vmx.c 68 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include "x86.h"
  19. #include "x86_emulate.h"
  20. #include "irq.h"
  21. #include "vmx.h"
  22. #include "segment_descriptor.h"
  23. #include <linux/module.h>
  24. #include <linux/kernel.h>
  25. #include <linux/mm.h>
  26. #include <linux/highmem.h>
  27. #include <linux/sched.h>
  28. #include <linux/moduleparam.h>
  29. #include <asm/io.h>
  30. #include <asm/desc.h>
  31. MODULE_AUTHOR("Qumranet");
  32. MODULE_LICENSE("GPL");
  33. static int bypass_guest_pf = 1;
  34. module_param(bypass_guest_pf, bool, 0);
  35. struct vmcs {
  36. u32 revision_id;
  37. u32 abort;
  38. char data[0];
  39. };
  40. struct vcpu_vmx {
  41. struct kvm_vcpu vcpu;
  42. int launched;
  43. u8 fail;
  44. u32 idt_vectoring_info;
  45. struct kvm_msr_entry *guest_msrs;
  46. struct kvm_msr_entry *host_msrs;
  47. int nmsrs;
  48. int save_nmsrs;
  49. int msr_offset_efer;
  50. #ifdef CONFIG_X86_64
  51. int msr_offset_kernel_gs_base;
  52. #endif
  53. struct vmcs *vmcs;
  54. struct {
  55. int loaded;
  56. u16 fs_sel, gs_sel, ldt_sel;
  57. int gs_ldt_reload_needed;
  58. int fs_reload_needed;
  59. int guest_efer_loaded;
  60. } host_state;
  61. struct {
  62. struct {
  63. bool pending;
  64. u8 vector;
  65. unsigned rip;
  66. } irq;
  67. } rmode;
  68. };
  69. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  70. {
  71. return container_of(vcpu, struct vcpu_vmx, vcpu);
  72. }
  73. static int init_rmode_tss(struct kvm *kvm);
  74. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  75. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  76. static struct page *vmx_io_bitmap_a;
  77. static struct page *vmx_io_bitmap_b;
  78. static struct vmcs_config {
  79. int size;
  80. int order;
  81. u32 revision_id;
  82. u32 pin_based_exec_ctrl;
  83. u32 cpu_based_exec_ctrl;
  84. u32 cpu_based_2nd_exec_ctrl;
  85. u32 vmexit_ctrl;
  86. u32 vmentry_ctrl;
  87. } vmcs_config;
  88. #define VMX_SEGMENT_FIELD(seg) \
  89. [VCPU_SREG_##seg] = { \
  90. .selector = GUEST_##seg##_SELECTOR, \
  91. .base = GUEST_##seg##_BASE, \
  92. .limit = GUEST_##seg##_LIMIT, \
  93. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  94. }
  95. static struct kvm_vmx_segment_field {
  96. unsigned selector;
  97. unsigned base;
  98. unsigned limit;
  99. unsigned ar_bytes;
  100. } kvm_vmx_segment_fields[] = {
  101. VMX_SEGMENT_FIELD(CS),
  102. VMX_SEGMENT_FIELD(DS),
  103. VMX_SEGMENT_FIELD(ES),
  104. VMX_SEGMENT_FIELD(FS),
  105. VMX_SEGMENT_FIELD(GS),
  106. VMX_SEGMENT_FIELD(SS),
  107. VMX_SEGMENT_FIELD(TR),
  108. VMX_SEGMENT_FIELD(LDTR),
  109. };
  110. /*
  111. * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
  112. * away by decrementing the array size.
  113. */
  114. static const u32 vmx_msr_index[] = {
  115. #ifdef CONFIG_X86_64
  116. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
  117. #endif
  118. MSR_EFER, MSR_K6_STAR,
  119. };
  120. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  121. static void load_msrs(struct kvm_msr_entry *e, int n)
  122. {
  123. int i;
  124. for (i = 0; i < n; ++i)
  125. wrmsrl(e[i].index, e[i].data);
  126. }
  127. static void save_msrs(struct kvm_msr_entry *e, int n)
  128. {
  129. int i;
  130. for (i = 0; i < n; ++i)
  131. rdmsrl(e[i].index, e[i].data);
  132. }
  133. static inline int is_page_fault(u32 intr_info)
  134. {
  135. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  136. INTR_INFO_VALID_MASK)) ==
  137. (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  138. }
  139. static inline int is_no_device(u32 intr_info)
  140. {
  141. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  142. INTR_INFO_VALID_MASK)) ==
  143. (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  144. }
  145. static inline int is_invalid_opcode(u32 intr_info)
  146. {
  147. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  148. INTR_INFO_VALID_MASK)) ==
  149. (INTR_TYPE_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
  150. }
  151. static inline int is_external_interrupt(u32 intr_info)
  152. {
  153. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  154. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  155. }
  156. static inline int cpu_has_vmx_tpr_shadow(void)
  157. {
  158. return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW);
  159. }
  160. static inline int vm_need_tpr_shadow(struct kvm *kvm)
  161. {
  162. return ((cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm)));
  163. }
  164. static inline int cpu_has_secondary_exec_ctrls(void)
  165. {
  166. return (vmcs_config.cpu_based_exec_ctrl &
  167. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS);
  168. }
  169. static inline int vm_need_secondary_exec_ctrls(struct kvm *kvm)
  170. {
  171. return ((cpu_has_secondary_exec_ctrls()) && (irqchip_in_kernel(kvm)));
  172. }
  173. static inline int cpu_has_vmx_virtualize_apic_accesses(void)
  174. {
  175. return (vmcs_config.cpu_based_2nd_exec_ctrl &
  176. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
  177. }
  178. static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
  179. {
  180. return ((cpu_has_vmx_virtualize_apic_accesses()) &&
  181. (irqchip_in_kernel(kvm)));
  182. }
  183. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  184. {
  185. int i;
  186. for (i = 0; i < vmx->nmsrs; ++i)
  187. if (vmx->guest_msrs[i].index == msr)
  188. return i;
  189. return -1;
  190. }
  191. static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  192. {
  193. int i;
  194. i = __find_msr_index(vmx, msr);
  195. if (i >= 0)
  196. return &vmx->guest_msrs[i];
  197. return NULL;
  198. }
  199. static void vmcs_clear(struct vmcs *vmcs)
  200. {
  201. u64 phys_addr = __pa(vmcs);
  202. u8 error;
  203. asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
  204. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  205. : "cc", "memory");
  206. if (error)
  207. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  208. vmcs, phys_addr);
  209. }
  210. static void __vcpu_clear(void *arg)
  211. {
  212. struct vcpu_vmx *vmx = arg;
  213. int cpu = raw_smp_processor_id();
  214. if (vmx->vcpu.cpu == cpu)
  215. vmcs_clear(vmx->vmcs);
  216. if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
  217. per_cpu(current_vmcs, cpu) = NULL;
  218. rdtscll(vmx->vcpu.host_tsc);
  219. }
  220. static void vcpu_clear(struct vcpu_vmx *vmx)
  221. {
  222. if (vmx->vcpu.cpu == -1)
  223. return;
  224. smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 0, 1);
  225. vmx->launched = 0;
  226. }
  227. static unsigned long vmcs_readl(unsigned long field)
  228. {
  229. unsigned long value;
  230. asm volatile (ASM_VMX_VMREAD_RDX_RAX
  231. : "=a"(value) : "d"(field) : "cc");
  232. return value;
  233. }
  234. static u16 vmcs_read16(unsigned long field)
  235. {
  236. return vmcs_readl(field);
  237. }
  238. static u32 vmcs_read32(unsigned long field)
  239. {
  240. return vmcs_readl(field);
  241. }
  242. static u64 vmcs_read64(unsigned long field)
  243. {
  244. #ifdef CONFIG_X86_64
  245. return vmcs_readl(field);
  246. #else
  247. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  248. #endif
  249. }
  250. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  251. {
  252. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  253. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  254. dump_stack();
  255. }
  256. static void vmcs_writel(unsigned long field, unsigned long value)
  257. {
  258. u8 error;
  259. asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
  260. : "=q"(error) : "a"(value), "d"(field) : "cc");
  261. if (unlikely(error))
  262. vmwrite_error(field, value);
  263. }
  264. static void vmcs_write16(unsigned long field, u16 value)
  265. {
  266. vmcs_writel(field, value);
  267. }
  268. static void vmcs_write32(unsigned long field, u32 value)
  269. {
  270. vmcs_writel(field, value);
  271. }
  272. static void vmcs_write64(unsigned long field, u64 value)
  273. {
  274. #ifdef CONFIG_X86_64
  275. vmcs_writel(field, value);
  276. #else
  277. vmcs_writel(field, value);
  278. asm volatile ("");
  279. vmcs_writel(field+1, value >> 32);
  280. #endif
  281. }
  282. static void vmcs_clear_bits(unsigned long field, u32 mask)
  283. {
  284. vmcs_writel(field, vmcs_readl(field) & ~mask);
  285. }
  286. static void vmcs_set_bits(unsigned long field, u32 mask)
  287. {
  288. vmcs_writel(field, vmcs_readl(field) | mask);
  289. }
  290. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  291. {
  292. u32 eb;
  293. eb = (1u << PF_VECTOR) | (1u << UD_VECTOR);
  294. if (!vcpu->fpu_active)
  295. eb |= 1u << NM_VECTOR;
  296. if (vcpu->guest_debug.enabled)
  297. eb |= 1u << 1;
  298. if (vcpu->rmode.active)
  299. eb = ~0;
  300. vmcs_write32(EXCEPTION_BITMAP, eb);
  301. }
  302. static void reload_tss(void)
  303. {
  304. #ifndef CONFIG_X86_64
  305. /*
  306. * VT restores TR but not its size. Useless.
  307. */
  308. struct descriptor_table gdt;
  309. struct segment_descriptor *descs;
  310. get_gdt(&gdt);
  311. descs = (void *)gdt.base;
  312. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  313. load_TR_desc();
  314. #endif
  315. }
  316. static void load_transition_efer(struct vcpu_vmx *vmx)
  317. {
  318. int efer_offset = vmx->msr_offset_efer;
  319. u64 host_efer = vmx->host_msrs[efer_offset].data;
  320. u64 guest_efer = vmx->guest_msrs[efer_offset].data;
  321. u64 ignore_bits;
  322. if (efer_offset < 0)
  323. return;
  324. /*
  325. * NX is emulated; LMA and LME handled by hardware; SCE meaninless
  326. * outside long mode
  327. */
  328. ignore_bits = EFER_NX | EFER_SCE;
  329. #ifdef CONFIG_X86_64
  330. ignore_bits |= EFER_LMA | EFER_LME;
  331. /* SCE is meaningful only in long mode on Intel */
  332. if (guest_efer & EFER_LMA)
  333. ignore_bits &= ~(u64)EFER_SCE;
  334. #endif
  335. if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
  336. return;
  337. vmx->host_state.guest_efer_loaded = 1;
  338. guest_efer &= ~ignore_bits;
  339. guest_efer |= host_efer & ignore_bits;
  340. wrmsrl(MSR_EFER, guest_efer);
  341. vmx->vcpu.stat.efer_reload++;
  342. }
  343. static void reload_host_efer(struct vcpu_vmx *vmx)
  344. {
  345. if (vmx->host_state.guest_efer_loaded) {
  346. vmx->host_state.guest_efer_loaded = 0;
  347. load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
  348. }
  349. }
  350. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  351. {
  352. struct vcpu_vmx *vmx = to_vmx(vcpu);
  353. if (vmx->host_state.loaded)
  354. return;
  355. vmx->host_state.loaded = 1;
  356. /*
  357. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  358. * allow segment selectors with cpl > 0 or ti == 1.
  359. */
  360. vmx->host_state.ldt_sel = read_ldt();
  361. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  362. vmx->host_state.fs_sel = read_fs();
  363. if (!(vmx->host_state.fs_sel & 7)) {
  364. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  365. vmx->host_state.fs_reload_needed = 0;
  366. } else {
  367. vmcs_write16(HOST_FS_SELECTOR, 0);
  368. vmx->host_state.fs_reload_needed = 1;
  369. }
  370. vmx->host_state.gs_sel = read_gs();
  371. if (!(vmx->host_state.gs_sel & 7))
  372. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  373. else {
  374. vmcs_write16(HOST_GS_SELECTOR, 0);
  375. vmx->host_state.gs_ldt_reload_needed = 1;
  376. }
  377. #ifdef CONFIG_X86_64
  378. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  379. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  380. #else
  381. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  382. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  383. #endif
  384. #ifdef CONFIG_X86_64
  385. if (is_long_mode(&vmx->vcpu))
  386. save_msrs(vmx->host_msrs +
  387. vmx->msr_offset_kernel_gs_base, 1);
  388. #endif
  389. load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  390. load_transition_efer(vmx);
  391. }
  392. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  393. {
  394. unsigned long flags;
  395. if (!vmx->host_state.loaded)
  396. return;
  397. ++vmx->vcpu.stat.host_state_reload;
  398. vmx->host_state.loaded = 0;
  399. if (vmx->host_state.fs_reload_needed)
  400. load_fs(vmx->host_state.fs_sel);
  401. if (vmx->host_state.gs_ldt_reload_needed) {
  402. load_ldt(vmx->host_state.ldt_sel);
  403. /*
  404. * If we have to reload gs, we must take care to
  405. * preserve our gs base.
  406. */
  407. local_irq_save(flags);
  408. load_gs(vmx->host_state.gs_sel);
  409. #ifdef CONFIG_X86_64
  410. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  411. #endif
  412. local_irq_restore(flags);
  413. }
  414. reload_tss();
  415. save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  416. load_msrs(vmx->host_msrs, vmx->save_nmsrs);
  417. reload_host_efer(vmx);
  418. }
  419. /*
  420. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  421. * vcpu mutex is already taken.
  422. */
  423. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  424. {
  425. struct vcpu_vmx *vmx = to_vmx(vcpu);
  426. u64 phys_addr = __pa(vmx->vmcs);
  427. u64 tsc_this, delta;
  428. if (vcpu->cpu != cpu) {
  429. vcpu_clear(vmx);
  430. kvm_migrate_apic_timer(vcpu);
  431. }
  432. if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
  433. u8 error;
  434. per_cpu(current_vmcs, cpu) = vmx->vmcs;
  435. asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
  436. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  437. : "cc");
  438. if (error)
  439. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  440. vmx->vmcs, phys_addr);
  441. }
  442. if (vcpu->cpu != cpu) {
  443. struct descriptor_table dt;
  444. unsigned long sysenter_esp;
  445. vcpu->cpu = cpu;
  446. /*
  447. * Linux uses per-cpu TSS and GDT, so set these when switching
  448. * processors.
  449. */
  450. vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
  451. get_gdt(&dt);
  452. vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
  453. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  454. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  455. /*
  456. * Make sure the time stamp counter is monotonous.
  457. */
  458. rdtscll(tsc_this);
  459. delta = vcpu->host_tsc - tsc_this;
  460. vmcs_write64(TSC_OFFSET, vmcs_read64(TSC_OFFSET) + delta);
  461. }
  462. }
  463. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  464. {
  465. vmx_load_host_state(to_vmx(vcpu));
  466. }
  467. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  468. {
  469. if (vcpu->fpu_active)
  470. return;
  471. vcpu->fpu_active = 1;
  472. vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
  473. if (vcpu->cr0 & X86_CR0_TS)
  474. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  475. update_exception_bitmap(vcpu);
  476. }
  477. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  478. {
  479. if (!vcpu->fpu_active)
  480. return;
  481. vcpu->fpu_active = 0;
  482. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  483. update_exception_bitmap(vcpu);
  484. }
  485. static void vmx_vcpu_decache(struct kvm_vcpu *vcpu)
  486. {
  487. vcpu_clear(to_vmx(vcpu));
  488. }
  489. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  490. {
  491. return vmcs_readl(GUEST_RFLAGS);
  492. }
  493. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  494. {
  495. if (vcpu->rmode.active)
  496. rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  497. vmcs_writel(GUEST_RFLAGS, rflags);
  498. }
  499. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  500. {
  501. unsigned long rip;
  502. u32 interruptibility;
  503. rip = vmcs_readl(GUEST_RIP);
  504. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  505. vmcs_writel(GUEST_RIP, rip);
  506. /*
  507. * We emulated an instruction, so temporary interrupt blocking
  508. * should be removed, if set.
  509. */
  510. interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  511. if (interruptibility & 3)
  512. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
  513. interruptibility & ~3);
  514. vcpu->interrupt_window_open = 1;
  515. }
  516. static void vmx_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
  517. {
  518. printk(KERN_DEBUG "inject_general_protection: rip 0x%lx\n",
  519. vmcs_readl(GUEST_RIP));
  520. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  521. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  522. GP_VECTOR |
  523. INTR_TYPE_EXCEPTION |
  524. INTR_INFO_DELIEVER_CODE_MASK |
  525. INTR_INFO_VALID_MASK);
  526. }
  527. static void vmx_inject_ud(struct kvm_vcpu *vcpu)
  528. {
  529. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  530. UD_VECTOR |
  531. INTR_TYPE_EXCEPTION |
  532. INTR_INFO_VALID_MASK);
  533. }
  534. /*
  535. * Swap MSR entry in host/guest MSR entry array.
  536. */
  537. #ifdef CONFIG_X86_64
  538. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  539. {
  540. struct kvm_msr_entry tmp;
  541. tmp = vmx->guest_msrs[to];
  542. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  543. vmx->guest_msrs[from] = tmp;
  544. tmp = vmx->host_msrs[to];
  545. vmx->host_msrs[to] = vmx->host_msrs[from];
  546. vmx->host_msrs[from] = tmp;
  547. }
  548. #endif
  549. /*
  550. * Set up the vmcs to automatically save and restore system
  551. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  552. * mode, as fiddling with msrs is very expensive.
  553. */
  554. static void setup_msrs(struct vcpu_vmx *vmx)
  555. {
  556. int save_nmsrs;
  557. save_nmsrs = 0;
  558. #ifdef CONFIG_X86_64
  559. if (is_long_mode(&vmx->vcpu)) {
  560. int index;
  561. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  562. if (index >= 0)
  563. move_msr_up(vmx, index, save_nmsrs++);
  564. index = __find_msr_index(vmx, MSR_LSTAR);
  565. if (index >= 0)
  566. move_msr_up(vmx, index, save_nmsrs++);
  567. index = __find_msr_index(vmx, MSR_CSTAR);
  568. if (index >= 0)
  569. move_msr_up(vmx, index, save_nmsrs++);
  570. index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  571. if (index >= 0)
  572. move_msr_up(vmx, index, save_nmsrs++);
  573. /*
  574. * MSR_K6_STAR is only needed on long mode guests, and only
  575. * if efer.sce is enabled.
  576. */
  577. index = __find_msr_index(vmx, MSR_K6_STAR);
  578. if ((index >= 0) && (vmx->vcpu.shadow_efer & EFER_SCE))
  579. move_msr_up(vmx, index, save_nmsrs++);
  580. }
  581. #endif
  582. vmx->save_nmsrs = save_nmsrs;
  583. #ifdef CONFIG_X86_64
  584. vmx->msr_offset_kernel_gs_base =
  585. __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  586. #endif
  587. vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
  588. }
  589. /*
  590. * reads and returns guest's timestamp counter "register"
  591. * guest_tsc = host_tsc + tsc_offset -- 21.3
  592. */
  593. static u64 guest_read_tsc(void)
  594. {
  595. u64 host_tsc, tsc_offset;
  596. rdtscll(host_tsc);
  597. tsc_offset = vmcs_read64(TSC_OFFSET);
  598. return host_tsc + tsc_offset;
  599. }
  600. /*
  601. * writes 'guest_tsc' into guest's timestamp counter "register"
  602. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  603. */
  604. static void guest_write_tsc(u64 guest_tsc)
  605. {
  606. u64 host_tsc;
  607. rdtscll(host_tsc);
  608. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  609. }
  610. /*
  611. * Reads an msr value (of 'msr_index') into 'pdata'.
  612. * Returns 0 on success, non-0 otherwise.
  613. * Assumes vcpu_load() was already called.
  614. */
  615. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  616. {
  617. u64 data;
  618. struct kvm_msr_entry *msr;
  619. if (!pdata) {
  620. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  621. return -EINVAL;
  622. }
  623. switch (msr_index) {
  624. #ifdef CONFIG_X86_64
  625. case MSR_FS_BASE:
  626. data = vmcs_readl(GUEST_FS_BASE);
  627. break;
  628. case MSR_GS_BASE:
  629. data = vmcs_readl(GUEST_GS_BASE);
  630. break;
  631. case MSR_EFER:
  632. return kvm_get_msr_common(vcpu, msr_index, pdata);
  633. #endif
  634. case MSR_IA32_TIME_STAMP_COUNTER:
  635. data = guest_read_tsc();
  636. break;
  637. case MSR_IA32_SYSENTER_CS:
  638. data = vmcs_read32(GUEST_SYSENTER_CS);
  639. break;
  640. case MSR_IA32_SYSENTER_EIP:
  641. data = vmcs_readl(GUEST_SYSENTER_EIP);
  642. break;
  643. case MSR_IA32_SYSENTER_ESP:
  644. data = vmcs_readl(GUEST_SYSENTER_ESP);
  645. break;
  646. default:
  647. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  648. if (msr) {
  649. data = msr->data;
  650. break;
  651. }
  652. return kvm_get_msr_common(vcpu, msr_index, pdata);
  653. }
  654. *pdata = data;
  655. return 0;
  656. }
  657. /*
  658. * Writes msr value into into the appropriate "register".
  659. * Returns 0 on success, non-0 otherwise.
  660. * Assumes vcpu_load() was already called.
  661. */
  662. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  663. {
  664. struct vcpu_vmx *vmx = to_vmx(vcpu);
  665. struct kvm_msr_entry *msr;
  666. int ret = 0;
  667. switch (msr_index) {
  668. #ifdef CONFIG_X86_64
  669. case MSR_EFER:
  670. ret = kvm_set_msr_common(vcpu, msr_index, data);
  671. if (vmx->host_state.loaded) {
  672. reload_host_efer(vmx);
  673. load_transition_efer(vmx);
  674. }
  675. break;
  676. case MSR_FS_BASE:
  677. vmcs_writel(GUEST_FS_BASE, data);
  678. break;
  679. case MSR_GS_BASE:
  680. vmcs_writel(GUEST_GS_BASE, data);
  681. break;
  682. #endif
  683. case MSR_IA32_SYSENTER_CS:
  684. vmcs_write32(GUEST_SYSENTER_CS, data);
  685. break;
  686. case MSR_IA32_SYSENTER_EIP:
  687. vmcs_writel(GUEST_SYSENTER_EIP, data);
  688. break;
  689. case MSR_IA32_SYSENTER_ESP:
  690. vmcs_writel(GUEST_SYSENTER_ESP, data);
  691. break;
  692. case MSR_IA32_TIME_STAMP_COUNTER:
  693. guest_write_tsc(data);
  694. break;
  695. default:
  696. msr = find_msr_entry(vmx, msr_index);
  697. if (msr) {
  698. msr->data = data;
  699. if (vmx->host_state.loaded)
  700. load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  701. break;
  702. }
  703. ret = kvm_set_msr_common(vcpu, msr_index, data);
  704. }
  705. return ret;
  706. }
  707. /*
  708. * Sync the rsp and rip registers into the vcpu structure. This allows
  709. * registers to be accessed by indexing vcpu->regs.
  710. */
  711. static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
  712. {
  713. vcpu->regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  714. vcpu->rip = vmcs_readl(GUEST_RIP);
  715. }
  716. /*
  717. * Syncs rsp and rip back into the vmcs. Should be called after possible
  718. * modification.
  719. */
  720. static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
  721. {
  722. vmcs_writel(GUEST_RSP, vcpu->regs[VCPU_REGS_RSP]);
  723. vmcs_writel(GUEST_RIP, vcpu->rip);
  724. }
  725. static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
  726. {
  727. unsigned long dr7 = 0x400;
  728. int old_singlestep;
  729. old_singlestep = vcpu->guest_debug.singlestep;
  730. vcpu->guest_debug.enabled = dbg->enabled;
  731. if (vcpu->guest_debug.enabled) {
  732. int i;
  733. dr7 |= 0x200; /* exact */
  734. for (i = 0; i < 4; ++i) {
  735. if (!dbg->breakpoints[i].enabled)
  736. continue;
  737. vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
  738. dr7 |= 2 << (i*2); /* global enable */
  739. dr7 |= 0 << (i*4+16); /* execution breakpoint */
  740. }
  741. vcpu->guest_debug.singlestep = dbg->singlestep;
  742. } else
  743. vcpu->guest_debug.singlestep = 0;
  744. if (old_singlestep && !vcpu->guest_debug.singlestep) {
  745. unsigned long flags;
  746. flags = vmcs_readl(GUEST_RFLAGS);
  747. flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  748. vmcs_writel(GUEST_RFLAGS, flags);
  749. }
  750. update_exception_bitmap(vcpu);
  751. vmcs_writel(GUEST_DR7, dr7);
  752. return 0;
  753. }
  754. static int vmx_get_irq(struct kvm_vcpu *vcpu)
  755. {
  756. struct vcpu_vmx *vmx = to_vmx(vcpu);
  757. u32 idtv_info_field;
  758. idtv_info_field = vmx->idt_vectoring_info;
  759. if (idtv_info_field & INTR_INFO_VALID_MASK) {
  760. if (is_external_interrupt(idtv_info_field))
  761. return idtv_info_field & VECTORING_INFO_VECTOR_MASK;
  762. else
  763. printk(KERN_DEBUG "pending exception: not handled yet\n");
  764. }
  765. return -1;
  766. }
  767. static __init int cpu_has_kvm_support(void)
  768. {
  769. unsigned long ecx = cpuid_ecx(1);
  770. return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
  771. }
  772. static __init int vmx_disabled_by_bios(void)
  773. {
  774. u64 msr;
  775. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  776. return (msr & (MSR_IA32_FEATURE_CONTROL_LOCKED |
  777. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
  778. == MSR_IA32_FEATURE_CONTROL_LOCKED;
  779. /* locked but not enabled */
  780. }
  781. static void hardware_enable(void *garbage)
  782. {
  783. int cpu = raw_smp_processor_id();
  784. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  785. u64 old;
  786. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  787. if ((old & (MSR_IA32_FEATURE_CONTROL_LOCKED |
  788. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
  789. != (MSR_IA32_FEATURE_CONTROL_LOCKED |
  790. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
  791. /* enable and lock */
  792. wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
  793. MSR_IA32_FEATURE_CONTROL_LOCKED |
  794. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED);
  795. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  796. asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
  797. : "memory", "cc");
  798. }
  799. static void hardware_disable(void *garbage)
  800. {
  801. asm volatile (ASM_VMX_VMXOFF : : : "cc");
  802. }
  803. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  804. u32 msr, u32 *result)
  805. {
  806. u32 vmx_msr_low, vmx_msr_high;
  807. u32 ctl = ctl_min | ctl_opt;
  808. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  809. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  810. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  811. /* Ensure minimum (required) set of control bits are supported. */
  812. if (ctl_min & ~ctl)
  813. return -EIO;
  814. *result = ctl;
  815. return 0;
  816. }
  817. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  818. {
  819. u32 vmx_msr_low, vmx_msr_high;
  820. u32 min, opt;
  821. u32 _pin_based_exec_control = 0;
  822. u32 _cpu_based_exec_control = 0;
  823. u32 _cpu_based_2nd_exec_control = 0;
  824. u32 _vmexit_control = 0;
  825. u32 _vmentry_control = 0;
  826. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  827. opt = 0;
  828. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  829. &_pin_based_exec_control) < 0)
  830. return -EIO;
  831. min = CPU_BASED_HLT_EXITING |
  832. #ifdef CONFIG_X86_64
  833. CPU_BASED_CR8_LOAD_EXITING |
  834. CPU_BASED_CR8_STORE_EXITING |
  835. #endif
  836. CPU_BASED_USE_IO_BITMAPS |
  837. CPU_BASED_MOV_DR_EXITING |
  838. CPU_BASED_USE_TSC_OFFSETING;
  839. opt = CPU_BASED_TPR_SHADOW |
  840. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  841. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  842. &_cpu_based_exec_control) < 0)
  843. return -EIO;
  844. #ifdef CONFIG_X86_64
  845. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  846. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  847. ~CPU_BASED_CR8_STORE_EXITING;
  848. #endif
  849. if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
  850. min = 0;
  851. opt = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  852. SECONDARY_EXEC_WBINVD_EXITING;
  853. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS2,
  854. &_cpu_based_2nd_exec_control) < 0)
  855. return -EIO;
  856. }
  857. #ifndef CONFIG_X86_64
  858. if (!(_cpu_based_2nd_exec_control &
  859. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
  860. _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
  861. #endif
  862. min = 0;
  863. #ifdef CONFIG_X86_64
  864. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  865. #endif
  866. opt = 0;
  867. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  868. &_vmexit_control) < 0)
  869. return -EIO;
  870. min = opt = 0;
  871. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  872. &_vmentry_control) < 0)
  873. return -EIO;
  874. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  875. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  876. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  877. return -EIO;
  878. #ifdef CONFIG_X86_64
  879. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  880. if (vmx_msr_high & (1u<<16))
  881. return -EIO;
  882. #endif
  883. /* Require Write-Back (WB) memory type for VMCS accesses. */
  884. if (((vmx_msr_high >> 18) & 15) != 6)
  885. return -EIO;
  886. vmcs_conf->size = vmx_msr_high & 0x1fff;
  887. vmcs_conf->order = get_order(vmcs_config.size);
  888. vmcs_conf->revision_id = vmx_msr_low;
  889. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  890. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  891. vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
  892. vmcs_conf->vmexit_ctrl = _vmexit_control;
  893. vmcs_conf->vmentry_ctrl = _vmentry_control;
  894. return 0;
  895. }
  896. static struct vmcs *alloc_vmcs_cpu(int cpu)
  897. {
  898. int node = cpu_to_node(cpu);
  899. struct page *pages;
  900. struct vmcs *vmcs;
  901. pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
  902. if (!pages)
  903. return NULL;
  904. vmcs = page_address(pages);
  905. memset(vmcs, 0, vmcs_config.size);
  906. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  907. return vmcs;
  908. }
  909. static struct vmcs *alloc_vmcs(void)
  910. {
  911. return alloc_vmcs_cpu(raw_smp_processor_id());
  912. }
  913. static void free_vmcs(struct vmcs *vmcs)
  914. {
  915. free_pages((unsigned long)vmcs, vmcs_config.order);
  916. }
  917. static void free_kvm_area(void)
  918. {
  919. int cpu;
  920. for_each_online_cpu(cpu)
  921. free_vmcs(per_cpu(vmxarea, cpu));
  922. }
  923. static __init int alloc_kvm_area(void)
  924. {
  925. int cpu;
  926. for_each_online_cpu(cpu) {
  927. struct vmcs *vmcs;
  928. vmcs = alloc_vmcs_cpu(cpu);
  929. if (!vmcs) {
  930. free_kvm_area();
  931. return -ENOMEM;
  932. }
  933. per_cpu(vmxarea, cpu) = vmcs;
  934. }
  935. return 0;
  936. }
  937. static __init int hardware_setup(void)
  938. {
  939. if (setup_vmcs_config(&vmcs_config) < 0)
  940. return -EIO;
  941. return alloc_kvm_area();
  942. }
  943. static __exit void hardware_unsetup(void)
  944. {
  945. free_kvm_area();
  946. }
  947. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  948. {
  949. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  950. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  951. vmcs_write16(sf->selector, save->selector);
  952. vmcs_writel(sf->base, save->base);
  953. vmcs_write32(sf->limit, save->limit);
  954. vmcs_write32(sf->ar_bytes, save->ar);
  955. } else {
  956. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  957. << AR_DPL_SHIFT;
  958. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  959. }
  960. }
  961. static void enter_pmode(struct kvm_vcpu *vcpu)
  962. {
  963. unsigned long flags;
  964. vcpu->rmode.active = 0;
  965. vmcs_writel(GUEST_TR_BASE, vcpu->rmode.tr.base);
  966. vmcs_write32(GUEST_TR_LIMIT, vcpu->rmode.tr.limit);
  967. vmcs_write32(GUEST_TR_AR_BYTES, vcpu->rmode.tr.ar);
  968. flags = vmcs_readl(GUEST_RFLAGS);
  969. flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
  970. flags |= (vcpu->rmode.save_iopl << IOPL_SHIFT);
  971. vmcs_writel(GUEST_RFLAGS, flags);
  972. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  973. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  974. update_exception_bitmap(vcpu);
  975. fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->rmode.es);
  976. fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->rmode.ds);
  977. fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->rmode.gs);
  978. fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->rmode.fs);
  979. vmcs_write16(GUEST_SS_SELECTOR, 0);
  980. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  981. vmcs_write16(GUEST_CS_SELECTOR,
  982. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  983. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  984. }
  985. static gva_t rmode_tss_base(struct kvm *kvm)
  986. {
  987. if (!kvm->tss_addr) {
  988. gfn_t base_gfn = kvm->memslots[0].base_gfn +
  989. kvm->memslots[0].npages - 3;
  990. return base_gfn << PAGE_SHIFT;
  991. }
  992. return kvm->tss_addr;
  993. }
  994. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  995. {
  996. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  997. save->selector = vmcs_read16(sf->selector);
  998. save->base = vmcs_readl(sf->base);
  999. save->limit = vmcs_read32(sf->limit);
  1000. save->ar = vmcs_read32(sf->ar_bytes);
  1001. vmcs_write16(sf->selector, vmcs_readl(sf->base) >> 4);
  1002. vmcs_write32(sf->limit, 0xffff);
  1003. vmcs_write32(sf->ar_bytes, 0xf3);
  1004. }
  1005. static void enter_rmode(struct kvm_vcpu *vcpu)
  1006. {
  1007. unsigned long flags;
  1008. vcpu->rmode.active = 1;
  1009. vcpu->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  1010. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  1011. vcpu->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  1012. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  1013. vcpu->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1014. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1015. flags = vmcs_readl(GUEST_RFLAGS);
  1016. vcpu->rmode.save_iopl = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
  1017. flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  1018. vmcs_writel(GUEST_RFLAGS, flags);
  1019. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  1020. update_exception_bitmap(vcpu);
  1021. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  1022. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  1023. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  1024. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  1025. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1026. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  1027. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  1028. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  1029. fix_rmode_seg(VCPU_SREG_ES, &vcpu->rmode.es);
  1030. fix_rmode_seg(VCPU_SREG_DS, &vcpu->rmode.ds);
  1031. fix_rmode_seg(VCPU_SREG_GS, &vcpu->rmode.gs);
  1032. fix_rmode_seg(VCPU_SREG_FS, &vcpu->rmode.fs);
  1033. kvm_mmu_reset_context(vcpu);
  1034. init_rmode_tss(vcpu->kvm);
  1035. }
  1036. #ifdef CONFIG_X86_64
  1037. static void enter_lmode(struct kvm_vcpu *vcpu)
  1038. {
  1039. u32 guest_tr_ar;
  1040. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1041. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  1042. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  1043. __FUNCTION__);
  1044. vmcs_write32(GUEST_TR_AR_BYTES,
  1045. (guest_tr_ar & ~AR_TYPE_MASK)
  1046. | AR_TYPE_BUSY_64_TSS);
  1047. }
  1048. vcpu->shadow_efer |= EFER_LMA;
  1049. find_msr_entry(to_vmx(vcpu), MSR_EFER)->data |= EFER_LMA | EFER_LME;
  1050. vmcs_write32(VM_ENTRY_CONTROLS,
  1051. vmcs_read32(VM_ENTRY_CONTROLS)
  1052. | VM_ENTRY_IA32E_MODE);
  1053. }
  1054. static void exit_lmode(struct kvm_vcpu *vcpu)
  1055. {
  1056. vcpu->shadow_efer &= ~EFER_LMA;
  1057. vmcs_write32(VM_ENTRY_CONTROLS,
  1058. vmcs_read32(VM_ENTRY_CONTROLS)
  1059. & ~VM_ENTRY_IA32E_MODE);
  1060. }
  1061. #endif
  1062. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  1063. {
  1064. vcpu->cr4 &= KVM_GUEST_CR4_MASK;
  1065. vcpu->cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
  1066. }
  1067. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  1068. {
  1069. vmx_fpu_deactivate(vcpu);
  1070. if (vcpu->rmode.active && (cr0 & X86_CR0_PE))
  1071. enter_pmode(vcpu);
  1072. if (!vcpu->rmode.active && !(cr0 & X86_CR0_PE))
  1073. enter_rmode(vcpu);
  1074. #ifdef CONFIG_X86_64
  1075. if (vcpu->shadow_efer & EFER_LME) {
  1076. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  1077. enter_lmode(vcpu);
  1078. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  1079. exit_lmode(vcpu);
  1080. }
  1081. #endif
  1082. vmcs_writel(CR0_READ_SHADOW, cr0);
  1083. vmcs_writel(GUEST_CR0,
  1084. (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
  1085. vcpu->cr0 = cr0;
  1086. if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
  1087. vmx_fpu_activate(vcpu);
  1088. }
  1089. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  1090. {
  1091. vmcs_writel(GUEST_CR3, cr3);
  1092. if (vcpu->cr0 & X86_CR0_PE)
  1093. vmx_fpu_deactivate(vcpu);
  1094. }
  1095. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  1096. {
  1097. vmcs_writel(CR4_READ_SHADOW, cr4);
  1098. vmcs_writel(GUEST_CR4, cr4 | (vcpu->rmode.active ?
  1099. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
  1100. vcpu->cr4 = cr4;
  1101. }
  1102. #ifdef CONFIG_X86_64
  1103. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1104. {
  1105. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1106. struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  1107. vcpu->shadow_efer = efer;
  1108. if (efer & EFER_LMA) {
  1109. vmcs_write32(VM_ENTRY_CONTROLS,
  1110. vmcs_read32(VM_ENTRY_CONTROLS) |
  1111. VM_ENTRY_IA32E_MODE);
  1112. msr->data = efer;
  1113. } else {
  1114. vmcs_write32(VM_ENTRY_CONTROLS,
  1115. vmcs_read32(VM_ENTRY_CONTROLS) &
  1116. ~VM_ENTRY_IA32E_MODE);
  1117. msr->data = efer & ~EFER_LME;
  1118. }
  1119. setup_msrs(vmx);
  1120. }
  1121. #endif
  1122. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1123. {
  1124. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1125. return vmcs_readl(sf->base);
  1126. }
  1127. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  1128. struct kvm_segment *var, int seg)
  1129. {
  1130. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1131. u32 ar;
  1132. var->base = vmcs_readl(sf->base);
  1133. var->limit = vmcs_read32(sf->limit);
  1134. var->selector = vmcs_read16(sf->selector);
  1135. ar = vmcs_read32(sf->ar_bytes);
  1136. if (ar & AR_UNUSABLE_MASK)
  1137. ar = 0;
  1138. var->type = ar & 15;
  1139. var->s = (ar >> 4) & 1;
  1140. var->dpl = (ar >> 5) & 3;
  1141. var->present = (ar >> 7) & 1;
  1142. var->avl = (ar >> 12) & 1;
  1143. var->l = (ar >> 13) & 1;
  1144. var->db = (ar >> 14) & 1;
  1145. var->g = (ar >> 15) & 1;
  1146. var->unusable = (ar >> 16) & 1;
  1147. }
  1148. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  1149. {
  1150. u32 ar;
  1151. if (var->unusable)
  1152. ar = 1 << 16;
  1153. else {
  1154. ar = var->type & 15;
  1155. ar |= (var->s & 1) << 4;
  1156. ar |= (var->dpl & 3) << 5;
  1157. ar |= (var->present & 1) << 7;
  1158. ar |= (var->avl & 1) << 12;
  1159. ar |= (var->l & 1) << 13;
  1160. ar |= (var->db & 1) << 14;
  1161. ar |= (var->g & 1) << 15;
  1162. }
  1163. if (ar == 0) /* a 0 value means unusable */
  1164. ar = AR_UNUSABLE_MASK;
  1165. return ar;
  1166. }
  1167. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  1168. struct kvm_segment *var, int seg)
  1169. {
  1170. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1171. u32 ar;
  1172. if (vcpu->rmode.active && seg == VCPU_SREG_TR) {
  1173. vcpu->rmode.tr.selector = var->selector;
  1174. vcpu->rmode.tr.base = var->base;
  1175. vcpu->rmode.tr.limit = var->limit;
  1176. vcpu->rmode.tr.ar = vmx_segment_access_rights(var);
  1177. return;
  1178. }
  1179. vmcs_writel(sf->base, var->base);
  1180. vmcs_write32(sf->limit, var->limit);
  1181. vmcs_write16(sf->selector, var->selector);
  1182. if (vcpu->rmode.active && var->s) {
  1183. /*
  1184. * Hack real-mode segments into vm86 compatibility.
  1185. */
  1186. if (var->base == 0xffff0000 && var->selector == 0xf000)
  1187. vmcs_writel(sf->base, 0xf0000);
  1188. ar = 0xf3;
  1189. } else
  1190. ar = vmx_segment_access_rights(var);
  1191. vmcs_write32(sf->ar_bytes, ar);
  1192. }
  1193. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  1194. {
  1195. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1196. *db = (ar >> 14) & 1;
  1197. *l = (ar >> 13) & 1;
  1198. }
  1199. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1200. {
  1201. dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
  1202. dt->base = vmcs_readl(GUEST_IDTR_BASE);
  1203. }
  1204. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1205. {
  1206. vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
  1207. vmcs_writel(GUEST_IDTR_BASE, dt->base);
  1208. }
  1209. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1210. {
  1211. dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
  1212. dt->base = vmcs_readl(GUEST_GDTR_BASE);
  1213. }
  1214. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1215. {
  1216. vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
  1217. vmcs_writel(GUEST_GDTR_BASE, dt->base);
  1218. }
  1219. static int init_rmode_tss(struct kvm *kvm)
  1220. {
  1221. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  1222. u16 data = 0;
  1223. int r;
  1224. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1225. if (r < 0)
  1226. return 0;
  1227. data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  1228. r = kvm_write_guest_page(kvm, fn++, &data, 0x66, sizeof(u16));
  1229. if (r < 0)
  1230. return 0;
  1231. r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
  1232. if (r < 0)
  1233. return 0;
  1234. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1235. if (r < 0)
  1236. return 0;
  1237. data = ~0;
  1238. r = kvm_write_guest_page(kvm, fn, &data, RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
  1239. sizeof(u8));
  1240. if (r < 0)
  1241. return 0;
  1242. return 1;
  1243. }
  1244. static void seg_setup(int seg)
  1245. {
  1246. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1247. vmcs_write16(sf->selector, 0);
  1248. vmcs_writel(sf->base, 0);
  1249. vmcs_write32(sf->limit, 0xffff);
  1250. vmcs_write32(sf->ar_bytes, 0x93);
  1251. }
  1252. static int alloc_apic_access_page(struct kvm *kvm)
  1253. {
  1254. struct kvm_userspace_memory_region kvm_userspace_mem;
  1255. int r = 0;
  1256. mutex_lock(&kvm->lock);
  1257. if (kvm->apic_access_page)
  1258. goto out;
  1259. kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
  1260. kvm_userspace_mem.flags = 0;
  1261. kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
  1262. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1263. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1264. if (r)
  1265. goto out;
  1266. kvm->apic_access_page = gfn_to_page(kvm, 0xfee00);
  1267. out:
  1268. mutex_unlock(&kvm->lock);
  1269. return r;
  1270. }
  1271. /*
  1272. * Sets up the vmcs for emulated real mode.
  1273. */
  1274. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  1275. {
  1276. u32 host_sysenter_cs;
  1277. u32 junk;
  1278. unsigned long a;
  1279. struct descriptor_table dt;
  1280. int i;
  1281. unsigned long kvm_vmx_return;
  1282. u32 exec_control;
  1283. /* I/O */
  1284. vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
  1285. vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
  1286. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  1287. /* Control */
  1288. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  1289. vmcs_config.pin_based_exec_ctrl);
  1290. exec_control = vmcs_config.cpu_based_exec_ctrl;
  1291. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  1292. exec_control &= ~CPU_BASED_TPR_SHADOW;
  1293. #ifdef CONFIG_X86_64
  1294. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  1295. CPU_BASED_CR8_LOAD_EXITING;
  1296. #endif
  1297. }
  1298. if (!vm_need_secondary_exec_ctrls(vmx->vcpu.kvm))
  1299. exec_control &= ~CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  1300. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  1301. if (vm_need_secondary_exec_ctrls(vmx->vcpu.kvm))
  1302. vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
  1303. vmcs_config.cpu_based_2nd_exec_ctrl);
  1304. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
  1305. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
  1306. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  1307. vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
  1308. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  1309. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  1310. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  1311. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1312. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1313. vmcs_write16(HOST_FS_SELECTOR, read_fs()); /* 22.2.4 */
  1314. vmcs_write16(HOST_GS_SELECTOR, read_gs()); /* 22.2.4 */
  1315. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1316. #ifdef CONFIG_X86_64
  1317. rdmsrl(MSR_FS_BASE, a);
  1318. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  1319. rdmsrl(MSR_GS_BASE, a);
  1320. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  1321. #else
  1322. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  1323. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  1324. #endif
  1325. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  1326. get_idt(&dt);
  1327. vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
  1328. asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
  1329. vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
  1330. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  1331. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  1332. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  1333. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  1334. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  1335. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  1336. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  1337. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  1338. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  1339. for (i = 0; i < NR_VMX_MSR; ++i) {
  1340. u32 index = vmx_msr_index[i];
  1341. u32 data_low, data_high;
  1342. u64 data;
  1343. int j = vmx->nmsrs;
  1344. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  1345. continue;
  1346. if (wrmsr_safe(index, data_low, data_high) < 0)
  1347. continue;
  1348. data = data_low | ((u64)data_high << 32);
  1349. vmx->host_msrs[j].index = index;
  1350. vmx->host_msrs[j].reserved = 0;
  1351. vmx->host_msrs[j].data = data;
  1352. vmx->guest_msrs[j] = vmx->host_msrs[j];
  1353. ++vmx->nmsrs;
  1354. }
  1355. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  1356. /* 22.2.1, 20.8.1 */
  1357. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  1358. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  1359. vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
  1360. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  1361. if (alloc_apic_access_page(vmx->vcpu.kvm) != 0)
  1362. return -ENOMEM;
  1363. return 0;
  1364. }
  1365. static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
  1366. {
  1367. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1368. u64 msr;
  1369. int ret;
  1370. if (!init_rmode_tss(vmx->vcpu.kvm)) {
  1371. ret = -ENOMEM;
  1372. goto out;
  1373. }
  1374. vmx->vcpu.rmode.active = 0;
  1375. vmx->vcpu.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  1376. set_cr8(&vmx->vcpu, 0);
  1377. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  1378. if (vmx->vcpu.vcpu_id == 0)
  1379. msr |= MSR_IA32_APICBASE_BSP;
  1380. kvm_set_apic_base(&vmx->vcpu, msr);
  1381. fx_init(&vmx->vcpu);
  1382. /*
  1383. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  1384. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  1385. */
  1386. if (vmx->vcpu.vcpu_id == 0) {
  1387. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  1388. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  1389. } else {
  1390. vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.sipi_vector << 8);
  1391. vmcs_writel(GUEST_CS_BASE, vmx->vcpu.sipi_vector << 12);
  1392. }
  1393. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1394. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1395. seg_setup(VCPU_SREG_DS);
  1396. seg_setup(VCPU_SREG_ES);
  1397. seg_setup(VCPU_SREG_FS);
  1398. seg_setup(VCPU_SREG_GS);
  1399. seg_setup(VCPU_SREG_SS);
  1400. vmcs_write16(GUEST_TR_SELECTOR, 0);
  1401. vmcs_writel(GUEST_TR_BASE, 0);
  1402. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  1403. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1404. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  1405. vmcs_writel(GUEST_LDTR_BASE, 0);
  1406. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  1407. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  1408. vmcs_write32(GUEST_SYSENTER_CS, 0);
  1409. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  1410. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  1411. vmcs_writel(GUEST_RFLAGS, 0x02);
  1412. if (vmx->vcpu.vcpu_id == 0)
  1413. vmcs_writel(GUEST_RIP, 0xfff0);
  1414. else
  1415. vmcs_writel(GUEST_RIP, 0);
  1416. vmcs_writel(GUEST_RSP, 0);
  1417. /* todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0 */
  1418. vmcs_writel(GUEST_DR7, 0x400);
  1419. vmcs_writel(GUEST_GDTR_BASE, 0);
  1420. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  1421. vmcs_writel(GUEST_IDTR_BASE, 0);
  1422. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  1423. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  1424. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  1425. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  1426. guest_write_tsc(0);
  1427. /* Special registers */
  1428. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  1429. setup_msrs(vmx);
  1430. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  1431. if (cpu_has_vmx_tpr_shadow()) {
  1432. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  1433. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  1434. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  1435. page_to_phys(vmx->vcpu.apic->regs_page));
  1436. vmcs_write32(TPR_THRESHOLD, 0);
  1437. }
  1438. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  1439. vmcs_write64(APIC_ACCESS_ADDR,
  1440. page_to_phys(vmx->vcpu.kvm->apic_access_page));
  1441. vmx->vcpu.cr0 = 0x60000010;
  1442. vmx_set_cr0(&vmx->vcpu, vmx->vcpu.cr0); /* enter rmode */
  1443. vmx_set_cr4(&vmx->vcpu, 0);
  1444. #ifdef CONFIG_X86_64
  1445. vmx_set_efer(&vmx->vcpu, 0);
  1446. #endif
  1447. vmx_fpu_activate(&vmx->vcpu);
  1448. update_exception_bitmap(&vmx->vcpu);
  1449. return 0;
  1450. out:
  1451. return ret;
  1452. }
  1453. static void vmx_inject_irq(struct kvm_vcpu *vcpu, int irq)
  1454. {
  1455. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1456. if (vcpu->rmode.active) {
  1457. vmx->rmode.irq.pending = true;
  1458. vmx->rmode.irq.vector = irq;
  1459. vmx->rmode.irq.rip = vmcs_readl(GUEST_RIP);
  1460. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1461. irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
  1462. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  1463. vmcs_writel(GUEST_RIP, vmx->rmode.irq.rip - 1);
  1464. return;
  1465. }
  1466. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1467. irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  1468. }
  1469. static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
  1470. {
  1471. int word_index = __ffs(vcpu->irq_summary);
  1472. int bit_index = __ffs(vcpu->irq_pending[word_index]);
  1473. int irq = word_index * BITS_PER_LONG + bit_index;
  1474. clear_bit(bit_index, &vcpu->irq_pending[word_index]);
  1475. if (!vcpu->irq_pending[word_index])
  1476. clear_bit(word_index, &vcpu->irq_summary);
  1477. vmx_inject_irq(vcpu, irq);
  1478. }
  1479. static void do_interrupt_requests(struct kvm_vcpu *vcpu,
  1480. struct kvm_run *kvm_run)
  1481. {
  1482. u32 cpu_based_vm_exec_control;
  1483. vcpu->interrupt_window_open =
  1484. ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  1485. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
  1486. if (vcpu->interrupt_window_open &&
  1487. vcpu->irq_summary &&
  1488. !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
  1489. /*
  1490. * If interrupts enabled, and not blocked by sti or mov ss. Good.
  1491. */
  1492. kvm_do_inject_irq(vcpu);
  1493. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  1494. if (!vcpu->interrupt_window_open &&
  1495. (vcpu->irq_summary || kvm_run->request_interrupt_window))
  1496. /*
  1497. * Interrupts blocked. Wait for unblock.
  1498. */
  1499. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  1500. else
  1501. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  1502. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  1503. }
  1504. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
  1505. {
  1506. int ret;
  1507. struct kvm_userspace_memory_region tss_mem = {
  1508. .slot = 8,
  1509. .guest_phys_addr = addr,
  1510. .memory_size = PAGE_SIZE * 3,
  1511. .flags = 0,
  1512. };
  1513. ret = kvm_set_memory_region(kvm, &tss_mem, 0);
  1514. if (ret)
  1515. return ret;
  1516. kvm->tss_addr = addr;
  1517. return 0;
  1518. }
  1519. static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
  1520. {
  1521. struct kvm_guest_debug *dbg = &vcpu->guest_debug;
  1522. set_debugreg(dbg->bp[0], 0);
  1523. set_debugreg(dbg->bp[1], 1);
  1524. set_debugreg(dbg->bp[2], 2);
  1525. set_debugreg(dbg->bp[3], 3);
  1526. if (dbg->singlestep) {
  1527. unsigned long flags;
  1528. flags = vmcs_readl(GUEST_RFLAGS);
  1529. flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
  1530. vmcs_writel(GUEST_RFLAGS, flags);
  1531. }
  1532. }
  1533. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  1534. int vec, u32 err_code)
  1535. {
  1536. if (!vcpu->rmode.active)
  1537. return 0;
  1538. /*
  1539. * Instruction with address size override prefix opcode 0x67
  1540. * Cause the #SS fault with 0 error code in VM86 mode.
  1541. */
  1542. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  1543. if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
  1544. return 1;
  1545. return 0;
  1546. }
  1547. static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1548. {
  1549. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1550. u32 intr_info, error_code;
  1551. unsigned long cr2, rip;
  1552. u32 vect_info;
  1553. enum emulation_result er;
  1554. vect_info = vmx->idt_vectoring_info;
  1555. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  1556. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  1557. !is_page_fault(intr_info))
  1558. printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
  1559. "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
  1560. if (!irqchip_in_kernel(vcpu->kvm) && is_external_interrupt(vect_info)) {
  1561. int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
  1562. set_bit(irq, vcpu->irq_pending);
  1563. set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
  1564. }
  1565. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */
  1566. return 1; /* already handled by vmx_vcpu_run() */
  1567. if (is_no_device(intr_info)) {
  1568. vmx_fpu_activate(vcpu);
  1569. return 1;
  1570. }
  1571. if (is_invalid_opcode(intr_info)) {
  1572. er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
  1573. if (er != EMULATE_DONE)
  1574. vmx_inject_ud(vcpu);
  1575. return 1;
  1576. }
  1577. error_code = 0;
  1578. rip = vmcs_readl(GUEST_RIP);
  1579. if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
  1580. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  1581. if (is_page_fault(intr_info)) {
  1582. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  1583. return kvm_mmu_page_fault(vcpu, cr2, error_code);
  1584. }
  1585. if (vcpu->rmode.active &&
  1586. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  1587. error_code)) {
  1588. if (vcpu->halt_request) {
  1589. vcpu->halt_request = 0;
  1590. return kvm_emulate_halt(vcpu);
  1591. }
  1592. return 1;
  1593. }
  1594. if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) ==
  1595. (INTR_TYPE_EXCEPTION | 1)) {
  1596. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  1597. return 0;
  1598. }
  1599. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  1600. kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
  1601. kvm_run->ex.error_code = error_code;
  1602. return 0;
  1603. }
  1604. static int handle_external_interrupt(struct kvm_vcpu *vcpu,
  1605. struct kvm_run *kvm_run)
  1606. {
  1607. ++vcpu->stat.irq_exits;
  1608. return 1;
  1609. }
  1610. static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1611. {
  1612. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  1613. return 0;
  1614. }
  1615. static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1616. {
  1617. unsigned long exit_qualification;
  1618. int size, down, in, string, rep;
  1619. unsigned port;
  1620. ++vcpu->stat.io_exits;
  1621. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  1622. string = (exit_qualification & 16) != 0;
  1623. if (string) {
  1624. if (emulate_instruction(vcpu,
  1625. kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
  1626. return 0;
  1627. return 1;
  1628. }
  1629. size = (exit_qualification & 7) + 1;
  1630. in = (exit_qualification & 8) != 0;
  1631. down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
  1632. rep = (exit_qualification & 32) != 0;
  1633. port = exit_qualification >> 16;
  1634. return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
  1635. }
  1636. static void
  1637. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  1638. {
  1639. /*
  1640. * Patch in the VMCALL instruction:
  1641. */
  1642. hypercall[0] = 0x0f;
  1643. hypercall[1] = 0x01;
  1644. hypercall[2] = 0xc1;
  1645. }
  1646. static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1647. {
  1648. unsigned long exit_qualification;
  1649. int cr;
  1650. int reg;
  1651. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  1652. cr = exit_qualification & 15;
  1653. reg = (exit_qualification >> 8) & 15;
  1654. switch ((exit_qualification >> 4) & 3) {
  1655. case 0: /* mov to cr */
  1656. switch (cr) {
  1657. case 0:
  1658. vcpu_load_rsp_rip(vcpu);
  1659. set_cr0(vcpu, vcpu->regs[reg]);
  1660. skip_emulated_instruction(vcpu);
  1661. return 1;
  1662. case 3:
  1663. vcpu_load_rsp_rip(vcpu);
  1664. set_cr3(vcpu, vcpu->regs[reg]);
  1665. skip_emulated_instruction(vcpu);
  1666. return 1;
  1667. case 4:
  1668. vcpu_load_rsp_rip(vcpu);
  1669. set_cr4(vcpu, vcpu->regs[reg]);
  1670. skip_emulated_instruction(vcpu);
  1671. return 1;
  1672. case 8:
  1673. vcpu_load_rsp_rip(vcpu);
  1674. set_cr8(vcpu, vcpu->regs[reg]);
  1675. skip_emulated_instruction(vcpu);
  1676. kvm_run->exit_reason = KVM_EXIT_SET_TPR;
  1677. return 0;
  1678. };
  1679. break;
  1680. case 2: /* clts */
  1681. vcpu_load_rsp_rip(vcpu);
  1682. vmx_fpu_deactivate(vcpu);
  1683. vcpu->cr0 &= ~X86_CR0_TS;
  1684. vmcs_writel(CR0_READ_SHADOW, vcpu->cr0);
  1685. vmx_fpu_activate(vcpu);
  1686. skip_emulated_instruction(vcpu);
  1687. return 1;
  1688. case 1: /*mov from cr*/
  1689. switch (cr) {
  1690. case 3:
  1691. vcpu_load_rsp_rip(vcpu);
  1692. vcpu->regs[reg] = vcpu->cr3;
  1693. vcpu_put_rsp_rip(vcpu);
  1694. skip_emulated_instruction(vcpu);
  1695. return 1;
  1696. case 8:
  1697. vcpu_load_rsp_rip(vcpu);
  1698. vcpu->regs[reg] = get_cr8(vcpu);
  1699. vcpu_put_rsp_rip(vcpu);
  1700. skip_emulated_instruction(vcpu);
  1701. return 1;
  1702. }
  1703. break;
  1704. case 3: /* lmsw */
  1705. lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
  1706. skip_emulated_instruction(vcpu);
  1707. return 1;
  1708. default:
  1709. break;
  1710. }
  1711. kvm_run->exit_reason = 0;
  1712. pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  1713. (int)(exit_qualification >> 4) & 3, cr);
  1714. return 0;
  1715. }
  1716. static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1717. {
  1718. unsigned long exit_qualification;
  1719. unsigned long val;
  1720. int dr, reg;
  1721. /*
  1722. * FIXME: this code assumes the host is debugging the guest.
  1723. * need to deal with guest debugging itself too.
  1724. */
  1725. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  1726. dr = exit_qualification & 7;
  1727. reg = (exit_qualification >> 8) & 15;
  1728. vcpu_load_rsp_rip(vcpu);
  1729. if (exit_qualification & 16) {
  1730. /* mov from dr */
  1731. switch (dr) {
  1732. case 6:
  1733. val = 0xffff0ff0;
  1734. break;
  1735. case 7:
  1736. val = 0x400;
  1737. break;
  1738. default:
  1739. val = 0;
  1740. }
  1741. vcpu->regs[reg] = val;
  1742. } else {
  1743. /* mov to dr */
  1744. }
  1745. vcpu_put_rsp_rip(vcpu);
  1746. skip_emulated_instruction(vcpu);
  1747. return 1;
  1748. }
  1749. static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1750. {
  1751. kvm_emulate_cpuid(vcpu);
  1752. return 1;
  1753. }
  1754. static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1755. {
  1756. u32 ecx = vcpu->regs[VCPU_REGS_RCX];
  1757. u64 data;
  1758. if (vmx_get_msr(vcpu, ecx, &data)) {
  1759. vmx_inject_gp(vcpu, 0);
  1760. return 1;
  1761. }
  1762. /* FIXME: handling of bits 32:63 of rax, rdx */
  1763. vcpu->regs[VCPU_REGS_RAX] = data & -1u;
  1764. vcpu->regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  1765. skip_emulated_instruction(vcpu);
  1766. return 1;
  1767. }
  1768. static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1769. {
  1770. u32 ecx = vcpu->regs[VCPU_REGS_RCX];
  1771. u64 data = (vcpu->regs[VCPU_REGS_RAX] & -1u)
  1772. | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
  1773. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  1774. vmx_inject_gp(vcpu, 0);
  1775. return 1;
  1776. }
  1777. skip_emulated_instruction(vcpu);
  1778. return 1;
  1779. }
  1780. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
  1781. struct kvm_run *kvm_run)
  1782. {
  1783. return 1;
  1784. }
  1785. static int handle_interrupt_window(struct kvm_vcpu *vcpu,
  1786. struct kvm_run *kvm_run)
  1787. {
  1788. u32 cpu_based_vm_exec_control;
  1789. /* clear pending irq */
  1790. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  1791. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  1792. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  1793. /*
  1794. * If the user space waits to inject interrupts, exit as soon as
  1795. * possible
  1796. */
  1797. if (kvm_run->request_interrupt_window &&
  1798. !vcpu->irq_summary) {
  1799. kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  1800. ++vcpu->stat.irq_window_exits;
  1801. return 0;
  1802. }
  1803. return 1;
  1804. }
  1805. static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1806. {
  1807. skip_emulated_instruction(vcpu);
  1808. return kvm_emulate_halt(vcpu);
  1809. }
  1810. static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1811. {
  1812. skip_emulated_instruction(vcpu);
  1813. kvm_emulate_hypercall(vcpu);
  1814. return 1;
  1815. }
  1816. static int handle_wbinvd(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1817. {
  1818. skip_emulated_instruction(vcpu);
  1819. /* TODO: Add support for VT-d/pass-through device */
  1820. return 1;
  1821. }
  1822. static int handle_apic_access(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1823. {
  1824. u64 exit_qualification;
  1825. enum emulation_result er;
  1826. unsigned long offset;
  1827. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1828. offset = exit_qualification & 0xffful;
  1829. er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
  1830. if (er != EMULATE_DONE) {
  1831. printk(KERN_ERR
  1832. "Fail to handle apic access vmexit! Offset is 0x%lx\n",
  1833. offset);
  1834. return -ENOTSUPP;
  1835. }
  1836. return 1;
  1837. }
  1838. /*
  1839. * The exit handlers return 1 if the exit was handled fully and guest execution
  1840. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  1841. * to be done to userspace and return 0.
  1842. */
  1843. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
  1844. struct kvm_run *kvm_run) = {
  1845. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  1846. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  1847. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  1848. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  1849. [EXIT_REASON_CR_ACCESS] = handle_cr,
  1850. [EXIT_REASON_DR_ACCESS] = handle_dr,
  1851. [EXIT_REASON_CPUID] = handle_cpuid,
  1852. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  1853. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  1854. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  1855. [EXIT_REASON_HLT] = handle_halt,
  1856. [EXIT_REASON_VMCALL] = handle_vmcall,
  1857. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
  1858. [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
  1859. [EXIT_REASON_WBINVD] = handle_wbinvd,
  1860. };
  1861. static const int kvm_vmx_max_exit_handlers =
  1862. ARRAY_SIZE(kvm_vmx_exit_handlers);
  1863. /*
  1864. * The guest has exited. See if we can fix it or if we need userspace
  1865. * assistance.
  1866. */
  1867. static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  1868. {
  1869. u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
  1870. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1871. u32 vectoring_info = vmx->idt_vectoring_info;
  1872. if (unlikely(vmx->fail)) {
  1873. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  1874. kvm_run->fail_entry.hardware_entry_failure_reason
  1875. = vmcs_read32(VM_INSTRUCTION_ERROR);
  1876. return 0;
  1877. }
  1878. if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
  1879. exit_reason != EXIT_REASON_EXCEPTION_NMI)
  1880. printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
  1881. "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
  1882. if (exit_reason < kvm_vmx_max_exit_handlers
  1883. && kvm_vmx_exit_handlers[exit_reason])
  1884. return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
  1885. else {
  1886. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  1887. kvm_run->hw.hardware_exit_reason = exit_reason;
  1888. }
  1889. return 0;
  1890. }
  1891. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1892. {
  1893. }
  1894. static void update_tpr_threshold(struct kvm_vcpu *vcpu)
  1895. {
  1896. int max_irr, tpr;
  1897. if (!vm_need_tpr_shadow(vcpu->kvm))
  1898. return;
  1899. if (!kvm_lapic_enabled(vcpu) ||
  1900. ((max_irr = kvm_lapic_find_highest_irr(vcpu)) == -1)) {
  1901. vmcs_write32(TPR_THRESHOLD, 0);
  1902. return;
  1903. }
  1904. tpr = (kvm_lapic_get_cr8(vcpu) & 0x0f) << 4;
  1905. vmcs_write32(TPR_THRESHOLD, (max_irr > tpr) ? tpr >> 4 : max_irr >> 4);
  1906. }
  1907. static void enable_irq_window(struct kvm_vcpu *vcpu)
  1908. {
  1909. u32 cpu_based_vm_exec_control;
  1910. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  1911. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  1912. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  1913. }
  1914. static void vmx_intr_assist(struct kvm_vcpu *vcpu)
  1915. {
  1916. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1917. u32 idtv_info_field, intr_info_field;
  1918. int has_ext_irq, interrupt_window_open;
  1919. int vector;
  1920. update_tpr_threshold(vcpu);
  1921. has_ext_irq = kvm_cpu_has_interrupt(vcpu);
  1922. intr_info_field = vmcs_read32(VM_ENTRY_INTR_INFO_FIELD);
  1923. idtv_info_field = vmx->idt_vectoring_info;
  1924. if (intr_info_field & INTR_INFO_VALID_MASK) {
  1925. if (idtv_info_field & INTR_INFO_VALID_MASK) {
  1926. /* TODO: fault when IDT_Vectoring */
  1927. printk(KERN_ERR "Fault when IDT_Vectoring\n");
  1928. }
  1929. if (has_ext_irq)
  1930. enable_irq_window(vcpu);
  1931. return;
  1932. }
  1933. if (unlikely(idtv_info_field & INTR_INFO_VALID_MASK)) {
  1934. if ((idtv_info_field & VECTORING_INFO_TYPE_MASK)
  1935. == INTR_TYPE_EXT_INTR
  1936. && vcpu->rmode.active) {
  1937. u8 vect = idtv_info_field & VECTORING_INFO_VECTOR_MASK;
  1938. vmx_inject_irq(vcpu, vect);
  1939. if (unlikely(has_ext_irq))
  1940. enable_irq_window(vcpu);
  1941. return;
  1942. }
  1943. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, idtv_info_field);
  1944. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  1945. vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
  1946. if (unlikely(idtv_info_field & INTR_INFO_DELIEVER_CODE_MASK))
  1947. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
  1948. vmcs_read32(IDT_VECTORING_ERROR_CODE));
  1949. if (unlikely(has_ext_irq))
  1950. enable_irq_window(vcpu);
  1951. return;
  1952. }
  1953. if (!has_ext_irq)
  1954. return;
  1955. interrupt_window_open =
  1956. ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  1957. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
  1958. if (interrupt_window_open) {
  1959. vector = kvm_cpu_get_interrupt(vcpu);
  1960. vmx_inject_irq(vcpu, vector);
  1961. kvm_timer_intr_post(vcpu, vector);
  1962. } else
  1963. enable_irq_window(vcpu);
  1964. }
  1965. /*
  1966. * Failure to inject an interrupt should give us the information
  1967. * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
  1968. * when fetching the interrupt redirection bitmap in the real-mode
  1969. * tss, this doesn't happen. So we do it ourselves.
  1970. */
  1971. static void fixup_rmode_irq(struct vcpu_vmx *vmx)
  1972. {
  1973. vmx->rmode.irq.pending = 0;
  1974. if (vmcs_readl(GUEST_RIP) + 1 != vmx->rmode.irq.rip)
  1975. return;
  1976. vmcs_writel(GUEST_RIP, vmx->rmode.irq.rip);
  1977. if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
  1978. vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
  1979. vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
  1980. return;
  1981. }
  1982. vmx->idt_vectoring_info =
  1983. VECTORING_INFO_VALID_MASK
  1984. | INTR_TYPE_EXT_INTR
  1985. | vmx->rmode.irq.vector;
  1986. }
  1987. static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1988. {
  1989. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1990. u32 intr_info;
  1991. /*
  1992. * Loading guest fpu may have cleared host cr0.ts
  1993. */
  1994. vmcs_writel(HOST_CR0, read_cr0());
  1995. asm(
  1996. /* Store host registers */
  1997. #ifdef CONFIG_X86_64
  1998. "push %%rdx; push %%rbp;"
  1999. "push %%rcx \n\t"
  2000. #else
  2001. "push %%edx; push %%ebp;"
  2002. "push %%ecx \n\t"
  2003. #endif
  2004. ASM_VMX_VMWRITE_RSP_RDX "\n\t"
  2005. /* Check if vmlaunch of vmresume is needed */
  2006. "cmpl $0, %c[launched](%0) \n\t"
  2007. /* Load guest registers. Don't clobber flags. */
  2008. #ifdef CONFIG_X86_64
  2009. "mov %c[cr2](%0), %%rax \n\t"
  2010. "mov %%rax, %%cr2 \n\t"
  2011. "mov %c[rax](%0), %%rax \n\t"
  2012. "mov %c[rbx](%0), %%rbx \n\t"
  2013. "mov %c[rdx](%0), %%rdx \n\t"
  2014. "mov %c[rsi](%0), %%rsi \n\t"
  2015. "mov %c[rdi](%0), %%rdi \n\t"
  2016. "mov %c[rbp](%0), %%rbp \n\t"
  2017. "mov %c[r8](%0), %%r8 \n\t"
  2018. "mov %c[r9](%0), %%r9 \n\t"
  2019. "mov %c[r10](%0), %%r10 \n\t"
  2020. "mov %c[r11](%0), %%r11 \n\t"
  2021. "mov %c[r12](%0), %%r12 \n\t"
  2022. "mov %c[r13](%0), %%r13 \n\t"
  2023. "mov %c[r14](%0), %%r14 \n\t"
  2024. "mov %c[r15](%0), %%r15 \n\t"
  2025. "mov %c[rcx](%0), %%rcx \n\t" /* kills %0 (rcx) */
  2026. #else
  2027. "mov %c[cr2](%0), %%eax \n\t"
  2028. "mov %%eax, %%cr2 \n\t"
  2029. "mov %c[rax](%0), %%eax \n\t"
  2030. "mov %c[rbx](%0), %%ebx \n\t"
  2031. "mov %c[rdx](%0), %%edx \n\t"
  2032. "mov %c[rsi](%0), %%esi \n\t"
  2033. "mov %c[rdi](%0), %%edi \n\t"
  2034. "mov %c[rbp](%0), %%ebp \n\t"
  2035. "mov %c[rcx](%0), %%ecx \n\t" /* kills %0 (ecx) */
  2036. #endif
  2037. /* Enter guest mode */
  2038. "jne .Llaunched \n\t"
  2039. ASM_VMX_VMLAUNCH "\n\t"
  2040. "jmp .Lkvm_vmx_return \n\t"
  2041. ".Llaunched: " ASM_VMX_VMRESUME "\n\t"
  2042. ".Lkvm_vmx_return: "
  2043. /* Save guest registers, load host registers, keep flags */
  2044. #ifdef CONFIG_X86_64
  2045. "xchg %0, (%%rsp) \n\t"
  2046. "mov %%rax, %c[rax](%0) \n\t"
  2047. "mov %%rbx, %c[rbx](%0) \n\t"
  2048. "pushq (%%rsp); popq %c[rcx](%0) \n\t"
  2049. "mov %%rdx, %c[rdx](%0) \n\t"
  2050. "mov %%rsi, %c[rsi](%0) \n\t"
  2051. "mov %%rdi, %c[rdi](%0) \n\t"
  2052. "mov %%rbp, %c[rbp](%0) \n\t"
  2053. "mov %%r8, %c[r8](%0) \n\t"
  2054. "mov %%r9, %c[r9](%0) \n\t"
  2055. "mov %%r10, %c[r10](%0) \n\t"
  2056. "mov %%r11, %c[r11](%0) \n\t"
  2057. "mov %%r12, %c[r12](%0) \n\t"
  2058. "mov %%r13, %c[r13](%0) \n\t"
  2059. "mov %%r14, %c[r14](%0) \n\t"
  2060. "mov %%r15, %c[r15](%0) \n\t"
  2061. "mov %%cr2, %%rax \n\t"
  2062. "mov %%rax, %c[cr2](%0) \n\t"
  2063. "pop %%rbp; pop %%rbp; pop %%rdx \n\t"
  2064. #else
  2065. "xchg %0, (%%esp) \n\t"
  2066. "mov %%eax, %c[rax](%0) \n\t"
  2067. "mov %%ebx, %c[rbx](%0) \n\t"
  2068. "pushl (%%esp); popl %c[rcx](%0) \n\t"
  2069. "mov %%edx, %c[rdx](%0) \n\t"
  2070. "mov %%esi, %c[rsi](%0) \n\t"
  2071. "mov %%edi, %c[rdi](%0) \n\t"
  2072. "mov %%ebp, %c[rbp](%0) \n\t"
  2073. "mov %%cr2, %%eax \n\t"
  2074. "mov %%eax, %c[cr2](%0) \n\t"
  2075. "pop %%ebp; pop %%ebp; pop %%edx \n\t"
  2076. #endif
  2077. "setbe %c[fail](%0) \n\t"
  2078. : : "c"(vmx), "d"((unsigned long)HOST_RSP),
  2079. [launched]"i"(offsetof(struct vcpu_vmx, launched)),
  2080. [fail]"i"(offsetof(struct vcpu_vmx, fail)),
  2081. [rax]"i"(offsetof(struct vcpu_vmx, vcpu.regs[VCPU_REGS_RAX])),
  2082. [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.regs[VCPU_REGS_RBX])),
  2083. [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.regs[VCPU_REGS_RCX])),
  2084. [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.regs[VCPU_REGS_RDX])),
  2085. [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.regs[VCPU_REGS_RSI])),
  2086. [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.regs[VCPU_REGS_RDI])),
  2087. [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.regs[VCPU_REGS_RBP])),
  2088. #ifdef CONFIG_X86_64
  2089. [r8]"i"(offsetof(struct vcpu_vmx, vcpu.regs[VCPU_REGS_R8])),
  2090. [r9]"i"(offsetof(struct vcpu_vmx, vcpu.regs[VCPU_REGS_R9])),
  2091. [r10]"i"(offsetof(struct vcpu_vmx, vcpu.regs[VCPU_REGS_R10])),
  2092. [r11]"i"(offsetof(struct vcpu_vmx, vcpu.regs[VCPU_REGS_R11])),
  2093. [r12]"i"(offsetof(struct vcpu_vmx, vcpu.regs[VCPU_REGS_R12])),
  2094. [r13]"i"(offsetof(struct vcpu_vmx, vcpu.regs[VCPU_REGS_R13])),
  2095. [r14]"i"(offsetof(struct vcpu_vmx, vcpu.regs[VCPU_REGS_R14])),
  2096. [r15]"i"(offsetof(struct vcpu_vmx, vcpu.regs[VCPU_REGS_R15])),
  2097. #endif
  2098. [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.cr2))
  2099. : "cc", "memory"
  2100. #ifdef CONFIG_X86_64
  2101. , "rbx", "rdi", "rsi"
  2102. , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
  2103. #else
  2104. , "ebx", "edi", "rsi"
  2105. #endif
  2106. );
  2107. vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  2108. if (vmx->rmode.irq.pending)
  2109. fixup_rmode_irq(vmx);
  2110. vcpu->interrupt_window_open =
  2111. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
  2112. asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  2113. vmx->launched = 1;
  2114. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2115. /* We need to handle NMIs before interrupts are enabled */
  2116. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */
  2117. asm("int $2");
  2118. }
  2119. static void vmx_inject_page_fault(struct kvm_vcpu *vcpu,
  2120. unsigned long addr,
  2121. u32 err_code)
  2122. {
  2123. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2124. u32 vect_info = vmx->idt_vectoring_info;
  2125. ++vcpu->stat.pf_guest;
  2126. if (is_page_fault(vect_info)) {
  2127. printk(KERN_DEBUG "inject_page_fault: "
  2128. "double fault 0x%lx @ 0x%lx\n",
  2129. addr, vmcs_readl(GUEST_RIP));
  2130. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, 0);
  2131. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2132. DF_VECTOR |
  2133. INTR_TYPE_EXCEPTION |
  2134. INTR_INFO_DELIEVER_CODE_MASK |
  2135. INTR_INFO_VALID_MASK);
  2136. return;
  2137. }
  2138. vcpu->cr2 = addr;
  2139. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, err_code);
  2140. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2141. PF_VECTOR |
  2142. INTR_TYPE_EXCEPTION |
  2143. INTR_INFO_DELIEVER_CODE_MASK |
  2144. INTR_INFO_VALID_MASK);
  2145. }
  2146. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  2147. {
  2148. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2149. if (vmx->vmcs) {
  2150. on_each_cpu(__vcpu_clear, vmx, 0, 1);
  2151. free_vmcs(vmx->vmcs);
  2152. vmx->vmcs = NULL;
  2153. }
  2154. }
  2155. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  2156. {
  2157. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2158. vmx_free_vmcs(vcpu);
  2159. kfree(vmx->host_msrs);
  2160. kfree(vmx->guest_msrs);
  2161. kvm_vcpu_uninit(vcpu);
  2162. kmem_cache_free(kvm_vcpu_cache, vmx);
  2163. }
  2164. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  2165. {
  2166. int err;
  2167. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  2168. int cpu;
  2169. if (!vmx)
  2170. return ERR_PTR(-ENOMEM);
  2171. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  2172. if (err)
  2173. goto free_vcpu;
  2174. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2175. if (!vmx->guest_msrs) {
  2176. err = -ENOMEM;
  2177. goto uninit_vcpu;
  2178. }
  2179. vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2180. if (!vmx->host_msrs)
  2181. goto free_guest_msrs;
  2182. vmx->vmcs = alloc_vmcs();
  2183. if (!vmx->vmcs)
  2184. goto free_msrs;
  2185. vmcs_clear(vmx->vmcs);
  2186. cpu = get_cpu();
  2187. vmx_vcpu_load(&vmx->vcpu, cpu);
  2188. err = vmx_vcpu_setup(vmx);
  2189. vmx_vcpu_put(&vmx->vcpu);
  2190. put_cpu();
  2191. if (err)
  2192. goto free_vmcs;
  2193. return &vmx->vcpu;
  2194. free_vmcs:
  2195. free_vmcs(vmx->vmcs);
  2196. free_msrs:
  2197. kfree(vmx->host_msrs);
  2198. free_guest_msrs:
  2199. kfree(vmx->guest_msrs);
  2200. uninit_vcpu:
  2201. kvm_vcpu_uninit(&vmx->vcpu);
  2202. free_vcpu:
  2203. kmem_cache_free(kvm_vcpu_cache, vmx);
  2204. return ERR_PTR(err);
  2205. }
  2206. static void __init vmx_check_processor_compat(void *rtn)
  2207. {
  2208. struct vmcs_config vmcs_conf;
  2209. *(int *)rtn = 0;
  2210. if (setup_vmcs_config(&vmcs_conf) < 0)
  2211. *(int *)rtn = -EIO;
  2212. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  2213. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  2214. smp_processor_id());
  2215. *(int *)rtn = -EIO;
  2216. }
  2217. }
  2218. static struct kvm_x86_ops vmx_x86_ops = {
  2219. .cpu_has_kvm_support = cpu_has_kvm_support,
  2220. .disabled_by_bios = vmx_disabled_by_bios,
  2221. .hardware_setup = hardware_setup,
  2222. .hardware_unsetup = hardware_unsetup,
  2223. .check_processor_compatibility = vmx_check_processor_compat,
  2224. .hardware_enable = hardware_enable,
  2225. .hardware_disable = hardware_disable,
  2226. .vcpu_create = vmx_create_vcpu,
  2227. .vcpu_free = vmx_free_vcpu,
  2228. .vcpu_reset = vmx_vcpu_reset,
  2229. .prepare_guest_switch = vmx_save_host_state,
  2230. .vcpu_load = vmx_vcpu_load,
  2231. .vcpu_put = vmx_vcpu_put,
  2232. .vcpu_decache = vmx_vcpu_decache,
  2233. .set_guest_debug = set_guest_debug,
  2234. .guest_debug_pre = kvm_guest_debug_pre,
  2235. .get_msr = vmx_get_msr,
  2236. .set_msr = vmx_set_msr,
  2237. .get_segment_base = vmx_get_segment_base,
  2238. .get_segment = vmx_get_segment,
  2239. .set_segment = vmx_set_segment,
  2240. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  2241. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  2242. .set_cr0 = vmx_set_cr0,
  2243. .set_cr3 = vmx_set_cr3,
  2244. .set_cr4 = vmx_set_cr4,
  2245. #ifdef CONFIG_X86_64
  2246. .set_efer = vmx_set_efer,
  2247. #endif
  2248. .get_idt = vmx_get_idt,
  2249. .set_idt = vmx_set_idt,
  2250. .get_gdt = vmx_get_gdt,
  2251. .set_gdt = vmx_set_gdt,
  2252. .cache_regs = vcpu_load_rsp_rip,
  2253. .decache_regs = vcpu_put_rsp_rip,
  2254. .get_rflags = vmx_get_rflags,
  2255. .set_rflags = vmx_set_rflags,
  2256. .tlb_flush = vmx_flush_tlb,
  2257. .inject_page_fault = vmx_inject_page_fault,
  2258. .inject_gp = vmx_inject_gp,
  2259. .run = vmx_vcpu_run,
  2260. .handle_exit = kvm_handle_exit,
  2261. .skip_emulated_instruction = skip_emulated_instruction,
  2262. .patch_hypercall = vmx_patch_hypercall,
  2263. .get_irq = vmx_get_irq,
  2264. .set_irq = vmx_inject_irq,
  2265. .inject_pending_irq = vmx_intr_assist,
  2266. .inject_pending_vectors = do_interrupt_requests,
  2267. .set_tss_addr = vmx_set_tss_addr,
  2268. };
  2269. static int __init vmx_init(void)
  2270. {
  2271. void *iova;
  2272. int r;
  2273. vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  2274. if (!vmx_io_bitmap_a)
  2275. return -ENOMEM;
  2276. vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  2277. if (!vmx_io_bitmap_b) {
  2278. r = -ENOMEM;
  2279. goto out;
  2280. }
  2281. /*
  2282. * Allow direct access to the PC debug port (it is often used for I/O
  2283. * delays, but the vmexits simply slow things down).
  2284. */
  2285. iova = kmap(vmx_io_bitmap_a);
  2286. memset(iova, 0xff, PAGE_SIZE);
  2287. clear_bit(0x80, iova);
  2288. kunmap(vmx_io_bitmap_a);
  2289. iova = kmap(vmx_io_bitmap_b);
  2290. memset(iova, 0xff, PAGE_SIZE);
  2291. kunmap(vmx_io_bitmap_b);
  2292. r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
  2293. if (r)
  2294. goto out1;
  2295. if (bypass_guest_pf)
  2296. kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
  2297. return 0;
  2298. out1:
  2299. __free_page(vmx_io_bitmap_b);
  2300. out:
  2301. __free_page(vmx_io_bitmap_a);
  2302. return r;
  2303. }
  2304. static void __exit vmx_exit(void)
  2305. {
  2306. __free_page(vmx_io_bitmap_b);
  2307. __free_page(vmx_io_bitmap_a);
  2308. kvm_exit();
  2309. }
  2310. module_init(vmx_init)
  2311. module_exit(vmx_exit)