rt2800pci.c 30 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015
  1. /*
  2. Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
  3. Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
  4. Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
  5. Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
  6. Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
  7. Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
  8. Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
  9. Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
  10. <http://rt2x00.serialmonkey.com>
  11. This program is free software; you can redistribute it and/or modify
  12. it under the terms of the GNU General Public License as published by
  13. the Free Software Foundation; either version 2 of the License, or
  14. (at your option) any later version.
  15. This program is distributed in the hope that it will be useful,
  16. but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  18. GNU General Public License for more details.
  19. You should have received a copy of the GNU General Public License
  20. along with this program; if not, write to the
  21. Free Software Foundation, Inc.,
  22. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  23. */
  24. /*
  25. Module: rt2800pci
  26. Abstract: rt2800pci device specific routines.
  27. Supported chipsets: RT2800E & RT2800ED.
  28. */
  29. #include <linux/delay.h>
  30. #include <linux/etherdevice.h>
  31. #include <linux/init.h>
  32. #include <linux/kernel.h>
  33. #include <linux/module.h>
  34. #include <linux/pci.h>
  35. #include <linux/platform_device.h>
  36. #include <linux/eeprom_93cx6.h>
  37. #include "rt2x00.h"
  38. #include "rt2x00pci.h"
  39. #include "rt2x00soc.h"
  40. #include "rt2800lib.h"
  41. #include "rt2800.h"
  42. #include "rt2800pci.h"
  43. /*
  44. * Allow hardware encryption to be disabled.
  45. */
  46. static int modparam_nohwcrypt = 0;
  47. module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
  48. MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
  49. static void rt2800pci_mcu_status(struct rt2x00_dev *rt2x00dev, const u8 token)
  50. {
  51. unsigned int i;
  52. u32 reg;
  53. /*
  54. * SOC devices don't support MCU requests.
  55. */
  56. if (rt2x00_is_soc(rt2x00dev))
  57. return;
  58. for (i = 0; i < 200; i++) {
  59. rt2800_register_read(rt2x00dev, H2M_MAILBOX_CID, &reg);
  60. if ((rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD0) == token) ||
  61. (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD1) == token) ||
  62. (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD2) == token) ||
  63. (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD3) == token))
  64. break;
  65. udelay(REGISTER_BUSY_DELAY);
  66. }
  67. if (i == 200)
  68. ERROR(rt2x00dev, "MCU request failed, no response from hardware\n");
  69. rt2800_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
  70. rt2800_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
  71. }
  72. #ifdef CONFIG_RT2800PCI_SOC
  73. static void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
  74. {
  75. u32 *base_addr = (u32 *) KSEG1ADDR(0x1F040000); /* XXX for RT3052 */
  76. memcpy_fromio(rt2x00dev->eeprom, base_addr, EEPROM_SIZE);
  77. }
  78. #else
  79. static inline void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
  80. {
  81. }
  82. #endif /* CONFIG_RT2800PCI_SOC */
  83. #ifdef CONFIG_RT2800PCI_PCI
  84. static void rt2800pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
  85. {
  86. struct rt2x00_dev *rt2x00dev = eeprom->data;
  87. u32 reg;
  88. rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
  89. eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
  90. eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
  91. eeprom->reg_data_clock =
  92. !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
  93. eeprom->reg_chip_select =
  94. !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
  95. }
  96. static void rt2800pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
  97. {
  98. struct rt2x00_dev *rt2x00dev = eeprom->data;
  99. u32 reg = 0;
  100. rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
  101. rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
  102. rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
  103. !!eeprom->reg_data_clock);
  104. rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
  105. !!eeprom->reg_chip_select);
  106. rt2800_register_write(rt2x00dev, E2PROM_CSR, reg);
  107. }
  108. static void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
  109. {
  110. struct eeprom_93cx6 eeprom;
  111. u32 reg;
  112. rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
  113. eeprom.data = rt2x00dev;
  114. eeprom.register_read = rt2800pci_eepromregister_read;
  115. eeprom.register_write = rt2800pci_eepromregister_write;
  116. switch (rt2x00_get_field32(reg, E2PROM_CSR_TYPE))
  117. {
  118. case 0:
  119. eeprom.width = PCI_EEPROM_WIDTH_93C46;
  120. break;
  121. case 1:
  122. eeprom.width = PCI_EEPROM_WIDTH_93C66;
  123. break;
  124. default:
  125. eeprom.width = PCI_EEPROM_WIDTH_93C86;
  126. break;
  127. }
  128. eeprom.reg_data_in = 0;
  129. eeprom.reg_data_out = 0;
  130. eeprom.reg_data_clock = 0;
  131. eeprom.reg_chip_select = 0;
  132. eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
  133. EEPROM_SIZE / sizeof(u16));
  134. }
  135. static int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
  136. {
  137. return rt2800_efuse_detect(rt2x00dev);
  138. }
  139. static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
  140. {
  141. rt2800_read_eeprom_efuse(rt2x00dev);
  142. }
  143. #else
  144. static inline void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
  145. {
  146. }
  147. static inline int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
  148. {
  149. return 0;
  150. }
  151. static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
  152. {
  153. }
  154. #endif /* CONFIG_RT2800PCI_PCI */
  155. /*
  156. * Firmware functions
  157. */
  158. static char *rt2800pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
  159. {
  160. return FIRMWARE_RT2860;
  161. }
  162. static int rt2800pci_write_firmware(struct rt2x00_dev *rt2x00dev,
  163. const u8 *data, const size_t len)
  164. {
  165. u32 reg;
  166. /*
  167. * enable Host program ram write selection
  168. */
  169. reg = 0;
  170. rt2x00_set_field32(&reg, PBF_SYS_CTRL_HOST_RAM_WRITE, 1);
  171. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, reg);
  172. /*
  173. * Write firmware to device.
  174. */
  175. rt2800_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
  176. data, len);
  177. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000);
  178. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001);
  179. rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
  180. rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
  181. return 0;
  182. }
  183. /*
  184. * Initialization functions.
  185. */
  186. static bool rt2800pci_get_entry_state(struct queue_entry *entry)
  187. {
  188. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  189. u32 word;
  190. if (entry->queue->qid == QID_RX) {
  191. rt2x00_desc_read(entry_priv->desc, 1, &word);
  192. return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
  193. } else {
  194. rt2x00_desc_read(entry_priv->desc, 1, &word);
  195. return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
  196. }
  197. }
  198. static void rt2800pci_clear_entry(struct queue_entry *entry)
  199. {
  200. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  201. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  202. u32 word;
  203. if (entry->queue->qid == QID_RX) {
  204. rt2x00_desc_read(entry_priv->desc, 0, &word);
  205. rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
  206. rt2x00_desc_write(entry_priv->desc, 0, word);
  207. rt2x00_desc_read(entry_priv->desc, 1, &word);
  208. rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
  209. rt2x00_desc_write(entry_priv->desc, 1, word);
  210. } else {
  211. rt2x00_desc_read(entry_priv->desc, 1, &word);
  212. rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
  213. rt2x00_desc_write(entry_priv->desc, 1, word);
  214. }
  215. }
  216. static int rt2800pci_init_queues(struct rt2x00_dev *rt2x00dev)
  217. {
  218. struct queue_entry_priv_pci *entry_priv;
  219. u32 reg;
  220. /*
  221. * Initialize registers.
  222. */
  223. entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
  224. rt2800_register_write(rt2x00dev, TX_BASE_PTR0, entry_priv->desc_dma);
  225. rt2800_register_write(rt2x00dev, TX_MAX_CNT0, rt2x00dev->tx[0].limit);
  226. rt2800_register_write(rt2x00dev, TX_CTX_IDX0, 0);
  227. rt2800_register_write(rt2x00dev, TX_DTX_IDX0, 0);
  228. entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
  229. rt2800_register_write(rt2x00dev, TX_BASE_PTR1, entry_priv->desc_dma);
  230. rt2800_register_write(rt2x00dev, TX_MAX_CNT1, rt2x00dev->tx[1].limit);
  231. rt2800_register_write(rt2x00dev, TX_CTX_IDX1, 0);
  232. rt2800_register_write(rt2x00dev, TX_DTX_IDX1, 0);
  233. entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
  234. rt2800_register_write(rt2x00dev, TX_BASE_PTR2, entry_priv->desc_dma);
  235. rt2800_register_write(rt2x00dev, TX_MAX_CNT2, rt2x00dev->tx[2].limit);
  236. rt2800_register_write(rt2x00dev, TX_CTX_IDX2, 0);
  237. rt2800_register_write(rt2x00dev, TX_DTX_IDX2, 0);
  238. entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
  239. rt2800_register_write(rt2x00dev, TX_BASE_PTR3, entry_priv->desc_dma);
  240. rt2800_register_write(rt2x00dev, TX_MAX_CNT3, rt2x00dev->tx[3].limit);
  241. rt2800_register_write(rt2x00dev, TX_CTX_IDX3, 0);
  242. rt2800_register_write(rt2x00dev, TX_DTX_IDX3, 0);
  243. entry_priv = rt2x00dev->rx->entries[0].priv_data;
  244. rt2800_register_write(rt2x00dev, RX_BASE_PTR, entry_priv->desc_dma);
  245. rt2800_register_write(rt2x00dev, RX_MAX_CNT, rt2x00dev->rx[0].limit);
  246. rt2800_register_write(rt2x00dev, RX_CRX_IDX, rt2x00dev->rx[0].limit - 1);
  247. rt2800_register_write(rt2x00dev, RX_DRX_IDX, 0);
  248. /*
  249. * Enable global DMA configuration
  250. */
  251. rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
  252. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
  253. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
  254. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
  255. rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
  256. rt2800_register_write(rt2x00dev, DELAY_INT_CFG, 0);
  257. return 0;
  258. }
  259. /*
  260. * Device state switch handlers.
  261. */
  262. static void rt2800pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
  263. enum dev_state state)
  264. {
  265. u32 reg;
  266. rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
  267. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX,
  268. (state == STATE_RADIO_RX_ON) ||
  269. (state == STATE_RADIO_RX_ON_LINK));
  270. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
  271. }
  272. static void rt2800pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
  273. enum dev_state state)
  274. {
  275. int mask = (state == STATE_RADIO_IRQ_ON) ||
  276. (state == STATE_RADIO_IRQ_ON_ISR);
  277. u32 reg;
  278. /*
  279. * When interrupts are being enabled, the interrupt registers
  280. * should clear the register to assure a clean state.
  281. */
  282. if (state == STATE_RADIO_IRQ_ON) {
  283. rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
  284. rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
  285. }
  286. rt2800_register_read(rt2x00dev, INT_MASK_CSR, &reg);
  287. rt2x00_set_field32(&reg, INT_MASK_CSR_RXDELAYINT, 0);
  288. rt2x00_set_field32(&reg, INT_MASK_CSR_TXDELAYINT, 0);
  289. rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, mask);
  290. rt2x00_set_field32(&reg, INT_MASK_CSR_AC0_DMA_DONE, 0);
  291. rt2x00_set_field32(&reg, INT_MASK_CSR_AC1_DMA_DONE, 0);
  292. rt2x00_set_field32(&reg, INT_MASK_CSR_AC2_DMA_DONE, 0);
  293. rt2x00_set_field32(&reg, INT_MASK_CSR_AC3_DMA_DONE, 0);
  294. rt2x00_set_field32(&reg, INT_MASK_CSR_HCCA_DMA_DONE, 0);
  295. rt2x00_set_field32(&reg, INT_MASK_CSR_MGMT_DMA_DONE, 0);
  296. rt2x00_set_field32(&reg, INT_MASK_CSR_MCU_COMMAND, 0);
  297. rt2x00_set_field32(&reg, INT_MASK_CSR_RXTX_COHERENT, 0);
  298. rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, mask);
  299. rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, mask);
  300. rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, mask);
  301. rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, mask);
  302. rt2x00_set_field32(&reg, INT_MASK_CSR_GPTIMER, 0);
  303. rt2x00_set_field32(&reg, INT_MASK_CSR_RX_COHERENT, 0);
  304. rt2x00_set_field32(&reg, INT_MASK_CSR_TX_COHERENT, 0);
  305. rt2800_register_write(rt2x00dev, INT_MASK_CSR, reg);
  306. }
  307. static int rt2800pci_init_registers(struct rt2x00_dev *rt2x00dev)
  308. {
  309. u32 reg;
  310. /*
  311. * Reset DMA indexes
  312. */
  313. rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
  314. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
  315. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
  316. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
  317. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
  318. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
  319. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
  320. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
  321. rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
  322. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
  323. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
  324. rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
  325. rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
  326. rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_CSR, 1);
  327. rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_BBP, 1);
  328. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
  329. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
  330. return 0;
  331. }
  332. static int rt2800pci_enable_radio(struct rt2x00_dev *rt2x00dev)
  333. {
  334. if (unlikely(rt2800_wait_wpdma_ready(rt2x00dev) ||
  335. rt2800pci_init_queues(rt2x00dev)))
  336. return -EIO;
  337. return rt2800_enable_radio(rt2x00dev);
  338. }
  339. static void rt2800pci_disable_radio(struct rt2x00_dev *rt2x00dev)
  340. {
  341. u32 reg;
  342. rt2800_disable_radio(rt2x00dev);
  343. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001280);
  344. rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
  345. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
  346. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
  347. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
  348. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
  349. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
  350. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
  351. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
  352. rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
  353. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
  354. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
  355. }
  356. static int rt2800pci_set_state(struct rt2x00_dev *rt2x00dev,
  357. enum dev_state state)
  358. {
  359. /*
  360. * Always put the device to sleep (even when we intend to wakeup!)
  361. * if the device is booting and wasn't asleep it will return
  362. * failure when attempting to wakeup.
  363. */
  364. rt2800_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 2);
  365. if (state == STATE_AWAKE) {
  366. rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKUP, 0, 0);
  367. rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKUP);
  368. }
  369. return 0;
  370. }
  371. static int rt2800pci_set_device_state(struct rt2x00_dev *rt2x00dev,
  372. enum dev_state state)
  373. {
  374. int retval = 0;
  375. switch (state) {
  376. case STATE_RADIO_ON:
  377. /*
  378. * Before the radio can be enabled, the device first has
  379. * to be woken up. After that it needs a bit of time
  380. * to be fully awake and then the radio can be enabled.
  381. */
  382. rt2800pci_set_state(rt2x00dev, STATE_AWAKE);
  383. msleep(1);
  384. retval = rt2800pci_enable_radio(rt2x00dev);
  385. break;
  386. case STATE_RADIO_OFF:
  387. /*
  388. * After the radio has been disabled, the device should
  389. * be put to sleep for powersaving.
  390. */
  391. rt2800pci_disable_radio(rt2x00dev);
  392. rt2800pci_set_state(rt2x00dev, STATE_SLEEP);
  393. break;
  394. case STATE_RADIO_RX_ON:
  395. case STATE_RADIO_RX_ON_LINK:
  396. case STATE_RADIO_RX_OFF:
  397. case STATE_RADIO_RX_OFF_LINK:
  398. rt2800pci_toggle_rx(rt2x00dev, state);
  399. break;
  400. case STATE_RADIO_IRQ_ON:
  401. case STATE_RADIO_IRQ_ON_ISR:
  402. case STATE_RADIO_IRQ_OFF:
  403. case STATE_RADIO_IRQ_OFF_ISR:
  404. rt2800pci_toggle_irq(rt2x00dev, state);
  405. break;
  406. case STATE_DEEP_SLEEP:
  407. case STATE_SLEEP:
  408. case STATE_STANDBY:
  409. case STATE_AWAKE:
  410. retval = rt2800pci_set_state(rt2x00dev, state);
  411. break;
  412. default:
  413. retval = -ENOTSUPP;
  414. break;
  415. }
  416. if (unlikely(retval))
  417. ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
  418. state, retval);
  419. return retval;
  420. }
  421. /*
  422. * TX descriptor initialization
  423. */
  424. static __le32 *rt2800pci_get_txwi(struct queue_entry *entry)
  425. {
  426. return (__le32 *) entry->skb->data;
  427. }
  428. static void rt2800pci_write_tx_desc(struct queue_entry *entry,
  429. struct txentry_desc *txdesc)
  430. {
  431. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  432. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  433. __le32 *txd = entry_priv->desc;
  434. u32 word;
  435. /*
  436. * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
  437. * must contains a TXWI structure + 802.11 header + padding + 802.11
  438. * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
  439. * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
  440. * data. It means that LAST_SEC0 is always 0.
  441. */
  442. /*
  443. * Initialize TX descriptor
  444. */
  445. rt2x00_desc_read(txd, 0, &word);
  446. rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
  447. rt2x00_desc_write(txd, 0, word);
  448. rt2x00_desc_read(txd, 1, &word);
  449. rt2x00_set_field32(&word, TXD_W1_SD_LEN1, entry->skb->len);
  450. rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
  451. !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
  452. rt2x00_set_field32(&word, TXD_W1_BURST,
  453. test_bit(ENTRY_TXD_BURST, &txdesc->flags));
  454. rt2x00_set_field32(&word, TXD_W1_SD_LEN0, TXWI_DESC_SIZE);
  455. rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
  456. rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
  457. rt2x00_desc_write(txd, 1, word);
  458. rt2x00_desc_read(txd, 2, &word);
  459. rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
  460. skbdesc->skb_dma + TXWI_DESC_SIZE);
  461. rt2x00_desc_write(txd, 2, word);
  462. rt2x00_desc_read(txd, 3, &word);
  463. rt2x00_set_field32(&word, TXD_W3_WIV,
  464. !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
  465. rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
  466. rt2x00_desc_write(txd, 3, word);
  467. /*
  468. * Register descriptor details in skb frame descriptor.
  469. */
  470. skbdesc->desc = txd;
  471. skbdesc->desc_len = TXD_DESC_SIZE;
  472. }
  473. /*
  474. * TX data initialization
  475. */
  476. static void rt2800pci_kick_tx_queue(struct data_queue *queue)
  477. {
  478. struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
  479. struct queue_entry *entry = rt2x00queue_get_entry(queue, Q_INDEX);
  480. unsigned int qidx = 0;
  481. if (queue->qid == QID_MGMT)
  482. qidx = 5;
  483. else
  484. qidx = queue->qid;
  485. rt2800_register_write(rt2x00dev, TX_CTX_IDX(qidx), entry->entry_idx);
  486. }
  487. static void rt2800pci_kill_tx_queue(struct data_queue *queue)
  488. {
  489. struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
  490. u32 reg;
  491. if (queue->qid == QID_BEACON) {
  492. rt2800_register_write(rt2x00dev, BCN_TIME_CFG, 0);
  493. return;
  494. }
  495. rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
  496. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, (queue->qid == QID_AC_BE));
  497. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, (queue->qid == QID_AC_BK));
  498. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, (queue->qid == QID_AC_VI));
  499. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, (queue->qid == QID_AC_VO));
  500. rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
  501. }
  502. /*
  503. * RX control handlers
  504. */
  505. static void rt2800pci_fill_rxdone(struct queue_entry *entry,
  506. struct rxdone_entry_desc *rxdesc)
  507. {
  508. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  509. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  510. __le32 *rxd = entry_priv->desc;
  511. u32 word;
  512. rt2x00_desc_read(rxd, 3, &word);
  513. if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR))
  514. rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
  515. /*
  516. * Unfortunately we don't know the cipher type used during
  517. * decryption. This prevents us from correct providing
  518. * correct statistics through debugfs.
  519. */
  520. rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR);
  521. if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) {
  522. /*
  523. * Hardware has stripped IV/EIV data from 802.11 frame during
  524. * decryption. Unfortunately the descriptor doesn't contain
  525. * any fields with the EIV/IV data either, so they can't
  526. * be restored by rt2x00lib.
  527. */
  528. rxdesc->flags |= RX_FLAG_IV_STRIPPED;
  529. if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
  530. rxdesc->flags |= RX_FLAG_DECRYPTED;
  531. else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
  532. rxdesc->flags |= RX_FLAG_MMIC_ERROR;
  533. }
  534. if (rt2x00_get_field32(word, RXD_W3_MY_BSS))
  535. rxdesc->dev_flags |= RXDONE_MY_BSS;
  536. if (rt2x00_get_field32(word, RXD_W3_L2PAD))
  537. rxdesc->dev_flags |= RXDONE_L2PAD;
  538. /*
  539. * Process the RXWI structure that is at the start of the buffer.
  540. */
  541. rt2800_process_rxwi(entry, rxdesc);
  542. /*
  543. * Set RX IDX in register to inform hardware that we have handled
  544. * this entry and it is available for reuse again.
  545. */
  546. rt2800_register_write(rt2x00dev, RX_CRX_IDX, entry->entry_idx);
  547. }
  548. /*
  549. * Interrupt functions.
  550. */
  551. static void rt2800pci_wakeup(struct rt2x00_dev *rt2x00dev)
  552. {
  553. struct ieee80211_conf conf = { .flags = 0 };
  554. struct rt2x00lib_conf libconf = { .conf = &conf };
  555. rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
  556. }
  557. static irqreturn_t rt2800pci_interrupt_thread(int irq, void *dev_instance)
  558. {
  559. struct rt2x00_dev *rt2x00dev = dev_instance;
  560. u32 reg = rt2x00dev->irqvalue[0];
  561. /*
  562. * 1 - Pre TBTT interrupt.
  563. */
  564. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT))
  565. rt2x00lib_pretbtt(rt2x00dev);
  566. /*
  567. * 2 - Beacondone interrupt.
  568. */
  569. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT))
  570. rt2x00lib_beacondone(rt2x00dev);
  571. /*
  572. * 3 - Rx ring done interrupt.
  573. */
  574. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
  575. rt2x00pci_rxdone(rt2x00dev);
  576. /*
  577. * 4 - Tx done interrupt.
  578. */
  579. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS))
  580. rt2800_txdone(rt2x00dev);
  581. /*
  582. * 5 - Auto wakeup interrupt.
  583. */
  584. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP))
  585. rt2800pci_wakeup(rt2x00dev);
  586. /* Enable interrupts again. */
  587. rt2x00dev->ops->lib->set_device_state(rt2x00dev,
  588. STATE_RADIO_IRQ_ON_ISR);
  589. return IRQ_HANDLED;
  590. }
  591. static irqreturn_t rt2800pci_interrupt(int irq, void *dev_instance)
  592. {
  593. struct rt2x00_dev *rt2x00dev = dev_instance;
  594. u32 reg;
  595. /* Read status and ACK all interrupts */
  596. rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
  597. rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
  598. if (!reg)
  599. return IRQ_NONE;
  600. if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  601. return IRQ_HANDLED;
  602. /* Store irqvalue for use in the interrupt thread. */
  603. rt2x00dev->irqvalue[0] = reg;
  604. /* Disable interrupts, will be enabled again in the interrupt thread. */
  605. rt2x00dev->ops->lib->set_device_state(rt2x00dev,
  606. STATE_RADIO_IRQ_OFF_ISR);
  607. return IRQ_WAKE_THREAD;
  608. }
  609. /*
  610. * Device probe functions.
  611. */
  612. static int rt2800pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
  613. {
  614. /*
  615. * Read EEPROM into buffer
  616. */
  617. if (rt2x00_is_soc(rt2x00dev))
  618. rt2800pci_read_eeprom_soc(rt2x00dev);
  619. else if (rt2800pci_efuse_detect(rt2x00dev))
  620. rt2800pci_read_eeprom_efuse(rt2x00dev);
  621. else
  622. rt2800pci_read_eeprom_pci(rt2x00dev);
  623. return rt2800_validate_eeprom(rt2x00dev);
  624. }
  625. static int rt2800pci_probe_hw(struct rt2x00_dev *rt2x00dev)
  626. {
  627. int retval;
  628. /*
  629. * Allocate eeprom data.
  630. */
  631. retval = rt2800pci_validate_eeprom(rt2x00dev);
  632. if (retval)
  633. return retval;
  634. retval = rt2800_init_eeprom(rt2x00dev);
  635. if (retval)
  636. return retval;
  637. /*
  638. * Initialize hw specifications.
  639. */
  640. retval = rt2800_probe_hw_mode(rt2x00dev);
  641. if (retval)
  642. return retval;
  643. /*
  644. * This device has multiple filters for control frames
  645. * and has a separate filter for PS Poll frames.
  646. */
  647. __set_bit(DRIVER_SUPPORT_CONTROL_FILTERS, &rt2x00dev->flags);
  648. __set_bit(DRIVER_SUPPORT_CONTROL_FILTER_PSPOLL, &rt2x00dev->flags);
  649. /*
  650. * This device has a pre tbtt interrupt and thus fetches
  651. * a new beacon directly prior to transmission.
  652. */
  653. __set_bit(DRIVER_SUPPORT_PRE_TBTT_INTERRUPT, &rt2x00dev->flags);
  654. /*
  655. * This device requires firmware.
  656. */
  657. if (!rt2x00_is_soc(rt2x00dev))
  658. __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
  659. __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
  660. __set_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags);
  661. if (!modparam_nohwcrypt)
  662. __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
  663. __set_bit(DRIVER_SUPPORT_LINK_TUNING, &rt2x00dev->flags);
  664. /*
  665. * Set the rssi offset.
  666. */
  667. rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
  668. return 0;
  669. }
  670. static const struct ieee80211_ops rt2800pci_mac80211_ops = {
  671. .tx = rt2x00mac_tx,
  672. .start = rt2x00mac_start,
  673. .stop = rt2x00mac_stop,
  674. .add_interface = rt2x00mac_add_interface,
  675. .remove_interface = rt2x00mac_remove_interface,
  676. .config = rt2x00mac_config,
  677. .configure_filter = rt2x00mac_configure_filter,
  678. .set_key = rt2x00mac_set_key,
  679. .sw_scan_start = rt2x00mac_sw_scan_start,
  680. .sw_scan_complete = rt2x00mac_sw_scan_complete,
  681. .get_stats = rt2x00mac_get_stats,
  682. .get_tkip_seq = rt2800_get_tkip_seq,
  683. .set_rts_threshold = rt2800_set_rts_threshold,
  684. .bss_info_changed = rt2x00mac_bss_info_changed,
  685. .conf_tx = rt2800_conf_tx,
  686. .get_tsf = rt2800_get_tsf,
  687. .rfkill_poll = rt2x00mac_rfkill_poll,
  688. .ampdu_action = rt2800_ampdu_action,
  689. };
  690. static const struct rt2800_ops rt2800pci_rt2800_ops = {
  691. .register_read = rt2x00pci_register_read,
  692. .register_read_lock = rt2x00pci_register_read, /* same for PCI */
  693. .register_write = rt2x00pci_register_write,
  694. .register_write_lock = rt2x00pci_register_write, /* same for PCI */
  695. .register_multiread = rt2x00pci_register_multiread,
  696. .register_multiwrite = rt2x00pci_register_multiwrite,
  697. .regbusy_read = rt2x00pci_regbusy_read,
  698. .drv_write_firmware = rt2800pci_write_firmware,
  699. .drv_init_registers = rt2800pci_init_registers,
  700. .drv_get_txwi = rt2800pci_get_txwi,
  701. };
  702. static const struct rt2x00lib_ops rt2800pci_rt2x00_ops = {
  703. .irq_handler = rt2800pci_interrupt,
  704. .irq_handler_thread = rt2800pci_interrupt_thread,
  705. .probe_hw = rt2800pci_probe_hw,
  706. .get_firmware_name = rt2800pci_get_firmware_name,
  707. .check_firmware = rt2800_check_firmware,
  708. .load_firmware = rt2800_load_firmware,
  709. .initialize = rt2x00pci_initialize,
  710. .uninitialize = rt2x00pci_uninitialize,
  711. .get_entry_state = rt2800pci_get_entry_state,
  712. .clear_entry = rt2800pci_clear_entry,
  713. .set_device_state = rt2800pci_set_device_state,
  714. .rfkill_poll = rt2800_rfkill_poll,
  715. .link_stats = rt2800_link_stats,
  716. .reset_tuner = rt2800_reset_tuner,
  717. .link_tuner = rt2800_link_tuner,
  718. .write_tx_desc = rt2800pci_write_tx_desc,
  719. .write_tx_data = rt2800_write_tx_data,
  720. .write_beacon = rt2800_write_beacon,
  721. .kick_tx_queue = rt2800pci_kick_tx_queue,
  722. .kill_tx_queue = rt2800pci_kill_tx_queue,
  723. .fill_rxdone = rt2800pci_fill_rxdone,
  724. .config_shared_key = rt2800_config_shared_key,
  725. .config_pairwise_key = rt2800_config_pairwise_key,
  726. .config_filter = rt2800_config_filter,
  727. .config_intf = rt2800_config_intf,
  728. .config_erp = rt2800_config_erp,
  729. .config_ant = rt2800_config_ant,
  730. .config = rt2800_config,
  731. };
  732. static const struct data_queue_desc rt2800pci_queue_rx = {
  733. .entry_num = RX_ENTRIES,
  734. .data_size = AGGREGATION_SIZE,
  735. .desc_size = RXD_DESC_SIZE,
  736. .priv_size = sizeof(struct queue_entry_priv_pci),
  737. };
  738. static const struct data_queue_desc rt2800pci_queue_tx = {
  739. .entry_num = TX_ENTRIES,
  740. .data_size = AGGREGATION_SIZE,
  741. .desc_size = TXD_DESC_SIZE,
  742. .priv_size = sizeof(struct queue_entry_priv_pci),
  743. };
  744. static const struct data_queue_desc rt2800pci_queue_bcn = {
  745. .entry_num = 8 * BEACON_ENTRIES,
  746. .data_size = 0, /* No DMA required for beacons */
  747. .desc_size = TXWI_DESC_SIZE,
  748. .priv_size = sizeof(struct queue_entry_priv_pci),
  749. };
  750. static const struct rt2x00_ops rt2800pci_ops = {
  751. .name = KBUILD_MODNAME,
  752. .max_sta_intf = 1,
  753. .max_ap_intf = 8,
  754. .eeprom_size = EEPROM_SIZE,
  755. .rf_size = RF_SIZE,
  756. .tx_queues = NUM_TX_QUEUES,
  757. .extra_tx_headroom = TXWI_DESC_SIZE,
  758. .rx = &rt2800pci_queue_rx,
  759. .tx = &rt2800pci_queue_tx,
  760. .bcn = &rt2800pci_queue_bcn,
  761. .lib = &rt2800pci_rt2x00_ops,
  762. .drv = &rt2800pci_rt2800_ops,
  763. .hw = &rt2800pci_mac80211_ops,
  764. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  765. .debugfs = &rt2800_rt2x00debug,
  766. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  767. };
  768. /*
  769. * RT2800pci module information.
  770. */
  771. #ifdef CONFIG_RT2800PCI_PCI
  772. static DEFINE_PCI_DEVICE_TABLE(rt2800pci_device_table) = {
  773. { PCI_DEVICE(0x1814, 0x0601), PCI_DEVICE_DATA(&rt2800pci_ops) },
  774. { PCI_DEVICE(0x1814, 0x0681), PCI_DEVICE_DATA(&rt2800pci_ops) },
  775. { PCI_DEVICE(0x1814, 0x0701), PCI_DEVICE_DATA(&rt2800pci_ops) },
  776. { PCI_DEVICE(0x1814, 0x0781), PCI_DEVICE_DATA(&rt2800pci_ops) },
  777. { PCI_DEVICE(0x1432, 0x7708), PCI_DEVICE_DATA(&rt2800pci_ops) },
  778. { PCI_DEVICE(0x1432, 0x7727), PCI_DEVICE_DATA(&rt2800pci_ops) },
  779. { PCI_DEVICE(0x1432, 0x7728), PCI_DEVICE_DATA(&rt2800pci_ops) },
  780. { PCI_DEVICE(0x1432, 0x7738), PCI_DEVICE_DATA(&rt2800pci_ops) },
  781. { PCI_DEVICE(0x1432, 0x7748), PCI_DEVICE_DATA(&rt2800pci_ops) },
  782. { PCI_DEVICE(0x1432, 0x7758), PCI_DEVICE_DATA(&rt2800pci_ops) },
  783. { PCI_DEVICE(0x1432, 0x7768), PCI_DEVICE_DATA(&rt2800pci_ops) },
  784. { PCI_DEVICE(0x1a3b, 0x1059), PCI_DEVICE_DATA(&rt2800pci_ops) },
  785. #ifdef CONFIG_RT2800PCI_RT30XX
  786. { PCI_DEVICE(0x1814, 0x3090), PCI_DEVICE_DATA(&rt2800pci_ops) },
  787. { PCI_DEVICE(0x1814, 0x3091), PCI_DEVICE_DATA(&rt2800pci_ops) },
  788. { PCI_DEVICE(0x1814, 0x3092), PCI_DEVICE_DATA(&rt2800pci_ops) },
  789. { PCI_DEVICE(0x1462, 0x891a), PCI_DEVICE_DATA(&rt2800pci_ops) },
  790. #endif
  791. #ifdef CONFIG_RT2800PCI_RT35XX
  792. { PCI_DEVICE(0x1814, 0x3060), PCI_DEVICE_DATA(&rt2800pci_ops) },
  793. { PCI_DEVICE(0x1814, 0x3062), PCI_DEVICE_DATA(&rt2800pci_ops) },
  794. { PCI_DEVICE(0x1814, 0x3562), PCI_DEVICE_DATA(&rt2800pci_ops) },
  795. { PCI_DEVICE(0x1814, 0x3592), PCI_DEVICE_DATA(&rt2800pci_ops) },
  796. { PCI_DEVICE(0x1814, 0x3593), PCI_DEVICE_DATA(&rt2800pci_ops) },
  797. #endif
  798. { 0, }
  799. };
  800. #endif /* CONFIG_RT2800PCI_PCI */
  801. MODULE_AUTHOR(DRV_PROJECT);
  802. MODULE_VERSION(DRV_VERSION);
  803. MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver.");
  804. MODULE_SUPPORTED_DEVICE("Ralink RT2860 PCI & PCMCIA chipset based cards");
  805. #ifdef CONFIG_RT2800PCI_PCI
  806. MODULE_FIRMWARE(FIRMWARE_RT2860);
  807. MODULE_DEVICE_TABLE(pci, rt2800pci_device_table);
  808. #endif /* CONFIG_RT2800PCI_PCI */
  809. MODULE_LICENSE("GPL");
  810. #ifdef CONFIG_RT2800PCI_SOC
  811. static int rt2800soc_probe(struct platform_device *pdev)
  812. {
  813. return rt2x00soc_probe(pdev, &rt2800pci_ops);
  814. }
  815. static struct platform_driver rt2800soc_driver = {
  816. .driver = {
  817. .name = "rt2800_wmac",
  818. .owner = THIS_MODULE,
  819. .mod_name = KBUILD_MODNAME,
  820. },
  821. .probe = rt2800soc_probe,
  822. .remove = __devexit_p(rt2x00soc_remove),
  823. .suspend = rt2x00soc_suspend,
  824. .resume = rt2x00soc_resume,
  825. };
  826. #endif /* CONFIG_RT2800PCI_SOC */
  827. #ifdef CONFIG_RT2800PCI_PCI
  828. static struct pci_driver rt2800pci_driver = {
  829. .name = KBUILD_MODNAME,
  830. .id_table = rt2800pci_device_table,
  831. .probe = rt2x00pci_probe,
  832. .remove = __devexit_p(rt2x00pci_remove),
  833. .suspend = rt2x00pci_suspend,
  834. .resume = rt2x00pci_resume,
  835. };
  836. #endif /* CONFIG_RT2800PCI_PCI */
  837. static int __init rt2800pci_init(void)
  838. {
  839. int ret = 0;
  840. #ifdef CONFIG_RT2800PCI_SOC
  841. ret = platform_driver_register(&rt2800soc_driver);
  842. if (ret)
  843. return ret;
  844. #endif
  845. #ifdef CONFIG_RT2800PCI_PCI
  846. ret = pci_register_driver(&rt2800pci_driver);
  847. if (ret) {
  848. #ifdef CONFIG_RT2800PCI_SOC
  849. platform_driver_unregister(&rt2800soc_driver);
  850. #endif
  851. return ret;
  852. }
  853. #endif
  854. return ret;
  855. }
  856. static void __exit rt2800pci_exit(void)
  857. {
  858. #ifdef CONFIG_RT2800PCI_PCI
  859. pci_unregister_driver(&rt2800pci_driver);
  860. #endif
  861. #ifdef CONFIG_RT2800PCI_SOC
  862. platform_driver_unregister(&rt2800soc_driver);
  863. #endif
  864. }
  865. module_init(rt2800pci_init);
  866. module_exit(rt2800pci_exit);