eeprom.c 49 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838
  1. /*
  2. * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
  3. * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
  4. * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
  5. *
  6. * Permission to use, copy, modify, and distribute this software for any
  7. * purpose with or without fee is hereby granted, provided that the above
  8. * copyright notice and this permission notice appear in all copies.
  9. *
  10. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  11. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  12. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  13. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  14. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  15. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  16. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  17. *
  18. */
  19. /*************************************\
  20. * EEPROM access functions and helpers *
  21. \*************************************/
  22. #include <linux/slab.h>
  23. #include "ath5k.h"
  24. #include "reg.h"
  25. #include "debug.h"
  26. #include "base.h"
  27. /******************\
  28. * Helper functions *
  29. \******************/
  30. /*
  31. * Translate binary channel representation in EEPROM to frequency
  32. */
  33. static u16 ath5k_eeprom_bin2freq(struct ath5k_eeprom_info *ee, u16 bin,
  34. unsigned int mode)
  35. {
  36. u16 val;
  37. if (bin == AR5K_EEPROM_CHANNEL_DIS)
  38. return bin;
  39. if (mode == AR5K_EEPROM_MODE_11A) {
  40. if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
  41. val = (5 * bin) + 4800;
  42. else
  43. val = bin > 62 ? (10 * 62) + (5 * (bin - 62)) + 5100 :
  44. (bin * 10) + 5100;
  45. } else {
  46. if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
  47. val = bin + 2300;
  48. else
  49. val = bin + 2400;
  50. }
  51. return val;
  52. }
  53. /*********\
  54. * Parsers *
  55. \*********/
  56. /*
  57. * Read from eeprom
  58. */
  59. static int ath5k_hw_eeprom_read(struct ath5k_hw *ah, u32 offset, u16 *data)
  60. {
  61. u32 status, timeout;
  62. /*
  63. * Initialize EEPROM access
  64. */
  65. if (ah->ah_version == AR5K_AR5210) {
  66. AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, AR5K_PCICFG_EEAE);
  67. (void)ath5k_hw_reg_read(ah, AR5K_EEPROM_BASE + (4 * offset));
  68. } else {
  69. ath5k_hw_reg_write(ah, offset, AR5K_EEPROM_BASE);
  70. AR5K_REG_ENABLE_BITS(ah, AR5K_EEPROM_CMD,
  71. AR5K_EEPROM_CMD_READ);
  72. }
  73. for (timeout = AR5K_TUNE_REGISTER_TIMEOUT; timeout > 0; timeout--) {
  74. status = ath5k_hw_reg_read(ah, AR5K_EEPROM_STATUS);
  75. if (status & AR5K_EEPROM_STAT_RDDONE) {
  76. if (status & AR5K_EEPROM_STAT_RDERR)
  77. return -EIO;
  78. *data = (u16)(ath5k_hw_reg_read(ah, AR5K_EEPROM_DATA) &
  79. 0xffff);
  80. return 0;
  81. }
  82. udelay(15);
  83. }
  84. return -ETIMEDOUT;
  85. }
  86. /*
  87. * Initialize eeprom & capabilities structs
  88. */
  89. static int
  90. ath5k_eeprom_init_header(struct ath5k_hw *ah)
  91. {
  92. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  93. int ret;
  94. u16 val;
  95. u32 cksum, offset, eep_max = AR5K_EEPROM_INFO_MAX;
  96. /*
  97. * Read values from EEPROM and store them in the capability structure
  98. */
  99. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MAGIC, ee_magic);
  100. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_PROTECT, ee_protect);
  101. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_REG_DOMAIN, ee_regdomain);
  102. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_VERSION, ee_version);
  103. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_HDR, ee_header);
  104. /* Return if we have an old EEPROM */
  105. if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_0)
  106. return 0;
  107. /*
  108. * Validate the checksum of the EEPROM date. There are some
  109. * devices with invalid EEPROMs.
  110. */
  111. AR5K_EEPROM_READ(AR5K_EEPROM_SIZE_UPPER, val);
  112. if (val) {
  113. eep_max = (val & AR5K_EEPROM_SIZE_UPPER_MASK) <<
  114. AR5K_EEPROM_SIZE_ENDLOC_SHIFT;
  115. AR5K_EEPROM_READ(AR5K_EEPROM_SIZE_LOWER, val);
  116. eep_max = (eep_max | val) - AR5K_EEPROM_INFO_BASE;
  117. /*
  118. * Fail safe check to prevent stupid loops due
  119. * to busted EEPROMs. XXX: This value is likely too
  120. * big still, waiting on a better value.
  121. */
  122. if (eep_max > (3 * AR5K_EEPROM_INFO_MAX)) {
  123. ATH5K_ERR(ah->ah_sc, "Invalid max custom EEPROM size: "
  124. "%d (0x%04x) max expected: %d (0x%04x)\n",
  125. eep_max, eep_max,
  126. 3 * AR5K_EEPROM_INFO_MAX,
  127. 3 * AR5K_EEPROM_INFO_MAX);
  128. return -EIO;
  129. }
  130. }
  131. for (cksum = 0, offset = 0; offset < eep_max; offset++) {
  132. AR5K_EEPROM_READ(AR5K_EEPROM_INFO(offset), val);
  133. cksum ^= val;
  134. }
  135. if (cksum != AR5K_EEPROM_INFO_CKSUM) {
  136. ATH5K_ERR(ah->ah_sc, "Invalid EEPROM "
  137. "checksum: 0x%04x eep_max: 0x%04x (%s)\n",
  138. cksum, eep_max,
  139. eep_max == AR5K_EEPROM_INFO_MAX ?
  140. "default size" : "custom size");
  141. return -EIO;
  142. }
  143. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_ANT_GAIN(ah->ah_ee_version),
  144. ee_ant_gain);
  145. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
  146. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC0, ee_misc0);
  147. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC1, ee_misc1);
  148. /* XXX: Don't know which versions include these two */
  149. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC2, ee_misc2);
  150. if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3)
  151. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC3, ee_misc3);
  152. if (ee->ee_version >= AR5K_EEPROM_VERSION_5_0) {
  153. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC4, ee_misc4);
  154. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC5, ee_misc5);
  155. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC6, ee_misc6);
  156. }
  157. }
  158. if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_3) {
  159. AR5K_EEPROM_READ(AR5K_EEPROM_OBDB0_2GHZ, val);
  160. ee->ee_ob[AR5K_EEPROM_MODE_11B][0] = val & 0x7;
  161. ee->ee_db[AR5K_EEPROM_MODE_11B][0] = (val >> 3) & 0x7;
  162. AR5K_EEPROM_READ(AR5K_EEPROM_OBDB1_2GHZ, val);
  163. ee->ee_ob[AR5K_EEPROM_MODE_11G][0] = val & 0x7;
  164. ee->ee_db[AR5K_EEPROM_MODE_11G][0] = (val >> 3) & 0x7;
  165. }
  166. AR5K_EEPROM_READ(AR5K_EEPROM_IS_HB63, val);
  167. if ((ah->ah_mac_version == (AR5K_SREV_AR2425 >> 4)) && val)
  168. ee->ee_is_hb63 = true;
  169. else
  170. ee->ee_is_hb63 = false;
  171. AR5K_EEPROM_READ(AR5K_EEPROM_RFKILL, val);
  172. ee->ee_rfkill_pin = (u8) AR5K_REG_MS(val, AR5K_EEPROM_RFKILL_GPIO_SEL);
  173. ee->ee_rfkill_pol = val & AR5K_EEPROM_RFKILL_POLARITY ? true : false;
  174. /* Check if PCIE_OFFSET points to PCIE_SERDES_SECTION
  175. * and enable serdes programming if needed.
  176. *
  177. * XXX: Serdes values seem to be fixed so
  178. * no need to read them here, we write them
  179. * during ath5k_hw_attach */
  180. AR5K_EEPROM_READ(AR5K_EEPROM_PCIE_OFFSET, val);
  181. ee->ee_serdes = (val == AR5K_EEPROM_PCIE_SERDES_SECTION) ?
  182. true : false;
  183. return 0;
  184. }
  185. /*
  186. * Read antenna infos from eeprom
  187. */
  188. static int ath5k_eeprom_read_ants(struct ath5k_hw *ah, u32 *offset,
  189. unsigned int mode)
  190. {
  191. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  192. u32 o = *offset;
  193. u16 val;
  194. int ret, i = 0;
  195. AR5K_EEPROM_READ(o++, val);
  196. ee->ee_switch_settling[mode] = (val >> 8) & 0x7f;
  197. ee->ee_atn_tx_rx[mode] = (val >> 2) & 0x3f;
  198. ee->ee_ant_control[mode][i] = (val << 4) & 0x3f;
  199. AR5K_EEPROM_READ(o++, val);
  200. ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf;
  201. ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f;
  202. ee->ee_ant_control[mode][i++] = val & 0x3f;
  203. AR5K_EEPROM_READ(o++, val);
  204. ee->ee_ant_control[mode][i++] = (val >> 10) & 0x3f;
  205. ee->ee_ant_control[mode][i++] = (val >> 4) & 0x3f;
  206. ee->ee_ant_control[mode][i] = (val << 2) & 0x3f;
  207. AR5K_EEPROM_READ(o++, val);
  208. ee->ee_ant_control[mode][i++] |= (val >> 14) & 0x3;
  209. ee->ee_ant_control[mode][i++] = (val >> 8) & 0x3f;
  210. ee->ee_ant_control[mode][i++] = (val >> 2) & 0x3f;
  211. ee->ee_ant_control[mode][i] = (val << 4) & 0x3f;
  212. AR5K_EEPROM_READ(o++, val);
  213. ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf;
  214. ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f;
  215. ee->ee_ant_control[mode][i++] = val & 0x3f;
  216. /* Get antenna switch tables */
  217. ah->ah_ant_ctl[mode][AR5K_ANT_CTL] =
  218. (ee->ee_ant_control[mode][0] << 4);
  219. ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_A] =
  220. ee->ee_ant_control[mode][1] |
  221. (ee->ee_ant_control[mode][2] << 6) |
  222. (ee->ee_ant_control[mode][3] << 12) |
  223. (ee->ee_ant_control[mode][4] << 18) |
  224. (ee->ee_ant_control[mode][5] << 24);
  225. ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_B] =
  226. ee->ee_ant_control[mode][6] |
  227. (ee->ee_ant_control[mode][7] << 6) |
  228. (ee->ee_ant_control[mode][8] << 12) |
  229. (ee->ee_ant_control[mode][9] << 18) |
  230. (ee->ee_ant_control[mode][10] << 24);
  231. /* return new offset */
  232. *offset = o;
  233. return 0;
  234. }
  235. /*
  236. * Read supported modes and some mode-specific calibration data
  237. * from eeprom
  238. */
  239. static int ath5k_eeprom_read_modes(struct ath5k_hw *ah, u32 *offset,
  240. unsigned int mode)
  241. {
  242. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  243. u32 o = *offset;
  244. u16 val;
  245. int ret;
  246. ee->ee_n_piers[mode] = 0;
  247. AR5K_EEPROM_READ(o++, val);
  248. ee->ee_adc_desired_size[mode] = (s8)((val >> 8) & 0xff);
  249. switch(mode) {
  250. case AR5K_EEPROM_MODE_11A:
  251. ee->ee_ob[mode][3] = (val >> 5) & 0x7;
  252. ee->ee_db[mode][3] = (val >> 2) & 0x7;
  253. ee->ee_ob[mode][2] = (val << 1) & 0x7;
  254. AR5K_EEPROM_READ(o++, val);
  255. ee->ee_ob[mode][2] |= (val >> 15) & 0x1;
  256. ee->ee_db[mode][2] = (val >> 12) & 0x7;
  257. ee->ee_ob[mode][1] = (val >> 9) & 0x7;
  258. ee->ee_db[mode][1] = (val >> 6) & 0x7;
  259. ee->ee_ob[mode][0] = (val >> 3) & 0x7;
  260. ee->ee_db[mode][0] = val & 0x7;
  261. break;
  262. case AR5K_EEPROM_MODE_11G:
  263. case AR5K_EEPROM_MODE_11B:
  264. ee->ee_ob[mode][1] = (val >> 4) & 0x7;
  265. ee->ee_db[mode][1] = val & 0x7;
  266. break;
  267. }
  268. AR5K_EEPROM_READ(o++, val);
  269. ee->ee_tx_end2xlna_enable[mode] = (val >> 8) & 0xff;
  270. ee->ee_thr_62[mode] = val & 0xff;
  271. if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
  272. ee->ee_thr_62[mode] = mode == AR5K_EEPROM_MODE_11A ? 15 : 28;
  273. AR5K_EEPROM_READ(o++, val);
  274. ee->ee_tx_end2xpa_disable[mode] = (val >> 8) & 0xff;
  275. ee->ee_tx_frm2xpa_enable[mode] = val & 0xff;
  276. AR5K_EEPROM_READ(o++, val);
  277. ee->ee_pga_desired_size[mode] = (val >> 8) & 0xff;
  278. if ((val & 0xff) & 0x80)
  279. ee->ee_noise_floor_thr[mode] = -((((val & 0xff) ^ 0xff)) + 1);
  280. else
  281. ee->ee_noise_floor_thr[mode] = val & 0xff;
  282. if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
  283. ee->ee_noise_floor_thr[mode] =
  284. mode == AR5K_EEPROM_MODE_11A ? -54 : -1;
  285. AR5K_EEPROM_READ(o++, val);
  286. ee->ee_xlna_gain[mode] = (val >> 5) & 0xff;
  287. ee->ee_x_gain[mode] = (val >> 1) & 0xf;
  288. ee->ee_xpd[mode] = val & 0x1;
  289. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
  290. mode != AR5K_EEPROM_MODE_11B)
  291. ee->ee_fixed_bias[mode] = (val >> 13) & 0x1;
  292. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_3) {
  293. AR5K_EEPROM_READ(o++, val);
  294. ee->ee_false_detect[mode] = (val >> 6) & 0x7f;
  295. if (mode == AR5K_EEPROM_MODE_11A)
  296. ee->ee_xr_power[mode] = val & 0x3f;
  297. else {
  298. /* b_DB_11[bg] and b_OB_11[bg] */
  299. ee->ee_ob[mode][0] = val & 0x7;
  300. ee->ee_db[mode][0] = (val >> 3) & 0x7;
  301. }
  302. }
  303. if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_4) {
  304. ee->ee_i_gain[mode] = AR5K_EEPROM_I_GAIN;
  305. ee->ee_cck_ofdm_power_delta = AR5K_EEPROM_CCK_OFDM_DELTA;
  306. } else {
  307. ee->ee_i_gain[mode] = (val >> 13) & 0x7;
  308. AR5K_EEPROM_READ(o++, val);
  309. ee->ee_i_gain[mode] |= (val << 3) & 0x38;
  310. if (mode == AR5K_EEPROM_MODE_11G) {
  311. ee->ee_cck_ofdm_power_delta = (val >> 3) & 0xff;
  312. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_6)
  313. ee->ee_scaled_cck_delta = (val >> 11) & 0x1f;
  314. }
  315. }
  316. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
  317. mode == AR5K_EEPROM_MODE_11A) {
  318. ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
  319. ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
  320. }
  321. if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_0)
  322. goto done;
  323. /* Note: >= v5 have bg freq piers on another location
  324. * so these freq piers are ignored for >= v5 (should be 0xff
  325. * anyway) */
  326. switch(mode) {
  327. case AR5K_EEPROM_MODE_11A:
  328. if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_1)
  329. break;
  330. AR5K_EEPROM_READ(o++, val);
  331. ee->ee_margin_tx_rx[mode] = val & 0x3f;
  332. break;
  333. case AR5K_EEPROM_MODE_11B:
  334. AR5K_EEPROM_READ(o++, val);
  335. ee->ee_pwr_cal_b[0].freq =
  336. ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
  337. if (ee->ee_pwr_cal_b[0].freq != AR5K_EEPROM_CHANNEL_DIS)
  338. ee->ee_n_piers[mode]++;
  339. ee->ee_pwr_cal_b[1].freq =
  340. ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
  341. if (ee->ee_pwr_cal_b[1].freq != AR5K_EEPROM_CHANNEL_DIS)
  342. ee->ee_n_piers[mode]++;
  343. AR5K_EEPROM_READ(o++, val);
  344. ee->ee_pwr_cal_b[2].freq =
  345. ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
  346. if (ee->ee_pwr_cal_b[2].freq != AR5K_EEPROM_CHANNEL_DIS)
  347. ee->ee_n_piers[mode]++;
  348. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
  349. ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
  350. break;
  351. case AR5K_EEPROM_MODE_11G:
  352. AR5K_EEPROM_READ(o++, val);
  353. ee->ee_pwr_cal_g[0].freq =
  354. ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
  355. if (ee->ee_pwr_cal_g[0].freq != AR5K_EEPROM_CHANNEL_DIS)
  356. ee->ee_n_piers[mode]++;
  357. ee->ee_pwr_cal_g[1].freq =
  358. ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
  359. if (ee->ee_pwr_cal_g[1].freq != AR5K_EEPROM_CHANNEL_DIS)
  360. ee->ee_n_piers[mode]++;
  361. AR5K_EEPROM_READ(o++, val);
  362. ee->ee_turbo_max_power[mode] = val & 0x7f;
  363. ee->ee_xr_power[mode] = (val >> 7) & 0x3f;
  364. AR5K_EEPROM_READ(o++, val);
  365. ee->ee_pwr_cal_g[2].freq =
  366. ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
  367. if (ee->ee_pwr_cal_g[2].freq != AR5K_EEPROM_CHANNEL_DIS)
  368. ee->ee_n_piers[mode]++;
  369. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
  370. ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
  371. AR5K_EEPROM_READ(o++, val);
  372. ee->ee_i_cal[mode] = (val >> 5) & 0x3f;
  373. ee->ee_q_cal[mode] = val & 0x1f;
  374. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_2) {
  375. AR5K_EEPROM_READ(o++, val);
  376. ee->ee_cck_ofdm_gain_delta = val & 0xff;
  377. }
  378. break;
  379. }
  380. /*
  381. * Read turbo mode information on newer EEPROM versions
  382. */
  383. if (ee->ee_version < AR5K_EEPROM_VERSION_5_0)
  384. goto done;
  385. switch (mode){
  386. case AR5K_EEPROM_MODE_11A:
  387. ee->ee_switch_settling_turbo[mode] = (val >> 6) & 0x7f;
  388. ee->ee_atn_tx_rx_turbo[mode] = (val >> 13) & 0x7;
  389. AR5K_EEPROM_READ(o++, val);
  390. ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x7) << 3;
  391. ee->ee_margin_tx_rx_turbo[mode] = (val >> 3) & 0x3f;
  392. ee->ee_adc_desired_size_turbo[mode] = (val >> 9) & 0x7f;
  393. AR5K_EEPROM_READ(o++, val);
  394. ee->ee_adc_desired_size_turbo[mode] |= (val & 0x1) << 7;
  395. ee->ee_pga_desired_size_turbo[mode] = (val >> 1) & 0xff;
  396. if (AR5K_EEPROM_EEMAP(ee->ee_misc0) >=2)
  397. ee->ee_pd_gain_overlap = (val >> 9) & 0xf;
  398. break;
  399. case AR5K_EEPROM_MODE_11G:
  400. ee->ee_switch_settling_turbo[mode] = (val >> 8) & 0x7f;
  401. ee->ee_atn_tx_rx_turbo[mode] = (val >> 15) & 0x7;
  402. AR5K_EEPROM_READ(o++, val);
  403. ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x1f) << 1;
  404. ee->ee_margin_tx_rx_turbo[mode] = (val >> 5) & 0x3f;
  405. ee->ee_adc_desired_size_turbo[mode] = (val >> 11) & 0x7f;
  406. AR5K_EEPROM_READ(o++, val);
  407. ee->ee_adc_desired_size_turbo[mode] |= (val & 0x7) << 5;
  408. ee->ee_pga_desired_size_turbo[mode] = (val >> 3) & 0xff;
  409. break;
  410. }
  411. done:
  412. /* return new offset */
  413. *offset = o;
  414. return 0;
  415. }
  416. /* Read mode-specific data (except power calibration data) */
  417. static int
  418. ath5k_eeprom_init_modes(struct ath5k_hw *ah)
  419. {
  420. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  421. u32 mode_offset[3];
  422. unsigned int mode;
  423. u32 offset;
  424. int ret;
  425. /*
  426. * Get values for all modes
  427. */
  428. mode_offset[AR5K_EEPROM_MODE_11A] = AR5K_EEPROM_MODES_11A(ah->ah_ee_version);
  429. mode_offset[AR5K_EEPROM_MODE_11B] = AR5K_EEPROM_MODES_11B(ah->ah_ee_version);
  430. mode_offset[AR5K_EEPROM_MODE_11G] = AR5K_EEPROM_MODES_11G(ah->ah_ee_version);
  431. ee->ee_turbo_max_power[AR5K_EEPROM_MODE_11A] =
  432. AR5K_EEPROM_HDR_T_5GHZ_DBM(ee->ee_header);
  433. for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++) {
  434. offset = mode_offset[mode];
  435. ret = ath5k_eeprom_read_ants(ah, &offset, mode);
  436. if (ret)
  437. return ret;
  438. ret = ath5k_eeprom_read_modes(ah, &offset, mode);
  439. if (ret)
  440. return ret;
  441. }
  442. /* override for older eeprom versions for better performance */
  443. if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2) {
  444. ee->ee_thr_62[AR5K_EEPROM_MODE_11A] = 15;
  445. ee->ee_thr_62[AR5K_EEPROM_MODE_11B] = 28;
  446. ee->ee_thr_62[AR5K_EEPROM_MODE_11G] = 28;
  447. }
  448. return 0;
  449. }
  450. /* Read the frequency piers for each mode (mostly used on newer eeproms with 0xff
  451. * frequency mask) */
  452. static inline int
  453. ath5k_eeprom_read_freq_list(struct ath5k_hw *ah, int *offset, int max,
  454. struct ath5k_chan_pcal_info *pc, unsigned int mode)
  455. {
  456. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  457. int o = *offset;
  458. int i = 0;
  459. u8 freq1, freq2;
  460. int ret;
  461. u16 val;
  462. ee->ee_n_piers[mode] = 0;
  463. while(i < max) {
  464. AR5K_EEPROM_READ(o++, val);
  465. freq1 = val & 0xff;
  466. if (!freq1)
  467. break;
  468. pc[i++].freq = ath5k_eeprom_bin2freq(ee,
  469. freq1, mode);
  470. ee->ee_n_piers[mode]++;
  471. freq2 = (val >> 8) & 0xff;
  472. if (!freq2)
  473. break;
  474. pc[i++].freq = ath5k_eeprom_bin2freq(ee,
  475. freq2, mode);
  476. ee->ee_n_piers[mode]++;
  477. }
  478. /* return new offset */
  479. *offset = o;
  480. return 0;
  481. }
  482. /* Read frequency piers for 802.11a */
  483. static int
  484. ath5k_eeprom_init_11a_pcal_freq(struct ath5k_hw *ah, int offset)
  485. {
  486. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  487. struct ath5k_chan_pcal_info *pcal = ee->ee_pwr_cal_a;
  488. int i, ret;
  489. u16 val;
  490. u8 mask;
  491. if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
  492. ath5k_eeprom_read_freq_list(ah, &offset,
  493. AR5K_EEPROM_N_5GHZ_CHAN, pcal,
  494. AR5K_EEPROM_MODE_11A);
  495. } else {
  496. mask = AR5K_EEPROM_FREQ_M(ah->ah_ee_version);
  497. AR5K_EEPROM_READ(offset++, val);
  498. pcal[0].freq = (val >> 9) & mask;
  499. pcal[1].freq = (val >> 2) & mask;
  500. pcal[2].freq = (val << 5) & mask;
  501. AR5K_EEPROM_READ(offset++, val);
  502. pcal[2].freq |= (val >> 11) & 0x1f;
  503. pcal[3].freq = (val >> 4) & mask;
  504. pcal[4].freq = (val << 3) & mask;
  505. AR5K_EEPROM_READ(offset++, val);
  506. pcal[4].freq |= (val >> 13) & 0x7;
  507. pcal[5].freq = (val >> 6) & mask;
  508. pcal[6].freq = (val << 1) & mask;
  509. AR5K_EEPROM_READ(offset++, val);
  510. pcal[6].freq |= (val >> 15) & 0x1;
  511. pcal[7].freq = (val >> 8) & mask;
  512. pcal[8].freq = (val >> 1) & mask;
  513. pcal[9].freq = (val << 6) & mask;
  514. AR5K_EEPROM_READ(offset++, val);
  515. pcal[9].freq |= (val >> 10) & 0x3f;
  516. /* Fixed number of piers */
  517. ee->ee_n_piers[AR5K_EEPROM_MODE_11A] = 10;
  518. for (i = 0; i < AR5K_EEPROM_N_5GHZ_CHAN; i++) {
  519. pcal[i].freq = ath5k_eeprom_bin2freq(ee,
  520. pcal[i].freq, AR5K_EEPROM_MODE_11A);
  521. }
  522. }
  523. return 0;
  524. }
  525. /* Read frequency piers for 802.11bg on eeprom versions >= 5 and eemap >= 2 */
  526. static inline int
  527. ath5k_eeprom_init_11bg_2413(struct ath5k_hw *ah, unsigned int mode, int offset)
  528. {
  529. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  530. struct ath5k_chan_pcal_info *pcal;
  531. switch(mode) {
  532. case AR5K_EEPROM_MODE_11B:
  533. pcal = ee->ee_pwr_cal_b;
  534. break;
  535. case AR5K_EEPROM_MODE_11G:
  536. pcal = ee->ee_pwr_cal_g;
  537. break;
  538. default:
  539. return -EINVAL;
  540. }
  541. ath5k_eeprom_read_freq_list(ah, &offset,
  542. AR5K_EEPROM_N_2GHZ_CHAN_2413, pcal,
  543. mode);
  544. return 0;
  545. }
  546. /*
  547. * Read power calibration for RF5111 chips
  548. *
  549. * For RF5111 we have an XPD -eXternal Power Detector- curve
  550. * for each calibrated channel. Each curve has 0,5dB Power steps
  551. * on x axis and PCDAC steps (offsets) on y axis and looks like an
  552. * exponential function. To recreate the curve we read 11 points
  553. * here and interpolate later.
  554. */
  555. /* Used to match PCDAC steps with power values on RF5111 chips
  556. * (eeprom versions < 4). For RF5111 we have 11 pre-defined PCDAC
  557. * steps that match with the power values we read from eeprom. On
  558. * older eeprom versions (< 3.2) these steps are equaly spaced at
  559. * 10% of the pcdac curve -until the curve reaches its maximum-
  560. * (11 steps from 0 to 100%) but on newer eeprom versions (>= 3.2)
  561. * these 11 steps are spaced in a different way. This function returns
  562. * the pcdac steps based on eeprom version and curve min/max so that we
  563. * can have pcdac/pwr points.
  564. */
  565. static inline void
  566. ath5k_get_pcdac_intercepts(struct ath5k_hw *ah, u8 min, u8 max, u8 *vp)
  567. {
  568. static const u16 intercepts3[] =
  569. { 0, 5, 10, 20, 30, 50, 70, 85, 90, 95, 100 };
  570. static const u16 intercepts3_2[] =
  571. { 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 };
  572. const u16 *ip;
  573. int i;
  574. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_2)
  575. ip = intercepts3_2;
  576. else
  577. ip = intercepts3;
  578. for (i = 0; i < ARRAY_SIZE(intercepts3); i++)
  579. vp[i] = (ip[i] * max + (100 - ip[i]) * min) / 100;
  580. }
  581. /* Convert RF5111 specific data to generic raw data
  582. * used by interpolation code */
  583. static int
  584. ath5k_eeprom_convert_pcal_info_5111(struct ath5k_hw *ah, int mode,
  585. struct ath5k_chan_pcal_info *chinfo)
  586. {
  587. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  588. struct ath5k_chan_pcal_info_rf5111 *pcinfo;
  589. struct ath5k_pdgain_info *pd;
  590. u8 pier, point, idx;
  591. u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
  592. /* Fill raw data for each calibration pier */
  593. for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
  594. pcinfo = &chinfo[pier].rf5111_info;
  595. /* Allocate pd_curves for this cal pier */
  596. chinfo[pier].pd_curves =
  597. kcalloc(AR5K_EEPROM_N_PD_CURVES,
  598. sizeof(struct ath5k_pdgain_info),
  599. GFP_KERNEL);
  600. if (!chinfo[pier].pd_curves)
  601. return -ENOMEM;
  602. /* Only one curve for RF5111
  603. * find out which one and place
  604. * in pd_curves.
  605. * Note: ee_x_gain is reversed here */
  606. for (idx = 0; idx < AR5K_EEPROM_N_PD_CURVES; idx++) {
  607. if (!((ee->ee_x_gain[mode] >> idx) & 0x1)) {
  608. pdgain_idx[0] = idx;
  609. break;
  610. }
  611. }
  612. ee->ee_pd_gains[mode] = 1;
  613. pd = &chinfo[pier].pd_curves[idx];
  614. pd->pd_points = AR5K_EEPROM_N_PWR_POINTS_5111;
  615. /* Allocate pd points for this curve */
  616. pd->pd_step = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
  617. sizeof(u8), GFP_KERNEL);
  618. if (!pd->pd_step)
  619. return -ENOMEM;
  620. pd->pd_pwr = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
  621. sizeof(s16), GFP_KERNEL);
  622. if (!pd->pd_pwr)
  623. return -ENOMEM;
  624. /* Fill raw dataset
  625. * (convert power to 0.25dB units
  626. * for RF5112 combatibility) */
  627. for (point = 0; point < pd->pd_points; point++) {
  628. /* Absolute values */
  629. pd->pd_pwr[point] = 2 * pcinfo->pwr[point];
  630. /* Already sorted */
  631. pd->pd_step[point] = pcinfo->pcdac[point];
  632. }
  633. /* Set min/max pwr */
  634. chinfo[pier].min_pwr = pd->pd_pwr[0];
  635. chinfo[pier].max_pwr = pd->pd_pwr[10];
  636. }
  637. return 0;
  638. }
  639. /* Parse EEPROM data */
  640. static int
  641. ath5k_eeprom_read_pcal_info_5111(struct ath5k_hw *ah, int mode)
  642. {
  643. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  644. struct ath5k_chan_pcal_info *pcal;
  645. int offset, ret;
  646. int i;
  647. u16 val;
  648. offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
  649. switch(mode) {
  650. case AR5K_EEPROM_MODE_11A:
  651. if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
  652. return 0;
  653. ret = ath5k_eeprom_init_11a_pcal_freq(ah,
  654. offset + AR5K_EEPROM_GROUP1_OFFSET);
  655. if (ret < 0)
  656. return ret;
  657. offset += AR5K_EEPROM_GROUP2_OFFSET;
  658. pcal = ee->ee_pwr_cal_a;
  659. break;
  660. case AR5K_EEPROM_MODE_11B:
  661. if (!AR5K_EEPROM_HDR_11B(ee->ee_header) &&
  662. !AR5K_EEPROM_HDR_11G(ee->ee_header))
  663. return 0;
  664. pcal = ee->ee_pwr_cal_b;
  665. offset += AR5K_EEPROM_GROUP3_OFFSET;
  666. /* fixed piers */
  667. pcal[0].freq = 2412;
  668. pcal[1].freq = 2447;
  669. pcal[2].freq = 2484;
  670. ee->ee_n_piers[mode] = 3;
  671. break;
  672. case AR5K_EEPROM_MODE_11G:
  673. if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
  674. return 0;
  675. pcal = ee->ee_pwr_cal_g;
  676. offset += AR5K_EEPROM_GROUP4_OFFSET;
  677. /* fixed piers */
  678. pcal[0].freq = 2312;
  679. pcal[1].freq = 2412;
  680. pcal[2].freq = 2484;
  681. ee->ee_n_piers[mode] = 3;
  682. break;
  683. default:
  684. return -EINVAL;
  685. }
  686. for (i = 0; i < ee->ee_n_piers[mode]; i++) {
  687. struct ath5k_chan_pcal_info_rf5111 *cdata =
  688. &pcal[i].rf5111_info;
  689. AR5K_EEPROM_READ(offset++, val);
  690. cdata->pcdac_max = ((val >> 10) & AR5K_EEPROM_PCDAC_M);
  691. cdata->pcdac_min = ((val >> 4) & AR5K_EEPROM_PCDAC_M);
  692. cdata->pwr[0] = ((val << 2) & AR5K_EEPROM_POWER_M);
  693. AR5K_EEPROM_READ(offset++, val);
  694. cdata->pwr[0] |= ((val >> 14) & 0x3);
  695. cdata->pwr[1] = ((val >> 8) & AR5K_EEPROM_POWER_M);
  696. cdata->pwr[2] = ((val >> 2) & AR5K_EEPROM_POWER_M);
  697. cdata->pwr[3] = ((val << 4) & AR5K_EEPROM_POWER_M);
  698. AR5K_EEPROM_READ(offset++, val);
  699. cdata->pwr[3] |= ((val >> 12) & 0xf);
  700. cdata->pwr[4] = ((val >> 6) & AR5K_EEPROM_POWER_M);
  701. cdata->pwr[5] = (val & AR5K_EEPROM_POWER_M);
  702. AR5K_EEPROM_READ(offset++, val);
  703. cdata->pwr[6] = ((val >> 10) & AR5K_EEPROM_POWER_M);
  704. cdata->pwr[7] = ((val >> 4) & AR5K_EEPROM_POWER_M);
  705. cdata->pwr[8] = ((val << 2) & AR5K_EEPROM_POWER_M);
  706. AR5K_EEPROM_READ(offset++, val);
  707. cdata->pwr[8] |= ((val >> 14) & 0x3);
  708. cdata->pwr[9] = ((val >> 8) & AR5K_EEPROM_POWER_M);
  709. cdata->pwr[10] = ((val >> 2) & AR5K_EEPROM_POWER_M);
  710. ath5k_get_pcdac_intercepts(ah, cdata->pcdac_min,
  711. cdata->pcdac_max, cdata->pcdac);
  712. }
  713. return ath5k_eeprom_convert_pcal_info_5111(ah, mode, pcal);
  714. }
  715. /*
  716. * Read power calibration for RF5112 chips
  717. *
  718. * For RF5112 we have 4 XPD -eXternal Power Detector- curves
  719. * for each calibrated channel on 0, -6, -12 and -18dbm but we only
  720. * use the higher (3) and the lower (0) curves. Each curve has 0.5dB
  721. * power steps on x axis and PCDAC steps on y axis and looks like a
  722. * linear function. To recreate the curve and pass the power values
  723. * on hw, we read 4 points for xpd 0 (lower gain -> max power)
  724. * and 3 points for xpd 3 (higher gain -> lower power) here and
  725. * interpolate later.
  726. *
  727. * Note: Many vendors just use xpd 0 so xpd 3 is zeroed.
  728. */
  729. /* Convert RF5112 specific data to generic raw data
  730. * used by interpolation code */
  731. static int
  732. ath5k_eeprom_convert_pcal_info_5112(struct ath5k_hw *ah, int mode,
  733. struct ath5k_chan_pcal_info *chinfo)
  734. {
  735. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  736. struct ath5k_chan_pcal_info_rf5112 *pcinfo;
  737. u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
  738. unsigned int pier, pdg, point;
  739. /* Fill raw data for each calibration pier */
  740. for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
  741. pcinfo = &chinfo[pier].rf5112_info;
  742. /* Allocate pd_curves for this cal pier */
  743. chinfo[pier].pd_curves =
  744. kcalloc(AR5K_EEPROM_N_PD_CURVES,
  745. sizeof(struct ath5k_pdgain_info),
  746. GFP_KERNEL);
  747. if (!chinfo[pier].pd_curves)
  748. return -ENOMEM;
  749. /* Fill pd_curves */
  750. for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
  751. u8 idx = pdgain_idx[pdg];
  752. struct ath5k_pdgain_info *pd =
  753. &chinfo[pier].pd_curves[idx];
  754. /* Lowest gain curve (max power) */
  755. if (pdg == 0) {
  756. /* One more point for better accuracy */
  757. pd->pd_points = AR5K_EEPROM_N_XPD0_POINTS;
  758. /* Allocate pd points for this curve */
  759. pd->pd_step = kcalloc(pd->pd_points,
  760. sizeof(u8), GFP_KERNEL);
  761. if (!pd->pd_step)
  762. return -ENOMEM;
  763. pd->pd_pwr = kcalloc(pd->pd_points,
  764. sizeof(s16), GFP_KERNEL);
  765. if (!pd->pd_pwr)
  766. return -ENOMEM;
  767. /* Fill raw dataset
  768. * (all power levels are in 0.25dB units) */
  769. pd->pd_step[0] = pcinfo->pcdac_x0[0];
  770. pd->pd_pwr[0] = pcinfo->pwr_x0[0];
  771. for (point = 1; point < pd->pd_points;
  772. point++) {
  773. /* Absolute values */
  774. pd->pd_pwr[point] =
  775. pcinfo->pwr_x0[point];
  776. /* Deltas */
  777. pd->pd_step[point] =
  778. pd->pd_step[point - 1] +
  779. pcinfo->pcdac_x0[point];
  780. }
  781. /* Set min power for this frequency */
  782. chinfo[pier].min_pwr = pd->pd_pwr[0];
  783. /* Highest gain curve (min power) */
  784. } else if (pdg == 1) {
  785. pd->pd_points = AR5K_EEPROM_N_XPD3_POINTS;
  786. /* Allocate pd points for this curve */
  787. pd->pd_step = kcalloc(pd->pd_points,
  788. sizeof(u8), GFP_KERNEL);
  789. if (!pd->pd_step)
  790. return -ENOMEM;
  791. pd->pd_pwr = kcalloc(pd->pd_points,
  792. sizeof(s16), GFP_KERNEL);
  793. if (!pd->pd_pwr)
  794. return -ENOMEM;
  795. /* Fill raw dataset
  796. * (all power levels are in 0.25dB units) */
  797. for (point = 0; point < pd->pd_points;
  798. point++) {
  799. /* Absolute values */
  800. pd->pd_pwr[point] =
  801. pcinfo->pwr_x3[point];
  802. /* Fixed points */
  803. pd->pd_step[point] =
  804. pcinfo->pcdac_x3[point];
  805. }
  806. /* Since we have a higher gain curve
  807. * override min power */
  808. chinfo[pier].min_pwr = pd->pd_pwr[0];
  809. }
  810. }
  811. }
  812. return 0;
  813. }
  814. /* Parse EEPROM data */
  815. static int
  816. ath5k_eeprom_read_pcal_info_5112(struct ath5k_hw *ah, int mode)
  817. {
  818. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  819. struct ath5k_chan_pcal_info_rf5112 *chan_pcal_info;
  820. struct ath5k_chan_pcal_info *gen_chan_info;
  821. u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
  822. u32 offset;
  823. u8 i, c;
  824. u16 val;
  825. int ret;
  826. u8 pd_gains = 0;
  827. /* Count how many curves we have and
  828. * identify them (which one of the 4
  829. * available curves we have on each count).
  830. * Curves are stored from lower (x0) to
  831. * higher (x3) gain */
  832. for (i = 0; i < AR5K_EEPROM_N_PD_CURVES; i++) {
  833. /* ee_x_gain[mode] is x gain mask */
  834. if ((ee->ee_x_gain[mode] >> i) & 0x1)
  835. pdgain_idx[pd_gains++] = i;
  836. }
  837. ee->ee_pd_gains[mode] = pd_gains;
  838. if (pd_gains == 0 || pd_gains > 2)
  839. return -EINVAL;
  840. switch (mode) {
  841. case AR5K_EEPROM_MODE_11A:
  842. /*
  843. * Read 5GHz EEPROM channels
  844. */
  845. offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
  846. ath5k_eeprom_init_11a_pcal_freq(ah, offset);
  847. offset += AR5K_EEPROM_GROUP2_OFFSET;
  848. gen_chan_info = ee->ee_pwr_cal_a;
  849. break;
  850. case AR5K_EEPROM_MODE_11B:
  851. offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
  852. if (AR5K_EEPROM_HDR_11A(ee->ee_header))
  853. offset += AR5K_EEPROM_GROUP3_OFFSET;
  854. /* NB: frequency piers parsed during mode init */
  855. gen_chan_info = ee->ee_pwr_cal_b;
  856. break;
  857. case AR5K_EEPROM_MODE_11G:
  858. offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
  859. if (AR5K_EEPROM_HDR_11A(ee->ee_header))
  860. offset += AR5K_EEPROM_GROUP4_OFFSET;
  861. else if (AR5K_EEPROM_HDR_11B(ee->ee_header))
  862. offset += AR5K_EEPROM_GROUP2_OFFSET;
  863. /* NB: frequency piers parsed during mode init */
  864. gen_chan_info = ee->ee_pwr_cal_g;
  865. break;
  866. default:
  867. return -EINVAL;
  868. }
  869. for (i = 0; i < ee->ee_n_piers[mode]; i++) {
  870. chan_pcal_info = &gen_chan_info[i].rf5112_info;
  871. /* Power values in quarter dB
  872. * for the lower xpd gain curve
  873. * (0 dBm -> higher output power) */
  874. for (c = 0; c < AR5K_EEPROM_N_XPD0_POINTS; c++) {
  875. AR5K_EEPROM_READ(offset++, val);
  876. chan_pcal_info->pwr_x0[c] = (s8) (val & 0xff);
  877. chan_pcal_info->pwr_x0[++c] = (s8) ((val >> 8) & 0xff);
  878. }
  879. /* PCDAC steps
  880. * corresponding to the above power
  881. * measurements */
  882. AR5K_EEPROM_READ(offset++, val);
  883. chan_pcal_info->pcdac_x0[1] = (val & 0x1f);
  884. chan_pcal_info->pcdac_x0[2] = ((val >> 5) & 0x1f);
  885. chan_pcal_info->pcdac_x0[3] = ((val >> 10) & 0x1f);
  886. /* Power values in quarter dB
  887. * for the higher xpd gain curve
  888. * (18 dBm -> lower output power) */
  889. AR5K_EEPROM_READ(offset++, val);
  890. chan_pcal_info->pwr_x3[0] = (s8) (val & 0xff);
  891. chan_pcal_info->pwr_x3[1] = (s8) ((val >> 8) & 0xff);
  892. AR5K_EEPROM_READ(offset++, val);
  893. chan_pcal_info->pwr_x3[2] = (val & 0xff);
  894. /* PCDAC steps
  895. * corresponding to the above power
  896. * measurements (fixed) */
  897. chan_pcal_info->pcdac_x3[0] = 20;
  898. chan_pcal_info->pcdac_x3[1] = 35;
  899. chan_pcal_info->pcdac_x3[2] = 63;
  900. if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3) {
  901. chan_pcal_info->pcdac_x0[0] = ((val >> 8) & 0x3f);
  902. /* Last xpd0 power level is also channel maximum */
  903. gen_chan_info[i].max_pwr = chan_pcal_info->pwr_x0[3];
  904. } else {
  905. chan_pcal_info->pcdac_x0[0] = 1;
  906. gen_chan_info[i].max_pwr = (s8) ((val >> 8) & 0xff);
  907. }
  908. }
  909. return ath5k_eeprom_convert_pcal_info_5112(ah, mode, gen_chan_info);
  910. }
  911. /*
  912. * Read power calibration for RF2413 chips
  913. *
  914. * For RF2413 we have a Power to PDDAC table (Power Detector)
  915. * instead of a PCDAC and 4 pd gain curves for each calibrated channel.
  916. * Each curve has power on x axis in 0.5 db steps and PDDADC steps on y
  917. * axis and looks like an exponential function like the RF5111 curve.
  918. *
  919. * To recreate the curves we read here the points and interpolate
  920. * later. Note that in most cases only 2 (higher and lower) curves are
  921. * used (like RF5112) but vendors have the oportunity to include all
  922. * 4 curves on eeprom. The final curve (higher power) has an extra
  923. * point for better accuracy like RF5112.
  924. */
  925. /* For RF2413 power calibration data doesn't start on a fixed location and
  926. * if a mode is not supported, its section is missing -not zeroed-.
  927. * So we need to calculate the starting offset for each section by using
  928. * these two functions */
  929. /* Return the size of each section based on the mode and the number of pd
  930. * gains available (maximum 4). */
  931. static inline unsigned int
  932. ath5k_pdgains_size_2413(struct ath5k_eeprom_info *ee, unsigned int mode)
  933. {
  934. static const unsigned int pdgains_size[] = { 4, 6, 9, 12 };
  935. unsigned int sz;
  936. sz = pdgains_size[ee->ee_pd_gains[mode] - 1];
  937. sz *= ee->ee_n_piers[mode];
  938. return sz;
  939. }
  940. /* Return the starting offset for a section based on the modes supported
  941. * and each section's size. */
  942. static unsigned int
  943. ath5k_cal_data_offset_2413(struct ath5k_eeprom_info *ee, int mode)
  944. {
  945. u32 offset = AR5K_EEPROM_CAL_DATA_START(ee->ee_misc4);
  946. switch(mode) {
  947. case AR5K_EEPROM_MODE_11G:
  948. if (AR5K_EEPROM_HDR_11B(ee->ee_header))
  949. offset += ath5k_pdgains_size_2413(ee,
  950. AR5K_EEPROM_MODE_11B) +
  951. AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
  952. /* fall through */
  953. case AR5K_EEPROM_MODE_11B:
  954. if (AR5K_EEPROM_HDR_11A(ee->ee_header))
  955. offset += ath5k_pdgains_size_2413(ee,
  956. AR5K_EEPROM_MODE_11A) +
  957. AR5K_EEPROM_N_5GHZ_CHAN / 2;
  958. /* fall through */
  959. case AR5K_EEPROM_MODE_11A:
  960. break;
  961. default:
  962. break;
  963. }
  964. return offset;
  965. }
  966. /* Convert RF2413 specific data to generic raw data
  967. * used by interpolation code */
  968. static int
  969. ath5k_eeprom_convert_pcal_info_2413(struct ath5k_hw *ah, int mode,
  970. struct ath5k_chan_pcal_info *chinfo)
  971. {
  972. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  973. struct ath5k_chan_pcal_info_rf2413 *pcinfo;
  974. u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
  975. unsigned int pier, pdg, point;
  976. /* Fill raw data for each calibration pier */
  977. for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
  978. pcinfo = &chinfo[pier].rf2413_info;
  979. /* Allocate pd_curves for this cal pier */
  980. chinfo[pier].pd_curves =
  981. kcalloc(AR5K_EEPROM_N_PD_CURVES,
  982. sizeof(struct ath5k_pdgain_info),
  983. GFP_KERNEL);
  984. if (!chinfo[pier].pd_curves)
  985. return -ENOMEM;
  986. /* Fill pd_curves */
  987. for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
  988. u8 idx = pdgain_idx[pdg];
  989. struct ath5k_pdgain_info *pd =
  990. &chinfo[pier].pd_curves[idx];
  991. /* One more point for the highest power
  992. * curve (lowest gain) */
  993. if (pdg == ee->ee_pd_gains[mode] - 1)
  994. pd->pd_points = AR5K_EEPROM_N_PD_POINTS;
  995. else
  996. pd->pd_points = AR5K_EEPROM_N_PD_POINTS - 1;
  997. /* Allocate pd points for this curve */
  998. pd->pd_step = kcalloc(pd->pd_points,
  999. sizeof(u8), GFP_KERNEL);
  1000. if (!pd->pd_step)
  1001. return -ENOMEM;
  1002. pd->pd_pwr = kcalloc(pd->pd_points,
  1003. sizeof(s16), GFP_KERNEL);
  1004. if (!pd->pd_pwr)
  1005. return -ENOMEM;
  1006. /* Fill raw dataset
  1007. * convert all pwr levels to
  1008. * quarter dB for RF5112 combatibility */
  1009. pd->pd_step[0] = pcinfo->pddac_i[pdg];
  1010. pd->pd_pwr[0] = 4 * pcinfo->pwr_i[pdg];
  1011. for (point = 1; point < pd->pd_points; point++) {
  1012. pd->pd_pwr[point] = pd->pd_pwr[point - 1] +
  1013. 2 * pcinfo->pwr[pdg][point - 1];
  1014. pd->pd_step[point] = pd->pd_step[point - 1] +
  1015. pcinfo->pddac[pdg][point - 1];
  1016. }
  1017. /* Highest gain curve -> min power */
  1018. if (pdg == 0)
  1019. chinfo[pier].min_pwr = pd->pd_pwr[0];
  1020. /* Lowest gain curve -> max power */
  1021. if (pdg == ee->ee_pd_gains[mode] - 1)
  1022. chinfo[pier].max_pwr =
  1023. pd->pd_pwr[pd->pd_points - 1];
  1024. }
  1025. }
  1026. return 0;
  1027. }
  1028. /* Parse EEPROM data */
  1029. static int
  1030. ath5k_eeprom_read_pcal_info_2413(struct ath5k_hw *ah, int mode)
  1031. {
  1032. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  1033. struct ath5k_chan_pcal_info_rf2413 *pcinfo;
  1034. struct ath5k_chan_pcal_info *chinfo;
  1035. u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
  1036. u32 offset;
  1037. int idx, i, ret;
  1038. u16 val;
  1039. u8 pd_gains = 0;
  1040. /* Count how many curves we have and
  1041. * identify them (which one of the 4
  1042. * available curves we have on each count).
  1043. * Curves are stored from higher to
  1044. * lower gain so we go backwards */
  1045. for (idx = AR5K_EEPROM_N_PD_CURVES - 1; idx >= 0; idx--) {
  1046. /* ee_x_gain[mode] is x gain mask */
  1047. if ((ee->ee_x_gain[mode] >> idx) & 0x1)
  1048. pdgain_idx[pd_gains++] = idx;
  1049. }
  1050. ee->ee_pd_gains[mode] = pd_gains;
  1051. if (pd_gains == 0)
  1052. return -EINVAL;
  1053. offset = ath5k_cal_data_offset_2413(ee, mode);
  1054. switch (mode) {
  1055. case AR5K_EEPROM_MODE_11A:
  1056. if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
  1057. return 0;
  1058. ath5k_eeprom_init_11a_pcal_freq(ah, offset);
  1059. offset += AR5K_EEPROM_N_5GHZ_CHAN / 2;
  1060. chinfo = ee->ee_pwr_cal_a;
  1061. break;
  1062. case AR5K_EEPROM_MODE_11B:
  1063. if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
  1064. return 0;
  1065. ath5k_eeprom_init_11bg_2413(ah, mode, offset);
  1066. offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
  1067. chinfo = ee->ee_pwr_cal_b;
  1068. break;
  1069. case AR5K_EEPROM_MODE_11G:
  1070. if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
  1071. return 0;
  1072. ath5k_eeprom_init_11bg_2413(ah, mode, offset);
  1073. offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
  1074. chinfo = ee->ee_pwr_cal_g;
  1075. break;
  1076. default:
  1077. return -EINVAL;
  1078. }
  1079. for (i = 0; i < ee->ee_n_piers[mode]; i++) {
  1080. pcinfo = &chinfo[i].rf2413_info;
  1081. /*
  1082. * Read pwr_i, pddac_i and the first
  1083. * 2 pd points (pwr, pddac)
  1084. */
  1085. AR5K_EEPROM_READ(offset++, val);
  1086. pcinfo->pwr_i[0] = val & 0x1f;
  1087. pcinfo->pddac_i[0] = (val >> 5) & 0x7f;
  1088. pcinfo->pwr[0][0] = (val >> 12) & 0xf;
  1089. AR5K_EEPROM_READ(offset++, val);
  1090. pcinfo->pddac[0][0] = val & 0x3f;
  1091. pcinfo->pwr[0][1] = (val >> 6) & 0xf;
  1092. pcinfo->pddac[0][1] = (val >> 10) & 0x3f;
  1093. AR5K_EEPROM_READ(offset++, val);
  1094. pcinfo->pwr[0][2] = val & 0xf;
  1095. pcinfo->pddac[0][2] = (val >> 4) & 0x3f;
  1096. pcinfo->pwr[0][3] = 0;
  1097. pcinfo->pddac[0][3] = 0;
  1098. if (pd_gains > 1) {
  1099. /*
  1100. * Pd gain 0 is not the last pd gain
  1101. * so it only has 2 pd points.
  1102. * Continue wih pd gain 1.
  1103. */
  1104. pcinfo->pwr_i[1] = (val >> 10) & 0x1f;
  1105. pcinfo->pddac_i[1] = (val >> 15) & 0x1;
  1106. AR5K_EEPROM_READ(offset++, val);
  1107. pcinfo->pddac_i[1] |= (val & 0x3F) << 1;
  1108. pcinfo->pwr[1][0] = (val >> 6) & 0xf;
  1109. pcinfo->pddac[1][0] = (val >> 10) & 0x3f;
  1110. AR5K_EEPROM_READ(offset++, val);
  1111. pcinfo->pwr[1][1] = val & 0xf;
  1112. pcinfo->pddac[1][1] = (val >> 4) & 0x3f;
  1113. pcinfo->pwr[1][2] = (val >> 10) & 0xf;
  1114. pcinfo->pddac[1][2] = (val >> 14) & 0x3;
  1115. AR5K_EEPROM_READ(offset++, val);
  1116. pcinfo->pddac[1][2] |= (val & 0xF) << 2;
  1117. pcinfo->pwr[1][3] = 0;
  1118. pcinfo->pddac[1][3] = 0;
  1119. } else if (pd_gains == 1) {
  1120. /*
  1121. * Pd gain 0 is the last one so
  1122. * read the extra point.
  1123. */
  1124. pcinfo->pwr[0][3] = (val >> 10) & 0xf;
  1125. pcinfo->pddac[0][3] = (val >> 14) & 0x3;
  1126. AR5K_EEPROM_READ(offset++, val);
  1127. pcinfo->pddac[0][3] |= (val & 0xF) << 2;
  1128. }
  1129. /*
  1130. * Proceed with the other pd_gains
  1131. * as above.
  1132. */
  1133. if (pd_gains > 2) {
  1134. pcinfo->pwr_i[2] = (val >> 4) & 0x1f;
  1135. pcinfo->pddac_i[2] = (val >> 9) & 0x7f;
  1136. AR5K_EEPROM_READ(offset++, val);
  1137. pcinfo->pwr[2][0] = (val >> 0) & 0xf;
  1138. pcinfo->pddac[2][0] = (val >> 4) & 0x3f;
  1139. pcinfo->pwr[2][1] = (val >> 10) & 0xf;
  1140. pcinfo->pddac[2][1] = (val >> 14) & 0x3;
  1141. AR5K_EEPROM_READ(offset++, val);
  1142. pcinfo->pddac[2][1] |= (val & 0xF) << 2;
  1143. pcinfo->pwr[2][2] = (val >> 4) & 0xf;
  1144. pcinfo->pddac[2][2] = (val >> 8) & 0x3f;
  1145. pcinfo->pwr[2][3] = 0;
  1146. pcinfo->pddac[2][3] = 0;
  1147. } else if (pd_gains == 2) {
  1148. pcinfo->pwr[1][3] = (val >> 4) & 0xf;
  1149. pcinfo->pddac[1][3] = (val >> 8) & 0x3f;
  1150. }
  1151. if (pd_gains > 3) {
  1152. pcinfo->pwr_i[3] = (val >> 14) & 0x3;
  1153. AR5K_EEPROM_READ(offset++, val);
  1154. pcinfo->pwr_i[3] |= ((val >> 0) & 0x7) << 2;
  1155. pcinfo->pddac_i[3] = (val >> 3) & 0x7f;
  1156. pcinfo->pwr[3][0] = (val >> 10) & 0xf;
  1157. pcinfo->pddac[3][0] = (val >> 14) & 0x3;
  1158. AR5K_EEPROM_READ(offset++, val);
  1159. pcinfo->pddac[3][0] |= (val & 0xF) << 2;
  1160. pcinfo->pwr[3][1] = (val >> 4) & 0xf;
  1161. pcinfo->pddac[3][1] = (val >> 8) & 0x3f;
  1162. pcinfo->pwr[3][2] = (val >> 14) & 0x3;
  1163. AR5K_EEPROM_READ(offset++, val);
  1164. pcinfo->pwr[3][2] |= ((val >> 0) & 0x3) << 2;
  1165. pcinfo->pddac[3][2] = (val >> 2) & 0x3f;
  1166. pcinfo->pwr[3][3] = (val >> 8) & 0xf;
  1167. pcinfo->pddac[3][3] = (val >> 12) & 0xF;
  1168. AR5K_EEPROM_READ(offset++, val);
  1169. pcinfo->pddac[3][3] |= ((val >> 0) & 0x3) << 4;
  1170. } else if (pd_gains == 3) {
  1171. pcinfo->pwr[2][3] = (val >> 14) & 0x3;
  1172. AR5K_EEPROM_READ(offset++, val);
  1173. pcinfo->pwr[2][3] |= ((val >> 0) & 0x3) << 2;
  1174. pcinfo->pddac[2][3] = (val >> 2) & 0x3f;
  1175. }
  1176. }
  1177. return ath5k_eeprom_convert_pcal_info_2413(ah, mode, chinfo);
  1178. }
  1179. /*
  1180. * Read per rate target power (this is the maximum tx power
  1181. * supported by the card). This info is used when setting
  1182. * tx power, no matter the channel.
  1183. *
  1184. * This also works for v5 EEPROMs.
  1185. */
  1186. static int
  1187. ath5k_eeprom_read_target_rate_pwr_info(struct ath5k_hw *ah, unsigned int mode)
  1188. {
  1189. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  1190. struct ath5k_rate_pcal_info *rate_pcal_info;
  1191. u8 *rate_target_pwr_num;
  1192. u32 offset;
  1193. u16 val;
  1194. int ret, i;
  1195. offset = AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1);
  1196. rate_target_pwr_num = &ee->ee_rate_target_pwr_num[mode];
  1197. switch (mode) {
  1198. case AR5K_EEPROM_MODE_11A:
  1199. offset += AR5K_EEPROM_TARGET_PWR_OFF_11A(ee->ee_version);
  1200. rate_pcal_info = ee->ee_rate_tpwr_a;
  1201. ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_5GHZ_CHAN;
  1202. break;
  1203. case AR5K_EEPROM_MODE_11B:
  1204. offset += AR5K_EEPROM_TARGET_PWR_OFF_11B(ee->ee_version);
  1205. rate_pcal_info = ee->ee_rate_tpwr_b;
  1206. ee->ee_rate_target_pwr_num[mode] = 2; /* 3rd is g mode's 1st */
  1207. break;
  1208. case AR5K_EEPROM_MODE_11G:
  1209. offset += AR5K_EEPROM_TARGET_PWR_OFF_11G(ee->ee_version);
  1210. rate_pcal_info = ee->ee_rate_tpwr_g;
  1211. ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_2GHZ_CHAN;
  1212. break;
  1213. default:
  1214. return -EINVAL;
  1215. }
  1216. /* Different freq mask for older eeproms (<= v3.2) */
  1217. if (ee->ee_version <= AR5K_EEPROM_VERSION_3_2) {
  1218. for (i = 0; i < (*rate_target_pwr_num); i++) {
  1219. AR5K_EEPROM_READ(offset++, val);
  1220. rate_pcal_info[i].freq =
  1221. ath5k_eeprom_bin2freq(ee, (val >> 9) & 0x7f, mode);
  1222. rate_pcal_info[i].target_power_6to24 = ((val >> 3) & 0x3f);
  1223. rate_pcal_info[i].target_power_36 = (val << 3) & 0x3f;
  1224. AR5K_EEPROM_READ(offset++, val);
  1225. if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
  1226. val == 0) {
  1227. (*rate_target_pwr_num) = i;
  1228. break;
  1229. }
  1230. rate_pcal_info[i].target_power_36 |= ((val >> 13) & 0x7);
  1231. rate_pcal_info[i].target_power_48 = ((val >> 7) & 0x3f);
  1232. rate_pcal_info[i].target_power_54 = ((val >> 1) & 0x3f);
  1233. }
  1234. } else {
  1235. for (i = 0; i < (*rate_target_pwr_num); i++) {
  1236. AR5K_EEPROM_READ(offset++, val);
  1237. rate_pcal_info[i].freq =
  1238. ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
  1239. rate_pcal_info[i].target_power_6to24 = ((val >> 2) & 0x3f);
  1240. rate_pcal_info[i].target_power_36 = (val << 4) & 0x3f;
  1241. AR5K_EEPROM_READ(offset++, val);
  1242. if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
  1243. val == 0) {
  1244. (*rate_target_pwr_num) = i;
  1245. break;
  1246. }
  1247. rate_pcal_info[i].target_power_36 |= (val >> 12) & 0xf;
  1248. rate_pcal_info[i].target_power_48 = ((val >> 6) & 0x3f);
  1249. rate_pcal_info[i].target_power_54 = (val & 0x3f);
  1250. }
  1251. }
  1252. return 0;
  1253. }
  1254. /*
  1255. * Read per channel calibration info from EEPROM
  1256. *
  1257. * This info is used to calibrate the baseband power table. Imagine
  1258. * that for each channel there is a power curve that's hw specific
  1259. * (depends on amplifier etc) and we try to "correct" this curve using
  1260. * offsets we pass on to phy chip (baseband -> before amplifier) so that
  1261. * it can use accurate power values when setting tx power (takes amplifier's
  1262. * performance on each channel into account).
  1263. *
  1264. * EEPROM provides us with the offsets for some pre-calibrated channels
  1265. * and we have to interpolate to create the full table for these channels and
  1266. * also the table for any channel.
  1267. */
  1268. static int
  1269. ath5k_eeprom_read_pcal_info(struct ath5k_hw *ah)
  1270. {
  1271. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  1272. int (*read_pcal)(struct ath5k_hw *hw, int mode);
  1273. int mode;
  1274. int err;
  1275. if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) &&
  1276. (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 1))
  1277. read_pcal = ath5k_eeprom_read_pcal_info_5112;
  1278. else if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0) &&
  1279. (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 2))
  1280. read_pcal = ath5k_eeprom_read_pcal_info_2413;
  1281. else
  1282. read_pcal = ath5k_eeprom_read_pcal_info_5111;
  1283. for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G;
  1284. mode++) {
  1285. err = read_pcal(ah, mode);
  1286. if (err)
  1287. return err;
  1288. err = ath5k_eeprom_read_target_rate_pwr_info(ah, mode);
  1289. if (err < 0)
  1290. return err;
  1291. }
  1292. return 0;
  1293. }
  1294. static int
  1295. ath5k_eeprom_free_pcal_info(struct ath5k_hw *ah, int mode)
  1296. {
  1297. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  1298. struct ath5k_chan_pcal_info *chinfo;
  1299. u8 pier, pdg;
  1300. switch (mode) {
  1301. case AR5K_EEPROM_MODE_11A:
  1302. if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
  1303. return 0;
  1304. chinfo = ee->ee_pwr_cal_a;
  1305. break;
  1306. case AR5K_EEPROM_MODE_11B:
  1307. if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
  1308. return 0;
  1309. chinfo = ee->ee_pwr_cal_b;
  1310. break;
  1311. case AR5K_EEPROM_MODE_11G:
  1312. if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
  1313. return 0;
  1314. chinfo = ee->ee_pwr_cal_g;
  1315. break;
  1316. default:
  1317. return -EINVAL;
  1318. }
  1319. for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
  1320. if (!chinfo[pier].pd_curves)
  1321. continue;
  1322. for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
  1323. struct ath5k_pdgain_info *pd =
  1324. &chinfo[pier].pd_curves[pdg];
  1325. if (pd != NULL) {
  1326. kfree(pd->pd_step);
  1327. kfree(pd->pd_pwr);
  1328. }
  1329. }
  1330. kfree(chinfo[pier].pd_curves);
  1331. }
  1332. return 0;
  1333. }
  1334. /* Read conformance test limits used for regulatory control */
  1335. static int
  1336. ath5k_eeprom_read_ctl_info(struct ath5k_hw *ah)
  1337. {
  1338. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  1339. struct ath5k_edge_power *rep;
  1340. unsigned int fmask, pmask;
  1341. unsigned int ctl_mode;
  1342. int ret, i, j;
  1343. u32 offset;
  1344. u16 val;
  1345. pmask = AR5K_EEPROM_POWER_M;
  1346. fmask = AR5K_EEPROM_FREQ_M(ee->ee_version);
  1347. offset = AR5K_EEPROM_CTL(ee->ee_version);
  1348. ee->ee_ctls = AR5K_EEPROM_N_CTLS(ee->ee_version);
  1349. for (i = 0; i < ee->ee_ctls; i += 2) {
  1350. AR5K_EEPROM_READ(offset++, val);
  1351. ee->ee_ctl[i] = (val >> 8) & 0xff;
  1352. ee->ee_ctl[i + 1] = val & 0xff;
  1353. }
  1354. offset = AR5K_EEPROM_GROUP8_OFFSET;
  1355. if (ee->ee_version >= AR5K_EEPROM_VERSION_4_0)
  1356. offset += AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1) -
  1357. AR5K_EEPROM_GROUP5_OFFSET;
  1358. else
  1359. offset += AR5K_EEPROM_GROUPS_START(ee->ee_version);
  1360. rep = ee->ee_ctl_pwr;
  1361. for(i = 0; i < ee->ee_ctls; i++) {
  1362. switch(ee->ee_ctl[i] & AR5K_CTL_MODE_M) {
  1363. case AR5K_CTL_11A:
  1364. case AR5K_CTL_TURBO:
  1365. ctl_mode = AR5K_EEPROM_MODE_11A;
  1366. break;
  1367. default:
  1368. ctl_mode = AR5K_EEPROM_MODE_11G;
  1369. break;
  1370. }
  1371. if (ee->ee_ctl[i] == 0) {
  1372. if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3)
  1373. offset += 8;
  1374. else
  1375. offset += 7;
  1376. rep += AR5K_EEPROM_N_EDGES;
  1377. continue;
  1378. }
  1379. if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
  1380. for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
  1381. AR5K_EEPROM_READ(offset++, val);
  1382. rep[j].freq = (val >> 8) & fmask;
  1383. rep[j + 1].freq = val & fmask;
  1384. }
  1385. for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
  1386. AR5K_EEPROM_READ(offset++, val);
  1387. rep[j].edge = (val >> 8) & pmask;
  1388. rep[j].flag = (val >> 14) & 1;
  1389. rep[j + 1].edge = val & pmask;
  1390. rep[j + 1].flag = (val >> 6) & 1;
  1391. }
  1392. } else {
  1393. AR5K_EEPROM_READ(offset++, val);
  1394. rep[0].freq = (val >> 9) & fmask;
  1395. rep[1].freq = (val >> 2) & fmask;
  1396. rep[2].freq = (val << 5) & fmask;
  1397. AR5K_EEPROM_READ(offset++, val);
  1398. rep[2].freq |= (val >> 11) & 0x1f;
  1399. rep[3].freq = (val >> 4) & fmask;
  1400. rep[4].freq = (val << 3) & fmask;
  1401. AR5K_EEPROM_READ(offset++, val);
  1402. rep[4].freq |= (val >> 13) & 0x7;
  1403. rep[5].freq = (val >> 6) & fmask;
  1404. rep[6].freq = (val << 1) & fmask;
  1405. AR5K_EEPROM_READ(offset++, val);
  1406. rep[6].freq |= (val >> 15) & 0x1;
  1407. rep[7].freq = (val >> 8) & fmask;
  1408. rep[0].edge = (val >> 2) & pmask;
  1409. rep[1].edge = (val << 4) & pmask;
  1410. AR5K_EEPROM_READ(offset++, val);
  1411. rep[1].edge |= (val >> 12) & 0xf;
  1412. rep[2].edge = (val >> 6) & pmask;
  1413. rep[3].edge = val & pmask;
  1414. AR5K_EEPROM_READ(offset++, val);
  1415. rep[4].edge = (val >> 10) & pmask;
  1416. rep[5].edge = (val >> 4) & pmask;
  1417. rep[6].edge = (val << 2) & pmask;
  1418. AR5K_EEPROM_READ(offset++, val);
  1419. rep[6].edge |= (val >> 14) & 0x3;
  1420. rep[7].edge = (val >> 8) & pmask;
  1421. }
  1422. for (j = 0; j < AR5K_EEPROM_N_EDGES; j++) {
  1423. rep[j].freq = ath5k_eeprom_bin2freq(ee,
  1424. rep[j].freq, ctl_mode);
  1425. }
  1426. rep += AR5K_EEPROM_N_EDGES;
  1427. }
  1428. return 0;
  1429. }
  1430. static int
  1431. ath5k_eeprom_read_spur_chans(struct ath5k_hw *ah)
  1432. {
  1433. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  1434. u32 offset;
  1435. u16 val;
  1436. int ret = 0, i;
  1437. offset = AR5K_EEPROM_CTL(ee->ee_version) +
  1438. AR5K_EEPROM_N_CTLS(ee->ee_version);
  1439. if (ee->ee_version < AR5K_EEPROM_VERSION_5_3) {
  1440. /* No spur info for 5GHz */
  1441. ee->ee_spur_chans[0][0] = AR5K_EEPROM_NO_SPUR;
  1442. /* 2 channels for 2GHz (2464/2420) */
  1443. ee->ee_spur_chans[0][1] = AR5K_EEPROM_5413_SPUR_CHAN_1;
  1444. ee->ee_spur_chans[1][1] = AR5K_EEPROM_5413_SPUR_CHAN_2;
  1445. ee->ee_spur_chans[2][1] = AR5K_EEPROM_NO_SPUR;
  1446. } else if (ee->ee_version >= AR5K_EEPROM_VERSION_5_3) {
  1447. for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
  1448. AR5K_EEPROM_READ(offset, val);
  1449. ee->ee_spur_chans[i][0] = val;
  1450. AR5K_EEPROM_READ(offset + AR5K_EEPROM_N_SPUR_CHANS,
  1451. val);
  1452. ee->ee_spur_chans[i][1] = val;
  1453. offset++;
  1454. }
  1455. }
  1456. return ret;
  1457. }
  1458. /*
  1459. * Read the MAC address from eeprom
  1460. */
  1461. int ath5k_eeprom_read_mac(struct ath5k_hw *ah, u8 *mac)
  1462. {
  1463. u8 mac_d[ETH_ALEN] = {};
  1464. u32 total, offset;
  1465. u16 data;
  1466. int octet, ret;
  1467. ret = ath5k_hw_eeprom_read(ah, 0x20, &data);
  1468. if (ret)
  1469. return ret;
  1470. for (offset = 0x1f, octet = 0, total = 0; offset >= 0x1d; offset--) {
  1471. ret = ath5k_hw_eeprom_read(ah, offset, &data);
  1472. if (ret)
  1473. return ret;
  1474. total += data;
  1475. mac_d[octet + 1] = data & 0xff;
  1476. mac_d[octet] = data >> 8;
  1477. octet += 2;
  1478. }
  1479. if (!total || total == 3 * 0xffff)
  1480. return -EINVAL;
  1481. memcpy(mac, mac_d, ETH_ALEN);
  1482. return 0;
  1483. }
  1484. /***********************\
  1485. * Init/Detach functions *
  1486. \***********************/
  1487. /*
  1488. * Initialize eeprom data structure
  1489. */
  1490. int
  1491. ath5k_eeprom_init(struct ath5k_hw *ah)
  1492. {
  1493. int err;
  1494. err = ath5k_eeprom_init_header(ah);
  1495. if (err < 0)
  1496. return err;
  1497. err = ath5k_eeprom_init_modes(ah);
  1498. if (err < 0)
  1499. return err;
  1500. err = ath5k_eeprom_read_pcal_info(ah);
  1501. if (err < 0)
  1502. return err;
  1503. err = ath5k_eeprom_read_ctl_info(ah);
  1504. if (err < 0)
  1505. return err;
  1506. err = ath5k_eeprom_read_spur_chans(ah);
  1507. if (err < 0)
  1508. return err;
  1509. return 0;
  1510. }
  1511. void
  1512. ath5k_eeprom_detach(struct ath5k_hw *ah)
  1513. {
  1514. u8 mode;
  1515. for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++)
  1516. ath5k_eeprom_free_pcal_info(ah, mode);
  1517. }