exynos-cpufreq.c 7.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296
  1. /*
  2. * Copyright (c) 2010-2011 Samsung Electronics Co., Ltd.
  3. * http://www.samsung.com
  4. *
  5. * EXYNOS - CPU frequency scaling support for EXYNOS series
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/kernel.h>
  12. #include <linux/err.h>
  13. #include <linux/clk.h>
  14. #include <linux/io.h>
  15. #include <linux/slab.h>
  16. #include <linux/regulator/consumer.h>
  17. #include <linux/cpufreq.h>
  18. #include <linux/suspend.h>
  19. #include <plat/cpu.h>
  20. #include "exynos-cpufreq.h"
  21. static struct exynos_dvfs_info *exynos_info;
  22. static struct regulator *arm_regulator;
  23. static struct cpufreq_freqs freqs;
  24. static unsigned int locking_frequency;
  25. static bool frequency_locked;
  26. static DEFINE_MUTEX(cpufreq_lock);
  27. static unsigned int exynos_getspeed(unsigned int cpu)
  28. {
  29. return clk_get_rate(exynos_info->cpu_clk) / 1000;
  30. }
  31. static int exynos_cpufreq_get_index(unsigned int freq)
  32. {
  33. struct cpufreq_frequency_table *freq_table = exynos_info->freq_table;
  34. int index;
  35. for (index = 0;
  36. freq_table[index].frequency != CPUFREQ_TABLE_END; index++)
  37. if (freq_table[index].frequency == freq)
  38. break;
  39. if (freq_table[index].frequency == CPUFREQ_TABLE_END)
  40. return -EINVAL;
  41. return index;
  42. }
  43. static int exynos_cpufreq_scale(unsigned int target_freq)
  44. {
  45. struct cpufreq_frequency_table *freq_table = exynos_info->freq_table;
  46. unsigned int *volt_table = exynos_info->volt_table;
  47. struct cpufreq_policy *policy = cpufreq_cpu_get(0);
  48. unsigned int arm_volt, safe_arm_volt = 0;
  49. unsigned int mpll_freq_khz = exynos_info->mpll_freq_khz;
  50. int index, old_index;
  51. int ret = 0;
  52. freqs.old = policy->cur;
  53. freqs.new = target_freq;
  54. /*
  55. * The policy max have been changed so that we cannot get proper
  56. * old_index with cpufreq_frequency_table_target(). Thus, ignore
  57. * policy and get the index from the raw freqeuncy table.
  58. */
  59. old_index = exynos_cpufreq_get_index(freqs.old);
  60. if (old_index < 0) {
  61. ret = old_index;
  62. goto out;
  63. }
  64. index = exynos_cpufreq_get_index(target_freq);
  65. if (index < 0) {
  66. ret = index;
  67. goto out;
  68. }
  69. /*
  70. * ARM clock source will be changed APLL to MPLL temporary
  71. * To support this level, need to control regulator for
  72. * required voltage level
  73. */
  74. if (exynos_info->need_apll_change != NULL) {
  75. if (exynos_info->need_apll_change(old_index, index) &&
  76. (freq_table[index].frequency < mpll_freq_khz) &&
  77. (freq_table[old_index].frequency < mpll_freq_khz))
  78. safe_arm_volt = volt_table[exynos_info->pll_safe_idx];
  79. }
  80. arm_volt = volt_table[index];
  81. cpufreq_notify_transition(policy, &freqs, CPUFREQ_PRECHANGE);
  82. /* When the new frequency is higher than current frequency */
  83. if ((freqs.new > freqs.old) && !safe_arm_volt) {
  84. /* Firstly, voltage up to increase frequency */
  85. ret = regulator_set_voltage(arm_regulator, arm_volt, arm_volt);
  86. if (ret) {
  87. pr_err("%s: failed to set cpu voltage to %d\n",
  88. __func__, arm_volt);
  89. freqs.new = freqs.old;
  90. goto post_notify;
  91. }
  92. }
  93. if (safe_arm_volt) {
  94. ret = regulator_set_voltage(arm_regulator, safe_arm_volt,
  95. safe_arm_volt);
  96. if (ret) {
  97. pr_err("%s: failed to set cpu voltage to %d\n",
  98. __func__, safe_arm_volt);
  99. freqs.new = freqs.old;
  100. goto post_notify;
  101. }
  102. }
  103. exynos_info->set_freq(old_index, index);
  104. post_notify:
  105. cpufreq_notify_transition(policy, &freqs, CPUFREQ_POSTCHANGE);
  106. if (ret)
  107. goto out;
  108. /* When the new frequency is lower than current frequency */
  109. if ((freqs.new < freqs.old) ||
  110. ((freqs.new > freqs.old) && safe_arm_volt)) {
  111. /* down the voltage after frequency change */
  112. ret = regulator_set_voltage(arm_regulator, arm_volt,
  113. arm_volt);
  114. if (ret) {
  115. pr_err("%s: failed to set cpu voltage to %d\n",
  116. __func__, arm_volt);
  117. goto out;
  118. }
  119. }
  120. out:
  121. cpufreq_cpu_put(policy);
  122. return ret;
  123. }
  124. static int exynos_target(struct cpufreq_policy *policy, unsigned int index)
  125. {
  126. struct cpufreq_frequency_table *freq_table = exynos_info->freq_table;
  127. int ret = 0;
  128. mutex_lock(&cpufreq_lock);
  129. if (frequency_locked)
  130. goto out;
  131. ret = exynos_cpufreq_scale(freq_table[index].frequency);
  132. out:
  133. mutex_unlock(&cpufreq_lock);
  134. return ret;
  135. }
  136. #ifdef CONFIG_PM
  137. static int exynos_cpufreq_suspend(struct cpufreq_policy *policy)
  138. {
  139. return 0;
  140. }
  141. static int exynos_cpufreq_resume(struct cpufreq_policy *policy)
  142. {
  143. return 0;
  144. }
  145. #endif
  146. /**
  147. * exynos_cpufreq_pm_notifier - block CPUFREQ's activities in suspend-resume
  148. * context
  149. * @notifier
  150. * @pm_event
  151. * @v
  152. *
  153. * While frequency_locked == true, target() ignores every frequency but
  154. * locking_frequency. The locking_frequency value is the initial frequency,
  155. * which is set by the bootloader. In order to eliminate possible
  156. * inconsistency in clock values, we save and restore frequencies during
  157. * suspend and resume and block CPUFREQ activities. Note that the standard
  158. * suspend/resume cannot be used as they are too deep (syscore_ops) for
  159. * regulator actions.
  160. */
  161. static int exynos_cpufreq_pm_notifier(struct notifier_block *notifier,
  162. unsigned long pm_event, void *v)
  163. {
  164. int ret;
  165. switch (pm_event) {
  166. case PM_SUSPEND_PREPARE:
  167. mutex_lock(&cpufreq_lock);
  168. frequency_locked = true;
  169. mutex_unlock(&cpufreq_lock);
  170. ret = exynos_cpufreq_scale(locking_frequency);
  171. if (ret < 0)
  172. return NOTIFY_BAD;
  173. break;
  174. case PM_POST_SUSPEND:
  175. mutex_lock(&cpufreq_lock);
  176. frequency_locked = false;
  177. mutex_unlock(&cpufreq_lock);
  178. break;
  179. }
  180. return NOTIFY_OK;
  181. }
  182. static struct notifier_block exynos_cpufreq_nb = {
  183. .notifier_call = exynos_cpufreq_pm_notifier,
  184. };
  185. static int exynos_cpufreq_cpu_init(struct cpufreq_policy *policy)
  186. {
  187. return cpufreq_generic_init(policy, exynos_info->freq_table, 100000);
  188. }
  189. static struct cpufreq_driver exynos_driver = {
  190. .flags = CPUFREQ_STICKY,
  191. .verify = cpufreq_generic_frequency_table_verify,
  192. .target_index = exynos_target,
  193. .get = exynos_getspeed,
  194. .init = exynos_cpufreq_cpu_init,
  195. .exit = cpufreq_generic_exit,
  196. .name = "exynos_cpufreq",
  197. .attr = cpufreq_generic_attr,
  198. #ifdef CONFIG_PM
  199. .suspend = exynos_cpufreq_suspend,
  200. .resume = exynos_cpufreq_resume,
  201. #endif
  202. };
  203. static int __init exynos_cpufreq_init(void)
  204. {
  205. int ret = -EINVAL;
  206. exynos_info = kzalloc(sizeof(*exynos_info), GFP_KERNEL);
  207. if (!exynos_info)
  208. return -ENOMEM;
  209. if (soc_is_exynos4210())
  210. ret = exynos4210_cpufreq_init(exynos_info);
  211. else if (soc_is_exynos4212() || soc_is_exynos4412())
  212. ret = exynos4x12_cpufreq_init(exynos_info);
  213. else if (soc_is_exynos5250())
  214. ret = exynos5250_cpufreq_init(exynos_info);
  215. else
  216. return 0;
  217. if (ret)
  218. goto err_vdd_arm;
  219. if (exynos_info->set_freq == NULL) {
  220. pr_err("%s: No set_freq function (ERR)\n", __func__);
  221. goto err_vdd_arm;
  222. }
  223. arm_regulator = regulator_get(NULL, "vdd_arm");
  224. if (IS_ERR(arm_regulator)) {
  225. pr_err("%s: failed to get resource vdd_arm\n", __func__);
  226. goto err_vdd_arm;
  227. }
  228. locking_frequency = exynos_getspeed(0);
  229. register_pm_notifier(&exynos_cpufreq_nb);
  230. if (cpufreq_register_driver(&exynos_driver)) {
  231. pr_err("%s: failed to register cpufreq driver\n", __func__);
  232. goto err_cpufreq;
  233. }
  234. return 0;
  235. err_cpufreq:
  236. unregister_pm_notifier(&exynos_cpufreq_nb);
  237. regulator_put(arm_regulator);
  238. err_vdd_arm:
  239. kfree(exynos_info);
  240. return -EINVAL;
  241. }
  242. late_initcall(exynos_cpufreq_init);