discontig.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705
  1. /*
  2. * Copyright (c) 2000, 2003 Silicon Graphics, Inc. All rights reserved.
  3. * Copyright (c) 2001 Intel Corp.
  4. * Copyright (c) 2001 Tony Luck <tony.luck@intel.com>
  5. * Copyright (c) 2002 NEC Corp.
  6. * Copyright (c) 2002 Kimio Suganuma <k-suganuma@da.jp.nec.com>
  7. * Copyright (c) 2004 Silicon Graphics, Inc
  8. * Russ Anderson <rja@sgi.com>
  9. * Jesse Barnes <jbarnes@sgi.com>
  10. * Jack Steiner <steiner@sgi.com>
  11. */
  12. /*
  13. * Platform initialization for Discontig Memory
  14. */
  15. #include <linux/kernel.h>
  16. #include <linux/mm.h>
  17. #include <linux/swap.h>
  18. #include <linux/bootmem.h>
  19. #include <linux/acpi.h>
  20. #include <linux/efi.h>
  21. #include <linux/nodemask.h>
  22. #include <asm/pgalloc.h>
  23. #include <asm/tlb.h>
  24. #include <asm/meminit.h>
  25. #include <asm/numa.h>
  26. #include <asm/sections.h>
  27. /*
  28. * Track per-node information needed to setup the boot memory allocator, the
  29. * per-node areas, and the real VM.
  30. */
  31. struct early_node_data {
  32. struct ia64_node_data *node_data;
  33. pg_data_t *pgdat;
  34. unsigned long pernode_addr;
  35. unsigned long pernode_size;
  36. struct bootmem_data bootmem_data;
  37. unsigned long num_physpages;
  38. unsigned long num_dma_physpages;
  39. unsigned long min_pfn;
  40. unsigned long max_pfn;
  41. };
  42. static struct early_node_data mem_data[MAX_NUMNODES] __initdata;
  43. static nodemask_t memory_less_mask __initdata;
  44. /*
  45. * To prevent cache aliasing effects, align per-node structures so that they
  46. * start at addresses that are strided by node number.
  47. */
  48. #define NODEDATA_ALIGN(addr, node) \
  49. ((((addr) + 1024*1024-1) & ~(1024*1024-1)) + (node)*PERCPU_PAGE_SIZE)
  50. /**
  51. * build_node_maps - callback to setup bootmem structs for each node
  52. * @start: physical start of range
  53. * @len: length of range
  54. * @node: node where this range resides
  55. *
  56. * We allocate a struct bootmem_data for each piece of memory that we wish to
  57. * treat as a virtually contiguous block (i.e. each node). Each such block
  58. * must start on an %IA64_GRANULE_SIZE boundary, so we round the address down
  59. * if necessary. Any non-existent pages will simply be part of the virtual
  60. * memmap. We also update min_low_pfn and max_low_pfn here as we receive
  61. * memory ranges from the caller.
  62. */
  63. static int __init build_node_maps(unsigned long start, unsigned long len,
  64. int node)
  65. {
  66. unsigned long cstart, epfn, end = start + len;
  67. struct bootmem_data *bdp = &mem_data[node].bootmem_data;
  68. epfn = GRANULEROUNDUP(end) >> PAGE_SHIFT;
  69. cstart = GRANULEROUNDDOWN(start);
  70. if (!bdp->node_low_pfn) {
  71. bdp->node_boot_start = cstart;
  72. bdp->node_low_pfn = epfn;
  73. } else {
  74. bdp->node_boot_start = min(cstart, bdp->node_boot_start);
  75. bdp->node_low_pfn = max(epfn, bdp->node_low_pfn);
  76. }
  77. min_low_pfn = min(min_low_pfn, bdp->node_boot_start>>PAGE_SHIFT);
  78. max_low_pfn = max(max_low_pfn, bdp->node_low_pfn);
  79. return 0;
  80. }
  81. /**
  82. * early_nr_cpus_node - return number of cpus on a given node
  83. * @node: node to check
  84. *
  85. * Count the number of cpus on @node. We can't use nr_cpus_node() yet because
  86. * acpi_boot_init() (which builds the node_to_cpu_mask array) hasn't been
  87. * called yet. Note that node 0 will also count all non-existent cpus.
  88. */
  89. static int __init early_nr_cpus_node(int node)
  90. {
  91. int cpu, n = 0;
  92. for (cpu = 0; cpu < NR_CPUS; cpu++)
  93. if (node == node_cpuid[cpu].nid)
  94. n++;
  95. return n;
  96. }
  97. /**
  98. * compute_pernodesize - compute size of pernode data
  99. * @node: the node id.
  100. */
  101. static unsigned long __init compute_pernodesize(int node)
  102. {
  103. unsigned long pernodesize = 0, cpus;
  104. cpus = early_nr_cpus_node(node);
  105. pernodesize += PERCPU_PAGE_SIZE * cpus;
  106. pernodesize += node * L1_CACHE_BYTES;
  107. pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t));
  108. pernodesize += L1_CACHE_ALIGN(sizeof(struct ia64_node_data));
  109. pernodesize = PAGE_ALIGN(pernodesize);
  110. return pernodesize;
  111. }
  112. /**
  113. * per_cpu_node_setup - setup per-cpu areas on each node
  114. * @cpu_data: per-cpu area on this node
  115. * @node: node to setup
  116. *
  117. * Copy the static per-cpu data into the region we just set aside and then
  118. * setup __per_cpu_offset for each CPU on this node. Return a pointer to
  119. * the end of the area.
  120. */
  121. static void *per_cpu_node_setup(void *cpu_data, int node)
  122. {
  123. #ifdef CONFIG_SMP
  124. int cpu;
  125. for (cpu = 0; cpu < NR_CPUS; cpu++) {
  126. if (node == node_cpuid[cpu].nid) {
  127. memcpy(__va(cpu_data), __phys_per_cpu_start,
  128. __per_cpu_end - __per_cpu_start);
  129. __per_cpu_offset[cpu] = (char*)__va(cpu_data) -
  130. __per_cpu_start;
  131. cpu_data += PERCPU_PAGE_SIZE;
  132. }
  133. }
  134. #endif
  135. return cpu_data;
  136. }
  137. /**
  138. * fill_pernode - initialize pernode data.
  139. * @node: the node id.
  140. * @pernode: physical address of pernode data
  141. * @pernodesize: size of the pernode data
  142. */
  143. static void __init fill_pernode(int node, unsigned long pernode,
  144. unsigned long pernodesize)
  145. {
  146. void *cpu_data;
  147. int cpus = early_nr_cpus_node(node);
  148. struct bootmem_data *bdp = &mem_data[node].bootmem_data;
  149. mem_data[node].pernode_addr = pernode;
  150. mem_data[node].pernode_size = pernodesize;
  151. memset(__va(pernode), 0, pernodesize);
  152. cpu_data = (void *)pernode;
  153. pernode += PERCPU_PAGE_SIZE * cpus;
  154. pernode += node * L1_CACHE_BYTES;
  155. mem_data[node].pgdat = __va(pernode);
  156. pernode += L1_CACHE_ALIGN(sizeof(pg_data_t));
  157. mem_data[node].node_data = __va(pernode);
  158. pernode += L1_CACHE_ALIGN(sizeof(struct ia64_node_data));
  159. mem_data[node].pgdat->bdata = bdp;
  160. pernode += L1_CACHE_ALIGN(sizeof(pg_data_t));
  161. cpu_data = per_cpu_node_setup(cpu_data, node);
  162. return;
  163. }
  164. /**
  165. * find_pernode_space - allocate memory for memory map and per-node structures
  166. * @start: physical start of range
  167. * @len: length of range
  168. * @node: node where this range resides
  169. *
  170. * This routine reserves space for the per-cpu data struct, the list of
  171. * pg_data_ts and the per-node data struct. Each node will have something like
  172. * the following in the first chunk of addr. space large enough to hold it.
  173. *
  174. * ________________________
  175. * | |
  176. * |~~~~~~~~~~~~~~~~~~~~~~~~| <-- NODEDATA_ALIGN(start, node) for the first
  177. * | PERCPU_PAGE_SIZE * | start and length big enough
  178. * | cpus_on_this_node | Node 0 will also have entries for all non-existent cpus.
  179. * |------------------------|
  180. * | local pg_data_t * |
  181. * |------------------------|
  182. * | local ia64_node_data |
  183. * |------------------------|
  184. * | ??? |
  185. * |________________________|
  186. *
  187. * Once this space has been set aside, the bootmem maps are initialized. We
  188. * could probably move the allocation of the per-cpu and ia64_node_data space
  189. * outside of this function and use alloc_bootmem_node(), but doing it here
  190. * is straightforward and we get the alignments we want so...
  191. */
  192. static int __init find_pernode_space(unsigned long start, unsigned long len,
  193. int node)
  194. {
  195. unsigned long epfn;
  196. unsigned long pernodesize = 0, pernode, pages, mapsize;
  197. struct bootmem_data *bdp = &mem_data[node].bootmem_data;
  198. epfn = (start + len) >> PAGE_SHIFT;
  199. pages = bdp->node_low_pfn - (bdp->node_boot_start >> PAGE_SHIFT);
  200. mapsize = bootmem_bootmap_pages(pages) << PAGE_SHIFT;
  201. /*
  202. * Make sure this memory falls within this node's usable memory
  203. * since we may have thrown some away in build_maps().
  204. */
  205. if (start < bdp->node_boot_start || epfn > bdp->node_low_pfn)
  206. return 0;
  207. /* Don't setup this node's local space twice... */
  208. if (mem_data[node].pernode_addr)
  209. return 0;
  210. /*
  211. * Calculate total size needed, incl. what's necessary
  212. * for good alignment and alias prevention.
  213. */
  214. pernodesize = compute_pernodesize(node);
  215. pernode = NODEDATA_ALIGN(start, node);
  216. /* Is this range big enough for what we want to store here? */
  217. if (start + len > (pernode + pernodesize + mapsize))
  218. fill_pernode(node, pernode, pernodesize);
  219. return 0;
  220. }
  221. /**
  222. * free_node_bootmem - free bootmem allocator memory for use
  223. * @start: physical start of range
  224. * @len: length of range
  225. * @node: node where this range resides
  226. *
  227. * Simply calls the bootmem allocator to free the specified ranged from
  228. * the given pg_data_t's bdata struct. After this function has been called
  229. * for all the entries in the EFI memory map, the bootmem allocator will
  230. * be ready to service allocation requests.
  231. */
  232. static int __init free_node_bootmem(unsigned long start, unsigned long len,
  233. int node)
  234. {
  235. free_bootmem_node(mem_data[node].pgdat, start, len);
  236. return 0;
  237. }
  238. /**
  239. * reserve_pernode_space - reserve memory for per-node space
  240. *
  241. * Reserve the space used by the bootmem maps & per-node space in the boot
  242. * allocator so that when we actually create the real mem maps we don't
  243. * use their memory.
  244. */
  245. static void __init reserve_pernode_space(void)
  246. {
  247. unsigned long base, size, pages;
  248. struct bootmem_data *bdp;
  249. int node;
  250. for_each_online_node(node) {
  251. pg_data_t *pdp = mem_data[node].pgdat;
  252. if (node_isset(node, memory_less_mask))
  253. continue;
  254. bdp = pdp->bdata;
  255. /* First the bootmem_map itself */
  256. pages = bdp->node_low_pfn - (bdp->node_boot_start>>PAGE_SHIFT);
  257. size = bootmem_bootmap_pages(pages) << PAGE_SHIFT;
  258. base = __pa(bdp->node_bootmem_map);
  259. reserve_bootmem_node(pdp, base, size);
  260. /* Now the per-node space */
  261. size = mem_data[node].pernode_size;
  262. base = __pa(mem_data[node].pernode_addr);
  263. reserve_bootmem_node(pdp, base, size);
  264. }
  265. }
  266. /**
  267. * initialize_pernode_data - fixup per-cpu & per-node pointers
  268. *
  269. * Each node's per-node area has a copy of the global pg_data_t list, so
  270. * we copy that to each node here, as well as setting the per-cpu pointer
  271. * to the local node data structure. The active_cpus field of the per-node
  272. * structure gets setup by the platform_cpu_init() function later.
  273. */
  274. static void __init initialize_pernode_data(void)
  275. {
  276. pg_data_t *pgdat_list[MAX_NUMNODES];
  277. int cpu, node;
  278. for_each_online_node(node)
  279. pgdat_list[node] = mem_data[node].pgdat;
  280. /* Copy the pg_data_t list to each node and init the node field */
  281. for_each_online_node(node) {
  282. memcpy(mem_data[node].node_data->pg_data_ptrs, pgdat_list,
  283. sizeof(pgdat_list));
  284. }
  285. #ifdef CONFIG_SMP
  286. /* Set the node_data pointer for each per-cpu struct */
  287. for (cpu = 0; cpu < NR_CPUS; cpu++) {
  288. node = node_cpuid[cpu].nid;
  289. per_cpu(cpu_info, cpu).node_data = mem_data[node].node_data;
  290. }
  291. #else
  292. {
  293. struct cpuinfo_ia64 *cpu0_cpu_info;
  294. cpu = 0;
  295. node = node_cpuid[cpu].nid;
  296. cpu0_cpu_info = (struct cpuinfo_ia64 *)(__phys_per_cpu_start +
  297. ((char *)&per_cpu__cpu_info - __per_cpu_start));
  298. cpu0_cpu_info->node_data = mem_data[node].node_data;
  299. }
  300. #endif /* CONFIG_SMP */
  301. }
  302. /**
  303. * memory_less_node_alloc - * attempt to allocate memory on the best NUMA slit
  304. * node but fall back to any other node when __alloc_bootmem_node fails
  305. * for best.
  306. * @nid: node id
  307. * @pernodesize: size of this node's pernode data
  308. * @align: alignment to use for this node's pernode data
  309. */
  310. static void __init *memory_less_node_alloc(int nid, unsigned long pernodesize,
  311. unsigned long align)
  312. {
  313. void *ptr = NULL;
  314. u8 best = 0xff;
  315. int bestnode = -1, node;
  316. for_each_online_node(node) {
  317. if (node_isset(node, memory_less_mask))
  318. continue;
  319. else if (node_distance(nid, node) < best) {
  320. best = node_distance(nid, node);
  321. bestnode = node;
  322. }
  323. }
  324. ptr = __alloc_bootmem_node(mem_data[bestnode].pgdat,
  325. pernodesize, align, __pa(MAX_DMA_ADDRESS));
  326. if (!ptr)
  327. panic("NO memory for memory less node\n");
  328. return ptr;
  329. }
  330. /**
  331. * pgdat_insert - insert the pgdat into global pgdat_list
  332. * @pgdat: the pgdat for a node.
  333. */
  334. static void __init pgdat_insert(pg_data_t *pgdat)
  335. {
  336. pg_data_t *prev = NULL, *next;
  337. for_each_pgdat(next)
  338. if (pgdat->node_id < next->node_id)
  339. break;
  340. else
  341. prev = next;
  342. if (prev) {
  343. prev->pgdat_next = pgdat;
  344. pgdat->pgdat_next = next;
  345. } else {
  346. pgdat->pgdat_next = pgdat_list;
  347. pgdat_list = pgdat;
  348. }
  349. return;
  350. }
  351. /**
  352. * memory_less_nodes - allocate and initialize CPU only nodes pernode
  353. * information.
  354. */
  355. static void __init memory_less_nodes(void)
  356. {
  357. unsigned long pernodesize;
  358. void *pernode;
  359. int node;
  360. for_each_node_mask(node, memory_less_mask) {
  361. pernodesize = compute_pernodesize(node);
  362. pernode = memory_less_node_alloc(node, pernodesize,
  363. (node) ? (node * PERCPU_PAGE_SIZE) : (1024*1024));
  364. fill_pernode(node, __pa(pernode), pernodesize);
  365. }
  366. return;
  367. }
  368. /**
  369. * find_memory - walk the EFI memory map and setup the bootmem allocator
  370. *
  371. * Called early in boot to setup the bootmem allocator, and to
  372. * allocate the per-cpu and per-node structures.
  373. */
  374. void __init find_memory(void)
  375. {
  376. int node;
  377. reserve_memory();
  378. if (num_online_nodes() == 0) {
  379. printk(KERN_ERR "node info missing!\n");
  380. node_set_online(0);
  381. }
  382. nodes_or(memory_less_mask, memory_less_mask, node_online_map);
  383. min_low_pfn = -1;
  384. max_low_pfn = 0;
  385. /* These actually end up getting called by call_pernode_memory() */
  386. efi_memmap_walk(filter_rsvd_memory, build_node_maps);
  387. efi_memmap_walk(filter_rsvd_memory, find_pernode_space);
  388. for_each_online_node(node)
  389. if (mem_data[node].bootmem_data.node_low_pfn) {
  390. node_clear(node, memory_less_mask);
  391. mem_data[node].min_pfn = ~0UL;
  392. }
  393. /*
  394. * Initialize the boot memory maps in reverse order since that's
  395. * what the bootmem allocator expects
  396. */
  397. for (node = MAX_NUMNODES - 1; node >= 0; node--) {
  398. unsigned long pernode, pernodesize, map;
  399. struct bootmem_data *bdp;
  400. if (!node_online(node))
  401. continue;
  402. else if (node_isset(node, memory_less_mask))
  403. continue;
  404. bdp = &mem_data[node].bootmem_data;
  405. pernode = mem_data[node].pernode_addr;
  406. pernodesize = mem_data[node].pernode_size;
  407. map = pernode + pernodesize;
  408. init_bootmem_node(mem_data[node].pgdat,
  409. map>>PAGE_SHIFT,
  410. bdp->node_boot_start>>PAGE_SHIFT,
  411. bdp->node_low_pfn);
  412. }
  413. efi_memmap_walk(filter_rsvd_memory, free_node_bootmem);
  414. reserve_pernode_space();
  415. memory_less_nodes();
  416. initialize_pernode_data();
  417. max_pfn = max_low_pfn;
  418. find_initrd();
  419. }
  420. #ifdef CONFIG_SMP
  421. /**
  422. * per_cpu_init - setup per-cpu variables
  423. *
  424. * find_pernode_space() does most of this already, we just need to set
  425. * local_per_cpu_offset
  426. */
  427. void *per_cpu_init(void)
  428. {
  429. int cpu;
  430. if (smp_processor_id() != 0)
  431. return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
  432. for (cpu = 0; cpu < NR_CPUS; cpu++)
  433. per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu];
  434. return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
  435. }
  436. #endif /* CONFIG_SMP */
  437. /**
  438. * show_mem - give short summary of memory stats
  439. *
  440. * Shows a simple page count of reserved and used pages in the system.
  441. * For discontig machines, it does this on a per-pgdat basis.
  442. */
  443. void show_mem(void)
  444. {
  445. int i, total_reserved = 0;
  446. int total_shared = 0, total_cached = 0;
  447. unsigned long total_present = 0;
  448. pg_data_t *pgdat;
  449. printk("Mem-info:\n");
  450. show_free_areas();
  451. printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
  452. for_each_pgdat(pgdat) {
  453. unsigned long present = pgdat->node_present_pages;
  454. int shared = 0, cached = 0, reserved = 0;
  455. printk("Node ID: %d\n", pgdat->node_id);
  456. for(i = 0; i < pgdat->node_spanned_pages; i++) {
  457. struct page *page = pgdat_page_nr(pgdat, i);
  458. if (!ia64_pfn_valid(pgdat->node_start_pfn+i))
  459. continue;
  460. if (PageReserved(page))
  461. reserved++;
  462. else if (PageSwapCache(page))
  463. cached++;
  464. else if (page_count(page))
  465. shared += page_count(page)-1;
  466. }
  467. total_present += present;
  468. total_reserved += reserved;
  469. total_cached += cached;
  470. total_shared += shared;
  471. printk("\t%ld pages of RAM\n", present);
  472. printk("\t%d reserved pages\n", reserved);
  473. printk("\t%d pages shared\n", shared);
  474. printk("\t%d pages swap cached\n", cached);
  475. }
  476. printk("%ld pages of RAM\n", total_present);
  477. printk("%d reserved pages\n", total_reserved);
  478. printk("%d pages shared\n", total_shared);
  479. printk("%d pages swap cached\n", total_cached);
  480. printk("Total of %ld pages in page table cache\n",
  481. pgtable_quicklist_total_size());
  482. printk("%d free buffer pages\n", nr_free_buffer_pages());
  483. }
  484. /**
  485. * call_pernode_memory - use SRAT to call callback functions with node info
  486. * @start: physical start of range
  487. * @len: length of range
  488. * @arg: function to call for each range
  489. *
  490. * efi_memmap_walk() knows nothing about layout of memory across nodes. Find
  491. * out to which node a block of memory belongs. Ignore memory that we cannot
  492. * identify, and split blocks that run across multiple nodes.
  493. *
  494. * Take this opportunity to round the start address up and the end address
  495. * down to page boundaries.
  496. */
  497. void call_pernode_memory(unsigned long start, unsigned long len, void *arg)
  498. {
  499. unsigned long rs, re, end = start + len;
  500. void (*func)(unsigned long, unsigned long, int);
  501. int i;
  502. start = PAGE_ALIGN(start);
  503. end &= PAGE_MASK;
  504. if (start >= end)
  505. return;
  506. func = arg;
  507. if (!num_node_memblks) {
  508. /* No SRAT table, so assume one node (node 0) */
  509. if (start < end)
  510. (*func)(start, end - start, 0);
  511. return;
  512. }
  513. for (i = 0; i < num_node_memblks; i++) {
  514. rs = max(start, node_memblk[i].start_paddr);
  515. re = min(end, node_memblk[i].start_paddr +
  516. node_memblk[i].size);
  517. if (rs < re)
  518. (*func)(rs, re - rs, node_memblk[i].nid);
  519. if (re == end)
  520. break;
  521. }
  522. }
  523. /**
  524. * count_node_pages - callback to build per-node memory info structures
  525. * @start: physical start of range
  526. * @len: length of range
  527. * @node: node where this range resides
  528. *
  529. * Each node has it's own number of physical pages, DMAable pages, start, and
  530. * end page frame number. This routine will be called by call_pernode_memory()
  531. * for each piece of usable memory and will setup these values for each node.
  532. * Very similar to build_maps().
  533. */
  534. static __init int count_node_pages(unsigned long start, unsigned long len, int node)
  535. {
  536. unsigned long end = start + len;
  537. mem_data[node].num_physpages += len >> PAGE_SHIFT;
  538. if (start <= __pa(MAX_DMA_ADDRESS))
  539. mem_data[node].num_dma_physpages +=
  540. (min(end, __pa(MAX_DMA_ADDRESS)) - start) >>PAGE_SHIFT;
  541. start = GRANULEROUNDDOWN(start);
  542. start = ORDERROUNDDOWN(start);
  543. end = GRANULEROUNDUP(end);
  544. mem_data[node].max_pfn = max(mem_data[node].max_pfn,
  545. end >> PAGE_SHIFT);
  546. mem_data[node].min_pfn = min(mem_data[node].min_pfn,
  547. start >> PAGE_SHIFT);
  548. return 0;
  549. }
  550. /**
  551. * paging_init - setup page tables
  552. *
  553. * paging_init() sets up the page tables for each node of the system and frees
  554. * the bootmem allocator memory for general use.
  555. */
  556. void __init paging_init(void)
  557. {
  558. unsigned long max_dma;
  559. unsigned long zones_size[MAX_NR_ZONES];
  560. unsigned long zholes_size[MAX_NR_ZONES];
  561. unsigned long pfn_offset = 0;
  562. int node;
  563. max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;
  564. efi_memmap_walk(filter_rsvd_memory, count_node_pages);
  565. vmalloc_end -= PAGE_ALIGN(max_low_pfn * sizeof(struct page));
  566. vmem_map = (struct page *) vmalloc_end;
  567. efi_memmap_walk(create_mem_map_page_table, NULL);
  568. printk("Virtual mem_map starts at 0x%p\n", vmem_map);
  569. for_each_online_node(node) {
  570. memset(zones_size, 0, sizeof(zones_size));
  571. memset(zholes_size, 0, sizeof(zholes_size));
  572. num_physpages += mem_data[node].num_physpages;
  573. if (mem_data[node].min_pfn >= max_dma) {
  574. /* All of this node's memory is above ZONE_DMA */
  575. zones_size[ZONE_NORMAL] = mem_data[node].max_pfn -
  576. mem_data[node].min_pfn;
  577. zholes_size[ZONE_NORMAL] = mem_data[node].max_pfn -
  578. mem_data[node].min_pfn -
  579. mem_data[node].num_physpages;
  580. } else if (mem_data[node].max_pfn < max_dma) {
  581. /* All of this node's memory is in ZONE_DMA */
  582. zones_size[ZONE_DMA] = mem_data[node].max_pfn -
  583. mem_data[node].min_pfn;
  584. zholes_size[ZONE_DMA] = mem_data[node].max_pfn -
  585. mem_data[node].min_pfn -
  586. mem_data[node].num_dma_physpages;
  587. } else {
  588. /* This node has memory in both zones */
  589. zones_size[ZONE_DMA] = max_dma -
  590. mem_data[node].min_pfn;
  591. zholes_size[ZONE_DMA] = zones_size[ZONE_DMA] -
  592. mem_data[node].num_dma_physpages;
  593. zones_size[ZONE_NORMAL] = mem_data[node].max_pfn -
  594. max_dma;
  595. zholes_size[ZONE_NORMAL] = zones_size[ZONE_NORMAL] -
  596. (mem_data[node].num_physpages -
  597. mem_data[node].num_dma_physpages);
  598. }
  599. pfn_offset = mem_data[node].min_pfn;
  600. NODE_DATA(node)->node_mem_map = vmem_map + pfn_offset;
  601. free_area_init_node(node, NODE_DATA(node), zones_size,
  602. pfn_offset, zholes_size);
  603. }
  604. /*
  605. * Make memory less nodes become a member of the known nodes.
  606. */
  607. for_each_node_mask(node, memory_less_mask)
  608. pgdat_insert(mem_data[node].pgdat);
  609. zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));
  610. }