lanai.c 86 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770
  1. /* lanai.c -- Copyright 1999-2003 by Mitchell Blank Jr <mitch@sfgoth.com>
  2. *
  3. * This program is free software; you can redistribute it and/or
  4. * modify it under the terms of the GNU General Public License
  5. * as published by the Free Software Foundation; either version
  6. * 2 of the License, or (at your option) any later version.
  7. *
  8. * This driver supports ATM cards based on the Efficient "Lanai"
  9. * chipset such as the Speedstream 3010 and the ENI-25p. The
  10. * Speedstream 3060 is currently not supported since we don't
  11. * have the code to drive the on-board Alcatel DSL chipset (yet).
  12. *
  13. * Thanks to Efficient for supporting this project with hardware,
  14. * documentation, and by answering my questions.
  15. *
  16. * Things not working yet:
  17. *
  18. * o We don't support the Speedstream 3060 yet - this card has
  19. * an on-board DSL modem chip by Alcatel and the driver will
  20. * need some extra code added to handle it
  21. *
  22. * o Note that due to limitations of the Lanai only one VCC can be
  23. * in CBR at once
  24. *
  25. * o We don't currently parse the EEPROM at all. The code is all
  26. * there as per the spec, but it doesn't actually work. I think
  27. * there may be some issues with the docs. Anyway, do NOT
  28. * enable it yet - bugs in that code may actually damage your
  29. * hardware! Because of this you should hardware an ESI before
  30. * trying to use this in a LANE or MPOA environment.
  31. *
  32. * o AAL0 is stubbed in but the actual rx/tx path isn't written yet:
  33. * vcc_tx_aal0() needs to send or queue a SKB
  34. * vcc_tx_unqueue_aal0() needs to attempt to send queued SKBs
  35. * vcc_rx_aal0() needs to handle AAL0 interrupts
  36. * This isn't too much work - I just wanted to get other things
  37. * done first.
  38. *
  39. * o lanai_change_qos() isn't written yet
  40. *
  41. * o There aren't any ioctl's yet -- I'd like to eventually support
  42. * setting loopback and LED modes that way. (see lanai_ioctl)
  43. *
  44. * o If the segmentation engine or DMA gets shut down we should restart
  45. * card as per section 17.0i. (see lanai_reset)
  46. *
  47. * o setsockopt(SO_CIRANGE) isn't done (although despite what the
  48. * API says it isn't exactly commonly implemented)
  49. */
  50. /* Version history:
  51. * v.1.00 -- 26-JUL-2003 -- PCI/DMA updates
  52. * v.0.02 -- 11-JAN-2000 -- Endian fixes
  53. * v.0.01 -- 30-NOV-1999 -- Initial release
  54. */
  55. #include <linux/module.h>
  56. #include <linux/mm.h>
  57. #include <linux/atmdev.h>
  58. #include <asm/io.h>
  59. #include <asm/byteorder.h>
  60. #include <linux/spinlock.h>
  61. #include <linux/pci.h>
  62. #include <linux/dma-mapping.h>
  63. #include <linux/init.h>
  64. #include <linux/delay.h>
  65. #include <linux/interrupt.h>
  66. #include <linux/dma-mapping.h>
  67. /* -------------------- TUNABLE PARAMATERS: */
  68. /*
  69. * Maximum number of VCIs per card. Setting it lower could theoretically
  70. * save some memory, but since we allocate our vcc list with get_free_pages,
  71. * it's not really likely for most architectures
  72. */
  73. #define NUM_VCI (1024)
  74. /*
  75. * Enable extra debugging
  76. */
  77. #define DEBUG
  78. /*
  79. * Debug _all_ register operations with card, except the memory test.
  80. * Also disables the timed poll to prevent extra chattiness. This
  81. * isn't for normal use
  82. */
  83. #undef DEBUG_RW
  84. /*
  85. * The programming guide specifies a full test of the on-board SRAM
  86. * at initialization time. Undefine to remove this
  87. */
  88. #define FULL_MEMORY_TEST
  89. /*
  90. * This is the number of (4 byte) service entries that we will
  91. * try to allocate at startup. Note that we will end up with
  92. * one PAGE_SIZE's worth regardless of what this is set to
  93. */
  94. #define SERVICE_ENTRIES (1024)
  95. /* TODO: make above a module load-time option */
  96. /*
  97. * We normally read the onboard EEPROM in order to discover our MAC
  98. * address. Undefine to _not_ do this
  99. */
  100. /* #define READ_EEPROM */ /* ***DONT ENABLE YET*** */
  101. /* TODO: make above a module load-time option (also) */
  102. /*
  103. * Depth of TX fifo (in 128 byte units; range 2-31)
  104. * Smaller numbers are better for network latency
  105. * Larger numbers are better for PCI latency
  106. * I'm really sure where the best tradeoff is, but the BSD driver uses
  107. * 7 and it seems to work ok.
  108. */
  109. #define TX_FIFO_DEPTH (7)
  110. /* TODO: make above a module load-time option */
  111. /*
  112. * How often (in jiffies) we will try to unstick stuck connections -
  113. * shouldn't need to happen much
  114. */
  115. #define LANAI_POLL_PERIOD (10*HZ)
  116. /* TODO: make above a module load-time option */
  117. /*
  118. * When allocating an AAL5 receiving buffer, try to make it at least
  119. * large enough to hold this many max_sdu sized PDUs
  120. */
  121. #define AAL5_RX_MULTIPLIER (3)
  122. /* TODO: make above a module load-time option */
  123. /*
  124. * Same for transmitting buffer
  125. */
  126. #define AAL5_TX_MULTIPLIER (3)
  127. /* TODO: make above a module load-time option */
  128. /*
  129. * When allocating an AAL0 transmiting buffer, how many cells should fit.
  130. * Remember we'll end up with a PAGE_SIZE of them anyway, so this isn't
  131. * really critical
  132. */
  133. #define AAL0_TX_MULTIPLIER (40)
  134. /* TODO: make above a module load-time option */
  135. /*
  136. * How large should we make the AAL0 receiving buffer. Remember that this
  137. * is shared between all AAL0 VC's
  138. */
  139. #define AAL0_RX_BUFFER_SIZE (PAGE_SIZE)
  140. /* TODO: make above a module load-time option */
  141. /*
  142. * Should we use Lanai's "powerdown" feature when no vcc's are bound?
  143. */
  144. /* #define USE_POWERDOWN */
  145. /* TODO: make above a module load-time option (also) */
  146. /* -------------------- DEBUGGING AIDS: */
  147. #define DEV_LABEL "lanai"
  148. #ifdef DEBUG
  149. #define DPRINTK(format, args...) \
  150. printk(KERN_DEBUG DEV_LABEL ": " format, ##args)
  151. #define APRINTK(truth, format, args...) \
  152. do { \
  153. if (unlikely(!(truth))) \
  154. printk(KERN_ERR DEV_LABEL ": " format, ##args); \
  155. } while (0)
  156. #else /* !DEBUG */
  157. #define DPRINTK(format, args...)
  158. #define APRINTK(truth, format, args...)
  159. #endif /* DEBUG */
  160. #ifdef DEBUG_RW
  161. #define RWDEBUG(format, args...) \
  162. printk(KERN_DEBUG DEV_LABEL ": " format, ##args)
  163. #else /* !DEBUG_RW */
  164. #define RWDEBUG(format, args...)
  165. #endif
  166. /* -------------------- DATA DEFINITIONS: */
  167. #define LANAI_MAPPING_SIZE (0x40000)
  168. #define LANAI_EEPROM_SIZE (128)
  169. typedef int vci_t;
  170. typedef void __iomem *bus_addr_t;
  171. /* DMA buffer in host memory for TX, RX, or service list. */
  172. struct lanai_buffer {
  173. u32 *start; /* From get_free_pages */
  174. u32 *end; /* One past last byte */
  175. u32 *ptr; /* Pointer to current host location */
  176. dma_addr_t dmaaddr;
  177. };
  178. struct lanai_vcc_stats {
  179. unsigned rx_nomem;
  180. union {
  181. struct {
  182. unsigned rx_badlen;
  183. unsigned service_trash;
  184. unsigned service_stream;
  185. unsigned service_rxcrc;
  186. } aal5;
  187. struct {
  188. } aal0;
  189. } x;
  190. };
  191. struct lanai_dev; /* Forward declaration */
  192. /*
  193. * This is the card-specific per-vcc data. Note that unlike some other
  194. * drivers there is NOT a 1-to-1 correspondance between these and
  195. * atm_vcc's - each one of these represents an actual 2-way vcc, but
  196. * an atm_vcc can be 1-way and share with a 1-way vcc in the other
  197. * direction. To make it weirder, there can even be 0-way vccs
  198. * bound to us, waiting to do a change_qos
  199. */
  200. struct lanai_vcc {
  201. bus_addr_t vbase; /* Base of VCC's registers */
  202. struct lanai_vcc_stats stats;
  203. int nref; /* # of atm_vcc's who reference us */
  204. vci_t vci;
  205. struct {
  206. struct lanai_buffer buf;
  207. struct atm_vcc *atmvcc; /* atm_vcc who is receiver */
  208. } rx;
  209. struct {
  210. struct lanai_buffer buf;
  211. struct atm_vcc *atmvcc; /* atm_vcc who is transmitter */
  212. int endptr; /* last endptr from service entry */
  213. struct sk_buff_head backlog;
  214. void (*unqueue)(struct lanai_dev *, struct lanai_vcc *, int);
  215. } tx;
  216. };
  217. enum lanai_type {
  218. lanai2 = PCI_VENDOR_ID_EF_ATM_LANAI2,
  219. lanaihb = PCI_VENDOR_ID_EF_ATM_LANAIHB
  220. };
  221. struct lanai_dev_stats {
  222. unsigned ovfl_trash; /* # of cells dropped - buffer overflow */
  223. unsigned vci_trash; /* # of cells dropped - closed vci */
  224. unsigned hec_err; /* # of cells dropped - bad HEC */
  225. unsigned atm_ovfl; /* # of cells dropped - rx fifo overflow */
  226. unsigned pcierr_parity_detect;
  227. unsigned pcierr_serr_set;
  228. unsigned pcierr_master_abort;
  229. unsigned pcierr_m_target_abort;
  230. unsigned pcierr_s_target_abort;
  231. unsigned pcierr_master_parity;
  232. unsigned service_notx;
  233. unsigned service_norx;
  234. unsigned service_rxnotaal5;
  235. unsigned dma_reenable;
  236. unsigned card_reset;
  237. };
  238. struct lanai_dev {
  239. bus_addr_t base;
  240. struct lanai_dev_stats stats;
  241. struct lanai_buffer service;
  242. struct lanai_vcc **vccs;
  243. #ifdef USE_POWERDOWN
  244. int nbound; /* number of bound vccs */
  245. #endif
  246. enum lanai_type type;
  247. vci_t num_vci; /* Currently just NUM_VCI */
  248. u8 eeprom[LANAI_EEPROM_SIZE];
  249. u32 serialno, magicno;
  250. struct pci_dev *pci;
  251. DECLARE_BITMAP(backlog_vccs, NUM_VCI); /* VCCs with tx backlog */
  252. DECLARE_BITMAP(transmit_ready, NUM_VCI); /* VCCs with transmit space */
  253. struct timer_list timer;
  254. int naal0;
  255. struct lanai_buffer aal0buf; /* AAL0 RX buffers */
  256. u32 conf1, conf2; /* CONFIG[12] registers */
  257. u32 status; /* STATUS register */
  258. spinlock_t endtxlock;
  259. spinlock_t servicelock;
  260. struct atm_vcc *cbrvcc;
  261. int number;
  262. int board_rev;
  263. u8 pci_revision;
  264. /* TODO - look at race conditions with maintence of conf1/conf2 */
  265. /* TODO - transmit locking: should we use _irq not _irqsave? */
  266. /* TODO - organize above in some rational fashion (see <asm/cache.h>) */
  267. };
  268. /*
  269. * Each device has two bitmaps for each VCC (baclog_vccs and transmit_ready)
  270. * This function iterates one of these, calling a given function for each
  271. * vci with their bit set
  272. */
  273. static void vci_bitfield_iterate(struct lanai_dev *lanai,
  274. /*const*/ unsigned long *lp,
  275. void (*func)(struct lanai_dev *,vci_t vci))
  276. {
  277. vci_t vci = find_first_bit(lp, NUM_VCI);
  278. while (vci < NUM_VCI) {
  279. func(lanai, vci);
  280. vci = find_next_bit(lp, NUM_VCI, vci + 1);
  281. }
  282. }
  283. /* -------------------- BUFFER UTILITIES: */
  284. /*
  285. * Lanai needs DMA buffers aligned to 256 bytes of at least 1024 bytes -
  286. * usually any page allocation will do. Just to be safe in case
  287. * PAGE_SIZE is insanely tiny, though...
  288. */
  289. #define LANAI_PAGE_SIZE ((PAGE_SIZE >= 1024) ? PAGE_SIZE : 1024)
  290. /*
  291. * Allocate a buffer in host RAM for service list, RX, or TX
  292. * Returns buf->start==NULL if no memory
  293. * Note that the size will be rounded up 2^n bytes, and
  294. * if we can't allocate that we'll settle for something smaller
  295. * until minbytes
  296. */
  297. static void lanai_buf_allocate(struct lanai_buffer *buf,
  298. size_t bytes, size_t minbytes, struct pci_dev *pci)
  299. {
  300. int size;
  301. if (bytes > (128 * 1024)) /* max lanai buffer size */
  302. bytes = 128 * 1024;
  303. for (size = LANAI_PAGE_SIZE; size < bytes; size *= 2)
  304. ;
  305. if (minbytes < LANAI_PAGE_SIZE)
  306. minbytes = LANAI_PAGE_SIZE;
  307. do {
  308. /*
  309. * Technically we could use non-consistent mappings for
  310. * everything, but the way the lanai uses DMA memory would
  311. * make that a terrific pain. This is much simpler.
  312. */
  313. buf->start = pci_alloc_consistent(pci, size, &buf->dmaaddr);
  314. if (buf->start != NULL) { /* Success */
  315. /* Lanai requires 256-byte alignment of DMA bufs */
  316. APRINTK((buf->dmaaddr & ~0xFFFFFF00) == 0,
  317. "bad dmaaddr: 0x%lx\n",
  318. (unsigned long) buf->dmaaddr);
  319. buf->ptr = buf->start;
  320. buf->end = (u32 *)
  321. (&((unsigned char *) buf->start)[size]);
  322. memset(buf->start, 0, size);
  323. break;
  324. }
  325. size /= 2;
  326. } while (size >= minbytes);
  327. }
  328. /* size of buffer in bytes */
  329. static inline size_t lanai_buf_size(const struct lanai_buffer *buf)
  330. {
  331. return ((unsigned long) buf->end) - ((unsigned long) buf->start);
  332. }
  333. static void lanai_buf_deallocate(struct lanai_buffer *buf,
  334. struct pci_dev *pci)
  335. {
  336. if (buf->start != NULL) {
  337. pci_free_consistent(pci, lanai_buf_size(buf),
  338. buf->start, buf->dmaaddr);
  339. buf->start = buf->end = buf->ptr = NULL;
  340. }
  341. }
  342. /* size of buffer as "card order" (0=1k .. 7=128k) */
  343. static int lanai_buf_size_cardorder(const struct lanai_buffer *buf)
  344. {
  345. int order = get_order(lanai_buf_size(buf)) + (PAGE_SHIFT - 10);
  346. /* This can only happen if PAGE_SIZE is gigantic, but just in case */
  347. if (order > 7)
  348. order = 7;
  349. return order;
  350. }
  351. /* -------------------- PORT I/O UTILITIES: */
  352. /* Registers (and their bit-fields) */
  353. enum lanai_register {
  354. Reset_Reg = 0x00, /* Reset; read for chip type; bits: */
  355. #define RESET_GET_BOARD_REV(x) (((x)>> 0)&0x03) /* Board revision */
  356. #define RESET_GET_BOARD_ID(x) (((x)>> 2)&0x03) /* Board ID */
  357. #define BOARD_ID_LANAI256 (0) /* 25.6M adapter card */
  358. Endian_Reg = 0x04, /* Endian setting */
  359. IntStatus_Reg = 0x08, /* Interrupt status */
  360. IntStatusMasked_Reg = 0x0C, /* Interrupt status (masked) */
  361. IntAck_Reg = 0x10, /* Interrupt acknowledge */
  362. IntAckMasked_Reg = 0x14, /* Interrupt acknowledge (masked) */
  363. IntStatusSet_Reg = 0x18, /* Get status + enable/disable */
  364. IntStatusSetMasked_Reg = 0x1C, /* Get status + en/di (masked) */
  365. IntControlEna_Reg = 0x20, /* Interrupt control enable */
  366. IntControlDis_Reg = 0x24, /* Interrupt control disable */
  367. Status_Reg = 0x28, /* Status */
  368. #define STATUS_PROMDATA (0x00000001) /* PROM_DATA pin */
  369. #define STATUS_WAITING (0x00000002) /* Interrupt being delayed */
  370. #define STATUS_SOOL (0x00000004) /* SOOL alarm */
  371. #define STATUS_LOCD (0x00000008) /* LOCD alarm */
  372. #define STATUS_LED (0x00000010) /* LED (HAPPI) output */
  373. #define STATUS_GPIN (0x00000020) /* GPIN pin */
  374. #define STATUS_BUTTBUSY (0x00000040) /* Butt register is pending */
  375. Config1_Reg = 0x2C, /* Config word 1; bits: */
  376. #define CONFIG1_PROMDATA (0x00000001) /* PROM_DATA pin */
  377. #define CONFIG1_PROMCLK (0x00000002) /* PROM_CLK pin */
  378. #define CONFIG1_SET_READMODE(x) ((x)*0x004) /* PCI BM reads; values: */
  379. #define READMODE_PLAIN (0) /* Plain memory read */
  380. #define READMODE_LINE (2) /* Memory read line */
  381. #define READMODE_MULTIPLE (3) /* Memory read multiple */
  382. #define CONFIG1_DMA_ENABLE (0x00000010) /* Turn on DMA */
  383. #define CONFIG1_POWERDOWN (0x00000020) /* Turn off clocks */
  384. #define CONFIG1_SET_LOOPMODE(x) ((x)*0x080) /* Clock&loop mode; values: */
  385. #define LOOPMODE_NORMAL (0) /* Normal - no loop */
  386. #define LOOPMODE_TIME (1)
  387. #define LOOPMODE_DIAG (2)
  388. #define LOOPMODE_LINE (3)
  389. #define CONFIG1_MASK_LOOPMODE (0x00000180)
  390. #define CONFIG1_SET_LEDMODE(x) ((x)*0x0200) /* Mode of LED; values: */
  391. #define LEDMODE_NOT_SOOL (0) /* !SOOL */
  392. #define LEDMODE_OFF (1) /* 0 */
  393. #define LEDMODE_ON (2) /* 1 */
  394. #define LEDMODE_NOT_LOCD (3) /* !LOCD */
  395. #define LEDMORE_GPIN (4) /* GPIN */
  396. #define LEDMODE_NOT_GPIN (7) /* !GPIN */
  397. #define CONFIG1_MASK_LEDMODE (0x00000E00)
  398. #define CONFIG1_GPOUT1 (0x00001000) /* Toggle for reset */
  399. #define CONFIG1_GPOUT2 (0x00002000) /* Loopback PHY */
  400. #define CONFIG1_GPOUT3 (0x00004000) /* Loopback lanai */
  401. Config2_Reg = 0x30, /* Config word 2; bits: */
  402. #define CONFIG2_HOWMANY (0x00000001) /* >512 VCIs? */
  403. #define CONFIG2_PTI7_MODE (0x00000002) /* Make PTI=7 RM, not OAM */
  404. #define CONFIG2_VPI_CHK_DIS (0x00000004) /* Ignore RX VPI value */
  405. #define CONFIG2_HEC_DROP (0x00000008) /* Drop cells w/ HEC errors */
  406. #define CONFIG2_VCI0_NORMAL (0x00000010) /* Treat VCI=0 normally */
  407. #define CONFIG2_CBR_ENABLE (0x00000020) /* Deal with CBR traffic */
  408. #define CONFIG2_TRASH_ALL (0x00000040) /* Trashing incoming cells */
  409. #define CONFIG2_TX_DISABLE (0x00000080) /* Trashing outgoing cells */
  410. #define CONFIG2_SET_TRASH (0x00000100) /* Turn trashing on */
  411. Statistics_Reg = 0x34, /* Statistics; bits: */
  412. #define STATS_GET_FIFO_OVFL(x) (((x)>> 0)&0xFF) /* FIFO overflowed */
  413. #define STATS_GET_HEC_ERR(x) (((x)>> 8)&0xFF) /* HEC was bad */
  414. #define STATS_GET_BAD_VCI(x) (((x)>>16)&0xFF) /* VCI not open */
  415. #define STATS_GET_BUF_OVFL(x) (((x)>>24)&0xFF) /* VCC buffer full */
  416. ServiceStuff_Reg = 0x38, /* Service stuff; bits: */
  417. #define SSTUFF_SET_SIZE(x) ((x)*0x20000000) /* size of service buffer */
  418. #define SSTUFF_SET_ADDR(x) ((x)>>8) /* set address of buffer */
  419. ServWrite_Reg = 0x3C, /* ServWrite Pointer */
  420. ServRead_Reg = 0x40, /* ServRead Pointer */
  421. TxDepth_Reg = 0x44, /* FIFO Transmit Depth */
  422. Butt_Reg = 0x48, /* Butt register */
  423. CBR_ICG_Reg = 0x50,
  424. CBR_PTR_Reg = 0x54,
  425. PingCount_Reg = 0x58, /* Ping count */
  426. DMA_Addr_Reg = 0x5C /* DMA address */
  427. };
  428. static inline bus_addr_t reg_addr(const struct lanai_dev *lanai,
  429. enum lanai_register reg)
  430. {
  431. return lanai->base + reg;
  432. }
  433. static inline u32 reg_read(const struct lanai_dev *lanai,
  434. enum lanai_register reg)
  435. {
  436. u32 t;
  437. t = readl(reg_addr(lanai, reg));
  438. RWDEBUG("R [0x%08X] 0x%02X = 0x%08X\n", (unsigned int) lanai->base,
  439. (int) reg, t);
  440. return t;
  441. }
  442. static inline void reg_write(const struct lanai_dev *lanai, u32 val,
  443. enum lanai_register reg)
  444. {
  445. RWDEBUG("W [0x%08X] 0x%02X < 0x%08X\n", (unsigned int) lanai->base,
  446. (int) reg, val);
  447. writel(val, reg_addr(lanai, reg));
  448. }
  449. static inline void conf1_write(const struct lanai_dev *lanai)
  450. {
  451. reg_write(lanai, lanai->conf1, Config1_Reg);
  452. }
  453. static inline void conf2_write(const struct lanai_dev *lanai)
  454. {
  455. reg_write(lanai, lanai->conf2, Config2_Reg);
  456. }
  457. /* Same as conf2_write(), but defers I/O if we're powered down */
  458. static inline void conf2_write_if_powerup(const struct lanai_dev *lanai)
  459. {
  460. #ifdef USE_POWERDOWN
  461. if (unlikely((lanai->conf1 & CONFIG1_POWERDOWN) != 0))
  462. return;
  463. #endif /* USE_POWERDOWN */
  464. conf2_write(lanai);
  465. }
  466. static inline void reset_board(const struct lanai_dev *lanai)
  467. {
  468. DPRINTK("about to reset board\n");
  469. reg_write(lanai, 0, Reset_Reg);
  470. /*
  471. * If we don't delay a little while here then we can end up
  472. * leaving the card in a VERY weird state and lock up the
  473. * PCI bus. This isn't documented anywhere but I've convinced
  474. * myself after a lot of painful experimentation
  475. */
  476. udelay(5);
  477. }
  478. /* -------------------- CARD SRAM UTILITIES: */
  479. /* The SRAM is mapped into normal PCI memory space - the only catch is
  480. * that it is only 16-bits wide but must be accessed as 32-bit. The
  481. * 16 high bits will be zero. We don't hide this, since they get
  482. * programmed mostly like discrete registers anyway
  483. */
  484. #define SRAM_START (0x20000)
  485. #define SRAM_BYTES (0x20000) /* Again, half don't really exist */
  486. static inline bus_addr_t sram_addr(const struct lanai_dev *lanai, int offset)
  487. {
  488. return lanai->base + SRAM_START + offset;
  489. }
  490. static inline u32 sram_read(const struct lanai_dev *lanai, int offset)
  491. {
  492. return readl(sram_addr(lanai, offset));
  493. }
  494. static inline void sram_write(const struct lanai_dev *lanai,
  495. u32 val, int offset)
  496. {
  497. writel(val, sram_addr(lanai, offset));
  498. }
  499. static int __init sram_test_word(
  500. const struct lanai_dev *lanai, int offset, u32 pattern)
  501. {
  502. u32 readback;
  503. sram_write(lanai, pattern, offset);
  504. readback = sram_read(lanai, offset);
  505. if (likely(readback == pattern))
  506. return 0;
  507. printk(KERN_ERR DEV_LABEL
  508. "(itf %d): SRAM word at %d bad: wrote 0x%X, read 0x%X\n",
  509. lanai->number, offset,
  510. (unsigned int) pattern, (unsigned int) readback);
  511. return -EIO;
  512. }
  513. static int __devinit sram_test_pass(const struct lanai_dev *lanai, u32 pattern)
  514. {
  515. int offset, result = 0;
  516. for (offset = 0; offset < SRAM_BYTES && result == 0; offset += 4)
  517. result = sram_test_word(lanai, offset, pattern);
  518. return result;
  519. }
  520. static int __devinit sram_test_and_clear(const struct lanai_dev *lanai)
  521. {
  522. #ifdef FULL_MEMORY_TEST
  523. int result;
  524. DPRINTK("testing SRAM\n");
  525. if ((result = sram_test_pass(lanai, 0x5555)) != 0)
  526. return result;
  527. if ((result = sram_test_pass(lanai, 0xAAAA)) != 0)
  528. return result;
  529. #endif
  530. DPRINTK("clearing SRAM\n");
  531. return sram_test_pass(lanai, 0x0000);
  532. }
  533. /* -------------------- CARD-BASED VCC TABLE UTILITIES: */
  534. /* vcc table */
  535. enum lanai_vcc_offset {
  536. vcc_rxaddr1 = 0x00, /* Location1, plus bits: */
  537. #define RXADDR1_SET_SIZE(x) ((x)*0x0000100) /* size of RX buffer */
  538. #define RXADDR1_SET_RMMODE(x) ((x)*0x00800) /* RM cell action; values: */
  539. #define RMMODE_TRASH (0) /* discard */
  540. #define RMMODE_PRESERVE (1) /* input as AAL0 */
  541. #define RMMODE_PIPE (2) /* pipe to coscheduler */
  542. #define RMMODE_PIPEALL (3) /* pipe non-RM too */
  543. #define RXADDR1_OAM_PRESERVE (0x00002000) /* Input OAM cells as AAL0 */
  544. #define RXADDR1_SET_MODE(x) ((x)*0x0004000) /* Reassembly mode */
  545. #define RXMODE_TRASH (0) /* discard */
  546. #define RXMODE_AAL0 (1) /* non-AAL5 mode */
  547. #define RXMODE_AAL5 (2) /* AAL5, intr. each PDU */
  548. #define RXMODE_AAL5_STREAM (3) /* AAL5 w/o per-PDU intr */
  549. vcc_rxaddr2 = 0x04, /* Location2 */
  550. vcc_rxcrc1 = 0x08, /* RX CRC claculation space */
  551. vcc_rxcrc2 = 0x0C,
  552. vcc_rxwriteptr = 0x10, /* RX writeptr, plus bits: */
  553. #define RXWRITEPTR_LASTEFCI (0x00002000) /* Last PDU had EFCI bit */
  554. #define RXWRITEPTR_DROPPING (0x00004000) /* Had error, dropping */
  555. #define RXWRITEPTR_TRASHING (0x00008000) /* Trashing */
  556. vcc_rxbufstart = 0x14, /* RX bufstart, plus bits: */
  557. #define RXBUFSTART_CLP (0x00004000)
  558. #define RXBUFSTART_CI (0x00008000)
  559. vcc_rxreadptr = 0x18, /* RX readptr */
  560. vcc_txicg = 0x1C, /* TX ICG */
  561. vcc_txaddr1 = 0x20, /* Location1, plus bits: */
  562. #define TXADDR1_SET_SIZE(x) ((x)*0x0000100) /* size of TX buffer */
  563. #define TXADDR1_ABR (0x00008000) /* use ABR (doesn't work) */
  564. vcc_txaddr2 = 0x24, /* Location2 */
  565. vcc_txcrc1 = 0x28, /* TX CRC claculation space */
  566. vcc_txcrc2 = 0x2C,
  567. vcc_txreadptr = 0x30, /* TX Readptr, plus bits: */
  568. #define TXREADPTR_GET_PTR(x) ((x)&0x01FFF)
  569. #define TXREADPTR_MASK_DELTA (0x0000E000) /* ? */
  570. vcc_txendptr = 0x34, /* TX Endptr, plus bits: */
  571. #define TXENDPTR_CLP (0x00002000)
  572. #define TXENDPTR_MASK_PDUMODE (0x0000C000) /* PDU mode; values: */
  573. #define PDUMODE_AAL0 (0*0x04000)
  574. #define PDUMODE_AAL5 (2*0x04000)
  575. #define PDUMODE_AAL5STREAM (3*0x04000)
  576. vcc_txwriteptr = 0x38, /* TX Writeptr */
  577. #define TXWRITEPTR_GET_PTR(x) ((x)&0x1FFF)
  578. vcc_txcbr_next = 0x3C /* # of next CBR VCI in ring */
  579. #define TXCBR_NEXT_BOZO (0x00008000) /* "bozo bit" */
  580. };
  581. #define CARDVCC_SIZE (0x40)
  582. static inline bus_addr_t cardvcc_addr(const struct lanai_dev *lanai,
  583. vci_t vci)
  584. {
  585. return sram_addr(lanai, vci * CARDVCC_SIZE);
  586. }
  587. static inline u32 cardvcc_read(const struct lanai_vcc *lvcc,
  588. enum lanai_vcc_offset offset)
  589. {
  590. u32 val;
  591. APRINTK(lvcc->vbase != NULL, "cardvcc_read: unbound vcc!\n");
  592. val= readl(lvcc->vbase + offset);
  593. RWDEBUG("VR vci=%04d 0x%02X = 0x%08X\n",
  594. lvcc->vci, (int) offset, val);
  595. return val;
  596. }
  597. static inline void cardvcc_write(const struct lanai_vcc *lvcc,
  598. u32 val, enum lanai_vcc_offset offset)
  599. {
  600. APRINTK(lvcc->vbase != NULL, "cardvcc_write: unbound vcc!\n");
  601. APRINTK((val & ~0xFFFF) == 0,
  602. "cardvcc_write: bad val 0x%X (vci=%d, addr=0x%02X)\n",
  603. (unsigned int) val, lvcc->vci, (unsigned int) offset);
  604. RWDEBUG("VW vci=%04d 0x%02X > 0x%08X\n",
  605. lvcc->vci, (unsigned int) offset, (unsigned int) val);
  606. writel(val, lvcc->vbase + offset);
  607. }
  608. /* -------------------- COMPUTE SIZE OF AN AAL5 PDU: */
  609. /* How many bytes will an AAL5 PDU take to transmit - remember that:
  610. * o we need to add 8 bytes for length, CPI, UU, and CRC
  611. * o we need to round up to 48 bytes for cells
  612. */
  613. static inline int aal5_size(int size)
  614. {
  615. int cells = (size + 8 + 47) / 48;
  616. return cells * 48;
  617. }
  618. /* How many bytes can we send if we have "space" space, assuming we have
  619. * to send full cells
  620. */
  621. static inline int aal5_spacefor(int space)
  622. {
  623. int cells = space / 48;
  624. return cells * 48;
  625. }
  626. /* -------------------- FREE AN ATM SKB: */
  627. static inline void lanai_free_skb(struct atm_vcc *atmvcc, struct sk_buff *skb)
  628. {
  629. if (atmvcc->pop != NULL)
  630. atmvcc->pop(atmvcc, skb);
  631. else
  632. dev_kfree_skb_any(skb);
  633. }
  634. /* -------------------- TURN VCCS ON AND OFF: */
  635. static void host_vcc_start_rx(const struct lanai_vcc *lvcc)
  636. {
  637. u32 addr1;
  638. if (lvcc->rx.atmvcc->qos.aal == ATM_AAL5) {
  639. dma_addr_t dmaaddr = lvcc->rx.buf.dmaaddr;
  640. cardvcc_write(lvcc, 0xFFFF, vcc_rxcrc1);
  641. cardvcc_write(lvcc, 0xFFFF, vcc_rxcrc2);
  642. cardvcc_write(lvcc, 0, vcc_rxwriteptr);
  643. cardvcc_write(lvcc, 0, vcc_rxbufstart);
  644. cardvcc_write(lvcc, 0, vcc_rxreadptr);
  645. cardvcc_write(lvcc, (dmaaddr >> 16) & 0xFFFF, vcc_rxaddr2);
  646. addr1 = ((dmaaddr >> 8) & 0xFF) |
  647. RXADDR1_SET_SIZE(lanai_buf_size_cardorder(&lvcc->rx.buf))|
  648. RXADDR1_SET_RMMODE(RMMODE_TRASH) | /* ??? */
  649. /* RXADDR1_OAM_PRESERVE | --- no OAM support yet */
  650. RXADDR1_SET_MODE(RXMODE_AAL5);
  651. } else
  652. addr1 = RXADDR1_SET_RMMODE(RMMODE_PRESERVE) | /* ??? */
  653. RXADDR1_OAM_PRESERVE | /* ??? */
  654. RXADDR1_SET_MODE(RXMODE_AAL0);
  655. /* This one must be last! */
  656. cardvcc_write(lvcc, addr1, vcc_rxaddr1);
  657. }
  658. static void host_vcc_start_tx(const struct lanai_vcc *lvcc)
  659. {
  660. dma_addr_t dmaaddr = lvcc->tx.buf.dmaaddr;
  661. cardvcc_write(lvcc, 0, vcc_txicg);
  662. cardvcc_write(lvcc, 0xFFFF, vcc_txcrc1);
  663. cardvcc_write(lvcc, 0xFFFF, vcc_txcrc2);
  664. cardvcc_write(lvcc, 0, vcc_txreadptr);
  665. cardvcc_write(lvcc, 0, vcc_txendptr);
  666. cardvcc_write(lvcc, 0, vcc_txwriteptr);
  667. cardvcc_write(lvcc,
  668. (lvcc->tx.atmvcc->qos.txtp.traffic_class == ATM_CBR) ?
  669. TXCBR_NEXT_BOZO | lvcc->vci : 0, vcc_txcbr_next);
  670. cardvcc_write(lvcc, (dmaaddr >> 16) & 0xFFFF, vcc_txaddr2);
  671. cardvcc_write(lvcc,
  672. ((dmaaddr >> 8) & 0xFF) |
  673. TXADDR1_SET_SIZE(lanai_buf_size_cardorder(&lvcc->tx.buf)),
  674. vcc_txaddr1);
  675. }
  676. /* Shutdown receiving on card */
  677. static void lanai_shutdown_rx_vci(const struct lanai_vcc *lvcc)
  678. {
  679. if (lvcc->vbase == NULL) /* We were never bound to a VCI */
  680. return;
  681. /* 15.1.1 - set to trashing, wait one cell time (15us) */
  682. cardvcc_write(lvcc,
  683. RXADDR1_SET_RMMODE(RMMODE_TRASH) |
  684. RXADDR1_SET_MODE(RXMODE_TRASH), vcc_rxaddr1);
  685. udelay(15);
  686. /* 15.1.2 - clear rest of entries */
  687. cardvcc_write(lvcc, 0, vcc_rxaddr2);
  688. cardvcc_write(lvcc, 0, vcc_rxcrc1);
  689. cardvcc_write(lvcc, 0, vcc_rxcrc2);
  690. cardvcc_write(lvcc, 0, vcc_rxwriteptr);
  691. cardvcc_write(lvcc, 0, vcc_rxbufstart);
  692. cardvcc_write(lvcc, 0, vcc_rxreadptr);
  693. }
  694. /* Shutdown transmitting on card.
  695. * Unfortunately the lanai needs us to wait until all the data
  696. * drains out of the buffer before we can dealloc it, so this
  697. * can take awhile -- up to 370ms for a full 128KB buffer
  698. * assuming everone else is quiet. In theory the time is
  699. * boundless if there's a CBR VCC holding things up.
  700. */
  701. static void lanai_shutdown_tx_vci(struct lanai_dev *lanai,
  702. struct lanai_vcc *lvcc)
  703. {
  704. struct sk_buff *skb;
  705. unsigned long flags, timeout;
  706. int read, write, lastread = -1;
  707. APRINTK(!in_interrupt(),
  708. "lanai_shutdown_tx_vci called w/o process context!\n");
  709. if (lvcc->vbase == NULL) /* We were never bound to a VCI */
  710. return;
  711. /* 15.2.1 - wait for queue to drain */
  712. while ((skb = skb_dequeue(&lvcc->tx.backlog)) != NULL)
  713. lanai_free_skb(lvcc->tx.atmvcc, skb);
  714. read_lock_irqsave(&vcc_sklist_lock, flags);
  715. __clear_bit(lvcc->vci, lanai->backlog_vccs);
  716. read_unlock_irqrestore(&vcc_sklist_lock, flags);
  717. /*
  718. * We need to wait for the VCC to drain but don't wait forever. We
  719. * give each 1K of buffer size 1/128th of a second to clear out.
  720. * TODO: maybe disable CBR if we're about to timeout?
  721. */
  722. timeout = jiffies +
  723. (((lanai_buf_size(&lvcc->tx.buf) / 1024) * HZ) >> 7);
  724. write = TXWRITEPTR_GET_PTR(cardvcc_read(lvcc, vcc_txwriteptr));
  725. for (;;) {
  726. read = TXREADPTR_GET_PTR(cardvcc_read(lvcc, vcc_txreadptr));
  727. if (read == write && /* Is TX buffer empty? */
  728. (lvcc->tx.atmvcc->qos.txtp.traffic_class != ATM_CBR ||
  729. (cardvcc_read(lvcc, vcc_txcbr_next) &
  730. TXCBR_NEXT_BOZO) == 0))
  731. break;
  732. if (read != lastread) { /* Has there been any progress? */
  733. lastread = read;
  734. timeout += HZ / 10;
  735. }
  736. if (unlikely(time_after(jiffies, timeout))) {
  737. printk(KERN_ERR DEV_LABEL "(itf %d): Timed out on "
  738. "backlog closing vci %d\n",
  739. lvcc->tx.atmvcc->dev->number, lvcc->vci);
  740. DPRINTK("read, write = %d, %d\n", read, write);
  741. break;
  742. }
  743. msleep(40);
  744. }
  745. /* 15.2.2 - clear out all tx registers */
  746. cardvcc_write(lvcc, 0, vcc_txreadptr);
  747. cardvcc_write(lvcc, 0, vcc_txwriteptr);
  748. cardvcc_write(lvcc, 0, vcc_txendptr);
  749. cardvcc_write(lvcc, 0, vcc_txcrc1);
  750. cardvcc_write(lvcc, 0, vcc_txcrc2);
  751. cardvcc_write(lvcc, 0, vcc_txaddr2);
  752. cardvcc_write(lvcc, 0, vcc_txaddr1);
  753. }
  754. /* -------------------- MANAGING AAL0 RX BUFFER: */
  755. static inline int aal0_buffer_allocate(struct lanai_dev *lanai)
  756. {
  757. DPRINTK("aal0_buffer_allocate: allocating AAL0 RX buffer\n");
  758. lanai_buf_allocate(&lanai->aal0buf, AAL0_RX_BUFFER_SIZE, 80,
  759. lanai->pci);
  760. return (lanai->aal0buf.start == NULL) ? -ENOMEM : 0;
  761. }
  762. static inline void aal0_buffer_free(struct lanai_dev *lanai)
  763. {
  764. DPRINTK("aal0_buffer_allocate: freeing AAL0 RX buffer\n");
  765. lanai_buf_deallocate(&lanai->aal0buf, lanai->pci);
  766. }
  767. /* -------------------- EEPROM UTILITIES: */
  768. /* Offsets of data in the EEPROM */
  769. #define EEPROM_COPYRIGHT (0)
  770. #define EEPROM_COPYRIGHT_LEN (44)
  771. #define EEPROM_CHECKSUM (62)
  772. #define EEPROM_CHECKSUM_REV (63)
  773. #define EEPROM_MAC (64)
  774. #define EEPROM_MAC_REV (70)
  775. #define EEPROM_SERIAL (112)
  776. #define EEPROM_SERIAL_REV (116)
  777. #define EEPROM_MAGIC (120)
  778. #define EEPROM_MAGIC_REV (124)
  779. #define EEPROM_MAGIC_VALUE (0x5AB478D2)
  780. #ifndef READ_EEPROM
  781. /* Stub functions to use if EEPROM reading is disabled */
  782. static int __devinit eeprom_read(struct lanai_dev *lanai)
  783. {
  784. printk(KERN_INFO DEV_LABEL "(itf %d): *NOT* reading EEPROM\n",
  785. lanai->number);
  786. memset(&lanai->eeprom[EEPROM_MAC], 0, 6);
  787. return 0;
  788. }
  789. static int __devinit eeprom_validate(struct lanai_dev *lanai)
  790. {
  791. lanai->serialno = 0;
  792. lanai->magicno = EEPROM_MAGIC_VALUE;
  793. return 0;
  794. }
  795. #else /* READ_EEPROM */
  796. static int __devinit eeprom_read(struct lanai_dev *lanai)
  797. {
  798. int i, address;
  799. u8 data;
  800. u32 tmp;
  801. #define set_config1(x) do { lanai->conf1 = x; conf1_write(lanai); \
  802. } while (0)
  803. #define clock_h() set_config1(lanai->conf1 | CONFIG1_PROMCLK)
  804. #define clock_l() set_config1(lanai->conf1 &~ CONFIG1_PROMCLK)
  805. #define data_h() set_config1(lanai->conf1 | CONFIG1_PROMDATA)
  806. #define data_l() set_config1(lanai->conf1 &~ CONFIG1_PROMDATA)
  807. #define pre_read() do { data_h(); clock_h(); udelay(5); } while (0)
  808. #define read_pin() (reg_read(lanai, Status_Reg) & STATUS_PROMDATA)
  809. #define send_stop() do { data_l(); udelay(5); clock_h(); udelay(5); \
  810. data_h(); udelay(5); } while (0)
  811. /* start with both clock and data high */
  812. data_h(); clock_h(); udelay(5);
  813. for (address = 0; address < LANAI_EEPROM_SIZE; address++) {
  814. data = (address << 1) | 1; /* Command=read + address */
  815. /* send start bit */
  816. data_l(); udelay(5);
  817. clock_l(); udelay(5);
  818. for (i = 128; i != 0; i >>= 1) { /* write command out */
  819. tmp = (lanai->conf1 & ~CONFIG1_PROMDATA) |
  820. (data & i) ? CONFIG1_PROMDATA : 0;
  821. if (lanai->conf1 != tmp) {
  822. set_config1(tmp);
  823. udelay(5); /* Let new data settle */
  824. }
  825. clock_h(); udelay(5); clock_l(); udelay(5);
  826. }
  827. /* look for ack */
  828. data_h(); clock_h(); udelay(5);
  829. if (read_pin() != 0)
  830. goto error; /* No ack seen */
  831. clock_l(); udelay(5);
  832. /* read back result */
  833. for (data = 0, i = 7; i >= 0; i--) {
  834. data_h(); clock_h(); udelay(5);
  835. data = (data << 1) | !!read_pin();
  836. clock_l(); udelay(5);
  837. }
  838. /* look again for ack */
  839. data_h(); clock_h(); udelay(5);
  840. if (read_pin() == 0)
  841. goto error; /* Spurious ack */
  842. clock_l(); udelay(5);
  843. send_stop();
  844. lanai->eeprom[address] = data;
  845. DPRINTK("EEPROM 0x%04X %02X\n",
  846. (unsigned int) address, (unsigned int) data);
  847. }
  848. return 0;
  849. error:
  850. clock_l(); udelay(5); /* finish read */
  851. send_stop();
  852. printk(KERN_ERR DEV_LABEL "(itf %d): error reading EEPROM byte %d\n",
  853. lanai->number, address);
  854. return -EIO;
  855. #undef set_config1
  856. #undef clock_h
  857. #undef clock_l
  858. #undef data_h
  859. #undef data_l
  860. #undef pre_read
  861. #undef read_pin
  862. #undef send_stop
  863. }
  864. /* read a big-endian 4-byte value out of eeprom */
  865. static inline u32 eeprom_be4(const struct lanai_dev *lanai, int address)
  866. {
  867. return be32_to_cpup((u32 *) (&lanai->eeprom[address]));
  868. }
  869. /* Checksum/validate EEPROM contents */
  870. static int __devinit eeprom_validate(struct lanai_dev *lanai)
  871. {
  872. int i, s;
  873. u32 v;
  874. const u8 *e = lanai->eeprom;
  875. #ifdef DEBUG
  876. /* First, see if we can get an ASCIIZ string out of the copyright */
  877. for (i = EEPROM_COPYRIGHT;
  878. i < (EEPROM_COPYRIGHT + EEPROM_COPYRIGHT_LEN); i++)
  879. if (e[i] < 0x20 || e[i] > 0x7E)
  880. break;
  881. if ( i != EEPROM_COPYRIGHT &&
  882. i != EEPROM_COPYRIGHT + EEPROM_COPYRIGHT_LEN && e[i] == '\0')
  883. DPRINTK("eeprom: copyright = \"%s\"\n",
  884. (char *) &e[EEPROM_COPYRIGHT]);
  885. else
  886. DPRINTK("eeprom: copyright not found\n");
  887. #endif
  888. /* Validate checksum */
  889. for (i = s = 0; i < EEPROM_CHECKSUM; i++)
  890. s += e[i];
  891. s &= 0xFF;
  892. if (s != e[EEPROM_CHECKSUM]) {
  893. printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM checksum bad "
  894. "(wanted 0x%02X, got 0x%02X)\n", lanai->number,
  895. (unsigned int) s, (unsigned int) e[EEPROM_CHECKSUM]);
  896. return -EIO;
  897. }
  898. s ^= 0xFF;
  899. if (s != e[EEPROM_CHECKSUM_REV]) {
  900. printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM inverse checksum "
  901. "bad (wanted 0x%02X, got 0x%02X)\n", lanai->number,
  902. (unsigned int) s, (unsigned int) e[EEPROM_CHECKSUM_REV]);
  903. return -EIO;
  904. }
  905. /* Verify MAC address */
  906. for (i = 0; i < 6; i++)
  907. if ((e[EEPROM_MAC + i] ^ e[EEPROM_MAC_REV + i]) != 0xFF) {
  908. printk(KERN_ERR DEV_LABEL
  909. "(itf %d) : EEPROM MAC addresses don't match "
  910. "(0x%02X, inverse 0x%02X)\n", lanai->number,
  911. (unsigned int) e[EEPROM_MAC + i],
  912. (unsigned int) e[EEPROM_MAC_REV + i]);
  913. return -EIO;
  914. }
  915. DPRINTK("eeprom: MAC address = %02X:%02X:%02X:%02X:%02X:%02X\n",
  916. e[EEPROM_MAC + 0], e[EEPROM_MAC + 1], e[EEPROM_MAC + 2],
  917. e[EEPROM_MAC + 3], e[EEPROM_MAC + 4], e[EEPROM_MAC + 5]);
  918. /* Verify serial number */
  919. lanai->serialno = eeprom_be4(lanai, EEPROM_SERIAL);
  920. v = eeprom_be4(lanai, EEPROM_SERIAL_REV);
  921. if ((lanai->serialno ^ v) != 0xFFFFFFFF) {
  922. printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM serial numbers "
  923. "don't match (0x%08X, inverse 0x%08X)\n", lanai->number,
  924. (unsigned int) lanai->serialno, (unsigned int) v);
  925. return -EIO;
  926. }
  927. DPRINTK("eeprom: Serial number = %d\n", (unsigned int) lanai->serialno);
  928. /* Verify magic number */
  929. lanai->magicno = eeprom_be4(lanai, EEPROM_MAGIC);
  930. v = eeprom_be4(lanai, EEPROM_MAGIC_REV);
  931. if ((lanai->magicno ^ v) != 0xFFFFFFFF) {
  932. printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM magic numbers "
  933. "don't match (0x%08X, inverse 0x%08X)\n", lanai->number,
  934. lanai->magicno, v);
  935. return -EIO;
  936. }
  937. DPRINTK("eeprom: Magic number = 0x%08X\n", lanai->magicno);
  938. if (lanai->magicno != EEPROM_MAGIC_VALUE)
  939. printk(KERN_WARNING DEV_LABEL "(itf %d): warning - EEPROM "
  940. "magic not what expected (got 0x%08X, not 0x%08X)\n",
  941. lanai->number, (unsigned int) lanai->magicno,
  942. (unsigned int) EEPROM_MAGIC_VALUE);
  943. return 0;
  944. }
  945. #endif /* READ_EEPROM */
  946. static inline const u8 *eeprom_mac(const struct lanai_dev *lanai)
  947. {
  948. return &lanai->eeprom[EEPROM_MAC];
  949. }
  950. /* -------------------- INTERRUPT HANDLING UTILITIES: */
  951. /* Interrupt types */
  952. #define INT_STATS (0x00000002) /* Statistics counter overflow */
  953. #define INT_SOOL (0x00000004) /* SOOL changed state */
  954. #define INT_LOCD (0x00000008) /* LOCD changed state */
  955. #define INT_LED (0x00000010) /* LED (HAPPI) changed state */
  956. #define INT_GPIN (0x00000020) /* GPIN changed state */
  957. #define INT_PING (0x00000040) /* PING_COUNT fulfilled */
  958. #define INT_WAKE (0x00000080) /* Lanai wants bus */
  959. #define INT_CBR0 (0x00000100) /* CBR sched hit VCI 0 */
  960. #define INT_LOCK (0x00000200) /* Service list overflow */
  961. #define INT_MISMATCH (0x00000400) /* TX magic list mismatch */
  962. #define INT_AAL0_STR (0x00000800) /* Non-AAL5 buffer half filled */
  963. #define INT_AAL0 (0x00001000) /* Non-AAL5 data available */
  964. #define INT_SERVICE (0x00002000) /* Service list entries available */
  965. #define INT_TABORTSENT (0x00004000) /* Target abort sent by lanai */
  966. #define INT_TABORTBM (0x00008000) /* Abort rcv'd as bus master */
  967. #define INT_TIMEOUTBM (0x00010000) /* No response to bus master */
  968. #define INT_PCIPARITY (0x00020000) /* Parity error on PCI */
  969. /* Sets of the above */
  970. #define INT_ALL (0x0003FFFE) /* All interrupts */
  971. #define INT_STATUS (0x0000003C) /* Some status pin changed */
  972. #define INT_DMASHUT (0x00038000) /* DMA engine got shut down */
  973. #define INT_SEGSHUT (0x00000700) /* Segmentation got shut down */
  974. static inline u32 intr_pending(const struct lanai_dev *lanai)
  975. {
  976. return reg_read(lanai, IntStatusMasked_Reg);
  977. }
  978. static inline void intr_enable(const struct lanai_dev *lanai, u32 i)
  979. {
  980. reg_write(lanai, i, IntControlEna_Reg);
  981. }
  982. static inline void intr_disable(const struct lanai_dev *lanai, u32 i)
  983. {
  984. reg_write(lanai, i, IntControlDis_Reg);
  985. }
  986. /* -------------------- CARD/PCI STATUS: */
  987. static void status_message(int itf, const char *name, int status)
  988. {
  989. static const char *onoff[2] = { "off to on", "on to off" };
  990. printk(KERN_INFO DEV_LABEL "(itf %d): %s changed from %s\n",
  991. itf, name, onoff[!status]);
  992. }
  993. static void lanai_check_status(struct lanai_dev *lanai)
  994. {
  995. u32 new = reg_read(lanai, Status_Reg);
  996. u32 changes = new ^ lanai->status;
  997. lanai->status = new;
  998. #define e(flag, name) \
  999. if (changes & flag) \
  1000. status_message(lanai->number, name, new & flag)
  1001. e(STATUS_SOOL, "SOOL");
  1002. e(STATUS_LOCD, "LOCD");
  1003. e(STATUS_LED, "LED");
  1004. e(STATUS_GPIN, "GPIN");
  1005. #undef e
  1006. }
  1007. static void pcistatus_got(int itf, const char *name)
  1008. {
  1009. printk(KERN_INFO DEV_LABEL "(itf %d): PCI got %s error\n", itf, name);
  1010. }
  1011. static void pcistatus_check(struct lanai_dev *lanai, int clearonly)
  1012. {
  1013. u16 s;
  1014. int result;
  1015. result = pci_read_config_word(lanai->pci, PCI_STATUS, &s);
  1016. if (result != PCIBIOS_SUCCESSFUL) {
  1017. printk(KERN_ERR DEV_LABEL "(itf %d): can't read PCI_STATUS: "
  1018. "%d\n", lanai->number, result);
  1019. return;
  1020. }
  1021. s &= PCI_STATUS_DETECTED_PARITY | PCI_STATUS_SIG_SYSTEM_ERROR |
  1022. PCI_STATUS_REC_MASTER_ABORT | PCI_STATUS_REC_TARGET_ABORT |
  1023. PCI_STATUS_SIG_TARGET_ABORT | PCI_STATUS_PARITY;
  1024. if (s == 0)
  1025. return;
  1026. result = pci_write_config_word(lanai->pci, PCI_STATUS, s);
  1027. if (result != PCIBIOS_SUCCESSFUL)
  1028. printk(KERN_ERR DEV_LABEL "(itf %d): can't write PCI_STATUS: "
  1029. "%d\n", lanai->number, result);
  1030. if (clearonly)
  1031. return;
  1032. #define e(flag, name, stat) \
  1033. if (s & flag) { \
  1034. pcistatus_got(lanai->number, name); \
  1035. ++lanai->stats.pcierr_##stat; \
  1036. }
  1037. e(PCI_STATUS_DETECTED_PARITY, "parity", parity_detect);
  1038. e(PCI_STATUS_SIG_SYSTEM_ERROR, "signalled system", serr_set);
  1039. e(PCI_STATUS_REC_MASTER_ABORT, "master", master_abort);
  1040. e(PCI_STATUS_REC_TARGET_ABORT, "master target", m_target_abort);
  1041. e(PCI_STATUS_SIG_TARGET_ABORT, "slave", s_target_abort);
  1042. e(PCI_STATUS_PARITY, "master parity", master_parity);
  1043. #undef e
  1044. }
  1045. /* -------------------- VCC TX BUFFER UTILITIES: */
  1046. /* space left in tx buffer in bytes */
  1047. static inline int vcc_tx_space(const struct lanai_vcc *lvcc, int endptr)
  1048. {
  1049. int r;
  1050. r = endptr * 16;
  1051. r -= ((unsigned long) lvcc->tx.buf.ptr) -
  1052. ((unsigned long) lvcc->tx.buf.start);
  1053. r -= 16; /* Leave "bubble" - if start==end it looks empty */
  1054. if (r < 0)
  1055. r += lanai_buf_size(&lvcc->tx.buf);
  1056. return r;
  1057. }
  1058. /* test if VCC is currently backlogged */
  1059. static inline int vcc_is_backlogged(/*const*/ struct lanai_vcc *lvcc)
  1060. {
  1061. return !skb_queue_empty(&lvcc->tx.backlog);
  1062. }
  1063. /* Bit fields in the segmentation buffer descriptor */
  1064. #define DESCRIPTOR_MAGIC (0xD0000000)
  1065. #define DESCRIPTOR_AAL5 (0x00008000)
  1066. #define DESCRIPTOR_AAL5_STREAM (0x00004000)
  1067. #define DESCRIPTOR_CLP (0x00002000)
  1068. /* Add 32-bit descriptor with its padding */
  1069. static inline void vcc_tx_add_aal5_descriptor(struct lanai_vcc *lvcc,
  1070. u32 flags, int len)
  1071. {
  1072. int pos;
  1073. APRINTK((((unsigned long) lvcc->tx.buf.ptr) & 15) == 0,
  1074. "vcc_tx_add_aal5_descriptor: bad ptr=%p\n", lvcc->tx.buf.ptr);
  1075. lvcc->tx.buf.ptr += 4; /* Hope the values REALLY don't matter */
  1076. pos = ((unsigned char *) lvcc->tx.buf.ptr) -
  1077. (unsigned char *) lvcc->tx.buf.start;
  1078. APRINTK((pos & ~0x0001FFF0) == 0,
  1079. "vcc_tx_add_aal5_descriptor: bad pos (%d) before, vci=%d, "
  1080. "start,ptr,end=%p,%p,%p\n", pos, lvcc->vci,
  1081. lvcc->tx.buf.start, lvcc->tx.buf.ptr, lvcc->tx.buf.end);
  1082. pos = (pos + len) & (lanai_buf_size(&lvcc->tx.buf) - 1);
  1083. APRINTK((pos & ~0x0001FFF0) == 0,
  1084. "vcc_tx_add_aal5_descriptor: bad pos (%d) after, vci=%d, "
  1085. "start,ptr,end=%p,%p,%p\n", pos, lvcc->vci,
  1086. lvcc->tx.buf.start, lvcc->tx.buf.ptr, lvcc->tx.buf.end);
  1087. lvcc->tx.buf.ptr[-1] =
  1088. cpu_to_le32(DESCRIPTOR_MAGIC | DESCRIPTOR_AAL5 |
  1089. ((lvcc->tx.atmvcc->atm_options & ATM_ATMOPT_CLP) ?
  1090. DESCRIPTOR_CLP : 0) | flags | pos >> 4);
  1091. if (lvcc->tx.buf.ptr >= lvcc->tx.buf.end)
  1092. lvcc->tx.buf.ptr = lvcc->tx.buf.start;
  1093. }
  1094. /* Add 32-bit AAL5 trailer and leave room for its CRC */
  1095. static inline void vcc_tx_add_aal5_trailer(struct lanai_vcc *lvcc,
  1096. int len, int cpi, int uu)
  1097. {
  1098. APRINTK((((unsigned long) lvcc->tx.buf.ptr) & 15) == 8,
  1099. "vcc_tx_add_aal5_trailer: bad ptr=%p\n", lvcc->tx.buf.ptr);
  1100. lvcc->tx.buf.ptr += 2;
  1101. lvcc->tx.buf.ptr[-2] = cpu_to_be32((uu << 24) | (cpi << 16) | len);
  1102. if (lvcc->tx.buf.ptr >= lvcc->tx.buf.end)
  1103. lvcc->tx.buf.ptr = lvcc->tx.buf.start;
  1104. }
  1105. static inline void vcc_tx_memcpy(struct lanai_vcc *lvcc,
  1106. const unsigned char *src, int n)
  1107. {
  1108. unsigned char *e;
  1109. int m;
  1110. e = ((unsigned char *) lvcc->tx.buf.ptr) + n;
  1111. m = e - (unsigned char *) lvcc->tx.buf.end;
  1112. if (m < 0)
  1113. m = 0;
  1114. memcpy(lvcc->tx.buf.ptr, src, n - m);
  1115. if (m != 0) {
  1116. memcpy(lvcc->tx.buf.start, src + n - m, m);
  1117. e = ((unsigned char *) lvcc->tx.buf.start) + m;
  1118. }
  1119. lvcc->tx.buf.ptr = (u32 *) e;
  1120. }
  1121. static inline void vcc_tx_memzero(struct lanai_vcc *lvcc, int n)
  1122. {
  1123. unsigned char *e;
  1124. int m;
  1125. if (n == 0)
  1126. return;
  1127. e = ((unsigned char *) lvcc->tx.buf.ptr) + n;
  1128. m = e - (unsigned char *) lvcc->tx.buf.end;
  1129. if (m < 0)
  1130. m = 0;
  1131. memset(lvcc->tx.buf.ptr, 0, n - m);
  1132. if (m != 0) {
  1133. memset(lvcc->tx.buf.start, 0, m);
  1134. e = ((unsigned char *) lvcc->tx.buf.start) + m;
  1135. }
  1136. lvcc->tx.buf.ptr = (u32 *) e;
  1137. }
  1138. /* Update "butt" register to specify new WritePtr */
  1139. static inline void lanai_endtx(struct lanai_dev *lanai,
  1140. const struct lanai_vcc *lvcc)
  1141. {
  1142. int i, ptr = ((unsigned char *) lvcc->tx.buf.ptr) -
  1143. (unsigned char *) lvcc->tx.buf.start;
  1144. APRINTK((ptr & ~0x0001FFF0) == 0,
  1145. "lanai_endtx: bad ptr (%d), vci=%d, start,ptr,end=%p,%p,%p\n",
  1146. ptr, lvcc->vci, lvcc->tx.buf.start, lvcc->tx.buf.ptr,
  1147. lvcc->tx.buf.end);
  1148. /*
  1149. * Since the "butt register" is a shared resounce on the card we
  1150. * serialize all accesses to it through this spinlock. This is
  1151. * mostly just paranoia sicne the register is rarely "busy" anyway
  1152. * but is needed for correctness.
  1153. */
  1154. spin_lock(&lanai->endtxlock);
  1155. /*
  1156. * We need to check if the "butt busy" bit is set before
  1157. * updating the butt register. In theory this should
  1158. * never happen because the ATM card is plenty fast at
  1159. * updating the register. Still, we should make sure
  1160. */
  1161. for (i = 0; reg_read(lanai, Status_Reg) & STATUS_BUTTBUSY; i++) {
  1162. if (unlikely(i > 50)) {
  1163. printk(KERN_ERR DEV_LABEL "(itf %d): butt register "
  1164. "always busy!\n", lanai->number);
  1165. break;
  1166. }
  1167. udelay(5);
  1168. }
  1169. /*
  1170. * Before we tall the card to start work we need to be sure 100% of
  1171. * the info in the service buffer has been written before we tell
  1172. * the card about it
  1173. */
  1174. wmb();
  1175. reg_write(lanai, (ptr << 12) | lvcc->vci, Butt_Reg);
  1176. spin_unlock(&lanai->endtxlock);
  1177. }
  1178. /*
  1179. * Add one AAL5 PDU to lvcc's transmit buffer. Caller garauntees there's
  1180. * space available. "pdusize" is the number of bytes the PDU will take
  1181. */
  1182. static void lanai_send_one_aal5(struct lanai_dev *lanai,
  1183. struct lanai_vcc *lvcc, struct sk_buff *skb, int pdusize)
  1184. {
  1185. int pad;
  1186. APRINTK(pdusize == aal5_size(skb->len),
  1187. "lanai_send_one_aal5: wrong size packet (%d != %d)\n",
  1188. pdusize, aal5_size(skb->len));
  1189. vcc_tx_add_aal5_descriptor(lvcc, 0, pdusize);
  1190. pad = pdusize - skb->len - 8;
  1191. APRINTK(pad >= 0, "pad is negative (%d)\n", pad);
  1192. APRINTK(pad < 48, "pad is too big (%d)\n", pad);
  1193. vcc_tx_memcpy(lvcc, skb->data, skb->len);
  1194. vcc_tx_memzero(lvcc, pad);
  1195. vcc_tx_add_aal5_trailer(lvcc, skb->len, 0, 0);
  1196. lanai_endtx(lanai, lvcc);
  1197. lanai_free_skb(lvcc->tx.atmvcc, skb);
  1198. atomic_inc(&lvcc->tx.atmvcc->stats->tx);
  1199. }
  1200. /* Try to fill the buffer - don't call unless there is backlog */
  1201. static void vcc_tx_unqueue_aal5(struct lanai_dev *lanai,
  1202. struct lanai_vcc *lvcc, int endptr)
  1203. {
  1204. int n;
  1205. struct sk_buff *skb;
  1206. int space = vcc_tx_space(lvcc, endptr);
  1207. APRINTK(vcc_is_backlogged(lvcc),
  1208. "vcc_tx_unqueue() called with empty backlog (vci=%d)\n",
  1209. lvcc->vci);
  1210. while (space >= 64) {
  1211. skb = skb_dequeue(&lvcc->tx.backlog);
  1212. if (skb == NULL)
  1213. goto no_backlog;
  1214. n = aal5_size(skb->len);
  1215. if (n + 16 > space) {
  1216. /* No room for this packet - put it back on queue */
  1217. skb_queue_head(&lvcc->tx.backlog, skb);
  1218. return;
  1219. }
  1220. lanai_send_one_aal5(lanai, lvcc, skb, n);
  1221. space -= n + 16;
  1222. }
  1223. if (!vcc_is_backlogged(lvcc)) {
  1224. no_backlog:
  1225. __clear_bit(lvcc->vci, lanai->backlog_vccs);
  1226. }
  1227. }
  1228. /* Given an skb that we want to transmit either send it now or queue */
  1229. static void vcc_tx_aal5(struct lanai_dev *lanai, struct lanai_vcc *lvcc,
  1230. struct sk_buff *skb)
  1231. {
  1232. int space, n;
  1233. if (vcc_is_backlogged(lvcc)) /* Already backlogged */
  1234. goto queue_it;
  1235. space = vcc_tx_space(lvcc,
  1236. TXREADPTR_GET_PTR(cardvcc_read(lvcc, vcc_txreadptr)));
  1237. n = aal5_size(skb->len);
  1238. APRINTK(n + 16 >= 64, "vcc_tx_aal5: n too small (%d)\n", n);
  1239. if (space < n + 16) { /* No space for this PDU */
  1240. __set_bit(lvcc->vci, lanai->backlog_vccs);
  1241. queue_it:
  1242. skb_queue_tail(&lvcc->tx.backlog, skb);
  1243. return;
  1244. }
  1245. lanai_send_one_aal5(lanai, lvcc, skb, n);
  1246. }
  1247. static void vcc_tx_unqueue_aal0(struct lanai_dev *lanai,
  1248. struct lanai_vcc *lvcc, int endptr)
  1249. {
  1250. printk(KERN_INFO DEV_LABEL
  1251. ": vcc_tx_unqueue_aal0: not implemented\n");
  1252. }
  1253. static void vcc_tx_aal0(struct lanai_dev *lanai, struct lanai_vcc *lvcc,
  1254. struct sk_buff *skb)
  1255. {
  1256. printk(KERN_INFO DEV_LABEL ": vcc_tx_aal0: not implemented\n");
  1257. /* Remember to increment lvcc->tx.atmvcc->stats->tx */
  1258. lanai_free_skb(lvcc->tx.atmvcc, skb);
  1259. }
  1260. /* -------------------- VCC RX BUFFER UTILITIES: */
  1261. /* unlike the _tx_ cousins, this doesn't update ptr */
  1262. static inline void vcc_rx_memcpy(unsigned char *dest,
  1263. const struct lanai_vcc *lvcc, int n)
  1264. {
  1265. int m = ((const unsigned char *) lvcc->rx.buf.ptr) + n -
  1266. ((const unsigned char *) (lvcc->rx.buf.end));
  1267. if (m < 0)
  1268. m = 0;
  1269. memcpy(dest, lvcc->rx.buf.ptr, n - m);
  1270. memcpy(dest + n - m, lvcc->rx.buf.start, m);
  1271. /* Make sure that these copies don't get reordered */
  1272. barrier();
  1273. }
  1274. /* Receive AAL5 data on a VCC with a particular endptr */
  1275. static void vcc_rx_aal5(struct lanai_vcc *lvcc, int endptr)
  1276. {
  1277. int size;
  1278. struct sk_buff *skb;
  1279. /*const*/ u32 *x, *end = &lvcc->rx.buf.start[endptr * 4];
  1280. int n = ((unsigned long) end) - ((unsigned long) lvcc->rx.buf.ptr);
  1281. if (n < 0)
  1282. n += lanai_buf_size(&lvcc->rx.buf);
  1283. APRINTK(n >= 0 && n < lanai_buf_size(&lvcc->rx.buf) && !(n & 15),
  1284. "vcc_rx_aal5: n out of range (%d/%Zu)\n",
  1285. n, lanai_buf_size(&lvcc->rx.buf));
  1286. /* Recover the second-to-last word to get true pdu length */
  1287. if ((x = &end[-2]) < lvcc->rx.buf.start)
  1288. x = &lvcc->rx.buf.end[-2];
  1289. /*
  1290. * Before we actually read from the buffer, make sure the memory
  1291. * changes have arrived
  1292. */
  1293. rmb();
  1294. size = be32_to_cpup(x) & 0xffff;
  1295. if (unlikely(n != aal5_size(size))) {
  1296. /* Make sure size matches padding */
  1297. printk(KERN_INFO DEV_LABEL "(itf %d): Got bad AAL5 length "
  1298. "on vci=%d - size=%d n=%d\n",
  1299. lvcc->rx.atmvcc->dev->number, lvcc->vci, size, n);
  1300. lvcc->stats.x.aal5.rx_badlen++;
  1301. goto out;
  1302. }
  1303. skb = atm_alloc_charge(lvcc->rx.atmvcc, size, GFP_ATOMIC);
  1304. if (unlikely(skb == NULL)) {
  1305. lvcc->stats.rx_nomem++;
  1306. goto out;
  1307. }
  1308. skb_put(skb, size);
  1309. vcc_rx_memcpy(skb->data, lvcc, size);
  1310. ATM_SKB(skb)->vcc = lvcc->rx.atmvcc;
  1311. __net_timestamp(skb);
  1312. lvcc->rx.atmvcc->push(lvcc->rx.atmvcc, skb);
  1313. atomic_inc(&lvcc->rx.atmvcc->stats->rx);
  1314. out:
  1315. lvcc->rx.buf.ptr = end;
  1316. cardvcc_write(lvcc, endptr, vcc_rxreadptr);
  1317. }
  1318. static void vcc_rx_aal0(struct lanai_dev *lanai)
  1319. {
  1320. printk(KERN_INFO DEV_LABEL ": vcc_rx_aal0: not implemented\n");
  1321. /* Remember to get read_lock(&vcc_sklist_lock) while looking up VC */
  1322. /* Remember to increment lvcc->rx.atmvcc->stats->rx */
  1323. }
  1324. /* -------------------- MANAGING HOST-BASED VCC TABLE: */
  1325. /* Decide whether to use vmalloc or get_zeroed_page for VCC table */
  1326. #if (NUM_VCI * BITS_PER_LONG) <= PAGE_SIZE
  1327. #define VCCTABLE_GETFREEPAGE
  1328. #else
  1329. #include <linux/vmalloc.h>
  1330. #endif
  1331. static int __devinit vcc_table_allocate(struct lanai_dev *lanai)
  1332. {
  1333. #ifdef VCCTABLE_GETFREEPAGE
  1334. APRINTK((lanai->num_vci) * sizeof(struct lanai_vcc *) <= PAGE_SIZE,
  1335. "vcc table > PAGE_SIZE!");
  1336. lanai->vccs = (struct lanai_vcc **) get_zeroed_page(GFP_KERNEL);
  1337. return (lanai->vccs == NULL) ? -ENOMEM : 0;
  1338. #else
  1339. int bytes = (lanai->num_vci) * sizeof(struct lanai_vcc *);
  1340. lanai->vccs = (struct lanai_vcc **) vmalloc(bytes);
  1341. if (unlikely(lanai->vccs == NULL))
  1342. return -ENOMEM;
  1343. memset(lanai->vccs, 0, bytes);
  1344. return 0;
  1345. #endif
  1346. }
  1347. static inline void vcc_table_deallocate(const struct lanai_dev *lanai)
  1348. {
  1349. #ifdef VCCTABLE_GETFREEPAGE
  1350. free_page((unsigned long) lanai->vccs);
  1351. #else
  1352. vfree(lanai->vccs);
  1353. #endif
  1354. }
  1355. /* Allocate a fresh lanai_vcc, with the appropriate things cleared */
  1356. static inline struct lanai_vcc *new_lanai_vcc(void)
  1357. {
  1358. struct lanai_vcc *lvcc;
  1359. lvcc = (struct lanai_vcc *) kmalloc(sizeof(*lvcc), GFP_KERNEL);
  1360. if (likely(lvcc != NULL)) {
  1361. lvcc->vbase = NULL;
  1362. lvcc->rx.atmvcc = lvcc->tx.atmvcc = NULL;
  1363. lvcc->nref = 0;
  1364. memset(&lvcc->stats, 0, sizeof lvcc->stats);
  1365. lvcc->rx.buf.start = lvcc->tx.buf.start = NULL;
  1366. skb_queue_head_init(&lvcc->tx.backlog);
  1367. #ifdef DEBUG
  1368. lvcc->tx.unqueue = NULL;
  1369. lvcc->vci = -1;
  1370. #endif
  1371. }
  1372. return lvcc;
  1373. }
  1374. static int lanai_get_sized_buffer(struct lanai_dev *lanai,
  1375. struct lanai_buffer *buf, int max_sdu, int multiplier,
  1376. const char *name)
  1377. {
  1378. int size;
  1379. if (unlikely(max_sdu < 1))
  1380. max_sdu = 1;
  1381. max_sdu = aal5_size(max_sdu);
  1382. size = (max_sdu + 16) * multiplier + 16;
  1383. lanai_buf_allocate(buf, size, max_sdu + 32, lanai->pci);
  1384. if (unlikely(buf->start == NULL))
  1385. return -ENOMEM;
  1386. if (unlikely(lanai_buf_size(buf) < size))
  1387. printk(KERN_WARNING DEV_LABEL "(itf %d): wanted %d bytes "
  1388. "for %s buffer, got only %Zu\n", lanai->number, size,
  1389. name, lanai_buf_size(buf));
  1390. DPRINTK("Allocated %Zu byte %s buffer\n", lanai_buf_size(buf), name);
  1391. return 0;
  1392. }
  1393. /* Setup a RX buffer for a currently unbound AAL5 vci */
  1394. static inline int lanai_setup_rx_vci_aal5(struct lanai_dev *lanai,
  1395. struct lanai_vcc *lvcc, const struct atm_qos *qos)
  1396. {
  1397. return lanai_get_sized_buffer(lanai, &lvcc->rx.buf,
  1398. qos->rxtp.max_sdu, AAL5_RX_MULTIPLIER, "RX");
  1399. }
  1400. /* Setup a TX buffer for a currently unbound AAL5 vci */
  1401. static int lanai_setup_tx_vci(struct lanai_dev *lanai, struct lanai_vcc *lvcc,
  1402. const struct atm_qos *qos)
  1403. {
  1404. int max_sdu, multiplier;
  1405. if (qos->aal == ATM_AAL0) {
  1406. lvcc->tx.unqueue = vcc_tx_unqueue_aal0;
  1407. max_sdu = ATM_CELL_SIZE - 1;
  1408. multiplier = AAL0_TX_MULTIPLIER;
  1409. } else {
  1410. lvcc->tx.unqueue = vcc_tx_unqueue_aal5;
  1411. max_sdu = qos->txtp.max_sdu;
  1412. multiplier = AAL5_TX_MULTIPLIER;
  1413. }
  1414. return lanai_get_sized_buffer(lanai, &lvcc->tx.buf, max_sdu,
  1415. multiplier, "TX");
  1416. }
  1417. static inline void host_vcc_bind(struct lanai_dev *lanai,
  1418. struct lanai_vcc *lvcc, vci_t vci)
  1419. {
  1420. if (lvcc->vbase != NULL)
  1421. return; /* We already were bound in the other direction */
  1422. DPRINTK("Binding vci %d\n", vci);
  1423. #ifdef USE_POWERDOWN
  1424. if (lanai->nbound++ == 0) {
  1425. DPRINTK("Coming out of powerdown\n");
  1426. lanai->conf1 &= ~CONFIG1_POWERDOWN;
  1427. conf1_write(lanai);
  1428. conf2_write(lanai);
  1429. }
  1430. #endif
  1431. lvcc->vbase = cardvcc_addr(lanai, vci);
  1432. lanai->vccs[lvcc->vci = vci] = lvcc;
  1433. }
  1434. static inline void host_vcc_unbind(struct lanai_dev *lanai,
  1435. struct lanai_vcc *lvcc)
  1436. {
  1437. if (lvcc->vbase == NULL)
  1438. return; /* This vcc was never bound */
  1439. DPRINTK("Unbinding vci %d\n", lvcc->vci);
  1440. lvcc->vbase = NULL;
  1441. lanai->vccs[lvcc->vci] = NULL;
  1442. #ifdef USE_POWERDOWN
  1443. if (--lanai->nbound == 0) {
  1444. DPRINTK("Going into powerdown\n");
  1445. lanai->conf1 |= CONFIG1_POWERDOWN;
  1446. conf1_write(lanai);
  1447. }
  1448. #endif
  1449. }
  1450. /* -------------------- RESET CARD: */
  1451. static void lanai_reset(struct lanai_dev *lanai)
  1452. {
  1453. printk(KERN_CRIT DEV_LABEL "(itf %d): *NOT* reseting - not "
  1454. "implemented\n", lanai->number);
  1455. /* TODO */
  1456. /* The following is just a hack until we write the real
  1457. * resetter - at least ack whatever interrupt sent us
  1458. * here
  1459. */
  1460. reg_write(lanai, INT_ALL, IntAck_Reg);
  1461. lanai->stats.card_reset++;
  1462. }
  1463. /* -------------------- SERVICE LIST UTILITIES: */
  1464. /*
  1465. * Allocate service buffer and tell card about it
  1466. */
  1467. static int __devinit service_buffer_allocate(struct lanai_dev *lanai)
  1468. {
  1469. lanai_buf_allocate(&lanai->service, SERVICE_ENTRIES * 4, 8,
  1470. lanai->pci);
  1471. if (unlikely(lanai->service.start == NULL))
  1472. return -ENOMEM;
  1473. DPRINTK("allocated service buffer at 0x%08lX, size %Zu(%d)\n",
  1474. (unsigned long) lanai->service.start,
  1475. lanai_buf_size(&lanai->service),
  1476. lanai_buf_size_cardorder(&lanai->service));
  1477. /* Clear ServWrite register to be safe */
  1478. reg_write(lanai, 0, ServWrite_Reg);
  1479. /* ServiceStuff register contains size and address of buffer */
  1480. reg_write(lanai,
  1481. SSTUFF_SET_SIZE(lanai_buf_size_cardorder(&lanai->service)) |
  1482. SSTUFF_SET_ADDR(lanai->service.dmaaddr),
  1483. ServiceStuff_Reg);
  1484. return 0;
  1485. }
  1486. static inline void service_buffer_deallocate(struct lanai_dev *lanai)
  1487. {
  1488. lanai_buf_deallocate(&lanai->service, lanai->pci);
  1489. }
  1490. /* Bitfields in service list */
  1491. #define SERVICE_TX (0x80000000) /* Was from transmission */
  1492. #define SERVICE_TRASH (0x40000000) /* RXed PDU was trashed */
  1493. #define SERVICE_CRCERR (0x20000000) /* RXed PDU had CRC error */
  1494. #define SERVICE_CI (0x10000000) /* RXed PDU had CI set */
  1495. #define SERVICE_CLP (0x08000000) /* RXed PDU had CLP set */
  1496. #define SERVICE_STREAM (0x04000000) /* RX Stream mode */
  1497. #define SERVICE_GET_VCI(x) (((x)>>16)&0x3FF)
  1498. #define SERVICE_GET_END(x) ((x)&0x1FFF)
  1499. /* Handle one thing from the service list - returns true if it marked a
  1500. * VCC ready for xmit
  1501. */
  1502. static int handle_service(struct lanai_dev *lanai, u32 s)
  1503. {
  1504. vci_t vci = SERVICE_GET_VCI(s);
  1505. struct lanai_vcc *lvcc;
  1506. read_lock(&vcc_sklist_lock);
  1507. lvcc = lanai->vccs[vci];
  1508. if (unlikely(lvcc == NULL)) {
  1509. read_unlock(&vcc_sklist_lock);
  1510. DPRINTK("(itf %d) got service entry 0x%X for nonexistent "
  1511. "vcc %d\n", lanai->number, (unsigned int) s, vci);
  1512. if (s & SERVICE_TX)
  1513. lanai->stats.service_notx++;
  1514. else
  1515. lanai->stats.service_norx++;
  1516. return 0;
  1517. }
  1518. if (s & SERVICE_TX) { /* segmentation interrupt */
  1519. if (unlikely(lvcc->tx.atmvcc == NULL)) {
  1520. read_unlock(&vcc_sklist_lock);
  1521. DPRINTK("(itf %d) got service entry 0x%X for non-TX "
  1522. "vcc %d\n", lanai->number, (unsigned int) s, vci);
  1523. lanai->stats.service_notx++;
  1524. return 0;
  1525. }
  1526. __set_bit(vci, lanai->transmit_ready);
  1527. lvcc->tx.endptr = SERVICE_GET_END(s);
  1528. read_unlock(&vcc_sklist_lock);
  1529. return 1;
  1530. }
  1531. if (unlikely(lvcc->rx.atmvcc == NULL)) {
  1532. read_unlock(&vcc_sklist_lock);
  1533. DPRINTK("(itf %d) got service entry 0x%X for non-RX "
  1534. "vcc %d\n", lanai->number, (unsigned int) s, vci);
  1535. lanai->stats.service_norx++;
  1536. return 0;
  1537. }
  1538. if (unlikely(lvcc->rx.atmvcc->qos.aal != ATM_AAL5)) {
  1539. read_unlock(&vcc_sklist_lock);
  1540. DPRINTK("(itf %d) got RX service entry 0x%X for non-AAL5 "
  1541. "vcc %d\n", lanai->number, (unsigned int) s, vci);
  1542. lanai->stats.service_rxnotaal5++;
  1543. atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
  1544. return 0;
  1545. }
  1546. if (likely(!(s & (SERVICE_TRASH | SERVICE_STREAM | SERVICE_CRCERR)))) {
  1547. vcc_rx_aal5(lvcc, SERVICE_GET_END(s));
  1548. read_unlock(&vcc_sklist_lock);
  1549. return 0;
  1550. }
  1551. if (s & SERVICE_TRASH) {
  1552. int bytes;
  1553. read_unlock(&vcc_sklist_lock);
  1554. DPRINTK("got trashed rx pdu on vci %d\n", vci);
  1555. atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
  1556. lvcc->stats.x.aal5.service_trash++;
  1557. bytes = (SERVICE_GET_END(s) * 16) -
  1558. (((unsigned long) lvcc->rx.buf.ptr) -
  1559. ((unsigned long) lvcc->rx.buf.start)) + 47;
  1560. if (bytes < 0)
  1561. bytes += lanai_buf_size(&lvcc->rx.buf);
  1562. lanai->stats.ovfl_trash += (bytes / 48);
  1563. return 0;
  1564. }
  1565. if (s & SERVICE_STREAM) {
  1566. read_unlock(&vcc_sklist_lock);
  1567. atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
  1568. lvcc->stats.x.aal5.service_stream++;
  1569. printk(KERN_ERR DEV_LABEL "(itf %d): Got AAL5 stream "
  1570. "PDU on VCI %d!\n", lanai->number, vci);
  1571. lanai_reset(lanai);
  1572. return 0;
  1573. }
  1574. DPRINTK("got rx crc error on vci %d\n", vci);
  1575. atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
  1576. lvcc->stats.x.aal5.service_rxcrc++;
  1577. lvcc->rx.buf.ptr = &lvcc->rx.buf.start[SERVICE_GET_END(s) * 4];
  1578. cardvcc_write(lvcc, SERVICE_GET_END(s), vcc_rxreadptr);
  1579. read_unlock(&vcc_sklist_lock);
  1580. return 0;
  1581. }
  1582. /* Try transmitting on all VCIs that we marked ready to serve */
  1583. static void iter_transmit(struct lanai_dev *lanai, vci_t vci)
  1584. {
  1585. struct lanai_vcc *lvcc = lanai->vccs[vci];
  1586. if (vcc_is_backlogged(lvcc))
  1587. lvcc->tx.unqueue(lanai, lvcc, lvcc->tx.endptr);
  1588. }
  1589. /* Run service queue -- called from interrupt context or with
  1590. * interrupts otherwise disabled and with the lanai->servicelock
  1591. * lock held
  1592. */
  1593. static void run_service(struct lanai_dev *lanai)
  1594. {
  1595. int ntx = 0;
  1596. u32 wreg = reg_read(lanai, ServWrite_Reg);
  1597. const u32 *end = lanai->service.start + wreg;
  1598. while (lanai->service.ptr != end) {
  1599. ntx += handle_service(lanai,
  1600. le32_to_cpup(lanai->service.ptr++));
  1601. if (lanai->service.ptr >= lanai->service.end)
  1602. lanai->service.ptr = lanai->service.start;
  1603. }
  1604. reg_write(lanai, wreg, ServRead_Reg);
  1605. if (ntx != 0) {
  1606. read_lock(&vcc_sklist_lock);
  1607. vci_bitfield_iterate(lanai, lanai->transmit_ready,
  1608. iter_transmit);
  1609. bitmap_zero(lanai->transmit_ready, NUM_VCI);
  1610. read_unlock(&vcc_sklist_lock);
  1611. }
  1612. }
  1613. /* -------------------- GATHER STATISTICS: */
  1614. static void get_statistics(struct lanai_dev *lanai)
  1615. {
  1616. u32 statreg = reg_read(lanai, Statistics_Reg);
  1617. lanai->stats.atm_ovfl += STATS_GET_FIFO_OVFL(statreg);
  1618. lanai->stats.hec_err += STATS_GET_HEC_ERR(statreg);
  1619. lanai->stats.vci_trash += STATS_GET_BAD_VCI(statreg);
  1620. lanai->stats.ovfl_trash += STATS_GET_BUF_OVFL(statreg);
  1621. }
  1622. /* -------------------- POLLING TIMER: */
  1623. #ifndef DEBUG_RW
  1624. /* Try to undequeue 1 backlogged vcc */
  1625. static void iter_dequeue(struct lanai_dev *lanai, vci_t vci)
  1626. {
  1627. struct lanai_vcc *lvcc = lanai->vccs[vci];
  1628. int endptr;
  1629. if (lvcc == NULL || lvcc->tx.atmvcc == NULL ||
  1630. !vcc_is_backlogged(lvcc)) {
  1631. __clear_bit(vci, lanai->backlog_vccs);
  1632. return;
  1633. }
  1634. endptr = TXREADPTR_GET_PTR(cardvcc_read(lvcc, vcc_txreadptr));
  1635. lvcc->tx.unqueue(lanai, lvcc, endptr);
  1636. }
  1637. #endif /* !DEBUG_RW */
  1638. static void lanai_timed_poll(unsigned long arg)
  1639. {
  1640. struct lanai_dev *lanai = (struct lanai_dev *) arg;
  1641. #ifndef DEBUG_RW
  1642. unsigned long flags;
  1643. #ifdef USE_POWERDOWN
  1644. if (lanai->conf1 & CONFIG1_POWERDOWN)
  1645. return;
  1646. #endif /* USE_POWERDOWN */
  1647. local_irq_save(flags);
  1648. /* If we can grab the spinlock, check if any services need to be run */
  1649. if (spin_trylock(&lanai->servicelock)) {
  1650. run_service(lanai);
  1651. spin_unlock(&lanai->servicelock);
  1652. }
  1653. /* ...and see if any backlogged VCs can make progress */
  1654. /* unfortunately linux has no read_trylock() currently */
  1655. read_lock(&vcc_sklist_lock);
  1656. vci_bitfield_iterate(lanai, lanai->backlog_vccs, iter_dequeue);
  1657. read_unlock(&vcc_sklist_lock);
  1658. local_irq_restore(flags);
  1659. get_statistics(lanai);
  1660. #endif /* !DEBUG_RW */
  1661. mod_timer(&lanai->timer, jiffies + LANAI_POLL_PERIOD);
  1662. }
  1663. static inline void lanai_timed_poll_start(struct lanai_dev *lanai)
  1664. {
  1665. init_timer(&lanai->timer);
  1666. lanai->timer.expires = jiffies + LANAI_POLL_PERIOD;
  1667. lanai->timer.data = (unsigned long) lanai;
  1668. lanai->timer.function = lanai_timed_poll;
  1669. add_timer(&lanai->timer);
  1670. }
  1671. static inline void lanai_timed_poll_stop(struct lanai_dev *lanai)
  1672. {
  1673. del_timer_sync(&lanai->timer);
  1674. }
  1675. /* -------------------- INTERRUPT SERVICE: */
  1676. static inline void lanai_int_1(struct lanai_dev *lanai, u32 reason)
  1677. {
  1678. u32 ack = 0;
  1679. if (reason & INT_SERVICE) {
  1680. ack = INT_SERVICE;
  1681. spin_lock(&lanai->servicelock);
  1682. run_service(lanai);
  1683. spin_unlock(&lanai->servicelock);
  1684. }
  1685. if (reason & (INT_AAL0_STR | INT_AAL0)) {
  1686. ack |= reason & (INT_AAL0_STR | INT_AAL0);
  1687. vcc_rx_aal0(lanai);
  1688. }
  1689. /* The rest of the interrupts are pretty rare */
  1690. if (ack == reason)
  1691. goto done;
  1692. if (reason & INT_STATS) {
  1693. reason &= ~INT_STATS; /* No need to ack */
  1694. get_statistics(lanai);
  1695. }
  1696. if (reason & INT_STATUS) {
  1697. ack |= reason & INT_STATUS;
  1698. lanai_check_status(lanai);
  1699. }
  1700. if (unlikely(reason & INT_DMASHUT)) {
  1701. printk(KERN_ERR DEV_LABEL "(itf %d): driver error - DMA "
  1702. "shutdown, reason=0x%08X, address=0x%08X\n",
  1703. lanai->number, (unsigned int) (reason & INT_DMASHUT),
  1704. (unsigned int) reg_read(lanai, DMA_Addr_Reg));
  1705. if (reason & INT_TABORTBM) {
  1706. lanai_reset(lanai);
  1707. return;
  1708. }
  1709. ack |= (reason & INT_DMASHUT);
  1710. printk(KERN_ERR DEV_LABEL "(itf %d): re-enabling DMA\n",
  1711. lanai->number);
  1712. conf1_write(lanai);
  1713. lanai->stats.dma_reenable++;
  1714. pcistatus_check(lanai, 0);
  1715. }
  1716. if (unlikely(reason & INT_TABORTSENT)) {
  1717. ack |= (reason & INT_TABORTSENT);
  1718. printk(KERN_ERR DEV_LABEL "(itf %d): sent PCI target abort\n",
  1719. lanai->number);
  1720. pcistatus_check(lanai, 0);
  1721. }
  1722. if (unlikely(reason & INT_SEGSHUT)) {
  1723. printk(KERN_ERR DEV_LABEL "(itf %d): driver error - "
  1724. "segmentation shutdown, reason=0x%08X\n", lanai->number,
  1725. (unsigned int) (reason & INT_SEGSHUT));
  1726. lanai_reset(lanai);
  1727. return;
  1728. }
  1729. if (unlikely(reason & (INT_PING | INT_WAKE))) {
  1730. printk(KERN_ERR DEV_LABEL "(itf %d): driver error - "
  1731. "unexpected interrupt 0x%08X, resetting\n",
  1732. lanai->number,
  1733. (unsigned int) (reason & (INT_PING | INT_WAKE)));
  1734. lanai_reset(lanai);
  1735. return;
  1736. }
  1737. #ifdef DEBUG
  1738. if (unlikely(ack != reason)) {
  1739. DPRINTK("unacked ints: 0x%08X\n",
  1740. (unsigned int) (reason & ~ack));
  1741. ack = reason;
  1742. }
  1743. #endif
  1744. done:
  1745. if (ack != 0)
  1746. reg_write(lanai, ack, IntAck_Reg);
  1747. }
  1748. static irqreturn_t lanai_int(int irq, void *devid, struct pt_regs *regs)
  1749. {
  1750. struct lanai_dev *lanai = (struct lanai_dev *) devid;
  1751. u32 reason;
  1752. (void) irq; (void) regs; /* unused variables */
  1753. #ifdef USE_POWERDOWN
  1754. /*
  1755. * If we're powered down we shouldn't be generating any interrupts -
  1756. * so assume that this is a shared interrupt line and it's for someone
  1757. * else
  1758. */
  1759. if (unlikely(lanai->conf1 & CONFIG1_POWERDOWN))
  1760. return IRQ_NONE;
  1761. #endif
  1762. reason = intr_pending(lanai);
  1763. if (reason == 0)
  1764. return IRQ_NONE; /* Must be for someone else */
  1765. do {
  1766. if (unlikely(reason == 0xFFFFFFFF))
  1767. break; /* Maybe we've been unplugged? */
  1768. lanai_int_1(lanai, reason);
  1769. reason = intr_pending(lanai);
  1770. } while (reason != 0);
  1771. return IRQ_HANDLED;
  1772. }
  1773. /* TODO - it would be nice if we could use the "delayed interrupt" system
  1774. * to some advantage
  1775. */
  1776. /* -------------------- CHECK BOARD ID/REV: */
  1777. /*
  1778. * The board id and revision are stored both in the reset register and
  1779. * in the PCI configuration space - the documentation says to check
  1780. * each of them. If revp!=NULL we store the revision there
  1781. */
  1782. static int check_board_id_and_rev(const char *name, u32 val, int *revp)
  1783. {
  1784. DPRINTK("%s says board_id=%d, board_rev=%d\n", name,
  1785. (int) RESET_GET_BOARD_ID(val),
  1786. (int) RESET_GET_BOARD_REV(val));
  1787. if (RESET_GET_BOARD_ID(val) != BOARD_ID_LANAI256) {
  1788. printk(KERN_ERR DEV_LABEL ": Found %s board-id %d -- not a "
  1789. "Lanai 25.6\n", name, (int) RESET_GET_BOARD_ID(val));
  1790. return -ENODEV;
  1791. }
  1792. if (revp != NULL)
  1793. *revp = RESET_GET_BOARD_REV(val);
  1794. return 0;
  1795. }
  1796. /* -------------------- PCI INITIALIZATION/SHUTDOWN: */
  1797. static int __devinit lanai_pci_start(struct lanai_dev *lanai)
  1798. {
  1799. struct pci_dev *pci = lanai->pci;
  1800. int result;
  1801. u16 w;
  1802. if (pci_enable_device(pci) != 0) {
  1803. printk(KERN_ERR DEV_LABEL "(itf %d): can't enable "
  1804. "PCI device", lanai->number);
  1805. return -ENXIO;
  1806. }
  1807. pci_set_master(pci);
  1808. if (pci_set_dma_mask(pci, DMA_32BIT_MASK) != 0) {
  1809. printk(KERN_WARNING DEV_LABEL
  1810. "(itf %d): No suitable DMA available.\n", lanai->number);
  1811. return -EBUSY;
  1812. }
  1813. if (pci_set_consistent_dma_mask(pci, 0xFFFFFFFF) != 0) {
  1814. printk(KERN_WARNING DEV_LABEL
  1815. "(itf %d): No suitable DMA available.\n", lanai->number);
  1816. return -EBUSY;
  1817. }
  1818. /* Get the pci revision byte */
  1819. result = pci_read_config_byte(pci, PCI_REVISION_ID,
  1820. &lanai->pci_revision);
  1821. if (result != PCIBIOS_SUCCESSFUL) {
  1822. printk(KERN_ERR DEV_LABEL "(itf %d): can't read "
  1823. "PCI_REVISION_ID: %d\n", lanai->number, result);
  1824. return -EINVAL;
  1825. }
  1826. result = pci_read_config_word(pci, PCI_SUBSYSTEM_ID, &w);
  1827. if (result != PCIBIOS_SUCCESSFUL) {
  1828. printk(KERN_ERR DEV_LABEL "(itf %d): can't read "
  1829. "PCI_SUBSYSTEM_ID: %d\n", lanai->number, result);
  1830. return -EINVAL;
  1831. }
  1832. result = check_board_id_and_rev("PCI", w, NULL);
  1833. if (result != 0)
  1834. return result;
  1835. /* Set latency timer to zero as per lanai docs */
  1836. result = pci_write_config_byte(pci, PCI_LATENCY_TIMER, 0);
  1837. if (result != PCIBIOS_SUCCESSFUL) {
  1838. printk(KERN_ERR DEV_LABEL "(itf %d): can't write "
  1839. "PCI_LATENCY_TIMER: %d\n", lanai->number, result);
  1840. return -EINVAL;
  1841. }
  1842. pcistatus_check(lanai, 1);
  1843. pcistatus_check(lanai, 0);
  1844. return 0;
  1845. }
  1846. /* -------------------- VPI/VCI ALLOCATION: */
  1847. /*
  1848. * We _can_ use VCI==0 for normal traffic, but only for UBR (or we'll
  1849. * get a CBRZERO interrupt), and we can use it only if noone is receiving
  1850. * AAL0 traffic (since they will use the same queue) - according to the
  1851. * docs we shouldn't even use it for AAL0 traffic
  1852. */
  1853. static inline int vci0_is_ok(struct lanai_dev *lanai,
  1854. const struct atm_qos *qos)
  1855. {
  1856. if (qos->txtp.traffic_class == ATM_CBR || qos->aal == ATM_AAL0)
  1857. return 0;
  1858. if (qos->rxtp.traffic_class != ATM_NONE) {
  1859. if (lanai->naal0 != 0)
  1860. return 0;
  1861. lanai->conf2 |= CONFIG2_VCI0_NORMAL;
  1862. conf2_write_if_powerup(lanai);
  1863. }
  1864. return 1;
  1865. }
  1866. /* return true if vci is currently unused, or if requested qos is
  1867. * compatible
  1868. */
  1869. static int vci_is_ok(struct lanai_dev *lanai, vci_t vci,
  1870. const struct atm_vcc *atmvcc)
  1871. {
  1872. const struct atm_qos *qos = &atmvcc->qos;
  1873. const struct lanai_vcc *lvcc = lanai->vccs[vci];
  1874. if (vci == 0 && !vci0_is_ok(lanai, qos))
  1875. return 0;
  1876. if (unlikely(lvcc != NULL)) {
  1877. if (qos->rxtp.traffic_class != ATM_NONE &&
  1878. lvcc->rx.atmvcc != NULL && lvcc->rx.atmvcc != atmvcc)
  1879. return 0;
  1880. if (qos->txtp.traffic_class != ATM_NONE &&
  1881. lvcc->tx.atmvcc != NULL && lvcc->tx.atmvcc != atmvcc)
  1882. return 0;
  1883. if (qos->txtp.traffic_class == ATM_CBR &&
  1884. lanai->cbrvcc != NULL && lanai->cbrvcc != atmvcc)
  1885. return 0;
  1886. }
  1887. if (qos->aal == ATM_AAL0 && lanai->naal0 == 0 &&
  1888. qos->rxtp.traffic_class != ATM_NONE) {
  1889. const struct lanai_vcc *vci0 = lanai->vccs[0];
  1890. if (vci0 != NULL && vci0->rx.atmvcc != NULL)
  1891. return 0;
  1892. lanai->conf2 &= ~CONFIG2_VCI0_NORMAL;
  1893. conf2_write_if_powerup(lanai);
  1894. }
  1895. return 1;
  1896. }
  1897. static int lanai_normalize_ci(struct lanai_dev *lanai,
  1898. const struct atm_vcc *atmvcc, short *vpip, vci_t *vcip)
  1899. {
  1900. switch (*vpip) {
  1901. case ATM_VPI_ANY:
  1902. *vpip = 0;
  1903. /* FALLTHROUGH */
  1904. case 0:
  1905. break;
  1906. default:
  1907. return -EADDRINUSE;
  1908. }
  1909. switch (*vcip) {
  1910. case ATM_VCI_ANY:
  1911. for (*vcip = ATM_NOT_RSV_VCI; *vcip < lanai->num_vci;
  1912. (*vcip)++)
  1913. if (vci_is_ok(lanai, *vcip, atmvcc))
  1914. return 0;
  1915. return -EADDRINUSE;
  1916. default:
  1917. if (*vcip >= lanai->num_vci || *vcip < 0 ||
  1918. !vci_is_ok(lanai, *vcip, atmvcc))
  1919. return -EADDRINUSE;
  1920. }
  1921. return 0;
  1922. }
  1923. /* -------------------- MANAGE CBR: */
  1924. /*
  1925. * CBR ICG is stored as a fixed-point number with 4 fractional bits.
  1926. * Note that storing a number greater than 2046.0 will result in
  1927. * incorrect shaping
  1928. */
  1929. #define CBRICG_FRAC_BITS (4)
  1930. #define CBRICG_MAX (2046 << CBRICG_FRAC_BITS)
  1931. /*
  1932. * ICG is related to PCR with the formula PCR = MAXPCR / (ICG + 1)
  1933. * where MAXPCR is (according to the docs) 25600000/(54*8),
  1934. * which is equal to (3125<<9)/27.
  1935. *
  1936. * Solving for ICG, we get:
  1937. * ICG = MAXPCR/PCR - 1
  1938. * ICG = (3125<<9)/(27*PCR) - 1
  1939. * ICG = ((3125<<9) - (27*PCR)) / (27*PCR)
  1940. *
  1941. * The end result is supposed to be a fixed-point number with FRAC_BITS
  1942. * bits of a fractional part, so we keep everything in the numerator
  1943. * shifted by that much as we compute
  1944. *
  1945. */
  1946. static int pcr_to_cbricg(/*const*/ struct atm_qos *qos)
  1947. {
  1948. int rounddown = 0; /* 1 = Round PCR down, i.e. round ICG _up_ */
  1949. int x, icg, pcr = atm_pcr_goal(&qos->txtp);
  1950. if (pcr == 0) /* Use maximum bandwidth */
  1951. return 0;
  1952. if (pcr < 0) {
  1953. rounddown = 1;
  1954. pcr = -pcr;
  1955. }
  1956. x = pcr * 27;
  1957. icg = (3125 << (9 + CBRICG_FRAC_BITS)) - (x << CBRICG_FRAC_BITS);
  1958. if (rounddown)
  1959. icg += x - 1;
  1960. icg /= x;
  1961. if (icg > CBRICG_MAX)
  1962. icg = CBRICG_MAX;
  1963. DPRINTK("pcr_to_cbricg: pcr=%d rounddown=%c icg=%d\n",
  1964. pcr, rounddown ? 'Y' : 'N', icg);
  1965. return icg;
  1966. }
  1967. static inline void lanai_cbr_setup(struct lanai_dev *lanai)
  1968. {
  1969. reg_write(lanai, pcr_to_cbricg(&lanai->cbrvcc->qos), CBR_ICG_Reg);
  1970. reg_write(lanai, lanai->cbrvcc->vci, CBR_PTR_Reg);
  1971. lanai->conf2 |= CONFIG2_CBR_ENABLE;
  1972. conf2_write(lanai);
  1973. }
  1974. static inline void lanai_cbr_shutdown(struct lanai_dev *lanai)
  1975. {
  1976. lanai->conf2 &= ~CONFIG2_CBR_ENABLE;
  1977. conf2_write(lanai);
  1978. }
  1979. /* -------------------- OPERATIONS: */
  1980. /* setup a newly detected device */
  1981. static int __devinit lanai_dev_open(struct atm_dev *atmdev)
  1982. {
  1983. struct lanai_dev *lanai = (struct lanai_dev *) atmdev->dev_data;
  1984. unsigned long raw_base;
  1985. int result;
  1986. DPRINTK("In lanai_dev_open()\n");
  1987. /* Basic device fields */
  1988. lanai->number = atmdev->number;
  1989. lanai->num_vci = NUM_VCI;
  1990. bitmap_zero(lanai->backlog_vccs, NUM_VCI);
  1991. bitmap_zero(lanai->transmit_ready, NUM_VCI);
  1992. lanai->naal0 = 0;
  1993. #ifdef USE_POWERDOWN
  1994. lanai->nbound = 0;
  1995. #endif
  1996. lanai->cbrvcc = NULL;
  1997. memset(&lanai->stats, 0, sizeof lanai->stats);
  1998. spin_lock_init(&lanai->endtxlock);
  1999. spin_lock_init(&lanai->servicelock);
  2000. atmdev->ci_range.vpi_bits = 0;
  2001. atmdev->ci_range.vci_bits = 0;
  2002. while (1 << atmdev->ci_range.vci_bits < lanai->num_vci)
  2003. atmdev->ci_range.vci_bits++;
  2004. atmdev->link_rate = ATM_25_PCR;
  2005. /* 3.2: PCI initialization */
  2006. if ((result = lanai_pci_start(lanai)) != 0)
  2007. goto error;
  2008. raw_base = lanai->pci->resource[0].start;
  2009. lanai->base = (bus_addr_t) ioremap(raw_base, LANAI_MAPPING_SIZE);
  2010. if (lanai->base == NULL) {
  2011. printk(KERN_ERR DEV_LABEL ": couldn't remap I/O space\n");
  2012. goto error_pci;
  2013. }
  2014. /* 3.3: Reset lanai and PHY */
  2015. reset_board(lanai);
  2016. lanai->conf1 = reg_read(lanai, Config1_Reg);
  2017. lanai->conf1 &= ~(CONFIG1_GPOUT1 | CONFIG1_POWERDOWN |
  2018. CONFIG1_MASK_LEDMODE);
  2019. lanai->conf1 |= CONFIG1_SET_LEDMODE(LEDMODE_NOT_SOOL);
  2020. reg_write(lanai, lanai->conf1 | CONFIG1_GPOUT1, Config1_Reg);
  2021. udelay(1000);
  2022. conf1_write(lanai);
  2023. /*
  2024. * 3.4: Turn on endian mode for big-endian hardware
  2025. * We don't actually want to do this - the actual bit fields
  2026. * in the endian register are not documented anywhere.
  2027. * Instead we do the bit-flipping ourselves on big-endian
  2028. * hardware.
  2029. *
  2030. * 3.5: get the board ID/rev by reading the reset register
  2031. */
  2032. result = check_board_id_and_rev("register",
  2033. reg_read(lanai, Reset_Reg), &lanai->board_rev);
  2034. if (result != 0)
  2035. goto error_unmap;
  2036. /* 3.6: read EEPROM */
  2037. if ((result = eeprom_read(lanai)) != 0)
  2038. goto error_unmap;
  2039. if ((result = eeprom_validate(lanai)) != 0)
  2040. goto error_unmap;
  2041. /* 3.7: re-reset PHY, do loopback tests, setup PHY */
  2042. reg_write(lanai, lanai->conf1 | CONFIG1_GPOUT1, Config1_Reg);
  2043. udelay(1000);
  2044. conf1_write(lanai);
  2045. /* TODO - loopback tests */
  2046. lanai->conf1 |= (CONFIG1_GPOUT2 | CONFIG1_GPOUT3 | CONFIG1_DMA_ENABLE);
  2047. conf1_write(lanai);
  2048. /* 3.8/3.9: test and initialize card SRAM */
  2049. if ((result = sram_test_and_clear(lanai)) != 0)
  2050. goto error_unmap;
  2051. /* 3.10: initialize lanai registers */
  2052. lanai->conf1 |= CONFIG1_DMA_ENABLE;
  2053. conf1_write(lanai);
  2054. if ((result = service_buffer_allocate(lanai)) != 0)
  2055. goto error_unmap;
  2056. if ((result = vcc_table_allocate(lanai)) != 0)
  2057. goto error_service;
  2058. lanai->conf2 = (lanai->num_vci >= 512 ? CONFIG2_HOWMANY : 0) |
  2059. CONFIG2_HEC_DROP | /* ??? */ CONFIG2_PTI7_MODE;
  2060. conf2_write(lanai);
  2061. reg_write(lanai, TX_FIFO_DEPTH, TxDepth_Reg);
  2062. reg_write(lanai, 0, CBR_ICG_Reg); /* CBR defaults to no limit */
  2063. if ((result = request_irq(lanai->pci->irq, lanai_int, SA_SHIRQ,
  2064. DEV_LABEL, lanai)) != 0) {
  2065. printk(KERN_ERR DEV_LABEL ": can't allocate interrupt\n");
  2066. goto error_vcctable;
  2067. }
  2068. mb(); /* Make sure that all that made it */
  2069. intr_enable(lanai, INT_ALL & ~(INT_PING | INT_WAKE));
  2070. /* 3.11: initialize loop mode (i.e. turn looping off) */
  2071. lanai->conf1 = (lanai->conf1 & ~CONFIG1_MASK_LOOPMODE) |
  2072. CONFIG1_SET_LOOPMODE(LOOPMODE_NORMAL) |
  2073. CONFIG1_GPOUT2 | CONFIG1_GPOUT3;
  2074. conf1_write(lanai);
  2075. lanai->status = reg_read(lanai, Status_Reg);
  2076. /* We're now done initializing this card */
  2077. #ifdef USE_POWERDOWN
  2078. lanai->conf1 |= CONFIG1_POWERDOWN;
  2079. conf1_write(lanai);
  2080. #endif
  2081. memcpy(atmdev->esi, eeprom_mac(lanai), ESI_LEN);
  2082. lanai_timed_poll_start(lanai);
  2083. printk(KERN_NOTICE DEV_LABEL "(itf %d): rev.%d, base=0x%lx, irq=%u "
  2084. "(%02X-%02X-%02X-%02X-%02X-%02X)\n", lanai->number,
  2085. (int) lanai->pci_revision, (unsigned long) lanai->base,
  2086. lanai->pci->irq,
  2087. atmdev->esi[0], atmdev->esi[1], atmdev->esi[2],
  2088. atmdev->esi[3], atmdev->esi[4], atmdev->esi[5]);
  2089. printk(KERN_NOTICE DEV_LABEL "(itf %d): LANAI%s, serialno=%u(0x%X), "
  2090. "board_rev=%d\n", lanai->number,
  2091. lanai->type==lanai2 ? "2" : "HB", (unsigned int) lanai->serialno,
  2092. (unsigned int) lanai->serialno, lanai->board_rev);
  2093. return 0;
  2094. error_vcctable:
  2095. vcc_table_deallocate(lanai);
  2096. error_service:
  2097. service_buffer_deallocate(lanai);
  2098. error_unmap:
  2099. reset_board(lanai);
  2100. #ifdef USE_POWERDOWN
  2101. lanai->conf1 = reg_read(lanai, Config1_Reg) | CONFIG1_POWERDOWN;
  2102. conf1_write(lanai);
  2103. #endif
  2104. iounmap(lanai->base);
  2105. error_pci:
  2106. pci_disable_device(lanai->pci);
  2107. error:
  2108. return result;
  2109. }
  2110. /* called when device is being shutdown, and all vcc's are gone - higher
  2111. * levels will deallocate the atm device for us
  2112. */
  2113. static void lanai_dev_close(struct atm_dev *atmdev)
  2114. {
  2115. struct lanai_dev *lanai = (struct lanai_dev *) atmdev->dev_data;
  2116. printk(KERN_INFO DEV_LABEL "(itf %d): shutting down interface\n",
  2117. lanai->number);
  2118. lanai_timed_poll_stop(lanai);
  2119. #ifdef USE_POWERDOWN
  2120. lanai->conf1 = reg_read(lanai, Config1_Reg) & ~CONFIG1_POWERDOWN;
  2121. conf1_write(lanai);
  2122. #endif
  2123. intr_disable(lanai, INT_ALL);
  2124. free_irq(lanai->pci->irq, lanai);
  2125. reset_board(lanai);
  2126. #ifdef USE_POWERDOWN
  2127. lanai->conf1 |= CONFIG1_POWERDOWN;
  2128. conf1_write(lanai);
  2129. #endif
  2130. pci_disable_device(lanai->pci);
  2131. vcc_table_deallocate(lanai);
  2132. service_buffer_deallocate(lanai);
  2133. iounmap(lanai->base);
  2134. kfree(lanai);
  2135. }
  2136. /* close a vcc */
  2137. static void lanai_close(struct atm_vcc *atmvcc)
  2138. {
  2139. struct lanai_vcc *lvcc = (struct lanai_vcc *) atmvcc->dev_data;
  2140. struct lanai_dev *lanai = (struct lanai_dev *) atmvcc->dev->dev_data;
  2141. if (lvcc == NULL)
  2142. return;
  2143. clear_bit(ATM_VF_READY, &atmvcc->flags);
  2144. clear_bit(ATM_VF_PARTIAL, &atmvcc->flags);
  2145. if (lvcc->rx.atmvcc == atmvcc) {
  2146. lanai_shutdown_rx_vci(lvcc);
  2147. if (atmvcc->qos.aal == ATM_AAL0) {
  2148. if (--lanai->naal0 <= 0)
  2149. aal0_buffer_free(lanai);
  2150. } else
  2151. lanai_buf_deallocate(&lvcc->rx.buf, lanai->pci);
  2152. lvcc->rx.atmvcc = NULL;
  2153. }
  2154. if (lvcc->tx.atmvcc == atmvcc) {
  2155. if (atmvcc == lanai->cbrvcc) {
  2156. if (lvcc->vbase != NULL)
  2157. lanai_cbr_shutdown(lanai);
  2158. lanai->cbrvcc = NULL;
  2159. }
  2160. lanai_shutdown_tx_vci(lanai, lvcc);
  2161. lanai_buf_deallocate(&lvcc->tx.buf, lanai->pci);
  2162. lvcc->tx.atmvcc = NULL;
  2163. }
  2164. if (--lvcc->nref == 0) {
  2165. host_vcc_unbind(lanai, lvcc);
  2166. kfree(lvcc);
  2167. }
  2168. atmvcc->dev_data = NULL;
  2169. clear_bit(ATM_VF_ADDR, &atmvcc->flags);
  2170. }
  2171. /* open a vcc on the card to vpi/vci */
  2172. static int lanai_open(struct atm_vcc *atmvcc)
  2173. {
  2174. struct lanai_dev *lanai;
  2175. struct lanai_vcc *lvcc;
  2176. int result = 0;
  2177. int vci = atmvcc->vci;
  2178. short vpi = atmvcc->vpi;
  2179. /* we don't support partial open - it's not really useful anyway */
  2180. if ((test_bit(ATM_VF_PARTIAL, &atmvcc->flags)) ||
  2181. (vpi == ATM_VPI_UNSPEC) || (vci == ATM_VCI_UNSPEC))
  2182. return -EINVAL;
  2183. lanai = (struct lanai_dev *) atmvcc->dev->dev_data;
  2184. result = lanai_normalize_ci(lanai, atmvcc, &vpi, &vci);
  2185. if (unlikely(result != 0))
  2186. goto out;
  2187. set_bit(ATM_VF_ADDR, &atmvcc->flags);
  2188. if (atmvcc->qos.aal != ATM_AAL0 && atmvcc->qos.aal != ATM_AAL5)
  2189. return -EINVAL;
  2190. DPRINTK(DEV_LABEL "(itf %d): open %d.%d\n", lanai->number,
  2191. (int) vpi, vci);
  2192. lvcc = lanai->vccs[vci];
  2193. if (lvcc == NULL) {
  2194. lvcc = new_lanai_vcc();
  2195. if (unlikely(lvcc == NULL))
  2196. return -ENOMEM;
  2197. atmvcc->dev_data = lvcc;
  2198. }
  2199. lvcc->nref++;
  2200. if (atmvcc->qos.rxtp.traffic_class != ATM_NONE) {
  2201. APRINTK(lvcc->rx.atmvcc == NULL, "rx.atmvcc!=NULL, vci=%d\n",
  2202. vci);
  2203. if (atmvcc->qos.aal == ATM_AAL0) {
  2204. if (lanai->naal0 == 0)
  2205. result = aal0_buffer_allocate(lanai);
  2206. } else
  2207. result = lanai_setup_rx_vci_aal5(
  2208. lanai, lvcc, &atmvcc->qos);
  2209. if (unlikely(result != 0))
  2210. goto out_free;
  2211. lvcc->rx.atmvcc = atmvcc;
  2212. lvcc->stats.rx_nomem = 0;
  2213. lvcc->stats.x.aal5.rx_badlen = 0;
  2214. lvcc->stats.x.aal5.service_trash = 0;
  2215. lvcc->stats.x.aal5.service_stream = 0;
  2216. lvcc->stats.x.aal5.service_rxcrc = 0;
  2217. if (atmvcc->qos.aal == ATM_AAL0)
  2218. lanai->naal0++;
  2219. }
  2220. if (atmvcc->qos.txtp.traffic_class != ATM_NONE) {
  2221. APRINTK(lvcc->tx.atmvcc == NULL, "tx.atmvcc!=NULL, vci=%d\n",
  2222. vci);
  2223. result = lanai_setup_tx_vci(lanai, lvcc, &atmvcc->qos);
  2224. if (unlikely(result != 0))
  2225. goto out_free;
  2226. lvcc->tx.atmvcc = atmvcc;
  2227. if (atmvcc->qos.txtp.traffic_class == ATM_CBR) {
  2228. APRINTK(lanai->cbrvcc == NULL,
  2229. "cbrvcc!=NULL, vci=%d\n", vci);
  2230. lanai->cbrvcc = atmvcc;
  2231. }
  2232. }
  2233. host_vcc_bind(lanai, lvcc, vci);
  2234. /*
  2235. * Make sure everything made it to RAM before we tell the card about
  2236. * the VCC
  2237. */
  2238. wmb();
  2239. if (atmvcc == lvcc->rx.atmvcc)
  2240. host_vcc_start_rx(lvcc);
  2241. if (atmvcc == lvcc->tx.atmvcc) {
  2242. host_vcc_start_tx(lvcc);
  2243. if (lanai->cbrvcc == atmvcc)
  2244. lanai_cbr_setup(lanai);
  2245. }
  2246. set_bit(ATM_VF_READY, &atmvcc->flags);
  2247. return 0;
  2248. out_free:
  2249. lanai_close(atmvcc);
  2250. out:
  2251. return result;
  2252. }
  2253. #if 0
  2254. /* ioctl operations for card */
  2255. /* NOTE: these are all DEBUGGING ONLY currently */
  2256. static int lanai_ioctl(struct atm_dev *atmdev, unsigned int cmd, void __user *arg)
  2257. {
  2258. int result = 0;
  2259. struct lanai_dev *lanai = (struct lanai_dev *) atmdev->dev_data;
  2260. switch(cmd) {
  2261. case 2106275:
  2262. shutdown_atm_dev(atmdev);
  2263. return 0;
  2264. case 2200000: {
  2265. unsigned long flags;
  2266. spin_lock_irqsave(&lanai->servicelock, flags);
  2267. run_service(lanai);
  2268. spin_unlock_irqrestore(&lanai->servicelock, flags);
  2269. return 0; }
  2270. case 2200002:
  2271. get_statistics(lanai);
  2272. return 0;
  2273. case 2200003: {
  2274. unsigned int i;
  2275. for (i = 0; i <= 0x5C ; i += 4) {
  2276. if (i==0x48) /* Write-only butt reg */
  2277. continue;
  2278. printk(KERN_CRIT DEV_LABEL " 0x%02X: "
  2279. "0x%08X\n", i,
  2280. (unsigned int) readl(lanai->base + i));
  2281. barrier(); mb();
  2282. pcistatus_check(lanai, 0);
  2283. barrier(); mb();
  2284. }
  2285. return 0; }
  2286. case 2200004: {
  2287. u8 b;
  2288. u16 w;
  2289. u32 dw;
  2290. struct pci_dev *pci = lanai->pci;
  2291. (void) pci_read_config_word(pci, PCI_VENDOR_ID, &w);
  2292. DPRINTK("vendor = 0x%X\n", (unsigned int) w);
  2293. (void) pci_read_config_word(pci, PCI_DEVICE_ID, &w);
  2294. DPRINTK("device = 0x%X\n", (unsigned int) w);
  2295. (void) pci_read_config_word(pci, PCI_COMMAND, &w);
  2296. DPRINTK("command = 0x%X\n", (unsigned int) w);
  2297. (void) pci_read_config_word(pci, PCI_STATUS, &w);
  2298. DPRINTK("status = 0x%X\n", (unsigned int) w);
  2299. (void) pci_read_config_dword(pci,
  2300. PCI_CLASS_REVISION, &dw);
  2301. DPRINTK("class/revision = 0x%X\n", (unsigned int) dw);
  2302. (void) pci_read_config_byte(pci,
  2303. PCI_CACHE_LINE_SIZE, &b);
  2304. DPRINTK("cache line size = 0x%X\n", (unsigned int) b);
  2305. (void) pci_read_config_byte(pci, PCI_LATENCY_TIMER, &b);
  2306. DPRINTK("latency = %d (0x%X)\n",
  2307. (int) b, (unsigned int) b);
  2308. (void) pci_read_config_byte(pci, PCI_HEADER_TYPE, &b);
  2309. DPRINTK("header type = 0x%X\n", (unsigned int) b);
  2310. (void) pci_read_config_byte(pci, PCI_BIST, &b);
  2311. DPRINTK("bist = 0x%X\n", (unsigned int) b);
  2312. /* skipping a few here */
  2313. (void) pci_read_config_byte(pci,
  2314. PCI_INTERRUPT_LINE, &b);
  2315. DPRINTK("pci_int_line = 0x%X\n", (unsigned int) b);
  2316. (void) pci_read_config_byte(pci,
  2317. PCI_INTERRUPT_PIN, &b);
  2318. DPRINTK("pci_int_pin = 0x%X\n", (unsigned int) b);
  2319. (void) pci_read_config_byte(pci, PCI_MIN_GNT, &b);
  2320. DPRINTK("min_gnt = 0x%X\n", (unsigned int) b);
  2321. (void) pci_read_config_byte(pci, PCI_MAX_LAT, &b);
  2322. DPRINTK("max_lat = 0x%X\n", (unsigned int) b); }
  2323. return 0;
  2324. #ifdef USE_POWERDOWN
  2325. case 2200005:
  2326. DPRINTK("Coming out of powerdown\n");
  2327. lanai->conf1 &= ~CONFIG1_POWERDOWN;
  2328. conf1_write(lanai);
  2329. return 0;
  2330. #endif
  2331. default:
  2332. result = -ENOIOCTLCMD;
  2333. }
  2334. return result;
  2335. }
  2336. #else /* !0 */
  2337. #define lanai_ioctl NULL
  2338. #endif /* 0 */
  2339. static int lanai_send(struct atm_vcc *atmvcc, struct sk_buff *skb)
  2340. {
  2341. struct lanai_vcc *lvcc = (struct lanai_vcc *) atmvcc->dev_data;
  2342. struct lanai_dev *lanai = (struct lanai_dev *) atmvcc->dev->dev_data;
  2343. unsigned long flags;
  2344. if (unlikely(lvcc == NULL || lvcc->vbase == NULL ||
  2345. lvcc->tx.atmvcc != atmvcc))
  2346. goto einval;
  2347. #ifdef DEBUG
  2348. if (unlikely(skb == NULL)) {
  2349. DPRINTK("lanai_send: skb==NULL for vci=%d\n", atmvcc->vci);
  2350. goto einval;
  2351. }
  2352. if (unlikely(lanai == NULL)) {
  2353. DPRINTK("lanai_send: lanai==NULL for vci=%d\n", atmvcc->vci);
  2354. goto einval;
  2355. }
  2356. #endif
  2357. ATM_SKB(skb)->vcc = atmvcc;
  2358. switch (atmvcc->qos.aal) {
  2359. case ATM_AAL5:
  2360. read_lock_irqsave(&vcc_sklist_lock, flags);
  2361. vcc_tx_aal5(lanai, lvcc, skb);
  2362. read_unlock_irqrestore(&vcc_sklist_lock, flags);
  2363. return 0;
  2364. case ATM_AAL0:
  2365. if (unlikely(skb->len != ATM_CELL_SIZE-1))
  2366. goto einval;
  2367. /* NOTE - this next line is technically invalid - we haven't unshared skb */
  2368. cpu_to_be32s((u32 *) skb->data);
  2369. read_lock_irqsave(&vcc_sklist_lock, flags);
  2370. vcc_tx_aal0(lanai, lvcc, skb);
  2371. read_unlock_irqrestore(&vcc_sklist_lock, flags);
  2372. return 0;
  2373. }
  2374. DPRINTK("lanai_send: bad aal=%d on vci=%d\n", (int) atmvcc->qos.aal,
  2375. atmvcc->vci);
  2376. einval:
  2377. lanai_free_skb(atmvcc, skb);
  2378. return -EINVAL;
  2379. }
  2380. static int lanai_change_qos(struct atm_vcc *atmvcc,
  2381. /*const*/ struct atm_qos *qos, int flags)
  2382. {
  2383. return -EBUSY; /* TODO: need to write this */
  2384. }
  2385. #ifndef CONFIG_PROC_FS
  2386. #define lanai_proc_read NULL
  2387. #else
  2388. static int lanai_proc_read(struct atm_dev *atmdev, loff_t *pos, char *page)
  2389. {
  2390. struct lanai_dev *lanai = (struct lanai_dev *) atmdev->dev_data;
  2391. loff_t left = *pos;
  2392. struct lanai_vcc *lvcc;
  2393. if (left-- == 0)
  2394. return sprintf(page, DEV_LABEL "(itf %d): chip=LANAI%s, "
  2395. "serial=%u, magic=0x%08X, num_vci=%d\n",
  2396. atmdev->number, lanai->type==lanai2 ? "2" : "HB",
  2397. (unsigned int) lanai->serialno,
  2398. (unsigned int) lanai->magicno, lanai->num_vci);
  2399. if (left-- == 0)
  2400. return sprintf(page, "revision: board=%d, pci_if=%d\n",
  2401. lanai->board_rev, (int) lanai->pci_revision);
  2402. if (left-- == 0)
  2403. return sprintf(page, "EEPROM ESI: "
  2404. "%02X:%02X:%02X:%02X:%02X:%02X\n",
  2405. lanai->eeprom[EEPROM_MAC + 0],
  2406. lanai->eeprom[EEPROM_MAC + 1],
  2407. lanai->eeprom[EEPROM_MAC + 2],
  2408. lanai->eeprom[EEPROM_MAC + 3],
  2409. lanai->eeprom[EEPROM_MAC + 4],
  2410. lanai->eeprom[EEPROM_MAC + 5]);
  2411. if (left-- == 0)
  2412. return sprintf(page, "status: SOOL=%d, LOCD=%d, LED=%d, "
  2413. "GPIN=%d\n", (lanai->status & STATUS_SOOL) ? 1 : 0,
  2414. (lanai->status & STATUS_LOCD) ? 1 : 0,
  2415. (lanai->status & STATUS_LED) ? 1 : 0,
  2416. (lanai->status & STATUS_GPIN) ? 1 : 0);
  2417. if (left-- == 0)
  2418. return sprintf(page, "global buffer sizes: service=%Zu, "
  2419. "aal0_rx=%Zu\n", lanai_buf_size(&lanai->service),
  2420. lanai->naal0 ? lanai_buf_size(&lanai->aal0buf) : 0);
  2421. if (left-- == 0) {
  2422. get_statistics(lanai);
  2423. return sprintf(page, "cells in error: overflow=%u, "
  2424. "closed_vci=%u, bad_HEC=%u, rx_fifo=%u\n",
  2425. lanai->stats.ovfl_trash, lanai->stats.vci_trash,
  2426. lanai->stats.hec_err, lanai->stats.atm_ovfl);
  2427. }
  2428. if (left-- == 0)
  2429. return sprintf(page, "PCI errors: parity_detect=%u, "
  2430. "master_abort=%u, master_target_abort=%u,\n",
  2431. lanai->stats.pcierr_parity_detect,
  2432. lanai->stats.pcierr_serr_set,
  2433. lanai->stats.pcierr_m_target_abort);
  2434. if (left-- == 0)
  2435. return sprintf(page, " slave_target_abort=%u, "
  2436. "master_parity=%u\n", lanai->stats.pcierr_s_target_abort,
  2437. lanai->stats.pcierr_master_parity);
  2438. if (left-- == 0)
  2439. return sprintf(page, " no_tx=%u, "
  2440. "no_rx=%u, bad_rx_aal=%u\n", lanai->stats.service_norx,
  2441. lanai->stats.service_notx,
  2442. lanai->stats.service_rxnotaal5);
  2443. if (left-- == 0)
  2444. return sprintf(page, "resets: dma=%u, card=%u\n",
  2445. lanai->stats.dma_reenable, lanai->stats.card_reset);
  2446. /* At this point, "left" should be the VCI we're looking for */
  2447. read_lock(&vcc_sklist_lock);
  2448. for (; ; left++) {
  2449. if (left >= NUM_VCI) {
  2450. left = 0;
  2451. goto out;
  2452. }
  2453. if ((lvcc = lanai->vccs[left]) != NULL)
  2454. break;
  2455. (*pos)++;
  2456. }
  2457. /* Note that we re-use "left" here since we're done with it */
  2458. left = sprintf(page, "VCI %4d: nref=%d, rx_nomem=%u", (vci_t) left,
  2459. lvcc->nref, lvcc->stats.rx_nomem);
  2460. if (lvcc->rx.atmvcc != NULL) {
  2461. left += sprintf(&page[left], ",\n rx_AAL=%d",
  2462. lvcc->rx.atmvcc->qos.aal == ATM_AAL5 ? 5 : 0);
  2463. if (lvcc->rx.atmvcc->qos.aal == ATM_AAL5)
  2464. left += sprintf(&page[left], ", rx_buf_size=%Zu, "
  2465. "rx_bad_len=%u,\n rx_service_trash=%u, "
  2466. "rx_service_stream=%u, rx_bad_crc=%u",
  2467. lanai_buf_size(&lvcc->rx.buf),
  2468. lvcc->stats.x.aal5.rx_badlen,
  2469. lvcc->stats.x.aal5.service_trash,
  2470. lvcc->stats.x.aal5.service_stream,
  2471. lvcc->stats.x.aal5.service_rxcrc);
  2472. }
  2473. if (lvcc->tx.atmvcc != NULL)
  2474. left += sprintf(&page[left], ",\n tx_AAL=%d, "
  2475. "tx_buf_size=%Zu, tx_qos=%cBR, tx_backlogged=%c",
  2476. lvcc->tx.atmvcc->qos.aal == ATM_AAL5 ? 5 : 0,
  2477. lanai_buf_size(&lvcc->tx.buf),
  2478. lvcc->tx.atmvcc == lanai->cbrvcc ? 'C' : 'U',
  2479. vcc_is_backlogged(lvcc) ? 'Y' : 'N');
  2480. page[left++] = '\n';
  2481. page[left] = '\0';
  2482. out:
  2483. read_unlock(&vcc_sklist_lock);
  2484. return left;
  2485. }
  2486. #endif /* CONFIG_PROC_FS */
  2487. /* -------------------- HOOKS: */
  2488. static const struct atmdev_ops ops = {
  2489. .dev_close = lanai_dev_close,
  2490. .open = lanai_open,
  2491. .close = lanai_close,
  2492. .ioctl = lanai_ioctl,
  2493. .getsockopt = NULL,
  2494. .setsockopt = NULL,
  2495. .send = lanai_send,
  2496. .phy_put = NULL,
  2497. .phy_get = NULL,
  2498. .change_qos = lanai_change_qos,
  2499. .proc_read = lanai_proc_read,
  2500. .owner = THIS_MODULE
  2501. };
  2502. /* initialize one probed card */
  2503. static int __devinit lanai_init_one(struct pci_dev *pci,
  2504. const struct pci_device_id *ident)
  2505. {
  2506. struct lanai_dev *lanai;
  2507. struct atm_dev *atmdev;
  2508. int result;
  2509. lanai = (struct lanai_dev *) kmalloc(sizeof(*lanai), GFP_KERNEL);
  2510. if (lanai == NULL) {
  2511. printk(KERN_ERR DEV_LABEL
  2512. ": couldn't allocate dev_data structure!\n");
  2513. return -ENOMEM;
  2514. }
  2515. atmdev = atm_dev_register(DEV_LABEL, &ops, -1, NULL);
  2516. if (atmdev == NULL) {
  2517. printk(KERN_ERR DEV_LABEL
  2518. ": couldn't register atm device!\n");
  2519. kfree(lanai);
  2520. return -EBUSY;
  2521. }
  2522. atmdev->dev_data = lanai;
  2523. lanai->pci = pci;
  2524. lanai->type = (enum lanai_type) ident->device;
  2525. result = lanai_dev_open(atmdev);
  2526. if (result != 0) {
  2527. DPRINTK("lanai_start() failed, err=%d\n", -result);
  2528. atm_dev_deregister(atmdev);
  2529. kfree(lanai);
  2530. }
  2531. return result;
  2532. }
  2533. static struct pci_device_id lanai_pci_tbl[] = {
  2534. {
  2535. PCI_VENDOR_ID_EF, PCI_VENDOR_ID_EF_ATM_LANAI2,
  2536. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0
  2537. },
  2538. {
  2539. PCI_VENDOR_ID_EF, PCI_VENDOR_ID_EF_ATM_LANAIHB,
  2540. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0
  2541. },
  2542. { 0, } /* terminal entry */
  2543. };
  2544. MODULE_DEVICE_TABLE(pci, lanai_pci_tbl);
  2545. static struct pci_driver lanai_driver = {
  2546. .name = DEV_LABEL,
  2547. .id_table = lanai_pci_tbl,
  2548. .probe = lanai_init_one,
  2549. };
  2550. static int __init lanai_module_init(void)
  2551. {
  2552. int x;
  2553. x = pci_register_driver(&lanai_driver);
  2554. if (x != 0)
  2555. printk(KERN_ERR DEV_LABEL ": no adapter found\n");
  2556. return x;
  2557. }
  2558. static void __exit lanai_module_exit(void)
  2559. {
  2560. /* We'll only get called when all the interfaces are already
  2561. * gone, so there isn't much to do
  2562. */
  2563. DPRINTK("cleanup_module()\n");
  2564. }
  2565. module_init(lanai_module_init);
  2566. module_exit(lanai_module_exit);
  2567. MODULE_AUTHOR("Mitchell Blank Jr <mitch@sfgoth.com>");
  2568. MODULE_DESCRIPTION("Efficient Networks Speedstream 3010 driver");
  2569. MODULE_LICENSE("GPL");