memory-failure.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833
  1. /*
  2. * Copyright (C) 2008, 2009 Intel Corporation
  3. * Authors: Andi Kleen, Fengguang Wu
  4. *
  5. * This software may be redistributed and/or modified under the terms of
  6. * the GNU General Public License ("GPL") version 2 only as published by the
  7. * Free Software Foundation.
  8. *
  9. * High level machine check handler. Handles pages reported by the
  10. * hardware as being corrupted usually due to a 2bit ECC memory or cache
  11. * failure.
  12. *
  13. * Handles page cache pages in various states. The tricky part
  14. * here is that we can access any page asynchronous to other VM
  15. * users, because memory failures could happen anytime and anywhere,
  16. * possibly violating some of their assumptions. This is why this code
  17. * has to be extremely careful. Generally it tries to use normal locking
  18. * rules, as in get the standard locks, even if that means the
  19. * error handling takes potentially a long time.
  20. *
  21. * The operation to map back from RMAP chains to processes has to walk
  22. * the complete process list and has non linear complexity with the number
  23. * mappings. In short it can be quite slow. But since memory corruptions
  24. * are rare we hope to get away with this.
  25. */
  26. /*
  27. * Notebook:
  28. * - hugetlb needs more code
  29. * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
  30. * - pass bad pages to kdump next kernel
  31. */
  32. #define DEBUG 1 /* remove me in 2.6.34 */
  33. #include <linux/kernel.h>
  34. #include <linux/mm.h>
  35. #include <linux/page-flags.h>
  36. #include <linux/sched.h>
  37. #include <linux/ksm.h>
  38. #include <linux/rmap.h>
  39. #include <linux/pagemap.h>
  40. #include <linux/swap.h>
  41. #include <linux/backing-dev.h>
  42. #include "internal.h"
  43. int sysctl_memory_failure_early_kill __read_mostly = 0;
  44. int sysctl_memory_failure_recovery __read_mostly = 1;
  45. atomic_long_t mce_bad_pages __read_mostly = ATOMIC_LONG_INIT(0);
  46. /*
  47. * Send all the processes who have the page mapped an ``action optional''
  48. * signal.
  49. */
  50. static int kill_proc_ao(struct task_struct *t, unsigned long addr, int trapno,
  51. unsigned long pfn)
  52. {
  53. struct siginfo si;
  54. int ret;
  55. printk(KERN_ERR
  56. "MCE %#lx: Killing %s:%d early due to hardware memory corruption\n",
  57. pfn, t->comm, t->pid);
  58. si.si_signo = SIGBUS;
  59. si.si_errno = 0;
  60. si.si_code = BUS_MCEERR_AO;
  61. si.si_addr = (void *)addr;
  62. #ifdef __ARCH_SI_TRAPNO
  63. si.si_trapno = trapno;
  64. #endif
  65. si.si_addr_lsb = PAGE_SHIFT;
  66. /*
  67. * Don't use force here, it's convenient if the signal
  68. * can be temporarily blocked.
  69. * This could cause a loop when the user sets SIGBUS
  70. * to SIG_IGN, but hopefully noone will do that?
  71. */
  72. ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
  73. if (ret < 0)
  74. printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
  75. t->comm, t->pid, ret);
  76. return ret;
  77. }
  78. /*
  79. * Kill all processes that have a poisoned page mapped and then isolate
  80. * the page.
  81. *
  82. * General strategy:
  83. * Find all processes having the page mapped and kill them.
  84. * But we keep a page reference around so that the page is not
  85. * actually freed yet.
  86. * Then stash the page away
  87. *
  88. * There's no convenient way to get back to mapped processes
  89. * from the VMAs. So do a brute-force search over all
  90. * running processes.
  91. *
  92. * Remember that machine checks are not common (or rather
  93. * if they are common you have other problems), so this shouldn't
  94. * be a performance issue.
  95. *
  96. * Also there are some races possible while we get from the
  97. * error detection to actually handle it.
  98. */
  99. struct to_kill {
  100. struct list_head nd;
  101. struct task_struct *tsk;
  102. unsigned long addr;
  103. unsigned addr_valid:1;
  104. };
  105. /*
  106. * Failure handling: if we can't find or can't kill a process there's
  107. * not much we can do. We just print a message and ignore otherwise.
  108. */
  109. /*
  110. * Schedule a process for later kill.
  111. * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
  112. * TBD would GFP_NOIO be enough?
  113. */
  114. static void add_to_kill(struct task_struct *tsk, struct page *p,
  115. struct vm_area_struct *vma,
  116. struct list_head *to_kill,
  117. struct to_kill **tkc)
  118. {
  119. struct to_kill *tk;
  120. if (*tkc) {
  121. tk = *tkc;
  122. *tkc = NULL;
  123. } else {
  124. tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
  125. if (!tk) {
  126. printk(KERN_ERR
  127. "MCE: Out of memory while machine check handling\n");
  128. return;
  129. }
  130. }
  131. tk->addr = page_address_in_vma(p, vma);
  132. tk->addr_valid = 1;
  133. /*
  134. * In theory we don't have to kill when the page was
  135. * munmaped. But it could be also a mremap. Since that's
  136. * likely very rare kill anyways just out of paranoia, but use
  137. * a SIGKILL because the error is not contained anymore.
  138. */
  139. if (tk->addr == -EFAULT) {
  140. pr_debug("MCE: Unable to find user space address %lx in %s\n",
  141. page_to_pfn(p), tsk->comm);
  142. tk->addr_valid = 0;
  143. }
  144. get_task_struct(tsk);
  145. tk->tsk = tsk;
  146. list_add_tail(&tk->nd, to_kill);
  147. }
  148. /*
  149. * Kill the processes that have been collected earlier.
  150. *
  151. * Only do anything when DOIT is set, otherwise just free the list
  152. * (this is used for clean pages which do not need killing)
  153. * Also when FAIL is set do a force kill because something went
  154. * wrong earlier.
  155. */
  156. static void kill_procs_ao(struct list_head *to_kill, int doit, int trapno,
  157. int fail, unsigned long pfn)
  158. {
  159. struct to_kill *tk, *next;
  160. list_for_each_entry_safe (tk, next, to_kill, nd) {
  161. if (doit) {
  162. /*
  163. * In case something went wrong with munmaping
  164. * make sure the process doesn't catch the
  165. * signal and then access the memory. Just kill it.
  166. * the signal handlers
  167. */
  168. if (fail || tk->addr_valid == 0) {
  169. printk(KERN_ERR
  170. "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
  171. pfn, tk->tsk->comm, tk->tsk->pid);
  172. force_sig(SIGKILL, tk->tsk);
  173. }
  174. /*
  175. * In theory the process could have mapped
  176. * something else on the address in-between. We could
  177. * check for that, but we need to tell the
  178. * process anyways.
  179. */
  180. else if (kill_proc_ao(tk->tsk, tk->addr, trapno,
  181. pfn) < 0)
  182. printk(KERN_ERR
  183. "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
  184. pfn, tk->tsk->comm, tk->tsk->pid);
  185. }
  186. put_task_struct(tk->tsk);
  187. kfree(tk);
  188. }
  189. }
  190. static int task_early_kill(struct task_struct *tsk)
  191. {
  192. if (!tsk->mm)
  193. return 0;
  194. if (tsk->flags & PF_MCE_PROCESS)
  195. return !!(tsk->flags & PF_MCE_EARLY);
  196. return sysctl_memory_failure_early_kill;
  197. }
  198. /*
  199. * Collect processes when the error hit an anonymous page.
  200. */
  201. static void collect_procs_anon(struct page *page, struct list_head *to_kill,
  202. struct to_kill **tkc)
  203. {
  204. struct vm_area_struct *vma;
  205. struct task_struct *tsk;
  206. struct anon_vma *av;
  207. read_lock(&tasklist_lock);
  208. av = page_lock_anon_vma(page);
  209. if (av == NULL) /* Not actually mapped anymore */
  210. goto out;
  211. for_each_process (tsk) {
  212. if (!task_early_kill(tsk))
  213. continue;
  214. list_for_each_entry (vma, &av->head, anon_vma_node) {
  215. if (!page_mapped_in_vma(page, vma))
  216. continue;
  217. if (vma->vm_mm == tsk->mm)
  218. add_to_kill(tsk, page, vma, to_kill, tkc);
  219. }
  220. }
  221. page_unlock_anon_vma(av);
  222. out:
  223. read_unlock(&tasklist_lock);
  224. }
  225. /*
  226. * Collect processes when the error hit a file mapped page.
  227. */
  228. static void collect_procs_file(struct page *page, struct list_head *to_kill,
  229. struct to_kill **tkc)
  230. {
  231. struct vm_area_struct *vma;
  232. struct task_struct *tsk;
  233. struct prio_tree_iter iter;
  234. struct address_space *mapping = page->mapping;
  235. /*
  236. * A note on the locking order between the two locks.
  237. * We don't rely on this particular order.
  238. * If you have some other code that needs a different order
  239. * feel free to switch them around. Or add a reverse link
  240. * from mm_struct to task_struct, then this could be all
  241. * done without taking tasklist_lock and looping over all tasks.
  242. */
  243. read_lock(&tasklist_lock);
  244. spin_lock(&mapping->i_mmap_lock);
  245. for_each_process(tsk) {
  246. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  247. if (!task_early_kill(tsk))
  248. continue;
  249. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff,
  250. pgoff) {
  251. /*
  252. * Send early kill signal to tasks where a vma covers
  253. * the page but the corrupted page is not necessarily
  254. * mapped it in its pte.
  255. * Assume applications who requested early kill want
  256. * to be informed of all such data corruptions.
  257. */
  258. if (vma->vm_mm == tsk->mm)
  259. add_to_kill(tsk, page, vma, to_kill, tkc);
  260. }
  261. }
  262. spin_unlock(&mapping->i_mmap_lock);
  263. read_unlock(&tasklist_lock);
  264. }
  265. /*
  266. * Collect the processes who have the corrupted page mapped to kill.
  267. * This is done in two steps for locking reasons.
  268. * First preallocate one tokill structure outside the spin locks,
  269. * so that we can kill at least one process reasonably reliable.
  270. */
  271. static void collect_procs(struct page *page, struct list_head *tokill)
  272. {
  273. struct to_kill *tk;
  274. if (!page->mapping)
  275. return;
  276. tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
  277. if (!tk)
  278. return;
  279. if (PageAnon(page))
  280. collect_procs_anon(page, tokill, &tk);
  281. else
  282. collect_procs_file(page, tokill, &tk);
  283. kfree(tk);
  284. }
  285. /*
  286. * Error handlers for various types of pages.
  287. */
  288. enum outcome {
  289. FAILED, /* Error handling failed */
  290. DELAYED, /* Will be handled later */
  291. IGNORED, /* Error safely ignored */
  292. RECOVERED, /* Successfully recovered */
  293. };
  294. static const char *action_name[] = {
  295. [FAILED] = "Failed",
  296. [DELAYED] = "Delayed",
  297. [IGNORED] = "Ignored",
  298. [RECOVERED] = "Recovered",
  299. };
  300. /*
  301. * Error hit kernel page.
  302. * Do nothing, try to be lucky and not touch this instead. For a few cases we
  303. * could be more sophisticated.
  304. */
  305. static int me_kernel(struct page *p, unsigned long pfn)
  306. {
  307. return DELAYED;
  308. }
  309. /*
  310. * Already poisoned page.
  311. */
  312. static int me_ignore(struct page *p, unsigned long pfn)
  313. {
  314. return IGNORED;
  315. }
  316. /*
  317. * Page in unknown state. Do nothing.
  318. */
  319. static int me_unknown(struct page *p, unsigned long pfn)
  320. {
  321. printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
  322. return FAILED;
  323. }
  324. /*
  325. * Free memory
  326. */
  327. static int me_free(struct page *p, unsigned long pfn)
  328. {
  329. return DELAYED;
  330. }
  331. /*
  332. * Clean (or cleaned) page cache page.
  333. */
  334. static int me_pagecache_clean(struct page *p, unsigned long pfn)
  335. {
  336. int err;
  337. int ret = FAILED;
  338. struct address_space *mapping;
  339. if (!isolate_lru_page(p))
  340. page_cache_release(p);
  341. /*
  342. * For anonymous pages we're done the only reference left
  343. * should be the one m_f() holds.
  344. */
  345. if (PageAnon(p))
  346. return RECOVERED;
  347. /*
  348. * Now truncate the page in the page cache. This is really
  349. * more like a "temporary hole punch"
  350. * Don't do this for block devices when someone else
  351. * has a reference, because it could be file system metadata
  352. * and that's not safe to truncate.
  353. */
  354. mapping = page_mapping(p);
  355. if (!mapping) {
  356. /*
  357. * Page has been teared down in the meanwhile
  358. */
  359. return FAILED;
  360. }
  361. /*
  362. * Truncation is a bit tricky. Enable it per file system for now.
  363. *
  364. * Open: to take i_mutex or not for this? Right now we don't.
  365. */
  366. if (mapping->a_ops->error_remove_page) {
  367. err = mapping->a_ops->error_remove_page(mapping, p);
  368. if (err != 0) {
  369. printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
  370. pfn, err);
  371. } else if (page_has_private(p) &&
  372. !try_to_release_page(p, GFP_NOIO)) {
  373. pr_debug("MCE %#lx: failed to release buffers\n", pfn);
  374. } else {
  375. ret = RECOVERED;
  376. }
  377. } else {
  378. /*
  379. * If the file system doesn't support it just invalidate
  380. * This fails on dirty or anything with private pages
  381. */
  382. if (invalidate_inode_page(p))
  383. ret = RECOVERED;
  384. else
  385. printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
  386. pfn);
  387. }
  388. return ret;
  389. }
  390. /*
  391. * Dirty cache page page
  392. * Issues: when the error hit a hole page the error is not properly
  393. * propagated.
  394. */
  395. static int me_pagecache_dirty(struct page *p, unsigned long pfn)
  396. {
  397. struct address_space *mapping = page_mapping(p);
  398. SetPageError(p);
  399. /* TBD: print more information about the file. */
  400. if (mapping) {
  401. /*
  402. * IO error will be reported by write(), fsync(), etc.
  403. * who check the mapping.
  404. * This way the application knows that something went
  405. * wrong with its dirty file data.
  406. *
  407. * There's one open issue:
  408. *
  409. * The EIO will be only reported on the next IO
  410. * operation and then cleared through the IO map.
  411. * Normally Linux has two mechanisms to pass IO error
  412. * first through the AS_EIO flag in the address space
  413. * and then through the PageError flag in the page.
  414. * Since we drop pages on memory failure handling the
  415. * only mechanism open to use is through AS_AIO.
  416. *
  417. * This has the disadvantage that it gets cleared on
  418. * the first operation that returns an error, while
  419. * the PageError bit is more sticky and only cleared
  420. * when the page is reread or dropped. If an
  421. * application assumes it will always get error on
  422. * fsync, but does other operations on the fd before
  423. * and the page is dropped inbetween then the error
  424. * will not be properly reported.
  425. *
  426. * This can already happen even without hwpoisoned
  427. * pages: first on metadata IO errors (which only
  428. * report through AS_EIO) or when the page is dropped
  429. * at the wrong time.
  430. *
  431. * So right now we assume that the application DTRT on
  432. * the first EIO, but we're not worse than other parts
  433. * of the kernel.
  434. */
  435. mapping_set_error(mapping, EIO);
  436. }
  437. return me_pagecache_clean(p, pfn);
  438. }
  439. /*
  440. * Clean and dirty swap cache.
  441. *
  442. * Dirty swap cache page is tricky to handle. The page could live both in page
  443. * cache and swap cache(ie. page is freshly swapped in). So it could be
  444. * referenced concurrently by 2 types of PTEs:
  445. * normal PTEs and swap PTEs. We try to handle them consistently by calling
  446. * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
  447. * and then
  448. * - clear dirty bit to prevent IO
  449. * - remove from LRU
  450. * - but keep in the swap cache, so that when we return to it on
  451. * a later page fault, we know the application is accessing
  452. * corrupted data and shall be killed (we installed simple
  453. * interception code in do_swap_page to catch it).
  454. *
  455. * Clean swap cache pages can be directly isolated. A later page fault will
  456. * bring in the known good data from disk.
  457. */
  458. static int me_swapcache_dirty(struct page *p, unsigned long pfn)
  459. {
  460. int ret = FAILED;
  461. ClearPageDirty(p);
  462. /* Trigger EIO in shmem: */
  463. ClearPageUptodate(p);
  464. if (!isolate_lru_page(p)) {
  465. page_cache_release(p);
  466. ret = DELAYED;
  467. }
  468. return ret;
  469. }
  470. static int me_swapcache_clean(struct page *p, unsigned long pfn)
  471. {
  472. int ret = FAILED;
  473. if (!isolate_lru_page(p)) {
  474. page_cache_release(p);
  475. ret = RECOVERED;
  476. }
  477. delete_from_swap_cache(p);
  478. return ret;
  479. }
  480. /*
  481. * Huge pages. Needs work.
  482. * Issues:
  483. * No rmap support so we cannot find the original mapper. In theory could walk
  484. * all MMs and look for the mappings, but that would be non atomic and racy.
  485. * Need rmap for hugepages for this. Alternatively we could employ a heuristic,
  486. * like just walking the current process and hoping it has it mapped (that
  487. * should be usually true for the common "shared database cache" case)
  488. * Should handle free huge pages and dequeue them too, but this needs to
  489. * handle huge page accounting correctly.
  490. */
  491. static int me_huge_page(struct page *p, unsigned long pfn)
  492. {
  493. return FAILED;
  494. }
  495. /*
  496. * Various page states we can handle.
  497. *
  498. * A page state is defined by its current page->flags bits.
  499. * The table matches them in order and calls the right handler.
  500. *
  501. * This is quite tricky because we can access page at any time
  502. * in its live cycle, so all accesses have to be extremly careful.
  503. *
  504. * This is not complete. More states could be added.
  505. * For any missing state don't attempt recovery.
  506. */
  507. #define dirty (1UL << PG_dirty)
  508. #define sc (1UL << PG_swapcache)
  509. #define unevict (1UL << PG_unevictable)
  510. #define mlock (1UL << PG_mlocked)
  511. #define writeback (1UL << PG_writeback)
  512. #define lru (1UL << PG_lru)
  513. #define swapbacked (1UL << PG_swapbacked)
  514. #define head (1UL << PG_head)
  515. #define tail (1UL << PG_tail)
  516. #define compound (1UL << PG_compound)
  517. #define slab (1UL << PG_slab)
  518. #define buddy (1UL << PG_buddy)
  519. #define reserved (1UL << PG_reserved)
  520. static struct page_state {
  521. unsigned long mask;
  522. unsigned long res;
  523. char *msg;
  524. int (*action)(struct page *p, unsigned long pfn);
  525. } error_states[] = {
  526. { reserved, reserved, "reserved kernel", me_ignore },
  527. { buddy, buddy, "free kernel", me_free },
  528. /*
  529. * Could in theory check if slab page is free or if we can drop
  530. * currently unused objects without touching them. But just
  531. * treat it as standard kernel for now.
  532. */
  533. { slab, slab, "kernel slab", me_kernel },
  534. #ifdef CONFIG_PAGEFLAGS_EXTENDED
  535. { head, head, "huge", me_huge_page },
  536. { tail, tail, "huge", me_huge_page },
  537. #else
  538. { compound, compound, "huge", me_huge_page },
  539. #endif
  540. { sc|dirty, sc|dirty, "swapcache", me_swapcache_dirty },
  541. { sc|dirty, sc, "swapcache", me_swapcache_clean },
  542. { unevict|dirty, unevict|dirty, "unevictable LRU", me_pagecache_dirty},
  543. { unevict, unevict, "unevictable LRU", me_pagecache_clean},
  544. #ifdef CONFIG_HAVE_MLOCKED_PAGE_BIT
  545. { mlock|dirty, mlock|dirty, "mlocked LRU", me_pagecache_dirty },
  546. { mlock, mlock, "mlocked LRU", me_pagecache_clean },
  547. #endif
  548. { lru|dirty, lru|dirty, "LRU", me_pagecache_dirty },
  549. { lru|dirty, lru, "clean LRU", me_pagecache_clean },
  550. { swapbacked, swapbacked, "anonymous", me_pagecache_clean },
  551. /*
  552. * Catchall entry: must be at end.
  553. */
  554. { 0, 0, "unknown page state", me_unknown },
  555. };
  556. #undef lru
  557. static void action_result(unsigned long pfn, char *msg, int result)
  558. {
  559. struct page *page = NULL;
  560. if (pfn_valid(pfn))
  561. page = pfn_to_page(pfn);
  562. printk(KERN_ERR "MCE %#lx: %s%s page recovery: %s\n",
  563. pfn,
  564. page && PageDirty(page) ? "dirty " : "",
  565. msg, action_name[result]);
  566. }
  567. static int page_action(struct page_state *ps, struct page *p,
  568. unsigned long pfn, int ref)
  569. {
  570. int result;
  571. result = ps->action(p, pfn);
  572. action_result(pfn, ps->msg, result);
  573. if (page_count(p) != 1 + ref)
  574. printk(KERN_ERR
  575. "MCE %#lx: %s page still referenced by %d users\n",
  576. pfn, ps->msg, page_count(p) - 1);
  577. /* Could do more checks here if page looks ok */
  578. /*
  579. * Could adjust zone counters here to correct for the missing page.
  580. */
  581. return result == RECOVERED ? 0 : -EBUSY;
  582. }
  583. #define N_UNMAP_TRIES 5
  584. /*
  585. * Do all that is necessary to remove user space mappings. Unmap
  586. * the pages and send SIGBUS to the processes if the data was dirty.
  587. */
  588. static void hwpoison_user_mappings(struct page *p, unsigned long pfn,
  589. int trapno)
  590. {
  591. enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
  592. struct address_space *mapping;
  593. LIST_HEAD(tokill);
  594. int ret;
  595. int i;
  596. int kill = 1;
  597. if (PageReserved(p) || PageCompound(p) || PageSlab(p) || PageKsm(p))
  598. return;
  599. if (!PageLRU(p))
  600. lru_add_drain_all();
  601. /*
  602. * This check implies we don't kill processes if their pages
  603. * are in the swap cache early. Those are always late kills.
  604. */
  605. if (!page_mapped(p))
  606. return;
  607. if (PageSwapCache(p)) {
  608. printk(KERN_ERR
  609. "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
  610. ttu |= TTU_IGNORE_HWPOISON;
  611. }
  612. /*
  613. * Propagate the dirty bit from PTEs to struct page first, because we
  614. * need this to decide if we should kill or just drop the page.
  615. */
  616. mapping = page_mapping(p);
  617. if (!PageDirty(p) && mapping && mapping_cap_writeback_dirty(mapping)) {
  618. if (page_mkclean(p)) {
  619. SetPageDirty(p);
  620. } else {
  621. kill = 0;
  622. ttu |= TTU_IGNORE_HWPOISON;
  623. printk(KERN_INFO
  624. "MCE %#lx: corrupted page was clean: dropped without side effects\n",
  625. pfn);
  626. }
  627. }
  628. /*
  629. * First collect all the processes that have the page
  630. * mapped in dirty form. This has to be done before try_to_unmap,
  631. * because ttu takes the rmap data structures down.
  632. *
  633. * Error handling: We ignore errors here because
  634. * there's nothing that can be done.
  635. */
  636. if (kill)
  637. collect_procs(p, &tokill);
  638. /*
  639. * try_to_unmap can fail temporarily due to races.
  640. * Try a few times (RED-PEN better strategy?)
  641. */
  642. for (i = 0; i < N_UNMAP_TRIES; i++) {
  643. ret = try_to_unmap(p, ttu);
  644. if (ret == SWAP_SUCCESS)
  645. break;
  646. pr_debug("MCE %#lx: try_to_unmap retry needed %d\n", pfn, ret);
  647. }
  648. if (ret != SWAP_SUCCESS)
  649. printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
  650. pfn, page_mapcount(p));
  651. /*
  652. * Now that the dirty bit has been propagated to the
  653. * struct page and all unmaps done we can decide if
  654. * killing is needed or not. Only kill when the page
  655. * was dirty, otherwise the tokill list is merely
  656. * freed. When there was a problem unmapping earlier
  657. * use a more force-full uncatchable kill to prevent
  658. * any accesses to the poisoned memory.
  659. */
  660. kill_procs_ao(&tokill, !!PageDirty(p), trapno,
  661. ret != SWAP_SUCCESS, pfn);
  662. }
  663. int __memory_failure(unsigned long pfn, int trapno, int ref)
  664. {
  665. struct page_state *ps;
  666. struct page *p;
  667. int res;
  668. if (!sysctl_memory_failure_recovery)
  669. panic("Memory failure from trap %d on page %lx", trapno, pfn);
  670. if (!pfn_valid(pfn)) {
  671. action_result(pfn, "memory outside kernel control", IGNORED);
  672. return -EIO;
  673. }
  674. p = pfn_to_page(pfn);
  675. if (TestSetPageHWPoison(p)) {
  676. action_result(pfn, "already hardware poisoned", IGNORED);
  677. return 0;
  678. }
  679. atomic_long_add(1, &mce_bad_pages);
  680. /*
  681. * We need/can do nothing about count=0 pages.
  682. * 1) it's a free page, and therefore in safe hand:
  683. * prep_new_page() will be the gate keeper.
  684. * 2) it's part of a non-compound high order page.
  685. * Implies some kernel user: cannot stop them from
  686. * R/W the page; let's pray that the page has been
  687. * used and will be freed some time later.
  688. * In fact it's dangerous to directly bump up page count from 0,
  689. * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
  690. */
  691. if (!get_page_unless_zero(compound_head(p))) {
  692. action_result(pfn, "free or high order kernel", IGNORED);
  693. return PageBuddy(compound_head(p)) ? 0 : -EBUSY;
  694. }
  695. /*
  696. * Lock the page and wait for writeback to finish.
  697. * It's very difficult to mess with pages currently under IO
  698. * and in many cases impossible, so we just avoid it here.
  699. */
  700. lock_page_nosync(p);
  701. wait_on_page_writeback(p);
  702. /*
  703. * Now take care of user space mappings.
  704. */
  705. hwpoison_user_mappings(p, pfn, trapno);
  706. /*
  707. * Torn down by someone else?
  708. */
  709. if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
  710. action_result(pfn, "already truncated LRU", IGNORED);
  711. res = 0;
  712. goto out;
  713. }
  714. res = -EBUSY;
  715. for (ps = error_states;; ps++) {
  716. if ((p->flags & ps->mask) == ps->res) {
  717. res = page_action(ps, p, pfn, ref);
  718. break;
  719. }
  720. }
  721. out:
  722. unlock_page(p);
  723. return res;
  724. }
  725. EXPORT_SYMBOL_GPL(__memory_failure);
  726. /**
  727. * memory_failure - Handle memory failure of a page.
  728. * @pfn: Page Number of the corrupted page
  729. * @trapno: Trap number reported in the signal to user space.
  730. *
  731. * This function is called by the low level machine check code
  732. * of an architecture when it detects hardware memory corruption
  733. * of a page. It tries its best to recover, which includes
  734. * dropping pages, killing processes etc.
  735. *
  736. * The function is primarily of use for corruptions that
  737. * happen outside the current execution context (e.g. when
  738. * detected by a background scrubber)
  739. *
  740. * Must run in process context (e.g. a work queue) with interrupts
  741. * enabled and no spinlocks hold.
  742. */
  743. void memory_failure(unsigned long pfn, int trapno)
  744. {
  745. __memory_failure(pfn, trapno, 0);
  746. }