lm90.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664
  1. /*
  2. * lm90.c - Part of lm_sensors, Linux kernel modules for hardware
  3. * monitoring
  4. * Copyright (C) 2003-2005 Jean Delvare <khali@linux-fr.org>
  5. *
  6. * Based on the lm83 driver. The LM90 is a sensor chip made by National
  7. * Semiconductor. It reports up to two temperatures (its own plus up to
  8. * one external one) with a 0.125 deg resolution (1 deg for local
  9. * temperature) and a 3-4 deg accuracy. Complete datasheet can be
  10. * obtained from National's website at:
  11. * http://www.national.com/pf/LM/LM90.html
  12. *
  13. * This driver also supports the LM89 and LM99, two other sensor chips
  14. * made by National Semiconductor. Both have an increased remote
  15. * temperature measurement accuracy (1 degree), and the LM99
  16. * additionally shifts remote temperatures (measured and limits) by 16
  17. * degrees, which allows for higher temperatures measurement. The
  18. * driver doesn't handle it since it can be done easily in user-space.
  19. * Complete datasheets can be obtained from National's website at:
  20. * http://www.national.com/pf/LM/LM89.html
  21. * http://www.national.com/pf/LM/LM99.html
  22. * Note that there is no way to differentiate between both chips.
  23. *
  24. * This driver also supports the LM86, another sensor chip made by
  25. * National Semiconductor. It is exactly similar to the LM90 except it
  26. * has a higher accuracy.
  27. * Complete datasheet can be obtained from National's website at:
  28. * http://www.national.com/pf/LM/LM86.html
  29. *
  30. * This driver also supports the ADM1032, a sensor chip made by Analog
  31. * Devices. That chip is similar to the LM90, with a few differences
  32. * that are not handled by this driver. Complete datasheet can be
  33. * obtained from Analog's website at:
  34. * http://products.analog.com/products/info.asp?product=ADM1032
  35. * Among others, it has a higher accuracy than the LM90, much like the
  36. * LM86 does.
  37. *
  38. * This driver also supports the MAX6657, MAX6658 and MAX6659 sensor
  39. * chips made by Maxim. These chips are similar to the LM86. Complete
  40. * datasheet can be obtained at Maxim's website at:
  41. * http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2578
  42. * Note that there is no easy way to differentiate between the three
  43. * variants. The extra address and features of the MAX6659 are not
  44. * supported by this driver.
  45. *
  46. * This driver also supports the ADT7461 chip from Analog Devices but
  47. * only in its "compatability mode". If an ADT7461 chip is found but
  48. * is configured in non-compatible mode (where its temperature
  49. * register values are decoded differently) it is ignored by this
  50. * driver. Complete datasheet can be obtained from Analog's website
  51. * at:
  52. * http://products.analog.com/products/info.asp?product=ADT7461
  53. *
  54. * Since the LM90 was the first chipset supported by this driver, most
  55. * comments will refer to this chipset, but are actually general and
  56. * concern all supported chipsets, unless mentioned otherwise.
  57. *
  58. * This program is free software; you can redistribute it and/or modify
  59. * it under the terms of the GNU General Public License as published by
  60. * the Free Software Foundation; either version 2 of the License, or
  61. * (at your option) any later version.
  62. *
  63. * This program is distributed in the hope that it will be useful,
  64. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  65. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  66. * GNU General Public License for more details.
  67. *
  68. * You should have received a copy of the GNU General Public License
  69. * along with this program; if not, write to the Free Software
  70. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  71. */
  72. #include <linux/module.h>
  73. #include <linux/init.h>
  74. #include <linux/slab.h>
  75. #include <linux/jiffies.h>
  76. #include <linux/i2c.h>
  77. #include <linux/hwmon-sysfs.h>
  78. #include <linux/hwmon.h>
  79. #include <linux/err.h>
  80. /*
  81. * Addresses to scan
  82. * Address is fully defined internally and cannot be changed except for
  83. * MAX6659.
  84. * LM86, LM89, LM90, LM99, ADM1032, MAX6657 and MAX6658 have address 0x4c.
  85. * LM89-1, and LM99-1 have address 0x4d.
  86. * MAX6659 can have address 0x4c, 0x4d or 0x4e (unsupported).
  87. * ADT7461 always has address 0x4c.
  88. */
  89. static unsigned short normal_i2c[] = { 0x4c, 0x4d, I2C_CLIENT_END };
  90. /*
  91. * Insmod parameters
  92. */
  93. I2C_CLIENT_INSMOD_6(lm90, adm1032, lm99, lm86, max6657, adt7461);
  94. /*
  95. * The LM90 registers
  96. */
  97. #define LM90_REG_R_MAN_ID 0xFE
  98. #define LM90_REG_R_CHIP_ID 0xFF
  99. #define LM90_REG_R_CONFIG1 0x03
  100. #define LM90_REG_W_CONFIG1 0x09
  101. #define LM90_REG_R_CONFIG2 0xBF
  102. #define LM90_REG_W_CONFIG2 0xBF
  103. #define LM90_REG_R_CONVRATE 0x04
  104. #define LM90_REG_W_CONVRATE 0x0A
  105. #define LM90_REG_R_STATUS 0x02
  106. #define LM90_REG_R_LOCAL_TEMP 0x00
  107. #define LM90_REG_R_LOCAL_HIGH 0x05
  108. #define LM90_REG_W_LOCAL_HIGH 0x0B
  109. #define LM90_REG_R_LOCAL_LOW 0x06
  110. #define LM90_REG_W_LOCAL_LOW 0x0C
  111. #define LM90_REG_R_LOCAL_CRIT 0x20
  112. #define LM90_REG_W_LOCAL_CRIT 0x20
  113. #define LM90_REG_R_REMOTE_TEMPH 0x01
  114. #define LM90_REG_R_REMOTE_TEMPL 0x10
  115. #define LM90_REG_R_REMOTE_OFFSH 0x11
  116. #define LM90_REG_W_REMOTE_OFFSH 0x11
  117. #define LM90_REG_R_REMOTE_OFFSL 0x12
  118. #define LM90_REG_W_REMOTE_OFFSL 0x12
  119. #define LM90_REG_R_REMOTE_HIGHH 0x07
  120. #define LM90_REG_W_REMOTE_HIGHH 0x0D
  121. #define LM90_REG_R_REMOTE_HIGHL 0x13
  122. #define LM90_REG_W_REMOTE_HIGHL 0x13
  123. #define LM90_REG_R_REMOTE_LOWH 0x08
  124. #define LM90_REG_W_REMOTE_LOWH 0x0E
  125. #define LM90_REG_R_REMOTE_LOWL 0x14
  126. #define LM90_REG_W_REMOTE_LOWL 0x14
  127. #define LM90_REG_R_REMOTE_CRIT 0x19
  128. #define LM90_REG_W_REMOTE_CRIT 0x19
  129. #define LM90_REG_R_TCRIT_HYST 0x21
  130. #define LM90_REG_W_TCRIT_HYST 0x21
  131. /*
  132. * Conversions and various macros
  133. * For local temperatures and limits, critical limits and the hysteresis
  134. * value, the LM90 uses signed 8-bit values with LSB = 1 degree Celsius.
  135. * For remote temperatures and limits, it uses signed 11-bit values with
  136. * LSB = 0.125 degree Celsius, left-justified in 16-bit registers.
  137. */
  138. #define TEMP1_FROM_REG(val) ((val) * 1000)
  139. #define TEMP1_TO_REG(val) ((val) <= -128000 ? -128 : \
  140. (val) >= 127000 ? 127 : \
  141. (val) < 0 ? ((val) - 500) / 1000 : \
  142. ((val) + 500) / 1000)
  143. #define TEMP2_FROM_REG(val) ((val) / 32 * 125)
  144. #define TEMP2_TO_REG(val) ((val) <= -128000 ? 0x8000 : \
  145. (val) >= 127875 ? 0x7FE0 : \
  146. (val) < 0 ? ((val) - 62) / 125 * 32 : \
  147. ((val) + 62) / 125 * 32)
  148. #define HYST_TO_REG(val) ((val) <= 0 ? 0 : (val) >= 30500 ? 31 : \
  149. ((val) + 500) / 1000)
  150. /*
  151. * ADT7461 is almost identical to LM90 except that attempts to write
  152. * values that are outside the range 0 < temp < 127 are treated as
  153. * the boundary value.
  154. */
  155. #define TEMP1_TO_REG_ADT7461(val) ((val) <= 0 ? 0 : \
  156. (val) >= 127000 ? 127 : \
  157. ((val) + 500) / 1000)
  158. #define TEMP2_TO_REG_ADT7461(val) ((val) <= 0 ? 0 : \
  159. (val) >= 127750 ? 0x7FC0 : \
  160. ((val) + 125) / 250 * 64)
  161. /*
  162. * Functions declaration
  163. */
  164. static int lm90_attach_adapter(struct i2c_adapter *adapter);
  165. static int lm90_detect(struct i2c_adapter *adapter, int address,
  166. int kind);
  167. static void lm90_init_client(struct i2c_client *client);
  168. static int lm90_detach_client(struct i2c_client *client);
  169. static struct lm90_data *lm90_update_device(struct device *dev);
  170. /*
  171. * Driver data (common to all clients)
  172. */
  173. static struct i2c_driver lm90_driver = {
  174. .owner = THIS_MODULE,
  175. .name = "lm90",
  176. .id = I2C_DRIVERID_LM90,
  177. .flags = I2C_DF_NOTIFY,
  178. .attach_adapter = lm90_attach_adapter,
  179. .detach_client = lm90_detach_client,
  180. };
  181. /*
  182. * Client data (each client gets its own)
  183. */
  184. struct lm90_data {
  185. struct i2c_client client;
  186. struct class_device *class_dev;
  187. struct semaphore update_lock;
  188. char valid; /* zero until following fields are valid */
  189. unsigned long last_updated; /* in jiffies */
  190. int kind;
  191. /* registers values */
  192. s8 temp8[5]; /* 0: local input
  193. 1: local low limit
  194. 2: local high limit
  195. 3: local critical limit
  196. 4: remote critical limit */
  197. s16 temp11[3]; /* 0: remote input
  198. 1: remote low limit
  199. 2: remote high limit */
  200. u8 temp_hyst;
  201. u8 alarms; /* bitvector */
  202. };
  203. /*
  204. * Sysfs stuff
  205. */
  206. static ssize_t show_temp8(struct device *dev, struct device_attribute *devattr,
  207. char *buf)
  208. {
  209. struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
  210. struct lm90_data *data = lm90_update_device(dev);
  211. return sprintf(buf, "%d\n", TEMP1_FROM_REG(data->temp8[attr->index]));
  212. }
  213. static ssize_t set_temp8(struct device *dev, struct device_attribute *devattr,
  214. const char *buf, size_t count)
  215. {
  216. static const u8 reg[4] = {
  217. LM90_REG_W_LOCAL_LOW,
  218. LM90_REG_W_LOCAL_HIGH,
  219. LM90_REG_W_LOCAL_CRIT,
  220. LM90_REG_W_REMOTE_CRIT,
  221. };
  222. struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
  223. struct i2c_client *client = to_i2c_client(dev);
  224. struct lm90_data *data = i2c_get_clientdata(client);
  225. long val = simple_strtol(buf, NULL, 10);
  226. int nr = attr->index;
  227. down(&data->update_lock);
  228. if (data->kind == adt7461)
  229. data->temp8[nr] = TEMP1_TO_REG_ADT7461(val);
  230. else
  231. data->temp8[nr] = TEMP1_TO_REG(val);
  232. i2c_smbus_write_byte_data(client, reg[nr - 1], data->temp8[nr]);
  233. up(&data->update_lock);
  234. return count;
  235. }
  236. static ssize_t show_temp11(struct device *dev, struct device_attribute *devattr,
  237. char *buf)
  238. {
  239. struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
  240. struct lm90_data *data = lm90_update_device(dev);
  241. return sprintf(buf, "%d\n", TEMP2_FROM_REG(data->temp11[attr->index]));
  242. }
  243. static ssize_t set_temp11(struct device *dev, struct device_attribute *devattr,
  244. const char *buf, size_t count)
  245. {
  246. static const u8 reg[4] = {
  247. LM90_REG_W_REMOTE_LOWH,
  248. LM90_REG_W_REMOTE_LOWL,
  249. LM90_REG_W_REMOTE_HIGHH,
  250. LM90_REG_W_REMOTE_HIGHL,
  251. };
  252. struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
  253. struct i2c_client *client = to_i2c_client(dev);
  254. struct lm90_data *data = i2c_get_clientdata(client);
  255. long val = simple_strtol(buf, NULL, 10);
  256. int nr = attr->index;
  257. down(&data->update_lock);
  258. if (data->kind == adt7461)
  259. data->temp11[nr] = TEMP2_TO_REG_ADT7461(val);
  260. else
  261. data->temp11[nr] = TEMP2_TO_REG(val);
  262. i2c_smbus_write_byte_data(client, reg[(nr - 1) * 2],
  263. data->temp11[nr] >> 8);
  264. i2c_smbus_write_byte_data(client, reg[(nr - 1) * 2 + 1],
  265. data->temp11[nr] & 0xff);
  266. up(&data->update_lock);
  267. return count;
  268. }
  269. static ssize_t show_temphyst(struct device *dev, struct device_attribute *devattr,
  270. char *buf)
  271. {
  272. struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
  273. struct lm90_data *data = lm90_update_device(dev);
  274. return sprintf(buf, "%d\n", TEMP1_FROM_REG(data->temp8[attr->index])
  275. - TEMP1_FROM_REG(data->temp_hyst));
  276. }
  277. static ssize_t set_temphyst(struct device *dev, struct device_attribute *dummy,
  278. const char *buf, size_t count)
  279. {
  280. struct i2c_client *client = to_i2c_client(dev);
  281. struct lm90_data *data = i2c_get_clientdata(client);
  282. long val = simple_strtol(buf, NULL, 10);
  283. long hyst;
  284. down(&data->update_lock);
  285. hyst = TEMP1_FROM_REG(data->temp8[3]) - val;
  286. i2c_smbus_write_byte_data(client, LM90_REG_W_TCRIT_HYST,
  287. HYST_TO_REG(hyst));
  288. up(&data->update_lock);
  289. return count;
  290. }
  291. static ssize_t show_alarms(struct device *dev, struct device_attribute *dummy,
  292. char *buf)
  293. {
  294. struct lm90_data *data = lm90_update_device(dev);
  295. return sprintf(buf, "%d\n", data->alarms);
  296. }
  297. static SENSOR_DEVICE_ATTR(temp1_input, S_IRUGO, show_temp8, NULL, 0);
  298. static SENSOR_DEVICE_ATTR(temp2_input, S_IRUGO, show_temp11, NULL, 0);
  299. static SENSOR_DEVICE_ATTR(temp1_min, S_IWUSR | S_IRUGO, show_temp8,
  300. set_temp8, 1);
  301. static SENSOR_DEVICE_ATTR(temp2_min, S_IWUSR | S_IRUGO, show_temp11,
  302. set_temp11, 1);
  303. static SENSOR_DEVICE_ATTR(temp1_max, S_IWUSR | S_IRUGO, show_temp8,
  304. set_temp8, 2);
  305. static SENSOR_DEVICE_ATTR(temp2_max, S_IWUSR | S_IRUGO, show_temp11,
  306. set_temp11, 2);
  307. static SENSOR_DEVICE_ATTR(temp1_crit, S_IWUSR | S_IRUGO, show_temp8,
  308. set_temp8, 3);
  309. static SENSOR_DEVICE_ATTR(temp2_crit, S_IWUSR | S_IRUGO, show_temp8,
  310. set_temp8, 4);
  311. static SENSOR_DEVICE_ATTR(temp1_crit_hyst, S_IWUSR | S_IRUGO, show_temphyst,
  312. set_temphyst, 3);
  313. static SENSOR_DEVICE_ATTR(temp2_crit_hyst, S_IRUGO, show_temphyst, NULL, 4);
  314. static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL);
  315. /*
  316. * Real code
  317. */
  318. static int lm90_attach_adapter(struct i2c_adapter *adapter)
  319. {
  320. if (!(adapter->class & I2C_CLASS_HWMON))
  321. return 0;
  322. return i2c_probe(adapter, &addr_data, lm90_detect);
  323. }
  324. /*
  325. * The following function does more than just detection. If detection
  326. * succeeds, it also registers the new chip.
  327. */
  328. static int lm90_detect(struct i2c_adapter *adapter, int address, int kind)
  329. {
  330. struct i2c_client *new_client;
  331. struct lm90_data *data;
  332. int err = 0;
  333. const char *name = "";
  334. if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
  335. goto exit;
  336. if (!(data = kmalloc(sizeof(struct lm90_data), GFP_KERNEL))) {
  337. err = -ENOMEM;
  338. goto exit;
  339. }
  340. memset(data, 0, sizeof(struct lm90_data));
  341. /* The common I2C client data is placed right before the
  342. LM90-specific data. */
  343. new_client = &data->client;
  344. i2c_set_clientdata(new_client, data);
  345. new_client->addr = address;
  346. new_client->adapter = adapter;
  347. new_client->driver = &lm90_driver;
  348. new_client->flags = 0;
  349. /*
  350. * Now we do the remaining detection. A negative kind means that
  351. * the driver was loaded with no force parameter (default), so we
  352. * must both detect and identify the chip. A zero kind means that
  353. * the driver was loaded with the force parameter, the detection
  354. * step shall be skipped. A positive kind means that the driver
  355. * was loaded with the force parameter and a given kind of chip is
  356. * requested, so both the detection and the identification steps
  357. * are skipped.
  358. */
  359. /* Default to an LM90 if forced */
  360. if (kind == 0)
  361. kind = lm90;
  362. if (kind < 0) { /* detection and identification */
  363. u8 man_id, chip_id, reg_config1, reg_convrate;
  364. man_id = i2c_smbus_read_byte_data(new_client,
  365. LM90_REG_R_MAN_ID);
  366. chip_id = i2c_smbus_read_byte_data(new_client,
  367. LM90_REG_R_CHIP_ID);
  368. reg_config1 = i2c_smbus_read_byte_data(new_client,
  369. LM90_REG_R_CONFIG1);
  370. reg_convrate = i2c_smbus_read_byte_data(new_client,
  371. LM90_REG_R_CONVRATE);
  372. if (man_id == 0x01) { /* National Semiconductor */
  373. u8 reg_config2;
  374. reg_config2 = i2c_smbus_read_byte_data(new_client,
  375. LM90_REG_R_CONFIG2);
  376. if ((reg_config1 & 0x2A) == 0x00
  377. && (reg_config2 & 0xF8) == 0x00
  378. && reg_convrate <= 0x09) {
  379. if (address == 0x4C
  380. && (chip_id & 0xF0) == 0x20) { /* LM90 */
  381. kind = lm90;
  382. } else
  383. if ((chip_id & 0xF0) == 0x30) { /* LM89/LM99 */
  384. kind = lm99;
  385. } else
  386. if (address == 0x4C
  387. && (chip_id & 0xF0) == 0x10) { /* LM86 */
  388. kind = lm86;
  389. }
  390. }
  391. } else
  392. if (man_id == 0x41) { /* Analog Devices */
  393. if (address == 0x4C
  394. && (chip_id & 0xF0) == 0x40 /* ADM1032 */
  395. && (reg_config1 & 0x3F) == 0x00
  396. && reg_convrate <= 0x0A) {
  397. kind = adm1032;
  398. } else
  399. if (address == 0x4c
  400. && chip_id == 0x51 /* ADT7461 */
  401. && (reg_config1 & 0x1F) == 0x00 /* check compat mode */
  402. && reg_convrate <= 0x0A) {
  403. kind = adt7461;
  404. }
  405. } else
  406. if (man_id == 0x4D) { /* Maxim */
  407. /*
  408. * The Maxim variants do NOT have a chip_id register.
  409. * Reading from that address will return the last read
  410. * value, which in our case is those of the man_id
  411. * register. Likewise, the config1 register seems to
  412. * lack a low nibble, so the value will be those of the
  413. * previous read, so in our case those of the man_id
  414. * register.
  415. */
  416. if (chip_id == man_id
  417. && (reg_config1 & 0x1F) == (man_id & 0x0F)
  418. && reg_convrate <= 0x09) {
  419. kind = max6657;
  420. }
  421. }
  422. if (kind <= 0) { /* identification failed */
  423. dev_info(&adapter->dev,
  424. "Unsupported chip (man_id=0x%02X, "
  425. "chip_id=0x%02X).\n", man_id, chip_id);
  426. goto exit_free;
  427. }
  428. }
  429. if (kind == lm90) {
  430. name = "lm90";
  431. } else if (kind == adm1032) {
  432. name = "adm1032";
  433. } else if (kind == lm99) {
  434. name = "lm99";
  435. } else if (kind == lm86) {
  436. name = "lm86";
  437. } else if (kind == max6657) {
  438. name = "max6657";
  439. } else if (kind == adt7461) {
  440. name = "adt7461";
  441. }
  442. /* We can fill in the remaining client fields */
  443. strlcpy(new_client->name, name, I2C_NAME_SIZE);
  444. data->valid = 0;
  445. data->kind = kind;
  446. init_MUTEX(&data->update_lock);
  447. /* Tell the I2C layer a new client has arrived */
  448. if ((err = i2c_attach_client(new_client)))
  449. goto exit_free;
  450. /* Initialize the LM90 chip */
  451. lm90_init_client(new_client);
  452. /* Register sysfs hooks */
  453. data->class_dev = hwmon_device_register(&new_client->dev);
  454. if (IS_ERR(data->class_dev)) {
  455. err = PTR_ERR(data->class_dev);
  456. goto exit_detach;
  457. }
  458. device_create_file(&new_client->dev,
  459. &sensor_dev_attr_temp1_input.dev_attr);
  460. device_create_file(&new_client->dev,
  461. &sensor_dev_attr_temp2_input.dev_attr);
  462. device_create_file(&new_client->dev,
  463. &sensor_dev_attr_temp1_min.dev_attr);
  464. device_create_file(&new_client->dev,
  465. &sensor_dev_attr_temp2_min.dev_attr);
  466. device_create_file(&new_client->dev,
  467. &sensor_dev_attr_temp1_max.dev_attr);
  468. device_create_file(&new_client->dev,
  469. &sensor_dev_attr_temp2_max.dev_attr);
  470. device_create_file(&new_client->dev,
  471. &sensor_dev_attr_temp1_crit.dev_attr);
  472. device_create_file(&new_client->dev,
  473. &sensor_dev_attr_temp2_crit.dev_attr);
  474. device_create_file(&new_client->dev,
  475. &sensor_dev_attr_temp1_crit_hyst.dev_attr);
  476. device_create_file(&new_client->dev,
  477. &sensor_dev_attr_temp2_crit_hyst.dev_attr);
  478. device_create_file(&new_client->dev, &dev_attr_alarms);
  479. return 0;
  480. exit_detach:
  481. i2c_detach_client(new_client);
  482. exit_free:
  483. kfree(data);
  484. exit:
  485. return err;
  486. }
  487. static void lm90_init_client(struct i2c_client *client)
  488. {
  489. u8 config;
  490. /*
  491. * Start the conversions.
  492. */
  493. i2c_smbus_write_byte_data(client, LM90_REG_W_CONVRATE,
  494. 5); /* 2 Hz */
  495. config = i2c_smbus_read_byte_data(client, LM90_REG_R_CONFIG1);
  496. if (config & 0x40)
  497. i2c_smbus_write_byte_data(client, LM90_REG_W_CONFIG1,
  498. config & 0xBF); /* run */
  499. }
  500. static int lm90_detach_client(struct i2c_client *client)
  501. {
  502. struct lm90_data *data = i2c_get_clientdata(client);
  503. int err;
  504. hwmon_device_unregister(data->class_dev);
  505. if ((err = i2c_detach_client(client)))
  506. return err;
  507. kfree(data);
  508. return 0;
  509. }
  510. static struct lm90_data *lm90_update_device(struct device *dev)
  511. {
  512. struct i2c_client *client = to_i2c_client(dev);
  513. struct lm90_data *data = i2c_get_clientdata(client);
  514. down(&data->update_lock);
  515. if (time_after(jiffies, data->last_updated + HZ * 2) || !data->valid) {
  516. u8 oldh, newh;
  517. dev_dbg(&client->dev, "Updating lm90 data.\n");
  518. data->temp8[0] = i2c_smbus_read_byte_data(client,
  519. LM90_REG_R_LOCAL_TEMP);
  520. data->temp8[1] = i2c_smbus_read_byte_data(client,
  521. LM90_REG_R_LOCAL_LOW);
  522. data->temp8[2] = i2c_smbus_read_byte_data(client,
  523. LM90_REG_R_LOCAL_HIGH);
  524. data->temp8[3] = i2c_smbus_read_byte_data(client,
  525. LM90_REG_R_LOCAL_CRIT);
  526. data->temp8[4] = i2c_smbus_read_byte_data(client,
  527. LM90_REG_R_REMOTE_CRIT);
  528. data->temp_hyst = i2c_smbus_read_byte_data(client,
  529. LM90_REG_R_TCRIT_HYST);
  530. /*
  531. * There is a trick here. We have to read two registers to
  532. * have the remote sensor temperature, but we have to beware
  533. * a conversion could occur inbetween the readings. The
  534. * datasheet says we should either use the one-shot
  535. * conversion register, which we don't want to do (disables
  536. * hardware monitoring) or monitor the busy bit, which is
  537. * impossible (we can't read the values and monitor that bit
  538. * at the exact same time). So the solution used here is to
  539. * read the high byte once, then the low byte, then the high
  540. * byte again. If the new high byte matches the old one,
  541. * then we have a valid reading. Else we have to read the low
  542. * byte again, and now we believe we have a correct reading.
  543. */
  544. oldh = i2c_smbus_read_byte_data(client,
  545. LM90_REG_R_REMOTE_TEMPH);
  546. data->temp11[0] = i2c_smbus_read_byte_data(client,
  547. LM90_REG_R_REMOTE_TEMPL);
  548. newh = i2c_smbus_read_byte_data(client,
  549. LM90_REG_R_REMOTE_TEMPH);
  550. if (newh != oldh) {
  551. data->temp11[0] = i2c_smbus_read_byte_data(client,
  552. LM90_REG_R_REMOTE_TEMPL);
  553. #ifdef DEBUG
  554. oldh = i2c_smbus_read_byte_data(client,
  555. LM90_REG_R_REMOTE_TEMPH);
  556. /* oldh is actually newer */
  557. if (newh != oldh)
  558. dev_warn(&client->dev, "Remote temperature may be "
  559. "wrong.\n");
  560. #endif
  561. }
  562. data->temp11[0] |= (newh << 8);
  563. data->temp11[1] = (i2c_smbus_read_byte_data(client,
  564. LM90_REG_R_REMOTE_LOWH) << 8) +
  565. i2c_smbus_read_byte_data(client,
  566. LM90_REG_R_REMOTE_LOWL);
  567. data->temp11[2] = (i2c_smbus_read_byte_data(client,
  568. LM90_REG_R_REMOTE_HIGHH) << 8) +
  569. i2c_smbus_read_byte_data(client,
  570. LM90_REG_R_REMOTE_HIGHL);
  571. data->alarms = i2c_smbus_read_byte_data(client,
  572. LM90_REG_R_STATUS);
  573. data->last_updated = jiffies;
  574. data->valid = 1;
  575. }
  576. up(&data->update_lock);
  577. return data;
  578. }
  579. static int __init sensors_lm90_init(void)
  580. {
  581. return i2c_add_driver(&lm90_driver);
  582. }
  583. static void __exit sensors_lm90_exit(void)
  584. {
  585. i2c_del_driver(&lm90_driver);
  586. }
  587. MODULE_AUTHOR("Jean Delvare <khali@linux-fr.org>");
  588. MODULE_DESCRIPTION("LM90/ADM1032 driver");
  589. MODULE_LICENSE("GPL");
  590. module_init(sensors_lm90_init);
  591. module_exit(sensors_lm90_exit);