padlock-aes.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503
  1. /*
  2. * Cryptographic API.
  3. *
  4. * Support for VIA PadLock hardware crypto engine.
  5. *
  6. * Copyright (c) 2004 Michal Ludvig <michal@logix.cz>
  7. *
  8. * Key expansion routine taken from crypto/aes.c
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License as published by
  12. * the Free Software Foundation; either version 2 of the License, or
  13. * (at your option) any later version.
  14. *
  15. * ---------------------------------------------------------------------------
  16. * Copyright (c) 2002, Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK.
  17. * All rights reserved.
  18. *
  19. * LICENSE TERMS
  20. *
  21. * The free distribution and use of this software in both source and binary
  22. * form is allowed (with or without changes) provided that:
  23. *
  24. * 1. distributions of this source code include the above copyright
  25. * notice, this list of conditions and the following disclaimer;
  26. *
  27. * 2. distributions in binary form include the above copyright
  28. * notice, this list of conditions and the following disclaimer
  29. * in the documentation and/or other associated materials;
  30. *
  31. * 3. the copyright holder's name is not used to endorse products
  32. * built using this software without specific written permission.
  33. *
  34. * ALTERNATIVELY, provided that this notice is retained in full, this product
  35. * may be distributed under the terms of the GNU General Public License (GPL),
  36. * in which case the provisions of the GPL apply INSTEAD OF those given above.
  37. *
  38. * DISCLAIMER
  39. *
  40. * This software is provided 'as is' with no explicit or implied warranties
  41. * in respect of its properties, including, but not limited to, correctness
  42. * and/or fitness for purpose.
  43. * ---------------------------------------------------------------------------
  44. */
  45. #include <linux/module.h>
  46. #include <linux/init.h>
  47. #include <linux/types.h>
  48. #include <linux/errno.h>
  49. #include <linux/crypto.h>
  50. #include <linux/interrupt.h>
  51. #include <linux/kernel.h>
  52. #include <asm/byteorder.h>
  53. #include "padlock.h"
  54. #define AES_MIN_KEY_SIZE 16 /* in uint8_t units */
  55. #define AES_MAX_KEY_SIZE 32 /* ditto */
  56. #define AES_BLOCK_SIZE 16 /* ditto */
  57. #define AES_EXTENDED_KEY_SIZE 64 /* in uint32_t units */
  58. #define AES_EXTENDED_KEY_SIZE_B (AES_EXTENDED_KEY_SIZE * sizeof(uint32_t))
  59. struct aes_ctx {
  60. uint32_t e_data[AES_EXTENDED_KEY_SIZE];
  61. uint32_t d_data[AES_EXTENDED_KEY_SIZE];
  62. struct {
  63. struct cword encrypt;
  64. struct cword decrypt;
  65. } cword;
  66. uint32_t *E;
  67. uint32_t *D;
  68. int key_length;
  69. };
  70. /* ====== Key management routines ====== */
  71. static inline uint32_t
  72. generic_rotr32 (const uint32_t x, const unsigned bits)
  73. {
  74. const unsigned n = bits % 32;
  75. return (x >> n) | (x << (32 - n));
  76. }
  77. static inline uint32_t
  78. generic_rotl32 (const uint32_t x, const unsigned bits)
  79. {
  80. const unsigned n = bits % 32;
  81. return (x << n) | (x >> (32 - n));
  82. }
  83. #define rotl generic_rotl32
  84. #define rotr generic_rotr32
  85. /*
  86. * #define byte(x, nr) ((unsigned char)((x) >> (nr*8)))
  87. */
  88. static inline uint8_t
  89. byte(const uint32_t x, const unsigned n)
  90. {
  91. return x >> (n << 3);
  92. }
  93. #define uint32_t_in(x) le32_to_cpu(*(const uint32_t *)(x))
  94. #define uint32_t_out(to, from) (*(uint32_t *)(to) = cpu_to_le32(from))
  95. #define E_KEY ctx->E
  96. #define D_KEY ctx->D
  97. static uint8_t pow_tab[256];
  98. static uint8_t log_tab[256];
  99. static uint8_t sbx_tab[256];
  100. static uint8_t isb_tab[256];
  101. static uint32_t rco_tab[10];
  102. static uint32_t ft_tab[4][256];
  103. static uint32_t it_tab[4][256];
  104. static uint32_t fl_tab[4][256];
  105. static uint32_t il_tab[4][256];
  106. static inline uint8_t
  107. f_mult (uint8_t a, uint8_t b)
  108. {
  109. uint8_t aa = log_tab[a], cc = aa + log_tab[b];
  110. return pow_tab[cc + (cc < aa ? 1 : 0)];
  111. }
  112. #define ff_mult(a,b) (a && b ? f_mult(a, b) : 0)
  113. #define f_rn(bo, bi, n, k) \
  114. bo[n] = ft_tab[0][byte(bi[n],0)] ^ \
  115. ft_tab[1][byte(bi[(n + 1) & 3],1)] ^ \
  116. ft_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
  117. ft_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
  118. #define i_rn(bo, bi, n, k) \
  119. bo[n] = it_tab[0][byte(bi[n],0)] ^ \
  120. it_tab[1][byte(bi[(n + 3) & 3],1)] ^ \
  121. it_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
  122. it_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
  123. #define ls_box(x) \
  124. ( fl_tab[0][byte(x, 0)] ^ \
  125. fl_tab[1][byte(x, 1)] ^ \
  126. fl_tab[2][byte(x, 2)] ^ \
  127. fl_tab[3][byte(x, 3)] )
  128. #define f_rl(bo, bi, n, k) \
  129. bo[n] = fl_tab[0][byte(bi[n],0)] ^ \
  130. fl_tab[1][byte(bi[(n + 1) & 3],1)] ^ \
  131. fl_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
  132. fl_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
  133. #define i_rl(bo, bi, n, k) \
  134. bo[n] = il_tab[0][byte(bi[n],0)] ^ \
  135. il_tab[1][byte(bi[(n + 3) & 3],1)] ^ \
  136. il_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
  137. il_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
  138. static void
  139. gen_tabs (void)
  140. {
  141. uint32_t i, t;
  142. uint8_t p, q;
  143. /* log and power tables for GF(2**8) finite field with
  144. 0x011b as modular polynomial - the simplest prmitive
  145. root is 0x03, used here to generate the tables */
  146. for (i = 0, p = 1; i < 256; ++i) {
  147. pow_tab[i] = (uint8_t) p;
  148. log_tab[p] = (uint8_t) i;
  149. p ^= (p << 1) ^ (p & 0x80 ? 0x01b : 0);
  150. }
  151. log_tab[1] = 0;
  152. for (i = 0, p = 1; i < 10; ++i) {
  153. rco_tab[i] = p;
  154. p = (p << 1) ^ (p & 0x80 ? 0x01b : 0);
  155. }
  156. for (i = 0; i < 256; ++i) {
  157. p = (i ? pow_tab[255 - log_tab[i]] : 0);
  158. q = ((p >> 7) | (p << 1)) ^ ((p >> 6) | (p << 2));
  159. p ^= 0x63 ^ q ^ ((q >> 6) | (q << 2));
  160. sbx_tab[i] = p;
  161. isb_tab[p] = (uint8_t) i;
  162. }
  163. for (i = 0; i < 256; ++i) {
  164. p = sbx_tab[i];
  165. t = p;
  166. fl_tab[0][i] = t;
  167. fl_tab[1][i] = rotl (t, 8);
  168. fl_tab[2][i] = rotl (t, 16);
  169. fl_tab[3][i] = rotl (t, 24);
  170. t = ((uint32_t) ff_mult (2, p)) |
  171. ((uint32_t) p << 8) |
  172. ((uint32_t) p << 16) | ((uint32_t) ff_mult (3, p) << 24);
  173. ft_tab[0][i] = t;
  174. ft_tab[1][i] = rotl (t, 8);
  175. ft_tab[2][i] = rotl (t, 16);
  176. ft_tab[3][i] = rotl (t, 24);
  177. p = isb_tab[i];
  178. t = p;
  179. il_tab[0][i] = t;
  180. il_tab[1][i] = rotl (t, 8);
  181. il_tab[2][i] = rotl (t, 16);
  182. il_tab[3][i] = rotl (t, 24);
  183. t = ((uint32_t) ff_mult (14, p)) |
  184. ((uint32_t) ff_mult (9, p) << 8) |
  185. ((uint32_t) ff_mult (13, p) << 16) |
  186. ((uint32_t) ff_mult (11, p) << 24);
  187. it_tab[0][i] = t;
  188. it_tab[1][i] = rotl (t, 8);
  189. it_tab[2][i] = rotl (t, 16);
  190. it_tab[3][i] = rotl (t, 24);
  191. }
  192. }
  193. #define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b)
  194. #define imix_col(y,x) \
  195. u = star_x(x); \
  196. v = star_x(u); \
  197. w = star_x(v); \
  198. t = w ^ (x); \
  199. (y) = u ^ v ^ w; \
  200. (y) ^= rotr(u ^ t, 8) ^ \
  201. rotr(v ^ t, 16) ^ \
  202. rotr(t,24)
  203. /* initialise the key schedule from the user supplied key */
  204. #define loop4(i) \
  205. { t = rotr(t, 8); t = ls_box(t) ^ rco_tab[i]; \
  206. t ^= E_KEY[4 * i]; E_KEY[4 * i + 4] = t; \
  207. t ^= E_KEY[4 * i + 1]; E_KEY[4 * i + 5] = t; \
  208. t ^= E_KEY[4 * i + 2]; E_KEY[4 * i + 6] = t; \
  209. t ^= E_KEY[4 * i + 3]; E_KEY[4 * i + 7] = t; \
  210. }
  211. #define loop6(i) \
  212. { t = rotr(t, 8); t = ls_box(t) ^ rco_tab[i]; \
  213. t ^= E_KEY[6 * i]; E_KEY[6 * i + 6] = t; \
  214. t ^= E_KEY[6 * i + 1]; E_KEY[6 * i + 7] = t; \
  215. t ^= E_KEY[6 * i + 2]; E_KEY[6 * i + 8] = t; \
  216. t ^= E_KEY[6 * i + 3]; E_KEY[6 * i + 9] = t; \
  217. t ^= E_KEY[6 * i + 4]; E_KEY[6 * i + 10] = t; \
  218. t ^= E_KEY[6 * i + 5]; E_KEY[6 * i + 11] = t; \
  219. }
  220. #define loop8(i) \
  221. { t = rotr(t, 8); ; t = ls_box(t) ^ rco_tab[i]; \
  222. t ^= E_KEY[8 * i]; E_KEY[8 * i + 8] = t; \
  223. t ^= E_KEY[8 * i + 1]; E_KEY[8 * i + 9] = t; \
  224. t ^= E_KEY[8 * i + 2]; E_KEY[8 * i + 10] = t; \
  225. t ^= E_KEY[8 * i + 3]; E_KEY[8 * i + 11] = t; \
  226. t = E_KEY[8 * i + 4] ^ ls_box(t); \
  227. E_KEY[8 * i + 12] = t; \
  228. t ^= E_KEY[8 * i + 5]; E_KEY[8 * i + 13] = t; \
  229. t ^= E_KEY[8 * i + 6]; E_KEY[8 * i + 14] = t; \
  230. t ^= E_KEY[8 * i + 7]; E_KEY[8 * i + 15] = t; \
  231. }
  232. /* Tells whether the ACE is capable to generate
  233. the extended key for a given key_len. */
  234. static inline int
  235. aes_hw_extkey_available(uint8_t key_len)
  236. {
  237. /* TODO: We should check the actual CPU model/stepping
  238. as it's possible that the capability will be
  239. added in the next CPU revisions. */
  240. if (key_len == 16)
  241. return 1;
  242. return 0;
  243. }
  244. static inline struct aes_ctx *aes_ctx(void *ctx)
  245. {
  246. return (struct aes_ctx *)ALIGN((unsigned long)ctx, PADLOCK_ALIGNMENT);
  247. }
  248. static int
  249. aes_set_key(void *ctx_arg, const uint8_t *in_key, unsigned int key_len, uint32_t *flags)
  250. {
  251. struct aes_ctx *ctx = aes_ctx(ctx_arg);
  252. uint32_t i, t, u, v, w;
  253. uint32_t P[AES_EXTENDED_KEY_SIZE];
  254. uint32_t rounds;
  255. if (key_len != 16 && key_len != 24 && key_len != 32) {
  256. *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
  257. return -EINVAL;
  258. }
  259. ctx->key_length = key_len;
  260. /*
  261. * If the hardware is capable of generating the extended key
  262. * itself we must supply the plain key for both encryption
  263. * and decryption.
  264. */
  265. ctx->E = ctx->e_data;
  266. ctx->D = ctx->e_data;
  267. E_KEY[0] = uint32_t_in (in_key);
  268. E_KEY[1] = uint32_t_in (in_key + 4);
  269. E_KEY[2] = uint32_t_in (in_key + 8);
  270. E_KEY[3] = uint32_t_in (in_key + 12);
  271. /* Prepare control words. */
  272. memset(&ctx->cword, 0, sizeof(ctx->cword));
  273. ctx->cword.decrypt.encdec = 1;
  274. ctx->cword.encrypt.rounds = 10 + (key_len - 16) / 4;
  275. ctx->cword.decrypt.rounds = ctx->cword.encrypt.rounds;
  276. ctx->cword.encrypt.ksize = (key_len - 16) / 8;
  277. ctx->cword.decrypt.ksize = ctx->cword.encrypt.ksize;
  278. /* Don't generate extended keys if the hardware can do it. */
  279. if (aes_hw_extkey_available(key_len))
  280. return 0;
  281. ctx->D = ctx->d_data;
  282. ctx->cword.encrypt.keygen = 1;
  283. ctx->cword.decrypt.keygen = 1;
  284. switch (key_len) {
  285. case 16:
  286. t = E_KEY[3];
  287. for (i = 0; i < 10; ++i)
  288. loop4 (i);
  289. break;
  290. case 24:
  291. E_KEY[4] = uint32_t_in (in_key + 16);
  292. t = E_KEY[5] = uint32_t_in (in_key + 20);
  293. for (i = 0; i < 8; ++i)
  294. loop6 (i);
  295. break;
  296. case 32:
  297. E_KEY[4] = uint32_t_in (in_key + 16);
  298. E_KEY[5] = uint32_t_in (in_key + 20);
  299. E_KEY[6] = uint32_t_in (in_key + 24);
  300. t = E_KEY[7] = uint32_t_in (in_key + 28);
  301. for (i = 0; i < 7; ++i)
  302. loop8 (i);
  303. break;
  304. }
  305. D_KEY[0] = E_KEY[0];
  306. D_KEY[1] = E_KEY[1];
  307. D_KEY[2] = E_KEY[2];
  308. D_KEY[3] = E_KEY[3];
  309. for (i = 4; i < key_len + 24; ++i) {
  310. imix_col (D_KEY[i], E_KEY[i]);
  311. }
  312. /* PadLock needs a different format of the decryption key. */
  313. rounds = 10 + (key_len - 16) / 4;
  314. for (i = 0; i < rounds; i++) {
  315. P[((i + 1) * 4) + 0] = D_KEY[((rounds - i - 1) * 4) + 0];
  316. P[((i + 1) * 4) + 1] = D_KEY[((rounds - i - 1) * 4) + 1];
  317. P[((i + 1) * 4) + 2] = D_KEY[((rounds - i - 1) * 4) + 2];
  318. P[((i + 1) * 4) + 3] = D_KEY[((rounds - i - 1) * 4) + 3];
  319. }
  320. P[0] = E_KEY[(rounds * 4) + 0];
  321. P[1] = E_KEY[(rounds * 4) + 1];
  322. P[2] = E_KEY[(rounds * 4) + 2];
  323. P[3] = E_KEY[(rounds * 4) + 3];
  324. memcpy(D_KEY, P, AES_EXTENDED_KEY_SIZE_B);
  325. return 0;
  326. }
  327. /* ====== Encryption/decryption routines ====== */
  328. /* These are the real call to PadLock. */
  329. static inline void padlock_xcrypt_ecb(const u8 *input, u8 *output, void *key,
  330. void *control_word, u32 count)
  331. {
  332. asm volatile ("pushfl; popfl"); /* enforce key reload. */
  333. asm volatile (".byte 0xf3,0x0f,0xa7,0xc8" /* rep xcryptecb */
  334. : "+S"(input), "+D"(output)
  335. : "d"(control_word), "b"(key), "c"(count));
  336. }
  337. static inline u8 *padlock_xcrypt_cbc(const u8 *input, u8 *output, void *key,
  338. u8 *iv, void *control_word, u32 count)
  339. {
  340. /* Enforce key reload. */
  341. asm volatile ("pushfl; popfl");
  342. /* rep xcryptcbc */
  343. asm volatile (".byte 0xf3,0x0f,0xa7,0xd0"
  344. : "+S" (input), "+D" (output), "+a" (iv)
  345. : "d" (control_word), "b" (key), "c" (count));
  346. return iv;
  347. }
  348. static void
  349. aes_encrypt(void *ctx_arg, uint8_t *out, const uint8_t *in)
  350. {
  351. struct aes_ctx *ctx = aes_ctx(ctx_arg);
  352. padlock_xcrypt_ecb(in, out, ctx->E, &ctx->cword.encrypt, 1);
  353. }
  354. static void
  355. aes_decrypt(void *ctx_arg, uint8_t *out, const uint8_t *in)
  356. {
  357. struct aes_ctx *ctx = aes_ctx(ctx_arg);
  358. padlock_xcrypt_ecb(in, out, ctx->D, &ctx->cword.decrypt, 1);
  359. }
  360. static unsigned int aes_encrypt_ecb(const struct cipher_desc *desc, u8 *out,
  361. const u8 *in, unsigned int nbytes)
  362. {
  363. struct aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(desc->tfm));
  364. padlock_xcrypt_ecb(in, out, ctx->E, &ctx->cword.encrypt,
  365. nbytes / AES_BLOCK_SIZE);
  366. return nbytes & ~(AES_BLOCK_SIZE - 1);
  367. }
  368. static unsigned int aes_decrypt_ecb(const struct cipher_desc *desc, u8 *out,
  369. const u8 *in, unsigned int nbytes)
  370. {
  371. struct aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(desc->tfm));
  372. padlock_xcrypt_ecb(in, out, ctx->D, &ctx->cword.decrypt,
  373. nbytes / AES_BLOCK_SIZE);
  374. return nbytes & ~(AES_BLOCK_SIZE - 1);
  375. }
  376. static unsigned int aes_encrypt_cbc(const struct cipher_desc *desc, u8 *out,
  377. const u8 *in, unsigned int nbytes)
  378. {
  379. struct aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(desc->tfm));
  380. u8 *iv;
  381. iv = padlock_xcrypt_cbc(in, out, ctx->E, desc->info,
  382. &ctx->cword.encrypt, nbytes / AES_BLOCK_SIZE);
  383. memcpy(desc->info, iv, AES_BLOCK_SIZE);
  384. return nbytes & ~(AES_BLOCK_SIZE - 1);
  385. }
  386. static unsigned int aes_decrypt_cbc(const struct cipher_desc *desc, u8 *out,
  387. const u8 *in, unsigned int nbytes)
  388. {
  389. struct aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(desc->tfm));
  390. padlock_xcrypt_cbc(in, out, ctx->D, desc->info, &ctx->cword.decrypt,
  391. nbytes / AES_BLOCK_SIZE);
  392. return nbytes & ~(AES_BLOCK_SIZE - 1);
  393. }
  394. static struct crypto_alg aes_alg = {
  395. .cra_name = "aes",
  396. .cra_flags = CRYPTO_ALG_TYPE_CIPHER,
  397. .cra_blocksize = AES_BLOCK_SIZE,
  398. .cra_ctxsize = sizeof(struct aes_ctx),
  399. .cra_alignmask = PADLOCK_ALIGNMENT - 1,
  400. .cra_module = THIS_MODULE,
  401. .cra_list = LIST_HEAD_INIT(aes_alg.cra_list),
  402. .cra_u = {
  403. .cipher = {
  404. .cia_min_keysize = AES_MIN_KEY_SIZE,
  405. .cia_max_keysize = AES_MAX_KEY_SIZE,
  406. .cia_setkey = aes_set_key,
  407. .cia_encrypt = aes_encrypt,
  408. .cia_decrypt = aes_decrypt,
  409. .cia_encrypt_ecb = aes_encrypt_ecb,
  410. .cia_decrypt_ecb = aes_decrypt_ecb,
  411. .cia_encrypt_cbc = aes_encrypt_cbc,
  412. .cia_decrypt_cbc = aes_decrypt_cbc,
  413. }
  414. }
  415. };
  416. int __init padlock_init_aes(void)
  417. {
  418. printk(KERN_NOTICE PFX "Using VIA PadLock ACE for AES algorithm.\n");
  419. gen_tabs();
  420. return crypto_register_alg(&aes_alg);
  421. }
  422. void __exit padlock_fini_aes(void)
  423. {
  424. crypto_unregister_alg(&aes_alg);
  425. }