hfc_pci.c 53 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747
  1. /* $Id: hfc_pci.c,v 1.48.2.4 2004/02/11 13:21:33 keil Exp $
  2. *
  3. * low level driver for CCD´s hfc-pci based cards
  4. *
  5. * Author Werner Cornelius
  6. * based on existing driver for CCD hfc ISA cards
  7. * Copyright by Werner Cornelius <werner@isdn4linux.de>
  8. * by Karsten Keil <keil@isdn4linux.de>
  9. *
  10. * This software may be used and distributed according to the terms
  11. * of the GNU General Public License, incorporated herein by reference.
  12. *
  13. * For changes and modifications please read
  14. * Documentation/isdn/HiSax.cert
  15. *
  16. */
  17. #include <linux/init.h>
  18. #include <linux/config.h>
  19. #include "hisax.h"
  20. #include "hfc_pci.h"
  21. #include "isdnl1.h"
  22. #include <linux/pci.h>
  23. #include <linux/interrupt.h>
  24. extern const char *CardType[];
  25. static const char *hfcpci_revision = "$Revision: 1.48.2.4 $";
  26. /* table entry in the PCI devices list */
  27. typedef struct {
  28. int vendor_id;
  29. int device_id;
  30. char *vendor_name;
  31. char *card_name;
  32. } PCI_ENTRY;
  33. #define NT_T1_COUNT 20 /* number of 3.125ms interrupts for G2 timeout */
  34. #define CLKDEL_TE 0x0e /* CLKDEL in TE mode */
  35. #define CLKDEL_NT 0x6c /* CLKDEL in NT mode */
  36. static const PCI_ENTRY id_list[] =
  37. {
  38. {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_2BD0, "CCD/Billion/Asuscom", "2BD0"},
  39. {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B000, "Billion", "B000"},
  40. {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B006, "Billion", "B006"},
  41. {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B007, "Billion", "B007"},
  42. {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B008, "Billion", "B008"},
  43. {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B009, "Billion", "B009"},
  44. {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B00A, "Billion", "B00A"},
  45. {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B00B, "Billion", "B00B"},
  46. {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B00C, "Billion", "B00C"},
  47. {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B100, "Seyeon", "B100"},
  48. {PCI_VENDOR_ID_ABOCOM, PCI_DEVICE_ID_ABOCOM_2BD1, "Abocom/Magitek", "2BD1"},
  49. {PCI_VENDOR_ID_ASUSTEK, PCI_DEVICE_ID_ASUSTEK_0675, "Asuscom/Askey", "675"},
  50. {PCI_VENDOR_ID_BERKOM, PCI_DEVICE_ID_BERKOM_T_CONCEPT, "German telekom", "T-Concept"},
  51. {PCI_VENDOR_ID_BERKOM, PCI_DEVICE_ID_BERKOM_A1T, "German telekom", "A1T"},
  52. {PCI_VENDOR_ID_ANIGMA, PCI_DEVICE_ID_ANIGMA_MC145575, "Motorola MC145575", "MC145575"},
  53. {PCI_VENDOR_ID_ZOLTRIX, PCI_DEVICE_ID_ZOLTRIX_2BD0, "Zoltrix", "2BD0"},
  54. {PCI_VENDOR_ID_DIGI, PCI_DEVICE_ID_DIGI_DF_M_IOM2_E,"Digi International", "Digi DataFire Micro V IOM2 (Europe)"},
  55. {PCI_VENDOR_ID_DIGI, PCI_DEVICE_ID_DIGI_DF_M_E,"Digi International", "Digi DataFire Micro V (Europe)"},
  56. {PCI_VENDOR_ID_DIGI, PCI_DEVICE_ID_DIGI_DF_M_IOM2_A,"Digi International", "Digi DataFire Micro V IOM2 (North America)"},
  57. {PCI_VENDOR_ID_DIGI, PCI_DEVICE_ID_DIGI_DF_M_A,"Digi International", "Digi DataFire Micro V (North America)"},
  58. {0, 0, NULL, NULL},
  59. };
  60. #ifdef CONFIG_PCI
  61. /******************************************/
  62. /* free hardware resources used by driver */
  63. /******************************************/
  64. static void
  65. release_io_hfcpci(struct IsdnCardState *cs)
  66. {
  67. printk(KERN_INFO "HiSax: release hfcpci at %p\n",
  68. cs->hw.hfcpci.pci_io);
  69. cs->hw.hfcpci.int_m2 = 0; /* interrupt output off ! */
  70. Write_hfc(cs, HFCPCI_INT_M2, cs->hw.hfcpci.int_m2);
  71. Write_hfc(cs, HFCPCI_CIRM, HFCPCI_RESET); /* Reset On */
  72. mdelay(10);
  73. Write_hfc(cs, HFCPCI_CIRM, 0); /* Reset Off */
  74. mdelay(10);
  75. Write_hfc(cs, HFCPCI_INT_M2, cs->hw.hfcpci.int_m2);
  76. pci_write_config_word(cs->hw.hfcpci.dev, PCI_COMMAND, 0); /* disable memory mapped ports + busmaster */
  77. del_timer(&cs->hw.hfcpci.timer);
  78. kfree(cs->hw.hfcpci.share_start);
  79. cs->hw.hfcpci.share_start = NULL;
  80. iounmap((void *)cs->hw.hfcpci.pci_io);
  81. }
  82. /********************************************************************************/
  83. /* function called to reset the HFC PCI chip. A complete software reset of chip */
  84. /* and fifos is done. */
  85. /********************************************************************************/
  86. static void
  87. reset_hfcpci(struct IsdnCardState *cs)
  88. {
  89. pci_write_config_word(cs->hw.hfcpci.dev, PCI_COMMAND, PCI_ENA_MEMIO); /* enable memory mapped ports, disable busmaster */
  90. cs->hw.hfcpci.int_m2 = 0; /* interrupt output off ! */
  91. Write_hfc(cs, HFCPCI_INT_M2, cs->hw.hfcpci.int_m2);
  92. printk(KERN_INFO "HFC_PCI: resetting card\n");
  93. pci_write_config_word(cs->hw.hfcpci.dev, PCI_COMMAND, PCI_ENA_MEMIO + PCI_ENA_MASTER); /* enable memory ports + busmaster */
  94. Write_hfc(cs, HFCPCI_CIRM, HFCPCI_RESET); /* Reset On */
  95. mdelay(10);
  96. Write_hfc(cs, HFCPCI_CIRM, 0); /* Reset Off */
  97. mdelay(10);
  98. if (Read_hfc(cs, HFCPCI_STATUS) & 2)
  99. printk(KERN_WARNING "HFC-PCI init bit busy\n");
  100. cs->hw.hfcpci.fifo_en = 0x30; /* only D fifos enabled */
  101. Write_hfc(cs, HFCPCI_FIFO_EN, cs->hw.hfcpci.fifo_en);
  102. cs->hw.hfcpci.trm = 0 + HFCPCI_BTRANS_THRESMASK; /* no echo connect , threshold */
  103. Write_hfc(cs, HFCPCI_TRM, cs->hw.hfcpci.trm);
  104. Write_hfc(cs, HFCPCI_CLKDEL, CLKDEL_TE); /* ST-Bit delay for TE-Mode */
  105. cs->hw.hfcpci.sctrl_e = HFCPCI_AUTO_AWAKE;
  106. Write_hfc(cs, HFCPCI_SCTRL_E, cs->hw.hfcpci.sctrl_e); /* S/T Auto awake */
  107. cs->hw.hfcpci.bswapped = 0; /* no exchange */
  108. cs->hw.hfcpci.nt_mode = 0; /* we are in TE mode */
  109. cs->hw.hfcpci.ctmt = HFCPCI_TIM3_125 | HFCPCI_AUTO_TIMER;
  110. Write_hfc(cs, HFCPCI_CTMT, cs->hw.hfcpci.ctmt);
  111. cs->hw.hfcpci.int_m1 = HFCPCI_INTS_DTRANS | HFCPCI_INTS_DREC |
  112. HFCPCI_INTS_L1STATE | HFCPCI_INTS_TIMER;
  113. Write_hfc(cs, HFCPCI_INT_M1, cs->hw.hfcpci.int_m1);
  114. /* Clear already pending ints */
  115. if (Read_hfc(cs, HFCPCI_INT_S1));
  116. Write_hfc(cs, HFCPCI_STATES, HFCPCI_LOAD_STATE | 2); /* HFC ST 2 */
  117. udelay(10);
  118. Write_hfc(cs, HFCPCI_STATES, 2); /* HFC ST 2 */
  119. cs->hw.hfcpci.mst_m = HFCPCI_MASTER; /* HFC Master Mode */
  120. Write_hfc(cs, HFCPCI_MST_MODE, cs->hw.hfcpci.mst_m);
  121. cs->hw.hfcpci.sctrl = 0x40; /* set tx_lo mode, error in datasheet ! */
  122. Write_hfc(cs, HFCPCI_SCTRL, cs->hw.hfcpci.sctrl);
  123. cs->hw.hfcpci.sctrl_r = 0;
  124. Write_hfc(cs, HFCPCI_SCTRL_R, cs->hw.hfcpci.sctrl_r);
  125. /* Init GCI/IOM2 in master mode */
  126. /* Slots 0 and 1 are set for B-chan 1 and 2 */
  127. /* D- and monitor/CI channel are not enabled */
  128. /* STIO1 is used as output for data, B1+B2 from ST->IOM+HFC */
  129. /* STIO2 is used as data input, B1+B2 from IOM->ST */
  130. /* ST B-channel send disabled -> continous 1s */
  131. /* The IOM slots are always enabled */
  132. cs->hw.hfcpci.conn = 0x36; /* set data flow directions */
  133. Write_hfc(cs, HFCPCI_CONNECT, cs->hw.hfcpci.conn);
  134. Write_hfc(cs, HFCPCI_B1_SSL, 0x80); /* B1-Slot 0 STIO1 out enabled */
  135. Write_hfc(cs, HFCPCI_B2_SSL, 0x81); /* B2-Slot 1 STIO1 out enabled */
  136. Write_hfc(cs, HFCPCI_B1_RSL, 0x80); /* B1-Slot 0 STIO2 in enabled */
  137. Write_hfc(cs, HFCPCI_B2_RSL, 0x81); /* B2-Slot 1 STIO2 in enabled */
  138. /* Finally enable IRQ output */
  139. cs->hw.hfcpci.int_m2 = HFCPCI_IRQ_ENABLE;
  140. Write_hfc(cs, HFCPCI_INT_M2, cs->hw.hfcpci.int_m2);
  141. if (Read_hfc(cs, HFCPCI_INT_S1));
  142. }
  143. /***************************************************/
  144. /* Timer function called when kernel timer expires */
  145. /***************************************************/
  146. static void
  147. hfcpci_Timer(struct IsdnCardState *cs)
  148. {
  149. cs->hw.hfcpci.timer.expires = jiffies + 75;
  150. /* WD RESET */
  151. /* WriteReg(cs, HFCD_DATA, HFCD_CTMT, cs->hw.hfcpci.ctmt | 0x80);
  152. add_timer(&cs->hw.hfcpci.timer);
  153. */
  154. }
  155. /*********************************/
  156. /* schedule a new D-channel task */
  157. /*********************************/
  158. static void
  159. sched_event_D_pci(struct IsdnCardState *cs, int event)
  160. {
  161. test_and_set_bit(event, &cs->event);
  162. schedule_work(&cs->tqueue);
  163. }
  164. /*********************************/
  165. /* schedule a new b_channel task */
  166. /*********************************/
  167. static void
  168. hfcpci_sched_event(struct BCState *bcs, int event)
  169. {
  170. test_and_set_bit(event, &bcs->event);
  171. schedule_work(&bcs->tqueue);
  172. }
  173. /************************************************/
  174. /* select a b-channel entry matching and active */
  175. /************************************************/
  176. static
  177. struct BCState *
  178. Sel_BCS(struct IsdnCardState *cs, int channel)
  179. {
  180. if (cs->bcs[0].mode && (cs->bcs[0].channel == channel))
  181. return (&cs->bcs[0]);
  182. else if (cs->bcs[1].mode && (cs->bcs[1].channel == channel))
  183. return (&cs->bcs[1]);
  184. else
  185. return (NULL);
  186. }
  187. /***************************************/
  188. /* clear the desired B-channel rx fifo */
  189. /***************************************/
  190. static void hfcpci_clear_fifo_rx(struct IsdnCardState *cs, int fifo)
  191. { u_char fifo_state;
  192. bzfifo_type *bzr;
  193. if (fifo) {
  194. bzr = &((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.rxbz_b2;
  195. fifo_state = cs->hw.hfcpci.fifo_en & HFCPCI_FIFOEN_B2RX;
  196. } else {
  197. bzr = &((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.rxbz_b1;
  198. fifo_state = cs->hw.hfcpci.fifo_en & HFCPCI_FIFOEN_B1RX;
  199. }
  200. if (fifo_state)
  201. cs->hw.hfcpci.fifo_en ^= fifo_state;
  202. Write_hfc(cs, HFCPCI_FIFO_EN, cs->hw.hfcpci.fifo_en);
  203. cs->hw.hfcpci.last_bfifo_cnt[fifo] = 0;
  204. bzr->za[MAX_B_FRAMES].z1 = B_FIFO_SIZE + B_SUB_VAL - 1;
  205. bzr->za[MAX_B_FRAMES].z2 = bzr->za[MAX_B_FRAMES].z1;
  206. bzr->f1 = MAX_B_FRAMES;
  207. bzr->f2 = bzr->f1; /* init F pointers to remain constant */
  208. if (fifo_state)
  209. cs->hw.hfcpci.fifo_en |= fifo_state;
  210. Write_hfc(cs, HFCPCI_FIFO_EN, cs->hw.hfcpci.fifo_en);
  211. }
  212. /***************************************/
  213. /* clear the desired B-channel tx fifo */
  214. /***************************************/
  215. static void hfcpci_clear_fifo_tx(struct IsdnCardState *cs, int fifo)
  216. { u_char fifo_state;
  217. bzfifo_type *bzt;
  218. if (fifo) {
  219. bzt = &((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.txbz_b2;
  220. fifo_state = cs->hw.hfcpci.fifo_en & HFCPCI_FIFOEN_B2TX;
  221. } else {
  222. bzt = &((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.txbz_b1;
  223. fifo_state = cs->hw.hfcpci.fifo_en & HFCPCI_FIFOEN_B1TX;
  224. }
  225. if (fifo_state)
  226. cs->hw.hfcpci.fifo_en ^= fifo_state;
  227. Write_hfc(cs, HFCPCI_FIFO_EN, cs->hw.hfcpci.fifo_en);
  228. bzt->za[MAX_B_FRAMES].z1 = B_FIFO_SIZE + B_SUB_VAL - 1;
  229. bzt->za[MAX_B_FRAMES].z2 = bzt->za[MAX_B_FRAMES].z1;
  230. bzt->f1 = MAX_B_FRAMES;
  231. bzt->f2 = bzt->f1; /* init F pointers to remain constant */
  232. if (fifo_state)
  233. cs->hw.hfcpci.fifo_en |= fifo_state;
  234. Write_hfc(cs, HFCPCI_FIFO_EN, cs->hw.hfcpci.fifo_en);
  235. }
  236. /*********************************************/
  237. /* read a complete B-frame out of the buffer */
  238. /*********************************************/
  239. static struct sk_buff
  240. *
  241. hfcpci_empty_fifo(struct BCState *bcs, bzfifo_type * bz, u_char * bdata, int count)
  242. {
  243. u_char *ptr, *ptr1, new_f2;
  244. struct sk_buff *skb;
  245. struct IsdnCardState *cs = bcs->cs;
  246. int total, maxlen, new_z2;
  247. z_type *zp;
  248. if ((cs->debug & L1_DEB_HSCX) && !(cs->debug & L1_DEB_HSCX_FIFO))
  249. debugl1(cs, "hfcpci_empty_fifo");
  250. zp = &bz->za[bz->f2]; /* point to Z-Regs */
  251. new_z2 = zp->z2 + count; /* new position in fifo */
  252. if (new_z2 >= (B_FIFO_SIZE + B_SUB_VAL))
  253. new_z2 -= B_FIFO_SIZE; /* buffer wrap */
  254. new_f2 = (bz->f2 + 1) & MAX_B_FRAMES;
  255. if ((count > HSCX_BUFMAX + 3) || (count < 4) ||
  256. (*(bdata + (zp->z1 - B_SUB_VAL)))) {
  257. if (cs->debug & L1_DEB_WARN)
  258. debugl1(cs, "hfcpci_empty_fifo: incoming packet invalid length %d or crc", count);
  259. #ifdef ERROR_STATISTIC
  260. bcs->err_inv++;
  261. #endif
  262. bz->za[new_f2].z2 = new_z2;
  263. bz->f2 = new_f2; /* next buffer */
  264. skb = NULL;
  265. } else if (!(skb = dev_alloc_skb(count - 3)))
  266. printk(KERN_WARNING "HFCPCI: receive out of memory\n");
  267. else {
  268. total = count;
  269. count -= 3;
  270. ptr = skb_put(skb, count);
  271. if (zp->z2 + count <= B_FIFO_SIZE + B_SUB_VAL)
  272. maxlen = count; /* complete transfer */
  273. else
  274. maxlen = B_FIFO_SIZE + B_SUB_VAL - zp->z2; /* maximum */
  275. ptr1 = bdata + (zp->z2 - B_SUB_VAL); /* start of data */
  276. memcpy(ptr, ptr1, maxlen); /* copy data */
  277. count -= maxlen;
  278. if (count) { /* rest remaining */
  279. ptr += maxlen;
  280. ptr1 = bdata; /* start of buffer */
  281. memcpy(ptr, ptr1, count); /* rest */
  282. }
  283. bz->za[new_f2].z2 = new_z2;
  284. bz->f2 = new_f2; /* next buffer */
  285. }
  286. return (skb);
  287. }
  288. /*******************************/
  289. /* D-channel receive procedure */
  290. /*******************************/
  291. static
  292. int
  293. receive_dmsg(struct IsdnCardState *cs)
  294. {
  295. struct sk_buff *skb;
  296. int maxlen;
  297. int rcnt, total;
  298. int count = 5;
  299. u_char *ptr, *ptr1;
  300. dfifo_type *df;
  301. z_type *zp;
  302. df = &((fifo_area *) (cs->hw.hfcpci.fifos))->d_chan.d_rx;
  303. if (test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
  304. debugl1(cs, "rec_dmsg blocked");
  305. return (1);
  306. }
  307. while (((df->f1 & D_FREG_MASK) != (df->f2 & D_FREG_MASK)) && count--) {
  308. zp = &df->za[df->f2 & D_FREG_MASK];
  309. rcnt = zp->z1 - zp->z2;
  310. if (rcnt < 0)
  311. rcnt += D_FIFO_SIZE;
  312. rcnt++;
  313. if (cs->debug & L1_DEB_ISAC)
  314. debugl1(cs, "hfcpci recd f1(%d) f2(%d) z1(%x) z2(%x) cnt(%d)",
  315. df->f1, df->f2, zp->z1, zp->z2, rcnt);
  316. if ((rcnt > MAX_DFRAME_LEN + 3) || (rcnt < 4) ||
  317. (df->data[zp->z1])) {
  318. if (cs->debug & L1_DEB_WARN)
  319. debugl1(cs, "empty_fifo hfcpci paket inv. len %d or crc %d", rcnt, df->data[zp->z1]);
  320. #ifdef ERROR_STATISTIC
  321. cs->err_rx++;
  322. #endif
  323. df->f2 = ((df->f2 + 1) & MAX_D_FRAMES) | (MAX_D_FRAMES + 1); /* next buffer */
  324. df->za[df->f2 & D_FREG_MASK].z2 = (zp->z2 + rcnt) & (D_FIFO_SIZE - 1);
  325. } else if ((skb = dev_alloc_skb(rcnt - 3))) {
  326. total = rcnt;
  327. rcnt -= 3;
  328. ptr = skb_put(skb, rcnt);
  329. if (zp->z2 + rcnt <= D_FIFO_SIZE)
  330. maxlen = rcnt; /* complete transfer */
  331. else
  332. maxlen = D_FIFO_SIZE - zp->z2; /* maximum */
  333. ptr1 = df->data + zp->z2; /* start of data */
  334. memcpy(ptr, ptr1, maxlen); /* copy data */
  335. rcnt -= maxlen;
  336. if (rcnt) { /* rest remaining */
  337. ptr += maxlen;
  338. ptr1 = df->data; /* start of buffer */
  339. memcpy(ptr, ptr1, rcnt); /* rest */
  340. }
  341. df->f2 = ((df->f2 + 1) & MAX_D_FRAMES) | (MAX_D_FRAMES + 1); /* next buffer */
  342. df->za[df->f2 & D_FREG_MASK].z2 = (zp->z2 + total) & (D_FIFO_SIZE - 1);
  343. skb_queue_tail(&cs->rq, skb);
  344. sched_event_D_pci(cs, D_RCVBUFREADY);
  345. } else
  346. printk(KERN_WARNING "HFC-PCI: D receive out of memory\n");
  347. }
  348. test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
  349. return (1);
  350. }
  351. /*******************************************************************************/
  352. /* check for transparent receive data and read max one threshold size if avail */
  353. /*******************************************************************************/
  354. static int
  355. hfcpci_empty_fifo_trans(struct BCState *bcs, bzfifo_type * bz, u_char * bdata)
  356. {
  357. unsigned short *z1r, *z2r;
  358. int new_z2, fcnt, maxlen;
  359. struct sk_buff *skb;
  360. u_char *ptr, *ptr1;
  361. z1r = &bz->za[MAX_B_FRAMES].z1; /* pointer to z reg */
  362. z2r = z1r + 1;
  363. if (!(fcnt = *z1r - *z2r))
  364. return (0); /* no data avail */
  365. if (fcnt <= 0)
  366. fcnt += B_FIFO_SIZE; /* bytes actually buffered */
  367. if (fcnt > HFCPCI_BTRANS_THRESHOLD)
  368. fcnt = HFCPCI_BTRANS_THRESHOLD; /* limit size */
  369. new_z2 = *z2r + fcnt; /* new position in fifo */
  370. if (new_z2 >= (B_FIFO_SIZE + B_SUB_VAL))
  371. new_z2 -= B_FIFO_SIZE; /* buffer wrap */
  372. if (!(skb = dev_alloc_skb(fcnt)))
  373. printk(KERN_WARNING "HFCPCI: receive out of memory\n");
  374. else {
  375. ptr = skb_put(skb, fcnt);
  376. if (*z2r + fcnt <= B_FIFO_SIZE + B_SUB_VAL)
  377. maxlen = fcnt; /* complete transfer */
  378. else
  379. maxlen = B_FIFO_SIZE + B_SUB_VAL - *z2r; /* maximum */
  380. ptr1 = bdata + (*z2r - B_SUB_VAL); /* start of data */
  381. memcpy(ptr, ptr1, maxlen); /* copy data */
  382. fcnt -= maxlen;
  383. if (fcnt) { /* rest remaining */
  384. ptr += maxlen;
  385. ptr1 = bdata; /* start of buffer */
  386. memcpy(ptr, ptr1, fcnt); /* rest */
  387. }
  388. skb_queue_tail(&bcs->rqueue, skb);
  389. hfcpci_sched_event(bcs, B_RCVBUFREADY);
  390. }
  391. *z2r = new_z2; /* new position */
  392. return (1);
  393. } /* hfcpci_empty_fifo_trans */
  394. /**********************************/
  395. /* B-channel main receive routine */
  396. /**********************************/
  397. static void
  398. main_rec_hfcpci(struct BCState *bcs)
  399. {
  400. struct IsdnCardState *cs = bcs->cs;
  401. int rcnt, real_fifo;
  402. int receive, count = 5;
  403. struct sk_buff *skb;
  404. bzfifo_type *bz;
  405. u_char *bdata;
  406. z_type *zp;
  407. if ((bcs->channel) && (!cs->hw.hfcpci.bswapped)) {
  408. bz = &((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.rxbz_b2;
  409. bdata = ((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.rxdat_b2;
  410. real_fifo = 1;
  411. } else {
  412. bz = &((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.rxbz_b1;
  413. bdata = ((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.rxdat_b1;
  414. real_fifo = 0;
  415. }
  416. Begin:
  417. count--;
  418. if (test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
  419. debugl1(cs, "rec_data %d blocked", bcs->channel);
  420. return;
  421. }
  422. if (bz->f1 != bz->f2) {
  423. if (cs->debug & L1_DEB_HSCX)
  424. debugl1(cs, "hfcpci rec %d f1(%d) f2(%d)",
  425. bcs->channel, bz->f1, bz->f2);
  426. zp = &bz->za[bz->f2];
  427. rcnt = zp->z1 - zp->z2;
  428. if (rcnt < 0)
  429. rcnt += B_FIFO_SIZE;
  430. rcnt++;
  431. if (cs->debug & L1_DEB_HSCX)
  432. debugl1(cs, "hfcpci rec %d z1(%x) z2(%x) cnt(%d)",
  433. bcs->channel, zp->z1, zp->z2, rcnt);
  434. if ((skb = hfcpci_empty_fifo(bcs, bz, bdata, rcnt))) {
  435. skb_queue_tail(&bcs->rqueue, skb);
  436. hfcpci_sched_event(bcs, B_RCVBUFREADY);
  437. }
  438. rcnt = bz->f1 - bz->f2;
  439. if (rcnt < 0)
  440. rcnt += MAX_B_FRAMES + 1;
  441. if (cs->hw.hfcpci.last_bfifo_cnt[real_fifo] > rcnt + 1) {
  442. rcnt = 0;
  443. hfcpci_clear_fifo_rx(cs, real_fifo);
  444. }
  445. cs->hw.hfcpci.last_bfifo_cnt[real_fifo] = rcnt;
  446. if (rcnt > 1)
  447. receive = 1;
  448. else
  449. receive = 0;
  450. } else if (bcs->mode == L1_MODE_TRANS)
  451. receive = hfcpci_empty_fifo_trans(bcs, bz, bdata);
  452. else
  453. receive = 0;
  454. test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
  455. if (count && receive)
  456. goto Begin;
  457. return;
  458. }
  459. /**************************/
  460. /* D-channel send routine */
  461. /**************************/
  462. static void
  463. hfcpci_fill_dfifo(struct IsdnCardState *cs)
  464. {
  465. int fcnt;
  466. int count, new_z1, maxlen;
  467. dfifo_type *df;
  468. u_char *src, *dst, new_f1;
  469. if (!cs->tx_skb)
  470. return;
  471. if (cs->tx_skb->len <= 0)
  472. return;
  473. df = &((fifo_area *) (cs->hw.hfcpci.fifos))->d_chan.d_tx;
  474. if (cs->debug & L1_DEB_ISAC)
  475. debugl1(cs, "hfcpci_fill_Dfifo f1(%d) f2(%d) z1(f1)(%x)",
  476. df->f1, df->f2,
  477. df->za[df->f1 & D_FREG_MASK].z1);
  478. fcnt = df->f1 - df->f2; /* frame count actually buffered */
  479. if (fcnt < 0)
  480. fcnt += (MAX_D_FRAMES + 1); /* if wrap around */
  481. if (fcnt > (MAX_D_FRAMES - 1)) {
  482. if (cs->debug & L1_DEB_ISAC)
  483. debugl1(cs, "hfcpci_fill_Dfifo more as 14 frames");
  484. #ifdef ERROR_STATISTIC
  485. cs->err_tx++;
  486. #endif
  487. return;
  488. }
  489. /* now determine free bytes in FIFO buffer */
  490. count = df->za[df->f2 & D_FREG_MASK].z2 - df->za[df->f1 & D_FREG_MASK].z1 - 1;
  491. if (count <= 0)
  492. count += D_FIFO_SIZE; /* count now contains available bytes */
  493. if (cs->debug & L1_DEB_ISAC)
  494. debugl1(cs, "hfcpci_fill_Dfifo count(%ld/%d)",
  495. cs->tx_skb->len, count);
  496. if (count < cs->tx_skb->len) {
  497. if (cs->debug & L1_DEB_ISAC)
  498. debugl1(cs, "hfcpci_fill_Dfifo no fifo mem");
  499. return;
  500. }
  501. count = cs->tx_skb->len; /* get frame len */
  502. new_z1 = (df->za[df->f1 & D_FREG_MASK].z1 + count) & (D_FIFO_SIZE - 1);
  503. new_f1 = ((df->f1 + 1) & D_FREG_MASK) | (D_FREG_MASK + 1);
  504. src = cs->tx_skb->data; /* source pointer */
  505. dst = df->data + df->za[df->f1 & D_FREG_MASK].z1;
  506. maxlen = D_FIFO_SIZE - df->za[df->f1 & D_FREG_MASK].z1; /* end fifo */
  507. if (maxlen > count)
  508. maxlen = count; /* limit size */
  509. memcpy(dst, src, maxlen); /* first copy */
  510. count -= maxlen; /* remaining bytes */
  511. if (count) {
  512. dst = df->data; /* start of buffer */
  513. src += maxlen; /* new position */
  514. memcpy(dst, src, count);
  515. }
  516. df->za[new_f1 & D_FREG_MASK].z1 = new_z1; /* for next buffer */
  517. df->za[df->f1 & D_FREG_MASK].z1 = new_z1; /* new pos actual buffer */
  518. df->f1 = new_f1; /* next frame */
  519. dev_kfree_skb_any(cs->tx_skb);
  520. cs->tx_skb = NULL;
  521. return;
  522. }
  523. /**************************/
  524. /* B-channel send routine */
  525. /**************************/
  526. static void
  527. hfcpci_fill_fifo(struct BCState *bcs)
  528. {
  529. struct IsdnCardState *cs = bcs->cs;
  530. int maxlen, fcnt;
  531. int count, new_z1;
  532. bzfifo_type *bz;
  533. u_char *bdata;
  534. u_char new_f1, *src, *dst;
  535. unsigned short *z1t, *z2t;
  536. if (!bcs->tx_skb)
  537. return;
  538. if (bcs->tx_skb->len <= 0)
  539. return;
  540. if ((bcs->channel) && (!cs->hw.hfcpci.bswapped)) {
  541. bz = &((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.txbz_b2;
  542. bdata = ((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.txdat_b2;
  543. } else {
  544. bz = &((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.txbz_b1;
  545. bdata = ((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.txdat_b1;
  546. }
  547. if (bcs->mode == L1_MODE_TRANS) {
  548. z1t = &bz->za[MAX_B_FRAMES].z1;
  549. z2t = z1t + 1;
  550. if (cs->debug & L1_DEB_HSCX)
  551. debugl1(cs, "hfcpci_fill_fifo_trans %d z1(%x) z2(%x)",
  552. bcs->channel, *z1t, *z2t);
  553. fcnt = *z2t - *z1t;
  554. if (fcnt <= 0)
  555. fcnt += B_FIFO_SIZE; /* fcnt contains available bytes in fifo */
  556. fcnt = B_FIFO_SIZE - fcnt; /* remaining bytes to send */
  557. while ((fcnt < 2 * HFCPCI_BTRANS_THRESHOLD) && (bcs->tx_skb)) {
  558. if (bcs->tx_skb->len < B_FIFO_SIZE - fcnt) {
  559. /* data is suitable for fifo */
  560. count = bcs->tx_skb->len;
  561. new_z1 = *z1t + count; /* new buffer Position */
  562. if (new_z1 >= (B_FIFO_SIZE + B_SUB_VAL))
  563. new_z1 -= B_FIFO_SIZE; /* buffer wrap */
  564. src = bcs->tx_skb->data; /* source pointer */
  565. dst = bdata + (*z1t - B_SUB_VAL);
  566. maxlen = (B_FIFO_SIZE + B_SUB_VAL) - *z1t; /* end of fifo */
  567. if (maxlen > count)
  568. maxlen = count; /* limit size */
  569. memcpy(dst, src, maxlen); /* first copy */
  570. count -= maxlen; /* remaining bytes */
  571. if (count) {
  572. dst = bdata; /* start of buffer */
  573. src += maxlen; /* new position */
  574. memcpy(dst, src, count);
  575. }
  576. bcs->tx_cnt -= bcs->tx_skb->len;
  577. fcnt += bcs->tx_skb->len;
  578. *z1t = new_z1; /* now send data */
  579. } else if (cs->debug & L1_DEB_HSCX)
  580. debugl1(cs, "hfcpci_fill_fifo_trans %d frame length %d discarded",
  581. bcs->channel, bcs->tx_skb->len);
  582. if (test_bit(FLG_LLI_L1WAKEUP,&bcs->st->lli.flag) &&
  583. (PACKET_NOACK != bcs->tx_skb->pkt_type)) {
  584. u_long flags;
  585. spin_lock_irqsave(&bcs->aclock, flags);
  586. bcs->ackcnt += bcs->tx_skb->len;
  587. spin_unlock_irqrestore(&bcs->aclock, flags);
  588. schedule_event(bcs, B_ACKPENDING);
  589. }
  590. dev_kfree_skb_any(bcs->tx_skb);
  591. bcs->tx_skb = skb_dequeue(&bcs->squeue); /* fetch next data */
  592. }
  593. test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
  594. return;
  595. }
  596. if (cs->debug & L1_DEB_HSCX)
  597. debugl1(cs, "hfcpci_fill_fifo_hdlc %d f1(%d) f2(%d) z1(f1)(%x)",
  598. bcs->channel, bz->f1, bz->f2,
  599. bz->za[bz->f1].z1);
  600. fcnt = bz->f1 - bz->f2; /* frame count actually buffered */
  601. if (fcnt < 0)
  602. fcnt += (MAX_B_FRAMES + 1); /* if wrap around */
  603. if (fcnt > (MAX_B_FRAMES - 1)) {
  604. if (cs->debug & L1_DEB_HSCX)
  605. debugl1(cs, "hfcpci_fill_Bfifo more as 14 frames");
  606. return;
  607. }
  608. /* now determine free bytes in FIFO buffer */
  609. count = bz->za[bz->f2].z2 - bz->za[bz->f1].z1 - 1;
  610. if (count <= 0)
  611. count += B_FIFO_SIZE; /* count now contains available bytes */
  612. if (cs->debug & L1_DEB_HSCX)
  613. debugl1(cs, "hfcpci_fill_fifo %d count(%ld/%d),%lx",
  614. bcs->channel, bcs->tx_skb->len,
  615. count, current->state);
  616. if (count < bcs->tx_skb->len) {
  617. if (cs->debug & L1_DEB_HSCX)
  618. debugl1(cs, "hfcpci_fill_fifo no fifo mem");
  619. return;
  620. }
  621. count = bcs->tx_skb->len; /* get frame len */
  622. new_z1 = bz->za[bz->f1].z1 + count; /* new buffer Position */
  623. if (new_z1 >= (B_FIFO_SIZE + B_SUB_VAL))
  624. new_z1 -= B_FIFO_SIZE; /* buffer wrap */
  625. new_f1 = ((bz->f1 + 1) & MAX_B_FRAMES);
  626. src = bcs->tx_skb->data; /* source pointer */
  627. dst = bdata + (bz->za[bz->f1].z1 - B_SUB_VAL);
  628. maxlen = (B_FIFO_SIZE + B_SUB_VAL) - bz->za[bz->f1].z1; /* end fifo */
  629. if (maxlen > count)
  630. maxlen = count; /* limit size */
  631. memcpy(dst, src, maxlen); /* first copy */
  632. count -= maxlen; /* remaining bytes */
  633. if (count) {
  634. dst = bdata; /* start of buffer */
  635. src += maxlen; /* new position */
  636. memcpy(dst, src, count);
  637. }
  638. bcs->tx_cnt -= bcs->tx_skb->len;
  639. if (test_bit(FLG_LLI_L1WAKEUP,&bcs->st->lli.flag) &&
  640. (PACKET_NOACK != bcs->tx_skb->pkt_type)) {
  641. u_long flags;
  642. spin_lock_irqsave(&bcs->aclock, flags);
  643. bcs->ackcnt += bcs->tx_skb->len;
  644. spin_unlock_irqrestore(&bcs->aclock, flags);
  645. schedule_event(bcs, B_ACKPENDING);
  646. }
  647. bz->za[new_f1].z1 = new_z1; /* for next buffer */
  648. bz->f1 = new_f1; /* next frame */
  649. dev_kfree_skb_any(bcs->tx_skb);
  650. bcs->tx_skb = NULL;
  651. test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
  652. return;
  653. }
  654. /**********************************************/
  655. /* D-channel l1 state call for leased NT-mode */
  656. /**********************************************/
  657. static void
  658. dch_nt_l2l1(struct PStack *st, int pr, void *arg)
  659. {
  660. struct IsdnCardState *cs = (struct IsdnCardState *) st->l1.hardware;
  661. switch (pr) {
  662. case (PH_DATA | REQUEST):
  663. case (PH_PULL | REQUEST):
  664. case (PH_PULL | INDICATION):
  665. st->l1.l1hw(st, pr, arg);
  666. break;
  667. case (PH_ACTIVATE | REQUEST):
  668. st->l1.l1l2(st, PH_ACTIVATE | CONFIRM, NULL);
  669. break;
  670. case (PH_TESTLOOP | REQUEST):
  671. if (1 & (long) arg)
  672. debugl1(cs, "PH_TEST_LOOP B1");
  673. if (2 & (long) arg)
  674. debugl1(cs, "PH_TEST_LOOP B2");
  675. if (!(3 & (long) arg))
  676. debugl1(cs, "PH_TEST_LOOP DISABLED");
  677. st->l1.l1hw(st, HW_TESTLOOP | REQUEST, arg);
  678. break;
  679. default:
  680. if (cs->debug)
  681. debugl1(cs, "dch_nt_l2l1 msg %04X unhandled", pr);
  682. break;
  683. }
  684. }
  685. /***********************/
  686. /* set/reset echo mode */
  687. /***********************/
  688. static int
  689. hfcpci_auxcmd(struct IsdnCardState *cs, isdn_ctrl * ic)
  690. {
  691. u_long flags;
  692. int i = *(unsigned int *) ic->parm.num;
  693. if ((ic->arg == 98) &&
  694. (!(cs->hw.hfcpci.int_m1 & (HFCPCI_INTS_B2TRANS + HFCPCI_INTS_B2REC + HFCPCI_INTS_B1TRANS + HFCPCI_INTS_B1REC)))) {
  695. spin_lock_irqsave(&cs->lock, flags);
  696. Write_hfc(cs, HFCPCI_CLKDEL, CLKDEL_NT); /* ST-Bit delay for NT-Mode */
  697. Write_hfc(cs, HFCPCI_STATES, HFCPCI_LOAD_STATE | 0); /* HFC ST G0 */
  698. udelay(10);
  699. cs->hw.hfcpci.sctrl |= SCTRL_MODE_NT;
  700. Write_hfc(cs, HFCPCI_SCTRL, cs->hw.hfcpci.sctrl); /* set NT-mode */
  701. udelay(10);
  702. Write_hfc(cs, HFCPCI_STATES, HFCPCI_LOAD_STATE | 1); /* HFC ST G1 */
  703. udelay(10);
  704. Write_hfc(cs, HFCPCI_STATES, 1 | HFCPCI_ACTIVATE | HFCPCI_DO_ACTION);
  705. cs->dc.hfcpci.ph_state = 1;
  706. cs->hw.hfcpci.nt_mode = 1;
  707. cs->hw.hfcpci.nt_timer = 0;
  708. cs->stlist->l2.l2l1 = dch_nt_l2l1;
  709. spin_unlock_irqrestore(&cs->lock, flags);
  710. debugl1(cs, "NT mode activated");
  711. return (0);
  712. }
  713. if ((cs->chanlimit > 1) || (cs->hw.hfcpci.bswapped) ||
  714. (cs->hw.hfcpci.nt_mode) || (ic->arg != 12))
  715. return (-EINVAL);
  716. spin_lock_irqsave(&cs->lock, flags);
  717. if (i) {
  718. cs->logecho = 1;
  719. cs->hw.hfcpci.trm |= 0x20; /* enable echo chan */
  720. cs->hw.hfcpci.int_m1 |= HFCPCI_INTS_B2REC;
  721. cs->hw.hfcpci.fifo_en |= HFCPCI_FIFOEN_B2RX;
  722. } else {
  723. cs->logecho = 0;
  724. cs->hw.hfcpci.trm &= ~0x20; /* disable echo chan */
  725. cs->hw.hfcpci.int_m1 &= ~HFCPCI_INTS_B2REC;
  726. cs->hw.hfcpci.fifo_en &= ~HFCPCI_FIFOEN_B2RX;
  727. }
  728. cs->hw.hfcpci.sctrl_r &= ~SCTRL_B2_ENA;
  729. cs->hw.hfcpci.sctrl &= ~SCTRL_B2_ENA;
  730. cs->hw.hfcpci.conn |= 0x10; /* B2-IOM -> B2-ST */
  731. cs->hw.hfcpci.ctmt &= ~2;
  732. Write_hfc(cs, HFCPCI_CTMT, cs->hw.hfcpci.ctmt);
  733. Write_hfc(cs, HFCPCI_SCTRL_R, cs->hw.hfcpci.sctrl_r);
  734. Write_hfc(cs, HFCPCI_SCTRL, cs->hw.hfcpci.sctrl);
  735. Write_hfc(cs, HFCPCI_CONNECT, cs->hw.hfcpci.conn);
  736. Write_hfc(cs, HFCPCI_TRM, cs->hw.hfcpci.trm);
  737. Write_hfc(cs, HFCPCI_FIFO_EN, cs->hw.hfcpci.fifo_en);
  738. Write_hfc(cs, HFCPCI_INT_M1, cs->hw.hfcpci.int_m1);
  739. spin_unlock_irqrestore(&cs->lock, flags);
  740. return (0);
  741. } /* hfcpci_auxcmd */
  742. /*****************************/
  743. /* E-channel receive routine */
  744. /*****************************/
  745. static void
  746. receive_emsg(struct IsdnCardState *cs)
  747. {
  748. int rcnt;
  749. int receive, count = 5;
  750. bzfifo_type *bz;
  751. u_char *bdata;
  752. z_type *zp;
  753. u_char *ptr, *ptr1, new_f2;
  754. int total, maxlen, new_z2;
  755. u_char e_buffer[256];
  756. bz = &((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.rxbz_b2;
  757. bdata = ((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.rxdat_b2;
  758. Begin:
  759. count--;
  760. if (test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
  761. debugl1(cs, "echo_rec_data blocked");
  762. return;
  763. }
  764. if (bz->f1 != bz->f2) {
  765. if (cs->debug & L1_DEB_ISAC)
  766. debugl1(cs, "hfcpci e_rec f1(%d) f2(%d)",
  767. bz->f1, bz->f2);
  768. zp = &bz->za[bz->f2];
  769. rcnt = zp->z1 - zp->z2;
  770. if (rcnt < 0)
  771. rcnt += B_FIFO_SIZE;
  772. rcnt++;
  773. if (cs->debug & L1_DEB_ISAC)
  774. debugl1(cs, "hfcpci e_rec z1(%x) z2(%x) cnt(%d)",
  775. zp->z1, zp->z2, rcnt);
  776. new_z2 = zp->z2 + rcnt; /* new position in fifo */
  777. if (new_z2 >= (B_FIFO_SIZE + B_SUB_VAL))
  778. new_z2 -= B_FIFO_SIZE; /* buffer wrap */
  779. new_f2 = (bz->f2 + 1) & MAX_B_FRAMES;
  780. if ((rcnt > 256 + 3) || (count < 4) ||
  781. (*(bdata + (zp->z1 - B_SUB_VAL)))) {
  782. if (cs->debug & L1_DEB_WARN)
  783. debugl1(cs, "hfcpci_empty_echan: incoming packet invalid length %d or crc", rcnt);
  784. bz->za[new_f2].z2 = new_z2;
  785. bz->f2 = new_f2; /* next buffer */
  786. } else {
  787. total = rcnt;
  788. rcnt -= 3;
  789. ptr = e_buffer;
  790. if (zp->z2 <= B_FIFO_SIZE + B_SUB_VAL)
  791. maxlen = rcnt; /* complete transfer */
  792. else
  793. maxlen = B_FIFO_SIZE + B_SUB_VAL - zp->z2; /* maximum */
  794. ptr1 = bdata + (zp->z2 - B_SUB_VAL); /* start of data */
  795. memcpy(ptr, ptr1, maxlen); /* copy data */
  796. rcnt -= maxlen;
  797. if (rcnt) { /* rest remaining */
  798. ptr += maxlen;
  799. ptr1 = bdata; /* start of buffer */
  800. memcpy(ptr, ptr1, rcnt); /* rest */
  801. }
  802. bz->za[new_f2].z2 = new_z2;
  803. bz->f2 = new_f2; /* next buffer */
  804. if (cs->debug & DEB_DLOG_HEX) {
  805. ptr = cs->dlog;
  806. if ((total - 3) < MAX_DLOG_SPACE / 3 - 10) {
  807. *ptr++ = 'E';
  808. *ptr++ = 'C';
  809. *ptr++ = 'H';
  810. *ptr++ = 'O';
  811. *ptr++ = ':';
  812. ptr += QuickHex(ptr, e_buffer, total - 3);
  813. ptr--;
  814. *ptr++ = '\n';
  815. *ptr = 0;
  816. HiSax_putstatus(cs, NULL, cs->dlog);
  817. } else
  818. HiSax_putstatus(cs, "LogEcho: ", "warning Frame too big (%d)", total - 3);
  819. }
  820. }
  821. rcnt = bz->f1 - bz->f2;
  822. if (rcnt < 0)
  823. rcnt += MAX_B_FRAMES + 1;
  824. if (rcnt > 1)
  825. receive = 1;
  826. else
  827. receive = 0;
  828. } else
  829. receive = 0;
  830. test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
  831. if (count && receive)
  832. goto Begin;
  833. return;
  834. } /* receive_emsg */
  835. /*********************/
  836. /* Interrupt handler */
  837. /*********************/
  838. static irqreturn_t
  839. hfcpci_interrupt(int intno, void *dev_id, struct pt_regs *regs)
  840. {
  841. u_long flags;
  842. struct IsdnCardState *cs = dev_id;
  843. u_char exval;
  844. struct BCState *bcs;
  845. int count = 15;
  846. u_char val, stat;
  847. if (!(cs->hw.hfcpci.int_m2 & 0x08)) {
  848. debugl1(cs, "HFC-PCI: int_m2 %x not initialised", cs->hw.hfcpci.int_m2);
  849. return IRQ_NONE; /* not initialised */
  850. }
  851. spin_lock_irqsave(&cs->lock, flags);
  852. if (HFCPCI_ANYINT & (stat = Read_hfc(cs, HFCPCI_STATUS))) {
  853. val = Read_hfc(cs, HFCPCI_INT_S1);
  854. if (cs->debug & L1_DEB_ISAC)
  855. debugl1(cs, "HFC-PCI: stat(%02x) s1(%02x)", stat, val);
  856. } else {
  857. spin_unlock_irqrestore(&cs->lock, flags);
  858. return IRQ_NONE;
  859. }
  860. if (cs->debug & L1_DEB_ISAC)
  861. debugl1(cs, "HFC-PCI irq %x %s", val,
  862. test_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags) ?
  863. "locked" : "unlocked");
  864. val &= cs->hw.hfcpci.int_m1;
  865. if (val & 0x40) { /* state machine irq */
  866. exval = Read_hfc(cs, HFCPCI_STATES) & 0xf;
  867. if (cs->debug & L1_DEB_ISAC)
  868. debugl1(cs, "ph_state chg %d->%d", cs->dc.hfcpci.ph_state,
  869. exval);
  870. cs->dc.hfcpci.ph_state = exval;
  871. sched_event_D_pci(cs, D_L1STATECHANGE);
  872. val &= ~0x40;
  873. }
  874. if (val & 0x80) { /* timer irq */
  875. if (cs->hw.hfcpci.nt_mode) {
  876. if ((--cs->hw.hfcpci.nt_timer) < 0)
  877. sched_event_D_pci(cs, D_L1STATECHANGE);
  878. }
  879. val &= ~0x80;
  880. Write_hfc(cs, HFCPCI_CTMT, cs->hw.hfcpci.ctmt | HFCPCI_CLTIMER);
  881. }
  882. while (val) {
  883. if (test_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
  884. cs->hw.hfcpci.int_s1 |= val;
  885. spin_unlock_irqrestore(&cs->lock, flags);
  886. return IRQ_HANDLED;
  887. }
  888. if (cs->hw.hfcpci.int_s1 & 0x18) {
  889. exval = val;
  890. val = cs->hw.hfcpci.int_s1;
  891. cs->hw.hfcpci.int_s1 = exval;
  892. }
  893. if (val & 0x08) {
  894. if (!(bcs = Sel_BCS(cs, cs->hw.hfcpci.bswapped ? 1 : 0))) {
  895. if (cs->debug)
  896. debugl1(cs, "hfcpci spurious 0x08 IRQ");
  897. } else
  898. main_rec_hfcpci(bcs);
  899. }
  900. if (val & 0x10) {
  901. if (cs->logecho)
  902. receive_emsg(cs);
  903. else if (!(bcs = Sel_BCS(cs, 1))) {
  904. if (cs->debug)
  905. debugl1(cs, "hfcpci spurious 0x10 IRQ");
  906. } else
  907. main_rec_hfcpci(bcs);
  908. }
  909. if (val & 0x01) {
  910. if (!(bcs = Sel_BCS(cs, cs->hw.hfcpci.bswapped ? 1 : 0))) {
  911. if (cs->debug)
  912. debugl1(cs, "hfcpci spurious 0x01 IRQ");
  913. } else {
  914. if (bcs->tx_skb) {
  915. if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
  916. hfcpci_fill_fifo(bcs);
  917. test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
  918. } else
  919. debugl1(cs, "fill_data %d blocked", bcs->channel);
  920. } else {
  921. if ((bcs->tx_skb = skb_dequeue(&bcs->squeue))) {
  922. if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
  923. hfcpci_fill_fifo(bcs);
  924. test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
  925. } else
  926. debugl1(cs, "fill_data %d blocked", bcs->channel);
  927. } else {
  928. hfcpci_sched_event(bcs, B_XMTBUFREADY);
  929. }
  930. }
  931. }
  932. }
  933. if (val & 0x02) {
  934. if (!(bcs = Sel_BCS(cs, 1))) {
  935. if (cs->debug)
  936. debugl1(cs, "hfcpci spurious 0x02 IRQ");
  937. } else {
  938. if (bcs->tx_skb) {
  939. if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
  940. hfcpci_fill_fifo(bcs);
  941. test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
  942. } else
  943. debugl1(cs, "fill_data %d blocked", bcs->channel);
  944. } else {
  945. if ((bcs->tx_skb = skb_dequeue(&bcs->squeue))) {
  946. if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
  947. hfcpci_fill_fifo(bcs);
  948. test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
  949. } else
  950. debugl1(cs, "fill_data %d blocked", bcs->channel);
  951. } else {
  952. hfcpci_sched_event(bcs, B_XMTBUFREADY);
  953. }
  954. }
  955. }
  956. }
  957. if (val & 0x20) { /* receive dframe */
  958. receive_dmsg(cs);
  959. }
  960. if (val & 0x04) { /* dframe transmitted */
  961. if (test_and_clear_bit(FLG_DBUSY_TIMER, &cs->HW_Flags))
  962. del_timer(&cs->dbusytimer);
  963. if (test_and_clear_bit(FLG_L1_DBUSY, &cs->HW_Flags))
  964. sched_event_D_pci(cs, D_CLEARBUSY);
  965. if (cs->tx_skb) {
  966. if (cs->tx_skb->len) {
  967. if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
  968. hfcpci_fill_dfifo(cs);
  969. test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
  970. } else {
  971. debugl1(cs, "hfcpci_fill_dfifo irq blocked");
  972. }
  973. goto afterXPR;
  974. } else {
  975. dev_kfree_skb_irq(cs->tx_skb);
  976. cs->tx_cnt = 0;
  977. cs->tx_skb = NULL;
  978. }
  979. }
  980. if ((cs->tx_skb = skb_dequeue(&cs->sq))) {
  981. cs->tx_cnt = 0;
  982. if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
  983. hfcpci_fill_dfifo(cs);
  984. test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
  985. } else {
  986. debugl1(cs, "hfcpci_fill_dfifo irq blocked");
  987. }
  988. } else
  989. sched_event_D_pci(cs, D_XMTBUFREADY);
  990. }
  991. afterXPR:
  992. if (cs->hw.hfcpci.int_s1 && count--) {
  993. val = cs->hw.hfcpci.int_s1;
  994. cs->hw.hfcpci.int_s1 = 0;
  995. if (cs->debug & L1_DEB_ISAC)
  996. debugl1(cs, "HFC-PCI irq %x loop %d", val, 15 - count);
  997. } else
  998. val = 0;
  999. }
  1000. spin_unlock_irqrestore(&cs->lock, flags);
  1001. return IRQ_HANDLED;
  1002. }
  1003. /********************************************************************/
  1004. /* timer callback for D-chan busy resolution. Currently no function */
  1005. /********************************************************************/
  1006. static void
  1007. hfcpci_dbusy_timer(struct IsdnCardState *cs)
  1008. {
  1009. }
  1010. /*************************************/
  1011. /* Layer 1 D-channel hardware access */
  1012. /*************************************/
  1013. static void
  1014. HFCPCI_l1hw(struct PStack *st, int pr, void *arg)
  1015. {
  1016. u_long flags;
  1017. struct IsdnCardState *cs = (struct IsdnCardState *) st->l1.hardware;
  1018. struct sk_buff *skb = arg;
  1019. switch (pr) {
  1020. case (PH_DATA | REQUEST):
  1021. if (cs->debug & DEB_DLOG_HEX)
  1022. LogFrame(cs, skb->data, skb->len);
  1023. if (cs->debug & DEB_DLOG_VERBOSE)
  1024. dlogframe(cs, skb, 0);
  1025. spin_lock_irqsave(&cs->lock, flags);
  1026. if (cs->tx_skb) {
  1027. skb_queue_tail(&cs->sq, skb);
  1028. #ifdef L2FRAME_DEBUG /* psa */
  1029. if (cs->debug & L1_DEB_LAPD)
  1030. Logl2Frame(cs, skb, "PH_DATA Queued", 0);
  1031. #endif
  1032. } else {
  1033. cs->tx_skb = skb;
  1034. cs->tx_cnt = 0;
  1035. #ifdef L2FRAME_DEBUG /* psa */
  1036. if (cs->debug & L1_DEB_LAPD)
  1037. Logl2Frame(cs, skb, "PH_DATA", 0);
  1038. #endif
  1039. if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
  1040. hfcpci_fill_dfifo(cs);
  1041. test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
  1042. } else
  1043. debugl1(cs, "hfcpci_fill_dfifo blocked");
  1044. }
  1045. spin_unlock_irqrestore(&cs->lock, flags);
  1046. break;
  1047. case (PH_PULL | INDICATION):
  1048. spin_lock_irqsave(&cs->lock, flags);
  1049. if (cs->tx_skb) {
  1050. if (cs->debug & L1_DEB_WARN)
  1051. debugl1(cs, " l2l1 tx_skb exist this shouldn't happen");
  1052. skb_queue_tail(&cs->sq, skb);
  1053. spin_unlock_irqrestore(&cs->lock, flags);
  1054. break;
  1055. }
  1056. if (cs->debug & DEB_DLOG_HEX)
  1057. LogFrame(cs, skb->data, skb->len);
  1058. if (cs->debug & DEB_DLOG_VERBOSE)
  1059. dlogframe(cs, skb, 0);
  1060. cs->tx_skb = skb;
  1061. cs->tx_cnt = 0;
  1062. #ifdef L2FRAME_DEBUG /* psa */
  1063. if (cs->debug & L1_DEB_LAPD)
  1064. Logl2Frame(cs, skb, "PH_DATA_PULLED", 0);
  1065. #endif
  1066. if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
  1067. hfcpci_fill_dfifo(cs);
  1068. test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
  1069. } else
  1070. debugl1(cs, "hfcpci_fill_dfifo blocked");
  1071. spin_unlock_irqrestore(&cs->lock, flags);
  1072. break;
  1073. case (PH_PULL | REQUEST):
  1074. #ifdef L2FRAME_DEBUG /* psa */
  1075. if (cs->debug & L1_DEB_LAPD)
  1076. debugl1(cs, "-> PH_REQUEST_PULL");
  1077. #endif
  1078. if (!cs->tx_skb) {
  1079. test_and_clear_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
  1080. st->l1.l1l2(st, PH_PULL | CONFIRM, NULL);
  1081. } else
  1082. test_and_set_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
  1083. break;
  1084. case (HW_RESET | REQUEST):
  1085. spin_lock_irqsave(&cs->lock, flags);
  1086. Write_hfc(cs, HFCPCI_STATES, HFCPCI_LOAD_STATE | 3); /* HFC ST 3 */
  1087. udelay(6);
  1088. Write_hfc(cs, HFCPCI_STATES, 3); /* HFC ST 2 */
  1089. cs->hw.hfcpci.mst_m |= HFCPCI_MASTER;
  1090. Write_hfc(cs, HFCPCI_MST_MODE, cs->hw.hfcpci.mst_m);
  1091. Write_hfc(cs, HFCPCI_STATES, HFCPCI_ACTIVATE | HFCPCI_DO_ACTION);
  1092. spin_unlock_irqrestore(&cs->lock, flags);
  1093. l1_msg(cs, HW_POWERUP | CONFIRM, NULL);
  1094. break;
  1095. case (HW_ENABLE | REQUEST):
  1096. spin_lock_irqsave(&cs->lock, flags);
  1097. Write_hfc(cs, HFCPCI_STATES, HFCPCI_DO_ACTION);
  1098. spin_unlock_irqrestore(&cs->lock, flags);
  1099. break;
  1100. case (HW_DEACTIVATE | REQUEST):
  1101. spin_lock_irqsave(&cs->lock, flags);
  1102. cs->hw.hfcpci.mst_m &= ~HFCPCI_MASTER;
  1103. Write_hfc(cs, HFCPCI_MST_MODE, cs->hw.hfcpci.mst_m);
  1104. spin_unlock_irqrestore(&cs->lock, flags);
  1105. break;
  1106. case (HW_INFO3 | REQUEST):
  1107. spin_lock_irqsave(&cs->lock, flags);
  1108. cs->hw.hfcpci.mst_m |= HFCPCI_MASTER;
  1109. Write_hfc(cs, HFCPCI_MST_MODE, cs->hw.hfcpci.mst_m);
  1110. spin_unlock_irqrestore(&cs->lock, flags);
  1111. break;
  1112. case (HW_TESTLOOP | REQUEST):
  1113. spin_lock_irqsave(&cs->lock, flags);
  1114. switch ((int) arg) {
  1115. case (1):
  1116. Write_hfc(cs, HFCPCI_B1_SSL, 0x80); /* tx slot */
  1117. Write_hfc(cs, HFCPCI_B1_RSL, 0x80); /* rx slot */
  1118. cs->hw.hfcpci.conn = (cs->hw.hfcpci.conn & ~7) | 1;
  1119. Write_hfc(cs, HFCPCI_CONNECT, cs->hw.hfcpci.conn);
  1120. break;
  1121. case (2):
  1122. Write_hfc(cs, HFCPCI_B2_SSL, 0x81); /* tx slot */
  1123. Write_hfc(cs, HFCPCI_B2_RSL, 0x81); /* rx slot */
  1124. cs->hw.hfcpci.conn = (cs->hw.hfcpci.conn & ~0x38) | 0x08;
  1125. Write_hfc(cs, HFCPCI_CONNECT, cs->hw.hfcpci.conn);
  1126. break;
  1127. default:
  1128. spin_unlock_irqrestore(&cs->lock, flags);
  1129. if (cs->debug & L1_DEB_WARN)
  1130. debugl1(cs, "hfcpci_l1hw loop invalid %4x", (int) arg);
  1131. return;
  1132. }
  1133. cs->hw.hfcpci.trm |= 0x80; /* enable IOM-loop */
  1134. Write_hfc(cs, HFCPCI_TRM, cs->hw.hfcpci.trm);
  1135. spin_unlock_irqrestore(&cs->lock, flags);
  1136. break;
  1137. default:
  1138. if (cs->debug & L1_DEB_WARN)
  1139. debugl1(cs, "hfcpci_l1hw unknown pr %4x", pr);
  1140. break;
  1141. }
  1142. }
  1143. /***********************************************/
  1144. /* called during init setting l1 stack pointer */
  1145. /***********************************************/
  1146. static void
  1147. setstack_hfcpci(struct PStack *st, struct IsdnCardState *cs)
  1148. {
  1149. st->l1.l1hw = HFCPCI_l1hw;
  1150. }
  1151. /**************************************/
  1152. /* send B-channel data if not blocked */
  1153. /**************************************/
  1154. static void
  1155. hfcpci_send_data(struct BCState *bcs)
  1156. {
  1157. struct IsdnCardState *cs = bcs->cs;
  1158. if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
  1159. hfcpci_fill_fifo(bcs);
  1160. test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
  1161. } else
  1162. debugl1(cs, "send_data %d blocked", bcs->channel);
  1163. }
  1164. /***************************************************************/
  1165. /* activate/deactivate hardware for selected channels and mode */
  1166. /***************************************************************/
  1167. static void
  1168. mode_hfcpci(struct BCState *bcs, int mode, int bc)
  1169. {
  1170. struct IsdnCardState *cs = bcs->cs;
  1171. int fifo2;
  1172. if (cs->debug & L1_DEB_HSCX)
  1173. debugl1(cs, "HFCPCI bchannel mode %d bchan %d/%d",
  1174. mode, bc, bcs->channel);
  1175. bcs->mode = mode;
  1176. bcs->channel = bc;
  1177. fifo2 = bc;
  1178. if (cs->chanlimit > 1) {
  1179. cs->hw.hfcpci.bswapped = 0; /* B1 and B2 normal mode */
  1180. cs->hw.hfcpci.sctrl_e &= ~0x80;
  1181. } else {
  1182. if (bc) {
  1183. if (mode != L1_MODE_NULL) {
  1184. cs->hw.hfcpci.bswapped = 1; /* B1 and B2 exchanged */
  1185. cs->hw.hfcpci.sctrl_e |= 0x80;
  1186. } else {
  1187. cs->hw.hfcpci.bswapped = 0; /* B1 and B2 normal mode */
  1188. cs->hw.hfcpci.sctrl_e &= ~0x80;
  1189. }
  1190. fifo2 = 0;
  1191. } else {
  1192. cs->hw.hfcpci.bswapped = 0; /* B1 and B2 normal mode */
  1193. cs->hw.hfcpci.sctrl_e &= ~0x80;
  1194. }
  1195. }
  1196. switch (mode) {
  1197. case (L1_MODE_NULL):
  1198. if (bc) {
  1199. cs->hw.hfcpci.sctrl &= ~SCTRL_B2_ENA;
  1200. cs->hw.hfcpci.sctrl_r &= ~SCTRL_B2_ENA;
  1201. } else {
  1202. cs->hw.hfcpci.sctrl &= ~SCTRL_B1_ENA;
  1203. cs->hw.hfcpci.sctrl_r &= ~SCTRL_B1_ENA;
  1204. }
  1205. if (fifo2) {
  1206. cs->hw.hfcpci.fifo_en &= ~HFCPCI_FIFOEN_B2;
  1207. cs->hw.hfcpci.int_m1 &= ~(HFCPCI_INTS_B2TRANS + HFCPCI_INTS_B2REC);
  1208. } else {
  1209. cs->hw.hfcpci.fifo_en &= ~HFCPCI_FIFOEN_B1;
  1210. cs->hw.hfcpci.int_m1 &= ~(HFCPCI_INTS_B1TRANS + HFCPCI_INTS_B1REC);
  1211. }
  1212. break;
  1213. case (L1_MODE_TRANS):
  1214. hfcpci_clear_fifo_rx(cs, fifo2);
  1215. hfcpci_clear_fifo_tx(cs, fifo2);
  1216. if (bc) {
  1217. cs->hw.hfcpci.sctrl |= SCTRL_B2_ENA;
  1218. cs->hw.hfcpci.sctrl_r |= SCTRL_B2_ENA;
  1219. } else {
  1220. cs->hw.hfcpci.sctrl |= SCTRL_B1_ENA;
  1221. cs->hw.hfcpci.sctrl_r |= SCTRL_B1_ENA;
  1222. }
  1223. if (fifo2) {
  1224. cs->hw.hfcpci.fifo_en |= HFCPCI_FIFOEN_B2;
  1225. cs->hw.hfcpci.int_m1 |= (HFCPCI_INTS_B2TRANS + HFCPCI_INTS_B2REC);
  1226. cs->hw.hfcpci.ctmt |= 2;
  1227. cs->hw.hfcpci.conn &= ~0x18;
  1228. } else {
  1229. cs->hw.hfcpci.fifo_en |= HFCPCI_FIFOEN_B1;
  1230. cs->hw.hfcpci.int_m1 |= (HFCPCI_INTS_B1TRANS + HFCPCI_INTS_B1REC);
  1231. cs->hw.hfcpci.ctmt |= 1;
  1232. cs->hw.hfcpci.conn &= ~0x03;
  1233. }
  1234. break;
  1235. case (L1_MODE_HDLC):
  1236. hfcpci_clear_fifo_rx(cs, fifo2);
  1237. hfcpci_clear_fifo_tx(cs, fifo2);
  1238. if (bc) {
  1239. cs->hw.hfcpci.sctrl |= SCTRL_B2_ENA;
  1240. cs->hw.hfcpci.sctrl_r |= SCTRL_B2_ENA;
  1241. } else {
  1242. cs->hw.hfcpci.sctrl |= SCTRL_B1_ENA;
  1243. cs->hw.hfcpci.sctrl_r |= SCTRL_B1_ENA;
  1244. }
  1245. if (fifo2) {
  1246. cs->hw.hfcpci.last_bfifo_cnt[1] = 0;
  1247. cs->hw.hfcpci.fifo_en |= HFCPCI_FIFOEN_B2;
  1248. cs->hw.hfcpci.int_m1 |= (HFCPCI_INTS_B2TRANS + HFCPCI_INTS_B2REC);
  1249. cs->hw.hfcpci.ctmt &= ~2;
  1250. cs->hw.hfcpci.conn &= ~0x18;
  1251. } else {
  1252. cs->hw.hfcpci.last_bfifo_cnt[0] = 0;
  1253. cs->hw.hfcpci.fifo_en |= HFCPCI_FIFOEN_B1;
  1254. cs->hw.hfcpci.int_m1 |= (HFCPCI_INTS_B1TRANS + HFCPCI_INTS_B1REC);
  1255. cs->hw.hfcpci.ctmt &= ~1;
  1256. cs->hw.hfcpci.conn &= ~0x03;
  1257. }
  1258. break;
  1259. case (L1_MODE_EXTRN):
  1260. if (bc) {
  1261. cs->hw.hfcpci.conn |= 0x10;
  1262. cs->hw.hfcpci.sctrl |= SCTRL_B2_ENA;
  1263. cs->hw.hfcpci.sctrl_r |= SCTRL_B2_ENA;
  1264. cs->hw.hfcpci.fifo_en &= ~HFCPCI_FIFOEN_B2;
  1265. cs->hw.hfcpci.int_m1 &= ~(HFCPCI_INTS_B2TRANS + HFCPCI_INTS_B2REC);
  1266. } else {
  1267. cs->hw.hfcpci.conn |= 0x02;
  1268. cs->hw.hfcpci.sctrl |= SCTRL_B1_ENA;
  1269. cs->hw.hfcpci.sctrl_r |= SCTRL_B1_ENA;
  1270. cs->hw.hfcpci.fifo_en &= ~HFCPCI_FIFOEN_B1;
  1271. cs->hw.hfcpci.int_m1 &= ~(HFCPCI_INTS_B1TRANS + HFCPCI_INTS_B1REC);
  1272. }
  1273. break;
  1274. }
  1275. Write_hfc(cs, HFCPCI_SCTRL_E, cs->hw.hfcpci.sctrl_e);
  1276. Write_hfc(cs, HFCPCI_INT_M1, cs->hw.hfcpci.int_m1);
  1277. Write_hfc(cs, HFCPCI_FIFO_EN, cs->hw.hfcpci.fifo_en);
  1278. Write_hfc(cs, HFCPCI_SCTRL, cs->hw.hfcpci.sctrl);
  1279. Write_hfc(cs, HFCPCI_SCTRL_R, cs->hw.hfcpci.sctrl_r);
  1280. Write_hfc(cs, HFCPCI_CTMT, cs->hw.hfcpci.ctmt);
  1281. Write_hfc(cs, HFCPCI_CONNECT, cs->hw.hfcpci.conn);
  1282. }
  1283. /******************************/
  1284. /* Layer2 -> Layer 1 Transfer */
  1285. /******************************/
  1286. static void
  1287. hfcpci_l2l1(struct PStack *st, int pr, void *arg)
  1288. {
  1289. struct BCState *bcs = st->l1.bcs;
  1290. u_long flags;
  1291. struct sk_buff *skb = arg;
  1292. switch (pr) {
  1293. case (PH_DATA | REQUEST):
  1294. spin_lock_irqsave(&bcs->cs->lock, flags);
  1295. if (bcs->tx_skb) {
  1296. skb_queue_tail(&bcs->squeue, skb);
  1297. } else {
  1298. bcs->tx_skb = skb;
  1299. // test_and_set_bit(BC_FLG_BUSY, &bcs->Flag);
  1300. bcs->cs->BC_Send_Data(bcs);
  1301. }
  1302. spin_unlock_irqrestore(&bcs->cs->lock, flags);
  1303. break;
  1304. case (PH_PULL | INDICATION):
  1305. spin_lock_irqsave(&bcs->cs->lock, flags);
  1306. if (bcs->tx_skb) {
  1307. spin_unlock_irqrestore(&bcs->cs->lock, flags);
  1308. printk(KERN_WARNING "hfc_l2l1: this shouldn't happen\n");
  1309. break;
  1310. }
  1311. // test_and_set_bit(BC_FLG_BUSY, &bcs->Flag);
  1312. bcs->tx_skb = skb;
  1313. bcs->cs->BC_Send_Data(bcs);
  1314. spin_unlock_irqrestore(&bcs->cs->lock, flags);
  1315. break;
  1316. case (PH_PULL | REQUEST):
  1317. if (!bcs->tx_skb) {
  1318. test_and_clear_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
  1319. st->l1.l1l2(st, PH_PULL | CONFIRM, NULL);
  1320. } else
  1321. test_and_set_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
  1322. break;
  1323. case (PH_ACTIVATE | REQUEST):
  1324. spin_lock_irqsave(&bcs->cs->lock, flags);
  1325. test_and_set_bit(BC_FLG_ACTIV, &bcs->Flag);
  1326. mode_hfcpci(bcs, st->l1.mode, st->l1.bc);
  1327. spin_unlock_irqrestore(&bcs->cs->lock, flags);
  1328. l1_msg_b(st, pr, arg);
  1329. break;
  1330. case (PH_DEACTIVATE | REQUEST):
  1331. l1_msg_b(st, pr, arg);
  1332. break;
  1333. case (PH_DEACTIVATE | CONFIRM):
  1334. spin_lock_irqsave(&bcs->cs->lock, flags);
  1335. test_and_clear_bit(BC_FLG_ACTIV, &bcs->Flag);
  1336. test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
  1337. mode_hfcpci(bcs, 0, st->l1.bc);
  1338. spin_unlock_irqrestore(&bcs->cs->lock, flags);
  1339. st->l1.l1l2(st, PH_DEACTIVATE | CONFIRM, NULL);
  1340. break;
  1341. }
  1342. }
  1343. /******************************************/
  1344. /* deactivate B-channel access and queues */
  1345. /******************************************/
  1346. static void
  1347. close_hfcpci(struct BCState *bcs)
  1348. {
  1349. mode_hfcpci(bcs, 0, bcs->channel);
  1350. if (test_and_clear_bit(BC_FLG_INIT, &bcs->Flag)) {
  1351. skb_queue_purge(&bcs->rqueue);
  1352. skb_queue_purge(&bcs->squeue);
  1353. if (bcs->tx_skb) {
  1354. dev_kfree_skb_any(bcs->tx_skb);
  1355. bcs->tx_skb = NULL;
  1356. test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
  1357. }
  1358. }
  1359. }
  1360. /*************************************/
  1361. /* init B-channel queues and control */
  1362. /*************************************/
  1363. static int
  1364. open_hfcpcistate(struct IsdnCardState *cs, struct BCState *bcs)
  1365. {
  1366. if (!test_and_set_bit(BC_FLG_INIT, &bcs->Flag)) {
  1367. skb_queue_head_init(&bcs->rqueue);
  1368. skb_queue_head_init(&bcs->squeue);
  1369. }
  1370. bcs->tx_skb = NULL;
  1371. test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
  1372. bcs->event = 0;
  1373. bcs->tx_cnt = 0;
  1374. return (0);
  1375. }
  1376. /*********************************/
  1377. /* inits the stack for B-channel */
  1378. /*********************************/
  1379. static int
  1380. setstack_2b(struct PStack *st, struct BCState *bcs)
  1381. {
  1382. bcs->channel = st->l1.bc;
  1383. if (open_hfcpcistate(st->l1.hardware, bcs))
  1384. return (-1);
  1385. st->l1.bcs = bcs;
  1386. st->l2.l2l1 = hfcpci_l2l1;
  1387. setstack_manager(st);
  1388. bcs->st = st;
  1389. setstack_l1_B(st);
  1390. return (0);
  1391. }
  1392. /***************************/
  1393. /* handle L1 state changes */
  1394. /***************************/
  1395. static void
  1396. hfcpci_bh(struct IsdnCardState *cs)
  1397. {
  1398. u_long flags;
  1399. // struct PStack *stptr;
  1400. if (!cs)
  1401. return;
  1402. if (test_and_clear_bit(D_L1STATECHANGE, &cs->event)) {
  1403. if (!cs->hw.hfcpci.nt_mode)
  1404. switch (cs->dc.hfcpci.ph_state) {
  1405. case (0):
  1406. l1_msg(cs, HW_RESET | INDICATION, NULL);
  1407. break;
  1408. case (3):
  1409. l1_msg(cs, HW_DEACTIVATE | INDICATION, NULL);
  1410. break;
  1411. case (8):
  1412. l1_msg(cs, HW_RSYNC | INDICATION, NULL);
  1413. break;
  1414. case (6):
  1415. l1_msg(cs, HW_INFO2 | INDICATION, NULL);
  1416. break;
  1417. case (7):
  1418. l1_msg(cs, HW_INFO4_P8 | INDICATION, NULL);
  1419. break;
  1420. default:
  1421. break;
  1422. } else {
  1423. spin_lock_irqsave(&cs->lock, flags);
  1424. switch (cs->dc.hfcpci.ph_state) {
  1425. case (2):
  1426. if (cs->hw.hfcpci.nt_timer < 0) {
  1427. cs->hw.hfcpci.nt_timer = 0;
  1428. cs->hw.hfcpci.int_m1 &= ~HFCPCI_INTS_TIMER;
  1429. Write_hfc(cs, HFCPCI_INT_M1, cs->hw.hfcpci.int_m1);
  1430. /* Clear already pending ints */
  1431. if (Read_hfc(cs, HFCPCI_INT_S1));
  1432. Write_hfc(cs, HFCPCI_STATES, 4 | HFCPCI_LOAD_STATE);
  1433. udelay(10);
  1434. Write_hfc(cs, HFCPCI_STATES, 4);
  1435. cs->dc.hfcpci.ph_state = 4;
  1436. } else {
  1437. cs->hw.hfcpci.int_m1 |= HFCPCI_INTS_TIMER;
  1438. Write_hfc(cs, HFCPCI_INT_M1, cs->hw.hfcpci.int_m1);
  1439. cs->hw.hfcpci.ctmt &= ~HFCPCI_AUTO_TIMER;
  1440. cs->hw.hfcpci.ctmt |= HFCPCI_TIM3_125;
  1441. Write_hfc(cs, HFCPCI_CTMT, cs->hw.hfcpci.ctmt | HFCPCI_CLTIMER);
  1442. Write_hfc(cs, HFCPCI_CTMT, cs->hw.hfcpci.ctmt | HFCPCI_CLTIMER);
  1443. cs->hw.hfcpci.nt_timer = NT_T1_COUNT;
  1444. Write_hfc(cs, HFCPCI_STATES, 2 | HFCPCI_NT_G2_G3); /* allow G2 -> G3 transition */
  1445. }
  1446. break;
  1447. case (1):
  1448. case (3):
  1449. case (4):
  1450. cs->hw.hfcpci.nt_timer = 0;
  1451. cs->hw.hfcpci.int_m1 &= ~HFCPCI_INTS_TIMER;
  1452. Write_hfc(cs, HFCPCI_INT_M1, cs->hw.hfcpci.int_m1);
  1453. break;
  1454. default:
  1455. break;
  1456. }
  1457. spin_unlock_irqrestore(&cs->lock, flags);
  1458. }
  1459. }
  1460. if (test_and_clear_bit(D_RCVBUFREADY, &cs->event))
  1461. DChannel_proc_rcv(cs);
  1462. if (test_and_clear_bit(D_XMTBUFREADY, &cs->event))
  1463. DChannel_proc_xmt(cs);
  1464. }
  1465. /********************************/
  1466. /* called for card init message */
  1467. /********************************/
  1468. static void __init
  1469. inithfcpci(struct IsdnCardState *cs)
  1470. {
  1471. cs->bcs[0].BC_SetStack = setstack_2b;
  1472. cs->bcs[1].BC_SetStack = setstack_2b;
  1473. cs->bcs[0].BC_Close = close_hfcpci;
  1474. cs->bcs[1].BC_Close = close_hfcpci;
  1475. cs->dbusytimer.function = (void *) hfcpci_dbusy_timer;
  1476. cs->dbusytimer.data = (long) cs;
  1477. init_timer(&cs->dbusytimer);
  1478. mode_hfcpci(cs->bcs, 0, 0);
  1479. mode_hfcpci(cs->bcs + 1, 0, 1);
  1480. }
  1481. /*******************************************/
  1482. /* handle card messages from control layer */
  1483. /*******************************************/
  1484. static int
  1485. hfcpci_card_msg(struct IsdnCardState *cs, int mt, void *arg)
  1486. {
  1487. u_long flags;
  1488. if (cs->debug & L1_DEB_ISAC)
  1489. debugl1(cs, "HFCPCI: card_msg %x", mt);
  1490. switch (mt) {
  1491. case CARD_RESET:
  1492. spin_lock_irqsave(&cs->lock, flags);
  1493. reset_hfcpci(cs);
  1494. spin_unlock_irqrestore(&cs->lock, flags);
  1495. return (0);
  1496. case CARD_RELEASE:
  1497. release_io_hfcpci(cs);
  1498. return (0);
  1499. case CARD_INIT:
  1500. spin_lock_irqsave(&cs->lock, flags);
  1501. inithfcpci(cs);
  1502. reset_hfcpci(cs);
  1503. spin_unlock_irqrestore(&cs->lock, flags);
  1504. msleep(80); /* Timeout 80ms */
  1505. /* now switch timer interrupt off */
  1506. spin_lock_irqsave(&cs->lock, flags);
  1507. cs->hw.hfcpci.int_m1 &= ~HFCPCI_INTS_TIMER;
  1508. Write_hfc(cs, HFCPCI_INT_M1, cs->hw.hfcpci.int_m1);
  1509. /* reinit mode reg */
  1510. Write_hfc(cs, HFCPCI_MST_MODE, cs->hw.hfcpci.mst_m);
  1511. spin_unlock_irqrestore(&cs->lock, flags);
  1512. return (0);
  1513. case CARD_TEST:
  1514. return (0);
  1515. }
  1516. return (0);
  1517. }
  1518. /* this variable is used as card index when more than one cards are present */
  1519. static struct pci_dev *dev_hfcpci __initdata = NULL;
  1520. #endif /* CONFIG_PCI */
  1521. int __init
  1522. setup_hfcpci(struct IsdnCard *card)
  1523. {
  1524. u_long flags;
  1525. struct IsdnCardState *cs = card->cs;
  1526. char tmp[64];
  1527. int i;
  1528. struct pci_dev *tmp_hfcpci = NULL;
  1529. #ifdef __BIG_ENDIAN
  1530. #error "not running on big endian machines now"
  1531. #endif
  1532. strcpy(tmp, hfcpci_revision);
  1533. printk(KERN_INFO "HiSax: HFC-PCI driver Rev. %s\n", HiSax_getrev(tmp));
  1534. #ifdef CONFIG_PCI
  1535. cs->hw.hfcpci.int_s1 = 0;
  1536. cs->dc.hfcpci.ph_state = 0;
  1537. cs->hw.hfcpci.fifo = 255;
  1538. if (cs->typ == ISDN_CTYPE_HFC_PCI) {
  1539. i = 0;
  1540. while (id_list[i].vendor_id) {
  1541. tmp_hfcpci = pci_find_device(id_list[i].vendor_id,
  1542. id_list[i].device_id,
  1543. dev_hfcpci);
  1544. i++;
  1545. if (tmp_hfcpci) {
  1546. if (pci_enable_device(tmp_hfcpci))
  1547. continue;
  1548. pci_set_master(tmp_hfcpci);
  1549. if ((card->para[0]) && (card->para[0] != (tmp_hfcpci->resource[ 0].start & PCI_BASE_ADDRESS_IO_MASK)))
  1550. continue;
  1551. else
  1552. break;
  1553. }
  1554. }
  1555. if (tmp_hfcpci) {
  1556. i--;
  1557. dev_hfcpci = tmp_hfcpci; /* old device */
  1558. cs->hw.hfcpci.dev = dev_hfcpci;
  1559. cs->irq = dev_hfcpci->irq;
  1560. if (!cs->irq) {
  1561. printk(KERN_WARNING "HFC-PCI: No IRQ for PCI card found\n");
  1562. return (0);
  1563. }
  1564. cs->hw.hfcpci.pci_io = (char *) dev_hfcpci->resource[ 1].start;
  1565. printk(KERN_INFO "HiSax: HFC-PCI card manufacturer: %s card name: %s\n", id_list[i].vendor_name, id_list[i].card_name);
  1566. } else {
  1567. printk(KERN_WARNING "HFC-PCI: No PCI card found\n");
  1568. return (0);
  1569. }
  1570. if (!cs->hw.hfcpci.pci_io) {
  1571. printk(KERN_WARNING "HFC-PCI: No IO-Mem for PCI card found\n");
  1572. return (0);
  1573. }
  1574. /* Allocate memory for FIFOS */
  1575. /* Because the HFC-PCI needs a 32K physical alignment, we */
  1576. /* need to allocate the double mem and align the address */
  1577. if (!(cs->hw.hfcpci.share_start = kmalloc(65536, GFP_KERNEL))) {
  1578. printk(KERN_WARNING "HFC-PCI: Error allocating memory for FIFO!\n");
  1579. return 0;
  1580. }
  1581. cs->hw.hfcpci.fifos = (void *)
  1582. (((ulong) cs->hw.hfcpci.share_start) & ~0x7FFF) + 0x8000;
  1583. pci_write_config_dword(cs->hw.hfcpci.dev, 0x80, (u_int) virt_to_bus(cs->hw.hfcpci.fifos));
  1584. cs->hw.hfcpci.pci_io = ioremap((ulong) cs->hw.hfcpci.pci_io, 256);
  1585. printk(KERN_INFO
  1586. "HFC-PCI: defined at mem %#x fifo %#x(%#x) IRQ %d HZ %d\n",
  1587. (u_int) cs->hw.hfcpci.pci_io,
  1588. (u_int) cs->hw.hfcpci.fifos,
  1589. (u_int) virt_to_bus(cs->hw.hfcpci.fifos),
  1590. cs->irq, HZ);
  1591. spin_lock_irqsave(&cs->lock, flags);
  1592. pci_write_config_word(cs->hw.hfcpci.dev, PCI_COMMAND, PCI_ENA_MEMIO); /* enable memory mapped ports, disable busmaster */
  1593. cs->hw.hfcpci.int_m2 = 0; /* disable alle interrupts */
  1594. cs->hw.hfcpci.int_m1 = 0;
  1595. Write_hfc(cs, HFCPCI_INT_M1, cs->hw.hfcpci.int_m1);
  1596. Write_hfc(cs, HFCPCI_INT_M2, cs->hw.hfcpci.int_m2);
  1597. /* At this point the needed PCI config is done */
  1598. /* fifos are still not enabled */
  1599. INIT_WORK(&cs->tqueue, (void *)(void *) hfcpci_bh, cs);
  1600. cs->setstack_d = setstack_hfcpci;
  1601. cs->BC_Send_Data = &hfcpci_send_data;
  1602. cs->readisac = NULL;
  1603. cs->writeisac = NULL;
  1604. cs->readisacfifo = NULL;
  1605. cs->writeisacfifo = NULL;
  1606. cs->BC_Read_Reg = NULL;
  1607. cs->BC_Write_Reg = NULL;
  1608. cs->irq_func = &hfcpci_interrupt;
  1609. cs->irq_flags |= SA_SHIRQ;
  1610. cs->hw.hfcpci.timer.function = (void *) hfcpci_Timer;
  1611. cs->hw.hfcpci.timer.data = (long) cs;
  1612. init_timer(&cs->hw.hfcpci.timer);
  1613. cs->cardmsg = &hfcpci_card_msg;
  1614. cs->auxcmd = &hfcpci_auxcmd;
  1615. spin_unlock_irqrestore(&cs->lock, flags);
  1616. return (1);
  1617. } else
  1618. return (0); /* no valid card type */
  1619. #else
  1620. printk(KERN_WARNING "HFC-PCI: NO_PCI_BIOS\n");
  1621. return (0);
  1622. #endif /* CONFIG_PCI */
  1623. }