xfs_log_recover.c 107 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947
  1. /*
  2. * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include "xfs.h"
  19. #include "xfs_fs.h"
  20. #include "xfs_types.h"
  21. #include "xfs_bit.h"
  22. #include "xfs_log.h"
  23. #include "xfs_inum.h"
  24. #include "xfs_trans.h"
  25. #include "xfs_sb.h"
  26. #include "xfs_ag.h"
  27. #include "xfs_mount.h"
  28. #include "xfs_error.h"
  29. #include "xfs_bmap_btree.h"
  30. #include "xfs_alloc_btree.h"
  31. #include "xfs_ialloc_btree.h"
  32. #include "xfs_btree.h"
  33. #include "xfs_dinode.h"
  34. #include "xfs_inode.h"
  35. #include "xfs_inode_item.h"
  36. #include "xfs_alloc.h"
  37. #include "xfs_ialloc.h"
  38. #include "xfs_log_priv.h"
  39. #include "xfs_buf_item.h"
  40. #include "xfs_log_recover.h"
  41. #include "xfs_extfree_item.h"
  42. #include "xfs_trans_priv.h"
  43. #include "xfs_quota.h"
  44. #include "xfs_utils.h"
  45. #include "xfs_cksum.h"
  46. #include "xfs_trace.h"
  47. #include "xfs_icache.h"
  48. STATIC int
  49. xlog_find_zeroed(
  50. struct xlog *,
  51. xfs_daddr_t *);
  52. STATIC int
  53. xlog_clear_stale_blocks(
  54. struct xlog *,
  55. xfs_lsn_t);
  56. #if defined(DEBUG)
  57. STATIC void
  58. xlog_recover_check_summary(
  59. struct xlog *);
  60. #else
  61. #define xlog_recover_check_summary(log)
  62. #endif
  63. /*
  64. * This structure is used during recovery to record the buf log items which
  65. * have been canceled and should not be replayed.
  66. */
  67. struct xfs_buf_cancel {
  68. xfs_daddr_t bc_blkno;
  69. uint bc_len;
  70. int bc_refcount;
  71. struct list_head bc_list;
  72. };
  73. /*
  74. * Sector aligned buffer routines for buffer create/read/write/access
  75. */
  76. /*
  77. * Verify the given count of basic blocks is valid number of blocks
  78. * to specify for an operation involving the given XFS log buffer.
  79. * Returns nonzero if the count is valid, 0 otherwise.
  80. */
  81. static inline int
  82. xlog_buf_bbcount_valid(
  83. struct xlog *log,
  84. int bbcount)
  85. {
  86. return bbcount > 0 && bbcount <= log->l_logBBsize;
  87. }
  88. /*
  89. * Allocate a buffer to hold log data. The buffer needs to be able
  90. * to map to a range of nbblks basic blocks at any valid (basic
  91. * block) offset within the log.
  92. */
  93. STATIC xfs_buf_t *
  94. xlog_get_bp(
  95. struct xlog *log,
  96. int nbblks)
  97. {
  98. struct xfs_buf *bp;
  99. if (!xlog_buf_bbcount_valid(log, nbblks)) {
  100. xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
  101. nbblks);
  102. XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
  103. return NULL;
  104. }
  105. /*
  106. * We do log I/O in units of log sectors (a power-of-2
  107. * multiple of the basic block size), so we round up the
  108. * requested size to accommodate the basic blocks required
  109. * for complete log sectors.
  110. *
  111. * In addition, the buffer may be used for a non-sector-
  112. * aligned block offset, in which case an I/O of the
  113. * requested size could extend beyond the end of the
  114. * buffer. If the requested size is only 1 basic block it
  115. * will never straddle a sector boundary, so this won't be
  116. * an issue. Nor will this be a problem if the log I/O is
  117. * done in basic blocks (sector size 1). But otherwise we
  118. * extend the buffer by one extra log sector to ensure
  119. * there's space to accommodate this possibility.
  120. */
  121. if (nbblks > 1 && log->l_sectBBsize > 1)
  122. nbblks += log->l_sectBBsize;
  123. nbblks = round_up(nbblks, log->l_sectBBsize);
  124. bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0);
  125. if (bp)
  126. xfs_buf_unlock(bp);
  127. return bp;
  128. }
  129. STATIC void
  130. xlog_put_bp(
  131. xfs_buf_t *bp)
  132. {
  133. xfs_buf_free(bp);
  134. }
  135. /*
  136. * Return the address of the start of the given block number's data
  137. * in a log buffer. The buffer covers a log sector-aligned region.
  138. */
  139. STATIC xfs_caddr_t
  140. xlog_align(
  141. struct xlog *log,
  142. xfs_daddr_t blk_no,
  143. int nbblks,
  144. struct xfs_buf *bp)
  145. {
  146. xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
  147. ASSERT(offset + nbblks <= bp->b_length);
  148. return bp->b_addr + BBTOB(offset);
  149. }
  150. /*
  151. * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
  152. */
  153. STATIC int
  154. xlog_bread_noalign(
  155. struct xlog *log,
  156. xfs_daddr_t blk_no,
  157. int nbblks,
  158. struct xfs_buf *bp)
  159. {
  160. int error;
  161. if (!xlog_buf_bbcount_valid(log, nbblks)) {
  162. xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
  163. nbblks);
  164. XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
  165. return EFSCORRUPTED;
  166. }
  167. blk_no = round_down(blk_no, log->l_sectBBsize);
  168. nbblks = round_up(nbblks, log->l_sectBBsize);
  169. ASSERT(nbblks > 0);
  170. ASSERT(nbblks <= bp->b_length);
  171. XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
  172. XFS_BUF_READ(bp);
  173. bp->b_io_length = nbblks;
  174. bp->b_error = 0;
  175. xfsbdstrat(log->l_mp, bp);
  176. error = xfs_buf_iowait(bp);
  177. if (error)
  178. xfs_buf_ioerror_alert(bp, __func__);
  179. return error;
  180. }
  181. STATIC int
  182. xlog_bread(
  183. struct xlog *log,
  184. xfs_daddr_t blk_no,
  185. int nbblks,
  186. struct xfs_buf *bp,
  187. xfs_caddr_t *offset)
  188. {
  189. int error;
  190. error = xlog_bread_noalign(log, blk_no, nbblks, bp);
  191. if (error)
  192. return error;
  193. *offset = xlog_align(log, blk_no, nbblks, bp);
  194. return 0;
  195. }
  196. /*
  197. * Read at an offset into the buffer. Returns with the buffer in it's original
  198. * state regardless of the result of the read.
  199. */
  200. STATIC int
  201. xlog_bread_offset(
  202. struct xlog *log,
  203. xfs_daddr_t blk_no, /* block to read from */
  204. int nbblks, /* blocks to read */
  205. struct xfs_buf *bp,
  206. xfs_caddr_t offset)
  207. {
  208. xfs_caddr_t orig_offset = bp->b_addr;
  209. int orig_len = BBTOB(bp->b_length);
  210. int error, error2;
  211. error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
  212. if (error)
  213. return error;
  214. error = xlog_bread_noalign(log, blk_no, nbblks, bp);
  215. /* must reset buffer pointer even on error */
  216. error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
  217. if (error)
  218. return error;
  219. return error2;
  220. }
  221. /*
  222. * Write out the buffer at the given block for the given number of blocks.
  223. * The buffer is kept locked across the write and is returned locked.
  224. * This can only be used for synchronous log writes.
  225. */
  226. STATIC int
  227. xlog_bwrite(
  228. struct xlog *log,
  229. xfs_daddr_t blk_no,
  230. int nbblks,
  231. struct xfs_buf *bp)
  232. {
  233. int error;
  234. if (!xlog_buf_bbcount_valid(log, nbblks)) {
  235. xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
  236. nbblks);
  237. XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
  238. return EFSCORRUPTED;
  239. }
  240. blk_no = round_down(blk_no, log->l_sectBBsize);
  241. nbblks = round_up(nbblks, log->l_sectBBsize);
  242. ASSERT(nbblks > 0);
  243. ASSERT(nbblks <= bp->b_length);
  244. XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
  245. XFS_BUF_ZEROFLAGS(bp);
  246. xfs_buf_hold(bp);
  247. xfs_buf_lock(bp);
  248. bp->b_io_length = nbblks;
  249. bp->b_error = 0;
  250. error = xfs_bwrite(bp);
  251. if (error)
  252. xfs_buf_ioerror_alert(bp, __func__);
  253. xfs_buf_relse(bp);
  254. return error;
  255. }
  256. #ifdef DEBUG
  257. /*
  258. * dump debug superblock and log record information
  259. */
  260. STATIC void
  261. xlog_header_check_dump(
  262. xfs_mount_t *mp,
  263. xlog_rec_header_t *head)
  264. {
  265. xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d\n",
  266. __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
  267. xfs_debug(mp, " log : uuid = %pU, fmt = %d\n",
  268. &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
  269. }
  270. #else
  271. #define xlog_header_check_dump(mp, head)
  272. #endif
  273. /*
  274. * check log record header for recovery
  275. */
  276. STATIC int
  277. xlog_header_check_recover(
  278. xfs_mount_t *mp,
  279. xlog_rec_header_t *head)
  280. {
  281. ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
  282. /*
  283. * IRIX doesn't write the h_fmt field and leaves it zeroed
  284. * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
  285. * a dirty log created in IRIX.
  286. */
  287. if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
  288. xfs_warn(mp,
  289. "dirty log written in incompatible format - can't recover");
  290. xlog_header_check_dump(mp, head);
  291. XFS_ERROR_REPORT("xlog_header_check_recover(1)",
  292. XFS_ERRLEVEL_HIGH, mp);
  293. return XFS_ERROR(EFSCORRUPTED);
  294. } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
  295. xfs_warn(mp,
  296. "dirty log entry has mismatched uuid - can't recover");
  297. xlog_header_check_dump(mp, head);
  298. XFS_ERROR_REPORT("xlog_header_check_recover(2)",
  299. XFS_ERRLEVEL_HIGH, mp);
  300. return XFS_ERROR(EFSCORRUPTED);
  301. }
  302. return 0;
  303. }
  304. /*
  305. * read the head block of the log and check the header
  306. */
  307. STATIC int
  308. xlog_header_check_mount(
  309. xfs_mount_t *mp,
  310. xlog_rec_header_t *head)
  311. {
  312. ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
  313. if (uuid_is_nil(&head->h_fs_uuid)) {
  314. /*
  315. * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
  316. * h_fs_uuid is nil, we assume this log was last mounted
  317. * by IRIX and continue.
  318. */
  319. xfs_warn(mp, "nil uuid in log - IRIX style log");
  320. } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
  321. xfs_warn(mp, "log has mismatched uuid - can't recover");
  322. xlog_header_check_dump(mp, head);
  323. XFS_ERROR_REPORT("xlog_header_check_mount",
  324. XFS_ERRLEVEL_HIGH, mp);
  325. return XFS_ERROR(EFSCORRUPTED);
  326. }
  327. return 0;
  328. }
  329. STATIC void
  330. xlog_recover_iodone(
  331. struct xfs_buf *bp)
  332. {
  333. if (bp->b_error) {
  334. /*
  335. * We're not going to bother about retrying
  336. * this during recovery. One strike!
  337. */
  338. xfs_buf_ioerror_alert(bp, __func__);
  339. xfs_force_shutdown(bp->b_target->bt_mount,
  340. SHUTDOWN_META_IO_ERROR);
  341. }
  342. bp->b_iodone = NULL;
  343. xfs_buf_ioend(bp, 0);
  344. }
  345. /*
  346. * This routine finds (to an approximation) the first block in the physical
  347. * log which contains the given cycle. It uses a binary search algorithm.
  348. * Note that the algorithm can not be perfect because the disk will not
  349. * necessarily be perfect.
  350. */
  351. STATIC int
  352. xlog_find_cycle_start(
  353. struct xlog *log,
  354. struct xfs_buf *bp,
  355. xfs_daddr_t first_blk,
  356. xfs_daddr_t *last_blk,
  357. uint cycle)
  358. {
  359. xfs_caddr_t offset;
  360. xfs_daddr_t mid_blk;
  361. xfs_daddr_t end_blk;
  362. uint mid_cycle;
  363. int error;
  364. end_blk = *last_blk;
  365. mid_blk = BLK_AVG(first_blk, end_blk);
  366. while (mid_blk != first_blk && mid_blk != end_blk) {
  367. error = xlog_bread(log, mid_blk, 1, bp, &offset);
  368. if (error)
  369. return error;
  370. mid_cycle = xlog_get_cycle(offset);
  371. if (mid_cycle == cycle)
  372. end_blk = mid_blk; /* last_half_cycle == mid_cycle */
  373. else
  374. first_blk = mid_blk; /* first_half_cycle == mid_cycle */
  375. mid_blk = BLK_AVG(first_blk, end_blk);
  376. }
  377. ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
  378. (mid_blk == end_blk && mid_blk-1 == first_blk));
  379. *last_blk = end_blk;
  380. return 0;
  381. }
  382. /*
  383. * Check that a range of blocks does not contain stop_on_cycle_no.
  384. * Fill in *new_blk with the block offset where such a block is
  385. * found, or with -1 (an invalid block number) if there is no such
  386. * block in the range. The scan needs to occur from front to back
  387. * and the pointer into the region must be updated since a later
  388. * routine will need to perform another test.
  389. */
  390. STATIC int
  391. xlog_find_verify_cycle(
  392. struct xlog *log,
  393. xfs_daddr_t start_blk,
  394. int nbblks,
  395. uint stop_on_cycle_no,
  396. xfs_daddr_t *new_blk)
  397. {
  398. xfs_daddr_t i, j;
  399. uint cycle;
  400. xfs_buf_t *bp;
  401. xfs_daddr_t bufblks;
  402. xfs_caddr_t buf = NULL;
  403. int error = 0;
  404. /*
  405. * Greedily allocate a buffer big enough to handle the full
  406. * range of basic blocks we'll be examining. If that fails,
  407. * try a smaller size. We need to be able to read at least
  408. * a log sector, or we're out of luck.
  409. */
  410. bufblks = 1 << ffs(nbblks);
  411. while (bufblks > log->l_logBBsize)
  412. bufblks >>= 1;
  413. while (!(bp = xlog_get_bp(log, bufblks))) {
  414. bufblks >>= 1;
  415. if (bufblks < log->l_sectBBsize)
  416. return ENOMEM;
  417. }
  418. for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
  419. int bcount;
  420. bcount = min(bufblks, (start_blk + nbblks - i));
  421. error = xlog_bread(log, i, bcount, bp, &buf);
  422. if (error)
  423. goto out;
  424. for (j = 0; j < bcount; j++) {
  425. cycle = xlog_get_cycle(buf);
  426. if (cycle == stop_on_cycle_no) {
  427. *new_blk = i+j;
  428. goto out;
  429. }
  430. buf += BBSIZE;
  431. }
  432. }
  433. *new_blk = -1;
  434. out:
  435. xlog_put_bp(bp);
  436. return error;
  437. }
  438. /*
  439. * Potentially backup over partial log record write.
  440. *
  441. * In the typical case, last_blk is the number of the block directly after
  442. * a good log record. Therefore, we subtract one to get the block number
  443. * of the last block in the given buffer. extra_bblks contains the number
  444. * of blocks we would have read on a previous read. This happens when the
  445. * last log record is split over the end of the physical log.
  446. *
  447. * extra_bblks is the number of blocks potentially verified on a previous
  448. * call to this routine.
  449. */
  450. STATIC int
  451. xlog_find_verify_log_record(
  452. struct xlog *log,
  453. xfs_daddr_t start_blk,
  454. xfs_daddr_t *last_blk,
  455. int extra_bblks)
  456. {
  457. xfs_daddr_t i;
  458. xfs_buf_t *bp;
  459. xfs_caddr_t offset = NULL;
  460. xlog_rec_header_t *head = NULL;
  461. int error = 0;
  462. int smallmem = 0;
  463. int num_blks = *last_blk - start_blk;
  464. int xhdrs;
  465. ASSERT(start_blk != 0 || *last_blk != start_blk);
  466. if (!(bp = xlog_get_bp(log, num_blks))) {
  467. if (!(bp = xlog_get_bp(log, 1)))
  468. return ENOMEM;
  469. smallmem = 1;
  470. } else {
  471. error = xlog_bread(log, start_blk, num_blks, bp, &offset);
  472. if (error)
  473. goto out;
  474. offset += ((num_blks - 1) << BBSHIFT);
  475. }
  476. for (i = (*last_blk) - 1; i >= 0; i--) {
  477. if (i < start_blk) {
  478. /* valid log record not found */
  479. xfs_warn(log->l_mp,
  480. "Log inconsistent (didn't find previous header)");
  481. ASSERT(0);
  482. error = XFS_ERROR(EIO);
  483. goto out;
  484. }
  485. if (smallmem) {
  486. error = xlog_bread(log, i, 1, bp, &offset);
  487. if (error)
  488. goto out;
  489. }
  490. head = (xlog_rec_header_t *)offset;
  491. if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
  492. break;
  493. if (!smallmem)
  494. offset -= BBSIZE;
  495. }
  496. /*
  497. * We hit the beginning of the physical log & still no header. Return
  498. * to caller. If caller can handle a return of -1, then this routine
  499. * will be called again for the end of the physical log.
  500. */
  501. if (i == -1) {
  502. error = -1;
  503. goto out;
  504. }
  505. /*
  506. * We have the final block of the good log (the first block
  507. * of the log record _before_ the head. So we check the uuid.
  508. */
  509. if ((error = xlog_header_check_mount(log->l_mp, head)))
  510. goto out;
  511. /*
  512. * We may have found a log record header before we expected one.
  513. * last_blk will be the 1st block # with a given cycle #. We may end
  514. * up reading an entire log record. In this case, we don't want to
  515. * reset last_blk. Only when last_blk points in the middle of a log
  516. * record do we update last_blk.
  517. */
  518. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  519. uint h_size = be32_to_cpu(head->h_size);
  520. xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
  521. if (h_size % XLOG_HEADER_CYCLE_SIZE)
  522. xhdrs++;
  523. } else {
  524. xhdrs = 1;
  525. }
  526. if (*last_blk - i + extra_bblks !=
  527. BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
  528. *last_blk = i;
  529. out:
  530. xlog_put_bp(bp);
  531. return error;
  532. }
  533. /*
  534. * Head is defined to be the point of the log where the next log write
  535. * write could go. This means that incomplete LR writes at the end are
  536. * eliminated when calculating the head. We aren't guaranteed that previous
  537. * LR have complete transactions. We only know that a cycle number of
  538. * current cycle number -1 won't be present in the log if we start writing
  539. * from our current block number.
  540. *
  541. * last_blk contains the block number of the first block with a given
  542. * cycle number.
  543. *
  544. * Return: zero if normal, non-zero if error.
  545. */
  546. STATIC int
  547. xlog_find_head(
  548. struct xlog *log,
  549. xfs_daddr_t *return_head_blk)
  550. {
  551. xfs_buf_t *bp;
  552. xfs_caddr_t offset;
  553. xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
  554. int num_scan_bblks;
  555. uint first_half_cycle, last_half_cycle;
  556. uint stop_on_cycle;
  557. int error, log_bbnum = log->l_logBBsize;
  558. /* Is the end of the log device zeroed? */
  559. if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
  560. *return_head_blk = first_blk;
  561. /* Is the whole lot zeroed? */
  562. if (!first_blk) {
  563. /* Linux XFS shouldn't generate totally zeroed logs -
  564. * mkfs etc write a dummy unmount record to a fresh
  565. * log so we can store the uuid in there
  566. */
  567. xfs_warn(log->l_mp, "totally zeroed log");
  568. }
  569. return 0;
  570. } else if (error) {
  571. xfs_warn(log->l_mp, "empty log check failed");
  572. return error;
  573. }
  574. first_blk = 0; /* get cycle # of 1st block */
  575. bp = xlog_get_bp(log, 1);
  576. if (!bp)
  577. return ENOMEM;
  578. error = xlog_bread(log, 0, 1, bp, &offset);
  579. if (error)
  580. goto bp_err;
  581. first_half_cycle = xlog_get_cycle(offset);
  582. last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
  583. error = xlog_bread(log, last_blk, 1, bp, &offset);
  584. if (error)
  585. goto bp_err;
  586. last_half_cycle = xlog_get_cycle(offset);
  587. ASSERT(last_half_cycle != 0);
  588. /*
  589. * If the 1st half cycle number is equal to the last half cycle number,
  590. * then the entire log is stamped with the same cycle number. In this
  591. * case, head_blk can't be set to zero (which makes sense). The below
  592. * math doesn't work out properly with head_blk equal to zero. Instead,
  593. * we set it to log_bbnum which is an invalid block number, but this
  594. * value makes the math correct. If head_blk doesn't changed through
  595. * all the tests below, *head_blk is set to zero at the very end rather
  596. * than log_bbnum. In a sense, log_bbnum and zero are the same block
  597. * in a circular file.
  598. */
  599. if (first_half_cycle == last_half_cycle) {
  600. /*
  601. * In this case we believe that the entire log should have
  602. * cycle number last_half_cycle. We need to scan backwards
  603. * from the end verifying that there are no holes still
  604. * containing last_half_cycle - 1. If we find such a hole,
  605. * then the start of that hole will be the new head. The
  606. * simple case looks like
  607. * x | x ... | x - 1 | x
  608. * Another case that fits this picture would be
  609. * x | x + 1 | x ... | x
  610. * In this case the head really is somewhere at the end of the
  611. * log, as one of the latest writes at the beginning was
  612. * incomplete.
  613. * One more case is
  614. * x | x + 1 | x ... | x - 1 | x
  615. * This is really the combination of the above two cases, and
  616. * the head has to end up at the start of the x-1 hole at the
  617. * end of the log.
  618. *
  619. * In the 256k log case, we will read from the beginning to the
  620. * end of the log and search for cycle numbers equal to x-1.
  621. * We don't worry about the x+1 blocks that we encounter,
  622. * because we know that they cannot be the head since the log
  623. * started with x.
  624. */
  625. head_blk = log_bbnum;
  626. stop_on_cycle = last_half_cycle - 1;
  627. } else {
  628. /*
  629. * In this case we want to find the first block with cycle
  630. * number matching last_half_cycle. We expect the log to be
  631. * some variation on
  632. * x + 1 ... | x ... | x
  633. * The first block with cycle number x (last_half_cycle) will
  634. * be where the new head belongs. First we do a binary search
  635. * for the first occurrence of last_half_cycle. The binary
  636. * search may not be totally accurate, so then we scan back
  637. * from there looking for occurrences of last_half_cycle before
  638. * us. If that backwards scan wraps around the beginning of
  639. * the log, then we look for occurrences of last_half_cycle - 1
  640. * at the end of the log. The cases we're looking for look
  641. * like
  642. * v binary search stopped here
  643. * x + 1 ... | x | x + 1 | x ... | x
  644. * ^ but we want to locate this spot
  645. * or
  646. * <---------> less than scan distance
  647. * x + 1 ... | x ... | x - 1 | x
  648. * ^ we want to locate this spot
  649. */
  650. stop_on_cycle = last_half_cycle;
  651. if ((error = xlog_find_cycle_start(log, bp, first_blk,
  652. &head_blk, last_half_cycle)))
  653. goto bp_err;
  654. }
  655. /*
  656. * Now validate the answer. Scan back some number of maximum possible
  657. * blocks and make sure each one has the expected cycle number. The
  658. * maximum is determined by the total possible amount of buffering
  659. * in the in-core log. The following number can be made tighter if
  660. * we actually look at the block size of the filesystem.
  661. */
  662. num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
  663. if (head_blk >= num_scan_bblks) {
  664. /*
  665. * We are guaranteed that the entire check can be performed
  666. * in one buffer.
  667. */
  668. start_blk = head_blk - num_scan_bblks;
  669. if ((error = xlog_find_verify_cycle(log,
  670. start_blk, num_scan_bblks,
  671. stop_on_cycle, &new_blk)))
  672. goto bp_err;
  673. if (new_blk != -1)
  674. head_blk = new_blk;
  675. } else { /* need to read 2 parts of log */
  676. /*
  677. * We are going to scan backwards in the log in two parts.
  678. * First we scan the physical end of the log. In this part
  679. * of the log, we are looking for blocks with cycle number
  680. * last_half_cycle - 1.
  681. * If we find one, then we know that the log starts there, as
  682. * we've found a hole that didn't get written in going around
  683. * the end of the physical log. The simple case for this is
  684. * x + 1 ... | x ... | x - 1 | x
  685. * <---------> less than scan distance
  686. * If all of the blocks at the end of the log have cycle number
  687. * last_half_cycle, then we check the blocks at the start of
  688. * the log looking for occurrences of last_half_cycle. If we
  689. * find one, then our current estimate for the location of the
  690. * first occurrence of last_half_cycle is wrong and we move
  691. * back to the hole we've found. This case looks like
  692. * x + 1 ... | x | x + 1 | x ...
  693. * ^ binary search stopped here
  694. * Another case we need to handle that only occurs in 256k
  695. * logs is
  696. * x + 1 ... | x ... | x+1 | x ...
  697. * ^ binary search stops here
  698. * In a 256k log, the scan at the end of the log will see the
  699. * x + 1 blocks. We need to skip past those since that is
  700. * certainly not the head of the log. By searching for
  701. * last_half_cycle-1 we accomplish that.
  702. */
  703. ASSERT(head_blk <= INT_MAX &&
  704. (xfs_daddr_t) num_scan_bblks >= head_blk);
  705. start_blk = log_bbnum - (num_scan_bblks - head_blk);
  706. if ((error = xlog_find_verify_cycle(log, start_blk,
  707. num_scan_bblks - (int)head_blk,
  708. (stop_on_cycle - 1), &new_blk)))
  709. goto bp_err;
  710. if (new_blk != -1) {
  711. head_blk = new_blk;
  712. goto validate_head;
  713. }
  714. /*
  715. * Scan beginning of log now. The last part of the physical
  716. * log is good. This scan needs to verify that it doesn't find
  717. * the last_half_cycle.
  718. */
  719. start_blk = 0;
  720. ASSERT(head_blk <= INT_MAX);
  721. if ((error = xlog_find_verify_cycle(log,
  722. start_blk, (int)head_blk,
  723. stop_on_cycle, &new_blk)))
  724. goto bp_err;
  725. if (new_blk != -1)
  726. head_blk = new_blk;
  727. }
  728. validate_head:
  729. /*
  730. * Now we need to make sure head_blk is not pointing to a block in
  731. * the middle of a log record.
  732. */
  733. num_scan_bblks = XLOG_REC_SHIFT(log);
  734. if (head_blk >= num_scan_bblks) {
  735. start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
  736. /* start ptr at last block ptr before head_blk */
  737. if ((error = xlog_find_verify_log_record(log, start_blk,
  738. &head_blk, 0)) == -1) {
  739. error = XFS_ERROR(EIO);
  740. goto bp_err;
  741. } else if (error)
  742. goto bp_err;
  743. } else {
  744. start_blk = 0;
  745. ASSERT(head_blk <= INT_MAX);
  746. if ((error = xlog_find_verify_log_record(log, start_blk,
  747. &head_blk, 0)) == -1) {
  748. /* We hit the beginning of the log during our search */
  749. start_blk = log_bbnum - (num_scan_bblks - head_blk);
  750. new_blk = log_bbnum;
  751. ASSERT(start_blk <= INT_MAX &&
  752. (xfs_daddr_t) log_bbnum-start_blk >= 0);
  753. ASSERT(head_blk <= INT_MAX);
  754. if ((error = xlog_find_verify_log_record(log,
  755. start_blk, &new_blk,
  756. (int)head_blk)) == -1) {
  757. error = XFS_ERROR(EIO);
  758. goto bp_err;
  759. } else if (error)
  760. goto bp_err;
  761. if (new_blk != log_bbnum)
  762. head_blk = new_blk;
  763. } else if (error)
  764. goto bp_err;
  765. }
  766. xlog_put_bp(bp);
  767. if (head_blk == log_bbnum)
  768. *return_head_blk = 0;
  769. else
  770. *return_head_blk = head_blk;
  771. /*
  772. * When returning here, we have a good block number. Bad block
  773. * means that during a previous crash, we didn't have a clean break
  774. * from cycle number N to cycle number N-1. In this case, we need
  775. * to find the first block with cycle number N-1.
  776. */
  777. return 0;
  778. bp_err:
  779. xlog_put_bp(bp);
  780. if (error)
  781. xfs_warn(log->l_mp, "failed to find log head");
  782. return error;
  783. }
  784. /*
  785. * Find the sync block number or the tail of the log.
  786. *
  787. * This will be the block number of the last record to have its
  788. * associated buffers synced to disk. Every log record header has
  789. * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
  790. * to get a sync block number. The only concern is to figure out which
  791. * log record header to believe.
  792. *
  793. * The following algorithm uses the log record header with the largest
  794. * lsn. The entire log record does not need to be valid. We only care
  795. * that the header is valid.
  796. *
  797. * We could speed up search by using current head_blk buffer, but it is not
  798. * available.
  799. */
  800. STATIC int
  801. xlog_find_tail(
  802. struct xlog *log,
  803. xfs_daddr_t *head_blk,
  804. xfs_daddr_t *tail_blk)
  805. {
  806. xlog_rec_header_t *rhead;
  807. xlog_op_header_t *op_head;
  808. xfs_caddr_t offset = NULL;
  809. xfs_buf_t *bp;
  810. int error, i, found;
  811. xfs_daddr_t umount_data_blk;
  812. xfs_daddr_t after_umount_blk;
  813. xfs_lsn_t tail_lsn;
  814. int hblks;
  815. found = 0;
  816. /*
  817. * Find previous log record
  818. */
  819. if ((error = xlog_find_head(log, head_blk)))
  820. return error;
  821. bp = xlog_get_bp(log, 1);
  822. if (!bp)
  823. return ENOMEM;
  824. if (*head_blk == 0) { /* special case */
  825. error = xlog_bread(log, 0, 1, bp, &offset);
  826. if (error)
  827. goto done;
  828. if (xlog_get_cycle(offset) == 0) {
  829. *tail_blk = 0;
  830. /* leave all other log inited values alone */
  831. goto done;
  832. }
  833. }
  834. /*
  835. * Search backwards looking for log record header block
  836. */
  837. ASSERT(*head_blk < INT_MAX);
  838. for (i = (int)(*head_blk) - 1; i >= 0; i--) {
  839. error = xlog_bread(log, i, 1, bp, &offset);
  840. if (error)
  841. goto done;
  842. if (*(__be32 *)offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
  843. found = 1;
  844. break;
  845. }
  846. }
  847. /*
  848. * If we haven't found the log record header block, start looking
  849. * again from the end of the physical log. XXXmiken: There should be
  850. * a check here to make sure we didn't search more than N blocks in
  851. * the previous code.
  852. */
  853. if (!found) {
  854. for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
  855. error = xlog_bread(log, i, 1, bp, &offset);
  856. if (error)
  857. goto done;
  858. if (*(__be32 *)offset ==
  859. cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
  860. found = 2;
  861. break;
  862. }
  863. }
  864. }
  865. if (!found) {
  866. xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
  867. ASSERT(0);
  868. return XFS_ERROR(EIO);
  869. }
  870. /* find blk_no of tail of log */
  871. rhead = (xlog_rec_header_t *)offset;
  872. *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
  873. /*
  874. * Reset log values according to the state of the log when we
  875. * crashed. In the case where head_blk == 0, we bump curr_cycle
  876. * one because the next write starts a new cycle rather than
  877. * continuing the cycle of the last good log record. At this
  878. * point we have guaranteed that all partial log records have been
  879. * accounted for. Therefore, we know that the last good log record
  880. * written was complete and ended exactly on the end boundary
  881. * of the physical log.
  882. */
  883. log->l_prev_block = i;
  884. log->l_curr_block = (int)*head_blk;
  885. log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
  886. if (found == 2)
  887. log->l_curr_cycle++;
  888. atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
  889. atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
  890. xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
  891. BBTOB(log->l_curr_block));
  892. xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
  893. BBTOB(log->l_curr_block));
  894. /*
  895. * Look for unmount record. If we find it, then we know there
  896. * was a clean unmount. Since 'i' could be the last block in
  897. * the physical log, we convert to a log block before comparing
  898. * to the head_blk.
  899. *
  900. * Save the current tail lsn to use to pass to
  901. * xlog_clear_stale_blocks() below. We won't want to clear the
  902. * unmount record if there is one, so we pass the lsn of the
  903. * unmount record rather than the block after it.
  904. */
  905. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  906. int h_size = be32_to_cpu(rhead->h_size);
  907. int h_version = be32_to_cpu(rhead->h_version);
  908. if ((h_version & XLOG_VERSION_2) &&
  909. (h_size > XLOG_HEADER_CYCLE_SIZE)) {
  910. hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
  911. if (h_size % XLOG_HEADER_CYCLE_SIZE)
  912. hblks++;
  913. } else {
  914. hblks = 1;
  915. }
  916. } else {
  917. hblks = 1;
  918. }
  919. after_umount_blk = (i + hblks + (int)
  920. BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
  921. tail_lsn = atomic64_read(&log->l_tail_lsn);
  922. if (*head_blk == after_umount_blk &&
  923. be32_to_cpu(rhead->h_num_logops) == 1) {
  924. umount_data_blk = (i + hblks) % log->l_logBBsize;
  925. error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
  926. if (error)
  927. goto done;
  928. op_head = (xlog_op_header_t *)offset;
  929. if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
  930. /*
  931. * Set tail and last sync so that newly written
  932. * log records will point recovery to after the
  933. * current unmount record.
  934. */
  935. xlog_assign_atomic_lsn(&log->l_tail_lsn,
  936. log->l_curr_cycle, after_umount_blk);
  937. xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
  938. log->l_curr_cycle, after_umount_blk);
  939. *tail_blk = after_umount_blk;
  940. /*
  941. * Note that the unmount was clean. If the unmount
  942. * was not clean, we need to know this to rebuild the
  943. * superblock counters from the perag headers if we
  944. * have a filesystem using non-persistent counters.
  945. */
  946. log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
  947. }
  948. }
  949. /*
  950. * Make sure that there are no blocks in front of the head
  951. * with the same cycle number as the head. This can happen
  952. * because we allow multiple outstanding log writes concurrently,
  953. * and the later writes might make it out before earlier ones.
  954. *
  955. * We use the lsn from before modifying it so that we'll never
  956. * overwrite the unmount record after a clean unmount.
  957. *
  958. * Do this only if we are going to recover the filesystem
  959. *
  960. * NOTE: This used to say "if (!readonly)"
  961. * However on Linux, we can & do recover a read-only filesystem.
  962. * We only skip recovery if NORECOVERY is specified on mount,
  963. * in which case we would not be here.
  964. *
  965. * But... if the -device- itself is readonly, just skip this.
  966. * We can't recover this device anyway, so it won't matter.
  967. */
  968. if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
  969. error = xlog_clear_stale_blocks(log, tail_lsn);
  970. done:
  971. xlog_put_bp(bp);
  972. if (error)
  973. xfs_warn(log->l_mp, "failed to locate log tail");
  974. return error;
  975. }
  976. /*
  977. * Is the log zeroed at all?
  978. *
  979. * The last binary search should be changed to perform an X block read
  980. * once X becomes small enough. You can then search linearly through
  981. * the X blocks. This will cut down on the number of reads we need to do.
  982. *
  983. * If the log is partially zeroed, this routine will pass back the blkno
  984. * of the first block with cycle number 0. It won't have a complete LR
  985. * preceding it.
  986. *
  987. * Return:
  988. * 0 => the log is completely written to
  989. * -1 => use *blk_no as the first block of the log
  990. * >0 => error has occurred
  991. */
  992. STATIC int
  993. xlog_find_zeroed(
  994. struct xlog *log,
  995. xfs_daddr_t *blk_no)
  996. {
  997. xfs_buf_t *bp;
  998. xfs_caddr_t offset;
  999. uint first_cycle, last_cycle;
  1000. xfs_daddr_t new_blk, last_blk, start_blk;
  1001. xfs_daddr_t num_scan_bblks;
  1002. int error, log_bbnum = log->l_logBBsize;
  1003. *blk_no = 0;
  1004. /* check totally zeroed log */
  1005. bp = xlog_get_bp(log, 1);
  1006. if (!bp)
  1007. return ENOMEM;
  1008. error = xlog_bread(log, 0, 1, bp, &offset);
  1009. if (error)
  1010. goto bp_err;
  1011. first_cycle = xlog_get_cycle(offset);
  1012. if (first_cycle == 0) { /* completely zeroed log */
  1013. *blk_no = 0;
  1014. xlog_put_bp(bp);
  1015. return -1;
  1016. }
  1017. /* check partially zeroed log */
  1018. error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
  1019. if (error)
  1020. goto bp_err;
  1021. last_cycle = xlog_get_cycle(offset);
  1022. if (last_cycle != 0) { /* log completely written to */
  1023. xlog_put_bp(bp);
  1024. return 0;
  1025. } else if (first_cycle != 1) {
  1026. /*
  1027. * If the cycle of the last block is zero, the cycle of
  1028. * the first block must be 1. If it's not, maybe we're
  1029. * not looking at a log... Bail out.
  1030. */
  1031. xfs_warn(log->l_mp,
  1032. "Log inconsistent or not a log (last==0, first!=1)");
  1033. return XFS_ERROR(EINVAL);
  1034. }
  1035. /* we have a partially zeroed log */
  1036. last_blk = log_bbnum-1;
  1037. if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
  1038. goto bp_err;
  1039. /*
  1040. * Validate the answer. Because there is no way to guarantee that
  1041. * the entire log is made up of log records which are the same size,
  1042. * we scan over the defined maximum blocks. At this point, the maximum
  1043. * is not chosen to mean anything special. XXXmiken
  1044. */
  1045. num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
  1046. ASSERT(num_scan_bblks <= INT_MAX);
  1047. if (last_blk < num_scan_bblks)
  1048. num_scan_bblks = last_blk;
  1049. start_blk = last_blk - num_scan_bblks;
  1050. /*
  1051. * We search for any instances of cycle number 0 that occur before
  1052. * our current estimate of the head. What we're trying to detect is
  1053. * 1 ... | 0 | 1 | 0...
  1054. * ^ binary search ends here
  1055. */
  1056. if ((error = xlog_find_verify_cycle(log, start_blk,
  1057. (int)num_scan_bblks, 0, &new_blk)))
  1058. goto bp_err;
  1059. if (new_blk != -1)
  1060. last_blk = new_blk;
  1061. /*
  1062. * Potentially backup over partial log record write. We don't need
  1063. * to search the end of the log because we know it is zero.
  1064. */
  1065. if ((error = xlog_find_verify_log_record(log, start_blk,
  1066. &last_blk, 0)) == -1) {
  1067. error = XFS_ERROR(EIO);
  1068. goto bp_err;
  1069. } else if (error)
  1070. goto bp_err;
  1071. *blk_no = last_blk;
  1072. bp_err:
  1073. xlog_put_bp(bp);
  1074. if (error)
  1075. return error;
  1076. return -1;
  1077. }
  1078. /*
  1079. * These are simple subroutines used by xlog_clear_stale_blocks() below
  1080. * to initialize a buffer full of empty log record headers and write
  1081. * them into the log.
  1082. */
  1083. STATIC void
  1084. xlog_add_record(
  1085. struct xlog *log,
  1086. xfs_caddr_t buf,
  1087. int cycle,
  1088. int block,
  1089. int tail_cycle,
  1090. int tail_block)
  1091. {
  1092. xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
  1093. memset(buf, 0, BBSIZE);
  1094. recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
  1095. recp->h_cycle = cpu_to_be32(cycle);
  1096. recp->h_version = cpu_to_be32(
  1097. xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
  1098. recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
  1099. recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
  1100. recp->h_fmt = cpu_to_be32(XLOG_FMT);
  1101. memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
  1102. }
  1103. STATIC int
  1104. xlog_write_log_records(
  1105. struct xlog *log,
  1106. int cycle,
  1107. int start_block,
  1108. int blocks,
  1109. int tail_cycle,
  1110. int tail_block)
  1111. {
  1112. xfs_caddr_t offset;
  1113. xfs_buf_t *bp;
  1114. int balign, ealign;
  1115. int sectbb = log->l_sectBBsize;
  1116. int end_block = start_block + blocks;
  1117. int bufblks;
  1118. int error = 0;
  1119. int i, j = 0;
  1120. /*
  1121. * Greedily allocate a buffer big enough to handle the full
  1122. * range of basic blocks to be written. If that fails, try
  1123. * a smaller size. We need to be able to write at least a
  1124. * log sector, or we're out of luck.
  1125. */
  1126. bufblks = 1 << ffs(blocks);
  1127. while (bufblks > log->l_logBBsize)
  1128. bufblks >>= 1;
  1129. while (!(bp = xlog_get_bp(log, bufblks))) {
  1130. bufblks >>= 1;
  1131. if (bufblks < sectbb)
  1132. return ENOMEM;
  1133. }
  1134. /* We may need to do a read at the start to fill in part of
  1135. * the buffer in the starting sector not covered by the first
  1136. * write below.
  1137. */
  1138. balign = round_down(start_block, sectbb);
  1139. if (balign != start_block) {
  1140. error = xlog_bread_noalign(log, start_block, 1, bp);
  1141. if (error)
  1142. goto out_put_bp;
  1143. j = start_block - balign;
  1144. }
  1145. for (i = start_block; i < end_block; i += bufblks) {
  1146. int bcount, endcount;
  1147. bcount = min(bufblks, end_block - start_block);
  1148. endcount = bcount - j;
  1149. /* We may need to do a read at the end to fill in part of
  1150. * the buffer in the final sector not covered by the write.
  1151. * If this is the same sector as the above read, skip it.
  1152. */
  1153. ealign = round_down(end_block, sectbb);
  1154. if (j == 0 && (start_block + endcount > ealign)) {
  1155. offset = bp->b_addr + BBTOB(ealign - start_block);
  1156. error = xlog_bread_offset(log, ealign, sectbb,
  1157. bp, offset);
  1158. if (error)
  1159. break;
  1160. }
  1161. offset = xlog_align(log, start_block, endcount, bp);
  1162. for (; j < endcount; j++) {
  1163. xlog_add_record(log, offset, cycle, i+j,
  1164. tail_cycle, tail_block);
  1165. offset += BBSIZE;
  1166. }
  1167. error = xlog_bwrite(log, start_block, endcount, bp);
  1168. if (error)
  1169. break;
  1170. start_block += endcount;
  1171. j = 0;
  1172. }
  1173. out_put_bp:
  1174. xlog_put_bp(bp);
  1175. return error;
  1176. }
  1177. /*
  1178. * This routine is called to blow away any incomplete log writes out
  1179. * in front of the log head. We do this so that we won't become confused
  1180. * if we come up, write only a little bit more, and then crash again.
  1181. * If we leave the partial log records out there, this situation could
  1182. * cause us to think those partial writes are valid blocks since they
  1183. * have the current cycle number. We get rid of them by overwriting them
  1184. * with empty log records with the old cycle number rather than the
  1185. * current one.
  1186. *
  1187. * The tail lsn is passed in rather than taken from
  1188. * the log so that we will not write over the unmount record after a
  1189. * clean unmount in a 512 block log. Doing so would leave the log without
  1190. * any valid log records in it until a new one was written. If we crashed
  1191. * during that time we would not be able to recover.
  1192. */
  1193. STATIC int
  1194. xlog_clear_stale_blocks(
  1195. struct xlog *log,
  1196. xfs_lsn_t tail_lsn)
  1197. {
  1198. int tail_cycle, head_cycle;
  1199. int tail_block, head_block;
  1200. int tail_distance, max_distance;
  1201. int distance;
  1202. int error;
  1203. tail_cycle = CYCLE_LSN(tail_lsn);
  1204. tail_block = BLOCK_LSN(tail_lsn);
  1205. head_cycle = log->l_curr_cycle;
  1206. head_block = log->l_curr_block;
  1207. /*
  1208. * Figure out the distance between the new head of the log
  1209. * and the tail. We want to write over any blocks beyond the
  1210. * head that we may have written just before the crash, but
  1211. * we don't want to overwrite the tail of the log.
  1212. */
  1213. if (head_cycle == tail_cycle) {
  1214. /*
  1215. * The tail is behind the head in the physical log,
  1216. * so the distance from the head to the tail is the
  1217. * distance from the head to the end of the log plus
  1218. * the distance from the beginning of the log to the
  1219. * tail.
  1220. */
  1221. if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
  1222. XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
  1223. XFS_ERRLEVEL_LOW, log->l_mp);
  1224. return XFS_ERROR(EFSCORRUPTED);
  1225. }
  1226. tail_distance = tail_block + (log->l_logBBsize - head_block);
  1227. } else {
  1228. /*
  1229. * The head is behind the tail in the physical log,
  1230. * so the distance from the head to the tail is just
  1231. * the tail block minus the head block.
  1232. */
  1233. if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
  1234. XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
  1235. XFS_ERRLEVEL_LOW, log->l_mp);
  1236. return XFS_ERROR(EFSCORRUPTED);
  1237. }
  1238. tail_distance = tail_block - head_block;
  1239. }
  1240. /*
  1241. * If the head is right up against the tail, we can't clear
  1242. * anything.
  1243. */
  1244. if (tail_distance <= 0) {
  1245. ASSERT(tail_distance == 0);
  1246. return 0;
  1247. }
  1248. max_distance = XLOG_TOTAL_REC_SHIFT(log);
  1249. /*
  1250. * Take the smaller of the maximum amount of outstanding I/O
  1251. * we could have and the distance to the tail to clear out.
  1252. * We take the smaller so that we don't overwrite the tail and
  1253. * we don't waste all day writing from the head to the tail
  1254. * for no reason.
  1255. */
  1256. max_distance = MIN(max_distance, tail_distance);
  1257. if ((head_block + max_distance) <= log->l_logBBsize) {
  1258. /*
  1259. * We can stomp all the blocks we need to without
  1260. * wrapping around the end of the log. Just do it
  1261. * in a single write. Use the cycle number of the
  1262. * current cycle minus one so that the log will look like:
  1263. * n ... | n - 1 ...
  1264. */
  1265. error = xlog_write_log_records(log, (head_cycle - 1),
  1266. head_block, max_distance, tail_cycle,
  1267. tail_block);
  1268. if (error)
  1269. return error;
  1270. } else {
  1271. /*
  1272. * We need to wrap around the end of the physical log in
  1273. * order to clear all the blocks. Do it in two separate
  1274. * I/Os. The first write should be from the head to the
  1275. * end of the physical log, and it should use the current
  1276. * cycle number minus one just like above.
  1277. */
  1278. distance = log->l_logBBsize - head_block;
  1279. error = xlog_write_log_records(log, (head_cycle - 1),
  1280. head_block, distance, tail_cycle,
  1281. tail_block);
  1282. if (error)
  1283. return error;
  1284. /*
  1285. * Now write the blocks at the start of the physical log.
  1286. * This writes the remainder of the blocks we want to clear.
  1287. * It uses the current cycle number since we're now on the
  1288. * same cycle as the head so that we get:
  1289. * n ... n ... | n - 1 ...
  1290. * ^^^^^ blocks we're writing
  1291. */
  1292. distance = max_distance - (log->l_logBBsize - head_block);
  1293. error = xlog_write_log_records(log, head_cycle, 0, distance,
  1294. tail_cycle, tail_block);
  1295. if (error)
  1296. return error;
  1297. }
  1298. return 0;
  1299. }
  1300. /******************************************************************************
  1301. *
  1302. * Log recover routines
  1303. *
  1304. ******************************************************************************
  1305. */
  1306. STATIC xlog_recover_t *
  1307. xlog_recover_find_tid(
  1308. struct hlist_head *head,
  1309. xlog_tid_t tid)
  1310. {
  1311. xlog_recover_t *trans;
  1312. hlist_for_each_entry(trans, head, r_list) {
  1313. if (trans->r_log_tid == tid)
  1314. return trans;
  1315. }
  1316. return NULL;
  1317. }
  1318. STATIC void
  1319. xlog_recover_new_tid(
  1320. struct hlist_head *head,
  1321. xlog_tid_t tid,
  1322. xfs_lsn_t lsn)
  1323. {
  1324. xlog_recover_t *trans;
  1325. trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
  1326. trans->r_log_tid = tid;
  1327. trans->r_lsn = lsn;
  1328. INIT_LIST_HEAD(&trans->r_itemq);
  1329. INIT_HLIST_NODE(&trans->r_list);
  1330. hlist_add_head(&trans->r_list, head);
  1331. }
  1332. STATIC void
  1333. xlog_recover_add_item(
  1334. struct list_head *head)
  1335. {
  1336. xlog_recover_item_t *item;
  1337. item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
  1338. INIT_LIST_HEAD(&item->ri_list);
  1339. list_add_tail(&item->ri_list, head);
  1340. }
  1341. STATIC int
  1342. xlog_recover_add_to_cont_trans(
  1343. struct xlog *log,
  1344. struct xlog_recover *trans,
  1345. xfs_caddr_t dp,
  1346. int len)
  1347. {
  1348. xlog_recover_item_t *item;
  1349. xfs_caddr_t ptr, old_ptr;
  1350. int old_len;
  1351. if (list_empty(&trans->r_itemq)) {
  1352. /* finish copying rest of trans header */
  1353. xlog_recover_add_item(&trans->r_itemq);
  1354. ptr = (xfs_caddr_t) &trans->r_theader +
  1355. sizeof(xfs_trans_header_t) - len;
  1356. memcpy(ptr, dp, len); /* d, s, l */
  1357. return 0;
  1358. }
  1359. /* take the tail entry */
  1360. item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
  1361. old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
  1362. old_len = item->ri_buf[item->ri_cnt-1].i_len;
  1363. ptr = kmem_realloc(old_ptr, len+old_len, old_len, KM_SLEEP);
  1364. memcpy(&ptr[old_len], dp, len); /* d, s, l */
  1365. item->ri_buf[item->ri_cnt-1].i_len += len;
  1366. item->ri_buf[item->ri_cnt-1].i_addr = ptr;
  1367. trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
  1368. return 0;
  1369. }
  1370. /*
  1371. * The next region to add is the start of a new region. It could be
  1372. * a whole region or it could be the first part of a new region. Because
  1373. * of this, the assumption here is that the type and size fields of all
  1374. * format structures fit into the first 32 bits of the structure.
  1375. *
  1376. * This works because all regions must be 32 bit aligned. Therefore, we
  1377. * either have both fields or we have neither field. In the case we have
  1378. * neither field, the data part of the region is zero length. We only have
  1379. * a log_op_header and can throw away the header since a new one will appear
  1380. * later. If we have at least 4 bytes, then we can determine how many regions
  1381. * will appear in the current log item.
  1382. */
  1383. STATIC int
  1384. xlog_recover_add_to_trans(
  1385. struct xlog *log,
  1386. struct xlog_recover *trans,
  1387. xfs_caddr_t dp,
  1388. int len)
  1389. {
  1390. xfs_inode_log_format_t *in_f; /* any will do */
  1391. xlog_recover_item_t *item;
  1392. xfs_caddr_t ptr;
  1393. if (!len)
  1394. return 0;
  1395. if (list_empty(&trans->r_itemq)) {
  1396. /* we need to catch log corruptions here */
  1397. if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
  1398. xfs_warn(log->l_mp, "%s: bad header magic number",
  1399. __func__);
  1400. ASSERT(0);
  1401. return XFS_ERROR(EIO);
  1402. }
  1403. if (len == sizeof(xfs_trans_header_t))
  1404. xlog_recover_add_item(&trans->r_itemq);
  1405. memcpy(&trans->r_theader, dp, len); /* d, s, l */
  1406. return 0;
  1407. }
  1408. ptr = kmem_alloc(len, KM_SLEEP);
  1409. memcpy(ptr, dp, len);
  1410. in_f = (xfs_inode_log_format_t *)ptr;
  1411. /* take the tail entry */
  1412. item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
  1413. if (item->ri_total != 0 &&
  1414. item->ri_total == item->ri_cnt) {
  1415. /* tail item is in use, get a new one */
  1416. xlog_recover_add_item(&trans->r_itemq);
  1417. item = list_entry(trans->r_itemq.prev,
  1418. xlog_recover_item_t, ri_list);
  1419. }
  1420. if (item->ri_total == 0) { /* first region to be added */
  1421. if (in_f->ilf_size == 0 ||
  1422. in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
  1423. xfs_warn(log->l_mp,
  1424. "bad number of regions (%d) in inode log format",
  1425. in_f->ilf_size);
  1426. ASSERT(0);
  1427. return XFS_ERROR(EIO);
  1428. }
  1429. item->ri_total = in_f->ilf_size;
  1430. item->ri_buf =
  1431. kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
  1432. KM_SLEEP);
  1433. }
  1434. ASSERT(item->ri_total > item->ri_cnt);
  1435. /* Description region is ri_buf[0] */
  1436. item->ri_buf[item->ri_cnt].i_addr = ptr;
  1437. item->ri_buf[item->ri_cnt].i_len = len;
  1438. item->ri_cnt++;
  1439. trace_xfs_log_recover_item_add(log, trans, item, 0);
  1440. return 0;
  1441. }
  1442. /*
  1443. * Sort the log items in the transaction. Cancelled buffers need
  1444. * to be put first so they are processed before any items that might
  1445. * modify the buffers. If they are cancelled, then the modifications
  1446. * don't need to be replayed.
  1447. */
  1448. STATIC int
  1449. xlog_recover_reorder_trans(
  1450. struct xlog *log,
  1451. struct xlog_recover *trans,
  1452. int pass)
  1453. {
  1454. xlog_recover_item_t *item, *n;
  1455. LIST_HEAD(sort_list);
  1456. list_splice_init(&trans->r_itemq, &sort_list);
  1457. list_for_each_entry_safe(item, n, &sort_list, ri_list) {
  1458. xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
  1459. switch (ITEM_TYPE(item)) {
  1460. case XFS_LI_BUF:
  1461. if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
  1462. trace_xfs_log_recover_item_reorder_head(log,
  1463. trans, item, pass);
  1464. list_move(&item->ri_list, &trans->r_itemq);
  1465. break;
  1466. }
  1467. case XFS_LI_INODE:
  1468. case XFS_LI_DQUOT:
  1469. case XFS_LI_QUOTAOFF:
  1470. case XFS_LI_EFD:
  1471. case XFS_LI_EFI:
  1472. trace_xfs_log_recover_item_reorder_tail(log,
  1473. trans, item, pass);
  1474. list_move_tail(&item->ri_list, &trans->r_itemq);
  1475. break;
  1476. default:
  1477. xfs_warn(log->l_mp,
  1478. "%s: unrecognized type of log operation",
  1479. __func__);
  1480. ASSERT(0);
  1481. return XFS_ERROR(EIO);
  1482. }
  1483. }
  1484. ASSERT(list_empty(&sort_list));
  1485. return 0;
  1486. }
  1487. /*
  1488. * Build up the table of buf cancel records so that we don't replay
  1489. * cancelled data in the second pass. For buffer records that are
  1490. * not cancel records, there is nothing to do here so we just return.
  1491. *
  1492. * If we get a cancel record which is already in the table, this indicates
  1493. * that the buffer was cancelled multiple times. In order to ensure
  1494. * that during pass 2 we keep the record in the table until we reach its
  1495. * last occurrence in the log, we keep a reference count in the cancel
  1496. * record in the table to tell us how many times we expect to see this
  1497. * record during the second pass.
  1498. */
  1499. STATIC int
  1500. xlog_recover_buffer_pass1(
  1501. struct xlog *log,
  1502. struct xlog_recover_item *item)
  1503. {
  1504. xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
  1505. struct list_head *bucket;
  1506. struct xfs_buf_cancel *bcp;
  1507. /*
  1508. * If this isn't a cancel buffer item, then just return.
  1509. */
  1510. if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
  1511. trace_xfs_log_recover_buf_not_cancel(log, buf_f);
  1512. return 0;
  1513. }
  1514. /*
  1515. * Insert an xfs_buf_cancel record into the hash table of them.
  1516. * If there is already an identical record, bump its reference count.
  1517. */
  1518. bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
  1519. list_for_each_entry(bcp, bucket, bc_list) {
  1520. if (bcp->bc_blkno == buf_f->blf_blkno &&
  1521. bcp->bc_len == buf_f->blf_len) {
  1522. bcp->bc_refcount++;
  1523. trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
  1524. return 0;
  1525. }
  1526. }
  1527. bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
  1528. bcp->bc_blkno = buf_f->blf_blkno;
  1529. bcp->bc_len = buf_f->blf_len;
  1530. bcp->bc_refcount = 1;
  1531. list_add_tail(&bcp->bc_list, bucket);
  1532. trace_xfs_log_recover_buf_cancel_add(log, buf_f);
  1533. return 0;
  1534. }
  1535. /*
  1536. * Check to see whether the buffer being recovered has a corresponding
  1537. * entry in the buffer cancel record table. If it does then return 1
  1538. * so that it will be cancelled, otherwise return 0. If the buffer is
  1539. * actually a buffer cancel item (XFS_BLF_CANCEL is set), then decrement
  1540. * the refcount on the entry in the table and remove it from the table
  1541. * if this is the last reference.
  1542. *
  1543. * We remove the cancel record from the table when we encounter its
  1544. * last occurrence in the log so that if the same buffer is re-used
  1545. * again after its last cancellation we actually replay the changes
  1546. * made at that point.
  1547. */
  1548. STATIC int
  1549. xlog_check_buffer_cancelled(
  1550. struct xlog *log,
  1551. xfs_daddr_t blkno,
  1552. uint len,
  1553. ushort flags)
  1554. {
  1555. struct list_head *bucket;
  1556. struct xfs_buf_cancel *bcp;
  1557. if (log->l_buf_cancel_table == NULL) {
  1558. /*
  1559. * There is nothing in the table built in pass one,
  1560. * so this buffer must not be cancelled.
  1561. */
  1562. ASSERT(!(flags & XFS_BLF_CANCEL));
  1563. return 0;
  1564. }
  1565. /*
  1566. * Search for an entry in the cancel table that matches our buffer.
  1567. */
  1568. bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
  1569. list_for_each_entry(bcp, bucket, bc_list) {
  1570. if (bcp->bc_blkno == blkno && bcp->bc_len == len)
  1571. goto found;
  1572. }
  1573. /*
  1574. * We didn't find a corresponding entry in the table, so return 0 so
  1575. * that the buffer is NOT cancelled.
  1576. */
  1577. ASSERT(!(flags & XFS_BLF_CANCEL));
  1578. return 0;
  1579. found:
  1580. /*
  1581. * We've go a match, so return 1 so that the recovery of this buffer
  1582. * is cancelled. If this buffer is actually a buffer cancel log
  1583. * item, then decrement the refcount on the one in the table and
  1584. * remove it if this is the last reference.
  1585. */
  1586. if (flags & XFS_BLF_CANCEL) {
  1587. if (--bcp->bc_refcount == 0) {
  1588. list_del(&bcp->bc_list);
  1589. kmem_free(bcp);
  1590. }
  1591. }
  1592. return 1;
  1593. }
  1594. /*
  1595. * Perform recovery for a buffer full of inodes. In these buffers, the only
  1596. * data which should be recovered is that which corresponds to the
  1597. * di_next_unlinked pointers in the on disk inode structures. The rest of the
  1598. * data for the inodes is always logged through the inodes themselves rather
  1599. * than the inode buffer and is recovered in xlog_recover_inode_pass2().
  1600. *
  1601. * The only time when buffers full of inodes are fully recovered is when the
  1602. * buffer is full of newly allocated inodes. In this case the buffer will
  1603. * not be marked as an inode buffer and so will be sent to
  1604. * xlog_recover_do_reg_buffer() below during recovery.
  1605. */
  1606. STATIC int
  1607. xlog_recover_do_inode_buffer(
  1608. struct xfs_mount *mp,
  1609. xlog_recover_item_t *item,
  1610. struct xfs_buf *bp,
  1611. xfs_buf_log_format_t *buf_f)
  1612. {
  1613. int i;
  1614. int item_index = 0;
  1615. int bit = 0;
  1616. int nbits = 0;
  1617. int reg_buf_offset = 0;
  1618. int reg_buf_bytes = 0;
  1619. int next_unlinked_offset;
  1620. int inodes_per_buf;
  1621. xfs_agino_t *logged_nextp;
  1622. xfs_agino_t *buffer_nextp;
  1623. trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
  1624. bp->b_ops = &xfs_inode_buf_ops;
  1625. inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog;
  1626. for (i = 0; i < inodes_per_buf; i++) {
  1627. next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
  1628. offsetof(xfs_dinode_t, di_next_unlinked);
  1629. while (next_unlinked_offset >=
  1630. (reg_buf_offset + reg_buf_bytes)) {
  1631. /*
  1632. * The next di_next_unlinked field is beyond
  1633. * the current logged region. Find the next
  1634. * logged region that contains or is beyond
  1635. * the current di_next_unlinked field.
  1636. */
  1637. bit += nbits;
  1638. bit = xfs_next_bit(buf_f->blf_data_map,
  1639. buf_f->blf_map_size, bit);
  1640. /*
  1641. * If there are no more logged regions in the
  1642. * buffer, then we're done.
  1643. */
  1644. if (bit == -1)
  1645. return 0;
  1646. nbits = xfs_contig_bits(buf_f->blf_data_map,
  1647. buf_f->blf_map_size, bit);
  1648. ASSERT(nbits > 0);
  1649. reg_buf_offset = bit << XFS_BLF_SHIFT;
  1650. reg_buf_bytes = nbits << XFS_BLF_SHIFT;
  1651. item_index++;
  1652. }
  1653. /*
  1654. * If the current logged region starts after the current
  1655. * di_next_unlinked field, then move on to the next
  1656. * di_next_unlinked field.
  1657. */
  1658. if (next_unlinked_offset < reg_buf_offset)
  1659. continue;
  1660. ASSERT(item->ri_buf[item_index].i_addr != NULL);
  1661. ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
  1662. ASSERT((reg_buf_offset + reg_buf_bytes) <=
  1663. BBTOB(bp->b_io_length));
  1664. /*
  1665. * The current logged region contains a copy of the
  1666. * current di_next_unlinked field. Extract its value
  1667. * and copy it to the buffer copy.
  1668. */
  1669. logged_nextp = item->ri_buf[item_index].i_addr +
  1670. next_unlinked_offset - reg_buf_offset;
  1671. if (unlikely(*logged_nextp == 0)) {
  1672. xfs_alert(mp,
  1673. "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
  1674. "Trying to replay bad (0) inode di_next_unlinked field.",
  1675. item, bp);
  1676. XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
  1677. XFS_ERRLEVEL_LOW, mp);
  1678. return XFS_ERROR(EFSCORRUPTED);
  1679. }
  1680. buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
  1681. next_unlinked_offset);
  1682. *buffer_nextp = *logged_nextp;
  1683. }
  1684. return 0;
  1685. }
  1686. /*
  1687. * Perform a 'normal' buffer recovery. Each logged region of the
  1688. * buffer should be copied over the corresponding region in the
  1689. * given buffer. The bitmap in the buf log format structure indicates
  1690. * where to place the logged data.
  1691. */
  1692. STATIC void
  1693. xlog_recover_do_reg_buffer(
  1694. struct xfs_mount *mp,
  1695. xlog_recover_item_t *item,
  1696. struct xfs_buf *bp,
  1697. xfs_buf_log_format_t *buf_f)
  1698. {
  1699. int i;
  1700. int bit;
  1701. int nbits;
  1702. int error;
  1703. trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
  1704. bit = 0;
  1705. i = 1; /* 0 is the buf format structure */
  1706. while (1) {
  1707. bit = xfs_next_bit(buf_f->blf_data_map,
  1708. buf_f->blf_map_size, bit);
  1709. if (bit == -1)
  1710. break;
  1711. nbits = xfs_contig_bits(buf_f->blf_data_map,
  1712. buf_f->blf_map_size, bit);
  1713. ASSERT(nbits > 0);
  1714. ASSERT(item->ri_buf[i].i_addr != NULL);
  1715. ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
  1716. ASSERT(BBTOB(bp->b_io_length) >=
  1717. ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
  1718. /*
  1719. * Do a sanity check if this is a dquot buffer. Just checking
  1720. * the first dquot in the buffer should do. XXXThis is
  1721. * probably a good thing to do for other buf types also.
  1722. */
  1723. error = 0;
  1724. if (buf_f->blf_flags &
  1725. (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
  1726. if (item->ri_buf[i].i_addr == NULL) {
  1727. xfs_alert(mp,
  1728. "XFS: NULL dquot in %s.", __func__);
  1729. goto next;
  1730. }
  1731. if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
  1732. xfs_alert(mp,
  1733. "XFS: dquot too small (%d) in %s.",
  1734. item->ri_buf[i].i_len, __func__);
  1735. goto next;
  1736. }
  1737. error = xfs_qm_dqcheck(mp, item->ri_buf[i].i_addr,
  1738. -1, 0, XFS_QMOPT_DOWARN,
  1739. "dquot_buf_recover");
  1740. if (error)
  1741. goto next;
  1742. }
  1743. memcpy(xfs_buf_offset(bp,
  1744. (uint)bit << XFS_BLF_SHIFT), /* dest */
  1745. item->ri_buf[i].i_addr, /* source */
  1746. nbits<<XFS_BLF_SHIFT); /* length */
  1747. next:
  1748. i++;
  1749. bit += nbits;
  1750. }
  1751. /* Shouldn't be any more regions */
  1752. ASSERT(i == item->ri_total);
  1753. switch (buf_f->blf_flags & XFS_BLF_TYPE_MASK) {
  1754. case XFS_BLF_BTREE_BUF:
  1755. switch (be32_to_cpu(*(__be32 *)bp->b_addr)) {
  1756. case XFS_ABTB_CRC_MAGIC:
  1757. case XFS_ABTC_CRC_MAGIC:
  1758. case XFS_ABTB_MAGIC:
  1759. case XFS_ABTC_MAGIC:
  1760. bp->b_ops = &xfs_allocbt_buf_ops;
  1761. break;
  1762. case XFS_IBT_CRC_MAGIC:
  1763. case XFS_IBT_MAGIC:
  1764. bp->b_ops = &xfs_inobt_buf_ops;
  1765. break;
  1766. case XFS_BMAP_CRC_MAGIC:
  1767. case XFS_BMAP_MAGIC:
  1768. bp->b_ops = &xfs_bmbt_buf_ops;
  1769. break;
  1770. default:
  1771. xfs_warn(mp, "Bad btree block magic!");
  1772. ASSERT(0);
  1773. break;
  1774. }
  1775. break;
  1776. case XFS_BLF_AGF_BUF:
  1777. if (*(__be32 *)bp->b_addr != cpu_to_be32(XFS_AGF_MAGIC)) {
  1778. xfs_warn(mp, "Bad AGF block magic!");
  1779. ASSERT(0);
  1780. break;
  1781. }
  1782. bp->b_ops = &xfs_agf_buf_ops;
  1783. break;
  1784. case XFS_BLF_AGFL_BUF:
  1785. if (!xfs_sb_version_hascrc(&mp->m_sb))
  1786. break;
  1787. if (*(__be32 *)bp->b_addr != cpu_to_be32(XFS_AGFL_MAGIC)) {
  1788. xfs_warn(mp, "Bad AGFL block magic!");
  1789. ASSERT(0);
  1790. break;
  1791. }
  1792. bp->b_ops = &xfs_agfl_buf_ops;
  1793. break;
  1794. case XFS_BLF_AGI_BUF:
  1795. if (*(__be32 *)bp->b_addr != cpu_to_be32(XFS_AGI_MAGIC)) {
  1796. xfs_warn(mp, "Bad AGI block magic!");
  1797. ASSERT(0);
  1798. break;
  1799. }
  1800. bp->b_ops = &xfs_agi_buf_ops;
  1801. break;
  1802. case XFS_BLF_UDQUOT_BUF:
  1803. case XFS_BLF_PDQUOT_BUF:
  1804. case XFS_BLF_GDQUOT_BUF:
  1805. if (*(__be16 *)bp->b_addr != cpu_to_be16(XFS_DQUOT_MAGIC)) {
  1806. xfs_warn(mp, "Bad DQUOT block magic!");
  1807. ASSERT(0);
  1808. break;
  1809. }
  1810. bp->b_ops = &xfs_dquot_buf_ops;
  1811. break;
  1812. case XFS_BLF_DINO_BUF:
  1813. /*
  1814. * we get here with inode allocation buffers, not buffers that
  1815. * track unlinked list changes.
  1816. */
  1817. if (*(__be16 *)bp->b_addr != cpu_to_be16(XFS_DINODE_MAGIC)) {
  1818. xfs_warn(mp, "Bad INODE block magic!");
  1819. ASSERT(0);
  1820. break;
  1821. }
  1822. bp->b_ops = &xfs_inode_buf_ops;
  1823. break;
  1824. default:
  1825. break;
  1826. }
  1827. }
  1828. /*
  1829. * Do some primitive error checking on ondisk dquot data structures.
  1830. */
  1831. int
  1832. xfs_qm_dqcheck(
  1833. struct xfs_mount *mp,
  1834. xfs_disk_dquot_t *ddq,
  1835. xfs_dqid_t id,
  1836. uint type, /* used only when IO_dorepair is true */
  1837. uint flags,
  1838. char *str)
  1839. {
  1840. xfs_dqblk_t *d = (xfs_dqblk_t *)ddq;
  1841. int errs = 0;
  1842. /*
  1843. * We can encounter an uninitialized dquot buffer for 2 reasons:
  1844. * 1. If we crash while deleting the quotainode(s), and those blks got
  1845. * used for user data. This is because we take the path of regular
  1846. * file deletion; however, the size field of quotainodes is never
  1847. * updated, so all the tricks that we play in itruncate_finish
  1848. * don't quite matter.
  1849. *
  1850. * 2. We don't play the quota buffers when there's a quotaoff logitem.
  1851. * But the allocation will be replayed so we'll end up with an
  1852. * uninitialized quota block.
  1853. *
  1854. * This is all fine; things are still consistent, and we haven't lost
  1855. * any quota information. Just don't complain about bad dquot blks.
  1856. */
  1857. if (ddq->d_magic != cpu_to_be16(XFS_DQUOT_MAGIC)) {
  1858. if (flags & XFS_QMOPT_DOWARN)
  1859. xfs_alert(mp,
  1860. "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
  1861. str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
  1862. errs++;
  1863. }
  1864. if (ddq->d_version != XFS_DQUOT_VERSION) {
  1865. if (flags & XFS_QMOPT_DOWARN)
  1866. xfs_alert(mp,
  1867. "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
  1868. str, id, ddq->d_version, XFS_DQUOT_VERSION);
  1869. errs++;
  1870. }
  1871. if (ddq->d_flags != XFS_DQ_USER &&
  1872. ddq->d_flags != XFS_DQ_PROJ &&
  1873. ddq->d_flags != XFS_DQ_GROUP) {
  1874. if (flags & XFS_QMOPT_DOWARN)
  1875. xfs_alert(mp,
  1876. "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
  1877. str, id, ddq->d_flags);
  1878. errs++;
  1879. }
  1880. if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
  1881. if (flags & XFS_QMOPT_DOWARN)
  1882. xfs_alert(mp,
  1883. "%s : ondisk-dquot 0x%p, ID mismatch: "
  1884. "0x%x expected, found id 0x%x",
  1885. str, ddq, id, be32_to_cpu(ddq->d_id));
  1886. errs++;
  1887. }
  1888. if (!errs && ddq->d_id) {
  1889. if (ddq->d_blk_softlimit &&
  1890. be64_to_cpu(ddq->d_bcount) >
  1891. be64_to_cpu(ddq->d_blk_softlimit)) {
  1892. if (!ddq->d_btimer) {
  1893. if (flags & XFS_QMOPT_DOWARN)
  1894. xfs_alert(mp,
  1895. "%s : Dquot ID 0x%x (0x%p) BLK TIMER NOT STARTED",
  1896. str, (int)be32_to_cpu(ddq->d_id), ddq);
  1897. errs++;
  1898. }
  1899. }
  1900. if (ddq->d_ino_softlimit &&
  1901. be64_to_cpu(ddq->d_icount) >
  1902. be64_to_cpu(ddq->d_ino_softlimit)) {
  1903. if (!ddq->d_itimer) {
  1904. if (flags & XFS_QMOPT_DOWARN)
  1905. xfs_alert(mp,
  1906. "%s : Dquot ID 0x%x (0x%p) INODE TIMER NOT STARTED",
  1907. str, (int)be32_to_cpu(ddq->d_id), ddq);
  1908. errs++;
  1909. }
  1910. }
  1911. if (ddq->d_rtb_softlimit &&
  1912. be64_to_cpu(ddq->d_rtbcount) >
  1913. be64_to_cpu(ddq->d_rtb_softlimit)) {
  1914. if (!ddq->d_rtbtimer) {
  1915. if (flags & XFS_QMOPT_DOWARN)
  1916. xfs_alert(mp,
  1917. "%s : Dquot ID 0x%x (0x%p) RTBLK TIMER NOT STARTED",
  1918. str, (int)be32_to_cpu(ddq->d_id), ddq);
  1919. errs++;
  1920. }
  1921. }
  1922. }
  1923. if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
  1924. return errs;
  1925. if (flags & XFS_QMOPT_DOWARN)
  1926. xfs_notice(mp, "Re-initializing dquot ID 0x%x", id);
  1927. /*
  1928. * Typically, a repair is only requested by quotacheck.
  1929. */
  1930. ASSERT(id != -1);
  1931. ASSERT(flags & XFS_QMOPT_DQREPAIR);
  1932. memset(d, 0, sizeof(xfs_dqblk_t));
  1933. d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
  1934. d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
  1935. d->dd_diskdq.d_flags = type;
  1936. d->dd_diskdq.d_id = cpu_to_be32(id);
  1937. return errs;
  1938. }
  1939. /*
  1940. * Perform a dquot buffer recovery.
  1941. * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
  1942. * (ie. USR or GRP), then just toss this buffer away; don't recover it.
  1943. * Else, treat it as a regular buffer and do recovery.
  1944. */
  1945. STATIC void
  1946. xlog_recover_do_dquot_buffer(
  1947. struct xfs_mount *mp,
  1948. struct xlog *log,
  1949. struct xlog_recover_item *item,
  1950. struct xfs_buf *bp,
  1951. struct xfs_buf_log_format *buf_f)
  1952. {
  1953. uint type;
  1954. trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
  1955. /*
  1956. * Filesystems are required to send in quota flags at mount time.
  1957. */
  1958. if (mp->m_qflags == 0) {
  1959. return;
  1960. }
  1961. type = 0;
  1962. if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
  1963. type |= XFS_DQ_USER;
  1964. if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
  1965. type |= XFS_DQ_PROJ;
  1966. if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
  1967. type |= XFS_DQ_GROUP;
  1968. /*
  1969. * This type of quotas was turned off, so ignore this buffer
  1970. */
  1971. if (log->l_quotaoffs_flag & type)
  1972. return;
  1973. xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
  1974. }
  1975. /*
  1976. * This routine replays a modification made to a buffer at runtime.
  1977. * There are actually two types of buffer, regular and inode, which
  1978. * are handled differently. Inode buffers are handled differently
  1979. * in that we only recover a specific set of data from them, namely
  1980. * the inode di_next_unlinked fields. This is because all other inode
  1981. * data is actually logged via inode records and any data we replay
  1982. * here which overlaps that may be stale.
  1983. *
  1984. * When meta-data buffers are freed at run time we log a buffer item
  1985. * with the XFS_BLF_CANCEL bit set to indicate that previous copies
  1986. * of the buffer in the log should not be replayed at recovery time.
  1987. * This is so that if the blocks covered by the buffer are reused for
  1988. * file data before we crash we don't end up replaying old, freed
  1989. * meta-data into a user's file.
  1990. *
  1991. * To handle the cancellation of buffer log items, we make two passes
  1992. * over the log during recovery. During the first we build a table of
  1993. * those buffers which have been cancelled, and during the second we
  1994. * only replay those buffers which do not have corresponding cancel
  1995. * records in the table. See xlog_recover_do_buffer_pass[1,2] above
  1996. * for more details on the implementation of the table of cancel records.
  1997. */
  1998. STATIC int
  1999. xlog_recover_buffer_pass2(
  2000. struct xlog *log,
  2001. struct list_head *buffer_list,
  2002. struct xlog_recover_item *item)
  2003. {
  2004. xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
  2005. xfs_mount_t *mp = log->l_mp;
  2006. xfs_buf_t *bp;
  2007. int error;
  2008. uint buf_flags;
  2009. /*
  2010. * In this pass we only want to recover all the buffers which have
  2011. * not been cancelled and are not cancellation buffers themselves.
  2012. */
  2013. if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
  2014. buf_f->blf_len, buf_f->blf_flags)) {
  2015. trace_xfs_log_recover_buf_cancel(log, buf_f);
  2016. return 0;
  2017. }
  2018. trace_xfs_log_recover_buf_recover(log, buf_f);
  2019. buf_flags = 0;
  2020. if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
  2021. buf_flags |= XBF_UNMAPPED;
  2022. bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
  2023. buf_flags, NULL);
  2024. if (!bp)
  2025. return XFS_ERROR(ENOMEM);
  2026. error = bp->b_error;
  2027. if (error) {
  2028. xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
  2029. xfs_buf_relse(bp);
  2030. return error;
  2031. }
  2032. if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
  2033. error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
  2034. } else if (buf_f->blf_flags &
  2035. (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
  2036. xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
  2037. } else {
  2038. xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
  2039. }
  2040. if (error)
  2041. return XFS_ERROR(error);
  2042. /*
  2043. * Perform delayed write on the buffer. Asynchronous writes will be
  2044. * slower when taking into account all the buffers to be flushed.
  2045. *
  2046. * Also make sure that only inode buffers with good sizes stay in
  2047. * the buffer cache. The kernel moves inodes in buffers of 1 block
  2048. * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
  2049. * buffers in the log can be a different size if the log was generated
  2050. * by an older kernel using unclustered inode buffers or a newer kernel
  2051. * running with a different inode cluster size. Regardless, if the
  2052. * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
  2053. * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
  2054. * the buffer out of the buffer cache so that the buffer won't
  2055. * overlap with future reads of those inodes.
  2056. */
  2057. if (XFS_DINODE_MAGIC ==
  2058. be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
  2059. (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize,
  2060. (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
  2061. xfs_buf_stale(bp);
  2062. error = xfs_bwrite(bp);
  2063. } else {
  2064. ASSERT(bp->b_target->bt_mount == mp);
  2065. bp->b_iodone = xlog_recover_iodone;
  2066. xfs_buf_delwri_queue(bp, buffer_list);
  2067. }
  2068. xfs_buf_relse(bp);
  2069. return error;
  2070. }
  2071. STATIC int
  2072. xlog_recover_inode_pass2(
  2073. struct xlog *log,
  2074. struct list_head *buffer_list,
  2075. struct xlog_recover_item *item)
  2076. {
  2077. xfs_inode_log_format_t *in_f;
  2078. xfs_mount_t *mp = log->l_mp;
  2079. xfs_buf_t *bp;
  2080. xfs_dinode_t *dip;
  2081. int len;
  2082. xfs_caddr_t src;
  2083. xfs_caddr_t dest;
  2084. int error;
  2085. int attr_index;
  2086. uint fields;
  2087. xfs_icdinode_t *dicp;
  2088. uint isize;
  2089. int need_free = 0;
  2090. if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
  2091. in_f = item->ri_buf[0].i_addr;
  2092. } else {
  2093. in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
  2094. need_free = 1;
  2095. error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
  2096. if (error)
  2097. goto error;
  2098. }
  2099. /*
  2100. * Inode buffers can be freed, look out for it,
  2101. * and do not replay the inode.
  2102. */
  2103. if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
  2104. in_f->ilf_len, 0)) {
  2105. error = 0;
  2106. trace_xfs_log_recover_inode_cancel(log, in_f);
  2107. goto error;
  2108. }
  2109. trace_xfs_log_recover_inode_recover(log, in_f);
  2110. bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0,
  2111. &xfs_inode_buf_ops);
  2112. if (!bp) {
  2113. error = ENOMEM;
  2114. goto error;
  2115. }
  2116. error = bp->b_error;
  2117. if (error) {
  2118. xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
  2119. xfs_buf_relse(bp);
  2120. goto error;
  2121. }
  2122. ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
  2123. dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
  2124. /*
  2125. * Make sure the place we're flushing out to really looks
  2126. * like an inode!
  2127. */
  2128. if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
  2129. xfs_buf_relse(bp);
  2130. xfs_alert(mp,
  2131. "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
  2132. __func__, dip, bp, in_f->ilf_ino);
  2133. XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
  2134. XFS_ERRLEVEL_LOW, mp);
  2135. error = EFSCORRUPTED;
  2136. goto error;
  2137. }
  2138. dicp = item->ri_buf[1].i_addr;
  2139. if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
  2140. xfs_buf_relse(bp);
  2141. xfs_alert(mp,
  2142. "%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
  2143. __func__, item, in_f->ilf_ino);
  2144. XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
  2145. XFS_ERRLEVEL_LOW, mp);
  2146. error = EFSCORRUPTED;
  2147. goto error;
  2148. }
  2149. /* Skip replay when the on disk inode is newer than the log one */
  2150. if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
  2151. /*
  2152. * Deal with the wrap case, DI_MAX_FLUSH is less
  2153. * than smaller numbers
  2154. */
  2155. if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
  2156. dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
  2157. /* do nothing */
  2158. } else {
  2159. xfs_buf_relse(bp);
  2160. trace_xfs_log_recover_inode_skip(log, in_f);
  2161. error = 0;
  2162. goto error;
  2163. }
  2164. }
  2165. /* Take the opportunity to reset the flush iteration count */
  2166. dicp->di_flushiter = 0;
  2167. if (unlikely(S_ISREG(dicp->di_mode))) {
  2168. if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
  2169. (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
  2170. XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
  2171. XFS_ERRLEVEL_LOW, mp, dicp);
  2172. xfs_buf_relse(bp);
  2173. xfs_alert(mp,
  2174. "%s: Bad regular inode log record, rec ptr 0x%p, "
  2175. "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
  2176. __func__, item, dip, bp, in_f->ilf_ino);
  2177. error = EFSCORRUPTED;
  2178. goto error;
  2179. }
  2180. } else if (unlikely(S_ISDIR(dicp->di_mode))) {
  2181. if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
  2182. (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
  2183. (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
  2184. XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
  2185. XFS_ERRLEVEL_LOW, mp, dicp);
  2186. xfs_buf_relse(bp);
  2187. xfs_alert(mp,
  2188. "%s: Bad dir inode log record, rec ptr 0x%p, "
  2189. "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
  2190. __func__, item, dip, bp, in_f->ilf_ino);
  2191. error = EFSCORRUPTED;
  2192. goto error;
  2193. }
  2194. }
  2195. if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
  2196. XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
  2197. XFS_ERRLEVEL_LOW, mp, dicp);
  2198. xfs_buf_relse(bp);
  2199. xfs_alert(mp,
  2200. "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
  2201. "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
  2202. __func__, item, dip, bp, in_f->ilf_ino,
  2203. dicp->di_nextents + dicp->di_anextents,
  2204. dicp->di_nblocks);
  2205. error = EFSCORRUPTED;
  2206. goto error;
  2207. }
  2208. if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
  2209. XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
  2210. XFS_ERRLEVEL_LOW, mp, dicp);
  2211. xfs_buf_relse(bp);
  2212. xfs_alert(mp,
  2213. "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
  2214. "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
  2215. item, dip, bp, in_f->ilf_ino, dicp->di_forkoff);
  2216. error = EFSCORRUPTED;
  2217. goto error;
  2218. }
  2219. isize = xfs_icdinode_size(dicp->di_version);
  2220. if (unlikely(item->ri_buf[1].i_len > isize)) {
  2221. XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
  2222. XFS_ERRLEVEL_LOW, mp, dicp);
  2223. xfs_buf_relse(bp);
  2224. xfs_alert(mp,
  2225. "%s: Bad inode log record length %d, rec ptr 0x%p",
  2226. __func__, item->ri_buf[1].i_len, item);
  2227. error = EFSCORRUPTED;
  2228. goto error;
  2229. }
  2230. /* The core is in in-core format */
  2231. xfs_dinode_to_disk(dip, dicp);
  2232. /* the rest is in on-disk format */
  2233. if (item->ri_buf[1].i_len > isize) {
  2234. memcpy((char *)dip + isize,
  2235. item->ri_buf[1].i_addr + isize,
  2236. item->ri_buf[1].i_len - isize);
  2237. }
  2238. fields = in_f->ilf_fields;
  2239. switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
  2240. case XFS_ILOG_DEV:
  2241. xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
  2242. break;
  2243. case XFS_ILOG_UUID:
  2244. memcpy(XFS_DFORK_DPTR(dip),
  2245. &in_f->ilf_u.ilfu_uuid,
  2246. sizeof(uuid_t));
  2247. break;
  2248. }
  2249. if (in_f->ilf_size == 2)
  2250. goto write_inode_buffer;
  2251. len = item->ri_buf[2].i_len;
  2252. src = item->ri_buf[2].i_addr;
  2253. ASSERT(in_f->ilf_size <= 4);
  2254. ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
  2255. ASSERT(!(fields & XFS_ILOG_DFORK) ||
  2256. (len == in_f->ilf_dsize));
  2257. switch (fields & XFS_ILOG_DFORK) {
  2258. case XFS_ILOG_DDATA:
  2259. case XFS_ILOG_DEXT:
  2260. memcpy(XFS_DFORK_DPTR(dip), src, len);
  2261. break;
  2262. case XFS_ILOG_DBROOT:
  2263. xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
  2264. (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
  2265. XFS_DFORK_DSIZE(dip, mp));
  2266. break;
  2267. default:
  2268. /*
  2269. * There are no data fork flags set.
  2270. */
  2271. ASSERT((fields & XFS_ILOG_DFORK) == 0);
  2272. break;
  2273. }
  2274. /*
  2275. * If we logged any attribute data, recover it. There may or
  2276. * may not have been any other non-core data logged in this
  2277. * transaction.
  2278. */
  2279. if (in_f->ilf_fields & XFS_ILOG_AFORK) {
  2280. if (in_f->ilf_fields & XFS_ILOG_DFORK) {
  2281. attr_index = 3;
  2282. } else {
  2283. attr_index = 2;
  2284. }
  2285. len = item->ri_buf[attr_index].i_len;
  2286. src = item->ri_buf[attr_index].i_addr;
  2287. ASSERT(len == in_f->ilf_asize);
  2288. switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
  2289. case XFS_ILOG_ADATA:
  2290. case XFS_ILOG_AEXT:
  2291. dest = XFS_DFORK_APTR(dip);
  2292. ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
  2293. memcpy(dest, src, len);
  2294. break;
  2295. case XFS_ILOG_ABROOT:
  2296. dest = XFS_DFORK_APTR(dip);
  2297. xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
  2298. len, (xfs_bmdr_block_t*)dest,
  2299. XFS_DFORK_ASIZE(dip, mp));
  2300. break;
  2301. default:
  2302. xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
  2303. ASSERT(0);
  2304. xfs_buf_relse(bp);
  2305. error = EIO;
  2306. goto error;
  2307. }
  2308. }
  2309. write_inode_buffer:
  2310. /* re-generate the checksum. */
  2311. xfs_dinode_calc_crc(log->l_mp, dip);
  2312. ASSERT(bp->b_target->bt_mount == mp);
  2313. bp->b_iodone = xlog_recover_iodone;
  2314. xfs_buf_delwri_queue(bp, buffer_list);
  2315. xfs_buf_relse(bp);
  2316. error:
  2317. if (need_free)
  2318. kmem_free(in_f);
  2319. return XFS_ERROR(error);
  2320. }
  2321. /*
  2322. * Recover QUOTAOFF records. We simply make a note of it in the xlog
  2323. * structure, so that we know not to do any dquot item or dquot buffer recovery,
  2324. * of that type.
  2325. */
  2326. STATIC int
  2327. xlog_recover_quotaoff_pass1(
  2328. struct xlog *log,
  2329. struct xlog_recover_item *item)
  2330. {
  2331. xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr;
  2332. ASSERT(qoff_f);
  2333. /*
  2334. * The logitem format's flag tells us if this was user quotaoff,
  2335. * group/project quotaoff or both.
  2336. */
  2337. if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
  2338. log->l_quotaoffs_flag |= XFS_DQ_USER;
  2339. if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
  2340. log->l_quotaoffs_flag |= XFS_DQ_PROJ;
  2341. if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
  2342. log->l_quotaoffs_flag |= XFS_DQ_GROUP;
  2343. return (0);
  2344. }
  2345. /*
  2346. * Recover a dquot record
  2347. */
  2348. STATIC int
  2349. xlog_recover_dquot_pass2(
  2350. struct xlog *log,
  2351. struct list_head *buffer_list,
  2352. struct xlog_recover_item *item)
  2353. {
  2354. xfs_mount_t *mp = log->l_mp;
  2355. xfs_buf_t *bp;
  2356. struct xfs_disk_dquot *ddq, *recddq;
  2357. int error;
  2358. xfs_dq_logformat_t *dq_f;
  2359. uint type;
  2360. /*
  2361. * Filesystems are required to send in quota flags at mount time.
  2362. */
  2363. if (mp->m_qflags == 0)
  2364. return (0);
  2365. recddq = item->ri_buf[1].i_addr;
  2366. if (recddq == NULL) {
  2367. xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
  2368. return XFS_ERROR(EIO);
  2369. }
  2370. if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
  2371. xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
  2372. item->ri_buf[1].i_len, __func__);
  2373. return XFS_ERROR(EIO);
  2374. }
  2375. /*
  2376. * This type of quotas was turned off, so ignore this record.
  2377. */
  2378. type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
  2379. ASSERT(type);
  2380. if (log->l_quotaoffs_flag & type)
  2381. return (0);
  2382. /*
  2383. * At this point we know that quota was _not_ turned off.
  2384. * Since the mount flags are not indicating to us otherwise, this
  2385. * must mean that quota is on, and the dquot needs to be replayed.
  2386. * Remember that we may not have fully recovered the superblock yet,
  2387. * so we can't do the usual trick of looking at the SB quota bits.
  2388. *
  2389. * The other possibility, of course, is that the quota subsystem was
  2390. * removed since the last mount - ENOSYS.
  2391. */
  2392. dq_f = item->ri_buf[0].i_addr;
  2393. ASSERT(dq_f);
  2394. error = xfs_qm_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
  2395. "xlog_recover_dquot_pass2 (log copy)");
  2396. if (error)
  2397. return XFS_ERROR(EIO);
  2398. ASSERT(dq_f->qlf_len == 1);
  2399. error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
  2400. XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp,
  2401. NULL);
  2402. if (error)
  2403. return error;
  2404. ASSERT(bp);
  2405. ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
  2406. /*
  2407. * At least the magic num portion should be on disk because this
  2408. * was among a chunk of dquots created earlier, and we did some
  2409. * minimal initialization then.
  2410. */
  2411. error = xfs_qm_dqcheck(mp, ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
  2412. "xlog_recover_dquot_pass2");
  2413. if (error) {
  2414. xfs_buf_relse(bp);
  2415. return XFS_ERROR(EIO);
  2416. }
  2417. memcpy(ddq, recddq, item->ri_buf[1].i_len);
  2418. ASSERT(dq_f->qlf_size == 2);
  2419. ASSERT(bp->b_target->bt_mount == mp);
  2420. bp->b_iodone = xlog_recover_iodone;
  2421. xfs_buf_delwri_queue(bp, buffer_list);
  2422. xfs_buf_relse(bp);
  2423. return (0);
  2424. }
  2425. /*
  2426. * This routine is called to create an in-core extent free intent
  2427. * item from the efi format structure which was logged on disk.
  2428. * It allocates an in-core efi, copies the extents from the format
  2429. * structure into it, and adds the efi to the AIL with the given
  2430. * LSN.
  2431. */
  2432. STATIC int
  2433. xlog_recover_efi_pass2(
  2434. struct xlog *log,
  2435. struct xlog_recover_item *item,
  2436. xfs_lsn_t lsn)
  2437. {
  2438. int error;
  2439. xfs_mount_t *mp = log->l_mp;
  2440. xfs_efi_log_item_t *efip;
  2441. xfs_efi_log_format_t *efi_formatp;
  2442. efi_formatp = item->ri_buf[0].i_addr;
  2443. efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
  2444. if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
  2445. &(efip->efi_format)))) {
  2446. xfs_efi_item_free(efip);
  2447. return error;
  2448. }
  2449. atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
  2450. spin_lock(&log->l_ailp->xa_lock);
  2451. /*
  2452. * xfs_trans_ail_update() drops the AIL lock.
  2453. */
  2454. xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
  2455. return 0;
  2456. }
  2457. /*
  2458. * This routine is called when an efd format structure is found in
  2459. * a committed transaction in the log. It's purpose is to cancel
  2460. * the corresponding efi if it was still in the log. To do this
  2461. * it searches the AIL for the efi with an id equal to that in the
  2462. * efd format structure. If we find it, we remove the efi from the
  2463. * AIL and free it.
  2464. */
  2465. STATIC int
  2466. xlog_recover_efd_pass2(
  2467. struct xlog *log,
  2468. struct xlog_recover_item *item)
  2469. {
  2470. xfs_efd_log_format_t *efd_formatp;
  2471. xfs_efi_log_item_t *efip = NULL;
  2472. xfs_log_item_t *lip;
  2473. __uint64_t efi_id;
  2474. struct xfs_ail_cursor cur;
  2475. struct xfs_ail *ailp = log->l_ailp;
  2476. efd_formatp = item->ri_buf[0].i_addr;
  2477. ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
  2478. ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
  2479. (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
  2480. ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
  2481. efi_id = efd_formatp->efd_efi_id;
  2482. /*
  2483. * Search for the efi with the id in the efd format structure
  2484. * in the AIL.
  2485. */
  2486. spin_lock(&ailp->xa_lock);
  2487. lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
  2488. while (lip != NULL) {
  2489. if (lip->li_type == XFS_LI_EFI) {
  2490. efip = (xfs_efi_log_item_t *)lip;
  2491. if (efip->efi_format.efi_id == efi_id) {
  2492. /*
  2493. * xfs_trans_ail_delete() drops the
  2494. * AIL lock.
  2495. */
  2496. xfs_trans_ail_delete(ailp, lip,
  2497. SHUTDOWN_CORRUPT_INCORE);
  2498. xfs_efi_item_free(efip);
  2499. spin_lock(&ailp->xa_lock);
  2500. break;
  2501. }
  2502. }
  2503. lip = xfs_trans_ail_cursor_next(ailp, &cur);
  2504. }
  2505. xfs_trans_ail_cursor_done(ailp, &cur);
  2506. spin_unlock(&ailp->xa_lock);
  2507. return 0;
  2508. }
  2509. /*
  2510. * Free up any resources allocated by the transaction
  2511. *
  2512. * Remember that EFIs, EFDs, and IUNLINKs are handled later.
  2513. */
  2514. STATIC void
  2515. xlog_recover_free_trans(
  2516. struct xlog_recover *trans)
  2517. {
  2518. xlog_recover_item_t *item, *n;
  2519. int i;
  2520. list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
  2521. /* Free the regions in the item. */
  2522. list_del(&item->ri_list);
  2523. for (i = 0; i < item->ri_cnt; i++)
  2524. kmem_free(item->ri_buf[i].i_addr);
  2525. /* Free the item itself */
  2526. kmem_free(item->ri_buf);
  2527. kmem_free(item);
  2528. }
  2529. /* Free the transaction recover structure */
  2530. kmem_free(trans);
  2531. }
  2532. STATIC int
  2533. xlog_recover_commit_pass1(
  2534. struct xlog *log,
  2535. struct xlog_recover *trans,
  2536. struct xlog_recover_item *item)
  2537. {
  2538. trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
  2539. switch (ITEM_TYPE(item)) {
  2540. case XFS_LI_BUF:
  2541. return xlog_recover_buffer_pass1(log, item);
  2542. case XFS_LI_QUOTAOFF:
  2543. return xlog_recover_quotaoff_pass1(log, item);
  2544. case XFS_LI_INODE:
  2545. case XFS_LI_EFI:
  2546. case XFS_LI_EFD:
  2547. case XFS_LI_DQUOT:
  2548. /* nothing to do in pass 1 */
  2549. return 0;
  2550. default:
  2551. xfs_warn(log->l_mp, "%s: invalid item type (%d)",
  2552. __func__, ITEM_TYPE(item));
  2553. ASSERT(0);
  2554. return XFS_ERROR(EIO);
  2555. }
  2556. }
  2557. STATIC int
  2558. xlog_recover_commit_pass2(
  2559. struct xlog *log,
  2560. struct xlog_recover *trans,
  2561. struct list_head *buffer_list,
  2562. struct xlog_recover_item *item)
  2563. {
  2564. trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
  2565. switch (ITEM_TYPE(item)) {
  2566. case XFS_LI_BUF:
  2567. return xlog_recover_buffer_pass2(log, buffer_list, item);
  2568. case XFS_LI_INODE:
  2569. return xlog_recover_inode_pass2(log, buffer_list, item);
  2570. case XFS_LI_EFI:
  2571. return xlog_recover_efi_pass2(log, item, trans->r_lsn);
  2572. case XFS_LI_EFD:
  2573. return xlog_recover_efd_pass2(log, item);
  2574. case XFS_LI_DQUOT:
  2575. return xlog_recover_dquot_pass2(log, buffer_list, item);
  2576. case XFS_LI_QUOTAOFF:
  2577. /* nothing to do in pass2 */
  2578. return 0;
  2579. default:
  2580. xfs_warn(log->l_mp, "%s: invalid item type (%d)",
  2581. __func__, ITEM_TYPE(item));
  2582. ASSERT(0);
  2583. return XFS_ERROR(EIO);
  2584. }
  2585. }
  2586. /*
  2587. * Perform the transaction.
  2588. *
  2589. * If the transaction modifies a buffer or inode, do it now. Otherwise,
  2590. * EFIs and EFDs get queued up by adding entries into the AIL for them.
  2591. */
  2592. STATIC int
  2593. xlog_recover_commit_trans(
  2594. struct xlog *log,
  2595. struct xlog_recover *trans,
  2596. int pass)
  2597. {
  2598. int error = 0, error2;
  2599. xlog_recover_item_t *item;
  2600. LIST_HEAD (buffer_list);
  2601. hlist_del(&trans->r_list);
  2602. error = xlog_recover_reorder_trans(log, trans, pass);
  2603. if (error)
  2604. return error;
  2605. list_for_each_entry(item, &trans->r_itemq, ri_list) {
  2606. switch (pass) {
  2607. case XLOG_RECOVER_PASS1:
  2608. error = xlog_recover_commit_pass1(log, trans, item);
  2609. break;
  2610. case XLOG_RECOVER_PASS2:
  2611. error = xlog_recover_commit_pass2(log, trans,
  2612. &buffer_list, item);
  2613. break;
  2614. default:
  2615. ASSERT(0);
  2616. }
  2617. if (error)
  2618. goto out;
  2619. }
  2620. xlog_recover_free_trans(trans);
  2621. out:
  2622. error2 = xfs_buf_delwri_submit(&buffer_list);
  2623. return error ? error : error2;
  2624. }
  2625. STATIC int
  2626. xlog_recover_unmount_trans(
  2627. struct xlog *log,
  2628. struct xlog_recover *trans)
  2629. {
  2630. /* Do nothing now */
  2631. xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
  2632. return 0;
  2633. }
  2634. /*
  2635. * There are two valid states of the r_state field. 0 indicates that the
  2636. * transaction structure is in a normal state. We have either seen the
  2637. * start of the transaction or the last operation we added was not a partial
  2638. * operation. If the last operation we added to the transaction was a
  2639. * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
  2640. *
  2641. * NOTE: skip LRs with 0 data length.
  2642. */
  2643. STATIC int
  2644. xlog_recover_process_data(
  2645. struct xlog *log,
  2646. struct hlist_head rhash[],
  2647. struct xlog_rec_header *rhead,
  2648. xfs_caddr_t dp,
  2649. int pass)
  2650. {
  2651. xfs_caddr_t lp;
  2652. int num_logops;
  2653. xlog_op_header_t *ohead;
  2654. xlog_recover_t *trans;
  2655. xlog_tid_t tid;
  2656. int error;
  2657. unsigned long hash;
  2658. uint flags;
  2659. lp = dp + be32_to_cpu(rhead->h_len);
  2660. num_logops = be32_to_cpu(rhead->h_num_logops);
  2661. /* check the log format matches our own - else we can't recover */
  2662. if (xlog_header_check_recover(log->l_mp, rhead))
  2663. return (XFS_ERROR(EIO));
  2664. while ((dp < lp) && num_logops) {
  2665. ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
  2666. ohead = (xlog_op_header_t *)dp;
  2667. dp += sizeof(xlog_op_header_t);
  2668. if (ohead->oh_clientid != XFS_TRANSACTION &&
  2669. ohead->oh_clientid != XFS_LOG) {
  2670. xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
  2671. __func__, ohead->oh_clientid);
  2672. ASSERT(0);
  2673. return (XFS_ERROR(EIO));
  2674. }
  2675. tid = be32_to_cpu(ohead->oh_tid);
  2676. hash = XLOG_RHASH(tid);
  2677. trans = xlog_recover_find_tid(&rhash[hash], tid);
  2678. if (trans == NULL) { /* not found; add new tid */
  2679. if (ohead->oh_flags & XLOG_START_TRANS)
  2680. xlog_recover_new_tid(&rhash[hash], tid,
  2681. be64_to_cpu(rhead->h_lsn));
  2682. } else {
  2683. if (dp + be32_to_cpu(ohead->oh_len) > lp) {
  2684. xfs_warn(log->l_mp, "%s: bad length 0x%x",
  2685. __func__, be32_to_cpu(ohead->oh_len));
  2686. WARN_ON(1);
  2687. return (XFS_ERROR(EIO));
  2688. }
  2689. flags = ohead->oh_flags & ~XLOG_END_TRANS;
  2690. if (flags & XLOG_WAS_CONT_TRANS)
  2691. flags &= ~XLOG_CONTINUE_TRANS;
  2692. switch (flags) {
  2693. case XLOG_COMMIT_TRANS:
  2694. error = xlog_recover_commit_trans(log,
  2695. trans, pass);
  2696. break;
  2697. case XLOG_UNMOUNT_TRANS:
  2698. error = xlog_recover_unmount_trans(log, trans);
  2699. break;
  2700. case XLOG_WAS_CONT_TRANS:
  2701. error = xlog_recover_add_to_cont_trans(log,
  2702. trans, dp,
  2703. be32_to_cpu(ohead->oh_len));
  2704. break;
  2705. case XLOG_START_TRANS:
  2706. xfs_warn(log->l_mp, "%s: bad transaction",
  2707. __func__);
  2708. ASSERT(0);
  2709. error = XFS_ERROR(EIO);
  2710. break;
  2711. case 0:
  2712. case XLOG_CONTINUE_TRANS:
  2713. error = xlog_recover_add_to_trans(log, trans,
  2714. dp, be32_to_cpu(ohead->oh_len));
  2715. break;
  2716. default:
  2717. xfs_warn(log->l_mp, "%s: bad flag 0x%x",
  2718. __func__, flags);
  2719. ASSERT(0);
  2720. error = XFS_ERROR(EIO);
  2721. break;
  2722. }
  2723. if (error)
  2724. return error;
  2725. }
  2726. dp += be32_to_cpu(ohead->oh_len);
  2727. num_logops--;
  2728. }
  2729. return 0;
  2730. }
  2731. /*
  2732. * Process an extent free intent item that was recovered from
  2733. * the log. We need to free the extents that it describes.
  2734. */
  2735. STATIC int
  2736. xlog_recover_process_efi(
  2737. xfs_mount_t *mp,
  2738. xfs_efi_log_item_t *efip)
  2739. {
  2740. xfs_efd_log_item_t *efdp;
  2741. xfs_trans_t *tp;
  2742. int i;
  2743. int error = 0;
  2744. xfs_extent_t *extp;
  2745. xfs_fsblock_t startblock_fsb;
  2746. ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
  2747. /*
  2748. * First check the validity of the extents described by the
  2749. * EFI. If any are bad, then assume that all are bad and
  2750. * just toss the EFI.
  2751. */
  2752. for (i = 0; i < efip->efi_format.efi_nextents; i++) {
  2753. extp = &(efip->efi_format.efi_extents[i]);
  2754. startblock_fsb = XFS_BB_TO_FSB(mp,
  2755. XFS_FSB_TO_DADDR(mp, extp->ext_start));
  2756. if ((startblock_fsb == 0) ||
  2757. (extp->ext_len == 0) ||
  2758. (startblock_fsb >= mp->m_sb.sb_dblocks) ||
  2759. (extp->ext_len >= mp->m_sb.sb_agblocks)) {
  2760. /*
  2761. * This will pull the EFI from the AIL and
  2762. * free the memory associated with it.
  2763. */
  2764. set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
  2765. xfs_efi_release(efip, efip->efi_format.efi_nextents);
  2766. return XFS_ERROR(EIO);
  2767. }
  2768. }
  2769. tp = xfs_trans_alloc(mp, 0);
  2770. error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
  2771. if (error)
  2772. goto abort_error;
  2773. efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
  2774. for (i = 0; i < efip->efi_format.efi_nextents; i++) {
  2775. extp = &(efip->efi_format.efi_extents[i]);
  2776. error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
  2777. if (error)
  2778. goto abort_error;
  2779. xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
  2780. extp->ext_len);
  2781. }
  2782. set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
  2783. error = xfs_trans_commit(tp, 0);
  2784. return error;
  2785. abort_error:
  2786. xfs_trans_cancel(tp, XFS_TRANS_ABORT);
  2787. return error;
  2788. }
  2789. /*
  2790. * When this is called, all of the EFIs which did not have
  2791. * corresponding EFDs should be in the AIL. What we do now
  2792. * is free the extents associated with each one.
  2793. *
  2794. * Since we process the EFIs in normal transactions, they
  2795. * will be removed at some point after the commit. This prevents
  2796. * us from just walking down the list processing each one.
  2797. * We'll use a flag in the EFI to skip those that we've already
  2798. * processed and use the AIL iteration mechanism's generation
  2799. * count to try to speed this up at least a bit.
  2800. *
  2801. * When we start, we know that the EFIs are the only things in
  2802. * the AIL. As we process them, however, other items are added
  2803. * to the AIL. Since everything added to the AIL must come after
  2804. * everything already in the AIL, we stop processing as soon as
  2805. * we see something other than an EFI in the AIL.
  2806. */
  2807. STATIC int
  2808. xlog_recover_process_efis(
  2809. struct xlog *log)
  2810. {
  2811. xfs_log_item_t *lip;
  2812. xfs_efi_log_item_t *efip;
  2813. int error = 0;
  2814. struct xfs_ail_cursor cur;
  2815. struct xfs_ail *ailp;
  2816. ailp = log->l_ailp;
  2817. spin_lock(&ailp->xa_lock);
  2818. lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
  2819. while (lip != NULL) {
  2820. /*
  2821. * We're done when we see something other than an EFI.
  2822. * There should be no EFIs left in the AIL now.
  2823. */
  2824. if (lip->li_type != XFS_LI_EFI) {
  2825. #ifdef DEBUG
  2826. for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
  2827. ASSERT(lip->li_type != XFS_LI_EFI);
  2828. #endif
  2829. break;
  2830. }
  2831. /*
  2832. * Skip EFIs that we've already processed.
  2833. */
  2834. efip = (xfs_efi_log_item_t *)lip;
  2835. if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) {
  2836. lip = xfs_trans_ail_cursor_next(ailp, &cur);
  2837. continue;
  2838. }
  2839. spin_unlock(&ailp->xa_lock);
  2840. error = xlog_recover_process_efi(log->l_mp, efip);
  2841. spin_lock(&ailp->xa_lock);
  2842. if (error)
  2843. goto out;
  2844. lip = xfs_trans_ail_cursor_next(ailp, &cur);
  2845. }
  2846. out:
  2847. xfs_trans_ail_cursor_done(ailp, &cur);
  2848. spin_unlock(&ailp->xa_lock);
  2849. return error;
  2850. }
  2851. /*
  2852. * This routine performs a transaction to null out a bad inode pointer
  2853. * in an agi unlinked inode hash bucket.
  2854. */
  2855. STATIC void
  2856. xlog_recover_clear_agi_bucket(
  2857. xfs_mount_t *mp,
  2858. xfs_agnumber_t agno,
  2859. int bucket)
  2860. {
  2861. xfs_trans_t *tp;
  2862. xfs_agi_t *agi;
  2863. xfs_buf_t *agibp;
  2864. int offset;
  2865. int error;
  2866. tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
  2867. error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp),
  2868. 0, 0, 0);
  2869. if (error)
  2870. goto out_abort;
  2871. error = xfs_read_agi(mp, tp, agno, &agibp);
  2872. if (error)
  2873. goto out_abort;
  2874. agi = XFS_BUF_TO_AGI(agibp);
  2875. agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
  2876. offset = offsetof(xfs_agi_t, agi_unlinked) +
  2877. (sizeof(xfs_agino_t) * bucket);
  2878. xfs_trans_log_buf(tp, agibp, offset,
  2879. (offset + sizeof(xfs_agino_t) - 1));
  2880. error = xfs_trans_commit(tp, 0);
  2881. if (error)
  2882. goto out_error;
  2883. return;
  2884. out_abort:
  2885. xfs_trans_cancel(tp, XFS_TRANS_ABORT);
  2886. out_error:
  2887. xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
  2888. return;
  2889. }
  2890. STATIC xfs_agino_t
  2891. xlog_recover_process_one_iunlink(
  2892. struct xfs_mount *mp,
  2893. xfs_agnumber_t agno,
  2894. xfs_agino_t agino,
  2895. int bucket)
  2896. {
  2897. struct xfs_buf *ibp;
  2898. struct xfs_dinode *dip;
  2899. struct xfs_inode *ip;
  2900. xfs_ino_t ino;
  2901. int error;
  2902. ino = XFS_AGINO_TO_INO(mp, agno, agino);
  2903. error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
  2904. if (error)
  2905. goto fail;
  2906. /*
  2907. * Get the on disk inode to find the next inode in the bucket.
  2908. */
  2909. error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
  2910. if (error)
  2911. goto fail_iput;
  2912. ASSERT(ip->i_d.di_nlink == 0);
  2913. ASSERT(ip->i_d.di_mode != 0);
  2914. /* setup for the next pass */
  2915. agino = be32_to_cpu(dip->di_next_unlinked);
  2916. xfs_buf_relse(ibp);
  2917. /*
  2918. * Prevent any DMAPI event from being sent when the reference on
  2919. * the inode is dropped.
  2920. */
  2921. ip->i_d.di_dmevmask = 0;
  2922. IRELE(ip);
  2923. return agino;
  2924. fail_iput:
  2925. IRELE(ip);
  2926. fail:
  2927. /*
  2928. * We can't read in the inode this bucket points to, or this inode
  2929. * is messed up. Just ditch this bucket of inodes. We will lose
  2930. * some inodes and space, but at least we won't hang.
  2931. *
  2932. * Call xlog_recover_clear_agi_bucket() to perform a transaction to
  2933. * clear the inode pointer in the bucket.
  2934. */
  2935. xlog_recover_clear_agi_bucket(mp, agno, bucket);
  2936. return NULLAGINO;
  2937. }
  2938. /*
  2939. * xlog_iunlink_recover
  2940. *
  2941. * This is called during recovery to process any inodes which
  2942. * we unlinked but not freed when the system crashed. These
  2943. * inodes will be on the lists in the AGI blocks. What we do
  2944. * here is scan all the AGIs and fully truncate and free any
  2945. * inodes found on the lists. Each inode is removed from the
  2946. * lists when it has been fully truncated and is freed. The
  2947. * freeing of the inode and its removal from the list must be
  2948. * atomic.
  2949. */
  2950. STATIC void
  2951. xlog_recover_process_iunlinks(
  2952. struct xlog *log)
  2953. {
  2954. xfs_mount_t *mp;
  2955. xfs_agnumber_t agno;
  2956. xfs_agi_t *agi;
  2957. xfs_buf_t *agibp;
  2958. xfs_agino_t agino;
  2959. int bucket;
  2960. int error;
  2961. uint mp_dmevmask;
  2962. mp = log->l_mp;
  2963. /*
  2964. * Prevent any DMAPI event from being sent while in this function.
  2965. */
  2966. mp_dmevmask = mp->m_dmevmask;
  2967. mp->m_dmevmask = 0;
  2968. for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
  2969. /*
  2970. * Find the agi for this ag.
  2971. */
  2972. error = xfs_read_agi(mp, NULL, agno, &agibp);
  2973. if (error) {
  2974. /*
  2975. * AGI is b0rked. Don't process it.
  2976. *
  2977. * We should probably mark the filesystem as corrupt
  2978. * after we've recovered all the ag's we can....
  2979. */
  2980. continue;
  2981. }
  2982. /*
  2983. * Unlock the buffer so that it can be acquired in the normal
  2984. * course of the transaction to truncate and free each inode.
  2985. * Because we are not racing with anyone else here for the AGI
  2986. * buffer, we don't even need to hold it locked to read the
  2987. * initial unlinked bucket entries out of the buffer. We keep
  2988. * buffer reference though, so that it stays pinned in memory
  2989. * while we need the buffer.
  2990. */
  2991. agi = XFS_BUF_TO_AGI(agibp);
  2992. xfs_buf_unlock(agibp);
  2993. for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
  2994. agino = be32_to_cpu(agi->agi_unlinked[bucket]);
  2995. while (agino != NULLAGINO) {
  2996. agino = xlog_recover_process_one_iunlink(mp,
  2997. agno, agino, bucket);
  2998. }
  2999. }
  3000. xfs_buf_rele(agibp);
  3001. }
  3002. mp->m_dmevmask = mp_dmevmask;
  3003. }
  3004. /*
  3005. * Upack the log buffer data and crc check it. If the check fails, issue a
  3006. * warning if and only if the CRC in the header is non-zero. This makes the
  3007. * check an advisory warning, and the zero CRC check will prevent failure
  3008. * warnings from being emitted when upgrading the kernel from one that does not
  3009. * add CRCs by default.
  3010. *
  3011. * When filesystems are CRC enabled, this CRC mismatch becomes a fatal log
  3012. * corruption failure
  3013. */
  3014. STATIC int
  3015. xlog_unpack_data_crc(
  3016. struct xlog_rec_header *rhead,
  3017. xfs_caddr_t dp,
  3018. struct xlog *log)
  3019. {
  3020. __le32 crc;
  3021. crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
  3022. if (crc != rhead->h_crc) {
  3023. if (rhead->h_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
  3024. xfs_alert(log->l_mp,
  3025. "log record CRC mismatch: found 0x%x, expected 0x%x.\n",
  3026. le32_to_cpu(rhead->h_crc),
  3027. le32_to_cpu(crc));
  3028. xfs_hex_dump(dp, 32);
  3029. }
  3030. /*
  3031. * If we've detected a log record corruption, then we can't
  3032. * recover past this point. Abort recovery if we are enforcing
  3033. * CRC protection by punting an error back up the stack.
  3034. */
  3035. if (xfs_sb_version_hascrc(&log->l_mp->m_sb))
  3036. return EFSCORRUPTED;
  3037. }
  3038. return 0;
  3039. }
  3040. STATIC int
  3041. xlog_unpack_data(
  3042. struct xlog_rec_header *rhead,
  3043. xfs_caddr_t dp,
  3044. struct xlog *log)
  3045. {
  3046. int i, j, k;
  3047. int error;
  3048. error = xlog_unpack_data_crc(rhead, dp, log);
  3049. if (error)
  3050. return error;
  3051. for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
  3052. i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
  3053. *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
  3054. dp += BBSIZE;
  3055. }
  3056. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  3057. xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
  3058. for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
  3059. j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  3060. k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  3061. *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
  3062. dp += BBSIZE;
  3063. }
  3064. }
  3065. return 0;
  3066. }
  3067. STATIC int
  3068. xlog_valid_rec_header(
  3069. struct xlog *log,
  3070. struct xlog_rec_header *rhead,
  3071. xfs_daddr_t blkno)
  3072. {
  3073. int hlen;
  3074. if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
  3075. XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
  3076. XFS_ERRLEVEL_LOW, log->l_mp);
  3077. return XFS_ERROR(EFSCORRUPTED);
  3078. }
  3079. if (unlikely(
  3080. (!rhead->h_version ||
  3081. (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
  3082. xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
  3083. __func__, be32_to_cpu(rhead->h_version));
  3084. return XFS_ERROR(EIO);
  3085. }
  3086. /* LR body must have data or it wouldn't have been written */
  3087. hlen = be32_to_cpu(rhead->h_len);
  3088. if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
  3089. XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
  3090. XFS_ERRLEVEL_LOW, log->l_mp);
  3091. return XFS_ERROR(EFSCORRUPTED);
  3092. }
  3093. if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
  3094. XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
  3095. XFS_ERRLEVEL_LOW, log->l_mp);
  3096. return XFS_ERROR(EFSCORRUPTED);
  3097. }
  3098. return 0;
  3099. }
  3100. /*
  3101. * Read the log from tail to head and process the log records found.
  3102. * Handle the two cases where the tail and head are in the same cycle
  3103. * and where the active portion of the log wraps around the end of
  3104. * the physical log separately. The pass parameter is passed through
  3105. * to the routines called to process the data and is not looked at
  3106. * here.
  3107. */
  3108. STATIC int
  3109. xlog_do_recovery_pass(
  3110. struct xlog *log,
  3111. xfs_daddr_t head_blk,
  3112. xfs_daddr_t tail_blk,
  3113. int pass)
  3114. {
  3115. xlog_rec_header_t *rhead;
  3116. xfs_daddr_t blk_no;
  3117. xfs_caddr_t offset;
  3118. xfs_buf_t *hbp, *dbp;
  3119. int error = 0, h_size;
  3120. int bblks, split_bblks;
  3121. int hblks, split_hblks, wrapped_hblks;
  3122. struct hlist_head rhash[XLOG_RHASH_SIZE];
  3123. ASSERT(head_blk != tail_blk);
  3124. /*
  3125. * Read the header of the tail block and get the iclog buffer size from
  3126. * h_size. Use this to tell how many sectors make up the log header.
  3127. */
  3128. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  3129. /*
  3130. * When using variable length iclogs, read first sector of
  3131. * iclog header and extract the header size from it. Get a
  3132. * new hbp that is the correct size.
  3133. */
  3134. hbp = xlog_get_bp(log, 1);
  3135. if (!hbp)
  3136. return ENOMEM;
  3137. error = xlog_bread(log, tail_blk, 1, hbp, &offset);
  3138. if (error)
  3139. goto bread_err1;
  3140. rhead = (xlog_rec_header_t *)offset;
  3141. error = xlog_valid_rec_header(log, rhead, tail_blk);
  3142. if (error)
  3143. goto bread_err1;
  3144. h_size = be32_to_cpu(rhead->h_size);
  3145. if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
  3146. (h_size > XLOG_HEADER_CYCLE_SIZE)) {
  3147. hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
  3148. if (h_size % XLOG_HEADER_CYCLE_SIZE)
  3149. hblks++;
  3150. xlog_put_bp(hbp);
  3151. hbp = xlog_get_bp(log, hblks);
  3152. } else {
  3153. hblks = 1;
  3154. }
  3155. } else {
  3156. ASSERT(log->l_sectBBsize == 1);
  3157. hblks = 1;
  3158. hbp = xlog_get_bp(log, 1);
  3159. h_size = XLOG_BIG_RECORD_BSIZE;
  3160. }
  3161. if (!hbp)
  3162. return ENOMEM;
  3163. dbp = xlog_get_bp(log, BTOBB(h_size));
  3164. if (!dbp) {
  3165. xlog_put_bp(hbp);
  3166. return ENOMEM;
  3167. }
  3168. memset(rhash, 0, sizeof(rhash));
  3169. if (tail_blk <= head_blk) {
  3170. for (blk_no = tail_blk; blk_no < head_blk; ) {
  3171. error = xlog_bread(log, blk_no, hblks, hbp, &offset);
  3172. if (error)
  3173. goto bread_err2;
  3174. rhead = (xlog_rec_header_t *)offset;
  3175. error = xlog_valid_rec_header(log, rhead, blk_no);
  3176. if (error)
  3177. goto bread_err2;
  3178. /* blocks in data section */
  3179. bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
  3180. error = xlog_bread(log, blk_no + hblks, bblks, dbp,
  3181. &offset);
  3182. if (error)
  3183. goto bread_err2;
  3184. error = xlog_unpack_data(rhead, offset, log);
  3185. if (error)
  3186. goto bread_err2;
  3187. error = xlog_recover_process_data(log,
  3188. rhash, rhead, offset, pass);
  3189. if (error)
  3190. goto bread_err2;
  3191. blk_no += bblks + hblks;
  3192. }
  3193. } else {
  3194. /*
  3195. * Perform recovery around the end of the physical log.
  3196. * When the head is not on the same cycle number as the tail,
  3197. * we can't do a sequential recovery as above.
  3198. */
  3199. blk_no = tail_blk;
  3200. while (blk_no < log->l_logBBsize) {
  3201. /*
  3202. * Check for header wrapping around physical end-of-log
  3203. */
  3204. offset = hbp->b_addr;
  3205. split_hblks = 0;
  3206. wrapped_hblks = 0;
  3207. if (blk_no + hblks <= log->l_logBBsize) {
  3208. /* Read header in one read */
  3209. error = xlog_bread(log, blk_no, hblks, hbp,
  3210. &offset);
  3211. if (error)
  3212. goto bread_err2;
  3213. } else {
  3214. /* This LR is split across physical log end */
  3215. if (blk_no != log->l_logBBsize) {
  3216. /* some data before physical log end */
  3217. ASSERT(blk_no <= INT_MAX);
  3218. split_hblks = log->l_logBBsize - (int)blk_no;
  3219. ASSERT(split_hblks > 0);
  3220. error = xlog_bread(log, blk_no,
  3221. split_hblks, hbp,
  3222. &offset);
  3223. if (error)
  3224. goto bread_err2;
  3225. }
  3226. /*
  3227. * Note: this black magic still works with
  3228. * large sector sizes (non-512) only because:
  3229. * - we increased the buffer size originally
  3230. * by 1 sector giving us enough extra space
  3231. * for the second read;
  3232. * - the log start is guaranteed to be sector
  3233. * aligned;
  3234. * - we read the log end (LR header start)
  3235. * _first_, then the log start (LR header end)
  3236. * - order is important.
  3237. */
  3238. wrapped_hblks = hblks - split_hblks;
  3239. error = xlog_bread_offset(log, 0,
  3240. wrapped_hblks, hbp,
  3241. offset + BBTOB(split_hblks));
  3242. if (error)
  3243. goto bread_err2;
  3244. }
  3245. rhead = (xlog_rec_header_t *)offset;
  3246. error = xlog_valid_rec_header(log, rhead,
  3247. split_hblks ? blk_no : 0);
  3248. if (error)
  3249. goto bread_err2;
  3250. bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
  3251. blk_no += hblks;
  3252. /* Read in data for log record */
  3253. if (blk_no + bblks <= log->l_logBBsize) {
  3254. error = xlog_bread(log, blk_no, bblks, dbp,
  3255. &offset);
  3256. if (error)
  3257. goto bread_err2;
  3258. } else {
  3259. /* This log record is split across the
  3260. * physical end of log */
  3261. offset = dbp->b_addr;
  3262. split_bblks = 0;
  3263. if (blk_no != log->l_logBBsize) {
  3264. /* some data is before the physical
  3265. * end of log */
  3266. ASSERT(!wrapped_hblks);
  3267. ASSERT(blk_no <= INT_MAX);
  3268. split_bblks =
  3269. log->l_logBBsize - (int)blk_no;
  3270. ASSERT(split_bblks > 0);
  3271. error = xlog_bread(log, blk_no,
  3272. split_bblks, dbp,
  3273. &offset);
  3274. if (error)
  3275. goto bread_err2;
  3276. }
  3277. /*
  3278. * Note: this black magic still works with
  3279. * large sector sizes (non-512) only because:
  3280. * - we increased the buffer size originally
  3281. * by 1 sector giving us enough extra space
  3282. * for the second read;
  3283. * - the log start is guaranteed to be sector
  3284. * aligned;
  3285. * - we read the log end (LR header start)
  3286. * _first_, then the log start (LR header end)
  3287. * - order is important.
  3288. */
  3289. error = xlog_bread_offset(log, 0,
  3290. bblks - split_bblks, dbp,
  3291. offset + BBTOB(split_bblks));
  3292. if (error)
  3293. goto bread_err2;
  3294. }
  3295. error = xlog_unpack_data(rhead, offset, log);
  3296. if (error)
  3297. goto bread_err2;
  3298. error = xlog_recover_process_data(log, rhash,
  3299. rhead, offset, pass);
  3300. if (error)
  3301. goto bread_err2;
  3302. blk_no += bblks;
  3303. }
  3304. ASSERT(blk_no >= log->l_logBBsize);
  3305. blk_no -= log->l_logBBsize;
  3306. /* read first part of physical log */
  3307. while (blk_no < head_blk) {
  3308. error = xlog_bread(log, blk_no, hblks, hbp, &offset);
  3309. if (error)
  3310. goto bread_err2;
  3311. rhead = (xlog_rec_header_t *)offset;
  3312. error = xlog_valid_rec_header(log, rhead, blk_no);
  3313. if (error)
  3314. goto bread_err2;
  3315. bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
  3316. error = xlog_bread(log, blk_no+hblks, bblks, dbp,
  3317. &offset);
  3318. if (error)
  3319. goto bread_err2;
  3320. error = xlog_unpack_data(rhead, offset, log);
  3321. if (error)
  3322. goto bread_err2;
  3323. error = xlog_recover_process_data(log, rhash,
  3324. rhead, offset, pass);
  3325. if (error)
  3326. goto bread_err2;
  3327. blk_no += bblks + hblks;
  3328. }
  3329. }
  3330. bread_err2:
  3331. xlog_put_bp(dbp);
  3332. bread_err1:
  3333. xlog_put_bp(hbp);
  3334. return error;
  3335. }
  3336. /*
  3337. * Do the recovery of the log. We actually do this in two phases.
  3338. * The two passes are necessary in order to implement the function
  3339. * of cancelling a record written into the log. The first pass
  3340. * determines those things which have been cancelled, and the
  3341. * second pass replays log items normally except for those which
  3342. * have been cancelled. The handling of the replay and cancellations
  3343. * takes place in the log item type specific routines.
  3344. *
  3345. * The table of items which have cancel records in the log is allocated
  3346. * and freed at this level, since only here do we know when all of
  3347. * the log recovery has been completed.
  3348. */
  3349. STATIC int
  3350. xlog_do_log_recovery(
  3351. struct xlog *log,
  3352. xfs_daddr_t head_blk,
  3353. xfs_daddr_t tail_blk)
  3354. {
  3355. int error, i;
  3356. ASSERT(head_blk != tail_blk);
  3357. /*
  3358. * First do a pass to find all of the cancelled buf log items.
  3359. * Store them in the buf_cancel_table for use in the second pass.
  3360. */
  3361. log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
  3362. sizeof(struct list_head),
  3363. KM_SLEEP);
  3364. for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
  3365. INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
  3366. error = xlog_do_recovery_pass(log, head_blk, tail_blk,
  3367. XLOG_RECOVER_PASS1);
  3368. if (error != 0) {
  3369. kmem_free(log->l_buf_cancel_table);
  3370. log->l_buf_cancel_table = NULL;
  3371. return error;
  3372. }
  3373. /*
  3374. * Then do a second pass to actually recover the items in the log.
  3375. * When it is complete free the table of buf cancel items.
  3376. */
  3377. error = xlog_do_recovery_pass(log, head_blk, tail_blk,
  3378. XLOG_RECOVER_PASS2);
  3379. #ifdef DEBUG
  3380. if (!error) {
  3381. int i;
  3382. for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
  3383. ASSERT(list_empty(&log->l_buf_cancel_table[i]));
  3384. }
  3385. #endif /* DEBUG */
  3386. kmem_free(log->l_buf_cancel_table);
  3387. log->l_buf_cancel_table = NULL;
  3388. return error;
  3389. }
  3390. /*
  3391. * Do the actual recovery
  3392. */
  3393. STATIC int
  3394. xlog_do_recover(
  3395. struct xlog *log,
  3396. xfs_daddr_t head_blk,
  3397. xfs_daddr_t tail_blk)
  3398. {
  3399. int error;
  3400. xfs_buf_t *bp;
  3401. xfs_sb_t *sbp;
  3402. /*
  3403. * First replay the images in the log.
  3404. */
  3405. error = xlog_do_log_recovery(log, head_blk, tail_blk);
  3406. if (error)
  3407. return error;
  3408. /*
  3409. * If IO errors happened during recovery, bail out.
  3410. */
  3411. if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
  3412. return (EIO);
  3413. }
  3414. /*
  3415. * We now update the tail_lsn since much of the recovery has completed
  3416. * and there may be space available to use. If there were no extent
  3417. * or iunlinks, we can free up the entire log and set the tail_lsn to
  3418. * be the last_sync_lsn. This was set in xlog_find_tail to be the
  3419. * lsn of the last known good LR on disk. If there are extent frees
  3420. * or iunlinks they will have some entries in the AIL; so we look at
  3421. * the AIL to determine how to set the tail_lsn.
  3422. */
  3423. xlog_assign_tail_lsn(log->l_mp);
  3424. /*
  3425. * Now that we've finished replaying all buffer and inode
  3426. * updates, re-read in the superblock and reverify it.
  3427. */
  3428. bp = xfs_getsb(log->l_mp, 0);
  3429. XFS_BUF_UNDONE(bp);
  3430. ASSERT(!(XFS_BUF_ISWRITE(bp)));
  3431. XFS_BUF_READ(bp);
  3432. XFS_BUF_UNASYNC(bp);
  3433. bp->b_ops = &xfs_sb_buf_ops;
  3434. xfsbdstrat(log->l_mp, bp);
  3435. error = xfs_buf_iowait(bp);
  3436. if (error) {
  3437. xfs_buf_ioerror_alert(bp, __func__);
  3438. ASSERT(0);
  3439. xfs_buf_relse(bp);
  3440. return error;
  3441. }
  3442. /* Convert superblock from on-disk format */
  3443. sbp = &log->l_mp->m_sb;
  3444. xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
  3445. ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
  3446. ASSERT(xfs_sb_good_version(sbp));
  3447. xfs_buf_relse(bp);
  3448. /* We've re-read the superblock so re-initialize per-cpu counters */
  3449. xfs_icsb_reinit_counters(log->l_mp);
  3450. xlog_recover_check_summary(log);
  3451. /* Normal transactions can now occur */
  3452. log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
  3453. return 0;
  3454. }
  3455. /*
  3456. * Perform recovery and re-initialize some log variables in xlog_find_tail.
  3457. *
  3458. * Return error or zero.
  3459. */
  3460. int
  3461. xlog_recover(
  3462. struct xlog *log)
  3463. {
  3464. xfs_daddr_t head_blk, tail_blk;
  3465. int error;
  3466. /* find the tail of the log */
  3467. if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
  3468. return error;
  3469. if (tail_blk != head_blk) {
  3470. /* There used to be a comment here:
  3471. *
  3472. * disallow recovery on read-only mounts. note -- mount
  3473. * checks for ENOSPC and turns it into an intelligent
  3474. * error message.
  3475. * ...but this is no longer true. Now, unless you specify
  3476. * NORECOVERY (in which case this function would never be
  3477. * called), we just go ahead and recover. We do this all
  3478. * under the vfs layer, so we can get away with it unless
  3479. * the device itself is read-only, in which case we fail.
  3480. */
  3481. if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
  3482. return error;
  3483. }
  3484. xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
  3485. log->l_mp->m_logname ? log->l_mp->m_logname
  3486. : "internal");
  3487. error = xlog_do_recover(log, head_blk, tail_blk);
  3488. log->l_flags |= XLOG_RECOVERY_NEEDED;
  3489. }
  3490. return error;
  3491. }
  3492. /*
  3493. * In the first part of recovery we replay inodes and buffers and build
  3494. * up the list of extent free items which need to be processed. Here
  3495. * we process the extent free items and clean up the on disk unlinked
  3496. * inode lists. This is separated from the first part of recovery so
  3497. * that the root and real-time bitmap inodes can be read in from disk in
  3498. * between the two stages. This is necessary so that we can free space
  3499. * in the real-time portion of the file system.
  3500. */
  3501. int
  3502. xlog_recover_finish(
  3503. struct xlog *log)
  3504. {
  3505. /*
  3506. * Now we're ready to do the transactions needed for the
  3507. * rest of recovery. Start with completing all the extent
  3508. * free intent records and then process the unlinked inode
  3509. * lists. At this point, we essentially run in normal mode
  3510. * except that we're still performing recovery actions
  3511. * rather than accepting new requests.
  3512. */
  3513. if (log->l_flags & XLOG_RECOVERY_NEEDED) {
  3514. int error;
  3515. error = xlog_recover_process_efis(log);
  3516. if (error) {
  3517. xfs_alert(log->l_mp, "Failed to recover EFIs");
  3518. return error;
  3519. }
  3520. /*
  3521. * Sync the log to get all the EFIs out of the AIL.
  3522. * This isn't absolutely necessary, but it helps in
  3523. * case the unlink transactions would have problems
  3524. * pushing the EFIs out of the way.
  3525. */
  3526. xfs_log_force(log->l_mp, XFS_LOG_SYNC);
  3527. xlog_recover_process_iunlinks(log);
  3528. xlog_recover_check_summary(log);
  3529. xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
  3530. log->l_mp->m_logname ? log->l_mp->m_logname
  3531. : "internal");
  3532. log->l_flags &= ~XLOG_RECOVERY_NEEDED;
  3533. } else {
  3534. xfs_info(log->l_mp, "Ending clean mount");
  3535. }
  3536. return 0;
  3537. }
  3538. #if defined(DEBUG)
  3539. /*
  3540. * Read all of the agf and agi counters and check that they
  3541. * are consistent with the superblock counters.
  3542. */
  3543. void
  3544. xlog_recover_check_summary(
  3545. struct xlog *log)
  3546. {
  3547. xfs_mount_t *mp;
  3548. xfs_agf_t *agfp;
  3549. xfs_buf_t *agfbp;
  3550. xfs_buf_t *agibp;
  3551. xfs_agnumber_t agno;
  3552. __uint64_t freeblks;
  3553. __uint64_t itotal;
  3554. __uint64_t ifree;
  3555. int error;
  3556. mp = log->l_mp;
  3557. freeblks = 0LL;
  3558. itotal = 0LL;
  3559. ifree = 0LL;
  3560. for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
  3561. error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
  3562. if (error) {
  3563. xfs_alert(mp, "%s agf read failed agno %d error %d",
  3564. __func__, agno, error);
  3565. } else {
  3566. agfp = XFS_BUF_TO_AGF(agfbp);
  3567. freeblks += be32_to_cpu(agfp->agf_freeblks) +
  3568. be32_to_cpu(agfp->agf_flcount);
  3569. xfs_buf_relse(agfbp);
  3570. }
  3571. error = xfs_read_agi(mp, NULL, agno, &agibp);
  3572. if (error) {
  3573. xfs_alert(mp, "%s agi read failed agno %d error %d",
  3574. __func__, agno, error);
  3575. } else {
  3576. struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
  3577. itotal += be32_to_cpu(agi->agi_count);
  3578. ifree += be32_to_cpu(agi->agi_freecount);
  3579. xfs_buf_relse(agibp);
  3580. }
  3581. }
  3582. }
  3583. #endif /* DEBUG */