i915_gem.c 98 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include "i915_trace.h"
  32. #include "intel_drv.h"
  33. #include <linux/shmem_fs.h>
  34. #include <linux/slab.h>
  35. #include <linux/swap.h>
  36. #include <linux/pci.h>
  37. static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
  38. static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
  39. static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
  40. static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  41. unsigned alignment,
  42. bool map_and_fenceable);
  43. static void i915_gem_clear_fence_reg(struct drm_device *dev,
  44. struct drm_i915_fence_reg *reg);
  45. static int i915_gem_phys_pwrite(struct drm_device *dev,
  46. struct drm_i915_gem_object *obj,
  47. struct drm_i915_gem_pwrite *args,
  48. struct drm_file *file);
  49. static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
  50. static int i915_gem_inactive_shrink(struct shrinker *shrinker,
  51. struct shrink_control *sc);
  52. static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
  53. /* some bookkeeping */
  54. static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  55. size_t size)
  56. {
  57. dev_priv->mm.object_count++;
  58. dev_priv->mm.object_memory += size;
  59. }
  60. static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  61. size_t size)
  62. {
  63. dev_priv->mm.object_count--;
  64. dev_priv->mm.object_memory -= size;
  65. }
  66. static int
  67. i915_gem_wait_for_error(struct drm_device *dev)
  68. {
  69. struct drm_i915_private *dev_priv = dev->dev_private;
  70. struct completion *x = &dev_priv->error_completion;
  71. unsigned long flags;
  72. int ret;
  73. if (!atomic_read(&dev_priv->mm.wedged))
  74. return 0;
  75. ret = wait_for_completion_interruptible(x);
  76. if (ret)
  77. return ret;
  78. if (atomic_read(&dev_priv->mm.wedged)) {
  79. /* GPU is hung, bump the completion count to account for
  80. * the token we just consumed so that we never hit zero and
  81. * end up waiting upon a subsequent completion event that
  82. * will never happen.
  83. */
  84. spin_lock_irqsave(&x->wait.lock, flags);
  85. x->done++;
  86. spin_unlock_irqrestore(&x->wait.lock, flags);
  87. }
  88. return 0;
  89. }
  90. int i915_mutex_lock_interruptible(struct drm_device *dev)
  91. {
  92. int ret;
  93. ret = i915_gem_wait_for_error(dev);
  94. if (ret)
  95. return ret;
  96. ret = mutex_lock_interruptible(&dev->struct_mutex);
  97. if (ret)
  98. return ret;
  99. WARN_ON(i915_verify_lists(dev));
  100. return 0;
  101. }
  102. static inline bool
  103. i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
  104. {
  105. return obj->gtt_space && !obj->active && obj->pin_count == 0;
  106. }
  107. int
  108. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  109. struct drm_file *file)
  110. {
  111. struct drm_i915_gem_init *args = data;
  112. if (args->gtt_start >= args->gtt_end ||
  113. (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
  114. return -EINVAL;
  115. mutex_lock(&dev->struct_mutex);
  116. i915_gem_init_global_gtt(dev, args->gtt_start,
  117. args->gtt_end, args->gtt_end);
  118. mutex_unlock(&dev->struct_mutex);
  119. return 0;
  120. }
  121. int
  122. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  123. struct drm_file *file)
  124. {
  125. struct drm_i915_private *dev_priv = dev->dev_private;
  126. struct drm_i915_gem_get_aperture *args = data;
  127. struct drm_i915_gem_object *obj;
  128. size_t pinned;
  129. if (!(dev->driver->driver_features & DRIVER_GEM))
  130. return -ENODEV;
  131. pinned = 0;
  132. mutex_lock(&dev->struct_mutex);
  133. list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
  134. pinned += obj->gtt_space->size;
  135. mutex_unlock(&dev->struct_mutex);
  136. args->aper_size = dev_priv->mm.gtt_total;
  137. args->aper_available_size = args->aper_size - pinned;
  138. return 0;
  139. }
  140. static int
  141. i915_gem_create(struct drm_file *file,
  142. struct drm_device *dev,
  143. uint64_t size,
  144. uint32_t *handle_p)
  145. {
  146. struct drm_i915_gem_object *obj;
  147. int ret;
  148. u32 handle;
  149. size = roundup(size, PAGE_SIZE);
  150. if (size == 0)
  151. return -EINVAL;
  152. /* Allocate the new object */
  153. obj = i915_gem_alloc_object(dev, size);
  154. if (obj == NULL)
  155. return -ENOMEM;
  156. ret = drm_gem_handle_create(file, &obj->base, &handle);
  157. if (ret) {
  158. drm_gem_object_release(&obj->base);
  159. i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
  160. kfree(obj);
  161. return ret;
  162. }
  163. /* drop reference from allocate - handle holds it now */
  164. drm_gem_object_unreference(&obj->base);
  165. trace_i915_gem_object_create(obj);
  166. *handle_p = handle;
  167. return 0;
  168. }
  169. int
  170. i915_gem_dumb_create(struct drm_file *file,
  171. struct drm_device *dev,
  172. struct drm_mode_create_dumb *args)
  173. {
  174. /* have to work out size/pitch and return them */
  175. args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
  176. args->size = args->pitch * args->height;
  177. return i915_gem_create(file, dev,
  178. args->size, &args->handle);
  179. }
  180. int i915_gem_dumb_destroy(struct drm_file *file,
  181. struct drm_device *dev,
  182. uint32_t handle)
  183. {
  184. return drm_gem_handle_delete(file, handle);
  185. }
  186. /**
  187. * Creates a new mm object and returns a handle to it.
  188. */
  189. int
  190. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  191. struct drm_file *file)
  192. {
  193. struct drm_i915_gem_create *args = data;
  194. return i915_gem_create(file, dev,
  195. args->size, &args->handle);
  196. }
  197. static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
  198. {
  199. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  200. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  201. obj->tiling_mode != I915_TILING_NONE;
  202. }
  203. static inline int
  204. __copy_to_user_swizzled(char __user *cpu_vaddr,
  205. const char *gpu_vaddr, int gpu_offset,
  206. int length)
  207. {
  208. int ret, cpu_offset = 0;
  209. while (length > 0) {
  210. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  211. int this_length = min(cacheline_end - gpu_offset, length);
  212. int swizzled_gpu_offset = gpu_offset ^ 64;
  213. ret = __copy_to_user(cpu_vaddr + cpu_offset,
  214. gpu_vaddr + swizzled_gpu_offset,
  215. this_length);
  216. if (ret)
  217. return ret + length;
  218. cpu_offset += this_length;
  219. gpu_offset += this_length;
  220. length -= this_length;
  221. }
  222. return 0;
  223. }
  224. static inline int
  225. __copy_from_user_swizzled(char __user *gpu_vaddr, int gpu_offset,
  226. const char *cpu_vaddr,
  227. int length)
  228. {
  229. int ret, cpu_offset = 0;
  230. while (length > 0) {
  231. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  232. int this_length = min(cacheline_end - gpu_offset, length);
  233. int swizzled_gpu_offset = gpu_offset ^ 64;
  234. ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
  235. cpu_vaddr + cpu_offset,
  236. this_length);
  237. if (ret)
  238. return ret + length;
  239. cpu_offset += this_length;
  240. gpu_offset += this_length;
  241. length -= this_length;
  242. }
  243. return 0;
  244. }
  245. static int
  246. i915_gem_shmem_pread(struct drm_device *dev,
  247. struct drm_i915_gem_object *obj,
  248. struct drm_i915_gem_pread *args,
  249. struct drm_file *file)
  250. {
  251. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  252. char __user *user_data;
  253. ssize_t remain;
  254. loff_t offset;
  255. int shmem_page_offset, page_length, ret = 0;
  256. int obj_do_bit17_swizzling, page_do_bit17_swizzling;
  257. int hit_slowpath = 0;
  258. int needs_clflush = 0;
  259. int release_page;
  260. user_data = (char __user *) (uintptr_t) args->data_ptr;
  261. remain = args->size;
  262. obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  263. if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
  264. /* If we're not in the cpu read domain, set ourself into the gtt
  265. * read domain and manually flush cachelines (if required). This
  266. * optimizes for the case when the gpu will dirty the data
  267. * anyway again before the next pread happens. */
  268. if (obj->cache_level == I915_CACHE_NONE)
  269. needs_clflush = 1;
  270. ret = i915_gem_object_set_to_gtt_domain(obj, false);
  271. if (ret)
  272. return ret;
  273. }
  274. offset = args->offset;
  275. while (remain > 0) {
  276. struct page *page;
  277. char *vaddr;
  278. /* Operation in this page
  279. *
  280. * shmem_page_offset = offset within page in shmem file
  281. * page_length = bytes to copy for this page
  282. */
  283. shmem_page_offset = offset_in_page(offset);
  284. page_length = remain;
  285. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  286. page_length = PAGE_SIZE - shmem_page_offset;
  287. if (obj->pages) {
  288. page = obj->pages[offset >> PAGE_SHIFT];
  289. release_page = 0;
  290. } else {
  291. page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
  292. if (IS_ERR(page)) {
  293. ret = PTR_ERR(page);
  294. goto out;
  295. }
  296. release_page = 1;
  297. }
  298. page_do_bit17_swizzling = obj_do_bit17_swizzling &&
  299. (page_to_phys(page) & (1 << 17)) != 0;
  300. if (!page_do_bit17_swizzling) {
  301. vaddr = kmap_atomic(page);
  302. if (needs_clflush)
  303. drm_clflush_virt_range(vaddr + shmem_page_offset,
  304. page_length);
  305. ret = __copy_to_user_inatomic(user_data,
  306. vaddr + shmem_page_offset,
  307. page_length);
  308. kunmap_atomic(vaddr);
  309. if (ret == 0)
  310. goto next_page;
  311. }
  312. hit_slowpath = 1;
  313. page_cache_get(page);
  314. mutex_unlock(&dev->struct_mutex);
  315. vaddr = kmap(page);
  316. if (needs_clflush)
  317. drm_clflush_virt_range(vaddr + shmem_page_offset,
  318. page_length);
  319. if (page_do_bit17_swizzling)
  320. ret = __copy_to_user_swizzled(user_data,
  321. vaddr, shmem_page_offset,
  322. page_length);
  323. else
  324. ret = __copy_to_user(user_data,
  325. vaddr + shmem_page_offset,
  326. page_length);
  327. kunmap(page);
  328. mutex_lock(&dev->struct_mutex);
  329. page_cache_release(page);
  330. next_page:
  331. mark_page_accessed(page);
  332. if (release_page)
  333. page_cache_release(page);
  334. if (ret) {
  335. ret = -EFAULT;
  336. goto out;
  337. }
  338. remain -= page_length;
  339. user_data += page_length;
  340. offset += page_length;
  341. }
  342. out:
  343. if (hit_slowpath) {
  344. /* Fixup: Kill any reinstated backing storage pages */
  345. if (obj->madv == __I915_MADV_PURGED)
  346. i915_gem_object_truncate(obj);
  347. }
  348. return ret;
  349. }
  350. /**
  351. * Reads data from the object referenced by handle.
  352. *
  353. * On error, the contents of *data are undefined.
  354. */
  355. int
  356. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  357. struct drm_file *file)
  358. {
  359. struct drm_i915_gem_pread *args = data;
  360. struct drm_i915_gem_object *obj;
  361. int ret = 0;
  362. if (args->size == 0)
  363. return 0;
  364. if (!access_ok(VERIFY_WRITE,
  365. (char __user *)(uintptr_t)args->data_ptr,
  366. args->size))
  367. return -EFAULT;
  368. ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
  369. args->size);
  370. if (ret)
  371. return -EFAULT;
  372. ret = i915_mutex_lock_interruptible(dev);
  373. if (ret)
  374. return ret;
  375. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  376. if (&obj->base == NULL) {
  377. ret = -ENOENT;
  378. goto unlock;
  379. }
  380. /* Bounds check source. */
  381. if (args->offset > obj->base.size ||
  382. args->size > obj->base.size - args->offset) {
  383. ret = -EINVAL;
  384. goto out;
  385. }
  386. trace_i915_gem_object_pread(obj, args->offset, args->size);
  387. ret = i915_gem_shmem_pread(dev, obj, args, file);
  388. out:
  389. drm_gem_object_unreference(&obj->base);
  390. unlock:
  391. mutex_unlock(&dev->struct_mutex);
  392. return ret;
  393. }
  394. /* This is the fast write path which cannot handle
  395. * page faults in the source data
  396. */
  397. static inline int
  398. fast_user_write(struct io_mapping *mapping,
  399. loff_t page_base, int page_offset,
  400. char __user *user_data,
  401. int length)
  402. {
  403. char *vaddr_atomic;
  404. unsigned long unwritten;
  405. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  406. unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
  407. user_data, length);
  408. io_mapping_unmap_atomic(vaddr_atomic);
  409. return unwritten;
  410. }
  411. /**
  412. * This is the fast pwrite path, where we copy the data directly from the
  413. * user into the GTT, uncached.
  414. */
  415. static int
  416. i915_gem_gtt_pwrite_fast(struct drm_device *dev,
  417. struct drm_i915_gem_object *obj,
  418. struct drm_i915_gem_pwrite *args,
  419. struct drm_file *file)
  420. {
  421. drm_i915_private_t *dev_priv = dev->dev_private;
  422. ssize_t remain;
  423. loff_t offset, page_base;
  424. char __user *user_data;
  425. int page_offset, page_length, ret;
  426. ret = i915_gem_object_pin(obj, 0, true);
  427. if (ret)
  428. goto out;
  429. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  430. if (ret)
  431. goto out_unpin;
  432. ret = i915_gem_object_put_fence(obj);
  433. if (ret)
  434. goto out_unpin;
  435. user_data = (char __user *) (uintptr_t) args->data_ptr;
  436. remain = args->size;
  437. offset = obj->gtt_offset + args->offset;
  438. while (remain > 0) {
  439. /* Operation in this page
  440. *
  441. * page_base = page offset within aperture
  442. * page_offset = offset within page
  443. * page_length = bytes to copy for this page
  444. */
  445. page_base = offset & PAGE_MASK;
  446. page_offset = offset_in_page(offset);
  447. page_length = remain;
  448. if ((page_offset + remain) > PAGE_SIZE)
  449. page_length = PAGE_SIZE - page_offset;
  450. /* If we get a fault while copying data, then (presumably) our
  451. * source page isn't available. Return the error and we'll
  452. * retry in the slow path.
  453. */
  454. if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
  455. page_offset, user_data, page_length)) {
  456. ret = -EFAULT;
  457. goto out_unpin;
  458. }
  459. remain -= page_length;
  460. user_data += page_length;
  461. offset += page_length;
  462. }
  463. out_unpin:
  464. i915_gem_object_unpin(obj);
  465. out:
  466. return ret;
  467. }
  468. static int
  469. i915_gem_shmem_pwrite(struct drm_device *dev,
  470. struct drm_i915_gem_object *obj,
  471. struct drm_i915_gem_pwrite *args,
  472. struct drm_file *file)
  473. {
  474. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  475. ssize_t remain;
  476. loff_t offset;
  477. char __user *user_data;
  478. int shmem_page_offset, page_length, ret = 0;
  479. int obj_do_bit17_swizzling, page_do_bit17_swizzling;
  480. int hit_slowpath = 0;
  481. int release_page;
  482. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  483. if (ret)
  484. return ret;
  485. user_data = (char __user *) (uintptr_t) args->data_ptr;
  486. remain = args->size;
  487. obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  488. offset = args->offset;
  489. obj->dirty = 1;
  490. while (remain > 0) {
  491. struct page *page;
  492. char *vaddr;
  493. /* Operation in this page
  494. *
  495. * shmem_page_offset = offset within page in shmem file
  496. * page_length = bytes to copy for this page
  497. */
  498. shmem_page_offset = offset_in_page(offset);
  499. page_length = remain;
  500. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  501. page_length = PAGE_SIZE - shmem_page_offset;
  502. if (obj->pages) {
  503. page = obj->pages[offset >> PAGE_SHIFT];
  504. release_page = 0;
  505. } else {
  506. page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
  507. if (IS_ERR(page)) {
  508. ret = PTR_ERR(page);
  509. goto out;
  510. }
  511. release_page = 1;
  512. }
  513. page_do_bit17_swizzling = obj_do_bit17_swizzling &&
  514. (page_to_phys(page) & (1 << 17)) != 0;
  515. if (!page_do_bit17_swizzling) {
  516. vaddr = kmap_atomic(page);
  517. ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
  518. user_data,
  519. page_length);
  520. kunmap_atomic(vaddr);
  521. if (ret == 0)
  522. goto next_page;
  523. }
  524. hit_slowpath = 1;
  525. page_cache_get(page);
  526. mutex_unlock(&dev->struct_mutex);
  527. vaddr = kmap(page);
  528. if (page_do_bit17_swizzling)
  529. ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
  530. user_data,
  531. page_length);
  532. else
  533. ret = __copy_from_user(vaddr + shmem_page_offset,
  534. user_data,
  535. page_length);
  536. kunmap(page);
  537. mutex_lock(&dev->struct_mutex);
  538. page_cache_release(page);
  539. next_page:
  540. set_page_dirty(page);
  541. mark_page_accessed(page);
  542. if (release_page)
  543. page_cache_release(page);
  544. if (ret) {
  545. ret = -EFAULT;
  546. goto out;
  547. }
  548. remain -= page_length;
  549. user_data += page_length;
  550. offset += page_length;
  551. }
  552. out:
  553. if (hit_slowpath) {
  554. /* Fixup: Kill any reinstated backing storage pages */
  555. if (obj->madv == __I915_MADV_PURGED)
  556. i915_gem_object_truncate(obj);
  557. /* and flush dirty cachelines in case the object isn't in the cpu write
  558. * domain anymore. */
  559. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  560. i915_gem_clflush_object(obj);
  561. intel_gtt_chipset_flush();
  562. }
  563. }
  564. return ret;
  565. }
  566. /**
  567. * Writes data to the object referenced by handle.
  568. *
  569. * On error, the contents of the buffer that were to be modified are undefined.
  570. */
  571. int
  572. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  573. struct drm_file *file)
  574. {
  575. struct drm_i915_gem_pwrite *args = data;
  576. struct drm_i915_gem_object *obj;
  577. int ret;
  578. if (args->size == 0)
  579. return 0;
  580. if (!access_ok(VERIFY_READ,
  581. (char __user *)(uintptr_t)args->data_ptr,
  582. args->size))
  583. return -EFAULT;
  584. ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
  585. args->size);
  586. if (ret)
  587. return -EFAULT;
  588. ret = i915_mutex_lock_interruptible(dev);
  589. if (ret)
  590. return ret;
  591. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  592. if (&obj->base == NULL) {
  593. ret = -ENOENT;
  594. goto unlock;
  595. }
  596. /* Bounds check destination. */
  597. if (args->offset > obj->base.size ||
  598. args->size > obj->base.size - args->offset) {
  599. ret = -EINVAL;
  600. goto out;
  601. }
  602. trace_i915_gem_object_pwrite(obj, args->offset, args->size);
  603. ret = -EFAULT;
  604. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  605. * it would end up going through the fenced access, and we'll get
  606. * different detiling behavior between reading and writing.
  607. * pread/pwrite currently are reading and writing from the CPU
  608. * perspective, requiring manual detiling by the client.
  609. */
  610. if (obj->phys_obj) {
  611. ret = i915_gem_phys_pwrite(dev, obj, args, file);
  612. goto out;
  613. }
  614. if (obj->gtt_space &&
  615. obj->cache_level == I915_CACHE_NONE &&
  616. obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  617. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
  618. /* Note that the gtt paths might fail with non-page-backed user
  619. * pointers (e.g. gtt mappings when moving data between
  620. * textures). Fallback to the shmem path in that case. */
  621. }
  622. if (ret == -EFAULT)
  623. ret = i915_gem_shmem_pwrite(dev, obj, args, file);
  624. out:
  625. drm_gem_object_unreference(&obj->base);
  626. unlock:
  627. mutex_unlock(&dev->struct_mutex);
  628. return ret;
  629. }
  630. /**
  631. * Called when user space prepares to use an object with the CPU, either
  632. * through the mmap ioctl's mapping or a GTT mapping.
  633. */
  634. int
  635. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  636. struct drm_file *file)
  637. {
  638. struct drm_i915_gem_set_domain *args = data;
  639. struct drm_i915_gem_object *obj;
  640. uint32_t read_domains = args->read_domains;
  641. uint32_t write_domain = args->write_domain;
  642. int ret;
  643. if (!(dev->driver->driver_features & DRIVER_GEM))
  644. return -ENODEV;
  645. /* Only handle setting domains to types used by the CPU. */
  646. if (write_domain & I915_GEM_GPU_DOMAINS)
  647. return -EINVAL;
  648. if (read_domains & I915_GEM_GPU_DOMAINS)
  649. return -EINVAL;
  650. /* Having something in the write domain implies it's in the read
  651. * domain, and only that read domain. Enforce that in the request.
  652. */
  653. if (write_domain != 0 && read_domains != write_domain)
  654. return -EINVAL;
  655. ret = i915_mutex_lock_interruptible(dev);
  656. if (ret)
  657. return ret;
  658. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  659. if (&obj->base == NULL) {
  660. ret = -ENOENT;
  661. goto unlock;
  662. }
  663. if (read_domains & I915_GEM_DOMAIN_GTT) {
  664. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  665. /* Silently promote "you're not bound, there was nothing to do"
  666. * to success, since the client was just asking us to
  667. * make sure everything was done.
  668. */
  669. if (ret == -EINVAL)
  670. ret = 0;
  671. } else {
  672. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  673. }
  674. drm_gem_object_unreference(&obj->base);
  675. unlock:
  676. mutex_unlock(&dev->struct_mutex);
  677. return ret;
  678. }
  679. /**
  680. * Called when user space has done writes to this buffer
  681. */
  682. int
  683. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  684. struct drm_file *file)
  685. {
  686. struct drm_i915_gem_sw_finish *args = data;
  687. struct drm_i915_gem_object *obj;
  688. int ret = 0;
  689. if (!(dev->driver->driver_features & DRIVER_GEM))
  690. return -ENODEV;
  691. ret = i915_mutex_lock_interruptible(dev);
  692. if (ret)
  693. return ret;
  694. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  695. if (&obj->base == NULL) {
  696. ret = -ENOENT;
  697. goto unlock;
  698. }
  699. /* Pinned buffers may be scanout, so flush the cache */
  700. if (obj->pin_count)
  701. i915_gem_object_flush_cpu_write_domain(obj);
  702. drm_gem_object_unreference(&obj->base);
  703. unlock:
  704. mutex_unlock(&dev->struct_mutex);
  705. return ret;
  706. }
  707. /**
  708. * Maps the contents of an object, returning the address it is mapped
  709. * into.
  710. *
  711. * While the mapping holds a reference on the contents of the object, it doesn't
  712. * imply a ref on the object itself.
  713. */
  714. int
  715. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  716. struct drm_file *file)
  717. {
  718. struct drm_i915_gem_mmap *args = data;
  719. struct drm_gem_object *obj;
  720. unsigned long addr;
  721. if (!(dev->driver->driver_features & DRIVER_GEM))
  722. return -ENODEV;
  723. obj = drm_gem_object_lookup(dev, file, args->handle);
  724. if (obj == NULL)
  725. return -ENOENT;
  726. down_write(&current->mm->mmap_sem);
  727. addr = do_mmap(obj->filp, 0, args->size,
  728. PROT_READ | PROT_WRITE, MAP_SHARED,
  729. args->offset);
  730. up_write(&current->mm->mmap_sem);
  731. drm_gem_object_unreference_unlocked(obj);
  732. if (IS_ERR((void *)addr))
  733. return addr;
  734. args->addr_ptr = (uint64_t) addr;
  735. return 0;
  736. }
  737. /**
  738. * i915_gem_fault - fault a page into the GTT
  739. * vma: VMA in question
  740. * vmf: fault info
  741. *
  742. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  743. * from userspace. The fault handler takes care of binding the object to
  744. * the GTT (if needed), allocating and programming a fence register (again,
  745. * only if needed based on whether the old reg is still valid or the object
  746. * is tiled) and inserting a new PTE into the faulting process.
  747. *
  748. * Note that the faulting process may involve evicting existing objects
  749. * from the GTT and/or fence registers to make room. So performance may
  750. * suffer if the GTT working set is large or there are few fence registers
  751. * left.
  752. */
  753. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  754. {
  755. struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
  756. struct drm_device *dev = obj->base.dev;
  757. drm_i915_private_t *dev_priv = dev->dev_private;
  758. pgoff_t page_offset;
  759. unsigned long pfn;
  760. int ret = 0;
  761. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  762. /* We don't use vmf->pgoff since that has the fake offset */
  763. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  764. PAGE_SHIFT;
  765. ret = i915_mutex_lock_interruptible(dev);
  766. if (ret)
  767. goto out;
  768. trace_i915_gem_object_fault(obj, page_offset, true, write);
  769. /* Now bind it into the GTT if needed */
  770. if (!obj->map_and_fenceable) {
  771. ret = i915_gem_object_unbind(obj);
  772. if (ret)
  773. goto unlock;
  774. }
  775. if (!obj->gtt_space) {
  776. ret = i915_gem_object_bind_to_gtt(obj, 0, true);
  777. if (ret)
  778. goto unlock;
  779. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  780. if (ret)
  781. goto unlock;
  782. }
  783. if (!obj->has_global_gtt_mapping)
  784. i915_gem_gtt_bind_object(obj, obj->cache_level);
  785. if (obj->tiling_mode == I915_TILING_NONE)
  786. ret = i915_gem_object_put_fence(obj);
  787. else
  788. ret = i915_gem_object_get_fence(obj, NULL);
  789. if (ret)
  790. goto unlock;
  791. if (i915_gem_object_is_inactive(obj))
  792. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  793. obj->fault_mappable = true;
  794. pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
  795. page_offset;
  796. /* Finally, remap it using the new GTT offset */
  797. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  798. unlock:
  799. mutex_unlock(&dev->struct_mutex);
  800. out:
  801. switch (ret) {
  802. case -EIO:
  803. case -EAGAIN:
  804. /* Give the error handler a chance to run and move the
  805. * objects off the GPU active list. Next time we service the
  806. * fault, we should be able to transition the page into the
  807. * GTT without touching the GPU (and so avoid further
  808. * EIO/EGAIN). If the GPU is wedged, then there is no issue
  809. * with coherency, just lost writes.
  810. */
  811. set_need_resched();
  812. case 0:
  813. case -ERESTARTSYS:
  814. case -EINTR:
  815. return VM_FAULT_NOPAGE;
  816. case -ENOMEM:
  817. return VM_FAULT_OOM;
  818. default:
  819. return VM_FAULT_SIGBUS;
  820. }
  821. }
  822. /**
  823. * i915_gem_release_mmap - remove physical page mappings
  824. * @obj: obj in question
  825. *
  826. * Preserve the reservation of the mmapping with the DRM core code, but
  827. * relinquish ownership of the pages back to the system.
  828. *
  829. * It is vital that we remove the page mapping if we have mapped a tiled
  830. * object through the GTT and then lose the fence register due to
  831. * resource pressure. Similarly if the object has been moved out of the
  832. * aperture, than pages mapped into userspace must be revoked. Removing the
  833. * mapping will then trigger a page fault on the next user access, allowing
  834. * fixup by i915_gem_fault().
  835. */
  836. void
  837. i915_gem_release_mmap(struct drm_i915_gem_object *obj)
  838. {
  839. if (!obj->fault_mappable)
  840. return;
  841. if (obj->base.dev->dev_mapping)
  842. unmap_mapping_range(obj->base.dev->dev_mapping,
  843. (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
  844. obj->base.size, 1);
  845. obj->fault_mappable = false;
  846. }
  847. static uint32_t
  848. i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
  849. {
  850. uint32_t gtt_size;
  851. if (INTEL_INFO(dev)->gen >= 4 ||
  852. tiling_mode == I915_TILING_NONE)
  853. return size;
  854. /* Previous chips need a power-of-two fence region when tiling */
  855. if (INTEL_INFO(dev)->gen == 3)
  856. gtt_size = 1024*1024;
  857. else
  858. gtt_size = 512*1024;
  859. while (gtt_size < size)
  860. gtt_size <<= 1;
  861. return gtt_size;
  862. }
  863. /**
  864. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  865. * @obj: object to check
  866. *
  867. * Return the required GTT alignment for an object, taking into account
  868. * potential fence register mapping.
  869. */
  870. static uint32_t
  871. i915_gem_get_gtt_alignment(struct drm_device *dev,
  872. uint32_t size,
  873. int tiling_mode)
  874. {
  875. /*
  876. * Minimum alignment is 4k (GTT page size), but might be greater
  877. * if a fence register is needed for the object.
  878. */
  879. if (INTEL_INFO(dev)->gen >= 4 ||
  880. tiling_mode == I915_TILING_NONE)
  881. return 4096;
  882. /*
  883. * Previous chips need to be aligned to the size of the smallest
  884. * fence register that can contain the object.
  885. */
  886. return i915_gem_get_gtt_size(dev, size, tiling_mode);
  887. }
  888. /**
  889. * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
  890. * unfenced object
  891. * @dev: the device
  892. * @size: size of the object
  893. * @tiling_mode: tiling mode of the object
  894. *
  895. * Return the required GTT alignment for an object, only taking into account
  896. * unfenced tiled surface requirements.
  897. */
  898. uint32_t
  899. i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
  900. uint32_t size,
  901. int tiling_mode)
  902. {
  903. /*
  904. * Minimum alignment is 4k (GTT page size) for sane hw.
  905. */
  906. if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
  907. tiling_mode == I915_TILING_NONE)
  908. return 4096;
  909. /* Previous hardware however needs to be aligned to a power-of-two
  910. * tile height. The simplest method for determining this is to reuse
  911. * the power-of-tile object size.
  912. */
  913. return i915_gem_get_gtt_size(dev, size, tiling_mode);
  914. }
  915. int
  916. i915_gem_mmap_gtt(struct drm_file *file,
  917. struct drm_device *dev,
  918. uint32_t handle,
  919. uint64_t *offset)
  920. {
  921. struct drm_i915_private *dev_priv = dev->dev_private;
  922. struct drm_i915_gem_object *obj;
  923. int ret;
  924. if (!(dev->driver->driver_features & DRIVER_GEM))
  925. return -ENODEV;
  926. ret = i915_mutex_lock_interruptible(dev);
  927. if (ret)
  928. return ret;
  929. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  930. if (&obj->base == NULL) {
  931. ret = -ENOENT;
  932. goto unlock;
  933. }
  934. if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
  935. ret = -E2BIG;
  936. goto out;
  937. }
  938. if (obj->madv != I915_MADV_WILLNEED) {
  939. DRM_ERROR("Attempting to mmap a purgeable buffer\n");
  940. ret = -EINVAL;
  941. goto out;
  942. }
  943. if (!obj->base.map_list.map) {
  944. ret = drm_gem_create_mmap_offset(&obj->base);
  945. if (ret)
  946. goto out;
  947. }
  948. *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
  949. out:
  950. drm_gem_object_unreference(&obj->base);
  951. unlock:
  952. mutex_unlock(&dev->struct_mutex);
  953. return ret;
  954. }
  955. /**
  956. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  957. * @dev: DRM device
  958. * @data: GTT mapping ioctl data
  959. * @file: GEM object info
  960. *
  961. * Simply returns the fake offset to userspace so it can mmap it.
  962. * The mmap call will end up in drm_gem_mmap(), which will set things
  963. * up so we can get faults in the handler above.
  964. *
  965. * The fault handler will take care of binding the object into the GTT
  966. * (since it may have been evicted to make room for something), allocating
  967. * a fence register, and mapping the appropriate aperture address into
  968. * userspace.
  969. */
  970. int
  971. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  972. struct drm_file *file)
  973. {
  974. struct drm_i915_gem_mmap_gtt *args = data;
  975. if (!(dev->driver->driver_features & DRIVER_GEM))
  976. return -ENODEV;
  977. return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
  978. }
  979. static int
  980. i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
  981. gfp_t gfpmask)
  982. {
  983. int page_count, i;
  984. struct address_space *mapping;
  985. struct inode *inode;
  986. struct page *page;
  987. /* Get the list of pages out of our struct file. They'll be pinned
  988. * at this point until we release them.
  989. */
  990. page_count = obj->base.size / PAGE_SIZE;
  991. BUG_ON(obj->pages != NULL);
  992. obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
  993. if (obj->pages == NULL)
  994. return -ENOMEM;
  995. inode = obj->base.filp->f_path.dentry->d_inode;
  996. mapping = inode->i_mapping;
  997. gfpmask |= mapping_gfp_mask(mapping);
  998. for (i = 0; i < page_count; i++) {
  999. page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
  1000. if (IS_ERR(page))
  1001. goto err_pages;
  1002. obj->pages[i] = page;
  1003. }
  1004. if (i915_gem_object_needs_bit17_swizzle(obj))
  1005. i915_gem_object_do_bit_17_swizzle(obj);
  1006. return 0;
  1007. err_pages:
  1008. while (i--)
  1009. page_cache_release(obj->pages[i]);
  1010. drm_free_large(obj->pages);
  1011. obj->pages = NULL;
  1012. return PTR_ERR(page);
  1013. }
  1014. static void
  1015. i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
  1016. {
  1017. int page_count = obj->base.size / PAGE_SIZE;
  1018. int i;
  1019. BUG_ON(obj->madv == __I915_MADV_PURGED);
  1020. if (i915_gem_object_needs_bit17_swizzle(obj))
  1021. i915_gem_object_save_bit_17_swizzle(obj);
  1022. if (obj->madv == I915_MADV_DONTNEED)
  1023. obj->dirty = 0;
  1024. for (i = 0; i < page_count; i++) {
  1025. if (obj->dirty)
  1026. set_page_dirty(obj->pages[i]);
  1027. if (obj->madv == I915_MADV_WILLNEED)
  1028. mark_page_accessed(obj->pages[i]);
  1029. page_cache_release(obj->pages[i]);
  1030. }
  1031. obj->dirty = 0;
  1032. drm_free_large(obj->pages);
  1033. obj->pages = NULL;
  1034. }
  1035. void
  1036. i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
  1037. struct intel_ring_buffer *ring,
  1038. u32 seqno)
  1039. {
  1040. struct drm_device *dev = obj->base.dev;
  1041. struct drm_i915_private *dev_priv = dev->dev_private;
  1042. BUG_ON(ring == NULL);
  1043. obj->ring = ring;
  1044. /* Add a reference if we're newly entering the active list. */
  1045. if (!obj->active) {
  1046. drm_gem_object_reference(&obj->base);
  1047. obj->active = 1;
  1048. }
  1049. /* Move from whatever list we were on to the tail of execution. */
  1050. list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
  1051. list_move_tail(&obj->ring_list, &ring->active_list);
  1052. obj->last_rendering_seqno = seqno;
  1053. if (obj->fenced_gpu_access) {
  1054. struct drm_i915_fence_reg *reg;
  1055. BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE);
  1056. obj->last_fenced_seqno = seqno;
  1057. obj->last_fenced_ring = ring;
  1058. reg = &dev_priv->fence_regs[obj->fence_reg];
  1059. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  1060. }
  1061. }
  1062. static void
  1063. i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
  1064. {
  1065. list_del_init(&obj->ring_list);
  1066. obj->last_rendering_seqno = 0;
  1067. }
  1068. static void
  1069. i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
  1070. {
  1071. struct drm_device *dev = obj->base.dev;
  1072. drm_i915_private_t *dev_priv = dev->dev_private;
  1073. BUG_ON(!obj->active);
  1074. list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
  1075. i915_gem_object_move_off_active(obj);
  1076. }
  1077. static void
  1078. i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
  1079. {
  1080. struct drm_device *dev = obj->base.dev;
  1081. struct drm_i915_private *dev_priv = dev->dev_private;
  1082. if (obj->pin_count != 0)
  1083. list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
  1084. else
  1085. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  1086. BUG_ON(!list_empty(&obj->gpu_write_list));
  1087. BUG_ON(!obj->active);
  1088. obj->ring = NULL;
  1089. i915_gem_object_move_off_active(obj);
  1090. obj->fenced_gpu_access = false;
  1091. obj->active = 0;
  1092. obj->pending_gpu_write = false;
  1093. drm_gem_object_unreference(&obj->base);
  1094. WARN_ON(i915_verify_lists(dev));
  1095. }
  1096. /* Immediately discard the backing storage */
  1097. static void
  1098. i915_gem_object_truncate(struct drm_i915_gem_object *obj)
  1099. {
  1100. struct inode *inode;
  1101. /* Our goal here is to return as much of the memory as
  1102. * is possible back to the system as we are called from OOM.
  1103. * To do this we must instruct the shmfs to drop all of its
  1104. * backing pages, *now*.
  1105. */
  1106. inode = obj->base.filp->f_path.dentry->d_inode;
  1107. shmem_truncate_range(inode, 0, (loff_t)-1);
  1108. if (obj->base.map_list.map)
  1109. drm_gem_free_mmap_offset(&obj->base);
  1110. obj->madv = __I915_MADV_PURGED;
  1111. }
  1112. static inline int
  1113. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
  1114. {
  1115. return obj->madv == I915_MADV_DONTNEED;
  1116. }
  1117. static void
  1118. i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
  1119. uint32_t flush_domains)
  1120. {
  1121. struct drm_i915_gem_object *obj, *next;
  1122. list_for_each_entry_safe(obj, next,
  1123. &ring->gpu_write_list,
  1124. gpu_write_list) {
  1125. if (obj->base.write_domain & flush_domains) {
  1126. uint32_t old_write_domain = obj->base.write_domain;
  1127. obj->base.write_domain = 0;
  1128. list_del_init(&obj->gpu_write_list);
  1129. i915_gem_object_move_to_active(obj, ring,
  1130. i915_gem_next_request_seqno(ring));
  1131. trace_i915_gem_object_change_domain(obj,
  1132. obj->base.read_domains,
  1133. old_write_domain);
  1134. }
  1135. }
  1136. }
  1137. static u32
  1138. i915_gem_get_seqno(struct drm_device *dev)
  1139. {
  1140. drm_i915_private_t *dev_priv = dev->dev_private;
  1141. u32 seqno = dev_priv->next_seqno;
  1142. /* reserve 0 for non-seqno */
  1143. if (++dev_priv->next_seqno == 0)
  1144. dev_priv->next_seqno = 1;
  1145. return seqno;
  1146. }
  1147. u32
  1148. i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
  1149. {
  1150. if (ring->outstanding_lazy_request == 0)
  1151. ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
  1152. return ring->outstanding_lazy_request;
  1153. }
  1154. int
  1155. i915_add_request(struct intel_ring_buffer *ring,
  1156. struct drm_file *file,
  1157. struct drm_i915_gem_request *request)
  1158. {
  1159. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1160. uint32_t seqno;
  1161. u32 request_ring_position;
  1162. int was_empty;
  1163. int ret;
  1164. BUG_ON(request == NULL);
  1165. seqno = i915_gem_next_request_seqno(ring);
  1166. /* Record the position of the start of the request so that
  1167. * should we detect the updated seqno part-way through the
  1168. * GPU processing the request, we never over-estimate the
  1169. * position of the head.
  1170. */
  1171. request_ring_position = intel_ring_get_tail(ring);
  1172. ret = ring->add_request(ring, &seqno);
  1173. if (ret)
  1174. return ret;
  1175. trace_i915_gem_request_add(ring, seqno);
  1176. request->seqno = seqno;
  1177. request->ring = ring;
  1178. request->tail = request_ring_position;
  1179. request->emitted_jiffies = jiffies;
  1180. was_empty = list_empty(&ring->request_list);
  1181. list_add_tail(&request->list, &ring->request_list);
  1182. if (file) {
  1183. struct drm_i915_file_private *file_priv = file->driver_priv;
  1184. spin_lock(&file_priv->mm.lock);
  1185. request->file_priv = file_priv;
  1186. list_add_tail(&request->client_list,
  1187. &file_priv->mm.request_list);
  1188. spin_unlock(&file_priv->mm.lock);
  1189. }
  1190. ring->outstanding_lazy_request = 0;
  1191. if (!dev_priv->mm.suspended) {
  1192. if (i915_enable_hangcheck) {
  1193. mod_timer(&dev_priv->hangcheck_timer,
  1194. jiffies +
  1195. msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
  1196. }
  1197. if (was_empty)
  1198. queue_delayed_work(dev_priv->wq,
  1199. &dev_priv->mm.retire_work, HZ);
  1200. }
  1201. return 0;
  1202. }
  1203. static inline void
  1204. i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
  1205. {
  1206. struct drm_i915_file_private *file_priv = request->file_priv;
  1207. if (!file_priv)
  1208. return;
  1209. spin_lock(&file_priv->mm.lock);
  1210. if (request->file_priv) {
  1211. list_del(&request->client_list);
  1212. request->file_priv = NULL;
  1213. }
  1214. spin_unlock(&file_priv->mm.lock);
  1215. }
  1216. static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
  1217. struct intel_ring_buffer *ring)
  1218. {
  1219. while (!list_empty(&ring->request_list)) {
  1220. struct drm_i915_gem_request *request;
  1221. request = list_first_entry(&ring->request_list,
  1222. struct drm_i915_gem_request,
  1223. list);
  1224. list_del(&request->list);
  1225. i915_gem_request_remove_from_client(request);
  1226. kfree(request);
  1227. }
  1228. while (!list_empty(&ring->active_list)) {
  1229. struct drm_i915_gem_object *obj;
  1230. obj = list_first_entry(&ring->active_list,
  1231. struct drm_i915_gem_object,
  1232. ring_list);
  1233. obj->base.write_domain = 0;
  1234. list_del_init(&obj->gpu_write_list);
  1235. i915_gem_object_move_to_inactive(obj);
  1236. }
  1237. }
  1238. static void i915_gem_reset_fences(struct drm_device *dev)
  1239. {
  1240. struct drm_i915_private *dev_priv = dev->dev_private;
  1241. int i;
  1242. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  1243. struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
  1244. struct drm_i915_gem_object *obj = reg->obj;
  1245. if (!obj)
  1246. continue;
  1247. if (obj->tiling_mode)
  1248. i915_gem_release_mmap(obj);
  1249. reg->obj->fence_reg = I915_FENCE_REG_NONE;
  1250. reg->obj->fenced_gpu_access = false;
  1251. reg->obj->last_fenced_seqno = 0;
  1252. reg->obj->last_fenced_ring = NULL;
  1253. i915_gem_clear_fence_reg(dev, reg);
  1254. }
  1255. }
  1256. void i915_gem_reset(struct drm_device *dev)
  1257. {
  1258. struct drm_i915_private *dev_priv = dev->dev_private;
  1259. struct drm_i915_gem_object *obj;
  1260. int i;
  1261. for (i = 0; i < I915_NUM_RINGS; i++)
  1262. i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
  1263. /* Remove anything from the flushing lists. The GPU cache is likely
  1264. * to be lost on reset along with the data, so simply move the
  1265. * lost bo to the inactive list.
  1266. */
  1267. while (!list_empty(&dev_priv->mm.flushing_list)) {
  1268. obj = list_first_entry(&dev_priv->mm.flushing_list,
  1269. struct drm_i915_gem_object,
  1270. mm_list);
  1271. obj->base.write_domain = 0;
  1272. list_del_init(&obj->gpu_write_list);
  1273. i915_gem_object_move_to_inactive(obj);
  1274. }
  1275. /* Move everything out of the GPU domains to ensure we do any
  1276. * necessary invalidation upon reuse.
  1277. */
  1278. list_for_each_entry(obj,
  1279. &dev_priv->mm.inactive_list,
  1280. mm_list)
  1281. {
  1282. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  1283. }
  1284. /* The fence registers are invalidated so clear them out */
  1285. i915_gem_reset_fences(dev);
  1286. }
  1287. /**
  1288. * This function clears the request list as sequence numbers are passed.
  1289. */
  1290. void
  1291. i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
  1292. {
  1293. uint32_t seqno;
  1294. int i;
  1295. if (list_empty(&ring->request_list))
  1296. return;
  1297. WARN_ON(i915_verify_lists(ring->dev));
  1298. seqno = ring->get_seqno(ring);
  1299. for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
  1300. if (seqno >= ring->sync_seqno[i])
  1301. ring->sync_seqno[i] = 0;
  1302. while (!list_empty(&ring->request_list)) {
  1303. struct drm_i915_gem_request *request;
  1304. request = list_first_entry(&ring->request_list,
  1305. struct drm_i915_gem_request,
  1306. list);
  1307. if (!i915_seqno_passed(seqno, request->seqno))
  1308. break;
  1309. trace_i915_gem_request_retire(ring, request->seqno);
  1310. /* We know the GPU must have read the request to have
  1311. * sent us the seqno + interrupt, so use the position
  1312. * of tail of the request to update the last known position
  1313. * of the GPU head.
  1314. */
  1315. ring->last_retired_head = request->tail;
  1316. list_del(&request->list);
  1317. i915_gem_request_remove_from_client(request);
  1318. kfree(request);
  1319. }
  1320. /* Move any buffers on the active list that are no longer referenced
  1321. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1322. */
  1323. while (!list_empty(&ring->active_list)) {
  1324. struct drm_i915_gem_object *obj;
  1325. obj = list_first_entry(&ring->active_list,
  1326. struct drm_i915_gem_object,
  1327. ring_list);
  1328. if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
  1329. break;
  1330. if (obj->base.write_domain != 0)
  1331. i915_gem_object_move_to_flushing(obj);
  1332. else
  1333. i915_gem_object_move_to_inactive(obj);
  1334. }
  1335. if (unlikely(ring->trace_irq_seqno &&
  1336. i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
  1337. ring->irq_put(ring);
  1338. ring->trace_irq_seqno = 0;
  1339. }
  1340. WARN_ON(i915_verify_lists(ring->dev));
  1341. }
  1342. void
  1343. i915_gem_retire_requests(struct drm_device *dev)
  1344. {
  1345. drm_i915_private_t *dev_priv = dev->dev_private;
  1346. int i;
  1347. if (!list_empty(&dev_priv->mm.deferred_free_list)) {
  1348. struct drm_i915_gem_object *obj, *next;
  1349. /* We must be careful that during unbind() we do not
  1350. * accidentally infinitely recurse into retire requests.
  1351. * Currently:
  1352. * retire -> free -> unbind -> wait -> retire_ring
  1353. */
  1354. list_for_each_entry_safe(obj, next,
  1355. &dev_priv->mm.deferred_free_list,
  1356. mm_list)
  1357. i915_gem_free_object_tail(obj);
  1358. }
  1359. for (i = 0; i < I915_NUM_RINGS; i++)
  1360. i915_gem_retire_requests_ring(&dev_priv->ring[i]);
  1361. }
  1362. static void
  1363. i915_gem_retire_work_handler(struct work_struct *work)
  1364. {
  1365. drm_i915_private_t *dev_priv;
  1366. struct drm_device *dev;
  1367. bool idle;
  1368. int i;
  1369. dev_priv = container_of(work, drm_i915_private_t,
  1370. mm.retire_work.work);
  1371. dev = dev_priv->dev;
  1372. /* Come back later if the device is busy... */
  1373. if (!mutex_trylock(&dev->struct_mutex)) {
  1374. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1375. return;
  1376. }
  1377. i915_gem_retire_requests(dev);
  1378. /* Send a periodic flush down the ring so we don't hold onto GEM
  1379. * objects indefinitely.
  1380. */
  1381. idle = true;
  1382. for (i = 0; i < I915_NUM_RINGS; i++) {
  1383. struct intel_ring_buffer *ring = &dev_priv->ring[i];
  1384. if (!list_empty(&ring->gpu_write_list)) {
  1385. struct drm_i915_gem_request *request;
  1386. int ret;
  1387. ret = i915_gem_flush_ring(ring,
  1388. 0, I915_GEM_GPU_DOMAINS);
  1389. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1390. if (ret || request == NULL ||
  1391. i915_add_request(ring, NULL, request))
  1392. kfree(request);
  1393. }
  1394. idle &= list_empty(&ring->request_list);
  1395. }
  1396. if (!dev_priv->mm.suspended && !idle)
  1397. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1398. mutex_unlock(&dev->struct_mutex);
  1399. }
  1400. /**
  1401. * Waits for a sequence number to be signaled, and cleans up the
  1402. * request and object lists appropriately for that event.
  1403. */
  1404. int
  1405. i915_wait_request(struct intel_ring_buffer *ring,
  1406. uint32_t seqno,
  1407. bool do_retire)
  1408. {
  1409. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1410. u32 ier;
  1411. int ret = 0;
  1412. BUG_ON(seqno == 0);
  1413. if (atomic_read(&dev_priv->mm.wedged)) {
  1414. struct completion *x = &dev_priv->error_completion;
  1415. bool recovery_complete;
  1416. unsigned long flags;
  1417. /* Give the error handler a chance to run. */
  1418. spin_lock_irqsave(&x->wait.lock, flags);
  1419. recovery_complete = x->done > 0;
  1420. spin_unlock_irqrestore(&x->wait.lock, flags);
  1421. return recovery_complete ? -EIO : -EAGAIN;
  1422. }
  1423. if (seqno == ring->outstanding_lazy_request) {
  1424. struct drm_i915_gem_request *request;
  1425. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1426. if (request == NULL)
  1427. return -ENOMEM;
  1428. ret = i915_add_request(ring, NULL, request);
  1429. if (ret) {
  1430. kfree(request);
  1431. return ret;
  1432. }
  1433. seqno = request->seqno;
  1434. }
  1435. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  1436. if (HAS_PCH_SPLIT(ring->dev))
  1437. ier = I915_READ(DEIER) | I915_READ(GTIER);
  1438. else
  1439. ier = I915_READ(IER);
  1440. if (!ier) {
  1441. DRM_ERROR("something (likely vbetool) disabled "
  1442. "interrupts, re-enabling\n");
  1443. ring->dev->driver->irq_preinstall(ring->dev);
  1444. ring->dev->driver->irq_postinstall(ring->dev);
  1445. }
  1446. trace_i915_gem_request_wait_begin(ring, seqno);
  1447. ring->waiting_seqno = seqno;
  1448. if (ring->irq_get(ring)) {
  1449. if (dev_priv->mm.interruptible)
  1450. ret = wait_event_interruptible(ring->irq_queue,
  1451. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1452. || atomic_read(&dev_priv->mm.wedged));
  1453. else
  1454. wait_event(ring->irq_queue,
  1455. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1456. || atomic_read(&dev_priv->mm.wedged));
  1457. ring->irq_put(ring);
  1458. } else if (wait_for_atomic(i915_seqno_passed(ring->get_seqno(ring),
  1459. seqno) ||
  1460. atomic_read(&dev_priv->mm.wedged), 3000))
  1461. ret = -EBUSY;
  1462. ring->waiting_seqno = 0;
  1463. trace_i915_gem_request_wait_end(ring, seqno);
  1464. }
  1465. if (atomic_read(&dev_priv->mm.wedged))
  1466. ret = -EAGAIN;
  1467. /* Directly dispatch request retiring. While we have the work queue
  1468. * to handle this, the waiter on a request often wants an associated
  1469. * buffer to have made it to the inactive list, and we would need
  1470. * a separate wait queue to handle that.
  1471. */
  1472. if (ret == 0 && do_retire)
  1473. i915_gem_retire_requests_ring(ring);
  1474. return ret;
  1475. }
  1476. /**
  1477. * Ensures that all rendering to the object has completed and the object is
  1478. * safe to unbind from the GTT or access from the CPU.
  1479. */
  1480. int
  1481. i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
  1482. {
  1483. int ret;
  1484. /* This function only exists to support waiting for existing rendering,
  1485. * not for emitting required flushes.
  1486. */
  1487. BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1488. /* If there is rendering queued on the buffer being evicted, wait for
  1489. * it.
  1490. */
  1491. if (obj->active) {
  1492. ret = i915_wait_request(obj->ring, obj->last_rendering_seqno,
  1493. true);
  1494. if (ret)
  1495. return ret;
  1496. }
  1497. return 0;
  1498. }
  1499. static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
  1500. {
  1501. u32 old_write_domain, old_read_domains;
  1502. /* Act a barrier for all accesses through the GTT */
  1503. mb();
  1504. /* Force a pagefault for domain tracking on next user access */
  1505. i915_gem_release_mmap(obj);
  1506. if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
  1507. return;
  1508. old_read_domains = obj->base.read_domains;
  1509. old_write_domain = obj->base.write_domain;
  1510. obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
  1511. obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
  1512. trace_i915_gem_object_change_domain(obj,
  1513. old_read_domains,
  1514. old_write_domain);
  1515. }
  1516. /**
  1517. * Unbinds an object from the GTT aperture.
  1518. */
  1519. int
  1520. i915_gem_object_unbind(struct drm_i915_gem_object *obj)
  1521. {
  1522. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  1523. int ret = 0;
  1524. if (obj->gtt_space == NULL)
  1525. return 0;
  1526. if (obj->pin_count != 0) {
  1527. DRM_ERROR("Attempting to unbind pinned buffer\n");
  1528. return -EINVAL;
  1529. }
  1530. ret = i915_gem_object_finish_gpu(obj);
  1531. if (ret == -ERESTARTSYS)
  1532. return ret;
  1533. /* Continue on if we fail due to EIO, the GPU is hung so we
  1534. * should be safe and we need to cleanup or else we might
  1535. * cause memory corruption through use-after-free.
  1536. */
  1537. i915_gem_object_finish_gtt(obj);
  1538. /* Move the object to the CPU domain to ensure that
  1539. * any possible CPU writes while it's not in the GTT
  1540. * are flushed when we go to remap it.
  1541. */
  1542. if (ret == 0)
  1543. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1544. if (ret == -ERESTARTSYS)
  1545. return ret;
  1546. if (ret) {
  1547. /* In the event of a disaster, abandon all caches and
  1548. * hope for the best.
  1549. */
  1550. i915_gem_clflush_object(obj);
  1551. obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  1552. }
  1553. /* release the fence reg _after_ flushing */
  1554. ret = i915_gem_object_put_fence(obj);
  1555. if (ret == -ERESTARTSYS)
  1556. return ret;
  1557. trace_i915_gem_object_unbind(obj);
  1558. if (obj->has_global_gtt_mapping)
  1559. i915_gem_gtt_unbind_object(obj);
  1560. if (obj->has_aliasing_ppgtt_mapping) {
  1561. i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
  1562. obj->has_aliasing_ppgtt_mapping = 0;
  1563. }
  1564. i915_gem_gtt_finish_object(obj);
  1565. i915_gem_object_put_pages_gtt(obj);
  1566. list_del_init(&obj->gtt_list);
  1567. list_del_init(&obj->mm_list);
  1568. /* Avoid an unnecessary call to unbind on rebind. */
  1569. obj->map_and_fenceable = true;
  1570. drm_mm_put_block(obj->gtt_space);
  1571. obj->gtt_space = NULL;
  1572. obj->gtt_offset = 0;
  1573. if (i915_gem_object_is_purgeable(obj))
  1574. i915_gem_object_truncate(obj);
  1575. return ret;
  1576. }
  1577. int
  1578. i915_gem_flush_ring(struct intel_ring_buffer *ring,
  1579. uint32_t invalidate_domains,
  1580. uint32_t flush_domains)
  1581. {
  1582. int ret;
  1583. if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
  1584. return 0;
  1585. trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
  1586. ret = ring->flush(ring, invalidate_domains, flush_domains);
  1587. if (ret)
  1588. return ret;
  1589. if (flush_domains & I915_GEM_GPU_DOMAINS)
  1590. i915_gem_process_flushing_list(ring, flush_domains);
  1591. return 0;
  1592. }
  1593. static int i915_ring_idle(struct intel_ring_buffer *ring, bool do_retire)
  1594. {
  1595. int ret;
  1596. if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
  1597. return 0;
  1598. if (!list_empty(&ring->gpu_write_list)) {
  1599. ret = i915_gem_flush_ring(ring,
  1600. I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  1601. if (ret)
  1602. return ret;
  1603. }
  1604. return i915_wait_request(ring, i915_gem_next_request_seqno(ring),
  1605. do_retire);
  1606. }
  1607. int i915_gpu_idle(struct drm_device *dev, bool do_retire)
  1608. {
  1609. drm_i915_private_t *dev_priv = dev->dev_private;
  1610. int ret, i;
  1611. /* Flush everything onto the inactive list. */
  1612. for (i = 0; i < I915_NUM_RINGS; i++) {
  1613. ret = i915_ring_idle(&dev_priv->ring[i], do_retire);
  1614. if (ret)
  1615. return ret;
  1616. }
  1617. return 0;
  1618. }
  1619. static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
  1620. struct intel_ring_buffer *pipelined)
  1621. {
  1622. struct drm_device *dev = obj->base.dev;
  1623. drm_i915_private_t *dev_priv = dev->dev_private;
  1624. u32 size = obj->gtt_space->size;
  1625. int regnum = obj->fence_reg;
  1626. uint64_t val;
  1627. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  1628. 0xfffff000) << 32;
  1629. val |= obj->gtt_offset & 0xfffff000;
  1630. val |= (uint64_t)((obj->stride / 128) - 1) <<
  1631. SANDYBRIDGE_FENCE_PITCH_SHIFT;
  1632. if (obj->tiling_mode == I915_TILING_Y)
  1633. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1634. val |= I965_FENCE_REG_VALID;
  1635. if (pipelined) {
  1636. int ret = intel_ring_begin(pipelined, 6);
  1637. if (ret)
  1638. return ret;
  1639. intel_ring_emit(pipelined, MI_NOOP);
  1640. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
  1641. intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
  1642. intel_ring_emit(pipelined, (u32)val);
  1643. intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
  1644. intel_ring_emit(pipelined, (u32)(val >> 32));
  1645. intel_ring_advance(pipelined);
  1646. } else
  1647. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);
  1648. return 0;
  1649. }
  1650. static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
  1651. struct intel_ring_buffer *pipelined)
  1652. {
  1653. struct drm_device *dev = obj->base.dev;
  1654. drm_i915_private_t *dev_priv = dev->dev_private;
  1655. u32 size = obj->gtt_space->size;
  1656. int regnum = obj->fence_reg;
  1657. uint64_t val;
  1658. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  1659. 0xfffff000) << 32;
  1660. val |= obj->gtt_offset & 0xfffff000;
  1661. val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  1662. if (obj->tiling_mode == I915_TILING_Y)
  1663. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1664. val |= I965_FENCE_REG_VALID;
  1665. if (pipelined) {
  1666. int ret = intel_ring_begin(pipelined, 6);
  1667. if (ret)
  1668. return ret;
  1669. intel_ring_emit(pipelined, MI_NOOP);
  1670. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
  1671. intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
  1672. intel_ring_emit(pipelined, (u32)val);
  1673. intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
  1674. intel_ring_emit(pipelined, (u32)(val >> 32));
  1675. intel_ring_advance(pipelined);
  1676. } else
  1677. I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);
  1678. return 0;
  1679. }
  1680. static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
  1681. struct intel_ring_buffer *pipelined)
  1682. {
  1683. struct drm_device *dev = obj->base.dev;
  1684. drm_i915_private_t *dev_priv = dev->dev_private;
  1685. u32 size = obj->gtt_space->size;
  1686. u32 fence_reg, val, pitch_val;
  1687. int tile_width;
  1688. if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
  1689. (size & -size) != size ||
  1690. (obj->gtt_offset & (size - 1)),
  1691. "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
  1692. obj->gtt_offset, obj->map_and_fenceable, size))
  1693. return -EINVAL;
  1694. if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
  1695. tile_width = 128;
  1696. else
  1697. tile_width = 512;
  1698. /* Note: pitch better be a power of two tile widths */
  1699. pitch_val = obj->stride / tile_width;
  1700. pitch_val = ffs(pitch_val) - 1;
  1701. val = obj->gtt_offset;
  1702. if (obj->tiling_mode == I915_TILING_Y)
  1703. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1704. val |= I915_FENCE_SIZE_BITS(size);
  1705. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1706. val |= I830_FENCE_REG_VALID;
  1707. fence_reg = obj->fence_reg;
  1708. if (fence_reg < 8)
  1709. fence_reg = FENCE_REG_830_0 + fence_reg * 4;
  1710. else
  1711. fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
  1712. if (pipelined) {
  1713. int ret = intel_ring_begin(pipelined, 4);
  1714. if (ret)
  1715. return ret;
  1716. intel_ring_emit(pipelined, MI_NOOP);
  1717. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
  1718. intel_ring_emit(pipelined, fence_reg);
  1719. intel_ring_emit(pipelined, val);
  1720. intel_ring_advance(pipelined);
  1721. } else
  1722. I915_WRITE(fence_reg, val);
  1723. return 0;
  1724. }
  1725. static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
  1726. struct intel_ring_buffer *pipelined)
  1727. {
  1728. struct drm_device *dev = obj->base.dev;
  1729. drm_i915_private_t *dev_priv = dev->dev_private;
  1730. u32 size = obj->gtt_space->size;
  1731. int regnum = obj->fence_reg;
  1732. uint32_t val;
  1733. uint32_t pitch_val;
  1734. if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
  1735. (size & -size) != size ||
  1736. (obj->gtt_offset & (size - 1)),
  1737. "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
  1738. obj->gtt_offset, size))
  1739. return -EINVAL;
  1740. pitch_val = obj->stride / 128;
  1741. pitch_val = ffs(pitch_val) - 1;
  1742. val = obj->gtt_offset;
  1743. if (obj->tiling_mode == I915_TILING_Y)
  1744. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1745. val |= I830_FENCE_SIZE_BITS(size);
  1746. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1747. val |= I830_FENCE_REG_VALID;
  1748. if (pipelined) {
  1749. int ret = intel_ring_begin(pipelined, 4);
  1750. if (ret)
  1751. return ret;
  1752. intel_ring_emit(pipelined, MI_NOOP);
  1753. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
  1754. intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
  1755. intel_ring_emit(pipelined, val);
  1756. intel_ring_advance(pipelined);
  1757. } else
  1758. I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);
  1759. return 0;
  1760. }
  1761. static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
  1762. {
  1763. return i915_seqno_passed(ring->get_seqno(ring), seqno);
  1764. }
  1765. static int
  1766. i915_gem_object_flush_fence(struct drm_i915_gem_object *obj,
  1767. struct intel_ring_buffer *pipelined)
  1768. {
  1769. int ret;
  1770. if (obj->fenced_gpu_access) {
  1771. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  1772. ret = i915_gem_flush_ring(obj->last_fenced_ring,
  1773. 0, obj->base.write_domain);
  1774. if (ret)
  1775. return ret;
  1776. }
  1777. obj->fenced_gpu_access = false;
  1778. }
  1779. if (obj->last_fenced_seqno && pipelined != obj->last_fenced_ring) {
  1780. if (!ring_passed_seqno(obj->last_fenced_ring,
  1781. obj->last_fenced_seqno)) {
  1782. ret = i915_wait_request(obj->last_fenced_ring,
  1783. obj->last_fenced_seqno,
  1784. true);
  1785. if (ret)
  1786. return ret;
  1787. }
  1788. obj->last_fenced_seqno = 0;
  1789. obj->last_fenced_ring = NULL;
  1790. }
  1791. /* Ensure that all CPU reads are completed before installing a fence
  1792. * and all writes before removing the fence.
  1793. */
  1794. if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
  1795. mb();
  1796. return 0;
  1797. }
  1798. int
  1799. i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
  1800. {
  1801. int ret;
  1802. if (obj->tiling_mode)
  1803. i915_gem_release_mmap(obj);
  1804. ret = i915_gem_object_flush_fence(obj, NULL);
  1805. if (ret)
  1806. return ret;
  1807. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  1808. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1809. WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count);
  1810. i915_gem_clear_fence_reg(obj->base.dev,
  1811. &dev_priv->fence_regs[obj->fence_reg]);
  1812. obj->fence_reg = I915_FENCE_REG_NONE;
  1813. }
  1814. return 0;
  1815. }
  1816. static struct drm_i915_fence_reg *
  1817. i915_find_fence_reg(struct drm_device *dev,
  1818. struct intel_ring_buffer *pipelined)
  1819. {
  1820. struct drm_i915_private *dev_priv = dev->dev_private;
  1821. struct drm_i915_fence_reg *reg, *first, *avail;
  1822. int i;
  1823. /* First try to find a free reg */
  1824. avail = NULL;
  1825. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  1826. reg = &dev_priv->fence_regs[i];
  1827. if (!reg->obj)
  1828. return reg;
  1829. if (!reg->pin_count)
  1830. avail = reg;
  1831. }
  1832. if (avail == NULL)
  1833. return NULL;
  1834. /* None available, try to steal one or wait for a user to finish */
  1835. avail = first = NULL;
  1836. list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
  1837. if (reg->pin_count)
  1838. continue;
  1839. if (first == NULL)
  1840. first = reg;
  1841. if (!pipelined ||
  1842. !reg->obj->last_fenced_ring ||
  1843. reg->obj->last_fenced_ring == pipelined) {
  1844. avail = reg;
  1845. break;
  1846. }
  1847. }
  1848. if (avail == NULL)
  1849. avail = first;
  1850. return avail;
  1851. }
  1852. /**
  1853. * i915_gem_object_get_fence - set up a fence reg for an object
  1854. * @obj: object to map through a fence reg
  1855. * @pipelined: ring on which to queue the change, or NULL for CPU access
  1856. * @interruptible: must we wait uninterruptibly for the register to retire?
  1857. *
  1858. * When mapping objects through the GTT, userspace wants to be able to write
  1859. * to them without having to worry about swizzling if the object is tiled.
  1860. *
  1861. * This function walks the fence regs looking for a free one for @obj,
  1862. * stealing one if it can't find any.
  1863. *
  1864. * It then sets up the reg based on the object's properties: address, pitch
  1865. * and tiling format.
  1866. */
  1867. int
  1868. i915_gem_object_get_fence(struct drm_i915_gem_object *obj,
  1869. struct intel_ring_buffer *pipelined)
  1870. {
  1871. struct drm_device *dev = obj->base.dev;
  1872. struct drm_i915_private *dev_priv = dev->dev_private;
  1873. struct drm_i915_fence_reg *reg;
  1874. int ret;
  1875. /* XXX disable pipelining. There are bugs. Shocking. */
  1876. pipelined = NULL;
  1877. /* Just update our place in the LRU if our fence is getting reused. */
  1878. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  1879. reg = &dev_priv->fence_regs[obj->fence_reg];
  1880. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  1881. if (obj->tiling_changed) {
  1882. ret = i915_gem_object_flush_fence(obj, pipelined);
  1883. if (ret)
  1884. return ret;
  1885. if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
  1886. pipelined = NULL;
  1887. if (pipelined) {
  1888. reg->setup_seqno =
  1889. i915_gem_next_request_seqno(pipelined);
  1890. obj->last_fenced_seqno = reg->setup_seqno;
  1891. obj->last_fenced_ring = pipelined;
  1892. }
  1893. goto update;
  1894. }
  1895. if (!pipelined) {
  1896. if (reg->setup_seqno) {
  1897. if (!ring_passed_seqno(obj->last_fenced_ring,
  1898. reg->setup_seqno)) {
  1899. ret = i915_wait_request(obj->last_fenced_ring,
  1900. reg->setup_seqno,
  1901. true);
  1902. if (ret)
  1903. return ret;
  1904. }
  1905. reg->setup_seqno = 0;
  1906. }
  1907. } else if (obj->last_fenced_ring &&
  1908. obj->last_fenced_ring != pipelined) {
  1909. ret = i915_gem_object_flush_fence(obj, pipelined);
  1910. if (ret)
  1911. return ret;
  1912. }
  1913. return 0;
  1914. }
  1915. reg = i915_find_fence_reg(dev, pipelined);
  1916. if (reg == NULL)
  1917. return -EDEADLK;
  1918. ret = i915_gem_object_flush_fence(obj, pipelined);
  1919. if (ret)
  1920. return ret;
  1921. if (reg->obj) {
  1922. struct drm_i915_gem_object *old = reg->obj;
  1923. drm_gem_object_reference(&old->base);
  1924. if (old->tiling_mode)
  1925. i915_gem_release_mmap(old);
  1926. ret = i915_gem_object_flush_fence(old, pipelined);
  1927. if (ret) {
  1928. drm_gem_object_unreference(&old->base);
  1929. return ret;
  1930. }
  1931. if (old->last_fenced_seqno == 0 && obj->last_fenced_seqno == 0)
  1932. pipelined = NULL;
  1933. old->fence_reg = I915_FENCE_REG_NONE;
  1934. old->last_fenced_ring = pipelined;
  1935. old->last_fenced_seqno =
  1936. pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
  1937. drm_gem_object_unreference(&old->base);
  1938. } else if (obj->last_fenced_seqno == 0)
  1939. pipelined = NULL;
  1940. reg->obj = obj;
  1941. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  1942. obj->fence_reg = reg - dev_priv->fence_regs;
  1943. obj->last_fenced_ring = pipelined;
  1944. reg->setup_seqno =
  1945. pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
  1946. obj->last_fenced_seqno = reg->setup_seqno;
  1947. update:
  1948. obj->tiling_changed = false;
  1949. switch (INTEL_INFO(dev)->gen) {
  1950. case 7:
  1951. case 6:
  1952. ret = sandybridge_write_fence_reg(obj, pipelined);
  1953. break;
  1954. case 5:
  1955. case 4:
  1956. ret = i965_write_fence_reg(obj, pipelined);
  1957. break;
  1958. case 3:
  1959. ret = i915_write_fence_reg(obj, pipelined);
  1960. break;
  1961. case 2:
  1962. ret = i830_write_fence_reg(obj, pipelined);
  1963. break;
  1964. }
  1965. return ret;
  1966. }
  1967. /**
  1968. * i915_gem_clear_fence_reg - clear out fence register info
  1969. * @obj: object to clear
  1970. *
  1971. * Zeroes out the fence register itself and clears out the associated
  1972. * data structures in dev_priv and obj.
  1973. */
  1974. static void
  1975. i915_gem_clear_fence_reg(struct drm_device *dev,
  1976. struct drm_i915_fence_reg *reg)
  1977. {
  1978. drm_i915_private_t *dev_priv = dev->dev_private;
  1979. uint32_t fence_reg = reg - dev_priv->fence_regs;
  1980. switch (INTEL_INFO(dev)->gen) {
  1981. case 7:
  1982. case 6:
  1983. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
  1984. break;
  1985. case 5:
  1986. case 4:
  1987. I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
  1988. break;
  1989. case 3:
  1990. if (fence_reg >= 8)
  1991. fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
  1992. else
  1993. case 2:
  1994. fence_reg = FENCE_REG_830_0 + fence_reg * 4;
  1995. I915_WRITE(fence_reg, 0);
  1996. break;
  1997. }
  1998. list_del_init(&reg->lru_list);
  1999. reg->obj = NULL;
  2000. reg->setup_seqno = 0;
  2001. reg->pin_count = 0;
  2002. }
  2003. /**
  2004. * Finds free space in the GTT aperture and binds the object there.
  2005. */
  2006. static int
  2007. i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  2008. unsigned alignment,
  2009. bool map_and_fenceable)
  2010. {
  2011. struct drm_device *dev = obj->base.dev;
  2012. drm_i915_private_t *dev_priv = dev->dev_private;
  2013. struct drm_mm_node *free_space;
  2014. gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
  2015. u32 size, fence_size, fence_alignment, unfenced_alignment;
  2016. bool mappable, fenceable;
  2017. int ret;
  2018. if (obj->madv != I915_MADV_WILLNEED) {
  2019. DRM_ERROR("Attempting to bind a purgeable object\n");
  2020. return -EINVAL;
  2021. }
  2022. fence_size = i915_gem_get_gtt_size(dev,
  2023. obj->base.size,
  2024. obj->tiling_mode);
  2025. fence_alignment = i915_gem_get_gtt_alignment(dev,
  2026. obj->base.size,
  2027. obj->tiling_mode);
  2028. unfenced_alignment =
  2029. i915_gem_get_unfenced_gtt_alignment(dev,
  2030. obj->base.size,
  2031. obj->tiling_mode);
  2032. if (alignment == 0)
  2033. alignment = map_and_fenceable ? fence_alignment :
  2034. unfenced_alignment;
  2035. if (map_and_fenceable && alignment & (fence_alignment - 1)) {
  2036. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2037. return -EINVAL;
  2038. }
  2039. size = map_and_fenceable ? fence_size : obj->base.size;
  2040. /* If the object is bigger than the entire aperture, reject it early
  2041. * before evicting everything in a vain attempt to find space.
  2042. */
  2043. if (obj->base.size >
  2044. (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
  2045. DRM_ERROR("Attempting to bind an object larger than the aperture\n");
  2046. return -E2BIG;
  2047. }
  2048. search_free:
  2049. if (map_and_fenceable)
  2050. free_space =
  2051. drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
  2052. size, alignment, 0,
  2053. dev_priv->mm.gtt_mappable_end,
  2054. 0);
  2055. else
  2056. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  2057. size, alignment, 0);
  2058. if (free_space != NULL) {
  2059. if (map_and_fenceable)
  2060. obj->gtt_space =
  2061. drm_mm_get_block_range_generic(free_space,
  2062. size, alignment, 0,
  2063. dev_priv->mm.gtt_mappable_end,
  2064. 0);
  2065. else
  2066. obj->gtt_space =
  2067. drm_mm_get_block(free_space, size, alignment);
  2068. }
  2069. if (obj->gtt_space == NULL) {
  2070. /* If the gtt is empty and we're still having trouble
  2071. * fitting our object in, we're out of memory.
  2072. */
  2073. ret = i915_gem_evict_something(dev, size, alignment,
  2074. map_and_fenceable);
  2075. if (ret)
  2076. return ret;
  2077. goto search_free;
  2078. }
  2079. ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
  2080. if (ret) {
  2081. drm_mm_put_block(obj->gtt_space);
  2082. obj->gtt_space = NULL;
  2083. if (ret == -ENOMEM) {
  2084. /* first try to reclaim some memory by clearing the GTT */
  2085. ret = i915_gem_evict_everything(dev, false);
  2086. if (ret) {
  2087. /* now try to shrink everyone else */
  2088. if (gfpmask) {
  2089. gfpmask = 0;
  2090. goto search_free;
  2091. }
  2092. return -ENOMEM;
  2093. }
  2094. goto search_free;
  2095. }
  2096. return ret;
  2097. }
  2098. ret = i915_gem_gtt_prepare_object(obj);
  2099. if (ret) {
  2100. i915_gem_object_put_pages_gtt(obj);
  2101. drm_mm_put_block(obj->gtt_space);
  2102. obj->gtt_space = NULL;
  2103. if (i915_gem_evict_everything(dev, false))
  2104. return ret;
  2105. goto search_free;
  2106. }
  2107. if (!dev_priv->mm.aliasing_ppgtt)
  2108. i915_gem_gtt_bind_object(obj, obj->cache_level);
  2109. list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
  2110. list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  2111. /* Assert that the object is not currently in any GPU domain. As it
  2112. * wasn't in the GTT, there shouldn't be any way it could have been in
  2113. * a GPU cache
  2114. */
  2115. BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
  2116. BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
  2117. obj->gtt_offset = obj->gtt_space->start;
  2118. fenceable =
  2119. obj->gtt_space->size == fence_size &&
  2120. (obj->gtt_space->start & (fence_alignment - 1)) == 0;
  2121. mappable =
  2122. obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
  2123. obj->map_and_fenceable = mappable && fenceable;
  2124. trace_i915_gem_object_bind(obj, map_and_fenceable);
  2125. return 0;
  2126. }
  2127. void
  2128. i915_gem_clflush_object(struct drm_i915_gem_object *obj)
  2129. {
  2130. /* If we don't have a page list set up, then we're not pinned
  2131. * to GPU, and we can ignore the cache flush because it'll happen
  2132. * again at bind time.
  2133. */
  2134. if (obj->pages == NULL)
  2135. return;
  2136. /* If the GPU is snooping the contents of the CPU cache,
  2137. * we do not need to manually clear the CPU cache lines. However,
  2138. * the caches are only snooped when the render cache is
  2139. * flushed/invalidated. As we always have to emit invalidations
  2140. * and flushes when moving into and out of the RENDER domain, correct
  2141. * snooping behaviour occurs naturally as the result of our domain
  2142. * tracking.
  2143. */
  2144. if (obj->cache_level != I915_CACHE_NONE)
  2145. return;
  2146. trace_i915_gem_object_clflush(obj);
  2147. drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
  2148. }
  2149. /** Flushes any GPU write domain for the object if it's dirty. */
  2150. static int
  2151. i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
  2152. {
  2153. if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
  2154. return 0;
  2155. /* Queue the GPU write cache flushing we need. */
  2156. return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
  2157. }
  2158. /** Flushes the GTT write domain for the object if it's dirty. */
  2159. static void
  2160. i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
  2161. {
  2162. uint32_t old_write_domain;
  2163. if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
  2164. return;
  2165. /* No actual flushing is required for the GTT write domain. Writes
  2166. * to it immediately go to main memory as far as we know, so there's
  2167. * no chipset flush. It also doesn't land in render cache.
  2168. *
  2169. * However, we do have to enforce the order so that all writes through
  2170. * the GTT land before any writes to the device, such as updates to
  2171. * the GATT itself.
  2172. */
  2173. wmb();
  2174. old_write_domain = obj->base.write_domain;
  2175. obj->base.write_domain = 0;
  2176. trace_i915_gem_object_change_domain(obj,
  2177. obj->base.read_domains,
  2178. old_write_domain);
  2179. }
  2180. /** Flushes the CPU write domain for the object if it's dirty. */
  2181. static void
  2182. i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
  2183. {
  2184. uint32_t old_write_domain;
  2185. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
  2186. return;
  2187. i915_gem_clflush_object(obj);
  2188. intel_gtt_chipset_flush();
  2189. old_write_domain = obj->base.write_domain;
  2190. obj->base.write_domain = 0;
  2191. trace_i915_gem_object_change_domain(obj,
  2192. obj->base.read_domains,
  2193. old_write_domain);
  2194. }
  2195. /**
  2196. * Moves a single object to the GTT read, and possibly write domain.
  2197. *
  2198. * This function returns when the move is complete, including waiting on
  2199. * flushes to occur.
  2200. */
  2201. int
  2202. i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
  2203. {
  2204. uint32_t old_write_domain, old_read_domains;
  2205. int ret;
  2206. /* Not valid to be called on unbound objects. */
  2207. if (obj->gtt_space == NULL)
  2208. return -EINVAL;
  2209. if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
  2210. return 0;
  2211. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2212. if (ret)
  2213. return ret;
  2214. if (obj->pending_gpu_write || write) {
  2215. ret = i915_gem_object_wait_rendering(obj);
  2216. if (ret)
  2217. return ret;
  2218. }
  2219. i915_gem_object_flush_cpu_write_domain(obj);
  2220. old_write_domain = obj->base.write_domain;
  2221. old_read_domains = obj->base.read_domains;
  2222. /* It should now be out of any other write domains, and we can update
  2223. * the domain values for our changes.
  2224. */
  2225. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2226. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2227. if (write) {
  2228. obj->base.read_domains = I915_GEM_DOMAIN_GTT;
  2229. obj->base.write_domain = I915_GEM_DOMAIN_GTT;
  2230. obj->dirty = 1;
  2231. }
  2232. trace_i915_gem_object_change_domain(obj,
  2233. old_read_domains,
  2234. old_write_domain);
  2235. return 0;
  2236. }
  2237. int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
  2238. enum i915_cache_level cache_level)
  2239. {
  2240. struct drm_device *dev = obj->base.dev;
  2241. drm_i915_private_t *dev_priv = dev->dev_private;
  2242. int ret;
  2243. if (obj->cache_level == cache_level)
  2244. return 0;
  2245. if (obj->pin_count) {
  2246. DRM_DEBUG("can not change the cache level of pinned objects\n");
  2247. return -EBUSY;
  2248. }
  2249. if (obj->gtt_space) {
  2250. ret = i915_gem_object_finish_gpu(obj);
  2251. if (ret)
  2252. return ret;
  2253. i915_gem_object_finish_gtt(obj);
  2254. /* Before SandyBridge, you could not use tiling or fence
  2255. * registers with snooped memory, so relinquish any fences
  2256. * currently pointing to our region in the aperture.
  2257. */
  2258. if (INTEL_INFO(obj->base.dev)->gen < 6) {
  2259. ret = i915_gem_object_put_fence(obj);
  2260. if (ret)
  2261. return ret;
  2262. }
  2263. if (obj->has_global_gtt_mapping)
  2264. i915_gem_gtt_bind_object(obj, cache_level);
  2265. if (obj->has_aliasing_ppgtt_mapping)
  2266. i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
  2267. obj, cache_level);
  2268. }
  2269. if (cache_level == I915_CACHE_NONE) {
  2270. u32 old_read_domains, old_write_domain;
  2271. /* If we're coming from LLC cached, then we haven't
  2272. * actually been tracking whether the data is in the
  2273. * CPU cache or not, since we only allow one bit set
  2274. * in obj->write_domain and have been skipping the clflushes.
  2275. * Just set it to the CPU cache for now.
  2276. */
  2277. WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
  2278. WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
  2279. old_read_domains = obj->base.read_domains;
  2280. old_write_domain = obj->base.write_domain;
  2281. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2282. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2283. trace_i915_gem_object_change_domain(obj,
  2284. old_read_domains,
  2285. old_write_domain);
  2286. }
  2287. obj->cache_level = cache_level;
  2288. return 0;
  2289. }
  2290. /*
  2291. * Prepare buffer for display plane (scanout, cursors, etc).
  2292. * Can be called from an uninterruptible phase (modesetting) and allows
  2293. * any flushes to be pipelined (for pageflips).
  2294. *
  2295. * For the display plane, we want to be in the GTT but out of any write
  2296. * domains. So in many ways this looks like set_to_gtt_domain() apart from the
  2297. * ability to pipeline the waits, pinning and any additional subtleties
  2298. * that may differentiate the display plane from ordinary buffers.
  2299. */
  2300. int
  2301. i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
  2302. u32 alignment,
  2303. struct intel_ring_buffer *pipelined)
  2304. {
  2305. u32 old_read_domains, old_write_domain;
  2306. int ret;
  2307. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2308. if (ret)
  2309. return ret;
  2310. if (pipelined != obj->ring) {
  2311. ret = i915_gem_object_wait_rendering(obj);
  2312. if (ret == -ERESTARTSYS)
  2313. return ret;
  2314. }
  2315. /* The display engine is not coherent with the LLC cache on gen6. As
  2316. * a result, we make sure that the pinning that is about to occur is
  2317. * done with uncached PTEs. This is lowest common denominator for all
  2318. * chipsets.
  2319. *
  2320. * However for gen6+, we could do better by using the GFDT bit instead
  2321. * of uncaching, which would allow us to flush all the LLC-cached data
  2322. * with that bit in the PTE to main memory with just one PIPE_CONTROL.
  2323. */
  2324. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
  2325. if (ret)
  2326. return ret;
  2327. /* As the user may map the buffer once pinned in the display plane
  2328. * (e.g. libkms for the bootup splash), we have to ensure that we
  2329. * always use map_and_fenceable for all scanout buffers.
  2330. */
  2331. ret = i915_gem_object_pin(obj, alignment, true);
  2332. if (ret)
  2333. return ret;
  2334. i915_gem_object_flush_cpu_write_domain(obj);
  2335. old_write_domain = obj->base.write_domain;
  2336. old_read_domains = obj->base.read_domains;
  2337. /* It should now be out of any other write domains, and we can update
  2338. * the domain values for our changes.
  2339. */
  2340. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2341. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2342. trace_i915_gem_object_change_domain(obj,
  2343. old_read_domains,
  2344. old_write_domain);
  2345. return 0;
  2346. }
  2347. int
  2348. i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
  2349. {
  2350. int ret;
  2351. if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
  2352. return 0;
  2353. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2354. ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
  2355. if (ret)
  2356. return ret;
  2357. }
  2358. ret = i915_gem_object_wait_rendering(obj);
  2359. if (ret)
  2360. return ret;
  2361. /* Ensure that we invalidate the GPU's caches and TLBs. */
  2362. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  2363. return 0;
  2364. }
  2365. /**
  2366. * Moves a single object to the CPU read, and possibly write domain.
  2367. *
  2368. * This function returns when the move is complete, including waiting on
  2369. * flushes to occur.
  2370. */
  2371. int
  2372. i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
  2373. {
  2374. uint32_t old_write_domain, old_read_domains;
  2375. int ret;
  2376. if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
  2377. return 0;
  2378. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2379. if (ret)
  2380. return ret;
  2381. ret = i915_gem_object_wait_rendering(obj);
  2382. if (ret)
  2383. return ret;
  2384. i915_gem_object_flush_gtt_write_domain(obj);
  2385. old_write_domain = obj->base.write_domain;
  2386. old_read_domains = obj->base.read_domains;
  2387. /* Flush the CPU cache if it's still invalid. */
  2388. if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2389. i915_gem_clflush_object(obj);
  2390. obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
  2391. }
  2392. /* It should now be out of any other write domains, and we can update
  2393. * the domain values for our changes.
  2394. */
  2395. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2396. /* If we're writing through the CPU, then the GPU read domains will
  2397. * need to be invalidated at next use.
  2398. */
  2399. if (write) {
  2400. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2401. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2402. }
  2403. trace_i915_gem_object_change_domain(obj,
  2404. old_read_domains,
  2405. old_write_domain);
  2406. return 0;
  2407. }
  2408. /* Throttle our rendering by waiting until the ring has completed our requests
  2409. * emitted over 20 msec ago.
  2410. *
  2411. * Note that if we were to use the current jiffies each time around the loop,
  2412. * we wouldn't escape the function with any frames outstanding if the time to
  2413. * render a frame was over 20ms.
  2414. *
  2415. * This should get us reasonable parallelism between CPU and GPU but also
  2416. * relatively low latency when blocking on a particular request to finish.
  2417. */
  2418. static int
  2419. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
  2420. {
  2421. struct drm_i915_private *dev_priv = dev->dev_private;
  2422. struct drm_i915_file_private *file_priv = file->driver_priv;
  2423. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  2424. struct drm_i915_gem_request *request;
  2425. struct intel_ring_buffer *ring = NULL;
  2426. u32 seqno = 0;
  2427. int ret;
  2428. if (atomic_read(&dev_priv->mm.wedged))
  2429. return -EIO;
  2430. spin_lock(&file_priv->mm.lock);
  2431. list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
  2432. if (time_after_eq(request->emitted_jiffies, recent_enough))
  2433. break;
  2434. ring = request->ring;
  2435. seqno = request->seqno;
  2436. }
  2437. spin_unlock(&file_priv->mm.lock);
  2438. if (seqno == 0)
  2439. return 0;
  2440. ret = 0;
  2441. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  2442. /* And wait for the seqno passing without holding any locks and
  2443. * causing extra latency for others. This is safe as the irq
  2444. * generation is designed to be run atomically and so is
  2445. * lockless.
  2446. */
  2447. if (ring->irq_get(ring)) {
  2448. ret = wait_event_interruptible(ring->irq_queue,
  2449. i915_seqno_passed(ring->get_seqno(ring), seqno)
  2450. || atomic_read(&dev_priv->mm.wedged));
  2451. ring->irq_put(ring);
  2452. if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
  2453. ret = -EIO;
  2454. } else if (wait_for_atomic(i915_seqno_passed(ring->get_seqno(ring),
  2455. seqno) ||
  2456. atomic_read(&dev_priv->mm.wedged), 3000)) {
  2457. ret = -EBUSY;
  2458. }
  2459. }
  2460. if (ret == 0)
  2461. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
  2462. return ret;
  2463. }
  2464. int
  2465. i915_gem_object_pin(struct drm_i915_gem_object *obj,
  2466. uint32_t alignment,
  2467. bool map_and_fenceable)
  2468. {
  2469. struct drm_device *dev = obj->base.dev;
  2470. struct drm_i915_private *dev_priv = dev->dev_private;
  2471. int ret;
  2472. BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
  2473. WARN_ON(i915_verify_lists(dev));
  2474. if (obj->gtt_space != NULL) {
  2475. if ((alignment && obj->gtt_offset & (alignment - 1)) ||
  2476. (map_and_fenceable && !obj->map_and_fenceable)) {
  2477. WARN(obj->pin_count,
  2478. "bo is already pinned with incorrect alignment:"
  2479. " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
  2480. " obj->map_and_fenceable=%d\n",
  2481. obj->gtt_offset, alignment,
  2482. map_and_fenceable,
  2483. obj->map_and_fenceable);
  2484. ret = i915_gem_object_unbind(obj);
  2485. if (ret)
  2486. return ret;
  2487. }
  2488. }
  2489. if (obj->gtt_space == NULL) {
  2490. ret = i915_gem_object_bind_to_gtt(obj, alignment,
  2491. map_and_fenceable);
  2492. if (ret)
  2493. return ret;
  2494. }
  2495. if (!obj->has_global_gtt_mapping && map_and_fenceable)
  2496. i915_gem_gtt_bind_object(obj, obj->cache_level);
  2497. if (obj->pin_count++ == 0) {
  2498. if (!obj->active)
  2499. list_move_tail(&obj->mm_list,
  2500. &dev_priv->mm.pinned_list);
  2501. }
  2502. obj->pin_mappable |= map_and_fenceable;
  2503. WARN_ON(i915_verify_lists(dev));
  2504. return 0;
  2505. }
  2506. void
  2507. i915_gem_object_unpin(struct drm_i915_gem_object *obj)
  2508. {
  2509. struct drm_device *dev = obj->base.dev;
  2510. drm_i915_private_t *dev_priv = dev->dev_private;
  2511. WARN_ON(i915_verify_lists(dev));
  2512. BUG_ON(obj->pin_count == 0);
  2513. BUG_ON(obj->gtt_space == NULL);
  2514. if (--obj->pin_count == 0) {
  2515. if (!obj->active)
  2516. list_move_tail(&obj->mm_list,
  2517. &dev_priv->mm.inactive_list);
  2518. obj->pin_mappable = false;
  2519. }
  2520. WARN_ON(i915_verify_lists(dev));
  2521. }
  2522. int
  2523. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  2524. struct drm_file *file)
  2525. {
  2526. struct drm_i915_gem_pin *args = data;
  2527. struct drm_i915_gem_object *obj;
  2528. int ret;
  2529. ret = i915_mutex_lock_interruptible(dev);
  2530. if (ret)
  2531. return ret;
  2532. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2533. if (&obj->base == NULL) {
  2534. ret = -ENOENT;
  2535. goto unlock;
  2536. }
  2537. if (obj->madv != I915_MADV_WILLNEED) {
  2538. DRM_ERROR("Attempting to pin a purgeable buffer\n");
  2539. ret = -EINVAL;
  2540. goto out;
  2541. }
  2542. if (obj->pin_filp != NULL && obj->pin_filp != file) {
  2543. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  2544. args->handle);
  2545. ret = -EINVAL;
  2546. goto out;
  2547. }
  2548. obj->user_pin_count++;
  2549. obj->pin_filp = file;
  2550. if (obj->user_pin_count == 1) {
  2551. ret = i915_gem_object_pin(obj, args->alignment, true);
  2552. if (ret)
  2553. goto out;
  2554. }
  2555. /* XXX - flush the CPU caches for pinned objects
  2556. * as the X server doesn't manage domains yet
  2557. */
  2558. i915_gem_object_flush_cpu_write_domain(obj);
  2559. args->offset = obj->gtt_offset;
  2560. out:
  2561. drm_gem_object_unreference(&obj->base);
  2562. unlock:
  2563. mutex_unlock(&dev->struct_mutex);
  2564. return ret;
  2565. }
  2566. int
  2567. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  2568. struct drm_file *file)
  2569. {
  2570. struct drm_i915_gem_pin *args = data;
  2571. struct drm_i915_gem_object *obj;
  2572. int ret;
  2573. ret = i915_mutex_lock_interruptible(dev);
  2574. if (ret)
  2575. return ret;
  2576. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2577. if (&obj->base == NULL) {
  2578. ret = -ENOENT;
  2579. goto unlock;
  2580. }
  2581. if (obj->pin_filp != file) {
  2582. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  2583. args->handle);
  2584. ret = -EINVAL;
  2585. goto out;
  2586. }
  2587. obj->user_pin_count--;
  2588. if (obj->user_pin_count == 0) {
  2589. obj->pin_filp = NULL;
  2590. i915_gem_object_unpin(obj);
  2591. }
  2592. out:
  2593. drm_gem_object_unreference(&obj->base);
  2594. unlock:
  2595. mutex_unlock(&dev->struct_mutex);
  2596. return ret;
  2597. }
  2598. int
  2599. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  2600. struct drm_file *file)
  2601. {
  2602. struct drm_i915_gem_busy *args = data;
  2603. struct drm_i915_gem_object *obj;
  2604. int ret;
  2605. ret = i915_mutex_lock_interruptible(dev);
  2606. if (ret)
  2607. return ret;
  2608. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2609. if (&obj->base == NULL) {
  2610. ret = -ENOENT;
  2611. goto unlock;
  2612. }
  2613. /* Count all active objects as busy, even if they are currently not used
  2614. * by the gpu. Users of this interface expect objects to eventually
  2615. * become non-busy without any further actions, therefore emit any
  2616. * necessary flushes here.
  2617. */
  2618. args->busy = obj->active;
  2619. if (args->busy) {
  2620. /* Unconditionally flush objects, even when the gpu still uses this
  2621. * object. Userspace calling this function indicates that it wants to
  2622. * use this buffer rather sooner than later, so issuing the required
  2623. * flush earlier is beneficial.
  2624. */
  2625. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2626. ret = i915_gem_flush_ring(obj->ring,
  2627. 0, obj->base.write_domain);
  2628. } else if (obj->ring->outstanding_lazy_request ==
  2629. obj->last_rendering_seqno) {
  2630. struct drm_i915_gem_request *request;
  2631. /* This ring is not being cleared by active usage,
  2632. * so emit a request to do so.
  2633. */
  2634. request = kzalloc(sizeof(*request), GFP_KERNEL);
  2635. if (request) {
  2636. ret = i915_add_request(obj->ring, NULL, request);
  2637. if (ret)
  2638. kfree(request);
  2639. } else
  2640. ret = -ENOMEM;
  2641. }
  2642. /* Update the active list for the hardware's current position.
  2643. * Otherwise this only updates on a delayed timer or when irqs
  2644. * are actually unmasked, and our working set ends up being
  2645. * larger than required.
  2646. */
  2647. i915_gem_retire_requests_ring(obj->ring);
  2648. args->busy = obj->active;
  2649. }
  2650. drm_gem_object_unreference(&obj->base);
  2651. unlock:
  2652. mutex_unlock(&dev->struct_mutex);
  2653. return ret;
  2654. }
  2655. int
  2656. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  2657. struct drm_file *file_priv)
  2658. {
  2659. return i915_gem_ring_throttle(dev, file_priv);
  2660. }
  2661. int
  2662. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  2663. struct drm_file *file_priv)
  2664. {
  2665. struct drm_i915_gem_madvise *args = data;
  2666. struct drm_i915_gem_object *obj;
  2667. int ret;
  2668. switch (args->madv) {
  2669. case I915_MADV_DONTNEED:
  2670. case I915_MADV_WILLNEED:
  2671. break;
  2672. default:
  2673. return -EINVAL;
  2674. }
  2675. ret = i915_mutex_lock_interruptible(dev);
  2676. if (ret)
  2677. return ret;
  2678. obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
  2679. if (&obj->base == NULL) {
  2680. ret = -ENOENT;
  2681. goto unlock;
  2682. }
  2683. if (obj->pin_count) {
  2684. ret = -EINVAL;
  2685. goto out;
  2686. }
  2687. if (obj->madv != __I915_MADV_PURGED)
  2688. obj->madv = args->madv;
  2689. /* if the object is no longer bound, discard its backing storage */
  2690. if (i915_gem_object_is_purgeable(obj) &&
  2691. obj->gtt_space == NULL)
  2692. i915_gem_object_truncate(obj);
  2693. args->retained = obj->madv != __I915_MADV_PURGED;
  2694. out:
  2695. drm_gem_object_unreference(&obj->base);
  2696. unlock:
  2697. mutex_unlock(&dev->struct_mutex);
  2698. return ret;
  2699. }
  2700. struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
  2701. size_t size)
  2702. {
  2703. struct drm_i915_private *dev_priv = dev->dev_private;
  2704. struct drm_i915_gem_object *obj;
  2705. struct address_space *mapping;
  2706. obj = kzalloc(sizeof(*obj), GFP_KERNEL);
  2707. if (obj == NULL)
  2708. return NULL;
  2709. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  2710. kfree(obj);
  2711. return NULL;
  2712. }
  2713. mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  2714. mapping_set_gfp_mask(mapping, GFP_HIGHUSER | __GFP_RECLAIMABLE);
  2715. i915_gem_info_add_obj(dev_priv, size);
  2716. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2717. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2718. if (HAS_LLC(dev)) {
  2719. /* On some devices, we can have the GPU use the LLC (the CPU
  2720. * cache) for about a 10% performance improvement
  2721. * compared to uncached. Graphics requests other than
  2722. * display scanout are coherent with the CPU in
  2723. * accessing this cache. This means in this mode we
  2724. * don't need to clflush on the CPU side, and on the
  2725. * GPU side we only need to flush internal caches to
  2726. * get data visible to the CPU.
  2727. *
  2728. * However, we maintain the display planes as UC, and so
  2729. * need to rebind when first used as such.
  2730. */
  2731. obj->cache_level = I915_CACHE_LLC;
  2732. } else
  2733. obj->cache_level = I915_CACHE_NONE;
  2734. obj->base.driver_private = NULL;
  2735. obj->fence_reg = I915_FENCE_REG_NONE;
  2736. INIT_LIST_HEAD(&obj->mm_list);
  2737. INIT_LIST_HEAD(&obj->gtt_list);
  2738. INIT_LIST_HEAD(&obj->ring_list);
  2739. INIT_LIST_HEAD(&obj->exec_list);
  2740. INIT_LIST_HEAD(&obj->gpu_write_list);
  2741. obj->madv = I915_MADV_WILLNEED;
  2742. /* Avoid an unnecessary call to unbind on the first bind. */
  2743. obj->map_and_fenceable = true;
  2744. return obj;
  2745. }
  2746. int i915_gem_init_object(struct drm_gem_object *obj)
  2747. {
  2748. BUG();
  2749. return 0;
  2750. }
  2751. static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
  2752. {
  2753. struct drm_device *dev = obj->base.dev;
  2754. drm_i915_private_t *dev_priv = dev->dev_private;
  2755. int ret;
  2756. ret = i915_gem_object_unbind(obj);
  2757. if (ret == -ERESTARTSYS) {
  2758. list_move(&obj->mm_list,
  2759. &dev_priv->mm.deferred_free_list);
  2760. return;
  2761. }
  2762. trace_i915_gem_object_destroy(obj);
  2763. if (obj->base.map_list.map)
  2764. drm_gem_free_mmap_offset(&obj->base);
  2765. drm_gem_object_release(&obj->base);
  2766. i915_gem_info_remove_obj(dev_priv, obj->base.size);
  2767. kfree(obj->bit_17);
  2768. kfree(obj);
  2769. }
  2770. void i915_gem_free_object(struct drm_gem_object *gem_obj)
  2771. {
  2772. struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
  2773. struct drm_device *dev = obj->base.dev;
  2774. while (obj->pin_count > 0)
  2775. i915_gem_object_unpin(obj);
  2776. if (obj->phys_obj)
  2777. i915_gem_detach_phys_object(dev, obj);
  2778. i915_gem_free_object_tail(obj);
  2779. }
  2780. int
  2781. i915_gem_idle(struct drm_device *dev)
  2782. {
  2783. drm_i915_private_t *dev_priv = dev->dev_private;
  2784. int ret;
  2785. mutex_lock(&dev->struct_mutex);
  2786. if (dev_priv->mm.suspended) {
  2787. mutex_unlock(&dev->struct_mutex);
  2788. return 0;
  2789. }
  2790. ret = i915_gpu_idle(dev, true);
  2791. if (ret) {
  2792. mutex_unlock(&dev->struct_mutex);
  2793. return ret;
  2794. }
  2795. /* Under UMS, be paranoid and evict. */
  2796. if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
  2797. ret = i915_gem_evict_inactive(dev, false);
  2798. if (ret) {
  2799. mutex_unlock(&dev->struct_mutex);
  2800. return ret;
  2801. }
  2802. }
  2803. i915_gem_reset_fences(dev);
  2804. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  2805. * We need to replace this with a semaphore, or something.
  2806. * And not confound mm.suspended!
  2807. */
  2808. dev_priv->mm.suspended = 1;
  2809. del_timer_sync(&dev_priv->hangcheck_timer);
  2810. i915_kernel_lost_context(dev);
  2811. i915_gem_cleanup_ringbuffer(dev);
  2812. mutex_unlock(&dev->struct_mutex);
  2813. /* Cancel the retire work handler, which should be idle now. */
  2814. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  2815. return 0;
  2816. }
  2817. void i915_gem_init_swizzling(struct drm_device *dev)
  2818. {
  2819. drm_i915_private_t *dev_priv = dev->dev_private;
  2820. if (INTEL_INFO(dev)->gen < 5 ||
  2821. dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
  2822. return;
  2823. I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
  2824. DISP_TILE_SURFACE_SWIZZLING);
  2825. if (IS_GEN5(dev))
  2826. return;
  2827. I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
  2828. if (IS_GEN6(dev))
  2829. I915_WRITE(ARB_MODE, ARB_MODE_ENABLE(ARB_MODE_SWIZZLE_SNB));
  2830. else
  2831. I915_WRITE(ARB_MODE, ARB_MODE_ENABLE(ARB_MODE_SWIZZLE_IVB));
  2832. }
  2833. void i915_gem_init_ppgtt(struct drm_device *dev)
  2834. {
  2835. drm_i915_private_t *dev_priv = dev->dev_private;
  2836. uint32_t pd_offset;
  2837. struct intel_ring_buffer *ring;
  2838. int i;
  2839. if (!dev_priv->mm.aliasing_ppgtt)
  2840. return;
  2841. pd_offset = dev_priv->mm.aliasing_ppgtt->pd_offset;
  2842. pd_offset /= 64; /* in cachelines, */
  2843. pd_offset <<= 16;
  2844. if (INTEL_INFO(dev)->gen == 6) {
  2845. uint32_t ecochk = I915_READ(GAM_ECOCHK);
  2846. I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
  2847. ECOCHK_PPGTT_CACHE64B);
  2848. I915_WRITE(GFX_MODE, GFX_MODE_ENABLE(GFX_PPGTT_ENABLE));
  2849. } else if (INTEL_INFO(dev)->gen >= 7) {
  2850. I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
  2851. /* GFX_MODE is per-ring on gen7+ */
  2852. }
  2853. for (i = 0; i < I915_NUM_RINGS; i++) {
  2854. ring = &dev_priv->ring[i];
  2855. if (INTEL_INFO(dev)->gen >= 7)
  2856. I915_WRITE(RING_MODE_GEN7(ring),
  2857. GFX_MODE_ENABLE(GFX_PPGTT_ENABLE));
  2858. I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
  2859. I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
  2860. }
  2861. }
  2862. int
  2863. i915_gem_init_hw(struct drm_device *dev)
  2864. {
  2865. drm_i915_private_t *dev_priv = dev->dev_private;
  2866. int ret;
  2867. i915_gem_init_swizzling(dev);
  2868. ret = intel_init_render_ring_buffer(dev);
  2869. if (ret)
  2870. return ret;
  2871. if (HAS_BSD(dev)) {
  2872. ret = intel_init_bsd_ring_buffer(dev);
  2873. if (ret)
  2874. goto cleanup_render_ring;
  2875. }
  2876. if (HAS_BLT(dev)) {
  2877. ret = intel_init_blt_ring_buffer(dev);
  2878. if (ret)
  2879. goto cleanup_bsd_ring;
  2880. }
  2881. dev_priv->next_seqno = 1;
  2882. i915_gem_init_ppgtt(dev);
  2883. return 0;
  2884. cleanup_bsd_ring:
  2885. intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
  2886. cleanup_render_ring:
  2887. intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
  2888. return ret;
  2889. }
  2890. void
  2891. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  2892. {
  2893. drm_i915_private_t *dev_priv = dev->dev_private;
  2894. int i;
  2895. for (i = 0; i < I915_NUM_RINGS; i++)
  2896. intel_cleanup_ring_buffer(&dev_priv->ring[i]);
  2897. }
  2898. int
  2899. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  2900. struct drm_file *file_priv)
  2901. {
  2902. drm_i915_private_t *dev_priv = dev->dev_private;
  2903. int ret, i;
  2904. if (drm_core_check_feature(dev, DRIVER_MODESET))
  2905. return 0;
  2906. if (atomic_read(&dev_priv->mm.wedged)) {
  2907. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  2908. atomic_set(&dev_priv->mm.wedged, 0);
  2909. }
  2910. mutex_lock(&dev->struct_mutex);
  2911. dev_priv->mm.suspended = 0;
  2912. ret = i915_gem_init_hw(dev);
  2913. if (ret != 0) {
  2914. mutex_unlock(&dev->struct_mutex);
  2915. return ret;
  2916. }
  2917. BUG_ON(!list_empty(&dev_priv->mm.active_list));
  2918. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  2919. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  2920. for (i = 0; i < I915_NUM_RINGS; i++) {
  2921. BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
  2922. BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
  2923. }
  2924. mutex_unlock(&dev->struct_mutex);
  2925. ret = drm_irq_install(dev);
  2926. if (ret)
  2927. goto cleanup_ringbuffer;
  2928. return 0;
  2929. cleanup_ringbuffer:
  2930. mutex_lock(&dev->struct_mutex);
  2931. i915_gem_cleanup_ringbuffer(dev);
  2932. dev_priv->mm.suspended = 1;
  2933. mutex_unlock(&dev->struct_mutex);
  2934. return ret;
  2935. }
  2936. int
  2937. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  2938. struct drm_file *file_priv)
  2939. {
  2940. if (drm_core_check_feature(dev, DRIVER_MODESET))
  2941. return 0;
  2942. drm_irq_uninstall(dev);
  2943. return i915_gem_idle(dev);
  2944. }
  2945. void
  2946. i915_gem_lastclose(struct drm_device *dev)
  2947. {
  2948. int ret;
  2949. if (drm_core_check_feature(dev, DRIVER_MODESET))
  2950. return;
  2951. ret = i915_gem_idle(dev);
  2952. if (ret)
  2953. DRM_ERROR("failed to idle hardware: %d\n", ret);
  2954. }
  2955. static void
  2956. init_ring_lists(struct intel_ring_buffer *ring)
  2957. {
  2958. INIT_LIST_HEAD(&ring->active_list);
  2959. INIT_LIST_HEAD(&ring->request_list);
  2960. INIT_LIST_HEAD(&ring->gpu_write_list);
  2961. }
  2962. void
  2963. i915_gem_load(struct drm_device *dev)
  2964. {
  2965. int i;
  2966. drm_i915_private_t *dev_priv = dev->dev_private;
  2967. INIT_LIST_HEAD(&dev_priv->mm.active_list);
  2968. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  2969. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  2970. INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
  2971. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  2972. INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
  2973. INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
  2974. for (i = 0; i < I915_NUM_RINGS; i++)
  2975. init_ring_lists(&dev_priv->ring[i]);
  2976. for (i = 0; i < I915_MAX_NUM_FENCES; i++)
  2977. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  2978. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  2979. i915_gem_retire_work_handler);
  2980. init_completion(&dev_priv->error_completion);
  2981. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  2982. if (IS_GEN3(dev)) {
  2983. u32 tmp = I915_READ(MI_ARB_STATE);
  2984. if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
  2985. /* arb state is a masked write, so set bit + bit in mask */
  2986. tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
  2987. I915_WRITE(MI_ARB_STATE, tmp);
  2988. }
  2989. }
  2990. dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
  2991. /* Old X drivers will take 0-2 for front, back, depth buffers */
  2992. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  2993. dev_priv->fence_reg_start = 3;
  2994. if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  2995. dev_priv->num_fence_regs = 16;
  2996. else
  2997. dev_priv->num_fence_regs = 8;
  2998. /* Initialize fence registers to zero */
  2999. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  3000. i915_gem_clear_fence_reg(dev, &dev_priv->fence_regs[i]);
  3001. }
  3002. i915_gem_detect_bit_6_swizzle(dev);
  3003. init_waitqueue_head(&dev_priv->pending_flip_queue);
  3004. dev_priv->mm.interruptible = true;
  3005. dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
  3006. dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
  3007. register_shrinker(&dev_priv->mm.inactive_shrinker);
  3008. }
  3009. /*
  3010. * Create a physically contiguous memory object for this object
  3011. * e.g. for cursor + overlay regs
  3012. */
  3013. static int i915_gem_init_phys_object(struct drm_device *dev,
  3014. int id, int size, int align)
  3015. {
  3016. drm_i915_private_t *dev_priv = dev->dev_private;
  3017. struct drm_i915_gem_phys_object *phys_obj;
  3018. int ret;
  3019. if (dev_priv->mm.phys_objs[id - 1] || !size)
  3020. return 0;
  3021. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  3022. if (!phys_obj)
  3023. return -ENOMEM;
  3024. phys_obj->id = id;
  3025. phys_obj->handle = drm_pci_alloc(dev, size, align);
  3026. if (!phys_obj->handle) {
  3027. ret = -ENOMEM;
  3028. goto kfree_obj;
  3029. }
  3030. #ifdef CONFIG_X86
  3031. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3032. #endif
  3033. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  3034. return 0;
  3035. kfree_obj:
  3036. kfree(phys_obj);
  3037. return ret;
  3038. }
  3039. static void i915_gem_free_phys_object(struct drm_device *dev, int id)
  3040. {
  3041. drm_i915_private_t *dev_priv = dev->dev_private;
  3042. struct drm_i915_gem_phys_object *phys_obj;
  3043. if (!dev_priv->mm.phys_objs[id - 1])
  3044. return;
  3045. phys_obj = dev_priv->mm.phys_objs[id - 1];
  3046. if (phys_obj->cur_obj) {
  3047. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  3048. }
  3049. #ifdef CONFIG_X86
  3050. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3051. #endif
  3052. drm_pci_free(dev, phys_obj->handle);
  3053. kfree(phys_obj);
  3054. dev_priv->mm.phys_objs[id - 1] = NULL;
  3055. }
  3056. void i915_gem_free_all_phys_object(struct drm_device *dev)
  3057. {
  3058. int i;
  3059. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  3060. i915_gem_free_phys_object(dev, i);
  3061. }
  3062. void i915_gem_detach_phys_object(struct drm_device *dev,
  3063. struct drm_i915_gem_object *obj)
  3064. {
  3065. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3066. char *vaddr;
  3067. int i;
  3068. int page_count;
  3069. if (!obj->phys_obj)
  3070. return;
  3071. vaddr = obj->phys_obj->handle->vaddr;
  3072. page_count = obj->base.size / PAGE_SIZE;
  3073. for (i = 0; i < page_count; i++) {
  3074. struct page *page = shmem_read_mapping_page(mapping, i);
  3075. if (!IS_ERR(page)) {
  3076. char *dst = kmap_atomic(page);
  3077. memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
  3078. kunmap_atomic(dst);
  3079. drm_clflush_pages(&page, 1);
  3080. set_page_dirty(page);
  3081. mark_page_accessed(page);
  3082. page_cache_release(page);
  3083. }
  3084. }
  3085. intel_gtt_chipset_flush();
  3086. obj->phys_obj->cur_obj = NULL;
  3087. obj->phys_obj = NULL;
  3088. }
  3089. int
  3090. i915_gem_attach_phys_object(struct drm_device *dev,
  3091. struct drm_i915_gem_object *obj,
  3092. int id,
  3093. int align)
  3094. {
  3095. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3096. drm_i915_private_t *dev_priv = dev->dev_private;
  3097. int ret = 0;
  3098. int page_count;
  3099. int i;
  3100. if (id > I915_MAX_PHYS_OBJECT)
  3101. return -EINVAL;
  3102. if (obj->phys_obj) {
  3103. if (obj->phys_obj->id == id)
  3104. return 0;
  3105. i915_gem_detach_phys_object(dev, obj);
  3106. }
  3107. /* create a new object */
  3108. if (!dev_priv->mm.phys_objs[id - 1]) {
  3109. ret = i915_gem_init_phys_object(dev, id,
  3110. obj->base.size, align);
  3111. if (ret) {
  3112. DRM_ERROR("failed to init phys object %d size: %zu\n",
  3113. id, obj->base.size);
  3114. return ret;
  3115. }
  3116. }
  3117. /* bind to the object */
  3118. obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
  3119. obj->phys_obj->cur_obj = obj;
  3120. page_count = obj->base.size / PAGE_SIZE;
  3121. for (i = 0; i < page_count; i++) {
  3122. struct page *page;
  3123. char *dst, *src;
  3124. page = shmem_read_mapping_page(mapping, i);
  3125. if (IS_ERR(page))
  3126. return PTR_ERR(page);
  3127. src = kmap_atomic(page);
  3128. dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  3129. memcpy(dst, src, PAGE_SIZE);
  3130. kunmap_atomic(src);
  3131. mark_page_accessed(page);
  3132. page_cache_release(page);
  3133. }
  3134. return 0;
  3135. }
  3136. static int
  3137. i915_gem_phys_pwrite(struct drm_device *dev,
  3138. struct drm_i915_gem_object *obj,
  3139. struct drm_i915_gem_pwrite *args,
  3140. struct drm_file *file_priv)
  3141. {
  3142. void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
  3143. char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
  3144. if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
  3145. unsigned long unwritten;
  3146. /* The physical object once assigned is fixed for the lifetime
  3147. * of the obj, so we can safely drop the lock and continue
  3148. * to access vaddr.
  3149. */
  3150. mutex_unlock(&dev->struct_mutex);
  3151. unwritten = copy_from_user(vaddr, user_data, args->size);
  3152. mutex_lock(&dev->struct_mutex);
  3153. if (unwritten)
  3154. return -EFAULT;
  3155. }
  3156. intel_gtt_chipset_flush();
  3157. return 0;
  3158. }
  3159. void i915_gem_release(struct drm_device *dev, struct drm_file *file)
  3160. {
  3161. struct drm_i915_file_private *file_priv = file->driver_priv;
  3162. /* Clean up our request list when the client is going away, so that
  3163. * later retire_requests won't dereference our soon-to-be-gone
  3164. * file_priv.
  3165. */
  3166. spin_lock(&file_priv->mm.lock);
  3167. while (!list_empty(&file_priv->mm.request_list)) {
  3168. struct drm_i915_gem_request *request;
  3169. request = list_first_entry(&file_priv->mm.request_list,
  3170. struct drm_i915_gem_request,
  3171. client_list);
  3172. list_del(&request->client_list);
  3173. request->file_priv = NULL;
  3174. }
  3175. spin_unlock(&file_priv->mm.lock);
  3176. }
  3177. static int
  3178. i915_gpu_is_active(struct drm_device *dev)
  3179. {
  3180. drm_i915_private_t *dev_priv = dev->dev_private;
  3181. int lists_empty;
  3182. lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
  3183. list_empty(&dev_priv->mm.active_list);
  3184. return !lists_empty;
  3185. }
  3186. static int
  3187. i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
  3188. {
  3189. struct drm_i915_private *dev_priv =
  3190. container_of(shrinker,
  3191. struct drm_i915_private,
  3192. mm.inactive_shrinker);
  3193. struct drm_device *dev = dev_priv->dev;
  3194. struct drm_i915_gem_object *obj, *next;
  3195. int nr_to_scan = sc->nr_to_scan;
  3196. int cnt;
  3197. if (!mutex_trylock(&dev->struct_mutex))
  3198. return 0;
  3199. /* "fast-path" to count number of available objects */
  3200. if (nr_to_scan == 0) {
  3201. cnt = 0;
  3202. list_for_each_entry(obj,
  3203. &dev_priv->mm.inactive_list,
  3204. mm_list)
  3205. cnt++;
  3206. mutex_unlock(&dev->struct_mutex);
  3207. return cnt / 100 * sysctl_vfs_cache_pressure;
  3208. }
  3209. rescan:
  3210. /* first scan for clean buffers */
  3211. i915_gem_retire_requests(dev);
  3212. list_for_each_entry_safe(obj, next,
  3213. &dev_priv->mm.inactive_list,
  3214. mm_list) {
  3215. if (i915_gem_object_is_purgeable(obj)) {
  3216. if (i915_gem_object_unbind(obj) == 0 &&
  3217. --nr_to_scan == 0)
  3218. break;
  3219. }
  3220. }
  3221. /* second pass, evict/count anything still on the inactive list */
  3222. cnt = 0;
  3223. list_for_each_entry_safe(obj, next,
  3224. &dev_priv->mm.inactive_list,
  3225. mm_list) {
  3226. if (nr_to_scan &&
  3227. i915_gem_object_unbind(obj) == 0)
  3228. nr_to_scan--;
  3229. else
  3230. cnt++;
  3231. }
  3232. if (nr_to_scan && i915_gpu_is_active(dev)) {
  3233. /*
  3234. * We are desperate for pages, so as a last resort, wait
  3235. * for the GPU to finish and discard whatever we can.
  3236. * This has a dramatic impact to reduce the number of
  3237. * OOM-killer events whilst running the GPU aggressively.
  3238. */
  3239. if (i915_gpu_idle(dev, true) == 0)
  3240. goto rescan;
  3241. }
  3242. mutex_unlock(&dev->struct_mutex);
  3243. return cnt / 100 * sysctl_vfs_cache_pressure;
  3244. }