ieee1394_transactions.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604
  1. /*
  2. * IEEE 1394 for Linux
  3. *
  4. * Transaction support.
  5. *
  6. * Copyright (C) 1999 Andreas E. Bombe
  7. *
  8. * This code is licensed under the GPL. See the file COPYING in the root
  9. * directory of the kernel sources for details.
  10. */
  11. #include <linux/sched.h>
  12. #include <linux/bitops.h>
  13. #include <linux/smp_lock.h>
  14. #include <linux/interrupt.h>
  15. #include <asm/errno.h>
  16. #include "ieee1394.h"
  17. #include "ieee1394_types.h"
  18. #include "hosts.h"
  19. #include "ieee1394_core.h"
  20. #include "highlevel.h"
  21. #include "nodemgr.h"
  22. #define PREP_ASYNC_HEAD_ADDRESS(tc) \
  23. packet->tcode = tc; \
  24. packet->header[0] = (packet->node_id << 16) | (packet->tlabel << 10) \
  25. | (1 << 8) | (tc << 4); \
  26. packet->header[1] = (packet->host->node_id << 16) | (addr >> 32); \
  27. packet->header[2] = addr & 0xffffffff
  28. static void fill_async_readquad(struct hpsb_packet *packet, u64 addr)
  29. {
  30. PREP_ASYNC_HEAD_ADDRESS(TCODE_READQ);
  31. packet->header_size = 12;
  32. packet->data_size = 0;
  33. packet->expect_response = 1;
  34. }
  35. static void fill_async_readblock(struct hpsb_packet *packet, u64 addr, int length)
  36. {
  37. PREP_ASYNC_HEAD_ADDRESS(TCODE_READB);
  38. packet->header[3] = length << 16;
  39. packet->header_size = 16;
  40. packet->data_size = 0;
  41. packet->expect_response = 1;
  42. }
  43. static void fill_async_writequad(struct hpsb_packet *packet, u64 addr, quadlet_t data)
  44. {
  45. PREP_ASYNC_HEAD_ADDRESS(TCODE_WRITEQ);
  46. packet->header[3] = data;
  47. packet->header_size = 16;
  48. packet->data_size = 0;
  49. packet->expect_response = 1;
  50. }
  51. static void fill_async_writeblock(struct hpsb_packet *packet, u64 addr, int length)
  52. {
  53. PREP_ASYNC_HEAD_ADDRESS(TCODE_WRITEB);
  54. packet->header[3] = length << 16;
  55. packet->header_size = 16;
  56. packet->expect_response = 1;
  57. packet->data_size = length + (length % 4 ? 4 - (length % 4) : 0);
  58. }
  59. static void fill_async_lock(struct hpsb_packet *packet, u64 addr, int extcode,
  60. int length)
  61. {
  62. PREP_ASYNC_HEAD_ADDRESS(TCODE_LOCK_REQUEST);
  63. packet->header[3] = (length << 16) | extcode;
  64. packet->header_size = 16;
  65. packet->data_size = length;
  66. packet->expect_response = 1;
  67. }
  68. static void fill_iso_packet(struct hpsb_packet *packet, int length, int channel,
  69. int tag, int sync)
  70. {
  71. packet->header[0] = (length << 16) | (tag << 14) | (channel << 8)
  72. | (TCODE_ISO_DATA << 4) | sync;
  73. packet->header_size = 4;
  74. packet->data_size = length;
  75. packet->type = hpsb_iso;
  76. packet->tcode = TCODE_ISO_DATA;
  77. }
  78. static void fill_phy_packet(struct hpsb_packet *packet, quadlet_t data)
  79. {
  80. packet->header[0] = data;
  81. packet->header[1] = ~data;
  82. packet->header_size = 8;
  83. packet->data_size = 0;
  84. packet->expect_response = 0;
  85. packet->type = hpsb_raw; /* No CRC added */
  86. packet->speed_code = IEEE1394_SPEED_100; /* Force speed to be 100Mbps */
  87. }
  88. static void fill_async_stream_packet(struct hpsb_packet *packet, int length,
  89. int channel, int tag, int sync)
  90. {
  91. packet->header[0] = (length << 16) | (tag << 14) | (channel << 8)
  92. | (TCODE_STREAM_DATA << 4) | sync;
  93. packet->header_size = 4;
  94. packet->data_size = length;
  95. packet->type = hpsb_async;
  96. packet->tcode = TCODE_ISO_DATA;
  97. }
  98. /**
  99. * hpsb_get_tlabel - allocate a transaction label
  100. * @packet: the packet who's tlabel/tpool we set
  101. *
  102. * Every asynchronous transaction on the 1394 bus needs a transaction
  103. * label to match the response to the request. This label has to be
  104. * different from any other transaction label in an outstanding request to
  105. * the same node to make matching possible without ambiguity.
  106. *
  107. * There are 64 different tlabels, so an allocated tlabel has to be freed
  108. * with hpsb_free_tlabel() after the transaction is complete (unless it's
  109. * reused again for the same target node).
  110. *
  111. * Return value: Zero on success, otherwise non-zero. A non-zero return
  112. * generally means there are no available tlabels. If this is called out
  113. * of interrupt or atomic context, then it will sleep until can return a
  114. * tlabel.
  115. */
  116. int hpsb_get_tlabel(struct hpsb_packet *packet)
  117. {
  118. unsigned long flags;
  119. struct hpsb_tlabel_pool *tp;
  120. tp = &packet->host->tpool[packet->node_id & NODE_MASK];
  121. if (irqs_disabled() || in_atomic()) {
  122. if (down_trylock(&tp->count))
  123. return 1;
  124. } else {
  125. down(&tp->count);
  126. }
  127. spin_lock_irqsave(&tp->lock, flags);
  128. packet->tlabel = find_next_zero_bit(tp->pool, 64, tp->next);
  129. if (packet->tlabel > 63)
  130. packet->tlabel = find_first_zero_bit(tp->pool, 64);
  131. tp->next = (packet->tlabel + 1) % 64;
  132. /* Should _never_ happen */
  133. BUG_ON(test_and_set_bit(packet->tlabel, tp->pool));
  134. tp->allocations++;
  135. spin_unlock_irqrestore(&tp->lock, flags);
  136. return 0;
  137. }
  138. /**
  139. * hpsb_free_tlabel - free an allocated transaction label
  140. * @packet: packet whos tlabel/tpool needs to be cleared
  141. *
  142. * Frees the transaction label allocated with hpsb_get_tlabel(). The
  143. * tlabel has to be freed after the transaction is complete (i.e. response
  144. * was received for a split transaction or packet was sent for a unified
  145. * transaction).
  146. *
  147. * A tlabel must not be freed twice.
  148. */
  149. void hpsb_free_tlabel(struct hpsb_packet *packet)
  150. {
  151. unsigned long flags;
  152. struct hpsb_tlabel_pool *tp;
  153. tp = &packet->host->tpool[packet->node_id & NODE_MASK];
  154. BUG_ON(packet->tlabel > 63 || packet->tlabel < 0);
  155. spin_lock_irqsave(&tp->lock, flags);
  156. BUG_ON(!test_and_clear_bit(packet->tlabel, tp->pool));
  157. spin_unlock_irqrestore(&tp->lock, flags);
  158. up(&tp->count);
  159. }
  160. int hpsb_packet_success(struct hpsb_packet *packet)
  161. {
  162. switch (packet->ack_code) {
  163. case ACK_PENDING:
  164. switch ((packet->header[1] >> 12) & 0xf) {
  165. case RCODE_COMPLETE:
  166. return 0;
  167. case RCODE_CONFLICT_ERROR:
  168. return -EAGAIN;
  169. case RCODE_DATA_ERROR:
  170. return -EREMOTEIO;
  171. case RCODE_TYPE_ERROR:
  172. return -EACCES;
  173. case RCODE_ADDRESS_ERROR:
  174. return -EINVAL;
  175. default:
  176. HPSB_ERR("received reserved rcode %d from node %d",
  177. (packet->header[1] >> 12) & 0xf,
  178. packet->node_id);
  179. return -EAGAIN;
  180. }
  181. HPSB_PANIC("reached unreachable code 1 in %s", __FUNCTION__);
  182. case ACK_BUSY_X:
  183. case ACK_BUSY_A:
  184. case ACK_BUSY_B:
  185. return -EBUSY;
  186. case ACK_TYPE_ERROR:
  187. return -EACCES;
  188. case ACK_COMPLETE:
  189. if (packet->tcode == TCODE_WRITEQ
  190. || packet->tcode == TCODE_WRITEB) {
  191. return 0;
  192. } else {
  193. HPSB_ERR("impossible ack_complete from node %d "
  194. "(tcode %d)", packet->node_id, packet->tcode);
  195. return -EAGAIN;
  196. }
  197. case ACK_DATA_ERROR:
  198. if (packet->tcode == TCODE_WRITEB
  199. || packet->tcode == TCODE_LOCK_REQUEST) {
  200. return -EAGAIN;
  201. } else {
  202. HPSB_ERR("impossible ack_data_error from node %d "
  203. "(tcode %d)", packet->node_id, packet->tcode);
  204. return -EAGAIN;
  205. }
  206. case ACK_ADDRESS_ERROR:
  207. return -EINVAL;
  208. case ACK_TARDY:
  209. case ACK_CONFLICT_ERROR:
  210. case ACKX_NONE:
  211. case ACKX_SEND_ERROR:
  212. case ACKX_ABORTED:
  213. case ACKX_TIMEOUT:
  214. /* error while sending */
  215. return -EAGAIN;
  216. default:
  217. HPSB_ERR("got invalid ack %d from node %d (tcode %d)",
  218. packet->ack_code, packet->node_id, packet->tcode);
  219. return -EAGAIN;
  220. }
  221. HPSB_PANIC("reached unreachable code 2 in %s", __FUNCTION__);
  222. }
  223. struct hpsb_packet *hpsb_make_readpacket(struct hpsb_host *host, nodeid_t node,
  224. u64 addr, size_t length)
  225. {
  226. struct hpsb_packet *packet;
  227. if (length == 0)
  228. return NULL;
  229. packet = hpsb_alloc_packet(length);
  230. if (!packet)
  231. return NULL;
  232. packet->host = host;
  233. packet->node_id = node;
  234. if (hpsb_get_tlabel(packet)) {
  235. hpsb_free_packet(packet);
  236. return NULL;
  237. }
  238. if (length == 4)
  239. fill_async_readquad(packet, addr);
  240. else
  241. fill_async_readblock(packet, addr, length);
  242. return packet;
  243. }
  244. struct hpsb_packet *hpsb_make_writepacket (struct hpsb_host *host, nodeid_t node,
  245. u64 addr, quadlet_t *buffer, size_t length)
  246. {
  247. struct hpsb_packet *packet;
  248. if (length == 0)
  249. return NULL;
  250. packet = hpsb_alloc_packet(length);
  251. if (!packet)
  252. return NULL;
  253. if (length % 4) { /* zero padding bytes */
  254. packet->data[length >> 2] = 0;
  255. }
  256. packet->host = host;
  257. packet->node_id = node;
  258. if (hpsb_get_tlabel(packet)) {
  259. hpsb_free_packet(packet);
  260. return NULL;
  261. }
  262. if (length == 4) {
  263. fill_async_writequad(packet, addr, buffer ? *buffer : 0);
  264. } else {
  265. fill_async_writeblock(packet, addr, length);
  266. if (buffer)
  267. memcpy(packet->data, buffer, length);
  268. }
  269. return packet;
  270. }
  271. struct hpsb_packet *hpsb_make_streampacket(struct hpsb_host *host, u8 *buffer, int length,
  272. int channel, int tag, int sync)
  273. {
  274. struct hpsb_packet *packet;
  275. if (length == 0)
  276. return NULL;
  277. packet = hpsb_alloc_packet(length);
  278. if (!packet)
  279. return NULL;
  280. if (length % 4) { /* zero padding bytes */
  281. packet->data[length >> 2] = 0;
  282. }
  283. packet->host = host;
  284. if (hpsb_get_tlabel(packet)) {
  285. hpsb_free_packet(packet);
  286. return NULL;
  287. }
  288. fill_async_stream_packet(packet, length, channel, tag, sync);
  289. if (buffer)
  290. memcpy(packet->data, buffer, length);
  291. return packet;
  292. }
  293. struct hpsb_packet *hpsb_make_lockpacket(struct hpsb_host *host, nodeid_t node,
  294. u64 addr, int extcode, quadlet_t *data,
  295. quadlet_t arg)
  296. {
  297. struct hpsb_packet *p;
  298. u32 length;
  299. p = hpsb_alloc_packet(8);
  300. if (!p) return NULL;
  301. p->host = host;
  302. p->node_id = node;
  303. if (hpsb_get_tlabel(p)) {
  304. hpsb_free_packet(p);
  305. return NULL;
  306. }
  307. switch (extcode) {
  308. case EXTCODE_FETCH_ADD:
  309. case EXTCODE_LITTLE_ADD:
  310. length = 4;
  311. if (data)
  312. p->data[0] = *data;
  313. break;
  314. default:
  315. length = 8;
  316. if (data) {
  317. p->data[0] = arg;
  318. p->data[1] = *data;
  319. }
  320. break;
  321. }
  322. fill_async_lock(p, addr, extcode, length);
  323. return p;
  324. }
  325. struct hpsb_packet *hpsb_make_lock64packet(struct hpsb_host *host, nodeid_t node,
  326. u64 addr, int extcode, octlet_t *data,
  327. octlet_t arg)
  328. {
  329. struct hpsb_packet *p;
  330. u32 length;
  331. p = hpsb_alloc_packet(16);
  332. if (!p) return NULL;
  333. p->host = host;
  334. p->node_id = node;
  335. if (hpsb_get_tlabel(p)) {
  336. hpsb_free_packet(p);
  337. return NULL;
  338. }
  339. switch (extcode) {
  340. case EXTCODE_FETCH_ADD:
  341. case EXTCODE_LITTLE_ADD:
  342. length = 8;
  343. if (data) {
  344. p->data[0] = *data >> 32;
  345. p->data[1] = *data & 0xffffffff;
  346. }
  347. break;
  348. default:
  349. length = 16;
  350. if (data) {
  351. p->data[0] = arg >> 32;
  352. p->data[1] = arg & 0xffffffff;
  353. p->data[2] = *data >> 32;
  354. p->data[3] = *data & 0xffffffff;
  355. }
  356. break;
  357. }
  358. fill_async_lock(p, addr, extcode, length);
  359. return p;
  360. }
  361. struct hpsb_packet *hpsb_make_phypacket(struct hpsb_host *host,
  362. quadlet_t data)
  363. {
  364. struct hpsb_packet *p;
  365. p = hpsb_alloc_packet(0);
  366. if (!p) return NULL;
  367. p->host = host;
  368. fill_phy_packet(p, data);
  369. return p;
  370. }
  371. struct hpsb_packet *hpsb_make_isopacket(struct hpsb_host *host,
  372. int length, int channel,
  373. int tag, int sync)
  374. {
  375. struct hpsb_packet *p;
  376. p = hpsb_alloc_packet(length);
  377. if (!p) return NULL;
  378. p->host = host;
  379. fill_iso_packet(p, length, channel, tag, sync);
  380. p->generation = get_hpsb_generation(host);
  381. return p;
  382. }
  383. /*
  384. * FIXME - these functions should probably read from / write to user space to
  385. * avoid in kernel buffers for user space callers
  386. */
  387. int hpsb_read(struct hpsb_host *host, nodeid_t node, unsigned int generation,
  388. u64 addr, quadlet_t *buffer, size_t length)
  389. {
  390. struct hpsb_packet *packet;
  391. int retval = 0;
  392. if (length == 0)
  393. return -EINVAL;
  394. BUG_ON(in_interrupt()); // We can't be called in an interrupt, yet
  395. packet = hpsb_make_readpacket(host, node, addr, length);
  396. if (!packet) {
  397. return -ENOMEM;
  398. }
  399. packet->generation = generation;
  400. retval = hpsb_send_packet_and_wait(packet);
  401. if (retval < 0)
  402. goto hpsb_read_fail;
  403. retval = hpsb_packet_success(packet);
  404. if (retval == 0) {
  405. if (length == 4) {
  406. *buffer = packet->header[3];
  407. } else {
  408. memcpy(buffer, packet->data, length);
  409. }
  410. }
  411. hpsb_read_fail:
  412. hpsb_free_tlabel(packet);
  413. hpsb_free_packet(packet);
  414. return retval;
  415. }
  416. int hpsb_write(struct hpsb_host *host, nodeid_t node, unsigned int generation,
  417. u64 addr, quadlet_t *buffer, size_t length)
  418. {
  419. struct hpsb_packet *packet;
  420. int retval;
  421. if (length == 0)
  422. return -EINVAL;
  423. BUG_ON(in_interrupt()); // We can't be called in an interrupt, yet
  424. packet = hpsb_make_writepacket (host, node, addr, buffer, length);
  425. if (!packet)
  426. return -ENOMEM;
  427. packet->generation = generation;
  428. retval = hpsb_send_packet_and_wait(packet);
  429. if (retval < 0)
  430. goto hpsb_write_fail;
  431. retval = hpsb_packet_success(packet);
  432. hpsb_write_fail:
  433. hpsb_free_tlabel(packet);
  434. hpsb_free_packet(packet);
  435. return retval;
  436. }
  437. #if 0
  438. int hpsb_lock(struct hpsb_host *host, nodeid_t node, unsigned int generation,
  439. u64 addr, int extcode, quadlet_t *data, quadlet_t arg)
  440. {
  441. struct hpsb_packet *packet;
  442. int retval = 0;
  443. BUG_ON(in_interrupt()); // We can't be called in an interrupt, yet
  444. packet = hpsb_make_lockpacket(host, node, addr, extcode, data, arg);
  445. if (!packet)
  446. return -ENOMEM;
  447. packet->generation = generation;
  448. retval = hpsb_send_packet_and_wait(packet);
  449. if (retval < 0)
  450. goto hpsb_lock_fail;
  451. retval = hpsb_packet_success(packet);
  452. if (retval == 0) {
  453. *data = packet->data[0];
  454. }
  455. hpsb_lock_fail:
  456. hpsb_free_tlabel(packet);
  457. hpsb_free_packet(packet);
  458. return retval;
  459. }
  460. int hpsb_send_gasp(struct hpsb_host *host, int channel, unsigned int generation,
  461. quadlet_t *buffer, size_t length, u32 specifier_id,
  462. unsigned int version)
  463. {
  464. struct hpsb_packet *packet;
  465. int retval = 0;
  466. u16 specifier_id_hi = (specifier_id & 0x00ffff00) >> 8;
  467. u8 specifier_id_lo = specifier_id & 0xff;
  468. HPSB_VERBOSE("Send GASP: channel = %d, length = %Zd", channel, length);
  469. length += 8;
  470. packet = hpsb_make_streampacket(host, NULL, length, channel, 3, 0);
  471. if (!packet)
  472. return -ENOMEM;
  473. packet->data[0] = cpu_to_be32((host->node_id << 16) | specifier_id_hi);
  474. packet->data[1] = cpu_to_be32((specifier_id_lo << 24) | (version & 0x00ffffff));
  475. memcpy(&(packet->data[2]), buffer, length - 8);
  476. packet->generation = generation;
  477. packet->no_waiter = 1;
  478. retval = hpsb_send_packet(packet);
  479. if (retval < 0)
  480. hpsb_free_packet(packet);
  481. return retval;
  482. }
  483. #endif /* 0 */