill(ndev, GFP_ATOMIC);
  550. }
  551. /* REFILL */
  552. static inline void queue_refill(void *_dev)
  553. {
  554. struct net_device *ndev = _dev;
  555. struct ns83820 *dev = PRIV(ndev);
  556. rx_refill(ndev, GFP_KERNEL);
  557. if (dev->rx_info.up)
  558. kick_rx(ndev);
  559. }
  560. static inline void clear_rx_desc(struct ns83820 *dev, unsigned i)
  561. {
  562. build_rx_desc(dev, dev->rx_info.descs + (DESC_SIZE * i), 0, 0, CMDSTS_OWN, 0);
  563. }
  564. static void FASTCALL(phy_intr(struct net_device *ndev));
  565. static void fastcall phy_intr(struct net_device *ndev)
  566. {
  567. struct ns83820 *dev = PRIV(ndev);
  568. static char *speeds[] = { "10", "100", "1000", "1000(?)", "1000F" };
  569. u32 cfg, new_cfg;
  570. u32 tbisr, tanar, tanlpar;
  571. int speed, fullduplex, newlinkstate;
  572. cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
  573. if (dev->CFG_cache & CFG_TBI_EN) {
  574. /* we have an optical transceiver */
  575. tbisr = readl(dev->base + TBISR);
  576. tanar = readl(dev->base + TANAR);
  577. tanlpar = readl(dev->base + TANLPAR);
  578. dprintk("phy_intr: tbisr=%08x, tanar=%08x, tanlpar=%08x\n",
  579. tbisr, tanar, tanlpar);
  580. if ( (fullduplex = (tanlpar & TANAR_FULL_DUP)
  581. && (tanar & TANAR_FULL_DUP)) ) {
  582. /* both of us are full duplex */
  583. writel(readl(dev->base + TXCFG)
  584. | TXCFG_CSI | TXCFG_HBI | TXCFG_ATP,
  585. dev->base + TXCFG);
  586. writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
  587. dev->base + RXCFG);
  588. /* Light up full duplex LED */
  589. writel(readl(dev->base + GPIOR) | GPIOR_GP1_OUT,
  590. dev->base + GPIOR);
  591. } else if(((tanlpar & TANAR_HALF_DUP)
  592. && (tanar & TANAR_HALF_DUP))
  593. || ((tanlpar & TANAR_FULL_DUP)
  594. && (tanar & TANAR_HALF_DUP))
  595. || ((tanlpar & TANAR_HALF_DUP)
  596. && (tanar & TANAR_FULL_DUP))) {
  597. /* one or both of us are half duplex */
  598. writel((readl(dev->base + TXCFG)
  599. & ~(TXCFG_CSI | TXCFG_HBI)) | TXCFG_ATP,
  600. dev->base + TXCFG);
  601. writel(readl(dev->base + RXCFG) & ~RXCFG_RX_FD,
  602. dev->base + RXCFG);
  603. /* Turn off full duplex LED */
  604. writel(readl(dev->base + GPIOR) & ~GPIOR_GP1_OUT,
  605. dev->base + GPIOR);
  606. }
  607. speed = 4; /* 1000F */
  608. } else {
  609. /* we have a copper transceiver */
  610. new_cfg = dev->CFG_cache & ~(CFG_SB | CFG_MODE_1000 | CFG_SPDSTS);
  611. if (cfg & CFG_SPDSTS1)
  612. new_cfg |= CFG_MODE_1000;
  613. else
  614. new_cfg &= ~CFG_MODE_1000;
  615. speed = ((cfg / CFG_SPDSTS0) & 3);
  616. fullduplex = (cfg & CFG_DUPSTS);
  617. if (fullduplex) {
  618. new_cfg |= CFG_SB;
  619. writel(readl(dev->base + TXCFG)
  620. | TXCFG_CSI | TXCFG_HBI,
  621. dev->base + TXCFG);
  622. writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
  623. dev->base + RXCFG);
  624. } else {
  625. writel(readl(dev->base + TXCFG)
  626. & ~(TXCFG_CSI | TXCFG_HBI),
  627. dev->base + TXCFG);
  628. writel(readl(dev->base + RXCFG) & ~(RXCFG_RX_FD),
  629. dev->base + RXCFG);
  630. }
  631. if ((cfg & CFG_LNKSTS) &&
  632. ((new_cfg ^ dev->CFG_cache) != 0)) {
  633. writel(new_cfg, dev->base + CFG);
  634. dev->CFG_cache = new_cfg;
  635. }
  636. dev->CFG_cache &= ~CFG_SPDSTS;
  637. dev->CFG_cache |= cfg & CFG_SPDSTS;
  638. }
  639. newlinkstate = (cfg & CFG_LNKSTS) ? LINK_UP : LINK_DOWN;
  640. if (newlinkstate & LINK_UP
  641. && dev->linkstate != newlinkstate) {
  642. netif_start_queue(ndev);
  643. netif_wake_queue(ndev);
  644. printk(KERN_INFO "%s: link now %s mbps, %s duplex and up.\n",
  645. ndev->name,
  646. speeds[speed],
  647. fullduplex ? "full" : "half");
  648. } else if (newlinkstate & LINK_DOWN
  649. && dev->linkstate != newlinkstate) {
  650. netif_stop_queue(ndev);
  651. printk(KERN_INFO "%s: link now down.\n", ndev->name);
  652. }
  653. dev->linkstate = newlinkstate;
  654. }
  655. static int ns83820_setup_rx(struct net_device *ndev)
  656. {
  657. struct ns83820 *dev = PRIV(ndev);
  658. unsigned i;
  659. int ret;
  660. dprintk("ns83820_setup_rx(%p)\n", ndev);
  661. dev->rx_info.idle = 1;
  662. dev->rx_info.next_rx = 0;
  663. dev->rx_info.next_rx_desc = dev->rx_info.descs;
  664. dev->rx_info.next_empty = 0;
  665. for (i=0; i<NR_RX_DESC; i++)
  666. clear_rx_desc(dev, i);
  667. writel(0, dev->base + RXDP_HI);
  668. writel(dev->rx_info.phy_descs, dev->base + RXDP);
  669. ret = rx_refill(ndev, GFP_KERNEL);
  670. if (!ret) {
  671. dprintk("starting receiver\n");
  672. /* prevent the interrupt handler from stomping on us */
  673. spin_lock_irq(&dev->rx_info.lock);
  674. writel(0x0001, dev->base + CCSR);
  675. writel(0, dev->base + RFCR);
  676. writel(0x7fc00000, dev->base + RFCR);
  677. writel(0xffc00000, dev->base + RFCR);
  678. dev->rx_info.up = 1;
  679. phy_intr(ndev);
  680. /* Okay, let it rip */
  681. spin_lock_irq(&dev->misc_lock);
  682. dev->IMR_cache |= ISR_PHY;
  683. dev->IMR_cache |= ISR_RXRCMP;
  684. //dev->IMR_cache |= ISR_RXERR;
  685. //dev->IMR_cache |= ISR_RXOK;
  686. dev->IMR_cache |= ISR_RXORN;
  687. dev->IMR_cache |= ISR_RXSOVR;
  688. dev->IMR_cache |= ISR_RXDESC;
  689. dev->IMR_cache |= ISR_RXIDLE;
  690. dev->IMR_cache |= ISR_TXDESC;
  691. dev->IMR_cache |= ISR_TXIDLE;
  692. writel(dev->IMR_cache, dev->base + IMR);
  693. writel(1, dev->base + IER);
  694. spin_unlock_irq(&dev->misc_lock);
  695. kick_rx(ndev);
  696. spin_unlock_irq(&dev->rx_info.lock);
  697. }
  698. return ret;
  699. }
  700. static void ns83820_cleanup_rx(struct ns83820 *dev)
  701. {
  702. unsigned i;
  703. unsigned long flags;
  704. dprintk("ns83820_cleanup_rx(%p)\n", dev);
  705. /* disable receive interrupts */
  706. spin_lock_irqsave(&dev->misc_lock, flags);
  707. dev->IMR_cache &= ~(ISR_RXOK | ISR_RXDESC | ISR_RXERR | ISR_RXEARLY | ISR_RXIDLE);
  708. writel(dev->IMR_cache, dev->base + IMR);
  709. spin_unlock_irqrestore(&dev->misc_lock, flags);
  710. /* synchronize with the interrupt handler and kill it */
  711. dev->rx_info.up = 0;
  712. synchronize_irq(dev->pci_dev->irq);
  713. /* touch the pci bus... */
  714. readl(dev->base + IMR);
  715. /* assumes the transmitter is already disabled and reset */
  716. writel(0, dev->base + RXDP_HI);
  717. writel(0, dev->base + RXDP);
  718. for (i=0; i<NR_RX_DESC; i++) {
  719. struct sk_buff *skb = dev->rx_info.skbs[i];
  720. dev->rx_info.skbs[i] = NULL;
  721. clear_rx_desc(dev, i);
  722. if (skb)
  723. kfree_skb(skb);
  724. }
  725. }
  726. static void FASTCALL(ns83820_rx_kick(struct net_device *ndev));
  727. static void fastcall ns83820_rx_kick(struct net_device *ndev)
  728. {
  729. struct ns83820 *dev = PRIV(ndev);
  730. /*if (nr_rx_empty(dev) >= NR_RX_DESC/4)*/ {
  731. if (dev->rx_info.up) {
  732. rx_refill_atomic(ndev);
  733. kick_rx(ndev);
  734. }
  735. }
  736. if (dev->rx_info.up && nr_rx_empty(dev) > NR_RX_DESC*3/4)
  737. schedule_work(&dev->tq_refill);
  738. else
  739. kick_rx(ndev);
  740. if (dev->rx_info.idle)
  741. printk(KERN_DEBUG "%s: BAD\n", ndev->name);
  742. }
  743. /* rx_irq
  744. *
  745. */
  746. static void FASTCALL(rx_irq(struct net_device *ndev));
  747. static void fastcall rx_irq(struct net_device *ndev)
  748. {
  749. struct ns83820 *dev = PRIV(ndev);
  750. struct rx_info *info = &dev->rx_info;
  751. unsigned next_rx;
  752. int rx_rc, len;
  753. u32 cmdsts, *desc;
  754. unsigned long flags;
  755. int nr = 0;
  756. dprintk("rx_irq(%p)\n", ndev);
  757. dprintk("rxdp: %08x, descs: %08lx next_rx[%d]: %p next_empty[%d]: %p\n",
  758. readl(dev->base + RXDP),
  759. (long)(dev->rx_info.phy_descs),
  760. (int)dev->rx_info.next_rx,
  761. (dev->rx_info.descs + (DESC_SIZE * dev->rx_info.next_rx)),
  762. (int)dev->rx_info.next_empty,
  763. (dev->rx_info.descs + (DESC_SIZE * dev->rx_info.next_empty))
  764. );
  765. spin_lock_irqsave(&info->lock, flags);
  766. if (!info->up)
  767. goto out;
  768. dprintk("walking descs\n");
  769. next_rx = info->next_rx;
  770. desc = info->next_rx_desc;
  771. while ((CMDSTS_OWN & (cmdsts = le32_to_cpu(desc[DESC_CMDSTS]))) &&
  772. (cmdsts != CMDSTS_OWN)) {
  773. struct sk_buff *skb;
  774. u32 extsts = le32_to_cpu(desc[DESC_EXTSTS]);
  775. dma_addr_t bufptr = desc_addr_get(desc + DESC_BUFPTR);
  776. dprintk("cmdsts: %08x\n", cmdsts);
  777. dprintk("link: %08x\n", cpu_to_le32(desc[DESC_LINK]));
  778. dprintk("extsts: %08x\n", extsts);
  779. skb = info->skbs[next_rx];
  780. info->skbs[next_rx] = NULL;
  781. info->next_rx = (next_rx + 1) % NR_RX_DESC;
  782. mb();
  783. clear_rx_desc(dev, next_rx);
  784. pci_unmap_single(dev->pci_dev, bufptr,
  785. RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
  786. len = cmdsts & CMDSTS_LEN_MASK;
  787. #ifdef NS83820_VLAN_ACCEL_SUPPORT
  788. /* NH: As was mentioned below, this chip is kinda
  789. * brain dead about vlan tag stripping. Frames
  790. * that are 64 bytes with a vlan header appended
  791. * like arp frames, or pings, are flagged as Runts
  792. * when the tag is stripped and hardware. This
  793. * also means that the OK bit in the descriptor
  794. * is cleared when the frame comes in so we have
  795. * to do a specific length check here to make sure
  796. * the frame would have been ok, had we not stripped
  797. * the tag.
  798. */
  799. if (likely((CMDSTS_OK & cmdsts) ||
  800. ((cmdsts & CMDSTS_RUNT) && len >= 56))) {
  801. #else
  802. if (likely(CMDSTS_OK & cmdsts)) {
  803. #endif
  804. skb_put(skb, len);
  805. if (unlikely(!skb))
  806. goto netdev_mangle_me_harder_failed;
  807. if (cmdsts & CMDSTS_DEST_MULTI)
  808. dev->stats.multicast ++;
  809. dev->stats.rx_packets ++;
  810. dev->stats.rx_bytes += len;
  811. if ((extsts & 0x002a0000) && !(extsts & 0x00540000)) {
  812. skb->ip_summed = CHECKSUM_UNNECESSARY;
  813. } else {
  814. skb->ip_summed = CHECKSUM_NONE;
  815. }
  816. skb->protocol = eth_type_trans(skb, ndev);
  817. #ifdef NS83820_VLAN_ACCEL_SUPPORT
  818. if(extsts & EXTSTS_VPKT) {
  819. unsigned short tag;
  820. tag = ntohs(extsts & EXTSTS_VTG_MASK);
  821. rx_rc = vlan_hwaccel_rx(skb,dev->vlgrp,tag);
  822. } else {
  823. rx_rc = netif_rx(skb);
  824. }
  825. #else
  826. rx_rc = netif_rx(skb);
  827. #endif
  828. if (NET_RX_DROP == rx_rc) {
  829. netdev_mangle_me_harder_failed:
  830. dev->stats.rx_dropped ++;
  831. }
  832. } else {
  833. kfree_skb(skb);
  834. }
  835. nr++;
  836. next_rx = info->next_rx;
  837. desc = info->descs + (DESC_SIZE * next_rx);
  838. }
  839. info->next_rx = next_rx;
  840. info->next_rx_desc = info->descs + (DESC_SIZE * next_rx);
  841. out:
  842. if (0 && !nr) {
  843. Dprintk("dazed: cmdsts_f: %08x\n", cmdsts);
  844. }
  845. spin_unlock_irqrestore(&info->lock, flags);
  846. }
  847. static void rx_action(unsigned long _dev)
  848. {
  849. struct net_device *ndev = (void *)_dev;
  850. struct ns83820 *dev = PRIV(ndev);
  851. rx_irq(ndev);
  852. writel(ihr, dev->base + IHR);
  853. spin_lock_irq(&dev->misc_lock);
  854. dev->IMR_cache |= ISR_RXDESC;
  855. writel(dev->IMR_cache, dev->base + IMR);
  856. spin_unlock_irq(&dev->misc_lock);
  857. rx_irq(ndev);
  858. ns83820_rx_kick(ndev);
  859. }
  860. /* Packet Transmit code
  861. */
  862. static inline void kick_tx(struct ns83820 *dev)
  863. {
  864. dprintk("kick_tx(%p): tx_idx=%d free_idx=%d\n",
  865. dev, dev->tx_idx, dev->tx_free_idx);
  866. writel(CR_TXE, dev->base + CR);
  867. }
  868. /* No spinlock needed on the transmit irq path as the interrupt handler is
  869. * serialized.
  870. */
  871. static void do_tx_done(struct net_device *ndev)
  872. {
  873. struct ns83820 *dev = PRIV(ndev);
  874. u32 cmdsts, tx_done_idx, *desc;
  875. spin_lock_irq(&dev->tx_lock);
  876. dprintk("do_tx_done(%p)\n", ndev);
  877. tx_done_idx = dev->tx_done_idx;
  878. desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
  879. dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
  880. tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
  881. while ((tx_done_idx != dev->tx_free_idx) &&
  882. !(CMDSTS_OWN & (cmdsts = le32_to_cpu(desc[DESC_CMDSTS]))) ) {
  883. struct sk_buff *skb;
  884. unsigned len;
  885. dma_addr_t addr;
  886. if (cmdsts & CMDSTS_ERR)
  887. dev->stats.tx_errors ++;
  888. if (cmdsts & CMDSTS_OK)
  889. dev->stats.tx_packets ++;
  890. if (cmdsts & CMDSTS_OK)
  891. dev->stats.tx_bytes += cmdsts & 0xffff;
  892. dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
  893. tx_done_idx, dev->tx_free_idx, cmdsts);
  894. skb = dev->tx_skbs[tx_done_idx];
  895. dev->tx_skbs[tx_done_idx] = NULL;
  896. dprintk("done(%p)\n", skb);
  897. len = cmdsts & CMDSTS_LEN_MASK;
  898. addr = desc_addr_get(desc + DESC_BUFPTR);
  899. if (skb) {
  900. pci_unmap_single(dev->pci_dev,
  901. addr,
  902. len,
  903. PCI_DMA_TODEVICE);
  904. dev_kfree_skb_irq(skb);
  905. atomic_dec(&dev->nr_tx_skbs);
  906. } else
  907. pci_unmap_page(dev->pci_dev,
  908. addr,
  909. len,
  910. PCI_DMA_TODEVICE);
  911. tx_done_idx = (tx_done_idx + 1) % NR_TX_DESC;
  912. dev->tx_done_idx = tx_done_idx;
  913. desc[DESC_CMDSTS] = cpu_to_le32(0);
  914. mb();
  915. desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
  916. }
  917. /* Allow network stack to resume queueing packets after we've
  918. * finished transmitting at least 1/4 of the packets in the queue.
  919. */
  920. if (netif_queue_stopped(ndev) && start_tx_okay(dev)) {
  921. dprintk("start_queue(%p)\n", ndev);
  922. netif_start_queue(ndev);
  923. netif_wake_queue(ndev);
  924. }
  925. spin_unlock_irq(&dev->tx_lock);
  926. }
  927. static void ns83820_cleanup_tx(struct ns83820 *dev)
  928. {
  929. unsigned i;
  930. for (i=0; i<NR_TX_DESC; i++) {
  931. struct sk_buff *skb = dev->tx_skbs[i];
  932. dev->tx_skbs[i] = NULL;
  933. if (skb) {
  934. u32 *desc = dev->tx_descs + (i * DESC_SIZE);
  935. pci_unmap_single(dev->pci_dev,
  936. desc_addr_get(desc + DESC_BUFPTR),
  937. le32_to_cpu(desc[DESC_CMDSTS]) & CMDSTS_LEN_MASK,
  938. PCI_DMA_TODEVICE);
  939. dev_kfree_skb_irq(skb);
  940. atomic_dec(&dev->nr_tx_skbs);
  941. }
  942. }
  943. memset(dev->tx_descs, 0, NR_TX_DESC * DESC_SIZE * 4);
  944. }
  945. /* transmit routine. This code relies on the network layer serializing
  946. * its calls in, but will run happily in parallel with the interrupt
  947. * handler. This code currently has provisions for fragmenting tx buffers
  948. * while trying to track down a bug in either the zero copy code or
  949. * the tx fifo (hence the MAX_FRAG_LEN).
  950. */
  951. static int ns83820_hard_start_xmit(struct sk_buff *skb, struct net_device *ndev)
  952. {
  953. struct ns83820 *dev = PRIV(ndev);
  954. u32 free_idx, cmdsts, extsts;
  955. int nr_free, nr_frags;
  956. unsigned tx_done_idx, last_idx;
  957. dma_addr_t buf;
  958. unsigned len;
  959. skb_frag_t *frag;
  960. int stopped = 0;
  961. int do_intr = 0;
  962. volatile u32 *first_desc;
  963. dprintk("ns83820_hard_start_xmit\n");
  964. nr_frags = skb_shinfo(skb)->nr_frags;
  965. again:
  966. if (unlikely(dev->CFG_cache & CFG_LNKSTS)) {
  967. netif_stop_queue(ndev);
  968. if (unlikely(dev->CFG_cache & CFG_LNKSTS))
  969. return 1;
  970. netif_start_queue(ndev);
  971. }
  972. last_idx = free_idx = dev->tx_free_idx;
  973. tx_done_idx = dev->tx_done_idx;
  974. nr_free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC;
  975. nr_free -= 1;
  976. if (nr_free <= nr_frags) {
  977. dprintk("stop_queue - not enough(%p)\n", ndev);
  978. netif_stop_queue(ndev);
  979. /* Check again: we may have raced with a tx done irq */
  980. if (dev->tx_done_idx != tx_done_idx) {
  981. dprintk("restart queue(%p)\n", ndev);
  982. netif_start_queue(ndev);
  983. goto again;
  984. }
  985. return 1;
  986. }
  987. if (free_idx == dev->tx_intr_idx) {
  988. do_intr = 1;
  989. dev->tx_intr_idx = (dev->tx_intr_idx + NR_TX_DESC/4) % NR_TX_DESC;
  990. }
  991. nr_free -= nr_frags;
  992. if (nr_free < MIN_TX_DESC_FREE) {
  993. dprintk("stop_queue - last entry(%p)\n", ndev);
  994. netif_stop_queue(ndev);
  995. stopped = 1;
  996. }
  997. frag = skb_shinfo(skb)->frags;
  998. if (!nr_frags)
  999. frag = NULL;
  1000. extsts = 0;
  1001. if (skb->ip_summed == CHECKSUM_HW) {
  1002. extsts |= EXTSTS_IPPKT;
  1003. if (IPPROTO_TCP == skb->nh.iph->protocol)
  1004. extsts |= EXTSTS_TCPPKT;
  1005. else if (IPPROTO_UDP == skb->nh.iph->protocol)
  1006. extsts |= EXTSTS_UDPPKT;
  1007. }
  1008. #ifdef NS83820_VLAN_ACCEL_SUPPORT
  1009. if(vlan_tx_tag_present(skb)) {
  1010. /* fetch the vlan tag info out of the
  1011. * ancilliary data if the vlan code
  1012. * is using hw vlan acceleration
  1013. */
  1014. short tag = vlan_tx_tag_get(skb);
  1015. extsts |= (EXTSTS_VPKT | htons(tag));
  1016. }
  1017. #endif
  1018. len = skb->len;
  1019. if (nr_frags)
  1020. len -= skb->data_len;
  1021. buf = pci_map_single(dev->pci_dev, skb->data, len, PCI_DMA_TODEVICE);
  1022. first_desc = dev->tx_descs + (free_idx * DESC_SIZE);
  1023. for (;;) {
  1024. volatile u32 *desc = dev->tx_descs + (free_idx * DESC_SIZE);
  1025. dprintk("frag[%3u]: %4u @ 0x%08Lx\n", free_idx, len,
  1026. (unsigned long long)buf);
  1027. last_idx = free_idx;
  1028. free_idx = (free_idx + 1) % NR_TX_DESC;
  1029. desc[DESC_LINK] = cpu_to_le32(dev->tx_phy_descs + (free_idx * DESC_SIZE * 4));
  1030. desc_addr_set(desc + DESC_BUFPTR, buf);
  1031. desc[DESC_EXTSTS] = cpu_to_le32(extsts);
  1032. cmdsts = ((nr_frags) ? CMDSTS_MORE : do_intr ? CMDSTS_INTR : 0);
  1033. cmdsts |= (desc == first_desc) ? 0 : CMDSTS_OWN;
  1034. cmdsts |= len;
  1035. desc[DESC_CMDSTS] = cpu_to_le32(cmdsts);
  1036. if (!nr_frags)
  1037. break;
  1038. buf = pci_map_page(dev->pci_dev, frag->page,
  1039. frag->page_offset,
  1040. frag->size, PCI_DMA_TODEVICE);
  1041. dprintk("frag: buf=%08Lx page=%08lx offset=%08lx\n",
  1042. (long long)buf, (long) page_to_pfn(frag->page),
  1043. frag->page_offset);
  1044. len = frag->size;
  1045. frag++;
  1046. nr_frags--;
  1047. }
  1048. dprintk("done pkt\n");
  1049. spin_lock_irq(&dev->tx_lock);
  1050. dev->tx_skbs[last_idx] = skb;
  1051. first_desc[DESC_CMDSTS] |= cpu_to_le32(CMDSTS_OWN);
  1052. dev->tx_free_idx = free_idx;
  1053. atomic_inc(&dev->nr_tx_skbs);
  1054. spin_unlock_irq(&dev->tx_lock);
  1055. kick_tx(dev);
  1056. /* Check again: we may have raced with a tx done irq */
  1057. if (stopped && (dev->tx_done_idx != tx_done_idx) && start_tx_okay(dev))
  1058. netif_start_queue(ndev);
  1059. /* set the transmit start time to catch transmit timeouts */
  1060. ndev->trans_start = jiffies;
  1061. return 0;
  1062. }
  1063. static void ns83820_update_stats(struct ns83820 *dev)
  1064. {
  1065. u8 __iomem *base = dev->base;
  1066. /* the DP83820 will freeze counters, so we need to read all of them */
  1067. dev->stats.rx_errors += readl(base + 0x60) & 0xffff;
  1068. dev->stats.rx_crc_errors += readl(base + 0x64) & 0xffff;
  1069. dev->stats.rx_missed_errors += readl(base + 0x68) & 0xffff;
  1070. dev->stats.rx_frame_errors += readl(base + 0x6c) & 0xffff;
  1071. /*dev->stats.rx_symbol_errors +=*/ readl(base + 0x70);
  1072. dev->stats.rx_length_errors += readl(base + 0x74) & 0xffff;
  1073. dev->stats.rx_length_errors += readl(base + 0x78) & 0xffff;
  1074. /*dev->stats.rx_badopcode_errors += */ readl(base + 0x7c);
  1075. /*dev->stats.rx_pause_count += */ readl(base + 0x80);
  1076. /*dev->stats.tx_pause_count += */ readl(base + 0x84);
  1077. dev->stats.tx_carrier_errors += readl(base + 0x88) & 0xff;
  1078. }
  1079. static struct net_device_stats *ns83820_get_stats(struct net_device *ndev)
  1080. {
  1081. struct ns83820 *dev = PRIV(ndev);
  1082. /* somewhat overkill */
  1083. spin_lock_irq(&dev->misc_lock);
  1084. ns83820_update_stats(dev);
  1085. spin_unlock_irq(&dev->misc_lock);
  1086. return &dev->stats;
  1087. }
  1088. static void ns83820_get_drvinfo(struct net_device *ndev, struct ethtool_drvinfo *info)
  1089. {
  1090. struct ns83820 *dev = PRIV(ndev);
  1091. strcpy(info->driver, "ns83820");
  1092. strcpy(info->version, VERSION);
  1093. strcpy(info->bus_info, pci_name(dev->pci_dev));
  1094. }
  1095. static u32 ns83820_get_link(struct net_device *ndev)
  1096. {
  1097. struct ns83820 *dev = PRIV(ndev);
  1098. u32 cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
  1099. return cfg & CFG_LNKSTS ? 1 : 0;
  1100. }
  1101. static struct ethtool_ops ops = {
  1102. .get_drvinfo = ns83820_get_drvinfo,
  1103. .get_link = ns83820_get_link
  1104. };
  1105. static void ns83820_mib_isr(struct ns83820 *dev)
  1106. {
  1107. spin_lock(&dev->misc_lock);
  1108. ns83820_update_stats(dev);
  1109. spin_unlock(&dev->misc_lock);
  1110. }
  1111. static void ns83820_do_isr(struct net_device *ndev, u32 isr);
  1112. static irqreturn_t ns83820_irq(int foo, void *data, struct pt_regs *regs)
  1113. {
  1114. struct net_device *ndev = data;
  1115. struct ns83820 *dev = PRIV(ndev);
  1116. u32 isr;
  1117. dprintk("ns83820_irq(%p)\n", ndev);
  1118. dev->ihr = 0;
  1119. isr = readl(dev->base + ISR);
  1120. dprintk("irq: %08x\n", isr);
  1121. ns83820_do_isr(ndev, isr);
  1122. return IRQ_HANDLED;
  1123. }
  1124. static void ns83820_do_isr(struct net_device *ndev, u32 isr)
  1125. {
  1126. struct ns83820 *dev = PRIV(ndev);
  1127. #ifdef DEBUG
  1128. if (isr & ~(ISR_PHY | ISR_RXDESC | ISR_RXEARLY | ISR_RXOK | ISR_RXERR | ISR_TXIDLE | ISR_TXOK | ISR_TXDESC))
  1129. Dprintk("odd isr? 0x%08x\n", isr);
  1130. #endif
  1131. if (ISR_RXIDLE & isr) {
  1132. dev->rx_info.idle = 1;
  1133. Dprintk("oh dear, we are idle\n");
  1134. ns83820_rx_kick(ndev);
  1135. }
  1136. if ((ISR_RXDESC | ISR_RXOK) & isr) {
  1137. prefetch(dev->rx_info.next_rx_desc);
  1138. spin_lock_irq(&dev->misc_lock);
  1139. dev->IMR_cache &= ~(ISR_RXDESC | ISR_RXOK);
  1140. writel(dev->IMR_cache, dev->base + IMR);
  1141. spin_unlock_irq(&dev->misc_lock);
  1142. tasklet_schedule(&dev->rx_tasklet);
  1143. //rx_irq(ndev);
  1144. //writel(4, dev->base + IHR);
  1145. }
  1146. if ((ISR_RXIDLE | ISR_RXORN | ISR_RXDESC | ISR_RXOK | ISR_RXERR) & isr)
  1147. ns83820_rx_kick(ndev);
  1148. if (unlikely(ISR_RXSOVR & isr)) {
  1149. //printk("overrun: rxsovr\n");
  1150. dev->stats.rx_fifo_errors ++;
  1151. }
  1152. if (unlikely(ISR_RXORN & isr)) {
  1153. //printk("overrun: rxorn\n");
  1154. dev->stats.rx_fifo_errors ++;
  1155. }
  1156. if ((ISR_RXRCMP & isr) && dev->rx_info.up)
  1157. writel(CR_RXE, dev->base + CR);
  1158. if (ISR_TXIDLE & isr) {
  1159. u32 txdp;
  1160. txdp = readl(dev->base + TXDP);
  1161. dprintk("txdp: %08x\n", txdp);
  1162. txdp -= dev->tx_phy_descs;
  1163. dev->tx_idx = txdp / (DESC_SIZE * 4);
  1164. if (dev->tx_idx >= NR_TX_DESC) {
  1165. printk(KERN_ALERT "%s: BUG -- txdp out of range\n", ndev->name);
  1166. dev->tx_idx = 0;
  1167. }
  1168. /* The may have been a race between a pci originated read
  1169. * and the descriptor update from the cpu. Just in case,
  1170. * kick the transmitter if the hardware thinks it is on a
  1171. * different descriptor than we are.
  1172. */
  1173. if (dev->tx_idx != dev->tx_free_idx)
  1174. kick_tx(dev);
  1175. }
  1176. /* Defer tx ring processing until more than a minimum amount of
  1177. * work has accumulated
  1178. */
  1179. if ((ISR_TXDESC | ISR_TXIDLE | ISR_TXOK | ISR_TXERR) & isr) {
  1180. do_tx_done(ndev);
  1181. /* Disable TxOk if there are no outstanding tx packets.
  1182. */
  1183. if ((dev->tx_done_idx == dev->tx_free_idx) &&
  1184. (dev->IMR_cache & ISR_TXOK)) {
  1185. spin_lock_irq(&dev->misc_lock);
  1186. dev->IMR_cache &= ~ISR_TXOK;
  1187. writel(dev->IMR_cache, dev->base + IMR);
  1188. spin_unlock_irq(&dev->misc_lock);
  1189. }
  1190. }
  1191. /* The TxIdle interrupt can come in before the transmit has
  1192. * completed. Normally we reap packets off of the combination
  1193. * of TxDesc and TxIdle and leave TxOk disabled (since it
  1194. * occurs on every packet), but when no further irqs of this
  1195. * nature are expected, we must enable TxOk.
  1196. */
  1197. if ((ISR_TXIDLE & isr) && (dev->tx_done_idx != dev->tx_free_idx)) {
  1198. spin_lock_irq(&dev->misc_lock);
  1199. dev->IMR_cache |= ISR_TXOK;
  1200. writel(dev->IMR_cache, dev->base + IMR);
  1201. spin_unlock_irq(&dev->misc_lock);
  1202. }
  1203. /* MIB interrupt: one of the statistics counters is about to overflow */
  1204. if (unlikely(ISR_MIB & isr))
  1205. ns83820_mib_isr(dev);
  1206. /* PHY: Link up/down/negotiation state change */
  1207. if (unlikely(ISR_PHY & isr))
  1208. phy_intr(ndev);
  1209. #if 0 /* Still working on the interrupt mitigation strategy */
  1210. if (dev->ihr)
  1211. writel(dev->ihr, dev->base + IHR);
  1212. #endif
  1213. }
  1214. static void ns83820_do_reset(struct ns83820 *dev, u32 which)
  1215. {
  1216. Dprintk("resetting chip...\n");
  1217. writel(which, dev->base + CR);
  1218. do {
  1219. schedule();
  1220. } while (readl(dev->base + CR) & which);
  1221. Dprintk("okay!\n");
  1222. }
  1223. static int ns83820_stop(struct net_device *ndev)
  1224. {
  1225. struct ns83820 *dev = PRIV(ndev);
  1226. /* FIXME: protect against interrupt handler? */
  1227. del_timer_sync(&dev->tx_watchdog);
  1228. /* disable interrupts */
  1229. writel(0, dev->base + IMR);
  1230. writel(0, dev->base + IER);
  1231. readl(dev->base + IER);
  1232. dev->rx_info.up = 0;
  1233. synchronize_irq(dev->pci_dev->irq);
  1234. ns83820_do_reset(dev, CR_RST);
  1235. synchronize_irq(dev->pci_dev->irq);
  1236. spin_lock_irq(&dev->misc_lock);
  1237. dev->IMR_cache &= ~(ISR_TXURN | ISR_TXIDLE | ISR_TXERR | ISR_TXDESC | ISR_TXOK);
  1238. spin_unlock_irq(&dev->misc_lock);
  1239. ns83820_cleanup_rx(dev);
  1240. ns83820_cleanup_tx(dev);
  1241. return 0;
  1242. }
  1243. static void ns83820_tx_timeout(struct net_device *ndev)
  1244. {
  1245. struct ns83820 *dev = PRIV(ndev);
  1246. u32 tx_done_idx, *desc;
  1247. unsigned long flags;
  1248. local_irq_save(flags);
  1249. tx_done_idx = dev->tx_done_idx;
  1250. desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
  1251. printk(KERN_INFO "%s: tx_timeout: tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
  1252. ndev->name,
  1253. tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
  1254. #if defined(DEBUG)
  1255. {
  1256. u32 isr;
  1257. isr = readl(dev->base + ISR);
  1258. printk("irq: %08x imr: %08x\n", isr, dev->IMR_cache);
  1259. ns83820_do_isr(ndev, isr);
  1260. }
  1261. #endif
  1262. do_tx_done(ndev);
  1263. tx_done_idx = dev->tx_done_idx;
  1264. desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
  1265. printk(KERN_INFO "%s: after: tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
  1266. ndev->name,
  1267. tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
  1268. local_irq_restore(flags);
  1269. }
  1270. static void ns83820_tx_watch(unsigned long data)
  1271. {
  1272. struct net_device *ndev = (void *)data;
  1273. struct ns83820 *dev = PRIV(ndev);
  1274. #if defined(DEBUG)
  1275. printk("ns83820_tx_watch: %u %u %d\n",
  1276. dev->tx_done_idx, dev->tx_free_idx, atomic_read(&dev->nr_tx_skbs)
  1277. );
  1278. #endif
  1279. if (time_after(jiffies, ndev->trans_start + 1*HZ) &&
  1280. dev->tx_done_idx != dev->tx_free_idx) {
  1281. printk(KERN_DEBUG "%s: ns83820_tx_watch: %u %u %d\n",
  1282. ndev->name,
  1283. dev->tx_done_idx, dev->tx_free_idx,
  1284. atomic_read(&dev->nr_tx_skbs));
  1285. ns83820_tx_timeout(ndev);
  1286. }
  1287. mod_timer(&dev->tx_watchdog, jiffies + 2*HZ);
  1288. }
  1289. static int ns83820_open(struct net_device *ndev)
  1290. {
  1291. struct ns83820 *dev = PRIV(ndev);
  1292. unsigned i;
  1293. u32 desc;
  1294. int ret;
  1295. dprintk("ns83820_open\n");
  1296. writel(0, dev->base + PQCR);
  1297. ret = ns83820_setup_rx(ndev);
  1298. if (ret)
  1299. goto failed;
  1300. memset(dev->tx_descs, 0, 4 * NR_TX_DESC * DESC_SIZE);
  1301. for (i=0; i<NR_TX_DESC; i++) {
  1302. dev->tx_descs[(i * DESC_SIZE) + DESC_LINK]
  1303. = cpu_to_le32(
  1304. dev->tx_phy_descs
  1305. + ((i+1) % NR_TX_DESC) * DESC_SIZE * 4);
  1306. }
  1307. dev->tx_idx = 0;
  1308. dev->tx_done_idx = 0;
  1309. desc = dev->tx_phy_descs;
  1310. writel(0, dev->base + TXDP_HI);
  1311. writel(desc, dev->base + TXDP);
  1312. init_timer(&dev->tx_watchdog);
  1313. dev->tx_watchdog.data = (unsigned long)ndev;
  1314. dev->tx_watchdog.function = ns83820_tx_watch;
  1315. mod_timer(&dev->tx_watchdog, jiffies + 2*HZ);
  1316. netif_start_queue(ndev); /* FIXME: wait for phy to come up */
  1317. return 0;
  1318. failed:
  1319. ns83820_stop(ndev);
  1320. return ret;
  1321. }
  1322. static void ns83820_getmac(struct ns83820 *dev, u8 *mac)
  1323. {
  1324. unsigned i;
  1325. for (i=0; i<3; i++) {
  1326. u32 data;
  1327. #if 0 /* I've left this in as an example of how to use eeprom.h */
  1328. data = eeprom_readw(&dev->ee, 0xa + 2 - i);
  1329. #else
  1330. /* Read from the perfect match memory: this is loaded by
  1331. * the chip from the EEPROM via the EELOAD self test.
  1332. */
  1333. writel(i*2, dev->base + RFCR);
  1334. data = readl(dev->base + RFDR);
  1335. #endif
  1336. *mac++ = data;
  1337. *mac++ = data >> 8;
  1338. }
  1339. }
  1340. static int ns83820_change_mtu(struct net_device *ndev, int new_mtu)
  1341. {
  1342. if (new_mtu > RX_BUF_SIZE)
  1343. return -EINVAL;
  1344. ndev->mtu = new_mtu;
  1345. return 0;
  1346. }
  1347. static void ns83820_set_multicast(struct net_device *ndev)
  1348. {
  1349. struct ns83820 *dev = PRIV(ndev);
  1350. u8 __iomem *rfcr = dev->base + RFCR;
  1351. u32 and_mask = 0xffffffff;
  1352. u32 or_mask = 0;
  1353. u32 val;
  1354. if (ndev->flags & IFF_PROMISC)
  1355. or_mask |= RFCR_AAU | RFCR_AAM;
  1356. else
  1357. and_mask &= ~(RFCR_AAU | RFCR_AAM);
  1358. if (ndev->flags & IFF_ALLMULTI)
  1359. or_mask |= RFCR_AAM;
  1360. else
  1361. and_mask &= ~RFCR_AAM;
  1362. spin_lock_irq(&dev->misc_lock);
  1363. val = (readl(rfcr) & and_mask) | or_mask;
  1364. /* Ramit : RFCR Write Fix doc says RFEN must be 0 modify other bits */
  1365. writel(val & ~RFCR_RFEN, rfcr);
  1366. writel(val, rfcr);
  1367. spin_unlock_irq(&dev->misc_lock);
  1368. }
  1369. static void ns83820_run_bist(struct net_device *ndev, const char *name, u32 enable, u32 done, u32 fail)
  1370. {
  1371. struct ns83820 *dev = PRIV(ndev);
  1372. int timed_out = 0;
  1373. long start;
  1374. u32 status;
  1375. int loops = 0;
  1376. dprintk("%s: start %s\n", ndev->name, name);
  1377. start = jiffies;
  1378. writel(enable, dev->base + PTSCR);
  1379. for (;;) {
  1380. loops++;
  1381. status = readl(dev->base + PTSCR);
  1382. if (!(status & enable))
  1383. break;
  1384. if (status & done)
  1385. break;
  1386. if (status & fail)
  1387. break;
  1388. if ((jiffies - start) >= HZ) {
  1389. timed_out = 1;
  1390. break;
  1391. }
  1392. set_current_state(TASK_UNINTERRUPTIBLE);
  1393. schedule_timeout(1);
  1394. }
  1395. if (status & fail)
  1396. printk(KERN_INFO "%s: %s failed! (0x%08x & 0x%08x)\n",
  1397. ndev->name, name, status, fail);
  1398. else if (timed_out)
  1399. printk(KERN_INFO "%s: run_bist %s timed out! (%08x)\n",
  1400. ndev->name, name, status);
  1401. dprintk("%s: done %s in %d loops\n", ndev->name, name, loops);
  1402. }
  1403. #ifdef PHY_CODE_IS_FINISHED
  1404. static void ns83820_mii_write_bit(struct ns83820 *dev, int bit)
  1405. {
  1406. /* drive MDC low */
  1407. dev->MEAR_cache &= ~MEAR_MDC;
  1408. writel(dev->MEAR_cache, dev->base + MEAR);
  1409. readl(dev->base + MEAR);
  1410. /* enable output, set bit */
  1411. dev->MEAR_cache |= MEAR_MDDIR;
  1412. if (bit)
  1413. dev->MEAR_cache |= MEAR_MDIO;
  1414. else
  1415. dev->MEAR_cache &= ~MEAR_MDIO;
  1416. /* set the output bit */
  1417. writel(dev->MEAR_cache, dev->base + MEAR);
  1418. readl(dev->base + MEAR);
  1419. /* Wait. Max clock rate is 2.5MHz, this way we come in under 1MHz */
  1420. udelay(1);
  1421. /* drive MDC high causing the data bit to be latched */
  1422. dev->MEAR_cache |= MEAR_MDC;
  1423. writel(dev->MEAR_cache, dev->base + MEAR);
  1424. readl(dev->base + MEAR);
  1425. /* Wait again... */
  1426. udelay(1);
  1427. }
  1428. static int ns83820_mii_read_bit(struct ns83820 *dev)
  1429. {
  1430. int bit;
  1431. /* drive MDC low, disable output */
  1432. dev->MEAR_cache &= ~MEAR_MDC;
  1433. dev->MEAR_cache &= ~MEAR_MDDIR;
  1434. writel(dev->MEAR_cache, dev->base + MEAR);
  1435. readl(dev->base + MEAR);
  1436. /* Wait. Max clock rate is 2.5MHz, this way we come in under 1MHz */
  1437. udelay(1);
  1438. /* drive MDC high causing the data bit to be latched */
  1439. bit = (readl(dev->base + MEAR) & MEAR_MDIO) ? 1 : 0;
  1440. dev->MEAR_cache |= MEAR_MDC;
  1441. writel(dev->MEAR_cache, dev->base + MEAR);
  1442. /* Wait again... */
  1443. udelay(1);
  1444. return bit;
  1445. }
  1446. static unsigned ns83820_mii_read_reg(struct ns83820 *dev, unsigned phy, unsigned reg)
  1447. {
  1448. unsigned data = 0;
  1449. int i;
  1450. /* read some garbage so that we eventually sync up */
  1451. for (i=0; i<64; i++)
  1452. ns83820_mii_read_bit(dev);
  1453. ns83820_mii_write_bit(dev, 0); /* start */
  1454. ns83820_mii_write_bit(dev, 1);
  1455. ns83820_mii_write_bit(dev, 1); /* opcode read */
  1456. ns83820_mii_write_bit(dev, 0);
  1457. /* write out the phy address: 5 bits, msb first */
  1458. for (i=0; i<5; i++)
  1459. ns83820_mii_write_bit(dev, phy & (0x10 >> i));
  1460. /* write out the register address, 5 bits, msb first */
  1461. for (i=0; i<5; i++)
  1462. ns83820_mii_write_bit(dev, reg & (0x10 >> i));
  1463. ns83820_mii_read_bit(dev); /* turn around cycles */
  1464. ns83820_mii_read_bit(dev);
  1465. /* read in the register data, 16 bits msb first */
  1466. for (i=0; i<16; i++) {
  1467. data <<= 1;
  1468. data |= ns83820_mii_read_bit(dev);
  1469. }
  1470. return data;
  1471. }
  1472. static unsigned ns83820_mii_write_reg(struct ns83820 *dev, unsigned phy, unsigned reg, unsigned data)
  1473. {
  1474. int i;
  1475. /* read some garbage so that we eventually sync up */
  1476. for (i=0; i<64; i++)
  1477. ns83820_mii_read_bit(dev);
  1478. ns83820_mii_write_bit(dev, 0); /* start */
  1479. ns83820_mii_write_bit(dev, 1);
  1480. ns83820_mii_write_bit(dev, 0); /* opcode read */
  1481. ns83820_mii_write_bit(dev, 1);
  1482. /* write out the phy address: 5 bits, msb first */
  1483. for (i=0; i<5; i++)
  1484. ns83820_mii_write_bit(dev, phy & (0x10 >> i));
  1485. /* write out the register address, 5 bits, msb first */
  1486. for (i=0; i<5; i++)
  1487. ns83820_mii_write_bit(dev, reg & (0x10 >> i));
  1488. ns83820_mii_read_bit(dev); /* turn around cycles */
  1489. ns83820_mii_read_bit(dev);
  1490. /* read in the register data, 16 bits msb first */
  1491. for (i=0; i<16; i++)
  1492. ns83820_mii_write_bit(dev, (data >> (15 - i)) & 1);
  1493. return data;
  1494. }
  1495. static void ns83820_probe_phy(struct net_device *ndev)
  1496. {
  1497. struct ns83820 *dev = PRIV(ndev);
  1498. static int first;
  1499. int i;
  1500. #define MII_PHYIDR1 0x02
  1501. #define MII_PHYIDR2 0x03
  1502. #if 0
  1503. if (!first) {
  1504. unsigned tmp;
  1505. ns83820_mii_read_reg(dev, 1, 0x09);
  1506. ns83820_mii_write_reg(dev, 1, 0x10, 0x0d3e);
  1507. tmp = ns83820_mii_read_reg(dev, 1, 0x00);
  1508. ns83820_mii_write_reg(dev, 1, 0x00, tmp | 0x8000);
  1509. udelay(1300);
  1510. ns83820_mii_read_reg(dev, 1, 0x09);
  1511. }
  1512. #endif
  1513. first = 1;
  1514. for (i=1; i<2; i++) {
  1515. int j;
  1516. unsigned a, b;
  1517. a = ns83820_mii_read_reg(dev, i, MII_PHYIDR1);
  1518. b = ns83820_mii_read_reg(dev, i, MII_PHYIDR2);
  1519. //printk("%s: phy %d: 0x%04x 0x%04x\n",
  1520. // ndev->name, i, a, b);
  1521. for (j=0; j<0x16; j+=4) {
  1522. dprintk("%s: [0x%02x] %04x %04x %04x %04x\n",
  1523. ndev->name, j,
  1524. ns83820_mii_read_reg(dev, i, 0 + j),
  1525. ns83820_mii_read_reg(dev, i, 1 + j),
  1526. ns83820_mii_read_reg(dev, i, 2 + j),
  1527. ns83820_mii_read_reg(dev, i, 3 + j)
  1528. );
  1529. }
  1530. }
  1531. {
  1532. unsigned a, b;
  1533. /* read firmware version: memory addr is 0x8402 and 0x8403 */
  1534. ns83820_mii_write_reg(dev, 1, 0x16, 0x000d);
  1535. ns83820_mii_write_reg(dev, 1, 0x1e, 0x810e);
  1536. a = ns83820_mii_read_reg(dev, 1, 0x1d);
  1537. ns83820_mii_write_reg(dev, 1, 0x16, 0x000d);
  1538. ns83820_mii_write_reg(dev, 1, 0x1e, 0x810e);
  1539. b = ns83820_mii_read_reg(dev, 1, 0x1d);
  1540. dprintk("version: 0x%04x 0x%04x\n", a, b);
  1541. }
  1542. }
  1543. #endif
  1544. static int __devinit ns83820_init_one(struct pci_dev *pci_dev, const struct pci_device_id *id)
  1545. {
  1546. struct net_device *ndev;
  1547. struct ns83820 *dev;
  1548. long addr;
  1549. int err;
  1550. int using_dac = 0;
  1551. /* See if we can set the dma mask early on; failure is fatal. */
  1552. if (sizeof(dma_addr_t) == 8 &&
  1553. !pci_set_dma_mask(pci_dev, 0xffffffffffffffffULL)) {
  1554. using_dac = 1;
  1555. } else if (!pci_set_dma_mask(pci_dev, 0xffffffff)) {
  1556. using_dac = 0;
  1557. } else {
  1558. printk(KERN_WARNING "ns83820.c: pci_set_dma_mask failed!\n");
  1559. return -ENODEV;
  1560. }
  1561. ndev = alloc_etherdev(sizeof(struct ns83820));
  1562. dev = PRIV(ndev);
  1563. err = -ENOMEM;
  1564. if (!dev)
  1565. goto out;
  1566. spin_lock_init(&dev->rx_info.lock);
  1567. spin_lock_init(&dev->tx_lock);
  1568. spin_lock_init(&dev->misc_lock);
  1569. dev->pci_dev = pci_dev;
  1570. dev->ee.cache = &dev->MEAR_cache;
  1571. dev->ee.lock = &dev->misc_lock;
  1572. SET_MODULE_OWNER(ndev);
  1573. SET_NETDEV_DEV(ndev, &pci_dev->dev);
  1574. INIT_WORK(&dev->tq_refill, queue_refill, ndev);
  1575. tasklet_init(&dev->rx_tasklet, rx_action, (unsigned long)ndev);
  1576. err = pci_enable_device(pci_dev);
  1577. if (err) {
  1578. printk(KERN_INFO "ns83820: pci_enable_dev failed: %d\n", err);
  1579. goto out_free;
  1580. }
  1581. pci_set_master(pci_dev);
  1582. addr = pci_resource_start(pci_dev, 1);
  1583. dev->base = ioremap_nocache(addr, PAGE_SIZE);
  1584. dev->tx_descs = pci_alloc_consistent(pci_dev,
  1585. 4 * DESC_SIZE * NR_TX_DESC, &dev->tx_phy_descs);
  1586. dev->rx_info.descs = pci_alloc_consistent(pci_dev,
  1587. 4 * DESC_SIZE * NR_RX_DESC, &dev->rx_info.phy_descs);
  1588. err = -ENOMEM;
  1589. if (!dev->base || !dev->tx_descs || !dev->rx_info.descs)
  1590. goto out_disable;
  1591. dprintk("%p: %08lx %p: %08lx\n",
  1592. dev->tx_descs, (long)dev->tx_phy_descs,
  1593. dev->rx_info.descs, (long)dev->rx_info.phy_descs);
  1594. /* disable interrupts */
  1595. writel(0, dev->base + IMR);
  1596. writel(0, dev->base + IER);
  1597. readl(dev->base + IER);
  1598. dev->IMR_cache = 0;
  1599. setup_ee_mem_bitbanger(&dev->ee, dev->base + MEAR, 3, 2, 1, 0,
  1600. 0);
  1601. err = request_irq(pci_dev->irq, ns83820_irq, SA_SHIRQ,
  1602. DRV_NAME, ndev);
  1603. if (err) {
  1604. printk(KERN_INFO "ns83820: unable to register irq %d\n",
  1605. pci_dev->irq);
  1606. goto out_disable;
  1607. }
  1608. /*
  1609. * FIXME: we are holding rtnl_lock() over obscenely long area only
  1610. * because some of the setup code uses dev->name. It's Wrong(tm) -
  1611. * we should be using driver-specific names for all that stuff.
  1612. * For now that will do, but we really need to come back and kill
  1613. * most of the dev_alloc_name() users later.
  1614. */
  1615. rtnl_lock();
  1616. err = dev_alloc_name(ndev, ndev->name);
  1617. if (err < 0) {
  1618. printk(KERN_INFO "ns83820: unable to get netdev name: %d\n", err);
  1619. goto out_free_irq;
  1620. }
  1621. printk("%s: ns83820.c: 0x22c: %08x, subsystem: %04x:%04x\n",
  1622. ndev->name, le32_to_cpu(readl(dev->base + 0x22c)),
  1623. pci_dev->subsystem_vendor, pci_dev->subsystem_device);
  1624. ndev->open = ns83820_open;
  1625. ndev->stop = ns83820_stop;
  1626. ndev->hard_start_xmit = ns83820_hard_start_xmit;
  1627. ndev->get_stats = ns83820_get_stats;
  1628. ndev->change_mtu = ns83820_change_mtu;
  1629. ndev->set_multicast_list = ns83820_set_multicast;
  1630. SET_ETHTOOL_OPS(ndev, &ops);
  1631. ndev->tx_timeout = ns83820_tx_timeout;
  1632. ndev->watchdog_timeo = 5 * HZ;
  1633. pci_set_drvdata(pci_dev, ndev);
  1634. ns83820_do_reset(dev, CR_RST);
  1635. /* Must reset the ram bist before running it */
  1636. writel(PTSCR_RBIST_RST, dev->base + PTSCR);
  1637. ns83820_run_bist(ndev, "sram bist", PTSCR_RBIST_EN,
  1638. PTSCR_RBIST_DONE, PTSCR_RBIST_FAIL);
  1639. ns83820_run_bist(ndev, "eeprom bist", PTSCR_EEBIST_EN, 0,
  1640. PTSCR_EEBIST_FAIL);
  1641. ns83820_run_bist(ndev, "eeprom load", PTSCR_EELOAD_EN, 0, 0);
  1642. /* I love config registers */
  1643. dev->CFG_cache = readl(dev->base + CFG);
  1644. if ((dev->CFG_cache & CFG_PCI64_DET)) {
  1645. printk(KERN_INFO "%s: detected 64 bit PCI data bus.\n",
  1646. ndev->name);
  1647. /*dev->CFG_cache |= CFG_DATA64_EN;*/
  1648. if (!(dev->CFG_cache & CFG_DATA64_EN))
  1649. printk(KERN_INFO "%s: EEPROM did not enable 64 bit bus. Disabled.\n",
  1650. ndev->name);
  1651. } else
  1652. dev->CFG_cache &= ~(CFG_DATA64_EN);
  1653. dev->CFG_cache &= (CFG_TBI_EN | CFG_MRM_DIS | CFG_MWI_DIS |
  1654. CFG_T64ADDR | CFG_DATA64_EN | CFG_EXT_125 |
  1655. CFG_M64ADDR);
  1656. dev->CFG_cache |= CFG_PINT_DUPSTS | CFG_PINT_LNKSTS | CFG_PINT_SPDSTS |
  1657. CFG_EXTSTS_EN | CFG_EXD | CFG_PESEL;
  1658. dev->CFG_cache |= CFG_REQALG;
  1659. dev->CFG_cache |= CFG_POW;
  1660. dev->CFG_cache |= CFG_TMRTEST;
  1661. /* When compiled with 64 bit addressing, we must always enable
  1662. * the 64 bit descriptor format.
  1663. */
  1664. if (sizeof(dma_addr_t) == 8)
  1665. dev->CFG_cache |= CFG_M64ADDR;
  1666. if (using_dac)
  1667. dev->CFG_cache |= CFG_T64ADDR;
  1668. /* Big endian mode does not seem to do what the docs suggest */
  1669. dev->CFG_cache &= ~CFG_BEM;
  1670. /* setup optical transceiver if we have one */
  1671. if (dev->CFG_cache & CFG_TBI_EN) {
  1672. printk(KERN_INFO "%s: enabling optical transceiver\n",
  1673. ndev->name);
  1674. writel(readl(dev->base + GPIOR) | 0x3e8, dev->base + GPIOR);
  1675. /* setup auto negotiation feature advertisement */
  1676. writel(readl(dev->base + TANAR)
  1677. | TANAR_HALF_DUP | TANAR_FULL_DUP,
  1678. dev->base + TANAR);
  1679. /* start auto negotiation */
  1680. writel(TBICR_MR_AN_ENABLE | TBICR_MR_RESTART_AN,
  1681. dev->base + TBICR);
  1682. writel(TBICR_MR_AN_ENABLE, dev->base + TBICR);
  1683. dev->linkstate = LINK_AUTONEGOTIATE;
  1684. dev->CFG_cache |= CFG_MODE_1000;
  1685. }
  1686. writel(dev->CFG_cache, dev->base + CFG);
  1687. dprintk("CFG: %08x\n", dev->CFG_cache);
  1688. if (reset_phy) {
  1689. printk(KERN_INFO "%s: resetting phy\n", ndev->name);
  1690. writel(dev->CFG_cache | CFG_PHY_RST, dev->base + CFG);
  1691. msleep(10);
  1692. writel(dev->CFG_cache, dev->base + CFG);
  1693. }
  1694. #if 0 /* Huh? This sets the PCI latency register. Should be done via
  1695. * the PCI layer. FIXME.
  1696. */
  1697. if (readl(dev->base + SRR))
  1698. writel(readl(dev->base+0x20c) | 0xfe00, dev->base + 0x20c);
  1699. #endif
  1700. /* Note! The DMA burst size interacts with packet
  1701. * transmission, such that the largest packet that
  1702. * can be transmitted is 8192 - FLTH - burst size.
  1703. * If only the transmit fifo was larger...
  1704. */
  1705. /* Ramit : 1024 DMA is not a good idea, it ends up banging
  1706. * some DELL and COMPAQ SMP systems */
  1707. writel(TXCFG_CSI | TXCFG_HBI | TXCFG_ATP | TXCFG_MXDMA512
  1708. | ((1600 / 32) * 0x100),
  1709. dev->base + TXCFG);
  1710. /* Flush the interrupt holdoff timer */
  1711. writel(0x000, dev->base + IHR);
  1712. writel(0x100, dev->base + IHR);
  1713. writel(0x000, dev->base + IHR);
  1714. /* Set Rx to full duplex, don't accept runt, errored, long or length
  1715. * range errored packets. Use 512 byte DMA.
  1716. */
  1717. /* Ramit : 1024 DMA is not a good idea, it ends up banging
  1718. * some DELL and COMPAQ SMP systems
  1719. * Turn on ALP, only we are accpeting Jumbo Packets */
  1720. writel(RXCFG_AEP | RXCFG_ARP | RXCFG_AIRL | RXCFG_RX_FD
  1721. | RXCFG_STRIPCRC
  1722. //| RXCFG_ALP
  1723. | (RXCFG_MXDMA512) | 0, dev->base + RXCFG);
  1724. /* Disable priority queueing */
  1725. writel(0, dev->base + PQCR);
  1726. /* Enable IP checksum validation and detetion of VLAN headers.
  1727. * Note: do not set the reject options as at least the 0x102
  1728. * revision of the chip does not properly accept IP fragments
  1729. * at least for UDP.
  1730. */
  1731. /* Ramit : Be sure to turn on RXCFG_ARP if VLAN's are enabled, since
  1732. * the MAC it calculates the packetsize AFTER stripping the VLAN
  1733. * header, and if a VLAN Tagged packet of 64 bytes is received (like
  1734. * a ping with a VLAN header) then the card, strips the 4 byte VLAN
  1735. * tag and then checks the packet size, so if RXCFG_ARP is not enabled,
  1736. * it discrards it!. These guys......
  1737. * also turn on tag stripping if hardware acceleration is enabled
  1738. */
  1739. #ifdef NS83820_VLAN_ACCEL_SUPPORT
  1740. #define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN|VRCR_VTREN)
  1741. #else
  1742. #define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN)
  1743. #endif
  1744. writel(VRCR_INIT_VALUE, dev->base + VRCR);
  1745. /* Enable per-packet TCP/UDP/IP checksumming
  1746. * and per packet vlan tag insertion if
  1747. * vlan hardware acceleration is enabled
  1748. */
  1749. #ifdef NS83820_VLAN_ACCEL_SUPPORT
  1750. #define VTCR_INIT_VALUE (VTCR_PPCHK|VTCR_VPPTI)
  1751. #else
  1752. #define VTCR_INIT_VALUE VTCR_PPCHK
  1753. #endif
  1754. writel(VTCR_INIT_VALUE, dev->base + VTCR);
  1755. /* Ramit : Enable async and sync pause frames */
  1756. /* writel(0, dev->base + PCR); */
  1757. writel((PCR_PS_MCAST | PCR_PS_DA | PCR_PSEN | PCR_FFLO_4K |
  1758. PCR_FFHI_8K | PCR_STLO_4 | PCR_STHI_8 | PCR_PAUSE_CNT),
  1759. dev->base + PCR);
  1760. /* Disable Wake On Lan */
  1761. writel(0, dev->base + WCSR);
  1762. ns83820_getmac(dev, ndev->dev_addr);
  1763. /* Yes, we support dumb IP checksum on transmit */
  1764. ndev->features |= NETIF_F_SG;
  1765. ndev->features |= NETIF_F_IP_CSUM;
  1766. #ifdef NS83820_VLAN_ACCEL_SUPPORT
  1767. /* We also support hardware vlan acceleration */
  1768. ndev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
  1769. ndev->vlan_rx_register = ns83820_vlan_rx_register;
  1770. ndev->vlan_rx_kill_vid = ns83820_vlan_rx_kill_vid;
  1771. #endif
  1772. if (using_dac) {
  1773. printk(KERN_INFO "%s: using 64 bit addressing.\n",
  1774. ndev->name);
  1775. ndev->features |= NETIF_F_HIGHDMA;
  1776. }
  1777. printk(KERN_INFO "%s: ns83820 v" VERSION ": DP83820 v%u.%u: %02x:%02x:%02x:%02x:%02x:%02x io=0x%08lx irq=%d f=%s\n",
  1778. ndev->name,
  1779. (unsigned)readl(dev->base + SRR) >> 8,
  1780. (unsigned)readl(dev->base + SRR) & 0xff,
  1781. ndev->dev_addr[0], ndev->dev_addr[1],
  1782. ndev->dev_addr[2], ndev->dev_addr[3],
  1783. ndev->dev_addr[4], ndev->dev_addr[5],
  1784. addr, pci_dev->irq,
  1785. (ndev->features & NETIF_F_HIGHDMA) ? "h,sg" : "sg"
  1786. );
  1787. #ifdef PHY_CODE_IS_FINISHED
  1788. ns83820_probe_phy(ndev);
  1789. #endif
  1790. err = register_netdevice(ndev);
  1791. if (err) {
  1792. printk(KERN_INFO "ns83820: unable to register netdev: %d\n", err);
  1793. goto out_cleanup;
  1794. }
  1795. rtnl_unlock();
  1796. return 0;
  1797. out_cleanup:
  1798. writel(0, dev->base + IMR); /* paranoia */
  1799. writel(0, dev->base + IER);
  1800. readl(dev->base + IER);
  1801. out_free_irq:
  1802. rtnl_unlock();
  1803. free_irq(pci_dev->irq, ndev);
  1804. out_disable:
  1805. if (dev->base)
  1806. iounmap(dev->base);
  1807. pci_free_consistent(pci_dev, 4 * DESC_SIZE * NR_TX_DESC, dev->tx_descs, dev->tx_phy_descs);
  1808. pci_free_consistent(pci_dev, 4 * DESC_SIZE * NR_RX_DESC, dev->rx_info.descs, dev->rx_info.phy_descs);
  1809. pci_disable_device(pci_dev);
  1810. out_free:
  1811. free_netdev(ndev);
  1812. pci_set_drvdata(pci_dev, NULL);
  1813. out:
  1814. return err;
  1815. }
  1816. static void __devexit ns83820_remove_one(struct pci_dev *pci_dev)
  1817. {
  1818. struct net_device *ndev = pci_get_drvdata(pci_dev);
  1819. struct ns83820 *dev = PRIV(ndev); /* ok even if NULL */
  1820. if (!ndev) /* paranoia */
  1821. return;
  1822. writel(0, dev->base + IMR); /* paranoia */
  1823. writel(0, dev->base + IER);
  1824. readl(dev->base + IER);
  1825. unregister_netdev(ndev);
  1826. free_irq(dev->pci_dev->irq, ndev);
  1827. iounmap(dev->base);
  1828. pci_free_consistent(dev->pci_dev, 4 * DESC_SIZE * NR_TX_DESC,
  1829. dev->tx_descs, dev->tx_phy_descs);
  1830. pci_free_consistent(dev->pci_dev, 4 * DESC_SIZE * NR_RX_DESC,
  1831. dev->rx_info.descs, dev->rx_info.phy_descs);
  1832. pci_disable_device(dev->pci_dev);
  1833. free_netdev(ndev);
  1834. pci_set_drvdata(pci_dev, NULL);
  1835. }
  1836. static struct pci_device_id ns83820_pci_tbl[] = {
  1837. { 0x100b, 0x0022, PCI_ANY_ID, PCI_ANY_ID, 0, .driver_data = 0, },
  1838. { 0, },
  1839. };
  1840. static struct pci_driver driver = {
  1841. .name = "ns83820",
  1842. .id_table = ns83820_pci_tbl,
  1843. .probe = ns83820_init_one,
  1844. .remove = __devexit_p(ns83820_remove_one),
  1845. #if 0 /* FIXME: implement */
  1846. .suspend = ,
  1847. .resume = ,
  1848. #endif
  1849. };
  1850. static int __init ns83820_init(void)
  1851. {
  1852. printk(KERN_INFO "ns83820.c: National Semiconductor DP83820 10/100/1000 driver.\n");
  1853. return pci_module_init(&driver);
  1854. }
  1855. static void __exit ns83820_exit(void)
  1856. {
  1857. pci_unregister_driver(&driver);
  1858. }
  1859. MODULE_AUTHOR("Benjamin LaHaise <bcrl@kvack.org>");
  1860. MODULE_DESCRIPTION("National Semiconductor DP83820 10/100/1000 driver");
  1861. MODULE_LICENSE("GPL");
  1862. MODULE_DEVICE_TABLE(pci, ns83820_pci_tbl);
  1863. module_param(lnksts, int, 0);
  1864. MODULE_PARM_DESC(lnksts, "Polarity of LNKSTS bit");
  1865. module_param(ihr, int, 0);
  1866. MODULE_PARM_DESC(ihr, "Time in 100 us increments to delay interrupts (range 0-127)");
  1867. module_param(reset_phy, int, 0);
  1868. MODULE_PARM_DESC(reset_phy, "Set to 1 to reset the PHY on startup");
  1869. module_init(ns83820_init);
  1870. module_exit(ns83820_exit);