e1000_main.c 105 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795
  1. /*******************************************************************************
  2. Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
  3. This program is free software; you can redistribute it and/or modify it
  4. under the terms of the GNU General Public License as published by the Free
  5. Software Foundation; either version 2 of the License, or (at your option)
  6. any later version.
  7. This program is distributed in the hope that it will be useful, but WITHOUT
  8. ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  9. FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  10. more details.
  11. You should have received a copy of the GNU General Public License along with
  12. this program; if not, write to the Free Software Foundation, Inc., 59
  13. Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  14. The full GNU General Public License is included in this distribution in the
  15. file called LICENSE.
  16. Contact Information:
  17. Linux NICS <linux.nics@intel.com>
  18. Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  19. *******************************************************************************/
  20. #include "e1000.h"
  21. /* Change Log
  22. * 6.0.58 4/20/05
  23. * o Accepted ethtool cleanup patch from Stephen Hemminger
  24. * 6.0.44+ 2/15/05
  25. * o applied Anton's patch to resolve tx hang in hardware
  26. * o Applied Andrew Mortons patch - e1000 stops working after resume
  27. */
  28. char e1000_driver_name[] = "e1000";
  29. char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
  30. #ifndef CONFIG_E1000_NAPI
  31. #define DRIVERNAPI
  32. #else
  33. #define DRIVERNAPI "-NAPI"
  34. #endif
  35. #define DRV_VERSION "6.0.60-k2"DRIVERNAPI
  36. char e1000_driver_version[] = DRV_VERSION;
  37. char e1000_copyright[] = "Copyright (c) 1999-2005 Intel Corporation.";
  38. /* e1000_pci_tbl - PCI Device ID Table
  39. *
  40. * Last entry must be all 0s
  41. *
  42. * Macro expands to...
  43. * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
  44. */
  45. static struct pci_device_id e1000_pci_tbl[] = {
  46. INTEL_E1000_ETHERNET_DEVICE(0x1000),
  47. INTEL_E1000_ETHERNET_DEVICE(0x1001),
  48. INTEL_E1000_ETHERNET_DEVICE(0x1004),
  49. INTEL_E1000_ETHERNET_DEVICE(0x1008),
  50. INTEL_E1000_ETHERNET_DEVICE(0x1009),
  51. INTEL_E1000_ETHERNET_DEVICE(0x100C),
  52. INTEL_E1000_ETHERNET_DEVICE(0x100D),
  53. INTEL_E1000_ETHERNET_DEVICE(0x100E),
  54. INTEL_E1000_ETHERNET_DEVICE(0x100F),
  55. INTEL_E1000_ETHERNET_DEVICE(0x1010),
  56. INTEL_E1000_ETHERNET_DEVICE(0x1011),
  57. INTEL_E1000_ETHERNET_DEVICE(0x1012),
  58. INTEL_E1000_ETHERNET_DEVICE(0x1013),
  59. INTEL_E1000_ETHERNET_DEVICE(0x1014),
  60. INTEL_E1000_ETHERNET_DEVICE(0x1015),
  61. INTEL_E1000_ETHERNET_DEVICE(0x1016),
  62. INTEL_E1000_ETHERNET_DEVICE(0x1017),
  63. INTEL_E1000_ETHERNET_DEVICE(0x1018),
  64. INTEL_E1000_ETHERNET_DEVICE(0x1019),
  65. INTEL_E1000_ETHERNET_DEVICE(0x101A),
  66. INTEL_E1000_ETHERNET_DEVICE(0x101D),
  67. INTEL_E1000_ETHERNET_DEVICE(0x101E),
  68. INTEL_E1000_ETHERNET_DEVICE(0x1026),
  69. INTEL_E1000_ETHERNET_DEVICE(0x1027),
  70. INTEL_E1000_ETHERNET_DEVICE(0x1028),
  71. INTEL_E1000_ETHERNET_DEVICE(0x1075),
  72. INTEL_E1000_ETHERNET_DEVICE(0x1076),
  73. INTEL_E1000_ETHERNET_DEVICE(0x1077),
  74. INTEL_E1000_ETHERNET_DEVICE(0x1078),
  75. INTEL_E1000_ETHERNET_DEVICE(0x1079),
  76. INTEL_E1000_ETHERNET_DEVICE(0x107A),
  77. INTEL_E1000_ETHERNET_DEVICE(0x107B),
  78. INTEL_E1000_ETHERNET_DEVICE(0x107C),
  79. INTEL_E1000_ETHERNET_DEVICE(0x108A),
  80. INTEL_E1000_ETHERNET_DEVICE(0x108B),
  81. INTEL_E1000_ETHERNET_DEVICE(0x108C),
  82. INTEL_E1000_ETHERNET_DEVICE(0x1099),
  83. /* required last entry */
  84. {0,}
  85. };
  86. MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
  87. int e1000_up(struct e1000_adapter *adapter);
  88. void e1000_down(struct e1000_adapter *adapter);
  89. void e1000_reset(struct e1000_adapter *adapter);
  90. int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
  91. int e1000_setup_tx_resources(struct e1000_adapter *adapter);
  92. int e1000_setup_rx_resources(struct e1000_adapter *adapter);
  93. void e1000_free_tx_resources(struct e1000_adapter *adapter);
  94. void e1000_free_rx_resources(struct e1000_adapter *adapter);
  95. void e1000_update_stats(struct e1000_adapter *adapter);
  96. /* Local Function Prototypes */
  97. static int e1000_init_module(void);
  98. static void e1000_exit_module(void);
  99. static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
  100. static void __devexit e1000_remove(struct pci_dev *pdev);
  101. static int e1000_sw_init(struct e1000_adapter *adapter);
  102. static int e1000_open(struct net_device *netdev);
  103. static int e1000_close(struct net_device *netdev);
  104. static void e1000_configure_tx(struct e1000_adapter *adapter);
  105. static void e1000_configure_rx(struct e1000_adapter *adapter);
  106. static void e1000_setup_rctl(struct e1000_adapter *adapter);
  107. static void e1000_clean_tx_ring(struct e1000_adapter *adapter);
  108. static void e1000_clean_rx_ring(struct e1000_adapter *adapter);
  109. static void e1000_set_multi(struct net_device *netdev);
  110. static void e1000_update_phy_info(unsigned long data);
  111. static void e1000_watchdog(unsigned long data);
  112. static void e1000_watchdog_task(struct e1000_adapter *adapter);
  113. static void e1000_82547_tx_fifo_stall(unsigned long data);
  114. static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
  115. static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
  116. static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
  117. static int e1000_set_mac(struct net_device *netdev, void *p);
  118. static irqreturn_t e1000_intr(int irq, void *data, struct pt_regs *regs);
  119. static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter);
  120. #ifdef CONFIG_E1000_NAPI
  121. static int e1000_clean(struct net_device *netdev, int *budget);
  122. static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
  123. int *work_done, int work_to_do);
  124. static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
  125. int *work_done, int work_to_do);
  126. #else
  127. static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter);
  128. static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter);
  129. #endif
  130. static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter);
  131. static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter);
  132. static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
  133. static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
  134. int cmd);
  135. void e1000_set_ethtool_ops(struct net_device *netdev);
  136. static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
  137. static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
  138. static void e1000_tx_timeout(struct net_device *dev);
  139. static void e1000_tx_timeout_task(struct net_device *dev);
  140. static void e1000_smartspeed(struct e1000_adapter *adapter);
  141. static inline int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
  142. struct sk_buff *skb);
  143. static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
  144. static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
  145. static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
  146. static void e1000_restore_vlan(struct e1000_adapter *adapter);
  147. static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
  148. #ifdef CONFIG_PM
  149. static int e1000_resume(struct pci_dev *pdev);
  150. #endif
  151. #ifdef CONFIG_NET_POLL_CONTROLLER
  152. /* for netdump / net console */
  153. static void e1000_netpoll (struct net_device *netdev);
  154. #endif
  155. /* Exported from other modules */
  156. extern void e1000_check_options(struct e1000_adapter *adapter);
  157. static struct pci_driver e1000_driver = {
  158. .name = e1000_driver_name,
  159. .id_table = e1000_pci_tbl,
  160. .probe = e1000_probe,
  161. .remove = __devexit_p(e1000_remove),
  162. /* Power Managment Hooks */
  163. #ifdef CONFIG_PM
  164. .suspend = e1000_suspend,
  165. .resume = e1000_resume
  166. #endif
  167. };
  168. MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
  169. MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
  170. MODULE_LICENSE("GPL");
  171. MODULE_VERSION(DRV_VERSION);
  172. static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
  173. module_param(debug, int, 0);
  174. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  175. /**
  176. * e1000_init_module - Driver Registration Routine
  177. *
  178. * e1000_init_module is the first routine called when the driver is
  179. * loaded. All it does is register with the PCI subsystem.
  180. **/
  181. static int __init
  182. e1000_init_module(void)
  183. {
  184. int ret;
  185. printk(KERN_INFO "%s - version %s\n",
  186. e1000_driver_string, e1000_driver_version);
  187. printk(KERN_INFO "%s\n", e1000_copyright);
  188. ret = pci_module_init(&e1000_driver);
  189. return ret;
  190. }
  191. module_init(e1000_init_module);
  192. /**
  193. * e1000_exit_module - Driver Exit Cleanup Routine
  194. *
  195. * e1000_exit_module is called just before the driver is removed
  196. * from memory.
  197. **/
  198. static void __exit
  199. e1000_exit_module(void)
  200. {
  201. pci_unregister_driver(&e1000_driver);
  202. }
  203. module_exit(e1000_exit_module);
  204. /**
  205. * e1000_irq_disable - Mask off interrupt generation on the NIC
  206. * @adapter: board private structure
  207. **/
  208. static inline void
  209. e1000_irq_disable(struct e1000_adapter *adapter)
  210. {
  211. atomic_inc(&adapter->irq_sem);
  212. E1000_WRITE_REG(&adapter->hw, IMC, ~0);
  213. E1000_WRITE_FLUSH(&adapter->hw);
  214. synchronize_irq(adapter->pdev->irq);
  215. }
  216. /**
  217. * e1000_irq_enable - Enable default interrupt generation settings
  218. * @adapter: board private structure
  219. **/
  220. static inline void
  221. e1000_irq_enable(struct e1000_adapter *adapter)
  222. {
  223. if(likely(atomic_dec_and_test(&adapter->irq_sem))) {
  224. E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
  225. E1000_WRITE_FLUSH(&adapter->hw);
  226. }
  227. }
  228. void
  229. e1000_update_mng_vlan(struct e1000_adapter *adapter)
  230. {
  231. struct net_device *netdev = adapter->netdev;
  232. uint16_t vid = adapter->hw.mng_cookie.vlan_id;
  233. uint16_t old_vid = adapter->mng_vlan_id;
  234. if(adapter->vlgrp) {
  235. if(!adapter->vlgrp->vlan_devices[vid]) {
  236. if(adapter->hw.mng_cookie.status &
  237. E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
  238. e1000_vlan_rx_add_vid(netdev, vid);
  239. adapter->mng_vlan_id = vid;
  240. } else
  241. adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
  242. if((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
  243. (vid != old_vid) &&
  244. !adapter->vlgrp->vlan_devices[old_vid])
  245. e1000_vlan_rx_kill_vid(netdev, old_vid);
  246. }
  247. }
  248. }
  249. int
  250. e1000_up(struct e1000_adapter *adapter)
  251. {
  252. struct net_device *netdev = adapter->netdev;
  253. int err;
  254. /* hardware has been reset, we need to reload some things */
  255. /* Reset the PHY if it was previously powered down */
  256. if(adapter->hw.media_type == e1000_media_type_copper) {
  257. uint16_t mii_reg;
  258. e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
  259. if(mii_reg & MII_CR_POWER_DOWN)
  260. e1000_phy_reset(&adapter->hw);
  261. }
  262. e1000_set_multi(netdev);
  263. e1000_restore_vlan(adapter);
  264. e1000_configure_tx(adapter);
  265. e1000_setup_rctl(adapter);
  266. e1000_configure_rx(adapter);
  267. adapter->alloc_rx_buf(adapter);
  268. #ifdef CONFIG_PCI_MSI
  269. if(adapter->hw.mac_type > e1000_82547_rev_2) {
  270. adapter->have_msi = TRUE;
  271. if((err = pci_enable_msi(adapter->pdev))) {
  272. DPRINTK(PROBE, ERR,
  273. "Unable to allocate MSI interrupt Error: %d\n", err);
  274. adapter->have_msi = FALSE;
  275. }
  276. }
  277. #endif
  278. if((err = request_irq(adapter->pdev->irq, &e1000_intr,
  279. SA_SHIRQ | SA_SAMPLE_RANDOM,
  280. netdev->name, netdev))) {
  281. DPRINTK(PROBE, ERR,
  282. "Unable to allocate interrupt Error: %d\n", err);
  283. return err;
  284. }
  285. mod_timer(&adapter->watchdog_timer, jiffies);
  286. #ifdef CONFIG_E1000_NAPI
  287. netif_poll_enable(netdev);
  288. #endif
  289. e1000_irq_enable(adapter);
  290. return 0;
  291. }
  292. void
  293. e1000_down(struct e1000_adapter *adapter)
  294. {
  295. struct net_device *netdev = adapter->netdev;
  296. e1000_irq_disable(adapter);
  297. free_irq(adapter->pdev->irq, netdev);
  298. #ifdef CONFIG_PCI_MSI
  299. if(adapter->hw.mac_type > e1000_82547_rev_2 &&
  300. adapter->have_msi == TRUE)
  301. pci_disable_msi(adapter->pdev);
  302. #endif
  303. del_timer_sync(&adapter->tx_fifo_stall_timer);
  304. del_timer_sync(&adapter->watchdog_timer);
  305. del_timer_sync(&adapter->phy_info_timer);
  306. #ifdef CONFIG_E1000_NAPI
  307. netif_poll_disable(netdev);
  308. #endif
  309. adapter->link_speed = 0;
  310. adapter->link_duplex = 0;
  311. netif_carrier_off(netdev);
  312. netif_stop_queue(netdev);
  313. e1000_reset(adapter);
  314. e1000_clean_tx_ring(adapter);
  315. e1000_clean_rx_ring(adapter);
  316. /* If WoL is not enabled
  317. * and management mode is not IAMT
  318. * Power down the PHY so no link is implied when interface is down */
  319. if(!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
  320. adapter->hw.media_type == e1000_media_type_copper &&
  321. !e1000_check_mng_mode(&adapter->hw) &&
  322. !(E1000_READ_REG(&adapter->hw, MANC) & E1000_MANC_SMBUS_EN)) {
  323. uint16_t mii_reg;
  324. e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
  325. mii_reg |= MII_CR_POWER_DOWN;
  326. e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
  327. mdelay(1);
  328. }
  329. }
  330. void
  331. e1000_reset(struct e1000_adapter *adapter)
  332. {
  333. struct net_device *netdev = adapter->netdev;
  334. uint32_t pba, manc;
  335. uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
  336. uint16_t fc_low_water_mark = E1000_FC_LOW_DIFF;
  337. /* Repartition Pba for greater than 9k mtu
  338. * To take effect CTRL.RST is required.
  339. */
  340. switch (adapter->hw.mac_type) {
  341. case e1000_82547:
  342. case e1000_82547_rev_2:
  343. pba = E1000_PBA_30K;
  344. break;
  345. case e1000_82573:
  346. pba = E1000_PBA_12K;
  347. break;
  348. default:
  349. pba = E1000_PBA_48K;
  350. break;
  351. }
  352. if((adapter->hw.mac_type != e1000_82573) &&
  353. (adapter->rx_buffer_len > E1000_RXBUFFER_8192)) {
  354. pba -= 8; /* allocate more FIFO for Tx */
  355. /* send an XOFF when there is enough space in the
  356. * Rx FIFO to hold one extra full size Rx packet
  357. */
  358. fc_high_water_mark = netdev->mtu + ENET_HEADER_SIZE +
  359. ETHERNET_FCS_SIZE + 1;
  360. fc_low_water_mark = fc_high_water_mark + 8;
  361. }
  362. if(adapter->hw.mac_type == e1000_82547) {
  363. adapter->tx_fifo_head = 0;
  364. adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
  365. adapter->tx_fifo_size =
  366. (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
  367. atomic_set(&adapter->tx_fifo_stall, 0);
  368. }
  369. E1000_WRITE_REG(&adapter->hw, PBA, pba);
  370. /* flow control settings */
  371. adapter->hw.fc_high_water = (pba << E1000_PBA_BYTES_SHIFT) -
  372. fc_high_water_mark;
  373. adapter->hw.fc_low_water = (pba << E1000_PBA_BYTES_SHIFT) -
  374. fc_low_water_mark;
  375. adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
  376. adapter->hw.fc_send_xon = 1;
  377. adapter->hw.fc = adapter->hw.original_fc;
  378. /* Allow time for pending master requests to run */
  379. e1000_reset_hw(&adapter->hw);
  380. if(adapter->hw.mac_type >= e1000_82544)
  381. E1000_WRITE_REG(&adapter->hw, WUC, 0);
  382. if(e1000_init_hw(&adapter->hw))
  383. DPRINTK(PROBE, ERR, "Hardware Error\n");
  384. e1000_update_mng_vlan(adapter);
  385. /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
  386. E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
  387. e1000_reset_adaptive(&adapter->hw);
  388. e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
  389. if (adapter->en_mng_pt) {
  390. manc = E1000_READ_REG(&adapter->hw, MANC);
  391. manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST);
  392. E1000_WRITE_REG(&adapter->hw, MANC, manc);
  393. }
  394. }
  395. /**
  396. * e1000_probe - Device Initialization Routine
  397. * @pdev: PCI device information struct
  398. * @ent: entry in e1000_pci_tbl
  399. *
  400. * Returns 0 on success, negative on failure
  401. *
  402. * e1000_probe initializes an adapter identified by a pci_dev structure.
  403. * The OS initialization, configuring of the adapter private structure,
  404. * and a hardware reset occur.
  405. **/
  406. static int __devinit
  407. e1000_probe(struct pci_dev *pdev,
  408. const struct pci_device_id *ent)
  409. {
  410. struct net_device *netdev;
  411. struct e1000_adapter *adapter;
  412. unsigned long mmio_start, mmio_len;
  413. uint32_t swsm;
  414. static int cards_found = 0;
  415. int i, err, pci_using_dac;
  416. uint16_t eeprom_data;
  417. uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
  418. if((err = pci_enable_device(pdev)))
  419. return err;
  420. if(!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK))) {
  421. pci_using_dac = 1;
  422. } else {
  423. if((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
  424. E1000_ERR("No usable DMA configuration, aborting\n");
  425. return err;
  426. }
  427. pci_using_dac = 0;
  428. }
  429. if((err = pci_request_regions(pdev, e1000_driver_name)))
  430. return err;
  431. pci_set_master(pdev);
  432. netdev = alloc_etherdev(sizeof(struct e1000_adapter));
  433. if(!netdev) {
  434. err = -ENOMEM;
  435. goto err_alloc_etherdev;
  436. }
  437. SET_MODULE_OWNER(netdev);
  438. SET_NETDEV_DEV(netdev, &pdev->dev);
  439. pci_set_drvdata(pdev, netdev);
  440. adapter = netdev_priv(netdev);
  441. adapter->netdev = netdev;
  442. adapter->pdev = pdev;
  443. adapter->hw.back = adapter;
  444. adapter->msg_enable = (1 << debug) - 1;
  445. mmio_start = pci_resource_start(pdev, BAR_0);
  446. mmio_len = pci_resource_len(pdev, BAR_0);
  447. adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
  448. if(!adapter->hw.hw_addr) {
  449. err = -EIO;
  450. goto err_ioremap;
  451. }
  452. for(i = BAR_1; i <= BAR_5; i++) {
  453. if(pci_resource_len(pdev, i) == 0)
  454. continue;
  455. if(pci_resource_flags(pdev, i) & IORESOURCE_IO) {
  456. adapter->hw.io_base = pci_resource_start(pdev, i);
  457. break;
  458. }
  459. }
  460. netdev->open = &e1000_open;
  461. netdev->stop = &e1000_close;
  462. netdev->hard_start_xmit = &e1000_xmit_frame;
  463. netdev->get_stats = &e1000_get_stats;
  464. netdev->set_multicast_list = &e1000_set_multi;
  465. netdev->set_mac_address = &e1000_set_mac;
  466. netdev->change_mtu = &e1000_change_mtu;
  467. netdev->do_ioctl = &e1000_ioctl;
  468. e1000_set_ethtool_ops(netdev);
  469. netdev->tx_timeout = &e1000_tx_timeout;
  470. netdev->watchdog_timeo = 5 * HZ;
  471. #ifdef CONFIG_E1000_NAPI
  472. netdev->poll = &e1000_clean;
  473. netdev->weight = 64;
  474. #endif
  475. netdev->vlan_rx_register = e1000_vlan_rx_register;
  476. netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
  477. netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
  478. #ifdef CONFIG_NET_POLL_CONTROLLER
  479. netdev->poll_controller = e1000_netpoll;
  480. #endif
  481. strcpy(netdev->name, pci_name(pdev));
  482. netdev->mem_start = mmio_start;
  483. netdev->mem_end = mmio_start + mmio_len;
  484. netdev->base_addr = adapter->hw.io_base;
  485. adapter->bd_number = cards_found;
  486. /* setup the private structure */
  487. if((err = e1000_sw_init(adapter)))
  488. goto err_sw_init;
  489. if((err = e1000_check_phy_reset_block(&adapter->hw)))
  490. DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
  491. if(adapter->hw.mac_type >= e1000_82543) {
  492. netdev->features = NETIF_F_SG |
  493. NETIF_F_HW_CSUM |
  494. NETIF_F_HW_VLAN_TX |
  495. NETIF_F_HW_VLAN_RX |
  496. NETIF_F_HW_VLAN_FILTER;
  497. }
  498. #ifdef NETIF_F_TSO
  499. if((adapter->hw.mac_type >= e1000_82544) &&
  500. (adapter->hw.mac_type != e1000_82547))
  501. netdev->features |= NETIF_F_TSO;
  502. #ifdef NETIF_F_TSO_IPV6
  503. if(adapter->hw.mac_type > e1000_82547_rev_2)
  504. netdev->features |= NETIF_F_TSO_IPV6;
  505. #endif
  506. #endif
  507. if(pci_using_dac)
  508. netdev->features |= NETIF_F_HIGHDMA;
  509. /* hard_start_xmit is safe against parallel locking */
  510. netdev->features |= NETIF_F_LLTX;
  511. adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
  512. /* before reading the EEPROM, reset the controller to
  513. * put the device in a known good starting state */
  514. e1000_reset_hw(&adapter->hw);
  515. /* make sure the EEPROM is good */
  516. if(e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
  517. DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
  518. err = -EIO;
  519. goto err_eeprom;
  520. }
  521. /* copy the MAC address out of the EEPROM */
  522. if(e1000_read_mac_addr(&adapter->hw))
  523. DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
  524. memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
  525. if(!is_valid_ether_addr(netdev->dev_addr)) {
  526. DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
  527. err = -EIO;
  528. goto err_eeprom;
  529. }
  530. e1000_read_part_num(&adapter->hw, &(adapter->part_num));
  531. e1000_get_bus_info(&adapter->hw);
  532. init_timer(&adapter->tx_fifo_stall_timer);
  533. adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
  534. adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
  535. init_timer(&adapter->watchdog_timer);
  536. adapter->watchdog_timer.function = &e1000_watchdog;
  537. adapter->watchdog_timer.data = (unsigned long) adapter;
  538. INIT_WORK(&adapter->watchdog_task,
  539. (void (*)(void *))e1000_watchdog_task, adapter);
  540. init_timer(&adapter->phy_info_timer);
  541. adapter->phy_info_timer.function = &e1000_update_phy_info;
  542. adapter->phy_info_timer.data = (unsigned long) adapter;
  543. INIT_WORK(&adapter->tx_timeout_task,
  544. (void (*)(void *))e1000_tx_timeout_task, netdev);
  545. /* we're going to reset, so assume we have no link for now */
  546. netif_carrier_off(netdev);
  547. netif_stop_queue(netdev);
  548. e1000_check_options(adapter);
  549. /* Initial Wake on LAN setting
  550. * If APM wake is enabled in the EEPROM,
  551. * enable the ACPI Magic Packet filter
  552. */
  553. switch(adapter->hw.mac_type) {
  554. case e1000_82542_rev2_0:
  555. case e1000_82542_rev2_1:
  556. case e1000_82543:
  557. break;
  558. case e1000_82544:
  559. e1000_read_eeprom(&adapter->hw,
  560. EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
  561. eeprom_apme_mask = E1000_EEPROM_82544_APM;
  562. break;
  563. case e1000_82546:
  564. case e1000_82546_rev_3:
  565. if((E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1)
  566. && (adapter->hw.media_type == e1000_media_type_copper)) {
  567. e1000_read_eeprom(&adapter->hw,
  568. EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
  569. break;
  570. }
  571. /* Fall Through */
  572. default:
  573. e1000_read_eeprom(&adapter->hw,
  574. EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
  575. break;
  576. }
  577. if(eeprom_data & eeprom_apme_mask)
  578. adapter->wol |= E1000_WUFC_MAG;
  579. /* reset the hardware with the new settings */
  580. e1000_reset(adapter);
  581. /* Let firmware know the driver has taken over */
  582. switch(adapter->hw.mac_type) {
  583. case e1000_82573:
  584. swsm = E1000_READ_REG(&adapter->hw, SWSM);
  585. E1000_WRITE_REG(&adapter->hw, SWSM,
  586. swsm | E1000_SWSM_DRV_LOAD);
  587. break;
  588. default:
  589. break;
  590. }
  591. strcpy(netdev->name, "eth%d");
  592. if((err = register_netdev(netdev)))
  593. goto err_register;
  594. DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
  595. cards_found++;
  596. return 0;
  597. err_register:
  598. err_sw_init:
  599. err_eeprom:
  600. iounmap(adapter->hw.hw_addr);
  601. err_ioremap:
  602. free_netdev(netdev);
  603. err_alloc_etherdev:
  604. pci_release_regions(pdev);
  605. return err;
  606. }
  607. /**
  608. * e1000_remove - Device Removal Routine
  609. * @pdev: PCI device information struct
  610. *
  611. * e1000_remove is called by the PCI subsystem to alert the driver
  612. * that it should release a PCI device. The could be caused by a
  613. * Hot-Plug event, or because the driver is going to be removed from
  614. * memory.
  615. **/
  616. static void __devexit
  617. e1000_remove(struct pci_dev *pdev)
  618. {
  619. struct net_device *netdev = pci_get_drvdata(pdev);
  620. struct e1000_adapter *adapter = netdev_priv(netdev);
  621. uint32_t manc, swsm;
  622. flush_scheduled_work();
  623. if(adapter->hw.mac_type >= e1000_82540 &&
  624. adapter->hw.media_type == e1000_media_type_copper) {
  625. manc = E1000_READ_REG(&adapter->hw, MANC);
  626. if(manc & E1000_MANC_SMBUS_EN) {
  627. manc |= E1000_MANC_ARP_EN;
  628. E1000_WRITE_REG(&adapter->hw, MANC, manc);
  629. }
  630. }
  631. switch(adapter->hw.mac_type) {
  632. case e1000_82573:
  633. swsm = E1000_READ_REG(&adapter->hw, SWSM);
  634. E1000_WRITE_REG(&adapter->hw, SWSM,
  635. swsm & ~E1000_SWSM_DRV_LOAD);
  636. break;
  637. default:
  638. break;
  639. }
  640. unregister_netdev(netdev);
  641. if(!e1000_check_phy_reset_block(&adapter->hw))
  642. e1000_phy_hw_reset(&adapter->hw);
  643. iounmap(adapter->hw.hw_addr);
  644. pci_release_regions(pdev);
  645. free_netdev(netdev);
  646. pci_disable_device(pdev);
  647. }
  648. /**
  649. * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
  650. * @adapter: board private structure to initialize
  651. *
  652. * e1000_sw_init initializes the Adapter private data structure.
  653. * Fields are initialized based on PCI device information and
  654. * OS network device settings (MTU size).
  655. **/
  656. static int __devinit
  657. e1000_sw_init(struct e1000_adapter *adapter)
  658. {
  659. struct e1000_hw *hw = &adapter->hw;
  660. struct net_device *netdev = adapter->netdev;
  661. struct pci_dev *pdev = adapter->pdev;
  662. /* PCI config space info */
  663. hw->vendor_id = pdev->vendor;
  664. hw->device_id = pdev->device;
  665. hw->subsystem_vendor_id = pdev->subsystem_vendor;
  666. hw->subsystem_id = pdev->subsystem_device;
  667. pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
  668. pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
  669. adapter->rx_buffer_len = E1000_RXBUFFER_2048;
  670. adapter->rx_ps_bsize0 = E1000_RXBUFFER_256;
  671. hw->max_frame_size = netdev->mtu +
  672. ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
  673. hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
  674. /* identify the MAC */
  675. if(e1000_set_mac_type(hw)) {
  676. DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
  677. return -EIO;
  678. }
  679. /* initialize eeprom parameters */
  680. if(e1000_init_eeprom_params(hw)) {
  681. E1000_ERR("EEPROM initialization failed\n");
  682. return -EIO;
  683. }
  684. switch(hw->mac_type) {
  685. default:
  686. break;
  687. case e1000_82541:
  688. case e1000_82547:
  689. case e1000_82541_rev_2:
  690. case e1000_82547_rev_2:
  691. hw->phy_init_script = 1;
  692. break;
  693. }
  694. e1000_set_media_type(hw);
  695. hw->wait_autoneg_complete = FALSE;
  696. hw->tbi_compatibility_en = TRUE;
  697. hw->adaptive_ifs = TRUE;
  698. /* Copper options */
  699. if(hw->media_type == e1000_media_type_copper) {
  700. hw->mdix = AUTO_ALL_MODES;
  701. hw->disable_polarity_correction = FALSE;
  702. hw->master_slave = E1000_MASTER_SLAVE;
  703. }
  704. atomic_set(&adapter->irq_sem, 1);
  705. spin_lock_init(&adapter->stats_lock);
  706. spin_lock_init(&adapter->tx_lock);
  707. return 0;
  708. }
  709. /**
  710. * e1000_open - Called when a network interface is made active
  711. * @netdev: network interface device structure
  712. *
  713. * Returns 0 on success, negative value on failure
  714. *
  715. * The open entry point is called when a network interface is made
  716. * active by the system (IFF_UP). At this point all resources needed
  717. * for transmit and receive operations are allocated, the interrupt
  718. * handler is registered with the OS, the watchdog timer is started,
  719. * and the stack is notified that the interface is ready.
  720. **/
  721. static int
  722. e1000_open(struct net_device *netdev)
  723. {
  724. struct e1000_adapter *adapter = netdev_priv(netdev);
  725. int err;
  726. /* allocate transmit descriptors */
  727. if((err = e1000_setup_tx_resources(adapter)))
  728. goto err_setup_tx;
  729. /* allocate receive descriptors */
  730. if((err = e1000_setup_rx_resources(adapter)))
  731. goto err_setup_rx;
  732. if((err = e1000_up(adapter)))
  733. goto err_up;
  734. adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
  735. if((adapter->hw.mng_cookie.status &
  736. E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
  737. e1000_update_mng_vlan(adapter);
  738. }
  739. return E1000_SUCCESS;
  740. err_up:
  741. e1000_free_rx_resources(adapter);
  742. err_setup_rx:
  743. e1000_free_tx_resources(adapter);
  744. err_setup_tx:
  745. e1000_reset(adapter);
  746. return err;
  747. }
  748. /**
  749. * e1000_close - Disables a network interface
  750. * @netdev: network interface device structure
  751. *
  752. * Returns 0, this is not allowed to fail
  753. *
  754. * The close entry point is called when an interface is de-activated
  755. * by the OS. The hardware is still under the drivers control, but
  756. * needs to be disabled. A global MAC reset is issued to stop the
  757. * hardware, and all transmit and receive resources are freed.
  758. **/
  759. static int
  760. e1000_close(struct net_device *netdev)
  761. {
  762. struct e1000_adapter *adapter = netdev_priv(netdev);
  763. e1000_down(adapter);
  764. e1000_free_tx_resources(adapter);
  765. e1000_free_rx_resources(adapter);
  766. if((adapter->hw.mng_cookie.status &
  767. E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
  768. e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
  769. }
  770. return 0;
  771. }
  772. /**
  773. * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
  774. * @adapter: address of board private structure
  775. * @start: address of beginning of memory
  776. * @len: length of memory
  777. **/
  778. static inline boolean_t
  779. e1000_check_64k_bound(struct e1000_adapter *adapter,
  780. void *start, unsigned long len)
  781. {
  782. unsigned long begin = (unsigned long) start;
  783. unsigned long end = begin + len;
  784. /* First rev 82545 and 82546 need to not allow any memory
  785. * write location to cross 64k boundary due to errata 23 */
  786. if (adapter->hw.mac_type == e1000_82545 ||
  787. adapter->hw.mac_type == e1000_82546) {
  788. return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
  789. }
  790. return TRUE;
  791. }
  792. /**
  793. * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
  794. * @adapter: board private structure
  795. *
  796. * Return 0 on success, negative on failure
  797. **/
  798. int
  799. e1000_setup_tx_resources(struct e1000_adapter *adapter)
  800. {
  801. struct e1000_desc_ring *txdr = &adapter->tx_ring;
  802. struct pci_dev *pdev = adapter->pdev;
  803. int size;
  804. size = sizeof(struct e1000_buffer) * txdr->count;
  805. txdr->buffer_info = vmalloc(size);
  806. if(!txdr->buffer_info) {
  807. DPRINTK(PROBE, ERR,
  808. "Unable to allocate memory for the transmit descriptor ring\n");
  809. return -ENOMEM;
  810. }
  811. memset(txdr->buffer_info, 0, size);
  812. /* round up to nearest 4K */
  813. txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
  814. E1000_ROUNDUP(txdr->size, 4096);
  815. txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
  816. if(!txdr->desc) {
  817. setup_tx_desc_die:
  818. vfree(txdr->buffer_info);
  819. DPRINTK(PROBE, ERR,
  820. "Unable to allocate memory for the transmit descriptor ring\n");
  821. return -ENOMEM;
  822. }
  823. /* Fix for errata 23, can't cross 64kB boundary */
  824. if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
  825. void *olddesc = txdr->desc;
  826. dma_addr_t olddma = txdr->dma;
  827. DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
  828. "at %p\n", txdr->size, txdr->desc);
  829. /* Try again, without freeing the previous */
  830. txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
  831. if(!txdr->desc) {
  832. /* Failed allocation, critical failure */
  833. pci_free_consistent(pdev, txdr->size, olddesc, olddma);
  834. goto setup_tx_desc_die;
  835. }
  836. if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
  837. /* give up */
  838. pci_free_consistent(pdev, txdr->size, txdr->desc,
  839. txdr->dma);
  840. pci_free_consistent(pdev, txdr->size, olddesc, olddma);
  841. DPRINTK(PROBE, ERR,
  842. "Unable to allocate aligned memory "
  843. "for the transmit descriptor ring\n");
  844. vfree(txdr->buffer_info);
  845. return -ENOMEM;
  846. } else {
  847. /* Free old allocation, new allocation was successful */
  848. pci_free_consistent(pdev, txdr->size, olddesc, olddma);
  849. }
  850. }
  851. memset(txdr->desc, 0, txdr->size);
  852. txdr->next_to_use = 0;
  853. txdr->next_to_clean = 0;
  854. return 0;
  855. }
  856. /**
  857. * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
  858. * @adapter: board private structure
  859. *
  860. * Configure the Tx unit of the MAC after a reset.
  861. **/
  862. static void
  863. e1000_configure_tx(struct e1000_adapter *adapter)
  864. {
  865. uint64_t tdba = adapter->tx_ring.dma;
  866. uint32_t tdlen = adapter->tx_ring.count * sizeof(struct e1000_tx_desc);
  867. uint32_t tctl, tipg;
  868. E1000_WRITE_REG(&adapter->hw, TDBAL, (tdba & 0x00000000ffffffffULL));
  869. E1000_WRITE_REG(&adapter->hw, TDBAH, (tdba >> 32));
  870. E1000_WRITE_REG(&adapter->hw, TDLEN, tdlen);
  871. /* Setup the HW Tx Head and Tail descriptor pointers */
  872. E1000_WRITE_REG(&adapter->hw, TDH, 0);
  873. E1000_WRITE_REG(&adapter->hw, TDT, 0);
  874. /* Set the default values for the Tx Inter Packet Gap timer */
  875. switch (adapter->hw.mac_type) {
  876. case e1000_82542_rev2_0:
  877. case e1000_82542_rev2_1:
  878. tipg = DEFAULT_82542_TIPG_IPGT;
  879. tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
  880. tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
  881. break;
  882. default:
  883. if(adapter->hw.media_type == e1000_media_type_fiber ||
  884. adapter->hw.media_type == e1000_media_type_internal_serdes)
  885. tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
  886. else
  887. tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
  888. tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
  889. tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
  890. }
  891. E1000_WRITE_REG(&adapter->hw, TIPG, tipg);
  892. /* Set the Tx Interrupt Delay register */
  893. E1000_WRITE_REG(&adapter->hw, TIDV, adapter->tx_int_delay);
  894. if(adapter->hw.mac_type >= e1000_82540)
  895. E1000_WRITE_REG(&adapter->hw, TADV, adapter->tx_abs_int_delay);
  896. /* Program the Transmit Control Register */
  897. tctl = E1000_READ_REG(&adapter->hw, TCTL);
  898. tctl &= ~E1000_TCTL_CT;
  899. tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
  900. (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
  901. E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
  902. e1000_config_collision_dist(&adapter->hw);
  903. /* Setup Transmit Descriptor Settings for eop descriptor */
  904. adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP |
  905. E1000_TXD_CMD_IFCS;
  906. if(adapter->hw.mac_type < e1000_82543)
  907. adapter->txd_cmd |= E1000_TXD_CMD_RPS;
  908. else
  909. adapter->txd_cmd |= E1000_TXD_CMD_RS;
  910. /* Cache if we're 82544 running in PCI-X because we'll
  911. * need this to apply a workaround later in the send path. */
  912. if(adapter->hw.mac_type == e1000_82544 &&
  913. adapter->hw.bus_type == e1000_bus_type_pcix)
  914. adapter->pcix_82544 = 1;
  915. }
  916. /**
  917. * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
  918. * @adapter: board private structure
  919. *
  920. * Returns 0 on success, negative on failure
  921. **/
  922. int
  923. e1000_setup_rx_resources(struct e1000_adapter *adapter)
  924. {
  925. struct e1000_desc_ring *rxdr = &adapter->rx_ring;
  926. struct pci_dev *pdev = adapter->pdev;
  927. int size, desc_len;
  928. size = sizeof(struct e1000_buffer) * rxdr->count;
  929. rxdr->buffer_info = vmalloc(size);
  930. if(!rxdr->buffer_info) {
  931. DPRINTK(PROBE, ERR,
  932. "Unable to allocate memory for the receive descriptor ring\n");
  933. return -ENOMEM;
  934. }
  935. memset(rxdr->buffer_info, 0, size);
  936. size = sizeof(struct e1000_ps_page) * rxdr->count;
  937. rxdr->ps_page = kmalloc(size, GFP_KERNEL);
  938. if(!rxdr->ps_page) {
  939. vfree(rxdr->buffer_info);
  940. DPRINTK(PROBE, ERR,
  941. "Unable to allocate memory for the receive descriptor ring\n");
  942. return -ENOMEM;
  943. }
  944. memset(rxdr->ps_page, 0, size);
  945. size = sizeof(struct e1000_ps_page_dma) * rxdr->count;
  946. rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL);
  947. if(!rxdr->ps_page_dma) {
  948. vfree(rxdr->buffer_info);
  949. kfree(rxdr->ps_page);
  950. DPRINTK(PROBE, ERR,
  951. "Unable to allocate memory for the receive descriptor ring\n");
  952. return -ENOMEM;
  953. }
  954. memset(rxdr->ps_page_dma, 0, size);
  955. if(adapter->hw.mac_type <= e1000_82547_rev_2)
  956. desc_len = sizeof(struct e1000_rx_desc);
  957. else
  958. desc_len = sizeof(union e1000_rx_desc_packet_split);
  959. /* Round up to nearest 4K */
  960. rxdr->size = rxdr->count * desc_len;
  961. E1000_ROUNDUP(rxdr->size, 4096);
  962. rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
  963. if(!rxdr->desc) {
  964. setup_rx_desc_die:
  965. vfree(rxdr->buffer_info);
  966. kfree(rxdr->ps_page);
  967. kfree(rxdr->ps_page_dma);
  968. DPRINTK(PROBE, ERR,
  969. "Unable to allocate memory for the receive descriptor ring\n");
  970. return -ENOMEM;
  971. }
  972. /* Fix for errata 23, can't cross 64kB boundary */
  973. if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
  974. void *olddesc = rxdr->desc;
  975. dma_addr_t olddma = rxdr->dma;
  976. DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
  977. "at %p\n", rxdr->size, rxdr->desc);
  978. /* Try again, without freeing the previous */
  979. rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
  980. if(!rxdr->desc) {
  981. /* Failed allocation, critical failure */
  982. pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
  983. goto setup_rx_desc_die;
  984. }
  985. if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
  986. /* give up */
  987. pci_free_consistent(pdev, rxdr->size, rxdr->desc,
  988. rxdr->dma);
  989. pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
  990. DPRINTK(PROBE, ERR,
  991. "Unable to allocate aligned memory "
  992. "for the receive descriptor ring\n");
  993. vfree(rxdr->buffer_info);
  994. kfree(rxdr->ps_page);
  995. kfree(rxdr->ps_page_dma);
  996. return -ENOMEM;
  997. } else {
  998. /* Free old allocation, new allocation was successful */
  999. pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
  1000. }
  1001. }
  1002. memset(rxdr->desc, 0, rxdr->size);
  1003. rxdr->next_to_clean = 0;
  1004. rxdr->next_to_use = 0;
  1005. return 0;
  1006. }
  1007. /**
  1008. * e1000_setup_rctl - configure the receive control registers
  1009. * @adapter: Board private structure
  1010. **/
  1011. static void
  1012. e1000_setup_rctl(struct e1000_adapter *adapter)
  1013. {
  1014. uint32_t rctl, rfctl;
  1015. uint32_t psrctl = 0;
  1016. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  1017. rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
  1018. rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
  1019. E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
  1020. (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
  1021. if(adapter->hw.tbi_compatibility_on == 1)
  1022. rctl |= E1000_RCTL_SBP;
  1023. else
  1024. rctl &= ~E1000_RCTL_SBP;
  1025. if (adapter->netdev->mtu <= ETH_DATA_LEN)
  1026. rctl &= ~E1000_RCTL_LPE;
  1027. else
  1028. rctl |= E1000_RCTL_LPE;
  1029. /* Setup buffer sizes */
  1030. if(adapter->hw.mac_type == e1000_82573) {
  1031. /* We can now specify buffers in 1K increments.
  1032. * BSIZE and BSEX are ignored in this case. */
  1033. rctl |= adapter->rx_buffer_len << 0x11;
  1034. } else {
  1035. rctl &= ~E1000_RCTL_SZ_4096;
  1036. rctl |= E1000_RCTL_BSEX;
  1037. switch (adapter->rx_buffer_len) {
  1038. case E1000_RXBUFFER_2048:
  1039. default:
  1040. rctl |= E1000_RCTL_SZ_2048;
  1041. rctl &= ~E1000_RCTL_BSEX;
  1042. break;
  1043. case E1000_RXBUFFER_4096:
  1044. rctl |= E1000_RCTL_SZ_4096;
  1045. break;
  1046. case E1000_RXBUFFER_8192:
  1047. rctl |= E1000_RCTL_SZ_8192;
  1048. break;
  1049. case E1000_RXBUFFER_16384:
  1050. rctl |= E1000_RCTL_SZ_16384;
  1051. break;
  1052. }
  1053. }
  1054. #ifdef CONFIG_E1000_PACKET_SPLIT
  1055. /* 82571 and greater support packet-split where the protocol
  1056. * header is placed in skb->data and the packet data is
  1057. * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
  1058. * In the case of a non-split, skb->data is linearly filled,
  1059. * followed by the page buffers. Therefore, skb->data is
  1060. * sized to hold the largest protocol header.
  1061. */
  1062. adapter->rx_ps = (adapter->hw.mac_type > e1000_82547_rev_2)
  1063. && (adapter->netdev->mtu
  1064. < ((3 * PAGE_SIZE) + adapter->rx_ps_bsize0));
  1065. #endif
  1066. if(adapter->rx_ps) {
  1067. /* Configure extra packet-split registers */
  1068. rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
  1069. rfctl |= E1000_RFCTL_EXTEN;
  1070. /* disable IPv6 packet split support */
  1071. rfctl |= E1000_RFCTL_IPV6_DIS;
  1072. E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
  1073. rctl |= E1000_RCTL_DTYP_PS | E1000_RCTL_SECRC;
  1074. psrctl |= adapter->rx_ps_bsize0 >>
  1075. E1000_PSRCTL_BSIZE0_SHIFT;
  1076. psrctl |= PAGE_SIZE >>
  1077. E1000_PSRCTL_BSIZE1_SHIFT;
  1078. psrctl |= PAGE_SIZE <<
  1079. E1000_PSRCTL_BSIZE2_SHIFT;
  1080. psrctl |= PAGE_SIZE <<
  1081. E1000_PSRCTL_BSIZE3_SHIFT;
  1082. E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
  1083. }
  1084. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  1085. }
  1086. /**
  1087. * e1000_configure_rx - Configure 8254x Receive Unit after Reset
  1088. * @adapter: board private structure
  1089. *
  1090. * Configure the Rx unit of the MAC after a reset.
  1091. **/
  1092. static void
  1093. e1000_configure_rx(struct e1000_adapter *adapter)
  1094. {
  1095. uint64_t rdba = adapter->rx_ring.dma;
  1096. uint32_t rdlen, rctl, rxcsum;
  1097. if(adapter->rx_ps) {
  1098. rdlen = adapter->rx_ring.count *
  1099. sizeof(union e1000_rx_desc_packet_split);
  1100. adapter->clean_rx = e1000_clean_rx_irq_ps;
  1101. adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
  1102. } else {
  1103. rdlen = adapter->rx_ring.count * sizeof(struct e1000_rx_desc);
  1104. adapter->clean_rx = e1000_clean_rx_irq;
  1105. adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
  1106. }
  1107. /* disable receives while setting up the descriptors */
  1108. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  1109. E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN);
  1110. /* set the Receive Delay Timer Register */
  1111. E1000_WRITE_REG(&adapter->hw, RDTR, adapter->rx_int_delay);
  1112. if(adapter->hw.mac_type >= e1000_82540) {
  1113. E1000_WRITE_REG(&adapter->hw, RADV, adapter->rx_abs_int_delay);
  1114. if(adapter->itr > 1)
  1115. E1000_WRITE_REG(&adapter->hw, ITR,
  1116. 1000000000 / (adapter->itr * 256));
  1117. }
  1118. /* Setup the Base and Length of the Rx Descriptor Ring */
  1119. E1000_WRITE_REG(&adapter->hw, RDBAL, (rdba & 0x00000000ffffffffULL));
  1120. E1000_WRITE_REG(&adapter->hw, RDBAH, (rdba >> 32));
  1121. E1000_WRITE_REG(&adapter->hw, RDLEN, rdlen);
  1122. /* Setup the HW Rx Head and Tail Descriptor Pointers */
  1123. E1000_WRITE_REG(&adapter->hw, RDH, 0);
  1124. E1000_WRITE_REG(&adapter->hw, RDT, 0);
  1125. /* Enable 82543 Receive Checksum Offload for TCP and UDP */
  1126. if(adapter->hw.mac_type >= e1000_82543) {
  1127. rxcsum = E1000_READ_REG(&adapter->hw, RXCSUM);
  1128. if(adapter->rx_csum == TRUE) {
  1129. rxcsum |= E1000_RXCSUM_TUOFL;
  1130. /* Enable 82573 IPv4 payload checksum for UDP fragments
  1131. * Must be used in conjunction with packet-split. */
  1132. if((adapter->hw.mac_type > e1000_82547_rev_2) &&
  1133. (adapter->rx_ps)) {
  1134. rxcsum |= E1000_RXCSUM_IPPCSE;
  1135. }
  1136. } else {
  1137. rxcsum &= ~E1000_RXCSUM_TUOFL;
  1138. /* don't need to clear IPPCSE as it defaults to 0 */
  1139. }
  1140. E1000_WRITE_REG(&adapter->hw, RXCSUM, rxcsum);
  1141. }
  1142. if (adapter->hw.mac_type == e1000_82573)
  1143. E1000_WRITE_REG(&adapter->hw, ERT, 0x0100);
  1144. /* Enable Receives */
  1145. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  1146. }
  1147. /**
  1148. * e1000_free_tx_resources - Free Tx Resources
  1149. * @adapter: board private structure
  1150. *
  1151. * Free all transmit software resources
  1152. **/
  1153. void
  1154. e1000_free_tx_resources(struct e1000_adapter *adapter)
  1155. {
  1156. struct pci_dev *pdev = adapter->pdev;
  1157. e1000_clean_tx_ring(adapter);
  1158. vfree(adapter->tx_ring.buffer_info);
  1159. adapter->tx_ring.buffer_info = NULL;
  1160. pci_free_consistent(pdev, adapter->tx_ring.size,
  1161. adapter->tx_ring.desc, adapter->tx_ring.dma);
  1162. adapter->tx_ring.desc = NULL;
  1163. }
  1164. static inline void
  1165. e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
  1166. struct e1000_buffer *buffer_info)
  1167. {
  1168. if(buffer_info->dma) {
  1169. pci_unmap_page(adapter->pdev,
  1170. buffer_info->dma,
  1171. buffer_info->length,
  1172. PCI_DMA_TODEVICE);
  1173. buffer_info->dma = 0;
  1174. }
  1175. if(buffer_info->skb) {
  1176. dev_kfree_skb_any(buffer_info->skb);
  1177. buffer_info->skb = NULL;
  1178. }
  1179. }
  1180. /**
  1181. * e1000_clean_tx_ring - Free Tx Buffers
  1182. * @adapter: board private structure
  1183. **/
  1184. static void
  1185. e1000_clean_tx_ring(struct e1000_adapter *adapter)
  1186. {
  1187. struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
  1188. struct e1000_buffer *buffer_info;
  1189. unsigned long size;
  1190. unsigned int i;
  1191. /* Free all the Tx ring sk_buffs */
  1192. if (likely(adapter->previous_buffer_info.skb != NULL)) {
  1193. e1000_unmap_and_free_tx_resource(adapter,
  1194. &adapter->previous_buffer_info);
  1195. }
  1196. for(i = 0; i < tx_ring->count; i++) {
  1197. buffer_info = &tx_ring->buffer_info[i];
  1198. e1000_unmap_and_free_tx_resource(adapter, buffer_info);
  1199. }
  1200. size = sizeof(struct e1000_buffer) * tx_ring->count;
  1201. memset(tx_ring->buffer_info, 0, size);
  1202. /* Zero out the descriptor ring */
  1203. memset(tx_ring->desc, 0, tx_ring->size);
  1204. tx_ring->next_to_use = 0;
  1205. tx_ring->next_to_clean = 0;
  1206. E1000_WRITE_REG(&adapter->hw, TDH, 0);
  1207. E1000_WRITE_REG(&adapter->hw, TDT, 0);
  1208. }
  1209. /**
  1210. * e1000_free_rx_resources - Free Rx Resources
  1211. * @adapter: board private structure
  1212. *
  1213. * Free all receive software resources
  1214. **/
  1215. void
  1216. e1000_free_rx_resources(struct e1000_adapter *adapter)
  1217. {
  1218. struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
  1219. struct pci_dev *pdev = adapter->pdev;
  1220. e1000_clean_rx_ring(adapter);
  1221. vfree(rx_ring->buffer_info);
  1222. rx_ring->buffer_info = NULL;
  1223. kfree(rx_ring->ps_page);
  1224. rx_ring->ps_page = NULL;
  1225. kfree(rx_ring->ps_page_dma);
  1226. rx_ring->ps_page_dma = NULL;
  1227. pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
  1228. rx_ring->desc = NULL;
  1229. }
  1230. /**
  1231. * e1000_clean_rx_ring - Free Rx Buffers
  1232. * @adapter: board private structure
  1233. **/
  1234. static void
  1235. e1000_clean_rx_ring(struct e1000_adapter *adapter)
  1236. {
  1237. struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
  1238. struct e1000_buffer *buffer_info;
  1239. struct e1000_ps_page *ps_page;
  1240. struct e1000_ps_page_dma *ps_page_dma;
  1241. struct pci_dev *pdev = adapter->pdev;
  1242. unsigned long size;
  1243. unsigned int i, j;
  1244. /* Free all the Rx ring sk_buffs */
  1245. for(i = 0; i < rx_ring->count; i++) {
  1246. buffer_info = &rx_ring->buffer_info[i];
  1247. if(buffer_info->skb) {
  1248. ps_page = &rx_ring->ps_page[i];
  1249. ps_page_dma = &rx_ring->ps_page_dma[i];
  1250. pci_unmap_single(pdev,
  1251. buffer_info->dma,
  1252. buffer_info->length,
  1253. PCI_DMA_FROMDEVICE);
  1254. dev_kfree_skb(buffer_info->skb);
  1255. buffer_info->skb = NULL;
  1256. for(j = 0; j < PS_PAGE_BUFFERS; j++) {
  1257. if(!ps_page->ps_page[j]) break;
  1258. pci_unmap_single(pdev,
  1259. ps_page_dma->ps_page_dma[j],
  1260. PAGE_SIZE, PCI_DMA_FROMDEVICE);
  1261. ps_page_dma->ps_page_dma[j] = 0;
  1262. put_page(ps_page->ps_page[j]);
  1263. ps_page->ps_page[j] = NULL;
  1264. }
  1265. }
  1266. }
  1267. size = sizeof(struct e1000_buffer) * rx_ring->count;
  1268. memset(rx_ring->buffer_info, 0, size);
  1269. size = sizeof(struct e1000_ps_page) * rx_ring->count;
  1270. memset(rx_ring->ps_page, 0, size);
  1271. size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
  1272. memset(rx_ring->ps_page_dma, 0, size);
  1273. /* Zero out the descriptor ring */
  1274. memset(rx_ring->desc, 0, rx_ring->size);
  1275. rx_ring->next_to_clean = 0;
  1276. rx_ring->next_to_use = 0;
  1277. E1000_WRITE_REG(&adapter->hw, RDH, 0);
  1278. E1000_WRITE_REG(&adapter->hw, RDT, 0);
  1279. }
  1280. /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
  1281. * and memory write and invalidate disabled for certain operations
  1282. */
  1283. static void
  1284. e1000_enter_82542_rst(struct e1000_adapter *adapter)
  1285. {
  1286. struct net_device *netdev = adapter->netdev;
  1287. uint32_t rctl;
  1288. e1000_pci_clear_mwi(&adapter->hw);
  1289. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  1290. rctl |= E1000_RCTL_RST;
  1291. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  1292. E1000_WRITE_FLUSH(&adapter->hw);
  1293. mdelay(5);
  1294. if(netif_running(netdev))
  1295. e1000_clean_rx_ring(adapter);
  1296. }
  1297. static void
  1298. e1000_leave_82542_rst(struct e1000_adapter *adapter)
  1299. {
  1300. struct net_device *netdev = adapter->netdev;
  1301. uint32_t rctl;
  1302. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  1303. rctl &= ~E1000_RCTL_RST;
  1304. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  1305. E1000_WRITE_FLUSH(&adapter->hw);
  1306. mdelay(5);
  1307. if(adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
  1308. e1000_pci_set_mwi(&adapter->hw);
  1309. if(netif_running(netdev)) {
  1310. e1000_configure_rx(adapter);
  1311. e1000_alloc_rx_buffers(adapter);
  1312. }
  1313. }
  1314. /**
  1315. * e1000_set_mac - Change the Ethernet Address of the NIC
  1316. * @netdev: network interface device structure
  1317. * @p: pointer to an address structure
  1318. *
  1319. * Returns 0 on success, negative on failure
  1320. **/
  1321. static int
  1322. e1000_set_mac(struct net_device *netdev, void *p)
  1323. {
  1324. struct e1000_adapter *adapter = netdev_priv(netdev);
  1325. struct sockaddr *addr = p;
  1326. if(!is_valid_ether_addr(addr->sa_data))
  1327. return -EADDRNOTAVAIL;
  1328. /* 82542 2.0 needs to be in reset to write receive address registers */
  1329. if(adapter->hw.mac_type == e1000_82542_rev2_0)
  1330. e1000_enter_82542_rst(adapter);
  1331. memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
  1332. memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
  1333. e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
  1334. if(adapter->hw.mac_type == e1000_82542_rev2_0)
  1335. e1000_leave_82542_rst(adapter);
  1336. return 0;
  1337. }
  1338. /**
  1339. * e1000_set_multi - Multicast and Promiscuous mode set
  1340. * @netdev: network interface device structure
  1341. *
  1342. * The set_multi entry point is called whenever the multicast address
  1343. * list or the network interface flags are updated. This routine is
  1344. * responsible for configuring the hardware for proper multicast,
  1345. * promiscuous mode, and all-multi behavior.
  1346. **/
  1347. static void
  1348. e1000_set_multi(struct net_device *netdev)
  1349. {
  1350. struct e1000_adapter *adapter = netdev_priv(netdev);
  1351. struct e1000_hw *hw = &adapter->hw;
  1352. struct dev_mc_list *mc_ptr;
  1353. unsigned long flags;
  1354. uint32_t rctl;
  1355. uint32_t hash_value;
  1356. int i;
  1357. spin_lock_irqsave(&adapter->tx_lock, flags);
  1358. /* Check for Promiscuous and All Multicast modes */
  1359. rctl = E1000_READ_REG(hw, RCTL);
  1360. if(netdev->flags & IFF_PROMISC) {
  1361. rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
  1362. } else if(netdev->flags & IFF_ALLMULTI) {
  1363. rctl |= E1000_RCTL_MPE;
  1364. rctl &= ~E1000_RCTL_UPE;
  1365. } else {
  1366. rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
  1367. }
  1368. E1000_WRITE_REG(hw, RCTL, rctl);
  1369. /* 82542 2.0 needs to be in reset to write receive address registers */
  1370. if(hw->mac_type == e1000_82542_rev2_0)
  1371. e1000_enter_82542_rst(adapter);
  1372. /* load the first 14 multicast address into the exact filters 1-14
  1373. * RAR 0 is used for the station MAC adddress
  1374. * if there are not 14 addresses, go ahead and clear the filters
  1375. */
  1376. mc_ptr = netdev->mc_list;
  1377. for(i = 1; i < E1000_RAR_ENTRIES; i++) {
  1378. if(mc_ptr) {
  1379. e1000_rar_set(hw, mc_ptr->dmi_addr, i);
  1380. mc_ptr = mc_ptr->next;
  1381. } else {
  1382. E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
  1383. E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
  1384. }
  1385. }
  1386. /* clear the old settings from the multicast hash table */
  1387. for(i = 0; i < E1000_NUM_MTA_REGISTERS; i++)
  1388. E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
  1389. /* load any remaining addresses into the hash table */
  1390. for(; mc_ptr; mc_ptr = mc_ptr->next) {
  1391. hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
  1392. e1000_mta_set(hw, hash_value);
  1393. }
  1394. if(hw->mac_type == e1000_82542_rev2_0)
  1395. e1000_leave_82542_rst(adapter);
  1396. spin_unlock_irqrestore(&adapter->tx_lock, flags);
  1397. }
  1398. /* Need to wait a few seconds after link up to get diagnostic information from
  1399. * the phy */
  1400. static void
  1401. e1000_update_phy_info(unsigned long data)
  1402. {
  1403. struct e1000_adapter *adapter = (struct e1000_adapter *) data;
  1404. e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
  1405. }
  1406. /**
  1407. * e1000_82547_tx_fifo_stall - Timer Call-back
  1408. * @data: pointer to adapter cast into an unsigned long
  1409. **/
  1410. static void
  1411. e1000_82547_tx_fifo_stall(unsigned long data)
  1412. {
  1413. struct e1000_adapter *adapter = (struct e1000_adapter *) data;
  1414. struct net_device *netdev = adapter->netdev;
  1415. uint32_t tctl;
  1416. if(atomic_read(&adapter->tx_fifo_stall)) {
  1417. if((E1000_READ_REG(&adapter->hw, TDT) ==
  1418. E1000_READ_REG(&adapter->hw, TDH)) &&
  1419. (E1000_READ_REG(&adapter->hw, TDFT) ==
  1420. E1000_READ_REG(&adapter->hw, TDFH)) &&
  1421. (E1000_READ_REG(&adapter->hw, TDFTS) ==
  1422. E1000_READ_REG(&adapter->hw, TDFHS))) {
  1423. tctl = E1000_READ_REG(&adapter->hw, TCTL);
  1424. E1000_WRITE_REG(&adapter->hw, TCTL,
  1425. tctl & ~E1000_TCTL_EN);
  1426. E1000_WRITE_REG(&adapter->hw, TDFT,
  1427. adapter->tx_head_addr);
  1428. E1000_WRITE_REG(&adapter->hw, TDFH,
  1429. adapter->tx_head_addr);
  1430. E1000_WRITE_REG(&adapter->hw, TDFTS,
  1431. adapter->tx_head_addr);
  1432. E1000_WRITE_REG(&adapter->hw, TDFHS,
  1433. adapter->tx_head_addr);
  1434. E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
  1435. E1000_WRITE_FLUSH(&adapter->hw);
  1436. adapter->tx_fifo_head = 0;
  1437. atomic_set(&adapter->tx_fifo_stall, 0);
  1438. netif_wake_queue(netdev);
  1439. } else {
  1440. mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
  1441. }
  1442. }
  1443. }
  1444. /**
  1445. * e1000_watchdog - Timer Call-back
  1446. * @data: pointer to adapter cast into an unsigned long
  1447. **/
  1448. static void
  1449. e1000_watchdog(unsigned long data)
  1450. {
  1451. struct e1000_adapter *adapter = (struct e1000_adapter *) data;
  1452. /* Do the rest outside of interrupt context */
  1453. schedule_work(&adapter->watchdog_task);
  1454. }
  1455. static void
  1456. e1000_watchdog_task(struct e1000_adapter *adapter)
  1457. {
  1458. struct net_device *netdev = adapter->netdev;
  1459. struct e1000_desc_ring *txdr = &adapter->tx_ring;
  1460. uint32_t link;
  1461. e1000_check_for_link(&adapter->hw);
  1462. if (adapter->hw.mac_type == e1000_82573) {
  1463. e1000_enable_tx_pkt_filtering(&adapter->hw);
  1464. if(adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
  1465. e1000_update_mng_vlan(adapter);
  1466. }
  1467. if((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
  1468. !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
  1469. link = !adapter->hw.serdes_link_down;
  1470. else
  1471. link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
  1472. if(link) {
  1473. if(!netif_carrier_ok(netdev)) {
  1474. e1000_get_speed_and_duplex(&adapter->hw,
  1475. &adapter->link_speed,
  1476. &adapter->link_duplex);
  1477. DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
  1478. adapter->link_speed,
  1479. adapter->link_duplex == FULL_DUPLEX ?
  1480. "Full Duplex" : "Half Duplex");
  1481. netif_carrier_on(netdev);
  1482. netif_wake_queue(netdev);
  1483. mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
  1484. adapter->smartspeed = 0;
  1485. }
  1486. } else {
  1487. if(netif_carrier_ok(netdev)) {
  1488. adapter->link_speed = 0;
  1489. adapter->link_duplex = 0;
  1490. DPRINTK(LINK, INFO, "NIC Link is Down\n");
  1491. netif_carrier_off(netdev);
  1492. netif_stop_queue(netdev);
  1493. mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
  1494. }
  1495. e1000_smartspeed(adapter);
  1496. }
  1497. e1000_update_stats(adapter);
  1498. adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
  1499. adapter->tpt_old = adapter->stats.tpt;
  1500. adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
  1501. adapter->colc_old = adapter->stats.colc;
  1502. adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
  1503. adapter->gorcl_old = adapter->stats.gorcl;
  1504. adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
  1505. adapter->gotcl_old = adapter->stats.gotcl;
  1506. e1000_update_adaptive(&adapter->hw);
  1507. if(!netif_carrier_ok(netdev)) {
  1508. if(E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
  1509. /* We've lost link, so the controller stops DMA,
  1510. * but we've got queued Tx work that's never going
  1511. * to get done, so reset controller to flush Tx.
  1512. * (Do the reset outside of interrupt context). */
  1513. schedule_work(&adapter->tx_timeout_task);
  1514. }
  1515. }
  1516. /* Dynamic mode for Interrupt Throttle Rate (ITR) */
  1517. if(adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) {
  1518. /* Symmetric Tx/Rx gets a reduced ITR=2000; Total
  1519. * asymmetrical Tx or Rx gets ITR=8000; everyone
  1520. * else is between 2000-8000. */
  1521. uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000;
  1522. uint32_t dif = (adapter->gotcl > adapter->gorcl ?
  1523. adapter->gotcl - adapter->gorcl :
  1524. adapter->gorcl - adapter->gotcl) / 10000;
  1525. uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
  1526. E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256));
  1527. }
  1528. /* Cause software interrupt to ensure rx ring is cleaned */
  1529. E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
  1530. /* Force detection of hung controller every watchdog period */
  1531. adapter->detect_tx_hung = TRUE;
  1532. /* Reset the timer */
  1533. mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
  1534. }
  1535. #define E1000_TX_FLAGS_CSUM 0x00000001
  1536. #define E1000_TX_FLAGS_VLAN 0x00000002
  1537. #define E1000_TX_FLAGS_TSO 0x00000004
  1538. #define E1000_TX_FLAGS_IPV4 0x00000008
  1539. #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
  1540. #define E1000_TX_FLAGS_VLAN_SHIFT 16
  1541. static inline int
  1542. e1000_tso(struct e1000_adapter *adapter, struct sk_buff *skb)
  1543. {
  1544. #ifdef NETIF_F_TSO
  1545. struct e1000_context_desc *context_desc;
  1546. unsigned int i;
  1547. uint32_t cmd_length = 0;
  1548. uint16_t ipcse = 0, tucse, mss;
  1549. uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
  1550. int err;
  1551. if(skb_shinfo(skb)->tso_size) {
  1552. if (skb_header_cloned(skb)) {
  1553. err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
  1554. if (err)
  1555. return err;
  1556. }
  1557. hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
  1558. mss = skb_shinfo(skb)->tso_size;
  1559. if(skb->protocol == ntohs(ETH_P_IP)) {
  1560. skb->nh.iph->tot_len = 0;
  1561. skb->nh.iph->check = 0;
  1562. skb->h.th->check =
  1563. ~csum_tcpudp_magic(skb->nh.iph->saddr,
  1564. skb->nh.iph->daddr,
  1565. 0,
  1566. IPPROTO_TCP,
  1567. 0);
  1568. cmd_length = E1000_TXD_CMD_IP;
  1569. ipcse = skb->h.raw - skb->data - 1;
  1570. #ifdef NETIF_F_TSO_IPV6
  1571. } else if(skb->protocol == ntohs(ETH_P_IPV6)) {
  1572. skb->nh.ipv6h->payload_len = 0;
  1573. skb->h.th->check =
  1574. ~csum_ipv6_magic(&skb->nh.ipv6h->saddr,
  1575. &skb->nh.ipv6h->daddr,
  1576. 0,
  1577. IPPROTO_TCP,
  1578. 0);
  1579. ipcse = 0;
  1580. #endif
  1581. }
  1582. ipcss = skb->nh.raw - skb->data;
  1583. ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
  1584. tucss = skb->h.raw - skb->data;
  1585. tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
  1586. tucse = 0;
  1587. cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
  1588. E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
  1589. i = adapter->tx_ring.next_to_use;
  1590. context_desc = E1000_CONTEXT_DESC(adapter->tx_ring, i);
  1591. context_desc->lower_setup.ip_fields.ipcss = ipcss;
  1592. context_desc->lower_setup.ip_fields.ipcso = ipcso;
  1593. context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
  1594. context_desc->upper_setup.tcp_fields.tucss = tucss;
  1595. context_desc->upper_setup.tcp_fields.tucso = tucso;
  1596. context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
  1597. context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
  1598. context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
  1599. context_desc->cmd_and_length = cpu_to_le32(cmd_length);
  1600. if(++i == adapter->tx_ring.count) i = 0;
  1601. adapter->tx_ring.next_to_use = i;
  1602. return 1;
  1603. }
  1604. #endif
  1605. return 0;
  1606. }
  1607. static inline boolean_t
  1608. e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
  1609. {
  1610. struct e1000_context_desc *context_desc;
  1611. unsigned int i;
  1612. uint8_t css;
  1613. if(likely(skb->ip_summed == CHECKSUM_HW)) {
  1614. css = skb->h.raw - skb->data;
  1615. i = adapter->tx_ring.next_to_use;
  1616. context_desc = E1000_CONTEXT_DESC(adapter->tx_ring, i);
  1617. context_desc->upper_setup.tcp_fields.tucss = css;
  1618. context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
  1619. context_desc->upper_setup.tcp_fields.tucse = 0;
  1620. context_desc->tcp_seg_setup.data = 0;
  1621. context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
  1622. if(unlikely(++i == adapter->tx_ring.count)) i = 0;
  1623. adapter->tx_ring.next_to_use = i;
  1624. return TRUE;
  1625. }
  1626. return FALSE;
  1627. }
  1628. #define E1000_MAX_TXD_PWR 12
  1629. #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
  1630. static inline int
  1631. e1000_tx_map(struct e1000_adapter *adapter, struct sk_buff *skb,
  1632. unsigned int first, unsigned int max_per_txd,
  1633. unsigned int nr_frags, unsigned int mss)
  1634. {
  1635. struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
  1636. struct e1000_buffer *buffer_info;
  1637. unsigned int len = skb->len;
  1638. unsigned int offset = 0, size, count = 0, i;
  1639. unsigned int f;
  1640. len -= skb->data_len;
  1641. i = tx_ring->next_to_use;
  1642. while(len) {
  1643. buffer_info = &tx_ring->buffer_info[i];
  1644. size = min(len, max_per_txd);
  1645. #ifdef NETIF_F_TSO
  1646. /* Workaround for premature desc write-backs
  1647. * in TSO mode. Append 4-byte sentinel desc */
  1648. if(unlikely(mss && !nr_frags && size == len && size > 8))
  1649. size -= 4;
  1650. #endif
  1651. /* work-around for errata 10 and it applies
  1652. * to all controllers in PCI-X mode
  1653. * The fix is to make sure that the first descriptor of a
  1654. * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
  1655. */
  1656. if(unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
  1657. (size > 2015) && count == 0))
  1658. size = 2015;
  1659. /* Workaround for potential 82544 hang in PCI-X. Avoid
  1660. * terminating buffers within evenly-aligned dwords. */
  1661. if(unlikely(adapter->pcix_82544 &&
  1662. !((unsigned long)(skb->data + offset + size - 1) & 4) &&
  1663. size > 4))
  1664. size -= 4;
  1665. buffer_info->length = size;
  1666. buffer_info->dma =
  1667. pci_map_single(adapter->pdev,
  1668. skb->data + offset,
  1669. size,
  1670. PCI_DMA_TODEVICE);
  1671. buffer_info->time_stamp = jiffies;
  1672. len -= size;
  1673. offset += size;
  1674. count++;
  1675. if(unlikely(++i == tx_ring->count)) i = 0;
  1676. }
  1677. for(f = 0; f < nr_frags; f++) {
  1678. struct skb_frag_struct *frag;
  1679. frag = &skb_shinfo(skb)->frags[f];
  1680. len = frag->size;
  1681. offset = frag->page_offset;
  1682. while(len) {
  1683. buffer_info = &tx_ring->buffer_info[i];
  1684. size = min(len, max_per_txd);
  1685. #ifdef NETIF_F_TSO
  1686. /* Workaround for premature desc write-backs
  1687. * in TSO mode. Append 4-byte sentinel desc */
  1688. if(unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
  1689. size -= 4;
  1690. #endif
  1691. /* Workaround for potential 82544 hang in PCI-X.
  1692. * Avoid terminating buffers within evenly-aligned
  1693. * dwords. */
  1694. if(unlikely(adapter->pcix_82544 &&
  1695. !((unsigned long)(frag->page+offset+size-1) & 4) &&
  1696. size > 4))
  1697. size -= 4;
  1698. buffer_info->length = size;
  1699. buffer_info->dma =
  1700. pci_map_page(adapter->pdev,
  1701. frag->page,
  1702. offset,
  1703. size,
  1704. PCI_DMA_TODEVICE);
  1705. buffer_info->time_stamp = jiffies;
  1706. len -= size;
  1707. offset += size;
  1708. count++;
  1709. if(unlikely(++i == tx_ring->count)) i = 0;
  1710. }
  1711. }
  1712. i = (i == 0) ? tx_ring->count - 1 : i - 1;
  1713. tx_ring->buffer_info[i].skb = skb;
  1714. tx_ring->buffer_info[first].next_to_watch = i;
  1715. return count;
  1716. }
  1717. static inline void
  1718. e1000_tx_queue(struct e1000_adapter *adapter, int count, int tx_flags)
  1719. {
  1720. struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
  1721. struct e1000_tx_desc *tx_desc = NULL;
  1722. struct e1000_buffer *buffer_info;
  1723. uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
  1724. unsigned int i;
  1725. if(likely(tx_flags & E1000_TX_FLAGS_TSO)) {
  1726. txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
  1727. E1000_TXD_CMD_TSE;
  1728. txd_upper |= E1000_TXD_POPTS_TXSM << 8;
  1729. if(likely(tx_flags & E1000_TX_FLAGS_IPV4))
  1730. txd_upper |= E1000_TXD_POPTS_IXSM << 8;
  1731. }
  1732. if(likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
  1733. txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
  1734. txd_upper |= E1000_TXD_POPTS_TXSM << 8;
  1735. }
  1736. if(unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
  1737. txd_lower |= E1000_TXD_CMD_VLE;
  1738. txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
  1739. }
  1740. i = tx_ring->next_to_use;
  1741. while(count--) {
  1742. buffer_info = &tx_ring->buffer_info[i];
  1743. tx_desc = E1000_TX_DESC(*tx_ring, i);
  1744. tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
  1745. tx_desc->lower.data =
  1746. cpu_to_le32(txd_lower | buffer_info->length);
  1747. tx_desc->upper.data = cpu_to_le32(txd_upper);
  1748. if(unlikely(++i == tx_ring->count)) i = 0;
  1749. }
  1750. tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
  1751. /* Force memory writes to complete before letting h/w
  1752. * know there are new descriptors to fetch. (Only
  1753. * applicable for weak-ordered memory model archs,
  1754. * such as IA-64). */
  1755. wmb();
  1756. tx_ring->next_to_use = i;
  1757. E1000_WRITE_REG(&adapter->hw, TDT, i);
  1758. }
  1759. /**
  1760. * 82547 workaround to avoid controller hang in half-duplex environment.
  1761. * The workaround is to avoid queuing a large packet that would span
  1762. * the internal Tx FIFO ring boundary by notifying the stack to resend
  1763. * the packet at a later time. This gives the Tx FIFO an opportunity to
  1764. * flush all packets. When that occurs, we reset the Tx FIFO pointers
  1765. * to the beginning of the Tx FIFO.
  1766. **/
  1767. #define E1000_FIFO_HDR 0x10
  1768. #define E1000_82547_PAD_LEN 0x3E0
  1769. static inline int
  1770. e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
  1771. {
  1772. uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
  1773. uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
  1774. E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
  1775. if(adapter->link_duplex != HALF_DUPLEX)
  1776. goto no_fifo_stall_required;
  1777. if(atomic_read(&adapter->tx_fifo_stall))
  1778. return 1;
  1779. if(skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
  1780. atomic_set(&adapter->tx_fifo_stall, 1);
  1781. return 1;
  1782. }
  1783. no_fifo_stall_required:
  1784. adapter->tx_fifo_head += skb_fifo_len;
  1785. if(adapter->tx_fifo_head >= adapter->tx_fifo_size)
  1786. adapter->tx_fifo_head -= adapter->tx_fifo_size;
  1787. return 0;
  1788. }
  1789. #define MINIMUM_DHCP_PACKET_SIZE 282
  1790. static inline int
  1791. e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
  1792. {
  1793. struct e1000_hw *hw = &adapter->hw;
  1794. uint16_t length, offset;
  1795. if(vlan_tx_tag_present(skb)) {
  1796. if(!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
  1797. ( adapter->hw.mng_cookie.status &
  1798. E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
  1799. return 0;
  1800. }
  1801. if(htons(ETH_P_IP) == skb->protocol) {
  1802. const struct iphdr *ip = skb->nh.iph;
  1803. if(IPPROTO_UDP == ip->protocol) {
  1804. struct udphdr *udp = (struct udphdr *)(skb->h.uh);
  1805. if(ntohs(udp->dest) == 67) {
  1806. offset = (uint8_t *)udp + 8 - skb->data;
  1807. length = skb->len - offset;
  1808. return e1000_mng_write_dhcp_info(hw,
  1809. (uint8_t *)udp + 8, length);
  1810. }
  1811. }
  1812. } else if((skb->len > MINIMUM_DHCP_PACKET_SIZE) && (!skb->protocol)) {
  1813. struct ethhdr *eth = (struct ethhdr *) skb->data;
  1814. if((htons(ETH_P_IP) == eth->h_proto)) {
  1815. const struct iphdr *ip =
  1816. (struct iphdr *)((uint8_t *)skb->data+14);
  1817. if(IPPROTO_UDP == ip->protocol) {
  1818. struct udphdr *udp =
  1819. (struct udphdr *)((uint8_t *)ip +
  1820. (ip->ihl << 2));
  1821. if(ntohs(udp->dest) == 67) {
  1822. offset = (uint8_t *)udp + 8 - skb->data;
  1823. length = skb->len - offset;
  1824. return e1000_mng_write_dhcp_info(hw,
  1825. (uint8_t *)udp + 8,
  1826. length);
  1827. }
  1828. }
  1829. }
  1830. }
  1831. return 0;
  1832. }
  1833. #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
  1834. static int
  1835. e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
  1836. {
  1837. struct e1000_adapter *adapter = netdev_priv(netdev);
  1838. unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
  1839. unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
  1840. unsigned int tx_flags = 0;
  1841. unsigned int len = skb->len;
  1842. unsigned long flags;
  1843. unsigned int nr_frags = 0;
  1844. unsigned int mss = 0;
  1845. int count = 0;
  1846. int tso;
  1847. unsigned int f;
  1848. len -= skb->data_len;
  1849. if(unlikely(skb->len <= 0)) {
  1850. dev_kfree_skb_any(skb);
  1851. return NETDEV_TX_OK;
  1852. }
  1853. #ifdef NETIF_F_TSO
  1854. mss = skb_shinfo(skb)->tso_size;
  1855. /* The controller does a simple calculation to
  1856. * make sure there is enough room in the FIFO before
  1857. * initiating the DMA for each buffer. The calc is:
  1858. * 4 = ceil(buffer len/mss). To make sure we don't
  1859. * overrun the FIFO, adjust the max buffer len if mss
  1860. * drops. */
  1861. if(mss) {
  1862. max_per_txd = min(mss << 2, max_per_txd);
  1863. max_txd_pwr = fls(max_per_txd) - 1;
  1864. }
  1865. if((mss) || (skb->ip_summed == CHECKSUM_HW))
  1866. count++;
  1867. count++;
  1868. #else
  1869. if(skb->ip_summed == CHECKSUM_HW)
  1870. count++;
  1871. #endif
  1872. count += TXD_USE_COUNT(len, max_txd_pwr);
  1873. if(adapter->pcix_82544)
  1874. count++;
  1875. /* work-around for errata 10 and it applies to all controllers
  1876. * in PCI-X mode, so add one more descriptor to the count
  1877. */
  1878. if(unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
  1879. (len > 2015)))
  1880. count++;
  1881. nr_frags = skb_shinfo(skb)->nr_frags;
  1882. for(f = 0; f < nr_frags; f++)
  1883. count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
  1884. max_txd_pwr);
  1885. if(adapter->pcix_82544)
  1886. count += nr_frags;
  1887. local_irq_save(flags);
  1888. if (!spin_trylock(&adapter->tx_lock)) {
  1889. /* Collision - tell upper layer to requeue */
  1890. local_irq_restore(flags);
  1891. return NETDEV_TX_LOCKED;
  1892. }
  1893. if(adapter->hw.tx_pkt_filtering && (adapter->hw.mac_type == e1000_82573) )
  1894. e1000_transfer_dhcp_info(adapter, skb);
  1895. /* need: count + 2 desc gap to keep tail from touching
  1896. * head, otherwise try next time */
  1897. if(unlikely(E1000_DESC_UNUSED(&adapter->tx_ring) < count + 2)) {
  1898. netif_stop_queue(netdev);
  1899. spin_unlock_irqrestore(&adapter->tx_lock, flags);
  1900. return NETDEV_TX_BUSY;
  1901. }
  1902. if(unlikely(adapter->hw.mac_type == e1000_82547)) {
  1903. if(unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
  1904. netif_stop_queue(netdev);
  1905. mod_timer(&adapter->tx_fifo_stall_timer, jiffies);
  1906. spin_unlock_irqrestore(&adapter->tx_lock, flags);
  1907. return NETDEV_TX_BUSY;
  1908. }
  1909. }
  1910. if(unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
  1911. tx_flags |= E1000_TX_FLAGS_VLAN;
  1912. tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
  1913. }
  1914. first = adapter->tx_ring.next_to_use;
  1915. tso = e1000_tso(adapter, skb);
  1916. if (tso < 0) {
  1917. dev_kfree_skb_any(skb);
  1918. spin_unlock_irqrestore(&adapter->tx_lock, flags);
  1919. return NETDEV_TX_OK;
  1920. }
  1921. if (likely(tso))
  1922. tx_flags |= E1000_TX_FLAGS_TSO;
  1923. else if(likely(e1000_tx_csum(adapter, skb)))
  1924. tx_flags |= E1000_TX_FLAGS_CSUM;
  1925. /* Old method was to assume IPv4 packet by default if TSO was enabled.
  1926. * 82573 hardware supports TSO capabilities for IPv6 as well...
  1927. * no longer assume, we must. */
  1928. if(likely(skb->protocol == ntohs(ETH_P_IP)))
  1929. tx_flags |= E1000_TX_FLAGS_IPV4;
  1930. e1000_tx_queue(adapter,
  1931. e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss),
  1932. tx_flags);
  1933. netdev->trans_start = jiffies;
  1934. /* Make sure there is space in the ring for the next send. */
  1935. if(unlikely(E1000_DESC_UNUSED(&adapter->tx_ring) < MAX_SKB_FRAGS + 2))
  1936. netif_stop_queue(netdev);
  1937. spin_unlock_irqrestore(&adapter->tx_lock, flags);
  1938. return NETDEV_TX_OK;
  1939. }
  1940. /**
  1941. * e1000_tx_timeout - Respond to a Tx Hang
  1942. * @netdev: network interface device structure
  1943. **/
  1944. static void
  1945. e1000_tx_timeout(struct net_device *netdev)
  1946. {
  1947. struct e1000_adapter *adapter = netdev_priv(netdev);
  1948. /* Do the reset outside of interrupt context */
  1949. schedule_work(&adapter->tx_timeout_task);
  1950. }
  1951. static void
  1952. e1000_tx_timeout_task(struct net_device *netdev)
  1953. {
  1954. struct e1000_adapter *adapter = netdev_priv(netdev);
  1955. e1000_down(adapter);
  1956. e1000_up(adapter);
  1957. }
  1958. /**
  1959. * e1000_get_stats - Get System Network Statistics
  1960. * @netdev: network interface device structure
  1961. *
  1962. * Returns the address of the device statistics structure.
  1963. * The statistics are actually updated from the timer callback.
  1964. **/
  1965. static struct net_device_stats *
  1966. e1000_get_stats(struct net_device *netdev)
  1967. {
  1968. struct e1000_adapter *adapter = netdev_priv(netdev);
  1969. e1000_update_stats(adapter);
  1970. return &adapter->net_stats;
  1971. }
  1972. /**
  1973. * e1000_change_mtu - Change the Maximum Transfer Unit
  1974. * @netdev: network interface device structure
  1975. * @new_mtu: new value for maximum frame size
  1976. *
  1977. * Returns 0 on success, negative on failure
  1978. **/
  1979. static int
  1980. e1000_change_mtu(struct net_device *netdev, int new_mtu)
  1981. {
  1982. struct e1000_adapter *adapter = netdev_priv(netdev);
  1983. int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
  1984. if((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
  1985. (max_frame > MAX_JUMBO_FRAME_SIZE)) {
  1986. DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
  1987. return -EINVAL;
  1988. }
  1989. #define MAX_STD_JUMBO_FRAME_SIZE 9216
  1990. /* might want this to be bigger enum check... */
  1991. if (adapter->hw.mac_type == e1000_82573 &&
  1992. max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
  1993. DPRINTK(PROBE, ERR, "Jumbo Frames not supported "
  1994. "on 82573\n");
  1995. return -EINVAL;
  1996. }
  1997. if(adapter->hw.mac_type > e1000_82547_rev_2) {
  1998. adapter->rx_buffer_len = max_frame;
  1999. E1000_ROUNDUP(adapter->rx_buffer_len, 1024);
  2000. } else {
  2001. if(unlikely((adapter->hw.mac_type < e1000_82543) &&
  2002. (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE))) {
  2003. DPRINTK(PROBE, ERR, "Jumbo Frames not supported "
  2004. "on 82542\n");
  2005. return -EINVAL;
  2006. } else {
  2007. if(max_frame <= E1000_RXBUFFER_2048) {
  2008. adapter->rx_buffer_len = E1000_RXBUFFER_2048;
  2009. } else if(max_frame <= E1000_RXBUFFER_4096) {
  2010. adapter->rx_buffer_len = E1000_RXBUFFER_4096;
  2011. } else if(max_frame <= E1000_RXBUFFER_8192) {
  2012. adapter->rx_buffer_len = E1000_RXBUFFER_8192;
  2013. } else if(max_frame <= E1000_RXBUFFER_16384) {
  2014. adapter->rx_buffer_len = E1000_RXBUFFER_16384;
  2015. }
  2016. }
  2017. }
  2018. netdev->mtu = new_mtu;
  2019. if(netif_running(netdev)) {
  2020. e1000_down(adapter);
  2021. e1000_up(adapter);
  2022. }
  2023. adapter->hw.max_frame_size = max_frame;
  2024. return 0;
  2025. }
  2026. /**
  2027. * e1000_update_stats - Update the board statistics counters
  2028. * @adapter: board private structure
  2029. **/
  2030. void
  2031. e1000_update_stats(struct e1000_adapter *adapter)
  2032. {
  2033. struct e1000_hw *hw = &adapter->hw;
  2034. unsigned long flags;
  2035. uint16_t phy_tmp;
  2036. #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
  2037. spin_lock_irqsave(&adapter->stats_lock, flags);
  2038. /* these counters are modified from e1000_adjust_tbi_stats,
  2039. * called from the interrupt context, so they must only
  2040. * be written while holding adapter->stats_lock
  2041. */
  2042. adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
  2043. adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
  2044. adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
  2045. adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
  2046. adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
  2047. adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
  2048. adapter->stats.roc += E1000_READ_REG(hw, ROC);
  2049. adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
  2050. adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
  2051. adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
  2052. adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
  2053. adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
  2054. adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
  2055. adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
  2056. adapter->stats.mpc += E1000_READ_REG(hw, MPC);
  2057. adapter->stats.scc += E1000_READ_REG(hw, SCC);
  2058. adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
  2059. adapter->stats.mcc += E1000_READ_REG(hw, MCC);
  2060. adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
  2061. adapter->stats.dc += E1000_READ_REG(hw, DC);
  2062. adapter->stats.sec += E1000_READ_REG(hw, SEC);
  2063. adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
  2064. adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
  2065. adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
  2066. adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
  2067. adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
  2068. adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
  2069. adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
  2070. adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
  2071. adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
  2072. adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
  2073. adapter->stats.ruc += E1000_READ_REG(hw, RUC);
  2074. adapter->stats.rfc += E1000_READ_REG(hw, RFC);
  2075. adapter->stats.rjc += E1000_READ_REG(hw, RJC);
  2076. adapter->stats.torl += E1000_READ_REG(hw, TORL);
  2077. adapter->stats.torh += E1000_READ_REG(hw, TORH);
  2078. adapter->stats.totl += E1000_READ_REG(hw, TOTL);
  2079. adapter->stats.toth += E1000_READ_REG(hw, TOTH);
  2080. adapter->stats.tpr += E1000_READ_REG(hw, TPR);
  2081. adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
  2082. adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
  2083. adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
  2084. adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
  2085. adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
  2086. adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
  2087. adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
  2088. adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
  2089. /* used for adaptive IFS */
  2090. hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
  2091. adapter->stats.tpt += hw->tx_packet_delta;
  2092. hw->collision_delta = E1000_READ_REG(hw, COLC);
  2093. adapter->stats.colc += hw->collision_delta;
  2094. if(hw->mac_type >= e1000_82543) {
  2095. adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
  2096. adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
  2097. adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
  2098. adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
  2099. adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
  2100. adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
  2101. }
  2102. if(hw->mac_type > e1000_82547_rev_2) {
  2103. adapter->stats.iac += E1000_READ_REG(hw, IAC);
  2104. adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
  2105. adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
  2106. adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
  2107. adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
  2108. adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
  2109. adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
  2110. adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
  2111. adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
  2112. }
  2113. /* Fill out the OS statistics structure */
  2114. adapter->net_stats.rx_packets = adapter->stats.gprc;
  2115. adapter->net_stats.tx_packets = adapter->stats.gptc;
  2116. adapter->net_stats.rx_bytes = adapter->stats.gorcl;
  2117. adapter->net_stats.tx_bytes = adapter->stats.gotcl;
  2118. adapter->net_stats.multicast = adapter->stats.mprc;
  2119. adapter->net_stats.collisions = adapter->stats.colc;
  2120. /* Rx Errors */
  2121. adapter->net_stats.rx_errors = adapter->stats.rxerrc +
  2122. adapter->stats.crcerrs + adapter->stats.algnerrc +
  2123. adapter->stats.rlec + adapter->stats.mpc +
  2124. adapter->stats.cexterr;
  2125. adapter->net_stats.rx_dropped = adapter->stats.mpc;
  2126. adapter->net_stats.rx_length_errors = adapter->stats.rlec;
  2127. adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
  2128. adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
  2129. adapter->net_stats.rx_fifo_errors = adapter->stats.mpc;
  2130. adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
  2131. /* Tx Errors */
  2132. adapter->net_stats.tx_errors = adapter->stats.ecol +
  2133. adapter->stats.latecol;
  2134. adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
  2135. adapter->net_stats.tx_window_errors = adapter->stats.latecol;
  2136. adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
  2137. /* Tx Dropped needs to be maintained elsewhere */
  2138. /* Phy Stats */
  2139. if(hw->media_type == e1000_media_type_copper) {
  2140. if((adapter->link_speed == SPEED_1000) &&
  2141. (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
  2142. phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
  2143. adapter->phy_stats.idle_errors += phy_tmp;
  2144. }
  2145. if((hw->mac_type <= e1000_82546) &&
  2146. (hw->phy_type == e1000_phy_m88) &&
  2147. !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
  2148. adapter->phy_stats.receive_errors += phy_tmp;
  2149. }
  2150. spin_unlock_irqrestore(&adapter->stats_lock, flags);
  2151. }
  2152. /**
  2153. * e1000_intr - Interrupt Handler
  2154. * @irq: interrupt number
  2155. * @data: pointer to a network interface device structure
  2156. * @pt_regs: CPU registers structure
  2157. **/
  2158. static irqreturn_t
  2159. e1000_intr(int irq, void *data, struct pt_regs *regs)
  2160. {
  2161. struct net_device *netdev = data;
  2162. struct e1000_adapter *adapter = netdev_priv(netdev);
  2163. struct e1000_hw *hw = &adapter->hw;
  2164. uint32_t icr = E1000_READ_REG(hw, ICR);
  2165. #ifndef CONFIG_E1000_NAPI
  2166. unsigned int i;
  2167. #endif
  2168. if(unlikely(!icr))
  2169. return IRQ_NONE; /* Not our interrupt */
  2170. if(unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
  2171. hw->get_link_status = 1;
  2172. mod_timer(&adapter->watchdog_timer, jiffies);
  2173. }
  2174. #ifdef CONFIG_E1000_NAPI
  2175. if(likely(netif_rx_schedule_prep(netdev))) {
  2176. /* Disable interrupts and register for poll. The flush
  2177. of the posted write is intentionally left out.
  2178. */
  2179. atomic_inc(&adapter->irq_sem);
  2180. E1000_WRITE_REG(hw, IMC, ~0);
  2181. __netif_rx_schedule(netdev);
  2182. }
  2183. #else
  2184. /* Writing IMC and IMS is needed for 82547.
  2185. Due to Hub Link bus being occupied, an interrupt
  2186. de-assertion message is not able to be sent.
  2187. When an interrupt assertion message is generated later,
  2188. two messages are re-ordered and sent out.
  2189. That causes APIC to think 82547 is in de-assertion
  2190. state, while 82547 is in assertion state, resulting
  2191. in dead lock. Writing IMC forces 82547 into
  2192. de-assertion state.
  2193. */
  2194. if(hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2){
  2195. atomic_inc(&adapter->irq_sem);
  2196. E1000_WRITE_REG(hw, IMC, ~0);
  2197. }
  2198. for(i = 0; i < E1000_MAX_INTR; i++)
  2199. if(unlikely(!adapter->clean_rx(adapter) &
  2200. !e1000_clean_tx_irq(adapter)))
  2201. break;
  2202. if(hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
  2203. e1000_irq_enable(adapter);
  2204. #endif
  2205. return IRQ_HANDLED;
  2206. }
  2207. #ifdef CONFIG_E1000_NAPI
  2208. /**
  2209. * e1000_clean - NAPI Rx polling callback
  2210. * @adapter: board private structure
  2211. **/
  2212. static int
  2213. e1000_clean(struct net_device *netdev, int *budget)
  2214. {
  2215. struct e1000_adapter *adapter = netdev_priv(netdev);
  2216. int work_to_do = min(*budget, netdev->quota);
  2217. int tx_cleaned;
  2218. int work_done = 0;
  2219. tx_cleaned = e1000_clean_tx_irq(adapter);
  2220. adapter->clean_rx(adapter, &work_done, work_to_do);
  2221. *budget -= work_done;
  2222. netdev->quota -= work_done;
  2223. if ((!tx_cleaned && (work_done == 0)) || !netif_running(netdev)) {
  2224. /* If no Tx and not enough Rx work done, exit the polling mode */
  2225. netif_rx_complete(netdev);
  2226. e1000_irq_enable(adapter);
  2227. return 0;
  2228. }
  2229. return 1;
  2230. }
  2231. #endif
  2232. /**
  2233. * e1000_clean_tx_irq - Reclaim resources after transmit completes
  2234. * @adapter: board private structure
  2235. **/
  2236. static boolean_t
  2237. e1000_clean_tx_irq(struct e1000_adapter *adapter)
  2238. {
  2239. struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
  2240. struct net_device *netdev = adapter->netdev;
  2241. struct e1000_tx_desc *tx_desc, *eop_desc;
  2242. struct e1000_buffer *buffer_info;
  2243. unsigned int i, eop;
  2244. boolean_t cleaned = FALSE;
  2245. i = tx_ring->next_to_clean;
  2246. eop = tx_ring->buffer_info[i].next_to_watch;
  2247. eop_desc = E1000_TX_DESC(*tx_ring, eop);
  2248. while(eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
  2249. /* Premature writeback of Tx descriptors clear (free buffers
  2250. * and unmap pci_mapping) previous_buffer_info */
  2251. if (likely(adapter->previous_buffer_info.skb != NULL)) {
  2252. e1000_unmap_and_free_tx_resource(adapter,
  2253. &adapter->previous_buffer_info);
  2254. }
  2255. for(cleaned = FALSE; !cleaned; ) {
  2256. tx_desc = E1000_TX_DESC(*tx_ring, i);
  2257. buffer_info = &tx_ring->buffer_info[i];
  2258. cleaned = (i == eop);
  2259. #ifdef NETIF_F_TSO
  2260. if (!(netdev->features & NETIF_F_TSO)) {
  2261. #endif
  2262. e1000_unmap_and_free_tx_resource(adapter,
  2263. buffer_info);
  2264. #ifdef NETIF_F_TSO
  2265. } else {
  2266. if (cleaned) {
  2267. memcpy(&adapter->previous_buffer_info,
  2268. buffer_info,
  2269. sizeof(struct e1000_buffer));
  2270. memset(buffer_info, 0,
  2271. sizeof(struct e1000_buffer));
  2272. } else {
  2273. e1000_unmap_and_free_tx_resource(
  2274. adapter, buffer_info);
  2275. }
  2276. }
  2277. #endif
  2278. tx_desc->buffer_addr = 0;
  2279. tx_desc->lower.data = 0;
  2280. tx_desc->upper.data = 0;
  2281. if(unlikely(++i == tx_ring->count)) i = 0;
  2282. }
  2283. eop = tx_ring->buffer_info[i].next_to_watch;
  2284. eop_desc = E1000_TX_DESC(*tx_ring, eop);
  2285. }
  2286. tx_ring->next_to_clean = i;
  2287. spin_lock(&adapter->tx_lock);
  2288. if(unlikely(cleaned && netif_queue_stopped(netdev) &&
  2289. netif_carrier_ok(netdev)))
  2290. netif_wake_queue(netdev);
  2291. spin_unlock(&adapter->tx_lock);
  2292. if(adapter->detect_tx_hung) {
  2293. /* Detect a transmit hang in hardware, this serializes the
  2294. * check with the clearing of time_stamp and movement of i */
  2295. adapter->detect_tx_hung = FALSE;
  2296. if (tx_ring->buffer_info[i].dma &&
  2297. time_after(jiffies, tx_ring->buffer_info[i].time_stamp + HZ)
  2298. && !(E1000_READ_REG(&adapter->hw, STATUS) &
  2299. E1000_STATUS_TXOFF)) {
  2300. /* detected Tx unit hang */
  2301. i = tx_ring->next_to_clean;
  2302. eop = tx_ring->buffer_info[i].next_to_watch;
  2303. eop_desc = E1000_TX_DESC(*tx_ring, eop);
  2304. DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
  2305. " TDH <%x>\n"
  2306. " TDT <%x>\n"
  2307. " next_to_use <%x>\n"
  2308. " next_to_clean <%x>\n"
  2309. "buffer_info[next_to_clean]\n"
  2310. " dma <%llx>\n"
  2311. " time_stamp <%lx>\n"
  2312. " next_to_watch <%x>\n"
  2313. " jiffies <%lx>\n"
  2314. " next_to_watch.status <%x>\n",
  2315. E1000_READ_REG(&adapter->hw, TDH),
  2316. E1000_READ_REG(&adapter->hw, TDT),
  2317. tx_ring->next_to_use,
  2318. i,
  2319. (unsigned long long)tx_ring->buffer_info[i].dma,
  2320. tx_ring->buffer_info[i].time_stamp,
  2321. eop,
  2322. jiffies,
  2323. eop_desc->upper.fields.status);
  2324. netif_stop_queue(netdev);
  2325. }
  2326. }
  2327. #ifdef NETIF_F_TSO
  2328. if( unlikely(!(eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
  2329. time_after(jiffies, adapter->previous_buffer_info.time_stamp + HZ)))
  2330. e1000_unmap_and_free_tx_resource(
  2331. adapter, &adapter->previous_buffer_info);
  2332. #endif
  2333. return cleaned;
  2334. }
  2335. /**
  2336. * e1000_rx_checksum - Receive Checksum Offload for 82543
  2337. * @adapter: board private structure
  2338. * @status_err: receive descriptor status and error fields
  2339. * @csum: receive descriptor csum field
  2340. * @sk_buff: socket buffer with received data
  2341. **/
  2342. static inline void
  2343. e1000_rx_checksum(struct e1000_adapter *adapter,
  2344. uint32_t status_err, uint32_t csum,
  2345. struct sk_buff *skb)
  2346. {
  2347. uint16_t status = (uint16_t)status_err;
  2348. uint8_t errors = (uint8_t)(status_err >> 24);
  2349. skb->ip_summed = CHECKSUM_NONE;
  2350. /* 82543 or newer only */
  2351. if(unlikely(adapter->hw.mac_type < e1000_82543)) return;
  2352. /* Ignore Checksum bit is set */
  2353. if(unlikely(status & E1000_RXD_STAT_IXSM)) return;
  2354. /* TCP/UDP checksum error bit is set */
  2355. if(unlikely(errors & E1000_RXD_ERR_TCPE)) {
  2356. /* let the stack verify checksum errors */
  2357. adapter->hw_csum_err++;
  2358. return;
  2359. }
  2360. /* TCP/UDP Checksum has not been calculated */
  2361. if(adapter->hw.mac_type <= e1000_82547_rev_2) {
  2362. if(!(status & E1000_RXD_STAT_TCPCS))
  2363. return;
  2364. } else {
  2365. if(!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
  2366. return;
  2367. }
  2368. /* It must be a TCP or UDP packet with a valid checksum */
  2369. if (likely(status & E1000_RXD_STAT_TCPCS)) {
  2370. /* TCP checksum is good */
  2371. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2372. } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
  2373. /* IP fragment with UDP payload */
  2374. /* Hardware complements the payload checksum, so we undo it
  2375. * and then put the value in host order for further stack use.
  2376. */
  2377. csum = ntohl(csum ^ 0xFFFF);
  2378. skb->csum = csum;
  2379. skb->ip_summed = CHECKSUM_HW;
  2380. }
  2381. adapter->hw_csum_good++;
  2382. }
  2383. /**
  2384. * e1000_clean_rx_irq - Send received data up the network stack; legacy
  2385. * @adapter: board private structure
  2386. **/
  2387. static boolean_t
  2388. #ifdef CONFIG_E1000_NAPI
  2389. e1000_clean_rx_irq(struct e1000_adapter *adapter, int *work_done,
  2390. int work_to_do)
  2391. #else
  2392. e1000_clean_rx_irq(struct e1000_adapter *adapter)
  2393. #endif
  2394. {
  2395. struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
  2396. struct net_device *netdev = adapter->netdev;
  2397. struct pci_dev *pdev = adapter->pdev;
  2398. struct e1000_rx_desc *rx_desc;
  2399. struct e1000_buffer *buffer_info;
  2400. struct sk_buff *skb;
  2401. unsigned long flags;
  2402. uint32_t length;
  2403. uint8_t last_byte;
  2404. unsigned int i;
  2405. boolean_t cleaned = FALSE;
  2406. i = rx_ring->next_to_clean;
  2407. rx_desc = E1000_RX_DESC(*rx_ring, i);
  2408. while(rx_desc->status & E1000_RXD_STAT_DD) {
  2409. buffer_info = &rx_ring->buffer_info[i];
  2410. #ifdef CONFIG_E1000_NAPI
  2411. if(*work_done >= work_to_do)
  2412. break;
  2413. (*work_done)++;
  2414. #endif
  2415. cleaned = TRUE;
  2416. pci_unmap_single(pdev,
  2417. buffer_info->dma,
  2418. buffer_info->length,
  2419. PCI_DMA_FROMDEVICE);
  2420. skb = buffer_info->skb;
  2421. length = le16_to_cpu(rx_desc->length);
  2422. if(unlikely(!(rx_desc->status & E1000_RXD_STAT_EOP))) {
  2423. /* All receives must fit into a single buffer */
  2424. E1000_DBG("%s: Receive packet consumed multiple"
  2425. " buffers\n", netdev->name);
  2426. dev_kfree_skb_irq(skb);
  2427. goto next_desc;
  2428. }
  2429. if(unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
  2430. last_byte = *(skb->data + length - 1);
  2431. if(TBI_ACCEPT(&adapter->hw, rx_desc->status,
  2432. rx_desc->errors, length, last_byte)) {
  2433. spin_lock_irqsave(&adapter->stats_lock, flags);
  2434. e1000_tbi_adjust_stats(&adapter->hw,
  2435. &adapter->stats,
  2436. length, skb->data);
  2437. spin_unlock_irqrestore(&adapter->stats_lock,
  2438. flags);
  2439. length--;
  2440. } else {
  2441. dev_kfree_skb_irq(skb);
  2442. goto next_desc;
  2443. }
  2444. }
  2445. /* Good Receive */
  2446. skb_put(skb, length - ETHERNET_FCS_SIZE);
  2447. /* Receive Checksum Offload */
  2448. e1000_rx_checksum(adapter,
  2449. (uint32_t)(rx_desc->status) |
  2450. ((uint32_t)(rx_desc->errors) << 24),
  2451. rx_desc->csum, skb);
  2452. skb->protocol = eth_type_trans(skb, netdev);
  2453. #ifdef CONFIG_E1000_NAPI
  2454. if(unlikely(adapter->vlgrp &&
  2455. (rx_desc->status & E1000_RXD_STAT_VP))) {
  2456. vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
  2457. le16_to_cpu(rx_desc->special) &
  2458. E1000_RXD_SPC_VLAN_MASK);
  2459. } else {
  2460. netif_receive_skb(skb);
  2461. }
  2462. #else /* CONFIG_E1000_NAPI */
  2463. if(unlikely(adapter->vlgrp &&
  2464. (rx_desc->status & E1000_RXD_STAT_VP))) {
  2465. vlan_hwaccel_rx(skb, adapter->vlgrp,
  2466. le16_to_cpu(rx_desc->special) &
  2467. E1000_RXD_SPC_VLAN_MASK);
  2468. } else {
  2469. netif_rx(skb);
  2470. }
  2471. #endif /* CONFIG_E1000_NAPI */
  2472. netdev->last_rx = jiffies;
  2473. next_desc:
  2474. rx_desc->status = 0;
  2475. buffer_info->skb = NULL;
  2476. if(unlikely(++i == rx_ring->count)) i = 0;
  2477. rx_desc = E1000_RX_DESC(*rx_ring, i);
  2478. }
  2479. rx_ring->next_to_clean = i;
  2480. adapter->alloc_rx_buf(adapter);
  2481. return cleaned;
  2482. }
  2483. /**
  2484. * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
  2485. * @adapter: board private structure
  2486. **/
  2487. static boolean_t
  2488. #ifdef CONFIG_E1000_NAPI
  2489. e1000_clean_rx_irq_ps(struct e1000_adapter *adapter, int *work_done,
  2490. int work_to_do)
  2491. #else
  2492. e1000_clean_rx_irq_ps(struct e1000_adapter *adapter)
  2493. #endif
  2494. {
  2495. struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
  2496. union e1000_rx_desc_packet_split *rx_desc;
  2497. struct net_device *netdev = adapter->netdev;
  2498. struct pci_dev *pdev = adapter->pdev;
  2499. struct e1000_buffer *buffer_info;
  2500. struct e1000_ps_page *ps_page;
  2501. struct e1000_ps_page_dma *ps_page_dma;
  2502. struct sk_buff *skb;
  2503. unsigned int i, j;
  2504. uint32_t length, staterr;
  2505. boolean_t cleaned = FALSE;
  2506. i = rx_ring->next_to_clean;
  2507. rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
  2508. staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
  2509. while(staterr & E1000_RXD_STAT_DD) {
  2510. buffer_info = &rx_ring->buffer_info[i];
  2511. ps_page = &rx_ring->ps_page[i];
  2512. ps_page_dma = &rx_ring->ps_page_dma[i];
  2513. #ifdef CONFIG_E1000_NAPI
  2514. if(unlikely(*work_done >= work_to_do))
  2515. break;
  2516. (*work_done)++;
  2517. #endif
  2518. cleaned = TRUE;
  2519. pci_unmap_single(pdev, buffer_info->dma,
  2520. buffer_info->length,
  2521. PCI_DMA_FROMDEVICE);
  2522. skb = buffer_info->skb;
  2523. if(unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
  2524. E1000_DBG("%s: Packet Split buffers didn't pick up"
  2525. " the full packet\n", netdev->name);
  2526. dev_kfree_skb_irq(skb);
  2527. goto next_desc;
  2528. }
  2529. if(unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
  2530. dev_kfree_skb_irq(skb);
  2531. goto next_desc;
  2532. }
  2533. length = le16_to_cpu(rx_desc->wb.middle.length0);
  2534. if(unlikely(!length)) {
  2535. E1000_DBG("%s: Last part of the packet spanning"
  2536. " multiple descriptors\n", netdev->name);
  2537. dev_kfree_skb_irq(skb);
  2538. goto next_desc;
  2539. }
  2540. /* Good Receive */
  2541. skb_put(skb, length);
  2542. for(j = 0; j < PS_PAGE_BUFFERS; j++) {
  2543. if(!(length = le16_to_cpu(rx_desc->wb.upper.length[j])))
  2544. break;
  2545. pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
  2546. PAGE_SIZE, PCI_DMA_FROMDEVICE);
  2547. ps_page_dma->ps_page_dma[j] = 0;
  2548. skb_shinfo(skb)->frags[j].page =
  2549. ps_page->ps_page[j];
  2550. ps_page->ps_page[j] = NULL;
  2551. skb_shinfo(skb)->frags[j].page_offset = 0;
  2552. skb_shinfo(skb)->frags[j].size = length;
  2553. skb_shinfo(skb)->nr_frags++;
  2554. skb->len += length;
  2555. skb->data_len += length;
  2556. }
  2557. e1000_rx_checksum(adapter, staterr,
  2558. rx_desc->wb.lower.hi_dword.csum_ip.csum, skb);
  2559. skb->protocol = eth_type_trans(skb, netdev);
  2560. #ifdef HAVE_RX_ZERO_COPY
  2561. if(likely(rx_desc->wb.upper.header_status &
  2562. E1000_RXDPS_HDRSTAT_HDRSP))
  2563. skb_shinfo(skb)->zero_copy = TRUE;
  2564. #endif
  2565. #ifdef CONFIG_E1000_NAPI
  2566. if(unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
  2567. vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
  2568. le16_to_cpu(rx_desc->wb.middle.vlan) &
  2569. E1000_RXD_SPC_VLAN_MASK);
  2570. } else {
  2571. netif_receive_skb(skb);
  2572. }
  2573. #else /* CONFIG_E1000_NAPI */
  2574. if(unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
  2575. vlan_hwaccel_rx(skb, adapter->vlgrp,
  2576. le16_to_cpu(rx_desc->wb.middle.vlan) &
  2577. E1000_RXD_SPC_VLAN_MASK);
  2578. } else {
  2579. netif_rx(skb);
  2580. }
  2581. #endif /* CONFIG_E1000_NAPI */
  2582. netdev->last_rx = jiffies;
  2583. next_desc:
  2584. rx_desc->wb.middle.status_error &= ~0xFF;
  2585. buffer_info->skb = NULL;
  2586. if(unlikely(++i == rx_ring->count)) i = 0;
  2587. rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
  2588. staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
  2589. }
  2590. rx_ring->next_to_clean = i;
  2591. adapter->alloc_rx_buf(adapter);
  2592. return cleaned;
  2593. }
  2594. /**
  2595. * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
  2596. * @adapter: address of board private structure
  2597. **/
  2598. static void
  2599. e1000_alloc_rx_buffers(struct e1000_adapter *adapter)
  2600. {
  2601. struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
  2602. struct net_device *netdev = adapter->netdev;
  2603. struct pci_dev *pdev = adapter->pdev;
  2604. struct e1000_rx_desc *rx_desc;
  2605. struct e1000_buffer *buffer_info;
  2606. struct sk_buff *skb;
  2607. unsigned int i;
  2608. unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
  2609. i = rx_ring->next_to_use;
  2610. buffer_info = &rx_ring->buffer_info[i];
  2611. while(!buffer_info->skb) {
  2612. skb = dev_alloc_skb(bufsz);
  2613. if(unlikely(!skb)) {
  2614. /* Better luck next round */
  2615. break;
  2616. }
  2617. /* Fix for errata 23, can't cross 64kB boundary */
  2618. if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
  2619. struct sk_buff *oldskb = skb;
  2620. DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
  2621. "at %p\n", bufsz, skb->data);
  2622. /* Try again, without freeing the previous */
  2623. skb = dev_alloc_skb(bufsz);
  2624. /* Failed allocation, critical failure */
  2625. if (!skb) {
  2626. dev_kfree_skb(oldskb);
  2627. break;
  2628. }
  2629. if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
  2630. /* give up */
  2631. dev_kfree_skb(skb);
  2632. dev_kfree_skb(oldskb);
  2633. break; /* while !buffer_info->skb */
  2634. } else {
  2635. /* Use new allocation */
  2636. dev_kfree_skb(oldskb);
  2637. }
  2638. }
  2639. /* Make buffer alignment 2 beyond a 16 byte boundary
  2640. * this will result in a 16 byte aligned IP header after
  2641. * the 14 byte MAC header is removed
  2642. */
  2643. skb_reserve(skb, NET_IP_ALIGN);
  2644. skb->dev = netdev;
  2645. buffer_info->skb = skb;
  2646. buffer_info->length = adapter->rx_buffer_len;
  2647. buffer_info->dma = pci_map_single(pdev,
  2648. skb->data,
  2649. adapter->rx_buffer_len,
  2650. PCI_DMA_FROMDEVICE);
  2651. /* Fix for errata 23, can't cross 64kB boundary */
  2652. if (!e1000_check_64k_bound(adapter,
  2653. (void *)(unsigned long)buffer_info->dma,
  2654. adapter->rx_buffer_len)) {
  2655. DPRINTK(RX_ERR, ERR,
  2656. "dma align check failed: %u bytes at %p\n",
  2657. adapter->rx_buffer_len,
  2658. (void *)(unsigned long)buffer_info->dma);
  2659. dev_kfree_skb(skb);
  2660. buffer_info->skb = NULL;
  2661. pci_unmap_single(pdev, buffer_info->dma,
  2662. adapter->rx_buffer_len,
  2663. PCI_DMA_FROMDEVICE);
  2664. break; /* while !buffer_info->skb */
  2665. }
  2666. rx_desc = E1000_RX_DESC(*rx_ring, i);
  2667. rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
  2668. if(unlikely((i & ~(E1000_RX_BUFFER_WRITE - 1)) == i)) {
  2669. /* Force memory writes to complete before letting h/w
  2670. * know there are new descriptors to fetch. (Only
  2671. * applicable for weak-ordered memory model archs,
  2672. * such as IA-64). */
  2673. wmb();
  2674. E1000_WRITE_REG(&adapter->hw, RDT, i);
  2675. }
  2676. if(unlikely(++i == rx_ring->count)) i = 0;
  2677. buffer_info = &rx_ring->buffer_info[i];
  2678. }
  2679. rx_ring->next_to_use = i;
  2680. }
  2681. /**
  2682. * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
  2683. * @adapter: address of board private structure
  2684. **/
  2685. static void
  2686. e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter)
  2687. {
  2688. struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
  2689. struct net_device *netdev = adapter->netdev;
  2690. struct pci_dev *pdev = adapter->pdev;
  2691. union e1000_rx_desc_packet_split *rx_desc;
  2692. struct e1000_buffer *buffer_info;
  2693. struct e1000_ps_page *ps_page;
  2694. struct e1000_ps_page_dma *ps_page_dma;
  2695. struct sk_buff *skb;
  2696. unsigned int i, j;
  2697. i = rx_ring->next_to_use;
  2698. buffer_info = &rx_ring->buffer_info[i];
  2699. ps_page = &rx_ring->ps_page[i];
  2700. ps_page_dma = &rx_ring->ps_page_dma[i];
  2701. while(!buffer_info->skb) {
  2702. rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
  2703. for(j = 0; j < PS_PAGE_BUFFERS; j++) {
  2704. if(unlikely(!ps_page->ps_page[j])) {
  2705. ps_page->ps_page[j] =
  2706. alloc_page(GFP_ATOMIC);
  2707. if(unlikely(!ps_page->ps_page[j]))
  2708. goto no_buffers;
  2709. ps_page_dma->ps_page_dma[j] =
  2710. pci_map_page(pdev,
  2711. ps_page->ps_page[j],
  2712. 0, PAGE_SIZE,
  2713. PCI_DMA_FROMDEVICE);
  2714. }
  2715. /* Refresh the desc even if buffer_addrs didn't
  2716. * change because each write-back erases this info.
  2717. */
  2718. rx_desc->read.buffer_addr[j+1] =
  2719. cpu_to_le64(ps_page_dma->ps_page_dma[j]);
  2720. }
  2721. skb = dev_alloc_skb(adapter->rx_ps_bsize0 + NET_IP_ALIGN);
  2722. if(unlikely(!skb))
  2723. break;
  2724. /* Make buffer alignment 2 beyond a 16 byte boundary
  2725. * this will result in a 16 byte aligned IP header after
  2726. * the 14 byte MAC header is removed
  2727. */
  2728. skb_reserve(skb, NET_IP_ALIGN);
  2729. skb->dev = netdev;
  2730. buffer_info->skb = skb;
  2731. buffer_info->length = adapter->rx_ps_bsize0;
  2732. buffer_info->dma = pci_map_single(pdev, skb->data,
  2733. adapter->rx_ps_bsize0,
  2734. PCI_DMA_FROMDEVICE);
  2735. rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
  2736. if(unlikely((i & ~(E1000_RX_BUFFER_WRITE - 1)) == i)) {
  2737. /* Force memory writes to complete before letting h/w
  2738. * know there are new descriptors to fetch. (Only
  2739. * applicable for weak-ordered memory model archs,
  2740. * such as IA-64). */
  2741. wmb();
  2742. /* Hardware increments by 16 bytes, but packet split
  2743. * descriptors are 32 bytes...so we increment tail
  2744. * twice as much.
  2745. */
  2746. E1000_WRITE_REG(&adapter->hw, RDT, i<<1);
  2747. }
  2748. if(unlikely(++i == rx_ring->count)) i = 0;
  2749. buffer_info = &rx_ring->buffer_info[i];
  2750. ps_page = &rx_ring->ps_page[i];
  2751. ps_page_dma = &rx_ring->ps_page_dma[i];
  2752. }
  2753. no_buffers:
  2754. rx_ring->next_to_use = i;
  2755. }
  2756. /**
  2757. * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
  2758. * @adapter:
  2759. **/
  2760. static void
  2761. e1000_smartspeed(struct e1000_adapter *adapter)
  2762. {
  2763. uint16_t phy_status;
  2764. uint16_t phy_ctrl;
  2765. if((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
  2766. !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
  2767. return;
  2768. if(adapter->smartspeed == 0) {
  2769. /* If Master/Slave config fault is asserted twice,
  2770. * we assume back-to-back */
  2771. e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
  2772. if(!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
  2773. e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
  2774. if(!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
  2775. e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
  2776. if(phy_ctrl & CR_1000T_MS_ENABLE) {
  2777. phy_ctrl &= ~CR_1000T_MS_ENABLE;
  2778. e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
  2779. phy_ctrl);
  2780. adapter->smartspeed++;
  2781. if(!e1000_phy_setup_autoneg(&adapter->hw) &&
  2782. !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
  2783. &phy_ctrl)) {
  2784. phy_ctrl |= (MII_CR_AUTO_NEG_EN |
  2785. MII_CR_RESTART_AUTO_NEG);
  2786. e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
  2787. phy_ctrl);
  2788. }
  2789. }
  2790. return;
  2791. } else if(adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
  2792. /* If still no link, perhaps using 2/3 pair cable */
  2793. e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
  2794. phy_ctrl |= CR_1000T_MS_ENABLE;
  2795. e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
  2796. if(!e1000_phy_setup_autoneg(&adapter->hw) &&
  2797. !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
  2798. phy_ctrl |= (MII_CR_AUTO_NEG_EN |
  2799. MII_CR_RESTART_AUTO_NEG);
  2800. e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
  2801. }
  2802. }
  2803. /* Restart process after E1000_SMARTSPEED_MAX iterations */
  2804. if(adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
  2805. adapter->smartspeed = 0;
  2806. }
  2807. /**
  2808. * e1000_ioctl -
  2809. * @netdev:
  2810. * @ifreq:
  2811. * @cmd:
  2812. **/
  2813. static int
  2814. e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
  2815. {
  2816. switch (cmd) {
  2817. case SIOCGMIIPHY:
  2818. case SIOCGMIIREG:
  2819. case SIOCSMIIREG:
  2820. return e1000_mii_ioctl(netdev, ifr, cmd);
  2821. default:
  2822. return -EOPNOTSUPP;
  2823. }
  2824. }
  2825. /**
  2826. * e1000_mii_ioctl -
  2827. * @netdev:
  2828. * @ifreq:
  2829. * @cmd:
  2830. **/
  2831. static int
  2832. e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
  2833. {
  2834. struct e1000_adapter *adapter = netdev_priv(netdev);
  2835. struct mii_ioctl_data *data = if_mii(ifr);
  2836. int retval;
  2837. uint16_t mii_reg;
  2838. uint16_t spddplx;
  2839. unsigned long flags;
  2840. if(adapter->hw.media_type != e1000_media_type_copper)
  2841. return -EOPNOTSUPP;
  2842. switch (cmd) {
  2843. case SIOCGMIIPHY:
  2844. data->phy_id = adapter->hw.phy_addr;
  2845. break;
  2846. case SIOCGMIIREG:
  2847. if(!capable(CAP_NET_ADMIN))
  2848. return -EPERM;
  2849. spin_lock_irqsave(&adapter->stats_lock, flags);
  2850. if(e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
  2851. &data->val_out)) {
  2852. spin_unlock_irqrestore(&adapter->stats_lock, flags);
  2853. return -EIO;
  2854. }
  2855. spin_unlock_irqrestore(&adapter->stats_lock, flags);
  2856. break;
  2857. case SIOCSMIIREG:
  2858. if(!capable(CAP_NET_ADMIN))
  2859. return -EPERM;
  2860. if(data->reg_num & ~(0x1F))
  2861. return -EFAULT;
  2862. mii_reg = data->val_in;
  2863. spin_lock_irqsave(&adapter->stats_lock, flags);
  2864. if(e1000_write_phy_reg(&adapter->hw, data->reg_num,
  2865. mii_reg)) {
  2866. spin_unlock_irqrestore(&adapter->stats_lock, flags);
  2867. return -EIO;
  2868. }
  2869. if(adapter->hw.phy_type == e1000_phy_m88) {
  2870. switch (data->reg_num) {
  2871. case PHY_CTRL:
  2872. if(mii_reg & MII_CR_POWER_DOWN)
  2873. break;
  2874. if(mii_reg & MII_CR_AUTO_NEG_EN) {
  2875. adapter->hw.autoneg = 1;
  2876. adapter->hw.autoneg_advertised = 0x2F;
  2877. } else {
  2878. if (mii_reg & 0x40)
  2879. spddplx = SPEED_1000;
  2880. else if (mii_reg & 0x2000)
  2881. spddplx = SPEED_100;
  2882. else
  2883. spddplx = SPEED_10;
  2884. spddplx += (mii_reg & 0x100)
  2885. ? FULL_DUPLEX :
  2886. HALF_DUPLEX;
  2887. retval = e1000_set_spd_dplx(adapter,
  2888. spddplx);
  2889. if(retval) {
  2890. spin_unlock_irqrestore(
  2891. &adapter->stats_lock,
  2892. flags);
  2893. return retval;
  2894. }
  2895. }
  2896. if(netif_running(adapter->netdev)) {
  2897. e1000_down(adapter);
  2898. e1000_up(adapter);
  2899. } else
  2900. e1000_reset(adapter);
  2901. break;
  2902. case M88E1000_PHY_SPEC_CTRL:
  2903. case M88E1000_EXT_PHY_SPEC_CTRL:
  2904. if(e1000_phy_reset(&adapter->hw)) {
  2905. spin_unlock_irqrestore(
  2906. &adapter->stats_lock, flags);
  2907. return -EIO;
  2908. }
  2909. break;
  2910. }
  2911. } else {
  2912. switch (data->reg_num) {
  2913. case PHY_CTRL:
  2914. if(mii_reg & MII_CR_POWER_DOWN)
  2915. break;
  2916. if(netif_running(adapter->netdev)) {
  2917. e1000_down(adapter);
  2918. e1000_up(adapter);
  2919. } else
  2920. e1000_reset(adapter);
  2921. break;
  2922. }
  2923. }
  2924. spin_unlock_irqrestore(&adapter->stats_lock, flags);
  2925. break;
  2926. default:
  2927. return -EOPNOTSUPP;
  2928. }
  2929. return E1000_SUCCESS;
  2930. }
  2931. void
  2932. e1000_pci_set_mwi(struct e1000_hw *hw)
  2933. {
  2934. struct e1000_adapter *adapter = hw->back;
  2935. int ret_val = pci_set_mwi(adapter->pdev);
  2936. if(ret_val)
  2937. DPRINTK(PROBE, ERR, "Error in setting MWI\n");
  2938. }
  2939. void
  2940. e1000_pci_clear_mwi(struct e1000_hw *hw)
  2941. {
  2942. struct e1000_adapter *adapter = hw->back;
  2943. pci_clear_mwi(adapter->pdev);
  2944. }
  2945. void
  2946. e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
  2947. {
  2948. struct e1000_adapter *adapter = hw->back;
  2949. pci_read_config_word(adapter->pdev, reg, value);
  2950. }
  2951. void
  2952. e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
  2953. {
  2954. struct e1000_adapter *adapter = hw->back;
  2955. pci_write_config_word(adapter->pdev, reg, *value);
  2956. }
  2957. uint32_t
  2958. e1000_io_read(struct e1000_hw *hw, unsigned long port)
  2959. {
  2960. return inl(port);
  2961. }
  2962. void
  2963. e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
  2964. {
  2965. outl(value, port);
  2966. }
  2967. static void
  2968. e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
  2969. {
  2970. struct e1000_adapter *adapter = netdev_priv(netdev);
  2971. uint32_t ctrl, rctl;
  2972. e1000_irq_disable(adapter);
  2973. adapter->vlgrp = grp;
  2974. if(grp) {
  2975. /* enable VLAN tag insert/strip */
  2976. ctrl = E1000_READ_REG(&adapter->hw, CTRL);
  2977. ctrl |= E1000_CTRL_VME;
  2978. E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
  2979. /* enable VLAN receive filtering */
  2980. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  2981. rctl |= E1000_RCTL_VFE;
  2982. rctl &= ~E1000_RCTL_CFIEN;
  2983. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  2984. e1000_update_mng_vlan(adapter);
  2985. } else {
  2986. /* disable VLAN tag insert/strip */
  2987. ctrl = E1000_READ_REG(&adapter->hw, CTRL);
  2988. ctrl &= ~E1000_CTRL_VME;
  2989. E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
  2990. /* disable VLAN filtering */
  2991. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  2992. rctl &= ~E1000_RCTL_VFE;
  2993. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  2994. if(adapter->mng_vlan_id != (uint16_t)E1000_MNG_VLAN_NONE) {
  2995. e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
  2996. adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
  2997. }
  2998. }
  2999. e1000_irq_enable(adapter);
  3000. }
  3001. static void
  3002. e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
  3003. {
  3004. struct e1000_adapter *adapter = netdev_priv(netdev);
  3005. uint32_t vfta, index;
  3006. if((adapter->hw.mng_cookie.status &
  3007. E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
  3008. (vid == adapter->mng_vlan_id))
  3009. return;
  3010. /* add VID to filter table */
  3011. index = (vid >> 5) & 0x7F;
  3012. vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
  3013. vfta |= (1 << (vid & 0x1F));
  3014. e1000_write_vfta(&adapter->hw, index, vfta);
  3015. }
  3016. static void
  3017. e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
  3018. {
  3019. struct e1000_adapter *adapter = netdev_priv(netdev);
  3020. uint32_t vfta, index;
  3021. e1000_irq_disable(adapter);
  3022. if(adapter->vlgrp)
  3023. adapter->vlgrp->vlan_devices[vid] = NULL;
  3024. e1000_irq_enable(adapter);
  3025. if((adapter->hw.mng_cookie.status &
  3026. E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
  3027. (vid == adapter->mng_vlan_id))
  3028. return;
  3029. /* remove VID from filter table */
  3030. index = (vid >> 5) & 0x7F;
  3031. vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
  3032. vfta &= ~(1 << (vid & 0x1F));
  3033. e1000_write_vfta(&adapter->hw, index, vfta);
  3034. }
  3035. static void
  3036. e1000_restore_vlan(struct e1000_adapter *adapter)
  3037. {
  3038. e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
  3039. if(adapter->vlgrp) {
  3040. uint16_t vid;
  3041. for(vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
  3042. if(!adapter->vlgrp->vlan_devices[vid])
  3043. continue;
  3044. e1000_vlan_rx_add_vid(adapter->netdev, vid);
  3045. }
  3046. }
  3047. }
  3048. int
  3049. e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
  3050. {
  3051. adapter->hw.autoneg = 0;
  3052. /* Fiber NICs only allow 1000 gbps Full duplex */
  3053. if((adapter->hw.media_type == e1000_media_type_fiber) &&
  3054. spddplx != (SPEED_1000 + DUPLEX_FULL)) {
  3055. DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
  3056. return -EINVAL;
  3057. }
  3058. switch(spddplx) {
  3059. case SPEED_10 + DUPLEX_HALF:
  3060. adapter->hw.forced_speed_duplex = e1000_10_half;
  3061. break;
  3062. case SPEED_10 + DUPLEX_FULL:
  3063. adapter->hw.forced_speed_duplex = e1000_10_full;
  3064. break;
  3065. case SPEED_100 + DUPLEX_HALF:
  3066. adapter->hw.forced_speed_duplex = e1000_100_half;
  3067. break;
  3068. case SPEED_100 + DUPLEX_FULL:
  3069. adapter->hw.forced_speed_duplex = e1000_100_full;
  3070. break;
  3071. case SPEED_1000 + DUPLEX_FULL:
  3072. adapter->hw.autoneg = 1;
  3073. adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
  3074. break;
  3075. case SPEED_1000 + DUPLEX_HALF: /* not supported */
  3076. default:
  3077. DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
  3078. return -EINVAL;
  3079. }
  3080. return 0;
  3081. }
  3082. static int
  3083. e1000_suspend(struct pci_dev *pdev, pm_message_t state)
  3084. {
  3085. struct net_device *netdev = pci_get_drvdata(pdev);
  3086. struct e1000_adapter *adapter = netdev_priv(netdev);
  3087. uint32_t ctrl, ctrl_ext, rctl, manc, status, swsm;
  3088. uint32_t wufc = adapter->wol;
  3089. netif_device_detach(netdev);
  3090. if(netif_running(netdev))
  3091. e1000_down(adapter);
  3092. status = E1000_READ_REG(&adapter->hw, STATUS);
  3093. if(status & E1000_STATUS_LU)
  3094. wufc &= ~E1000_WUFC_LNKC;
  3095. if(wufc) {
  3096. e1000_setup_rctl(adapter);
  3097. e1000_set_multi(netdev);
  3098. /* turn on all-multi mode if wake on multicast is enabled */
  3099. if(adapter->wol & E1000_WUFC_MC) {
  3100. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  3101. rctl |= E1000_RCTL_MPE;
  3102. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  3103. }
  3104. if(adapter->hw.mac_type >= e1000_82540) {
  3105. ctrl = E1000_READ_REG(&adapter->hw, CTRL);
  3106. /* advertise wake from D3Cold */
  3107. #define E1000_CTRL_ADVD3WUC 0x00100000
  3108. /* phy power management enable */
  3109. #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
  3110. ctrl |= E1000_CTRL_ADVD3WUC |
  3111. E1000_CTRL_EN_PHY_PWR_MGMT;
  3112. E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
  3113. }
  3114. if(adapter->hw.media_type == e1000_media_type_fiber ||
  3115. adapter->hw.media_type == e1000_media_type_internal_serdes) {
  3116. /* keep the laser running in D3 */
  3117. ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
  3118. ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
  3119. E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
  3120. }
  3121. /* Allow time for pending master requests to run */
  3122. e1000_disable_pciex_master(&adapter->hw);
  3123. E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
  3124. E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
  3125. pci_enable_wake(pdev, 3, 1);
  3126. pci_enable_wake(pdev, 4, 1); /* 4 == D3 cold */
  3127. } else {
  3128. E1000_WRITE_REG(&adapter->hw, WUC, 0);
  3129. E1000_WRITE_REG(&adapter->hw, WUFC, 0);
  3130. pci_enable_wake(pdev, 3, 0);
  3131. pci_enable_wake(pdev, 4, 0); /* 4 == D3 cold */
  3132. }
  3133. pci_save_state(pdev);
  3134. if(adapter->hw.mac_type >= e1000_82540 &&
  3135. adapter->hw.media_type == e1000_media_type_copper) {
  3136. manc = E1000_READ_REG(&adapter->hw, MANC);
  3137. if(manc & E1000_MANC_SMBUS_EN) {
  3138. manc |= E1000_MANC_ARP_EN;
  3139. E1000_WRITE_REG(&adapter->hw, MANC, manc);
  3140. pci_enable_wake(pdev, 3, 1);
  3141. pci_enable_wake(pdev, 4, 1); /* 4 == D3 cold */
  3142. }
  3143. }
  3144. switch(adapter->hw.mac_type) {
  3145. case e1000_82573:
  3146. swsm = E1000_READ_REG(&adapter->hw, SWSM);
  3147. E1000_WRITE_REG(&adapter->hw, SWSM,
  3148. swsm & ~E1000_SWSM_DRV_LOAD);
  3149. break;
  3150. default:
  3151. break;
  3152. }
  3153. pci_disable_device(pdev);
  3154. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  3155. return 0;
  3156. }
  3157. #ifdef CONFIG_PM
  3158. static int
  3159. e1000_resume(struct pci_dev *pdev)
  3160. {
  3161. struct net_device *netdev = pci_get_drvdata(pdev);
  3162. struct e1000_adapter *adapter = netdev_priv(netdev);
  3163. uint32_t manc, ret_val, swsm;
  3164. pci_set_power_state(pdev, PCI_D0);
  3165. pci_restore_state(pdev);
  3166. ret_val = pci_enable_device(pdev);
  3167. pci_set_master(pdev);
  3168. pci_enable_wake(pdev, PCI_D3hot, 0);
  3169. pci_enable_wake(pdev, PCI_D3cold, 0);
  3170. e1000_reset(adapter);
  3171. E1000_WRITE_REG(&adapter->hw, WUS, ~0);
  3172. if(netif_running(netdev))
  3173. e1000_up(adapter);
  3174. netif_device_attach(netdev);
  3175. if(adapter->hw.mac_type >= e1000_82540 &&
  3176. adapter->hw.media_type == e1000_media_type_copper) {
  3177. manc = E1000_READ_REG(&adapter->hw, MANC);
  3178. manc &= ~(E1000_MANC_ARP_EN);
  3179. E1000_WRITE_REG(&adapter->hw, MANC, manc);
  3180. }
  3181. switch(adapter->hw.mac_type) {
  3182. case e1000_82573:
  3183. swsm = E1000_READ_REG(&adapter->hw, SWSM);
  3184. E1000_WRITE_REG(&adapter->hw, SWSM,
  3185. swsm | E1000_SWSM_DRV_LOAD);
  3186. break;
  3187. default:
  3188. break;
  3189. }
  3190. return 0;
  3191. }
  3192. #endif
  3193. #ifdef CONFIG_NET_POLL_CONTROLLER
  3194. /*
  3195. * Polling 'interrupt' - used by things like netconsole to send skbs
  3196. * without having to re-enable interrupts. It's not called while
  3197. * the interrupt routine is executing.
  3198. */
  3199. static void
  3200. e1000_netpoll(struct net_device *netdev)
  3201. {
  3202. struct e1000_adapter *adapter = netdev_priv(netdev);
  3203. disable_irq(adapter->pdev->irq);
  3204. e1000_intr(adapter->pdev->irq, netdev, NULL);
  3205. e1000_clean_tx_irq(adapter);
  3206. enable_irq(adapter->pdev->irq);
  3207. }
  3208. #endif
  3209. /* e1000_main.c */