perf_event.c 37 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694
  1. /*
  2. * Performance events x86 architecture code
  3. *
  4. * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
  5. * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
  6. * Copyright (C) 2009 Jaswinder Singh Rajput
  7. * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
  8. * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  9. * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
  10. * Copyright (C) 2009 Google, Inc., Stephane Eranian
  11. *
  12. * For licencing details see kernel-base/COPYING
  13. */
  14. #include <linux/perf_event.h>
  15. #include <linux/capability.h>
  16. #include <linux/notifier.h>
  17. #include <linux/hardirq.h>
  18. #include <linux/kprobes.h>
  19. #include <linux/module.h>
  20. #include <linux/kdebug.h>
  21. #include <linux/sched.h>
  22. #include <linux/uaccess.h>
  23. #include <linux/highmem.h>
  24. #include <linux/cpu.h>
  25. #include <linux/bitops.h>
  26. #include <asm/apic.h>
  27. #include <asm/stacktrace.h>
  28. #include <asm/nmi.h>
  29. #if 0
  30. #undef wrmsrl
  31. #define wrmsrl(msr, val) \
  32. do { \
  33. trace_printk("wrmsrl(%lx, %lx)\n", (unsigned long)(msr),\
  34. (unsigned long)(val)); \
  35. native_write_msr((msr), (u32)((u64)(val)), \
  36. (u32)((u64)(val) >> 32)); \
  37. } while (0)
  38. #endif
  39. /*
  40. * best effort, GUP based copy_from_user() that assumes IRQ or NMI context
  41. */
  42. static unsigned long
  43. copy_from_user_nmi(void *to, const void __user *from, unsigned long n)
  44. {
  45. unsigned long offset, addr = (unsigned long)from;
  46. int type = in_nmi() ? KM_NMI : KM_IRQ0;
  47. unsigned long size, len = 0;
  48. struct page *page;
  49. void *map;
  50. int ret;
  51. do {
  52. ret = __get_user_pages_fast(addr, 1, 0, &page);
  53. if (!ret)
  54. break;
  55. offset = addr & (PAGE_SIZE - 1);
  56. size = min(PAGE_SIZE - offset, n - len);
  57. map = kmap_atomic(page, type);
  58. memcpy(to, map+offset, size);
  59. kunmap_atomic(map, type);
  60. put_page(page);
  61. len += size;
  62. to += size;
  63. addr += size;
  64. } while (len < n);
  65. return len;
  66. }
  67. static u64 perf_event_mask __read_mostly;
  68. struct event_constraint {
  69. union {
  70. unsigned long idxmsk[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
  71. u64 idxmsk64;
  72. };
  73. u64 code;
  74. u64 cmask;
  75. int weight;
  76. };
  77. struct amd_nb {
  78. int nb_id; /* NorthBridge id */
  79. int refcnt; /* reference count */
  80. struct perf_event *owners[X86_PMC_IDX_MAX];
  81. struct event_constraint event_constraints[X86_PMC_IDX_MAX];
  82. };
  83. #define MAX_LBR_ENTRIES 16
  84. struct cpu_hw_events {
  85. /*
  86. * Generic x86 PMC bits
  87. */
  88. struct perf_event *events[X86_PMC_IDX_MAX]; /* in counter order */
  89. unsigned long active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
  90. unsigned long interrupts;
  91. int enabled;
  92. int n_events;
  93. int n_added;
  94. int assign[X86_PMC_IDX_MAX]; /* event to counter assignment */
  95. u64 tags[X86_PMC_IDX_MAX];
  96. struct perf_event *event_list[X86_PMC_IDX_MAX]; /* in enabled order */
  97. /*
  98. * Intel DebugStore bits
  99. */
  100. struct debug_store *ds;
  101. u64 pebs_enabled;
  102. /*
  103. * Intel LBR bits
  104. */
  105. int lbr_users;
  106. void *lbr_context;
  107. struct perf_branch_stack lbr_stack;
  108. struct perf_branch_entry lbr_entries[MAX_LBR_ENTRIES];
  109. /*
  110. * AMD specific bits
  111. */
  112. struct amd_nb *amd_nb;
  113. };
  114. #define __EVENT_CONSTRAINT(c, n, m, w) {\
  115. { .idxmsk64 = (n) }, \
  116. .code = (c), \
  117. .cmask = (m), \
  118. .weight = (w), \
  119. }
  120. #define EVENT_CONSTRAINT(c, n, m) \
  121. __EVENT_CONSTRAINT(c, n, m, HWEIGHT(n))
  122. /*
  123. * Constraint on the Event code.
  124. */
  125. #define INTEL_EVENT_CONSTRAINT(c, n) \
  126. EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVTSEL_MASK)
  127. /*
  128. * Constraint on the Event code + UMask + fixed-mask
  129. */
  130. #define FIXED_EVENT_CONSTRAINT(c, n) \
  131. EVENT_CONSTRAINT(c, (1ULL << (32+n)), INTEL_ARCH_FIXED_MASK)
  132. /*
  133. * Constraint on the Event code + UMask
  134. */
  135. #define PEBS_EVENT_CONSTRAINT(c, n) \
  136. EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK)
  137. #define EVENT_CONSTRAINT_END \
  138. EVENT_CONSTRAINT(0, 0, 0)
  139. #define for_each_event_constraint(e, c) \
  140. for ((e) = (c); (e)->cmask; (e)++)
  141. union perf_capabilities {
  142. struct {
  143. u64 lbr_format : 6;
  144. u64 pebs_trap : 1;
  145. u64 pebs_arch_reg : 1;
  146. u64 pebs_format : 4;
  147. u64 smm_freeze : 1;
  148. };
  149. u64 capabilities;
  150. };
  151. /*
  152. * struct x86_pmu - generic x86 pmu
  153. */
  154. struct x86_pmu {
  155. /*
  156. * Generic x86 PMC bits
  157. */
  158. const char *name;
  159. int version;
  160. int (*handle_irq)(struct pt_regs *);
  161. void (*disable_all)(void);
  162. void (*enable_all)(void);
  163. void (*enable)(struct perf_event *);
  164. void (*disable)(struct perf_event *);
  165. unsigned eventsel;
  166. unsigned perfctr;
  167. u64 (*event_map)(int);
  168. u64 (*raw_event)(u64);
  169. int max_events;
  170. int num_events;
  171. int num_events_fixed;
  172. int event_bits;
  173. u64 event_mask;
  174. int apic;
  175. u64 max_period;
  176. struct event_constraint *
  177. (*get_event_constraints)(struct cpu_hw_events *cpuc,
  178. struct perf_event *event);
  179. void (*put_event_constraints)(struct cpu_hw_events *cpuc,
  180. struct perf_event *event);
  181. struct event_constraint *event_constraints;
  182. void (*quirks)(void);
  183. void (*cpu_prepare)(int cpu);
  184. void (*cpu_starting)(int cpu);
  185. void (*cpu_dying)(int cpu);
  186. void (*cpu_dead)(int cpu);
  187. /*
  188. * Intel Arch Perfmon v2+
  189. */
  190. u64 intel_ctrl;
  191. union perf_capabilities intel_cap;
  192. /*
  193. * Intel DebugStore bits
  194. */
  195. int bts, pebs;
  196. int pebs_record_size;
  197. void (*drain_pebs)(struct pt_regs *regs);
  198. struct event_constraint *pebs_constraints;
  199. /*
  200. * Intel LBR
  201. */
  202. unsigned long lbr_tos, lbr_from, lbr_to; /* MSR base regs */
  203. int lbr_nr; /* hardware stack size */
  204. };
  205. static struct x86_pmu x86_pmu __read_mostly;
  206. static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
  207. .enabled = 1,
  208. };
  209. static int x86_perf_event_set_period(struct perf_event *event);
  210. /*
  211. * Generalized hw caching related hw_event table, filled
  212. * in on a per model basis. A value of 0 means
  213. * 'not supported', -1 means 'hw_event makes no sense on
  214. * this CPU', any other value means the raw hw_event
  215. * ID.
  216. */
  217. #define C(x) PERF_COUNT_HW_CACHE_##x
  218. static u64 __read_mostly hw_cache_event_ids
  219. [PERF_COUNT_HW_CACHE_MAX]
  220. [PERF_COUNT_HW_CACHE_OP_MAX]
  221. [PERF_COUNT_HW_CACHE_RESULT_MAX];
  222. /*
  223. * Propagate event elapsed time into the generic event.
  224. * Can only be executed on the CPU where the event is active.
  225. * Returns the delta events processed.
  226. */
  227. static u64
  228. x86_perf_event_update(struct perf_event *event)
  229. {
  230. struct hw_perf_event *hwc = &event->hw;
  231. int shift = 64 - x86_pmu.event_bits;
  232. u64 prev_raw_count, new_raw_count;
  233. int idx = hwc->idx;
  234. s64 delta;
  235. if (idx == X86_PMC_IDX_FIXED_BTS)
  236. return 0;
  237. /*
  238. * Careful: an NMI might modify the previous event value.
  239. *
  240. * Our tactic to handle this is to first atomically read and
  241. * exchange a new raw count - then add that new-prev delta
  242. * count to the generic event atomically:
  243. */
  244. again:
  245. prev_raw_count = atomic64_read(&hwc->prev_count);
  246. rdmsrl(hwc->event_base + idx, new_raw_count);
  247. if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count,
  248. new_raw_count) != prev_raw_count)
  249. goto again;
  250. /*
  251. * Now we have the new raw value and have updated the prev
  252. * timestamp already. We can now calculate the elapsed delta
  253. * (event-)time and add that to the generic event.
  254. *
  255. * Careful, not all hw sign-extends above the physical width
  256. * of the count.
  257. */
  258. delta = (new_raw_count << shift) - (prev_raw_count << shift);
  259. delta >>= shift;
  260. atomic64_add(delta, &event->count);
  261. atomic64_sub(delta, &hwc->period_left);
  262. return new_raw_count;
  263. }
  264. static atomic_t active_events;
  265. static DEFINE_MUTEX(pmc_reserve_mutex);
  266. static bool reserve_pmc_hardware(void)
  267. {
  268. #ifdef CONFIG_X86_LOCAL_APIC
  269. int i;
  270. if (nmi_watchdog == NMI_LOCAL_APIC)
  271. disable_lapic_nmi_watchdog();
  272. for (i = 0; i < x86_pmu.num_events; i++) {
  273. if (!reserve_perfctr_nmi(x86_pmu.perfctr + i))
  274. goto perfctr_fail;
  275. }
  276. for (i = 0; i < x86_pmu.num_events; i++) {
  277. if (!reserve_evntsel_nmi(x86_pmu.eventsel + i))
  278. goto eventsel_fail;
  279. }
  280. #endif
  281. return true;
  282. #ifdef CONFIG_X86_LOCAL_APIC
  283. eventsel_fail:
  284. for (i--; i >= 0; i--)
  285. release_evntsel_nmi(x86_pmu.eventsel + i);
  286. i = x86_pmu.num_events;
  287. perfctr_fail:
  288. for (i--; i >= 0; i--)
  289. release_perfctr_nmi(x86_pmu.perfctr + i);
  290. if (nmi_watchdog == NMI_LOCAL_APIC)
  291. enable_lapic_nmi_watchdog();
  292. return false;
  293. #endif
  294. }
  295. static void release_pmc_hardware(void)
  296. {
  297. #ifdef CONFIG_X86_LOCAL_APIC
  298. int i;
  299. for (i = 0; i < x86_pmu.num_events; i++) {
  300. release_perfctr_nmi(x86_pmu.perfctr + i);
  301. release_evntsel_nmi(x86_pmu.eventsel + i);
  302. }
  303. if (nmi_watchdog == NMI_LOCAL_APIC)
  304. enable_lapic_nmi_watchdog();
  305. #endif
  306. }
  307. static int reserve_ds_buffers(void);
  308. static void release_ds_buffers(void);
  309. static void hw_perf_event_destroy(struct perf_event *event)
  310. {
  311. if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
  312. release_pmc_hardware();
  313. release_ds_buffers();
  314. mutex_unlock(&pmc_reserve_mutex);
  315. }
  316. }
  317. static inline int x86_pmu_initialized(void)
  318. {
  319. return x86_pmu.handle_irq != NULL;
  320. }
  321. static inline int
  322. set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event_attr *attr)
  323. {
  324. unsigned int cache_type, cache_op, cache_result;
  325. u64 config, val;
  326. config = attr->config;
  327. cache_type = (config >> 0) & 0xff;
  328. if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
  329. return -EINVAL;
  330. cache_op = (config >> 8) & 0xff;
  331. if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
  332. return -EINVAL;
  333. cache_result = (config >> 16) & 0xff;
  334. if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
  335. return -EINVAL;
  336. val = hw_cache_event_ids[cache_type][cache_op][cache_result];
  337. if (val == 0)
  338. return -ENOENT;
  339. if (val == -1)
  340. return -EINVAL;
  341. hwc->config |= val;
  342. return 0;
  343. }
  344. /*
  345. * Setup the hardware configuration for a given attr_type
  346. */
  347. static int __hw_perf_event_init(struct perf_event *event)
  348. {
  349. struct perf_event_attr *attr = &event->attr;
  350. struct hw_perf_event *hwc = &event->hw;
  351. u64 config;
  352. int err;
  353. if (!x86_pmu_initialized())
  354. return -ENODEV;
  355. err = 0;
  356. if (!atomic_inc_not_zero(&active_events)) {
  357. mutex_lock(&pmc_reserve_mutex);
  358. if (atomic_read(&active_events) == 0) {
  359. if (!reserve_pmc_hardware())
  360. err = -EBUSY;
  361. else
  362. err = reserve_ds_buffers();
  363. }
  364. if (!err)
  365. atomic_inc(&active_events);
  366. mutex_unlock(&pmc_reserve_mutex);
  367. }
  368. if (err)
  369. return err;
  370. event->destroy = hw_perf_event_destroy;
  371. /*
  372. * Generate PMC IRQs:
  373. * (keep 'enabled' bit clear for now)
  374. */
  375. hwc->config = ARCH_PERFMON_EVENTSEL_INT;
  376. hwc->idx = -1;
  377. hwc->last_cpu = -1;
  378. hwc->last_tag = ~0ULL;
  379. /*
  380. * Count user and OS events unless requested not to.
  381. */
  382. if (!attr->exclude_user)
  383. hwc->config |= ARCH_PERFMON_EVENTSEL_USR;
  384. if (!attr->exclude_kernel)
  385. hwc->config |= ARCH_PERFMON_EVENTSEL_OS;
  386. if (!hwc->sample_period) {
  387. hwc->sample_period = x86_pmu.max_period;
  388. hwc->last_period = hwc->sample_period;
  389. atomic64_set(&hwc->period_left, hwc->sample_period);
  390. } else {
  391. /*
  392. * If we have a PMU initialized but no APIC
  393. * interrupts, we cannot sample hardware
  394. * events (user-space has to fall back and
  395. * sample via a hrtimer based software event):
  396. */
  397. if (!x86_pmu.apic)
  398. return -EOPNOTSUPP;
  399. }
  400. /*
  401. * Raw hw_event type provide the config in the hw_event structure
  402. */
  403. if (attr->type == PERF_TYPE_RAW) {
  404. hwc->config |= x86_pmu.raw_event(attr->config);
  405. if ((hwc->config & ARCH_PERFMON_EVENTSEL_ANY) &&
  406. perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
  407. return -EACCES;
  408. return 0;
  409. }
  410. if (attr->type == PERF_TYPE_HW_CACHE)
  411. return set_ext_hw_attr(hwc, attr);
  412. if (attr->config >= x86_pmu.max_events)
  413. return -EINVAL;
  414. /*
  415. * The generic map:
  416. */
  417. config = x86_pmu.event_map(attr->config);
  418. if (config == 0)
  419. return -ENOENT;
  420. if (config == -1LL)
  421. return -EINVAL;
  422. /*
  423. * Branch tracing:
  424. */
  425. if ((attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS) &&
  426. (hwc->sample_period == 1)) {
  427. /* BTS is not supported by this architecture. */
  428. if (!x86_pmu.bts)
  429. return -EOPNOTSUPP;
  430. /* BTS is currently only allowed for user-mode. */
  431. if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
  432. return -EOPNOTSUPP;
  433. }
  434. hwc->config |= config;
  435. return 0;
  436. }
  437. static void x86_pmu_disable_all(void)
  438. {
  439. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  440. int idx;
  441. for (idx = 0; idx < x86_pmu.num_events; idx++) {
  442. u64 val;
  443. if (!test_bit(idx, cpuc->active_mask))
  444. continue;
  445. rdmsrl(x86_pmu.eventsel + idx, val);
  446. if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
  447. continue;
  448. val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
  449. wrmsrl(x86_pmu.eventsel + idx, val);
  450. }
  451. }
  452. void hw_perf_disable(void)
  453. {
  454. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  455. if (!x86_pmu_initialized())
  456. return;
  457. if (!cpuc->enabled)
  458. return;
  459. cpuc->n_added = 0;
  460. cpuc->enabled = 0;
  461. barrier();
  462. x86_pmu.disable_all();
  463. }
  464. static void x86_pmu_enable_all(void)
  465. {
  466. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  467. int idx;
  468. for (idx = 0; idx < x86_pmu.num_events; idx++) {
  469. struct perf_event *event = cpuc->events[idx];
  470. u64 val;
  471. if (!test_bit(idx, cpuc->active_mask))
  472. continue;
  473. val = event->hw.config;
  474. val |= ARCH_PERFMON_EVENTSEL_ENABLE;
  475. wrmsrl(x86_pmu.eventsel + idx, val);
  476. }
  477. }
  478. static const struct pmu pmu;
  479. static inline int is_x86_event(struct perf_event *event)
  480. {
  481. return event->pmu == &pmu;
  482. }
  483. static int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
  484. {
  485. struct event_constraint *c, *constraints[X86_PMC_IDX_MAX];
  486. unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
  487. int i, j, w, wmax, num = 0;
  488. struct hw_perf_event *hwc;
  489. bitmap_zero(used_mask, X86_PMC_IDX_MAX);
  490. for (i = 0; i < n; i++) {
  491. c = x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
  492. constraints[i] = c;
  493. }
  494. /*
  495. * fastpath, try to reuse previous register
  496. */
  497. for (i = 0; i < n; i++) {
  498. hwc = &cpuc->event_list[i]->hw;
  499. c = constraints[i];
  500. /* never assigned */
  501. if (hwc->idx == -1)
  502. break;
  503. /* constraint still honored */
  504. if (!test_bit(hwc->idx, c->idxmsk))
  505. break;
  506. /* not already used */
  507. if (test_bit(hwc->idx, used_mask))
  508. break;
  509. __set_bit(hwc->idx, used_mask);
  510. if (assign)
  511. assign[i] = hwc->idx;
  512. }
  513. if (i == n)
  514. goto done;
  515. /*
  516. * begin slow path
  517. */
  518. bitmap_zero(used_mask, X86_PMC_IDX_MAX);
  519. /*
  520. * weight = number of possible counters
  521. *
  522. * 1 = most constrained, only works on one counter
  523. * wmax = least constrained, works on any counter
  524. *
  525. * assign events to counters starting with most
  526. * constrained events.
  527. */
  528. wmax = x86_pmu.num_events;
  529. /*
  530. * when fixed event counters are present,
  531. * wmax is incremented by 1 to account
  532. * for one more choice
  533. */
  534. if (x86_pmu.num_events_fixed)
  535. wmax++;
  536. for (w = 1, num = n; num && w <= wmax; w++) {
  537. /* for each event */
  538. for (i = 0; num && i < n; i++) {
  539. c = constraints[i];
  540. hwc = &cpuc->event_list[i]->hw;
  541. if (c->weight != w)
  542. continue;
  543. for_each_set_bit(j, c->idxmsk, X86_PMC_IDX_MAX) {
  544. if (!test_bit(j, used_mask))
  545. break;
  546. }
  547. if (j == X86_PMC_IDX_MAX)
  548. break;
  549. __set_bit(j, used_mask);
  550. if (assign)
  551. assign[i] = j;
  552. num--;
  553. }
  554. }
  555. done:
  556. /*
  557. * scheduling failed or is just a simulation,
  558. * free resources if necessary
  559. */
  560. if (!assign || num) {
  561. for (i = 0; i < n; i++) {
  562. if (x86_pmu.put_event_constraints)
  563. x86_pmu.put_event_constraints(cpuc, cpuc->event_list[i]);
  564. }
  565. }
  566. return num ? -ENOSPC : 0;
  567. }
  568. /*
  569. * dogrp: true if must collect siblings events (group)
  570. * returns total number of events and error code
  571. */
  572. static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
  573. {
  574. struct perf_event *event;
  575. int n, max_count;
  576. max_count = x86_pmu.num_events + x86_pmu.num_events_fixed;
  577. /* current number of events already accepted */
  578. n = cpuc->n_events;
  579. if (is_x86_event(leader)) {
  580. if (n >= max_count)
  581. return -ENOSPC;
  582. cpuc->event_list[n] = leader;
  583. n++;
  584. }
  585. if (!dogrp)
  586. return n;
  587. list_for_each_entry(event, &leader->sibling_list, group_entry) {
  588. if (!is_x86_event(event) ||
  589. event->state <= PERF_EVENT_STATE_OFF)
  590. continue;
  591. if (n >= max_count)
  592. return -ENOSPC;
  593. cpuc->event_list[n] = event;
  594. n++;
  595. }
  596. return n;
  597. }
  598. static inline void x86_assign_hw_event(struct perf_event *event,
  599. struct cpu_hw_events *cpuc, int i)
  600. {
  601. struct hw_perf_event *hwc = &event->hw;
  602. hwc->idx = cpuc->assign[i];
  603. hwc->last_cpu = smp_processor_id();
  604. hwc->last_tag = ++cpuc->tags[i];
  605. if (hwc->idx == X86_PMC_IDX_FIXED_BTS) {
  606. hwc->config_base = 0;
  607. hwc->event_base = 0;
  608. } else if (hwc->idx >= X86_PMC_IDX_FIXED) {
  609. hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
  610. /*
  611. * We set it so that event_base + idx in wrmsr/rdmsr maps to
  612. * MSR_ARCH_PERFMON_FIXED_CTR0 ... CTR2:
  613. */
  614. hwc->event_base =
  615. MSR_ARCH_PERFMON_FIXED_CTR0 - X86_PMC_IDX_FIXED;
  616. } else {
  617. hwc->config_base = x86_pmu.eventsel;
  618. hwc->event_base = x86_pmu.perfctr;
  619. }
  620. }
  621. static inline int match_prev_assignment(struct hw_perf_event *hwc,
  622. struct cpu_hw_events *cpuc,
  623. int i)
  624. {
  625. return hwc->idx == cpuc->assign[i] &&
  626. hwc->last_cpu == smp_processor_id() &&
  627. hwc->last_tag == cpuc->tags[i];
  628. }
  629. static int x86_pmu_start(struct perf_event *event);
  630. static void x86_pmu_stop(struct perf_event *event);
  631. void hw_perf_enable(void)
  632. {
  633. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  634. struct perf_event *event;
  635. struct hw_perf_event *hwc;
  636. int i;
  637. if (!x86_pmu_initialized())
  638. return;
  639. if (cpuc->enabled)
  640. return;
  641. if (cpuc->n_added) {
  642. int n_running = cpuc->n_events - cpuc->n_added;
  643. /*
  644. * apply assignment obtained either from
  645. * hw_perf_group_sched_in() or x86_pmu_enable()
  646. *
  647. * step1: save events moving to new counters
  648. * step2: reprogram moved events into new counters
  649. */
  650. for (i = 0; i < n_running; i++) {
  651. event = cpuc->event_list[i];
  652. hwc = &event->hw;
  653. /*
  654. * we can avoid reprogramming counter if:
  655. * - assigned same counter as last time
  656. * - running on same CPU as last time
  657. * - no other event has used the counter since
  658. */
  659. if (hwc->idx == -1 ||
  660. match_prev_assignment(hwc, cpuc, i))
  661. continue;
  662. x86_pmu_stop(event);
  663. }
  664. for (i = 0; i < cpuc->n_events; i++) {
  665. event = cpuc->event_list[i];
  666. hwc = &event->hw;
  667. if (!match_prev_assignment(hwc, cpuc, i))
  668. x86_assign_hw_event(event, cpuc, i);
  669. else if (i < n_running)
  670. continue;
  671. x86_pmu_start(event);
  672. }
  673. cpuc->n_added = 0;
  674. perf_events_lapic_init();
  675. }
  676. cpuc->enabled = 1;
  677. barrier();
  678. x86_pmu.enable_all();
  679. }
  680. static inline void __x86_pmu_enable_event(struct hw_perf_event *hwc)
  681. {
  682. wrmsrl(hwc->config_base + hwc->idx,
  683. hwc->config | ARCH_PERFMON_EVENTSEL_ENABLE);
  684. }
  685. static inline void x86_pmu_disable_event(struct perf_event *event)
  686. {
  687. struct hw_perf_event *hwc = &event->hw;
  688. wrmsrl(hwc->config_base + hwc->idx, hwc->config);
  689. }
  690. static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
  691. /*
  692. * Set the next IRQ period, based on the hwc->period_left value.
  693. * To be called with the event disabled in hw:
  694. */
  695. static int
  696. x86_perf_event_set_period(struct perf_event *event)
  697. {
  698. struct hw_perf_event *hwc = &event->hw;
  699. s64 left = atomic64_read(&hwc->period_left);
  700. s64 period = hwc->sample_period;
  701. int ret = 0, idx = hwc->idx;
  702. if (idx == X86_PMC_IDX_FIXED_BTS)
  703. return 0;
  704. /*
  705. * If we are way outside a reasonable range then just skip forward:
  706. */
  707. if (unlikely(left <= -period)) {
  708. left = period;
  709. atomic64_set(&hwc->period_left, left);
  710. hwc->last_period = period;
  711. ret = 1;
  712. }
  713. if (unlikely(left <= 0)) {
  714. left += period;
  715. atomic64_set(&hwc->period_left, left);
  716. hwc->last_period = period;
  717. ret = 1;
  718. }
  719. /*
  720. * Quirk: certain CPUs dont like it if just 1 hw_event is left:
  721. */
  722. if (unlikely(left < 2))
  723. left = 2;
  724. if (left > x86_pmu.max_period)
  725. left = x86_pmu.max_period;
  726. per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
  727. /*
  728. * The hw event starts counting from this event offset,
  729. * mark it to be able to extra future deltas:
  730. */
  731. atomic64_set(&hwc->prev_count, (u64)-left);
  732. wrmsrl(hwc->event_base + idx,
  733. (u64)(-left) & x86_pmu.event_mask);
  734. perf_event_update_userpage(event);
  735. return ret;
  736. }
  737. static void x86_pmu_enable_event(struct perf_event *event)
  738. {
  739. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  740. if (cpuc->enabled)
  741. __x86_pmu_enable_event(&event->hw);
  742. }
  743. /*
  744. * activate a single event
  745. *
  746. * The event is added to the group of enabled events
  747. * but only if it can be scehduled with existing events.
  748. *
  749. * Called with PMU disabled. If successful and return value 1,
  750. * then guaranteed to call perf_enable() and hw_perf_enable()
  751. */
  752. static int x86_pmu_enable(struct perf_event *event)
  753. {
  754. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  755. struct hw_perf_event *hwc;
  756. int assign[X86_PMC_IDX_MAX];
  757. int n, n0, ret;
  758. hwc = &event->hw;
  759. n0 = cpuc->n_events;
  760. n = collect_events(cpuc, event, false);
  761. if (n < 0)
  762. return n;
  763. ret = x86_schedule_events(cpuc, n, assign);
  764. if (ret)
  765. return ret;
  766. /*
  767. * copy new assignment, now we know it is possible
  768. * will be used by hw_perf_enable()
  769. */
  770. memcpy(cpuc->assign, assign, n*sizeof(int));
  771. cpuc->n_events = n;
  772. cpuc->n_added += n - n0;
  773. return 0;
  774. }
  775. static int x86_pmu_start(struct perf_event *event)
  776. {
  777. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  778. int idx = event->hw.idx;
  779. if (idx == -1)
  780. return -EAGAIN;
  781. x86_perf_event_set_period(event);
  782. cpuc->events[idx] = event;
  783. __set_bit(idx, cpuc->active_mask);
  784. x86_pmu.enable(event);
  785. perf_event_update_userpage(event);
  786. return 0;
  787. }
  788. static void x86_pmu_unthrottle(struct perf_event *event)
  789. {
  790. int ret = x86_pmu_start(event);
  791. WARN_ON_ONCE(ret);
  792. }
  793. void perf_event_print_debug(void)
  794. {
  795. u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
  796. u64 pebs;
  797. struct cpu_hw_events *cpuc;
  798. unsigned long flags;
  799. int cpu, idx;
  800. if (!x86_pmu.num_events)
  801. return;
  802. local_irq_save(flags);
  803. cpu = smp_processor_id();
  804. cpuc = &per_cpu(cpu_hw_events, cpu);
  805. if (x86_pmu.version >= 2) {
  806. rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
  807. rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
  808. rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
  809. rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
  810. rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
  811. pr_info("\n");
  812. pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
  813. pr_info("CPU#%d: status: %016llx\n", cpu, status);
  814. pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
  815. pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
  816. pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
  817. }
  818. pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
  819. for (idx = 0; idx < x86_pmu.num_events; idx++) {
  820. rdmsrl(x86_pmu.eventsel + idx, pmc_ctrl);
  821. rdmsrl(x86_pmu.perfctr + idx, pmc_count);
  822. prev_left = per_cpu(pmc_prev_left[idx], cpu);
  823. pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
  824. cpu, idx, pmc_ctrl);
  825. pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
  826. cpu, idx, pmc_count);
  827. pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
  828. cpu, idx, prev_left);
  829. }
  830. for (idx = 0; idx < x86_pmu.num_events_fixed; idx++) {
  831. rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
  832. pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
  833. cpu, idx, pmc_count);
  834. }
  835. local_irq_restore(flags);
  836. }
  837. static void x86_pmu_stop(struct perf_event *event)
  838. {
  839. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  840. struct hw_perf_event *hwc = &event->hw;
  841. int idx = hwc->idx;
  842. if (!__test_and_clear_bit(idx, cpuc->active_mask))
  843. return;
  844. x86_pmu.disable(event);
  845. /*
  846. * Drain the remaining delta count out of a event
  847. * that we are disabling:
  848. */
  849. x86_perf_event_update(event);
  850. cpuc->events[idx] = NULL;
  851. }
  852. static void x86_pmu_disable(struct perf_event *event)
  853. {
  854. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  855. int i;
  856. x86_pmu_stop(event);
  857. for (i = 0; i < cpuc->n_events; i++) {
  858. if (event == cpuc->event_list[i]) {
  859. if (x86_pmu.put_event_constraints)
  860. x86_pmu.put_event_constraints(cpuc, event);
  861. while (++i < cpuc->n_events)
  862. cpuc->event_list[i-1] = cpuc->event_list[i];
  863. --cpuc->n_events;
  864. break;
  865. }
  866. }
  867. perf_event_update_userpage(event);
  868. }
  869. static int x86_pmu_handle_irq(struct pt_regs *regs)
  870. {
  871. struct perf_sample_data data;
  872. struct cpu_hw_events *cpuc;
  873. struct perf_event *event;
  874. struct hw_perf_event *hwc;
  875. int idx, handled = 0;
  876. u64 val;
  877. perf_sample_data_init(&data, 0);
  878. cpuc = &__get_cpu_var(cpu_hw_events);
  879. for (idx = 0; idx < x86_pmu.num_events; idx++) {
  880. if (!test_bit(idx, cpuc->active_mask))
  881. continue;
  882. event = cpuc->events[idx];
  883. hwc = &event->hw;
  884. val = x86_perf_event_update(event);
  885. if (val & (1ULL << (x86_pmu.event_bits - 1)))
  886. continue;
  887. /*
  888. * event overflow
  889. */
  890. handled = 1;
  891. data.period = event->hw.last_period;
  892. if (!x86_perf_event_set_period(event))
  893. continue;
  894. if (perf_event_overflow(event, 1, &data, regs))
  895. x86_pmu_stop(event);
  896. }
  897. if (handled)
  898. inc_irq_stat(apic_perf_irqs);
  899. return handled;
  900. }
  901. void smp_perf_pending_interrupt(struct pt_regs *regs)
  902. {
  903. irq_enter();
  904. ack_APIC_irq();
  905. inc_irq_stat(apic_pending_irqs);
  906. perf_event_do_pending();
  907. irq_exit();
  908. }
  909. void set_perf_event_pending(void)
  910. {
  911. #ifdef CONFIG_X86_LOCAL_APIC
  912. if (!x86_pmu.apic || !x86_pmu_initialized())
  913. return;
  914. apic->send_IPI_self(LOCAL_PENDING_VECTOR);
  915. #endif
  916. }
  917. void perf_events_lapic_init(void)
  918. {
  919. #ifdef CONFIG_X86_LOCAL_APIC
  920. if (!x86_pmu.apic || !x86_pmu_initialized())
  921. return;
  922. /*
  923. * Always use NMI for PMU
  924. */
  925. apic_write(APIC_LVTPC, APIC_DM_NMI);
  926. #endif
  927. }
  928. static int __kprobes
  929. perf_event_nmi_handler(struct notifier_block *self,
  930. unsigned long cmd, void *__args)
  931. {
  932. struct die_args *args = __args;
  933. struct pt_regs *regs;
  934. if (!atomic_read(&active_events))
  935. return NOTIFY_DONE;
  936. switch (cmd) {
  937. case DIE_NMI:
  938. case DIE_NMI_IPI:
  939. break;
  940. default:
  941. return NOTIFY_DONE;
  942. }
  943. regs = args->regs;
  944. #ifdef CONFIG_X86_LOCAL_APIC
  945. apic_write(APIC_LVTPC, APIC_DM_NMI);
  946. #endif
  947. /*
  948. * Can't rely on the handled return value to say it was our NMI, two
  949. * events could trigger 'simultaneously' raising two back-to-back NMIs.
  950. *
  951. * If the first NMI handles both, the latter will be empty and daze
  952. * the CPU.
  953. */
  954. x86_pmu.handle_irq(regs);
  955. return NOTIFY_STOP;
  956. }
  957. static __read_mostly struct notifier_block perf_event_nmi_notifier = {
  958. .notifier_call = perf_event_nmi_handler,
  959. .next = NULL,
  960. .priority = 1
  961. };
  962. static struct event_constraint unconstrained;
  963. static struct event_constraint emptyconstraint;
  964. static struct event_constraint *
  965. x86_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
  966. {
  967. struct event_constraint *c;
  968. if (x86_pmu.event_constraints) {
  969. for_each_event_constraint(c, x86_pmu.event_constraints) {
  970. if ((event->hw.config & c->cmask) == c->code)
  971. return c;
  972. }
  973. }
  974. return &unconstrained;
  975. }
  976. static int x86_event_sched_in(struct perf_event *event,
  977. struct perf_cpu_context *cpuctx)
  978. {
  979. int ret = 0;
  980. event->state = PERF_EVENT_STATE_ACTIVE;
  981. event->oncpu = smp_processor_id();
  982. event->tstamp_running += event->ctx->time - event->tstamp_stopped;
  983. if (!is_x86_event(event))
  984. ret = event->pmu->enable(event);
  985. if (!ret && !is_software_event(event))
  986. cpuctx->active_oncpu++;
  987. if (!ret && event->attr.exclusive)
  988. cpuctx->exclusive = 1;
  989. return ret;
  990. }
  991. static void x86_event_sched_out(struct perf_event *event,
  992. struct perf_cpu_context *cpuctx)
  993. {
  994. event->state = PERF_EVENT_STATE_INACTIVE;
  995. event->oncpu = -1;
  996. if (!is_x86_event(event))
  997. event->pmu->disable(event);
  998. event->tstamp_running -= event->ctx->time - event->tstamp_stopped;
  999. if (!is_software_event(event))
  1000. cpuctx->active_oncpu--;
  1001. if (event->attr.exclusive || !cpuctx->active_oncpu)
  1002. cpuctx->exclusive = 0;
  1003. }
  1004. /*
  1005. * Called to enable a whole group of events.
  1006. * Returns 1 if the group was enabled, or -EAGAIN if it could not be.
  1007. * Assumes the caller has disabled interrupts and has
  1008. * frozen the PMU with hw_perf_save_disable.
  1009. *
  1010. * called with PMU disabled. If successful and return value 1,
  1011. * then guaranteed to call perf_enable() and hw_perf_enable()
  1012. */
  1013. int hw_perf_group_sched_in(struct perf_event *leader,
  1014. struct perf_cpu_context *cpuctx,
  1015. struct perf_event_context *ctx)
  1016. {
  1017. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  1018. struct perf_event *sub;
  1019. int assign[X86_PMC_IDX_MAX];
  1020. int n0, n1, ret;
  1021. /* n0 = total number of events */
  1022. n0 = collect_events(cpuc, leader, true);
  1023. if (n0 < 0)
  1024. return n0;
  1025. ret = x86_schedule_events(cpuc, n0, assign);
  1026. if (ret)
  1027. return ret;
  1028. ret = x86_event_sched_in(leader, cpuctx);
  1029. if (ret)
  1030. return ret;
  1031. n1 = 1;
  1032. list_for_each_entry(sub, &leader->sibling_list, group_entry) {
  1033. if (sub->state > PERF_EVENT_STATE_OFF) {
  1034. ret = x86_event_sched_in(sub, cpuctx);
  1035. if (ret)
  1036. goto undo;
  1037. ++n1;
  1038. }
  1039. }
  1040. /*
  1041. * copy new assignment, now we know it is possible
  1042. * will be used by hw_perf_enable()
  1043. */
  1044. memcpy(cpuc->assign, assign, n0*sizeof(int));
  1045. cpuc->n_events = n0;
  1046. cpuc->n_added += n1;
  1047. ctx->nr_active += n1;
  1048. /*
  1049. * 1 means successful and events are active
  1050. * This is not quite true because we defer
  1051. * actual activation until hw_perf_enable() but
  1052. * this way we* ensure caller won't try to enable
  1053. * individual events
  1054. */
  1055. return 1;
  1056. undo:
  1057. x86_event_sched_out(leader, cpuctx);
  1058. n0 = 1;
  1059. list_for_each_entry(sub, &leader->sibling_list, group_entry) {
  1060. if (sub->state == PERF_EVENT_STATE_ACTIVE) {
  1061. x86_event_sched_out(sub, cpuctx);
  1062. if (++n0 == n1)
  1063. break;
  1064. }
  1065. }
  1066. return ret;
  1067. }
  1068. #include "perf_event_amd.c"
  1069. #include "perf_event_p6.c"
  1070. #include "perf_event_intel_lbr.c"
  1071. #include "perf_event_intel_ds.c"
  1072. #include "perf_event_intel.c"
  1073. static int __cpuinit
  1074. x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
  1075. {
  1076. unsigned int cpu = (long)hcpu;
  1077. switch (action & ~CPU_TASKS_FROZEN) {
  1078. case CPU_UP_PREPARE:
  1079. if (x86_pmu.cpu_prepare)
  1080. x86_pmu.cpu_prepare(cpu);
  1081. break;
  1082. case CPU_STARTING:
  1083. if (x86_pmu.cpu_starting)
  1084. x86_pmu.cpu_starting(cpu);
  1085. break;
  1086. case CPU_DYING:
  1087. if (x86_pmu.cpu_dying)
  1088. x86_pmu.cpu_dying(cpu);
  1089. break;
  1090. case CPU_DEAD:
  1091. if (x86_pmu.cpu_dead)
  1092. x86_pmu.cpu_dead(cpu);
  1093. break;
  1094. default:
  1095. break;
  1096. }
  1097. return NOTIFY_OK;
  1098. }
  1099. static void __init pmu_check_apic(void)
  1100. {
  1101. if (cpu_has_apic)
  1102. return;
  1103. x86_pmu.apic = 0;
  1104. pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
  1105. pr_info("no hardware sampling interrupt available.\n");
  1106. }
  1107. void __init init_hw_perf_events(void)
  1108. {
  1109. struct event_constraint *c;
  1110. int err;
  1111. pr_info("Performance Events: ");
  1112. switch (boot_cpu_data.x86_vendor) {
  1113. case X86_VENDOR_INTEL:
  1114. err = intel_pmu_init();
  1115. break;
  1116. case X86_VENDOR_AMD:
  1117. err = amd_pmu_init();
  1118. break;
  1119. default:
  1120. return;
  1121. }
  1122. if (err != 0) {
  1123. pr_cont("no PMU driver, software events only.\n");
  1124. return;
  1125. }
  1126. pmu_check_apic();
  1127. pr_cont("%s PMU driver.\n", x86_pmu.name);
  1128. if (x86_pmu.quirks)
  1129. x86_pmu.quirks();
  1130. if (x86_pmu.num_events > X86_PMC_MAX_GENERIC) {
  1131. WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
  1132. x86_pmu.num_events, X86_PMC_MAX_GENERIC);
  1133. x86_pmu.num_events = X86_PMC_MAX_GENERIC;
  1134. }
  1135. perf_event_mask = (1 << x86_pmu.num_events) - 1;
  1136. perf_max_events = x86_pmu.num_events;
  1137. if (x86_pmu.num_events_fixed > X86_PMC_MAX_FIXED) {
  1138. WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
  1139. x86_pmu.num_events_fixed, X86_PMC_MAX_FIXED);
  1140. x86_pmu.num_events_fixed = X86_PMC_MAX_FIXED;
  1141. }
  1142. perf_event_mask |=
  1143. ((1LL << x86_pmu.num_events_fixed)-1) << X86_PMC_IDX_FIXED;
  1144. x86_pmu.intel_ctrl = perf_event_mask;
  1145. perf_events_lapic_init();
  1146. register_die_notifier(&perf_event_nmi_notifier);
  1147. unconstrained = (struct event_constraint)
  1148. __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_events) - 1,
  1149. 0, x86_pmu.num_events);
  1150. if (x86_pmu.event_constraints) {
  1151. for_each_event_constraint(c, x86_pmu.event_constraints) {
  1152. if (c->cmask != INTEL_ARCH_FIXED_MASK)
  1153. continue;
  1154. c->idxmsk64 |= (1ULL << x86_pmu.num_events) - 1;
  1155. c->weight += x86_pmu.num_events;
  1156. }
  1157. }
  1158. pr_info("... version: %d\n", x86_pmu.version);
  1159. pr_info("... bit width: %d\n", x86_pmu.event_bits);
  1160. pr_info("... generic registers: %d\n", x86_pmu.num_events);
  1161. pr_info("... value mask: %016Lx\n", x86_pmu.event_mask);
  1162. pr_info("... max period: %016Lx\n", x86_pmu.max_period);
  1163. pr_info("... fixed-purpose events: %d\n", x86_pmu.num_events_fixed);
  1164. pr_info("... event mask: %016Lx\n", perf_event_mask);
  1165. perf_cpu_notifier(x86_pmu_notifier);
  1166. }
  1167. static inline void x86_pmu_read(struct perf_event *event)
  1168. {
  1169. x86_perf_event_update(event);
  1170. }
  1171. static const struct pmu pmu = {
  1172. .enable = x86_pmu_enable,
  1173. .disable = x86_pmu_disable,
  1174. .start = x86_pmu_start,
  1175. .stop = x86_pmu_stop,
  1176. .read = x86_pmu_read,
  1177. .unthrottle = x86_pmu_unthrottle,
  1178. };
  1179. /*
  1180. * validate that we can schedule this event
  1181. */
  1182. static int validate_event(struct perf_event *event)
  1183. {
  1184. struct cpu_hw_events *fake_cpuc;
  1185. struct event_constraint *c;
  1186. int ret = 0;
  1187. fake_cpuc = kmalloc(sizeof(*fake_cpuc), GFP_KERNEL | __GFP_ZERO);
  1188. if (!fake_cpuc)
  1189. return -ENOMEM;
  1190. c = x86_pmu.get_event_constraints(fake_cpuc, event);
  1191. if (!c || !c->weight)
  1192. ret = -ENOSPC;
  1193. if (x86_pmu.put_event_constraints)
  1194. x86_pmu.put_event_constraints(fake_cpuc, event);
  1195. kfree(fake_cpuc);
  1196. return ret;
  1197. }
  1198. /*
  1199. * validate a single event group
  1200. *
  1201. * validation include:
  1202. * - check events are compatible which each other
  1203. * - events do not compete for the same counter
  1204. * - number of events <= number of counters
  1205. *
  1206. * validation ensures the group can be loaded onto the
  1207. * PMU if it was the only group available.
  1208. */
  1209. static int validate_group(struct perf_event *event)
  1210. {
  1211. struct perf_event *leader = event->group_leader;
  1212. struct cpu_hw_events *fake_cpuc;
  1213. int ret, n;
  1214. ret = -ENOMEM;
  1215. fake_cpuc = kmalloc(sizeof(*fake_cpuc), GFP_KERNEL | __GFP_ZERO);
  1216. if (!fake_cpuc)
  1217. goto out;
  1218. /*
  1219. * the event is not yet connected with its
  1220. * siblings therefore we must first collect
  1221. * existing siblings, then add the new event
  1222. * before we can simulate the scheduling
  1223. */
  1224. ret = -ENOSPC;
  1225. n = collect_events(fake_cpuc, leader, true);
  1226. if (n < 0)
  1227. goto out_free;
  1228. fake_cpuc->n_events = n;
  1229. n = collect_events(fake_cpuc, event, false);
  1230. if (n < 0)
  1231. goto out_free;
  1232. fake_cpuc->n_events = n;
  1233. ret = x86_schedule_events(fake_cpuc, n, NULL);
  1234. out_free:
  1235. kfree(fake_cpuc);
  1236. out:
  1237. return ret;
  1238. }
  1239. const struct pmu *hw_perf_event_init(struct perf_event *event)
  1240. {
  1241. const struct pmu *tmp;
  1242. int err;
  1243. err = __hw_perf_event_init(event);
  1244. if (!err) {
  1245. /*
  1246. * we temporarily connect event to its pmu
  1247. * such that validate_group() can classify
  1248. * it as an x86 event using is_x86_event()
  1249. */
  1250. tmp = event->pmu;
  1251. event->pmu = &pmu;
  1252. if (event->group_leader != event)
  1253. err = validate_group(event);
  1254. else
  1255. err = validate_event(event);
  1256. event->pmu = tmp;
  1257. }
  1258. if (err) {
  1259. if (event->destroy)
  1260. event->destroy(event);
  1261. return ERR_PTR(err);
  1262. }
  1263. return &pmu;
  1264. }
  1265. /*
  1266. * callchain support
  1267. */
  1268. static inline
  1269. void callchain_store(struct perf_callchain_entry *entry, u64 ip)
  1270. {
  1271. if (entry->nr < PERF_MAX_STACK_DEPTH)
  1272. entry->ip[entry->nr++] = ip;
  1273. }
  1274. static DEFINE_PER_CPU(struct perf_callchain_entry, pmc_irq_entry);
  1275. static DEFINE_PER_CPU(struct perf_callchain_entry, pmc_nmi_entry);
  1276. static void
  1277. backtrace_warning_symbol(void *data, char *msg, unsigned long symbol)
  1278. {
  1279. /* Ignore warnings */
  1280. }
  1281. static void backtrace_warning(void *data, char *msg)
  1282. {
  1283. /* Ignore warnings */
  1284. }
  1285. static int backtrace_stack(void *data, char *name)
  1286. {
  1287. return 0;
  1288. }
  1289. static void backtrace_address(void *data, unsigned long addr, int reliable)
  1290. {
  1291. struct perf_callchain_entry *entry = data;
  1292. if (reliable)
  1293. callchain_store(entry, addr);
  1294. }
  1295. static const struct stacktrace_ops backtrace_ops = {
  1296. .warning = backtrace_warning,
  1297. .warning_symbol = backtrace_warning_symbol,
  1298. .stack = backtrace_stack,
  1299. .address = backtrace_address,
  1300. .walk_stack = print_context_stack_bp,
  1301. };
  1302. #include "../dumpstack.h"
  1303. static void
  1304. perf_callchain_kernel(struct pt_regs *regs, struct perf_callchain_entry *entry)
  1305. {
  1306. callchain_store(entry, PERF_CONTEXT_KERNEL);
  1307. callchain_store(entry, regs->ip);
  1308. dump_trace(NULL, regs, NULL, regs->bp, &backtrace_ops, entry);
  1309. }
  1310. static int copy_stack_frame(const void __user *fp, struct stack_frame *frame)
  1311. {
  1312. unsigned long bytes;
  1313. bytes = copy_from_user_nmi(frame, fp, sizeof(*frame));
  1314. return bytes == sizeof(*frame);
  1315. }
  1316. static void
  1317. perf_callchain_user(struct pt_regs *regs, struct perf_callchain_entry *entry)
  1318. {
  1319. struct stack_frame frame;
  1320. const void __user *fp;
  1321. if (!user_mode(regs))
  1322. regs = task_pt_regs(current);
  1323. fp = (void __user *)regs->bp;
  1324. callchain_store(entry, PERF_CONTEXT_USER);
  1325. callchain_store(entry, regs->ip);
  1326. while (entry->nr < PERF_MAX_STACK_DEPTH) {
  1327. frame.next_frame = NULL;
  1328. frame.return_address = 0;
  1329. if (!copy_stack_frame(fp, &frame))
  1330. break;
  1331. if ((unsigned long)fp < regs->sp)
  1332. break;
  1333. callchain_store(entry, frame.return_address);
  1334. fp = frame.next_frame;
  1335. }
  1336. }
  1337. static void
  1338. perf_do_callchain(struct pt_regs *regs, struct perf_callchain_entry *entry)
  1339. {
  1340. int is_user;
  1341. if (!regs)
  1342. return;
  1343. is_user = user_mode(regs);
  1344. if (is_user && current->state != TASK_RUNNING)
  1345. return;
  1346. if (!is_user)
  1347. perf_callchain_kernel(regs, entry);
  1348. if (current->mm)
  1349. perf_callchain_user(regs, entry);
  1350. }
  1351. struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
  1352. {
  1353. struct perf_callchain_entry *entry;
  1354. if (in_nmi())
  1355. entry = &__get_cpu_var(pmc_nmi_entry);
  1356. else
  1357. entry = &__get_cpu_var(pmc_irq_entry);
  1358. entry->nr = 0;
  1359. perf_do_callchain(regs, entry);
  1360. return entry;
  1361. }
  1362. void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip, int skip)
  1363. {
  1364. regs->ip = ip;
  1365. /*
  1366. * perf_arch_fetch_caller_regs adds another call, we need to increment
  1367. * the skip level
  1368. */
  1369. regs->bp = rewind_frame_pointer(skip + 1);
  1370. regs->cs = __KERNEL_CS;
  1371. local_save_flags(regs->flags);
  1372. }
  1373. EXPORT_SYMBOL_GPL(perf_arch_fetch_caller_regs);