perf_event.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836
  1. #undef DEBUG
  2. /*
  3. * ARM performance counter support.
  4. *
  5. * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
  6. * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
  7. *
  8. * This code is based on the sparc64 perf event code, which is in turn based
  9. * on the x86 code. Callchain code is based on the ARM OProfile backtrace
  10. * code.
  11. */
  12. #define pr_fmt(fmt) "hw perfevents: " fmt
  13. #include <linux/interrupt.h>
  14. #include <linux/kernel.h>
  15. #include <linux/module.h>
  16. #include <linux/perf_event.h>
  17. #include <linux/platform_device.h>
  18. #include <linux/spinlock.h>
  19. #include <linux/uaccess.h>
  20. #include <asm/cputype.h>
  21. #include <asm/irq.h>
  22. #include <asm/irq_regs.h>
  23. #include <asm/pmu.h>
  24. #include <asm/stacktrace.h>
  25. /*
  26. * Hardware lock to serialize accesses to PMU registers. Needed for the
  27. * read/modify/write sequences.
  28. */
  29. static DEFINE_RAW_SPINLOCK(pmu_lock);
  30. /*
  31. * ARMv6 supports a maximum of 3 events, starting from index 0. If we add
  32. * another platform that supports more, we need to increase this to be the
  33. * largest of all platforms.
  34. *
  35. * ARMv7 supports up to 32 events:
  36. * cycle counter CCNT + 31 events counters CNT0..30.
  37. * Cortex-A8 has 1+4 counters, Cortex-A9 has 1+6 counters.
  38. */
  39. #define ARMPMU_MAX_HWEVENTS 32
  40. /* The events for a given CPU. */
  41. struct cpu_hw_events {
  42. /*
  43. * The events that are active on the CPU for the given index.
  44. */
  45. struct perf_event *events[ARMPMU_MAX_HWEVENTS];
  46. /*
  47. * A 1 bit for an index indicates that the counter is being used for
  48. * an event. A 0 means that the counter can be used.
  49. */
  50. unsigned long used_mask[BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS)];
  51. };
  52. static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
  53. struct arm_pmu {
  54. enum arm_perf_pmu_ids id;
  55. cpumask_t active_irqs;
  56. const char *name;
  57. irqreturn_t (*handle_irq)(int irq_num, void *dev);
  58. void (*enable)(struct hw_perf_event *evt, int idx);
  59. void (*disable)(struct hw_perf_event *evt, int idx);
  60. int (*get_event_idx)(struct cpu_hw_events *cpuc,
  61. struct hw_perf_event *hwc);
  62. int (*set_event_filter)(struct hw_perf_event *evt,
  63. struct perf_event_attr *attr);
  64. u32 (*read_counter)(int idx);
  65. void (*write_counter)(int idx, u32 val);
  66. void (*start)(void);
  67. void (*stop)(void);
  68. void (*reset)(void *);
  69. const unsigned (*cache_map)[PERF_COUNT_HW_CACHE_MAX]
  70. [PERF_COUNT_HW_CACHE_OP_MAX]
  71. [PERF_COUNT_HW_CACHE_RESULT_MAX];
  72. const unsigned (*event_map)[PERF_COUNT_HW_MAX];
  73. u32 raw_event_mask;
  74. int num_events;
  75. atomic_t active_events;
  76. struct mutex reserve_mutex;
  77. u64 max_period;
  78. struct platform_device *plat_device;
  79. struct cpu_hw_events *(*get_hw_events)(void);
  80. };
  81. /* Set at runtime when we know what CPU type we are. */
  82. static struct arm_pmu *armpmu;
  83. enum arm_perf_pmu_ids
  84. armpmu_get_pmu_id(void)
  85. {
  86. int id = -ENODEV;
  87. if (armpmu != NULL)
  88. id = armpmu->id;
  89. return id;
  90. }
  91. EXPORT_SYMBOL_GPL(armpmu_get_pmu_id);
  92. int
  93. armpmu_get_max_events(void)
  94. {
  95. int max_events = 0;
  96. if (armpmu != NULL)
  97. max_events = armpmu->num_events;
  98. return max_events;
  99. }
  100. EXPORT_SYMBOL_GPL(armpmu_get_max_events);
  101. int perf_num_counters(void)
  102. {
  103. return armpmu_get_max_events();
  104. }
  105. EXPORT_SYMBOL_GPL(perf_num_counters);
  106. #define HW_OP_UNSUPPORTED 0xFFFF
  107. #define C(_x) \
  108. PERF_COUNT_HW_CACHE_##_x
  109. #define CACHE_OP_UNSUPPORTED 0xFFFF
  110. static int
  111. armpmu_map_cache_event(u64 config)
  112. {
  113. unsigned int cache_type, cache_op, cache_result, ret;
  114. cache_type = (config >> 0) & 0xff;
  115. if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
  116. return -EINVAL;
  117. cache_op = (config >> 8) & 0xff;
  118. if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
  119. return -EINVAL;
  120. cache_result = (config >> 16) & 0xff;
  121. if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
  122. return -EINVAL;
  123. ret = (int)(*armpmu->cache_map)[cache_type][cache_op][cache_result];
  124. if (ret == CACHE_OP_UNSUPPORTED)
  125. return -ENOENT;
  126. return ret;
  127. }
  128. static int
  129. armpmu_map_event(u64 config)
  130. {
  131. int mapping = (*armpmu->event_map)[config];
  132. return mapping == HW_OP_UNSUPPORTED ? -EOPNOTSUPP : mapping;
  133. }
  134. static int
  135. armpmu_map_raw_event(u64 config)
  136. {
  137. return (int)(config & armpmu->raw_event_mask);
  138. }
  139. static int
  140. armpmu_event_set_period(struct perf_event *event,
  141. struct hw_perf_event *hwc,
  142. int idx)
  143. {
  144. s64 left = local64_read(&hwc->period_left);
  145. s64 period = hwc->sample_period;
  146. int ret = 0;
  147. if (unlikely(left <= -period)) {
  148. left = period;
  149. local64_set(&hwc->period_left, left);
  150. hwc->last_period = period;
  151. ret = 1;
  152. }
  153. if (unlikely(left <= 0)) {
  154. left += period;
  155. local64_set(&hwc->period_left, left);
  156. hwc->last_period = period;
  157. ret = 1;
  158. }
  159. if (left > (s64)armpmu->max_period)
  160. left = armpmu->max_period;
  161. local64_set(&hwc->prev_count, (u64)-left);
  162. armpmu->write_counter(idx, (u64)(-left) & 0xffffffff);
  163. perf_event_update_userpage(event);
  164. return ret;
  165. }
  166. static u64
  167. armpmu_event_update(struct perf_event *event,
  168. struct hw_perf_event *hwc,
  169. int idx, int overflow)
  170. {
  171. u64 delta, prev_raw_count, new_raw_count;
  172. again:
  173. prev_raw_count = local64_read(&hwc->prev_count);
  174. new_raw_count = armpmu->read_counter(idx);
  175. if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
  176. new_raw_count) != prev_raw_count)
  177. goto again;
  178. new_raw_count &= armpmu->max_period;
  179. prev_raw_count &= armpmu->max_period;
  180. if (overflow)
  181. delta = armpmu->max_period - prev_raw_count + new_raw_count + 1;
  182. else
  183. delta = new_raw_count - prev_raw_count;
  184. local64_add(delta, &event->count);
  185. local64_sub(delta, &hwc->period_left);
  186. return new_raw_count;
  187. }
  188. static void
  189. armpmu_read(struct perf_event *event)
  190. {
  191. struct hw_perf_event *hwc = &event->hw;
  192. /* Don't read disabled counters! */
  193. if (hwc->idx < 0)
  194. return;
  195. armpmu_event_update(event, hwc, hwc->idx, 0);
  196. }
  197. static void
  198. armpmu_stop(struct perf_event *event, int flags)
  199. {
  200. struct hw_perf_event *hwc = &event->hw;
  201. /*
  202. * ARM pmu always has to update the counter, so ignore
  203. * PERF_EF_UPDATE, see comments in armpmu_start().
  204. */
  205. if (!(hwc->state & PERF_HES_STOPPED)) {
  206. armpmu->disable(hwc, hwc->idx);
  207. barrier(); /* why? */
  208. armpmu_event_update(event, hwc, hwc->idx, 0);
  209. hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
  210. }
  211. }
  212. static void
  213. armpmu_start(struct perf_event *event, int flags)
  214. {
  215. struct hw_perf_event *hwc = &event->hw;
  216. /*
  217. * ARM pmu always has to reprogram the period, so ignore
  218. * PERF_EF_RELOAD, see the comment below.
  219. */
  220. if (flags & PERF_EF_RELOAD)
  221. WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
  222. hwc->state = 0;
  223. /*
  224. * Set the period again. Some counters can't be stopped, so when we
  225. * were stopped we simply disabled the IRQ source and the counter
  226. * may have been left counting. If we don't do this step then we may
  227. * get an interrupt too soon or *way* too late if the overflow has
  228. * happened since disabling.
  229. */
  230. armpmu_event_set_period(event, hwc, hwc->idx);
  231. armpmu->enable(hwc, hwc->idx);
  232. }
  233. static void
  234. armpmu_del(struct perf_event *event, int flags)
  235. {
  236. struct cpu_hw_events *cpuc = armpmu->get_hw_events();
  237. struct hw_perf_event *hwc = &event->hw;
  238. int idx = hwc->idx;
  239. WARN_ON(idx < 0);
  240. armpmu_stop(event, PERF_EF_UPDATE);
  241. cpuc->events[idx] = NULL;
  242. clear_bit(idx, cpuc->used_mask);
  243. perf_event_update_userpage(event);
  244. }
  245. static int
  246. armpmu_add(struct perf_event *event, int flags)
  247. {
  248. struct cpu_hw_events *cpuc = armpmu->get_hw_events();
  249. struct hw_perf_event *hwc = &event->hw;
  250. int idx;
  251. int err = 0;
  252. perf_pmu_disable(event->pmu);
  253. /* If we don't have a space for the counter then finish early. */
  254. idx = armpmu->get_event_idx(cpuc, hwc);
  255. if (idx < 0) {
  256. err = idx;
  257. goto out;
  258. }
  259. /*
  260. * If there is an event in the counter we are going to use then make
  261. * sure it is disabled.
  262. */
  263. event->hw.idx = idx;
  264. armpmu->disable(hwc, idx);
  265. cpuc->events[idx] = event;
  266. hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
  267. if (flags & PERF_EF_START)
  268. armpmu_start(event, PERF_EF_RELOAD);
  269. /* Propagate our changes to the userspace mapping. */
  270. perf_event_update_userpage(event);
  271. out:
  272. perf_pmu_enable(event->pmu);
  273. return err;
  274. }
  275. static struct pmu pmu;
  276. static int
  277. validate_event(struct cpu_hw_events *cpuc,
  278. struct perf_event *event)
  279. {
  280. struct hw_perf_event fake_event = event->hw;
  281. struct pmu *leader_pmu = event->group_leader->pmu;
  282. if (event->pmu != leader_pmu || event->state <= PERF_EVENT_STATE_OFF)
  283. return 1;
  284. return armpmu->get_event_idx(cpuc, &fake_event) >= 0;
  285. }
  286. static int
  287. validate_group(struct perf_event *event)
  288. {
  289. struct perf_event *sibling, *leader = event->group_leader;
  290. struct cpu_hw_events fake_pmu;
  291. memset(&fake_pmu, 0, sizeof(fake_pmu));
  292. if (!validate_event(&fake_pmu, leader))
  293. return -ENOSPC;
  294. list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
  295. if (!validate_event(&fake_pmu, sibling))
  296. return -ENOSPC;
  297. }
  298. if (!validate_event(&fake_pmu, event))
  299. return -ENOSPC;
  300. return 0;
  301. }
  302. static irqreturn_t armpmu_platform_irq(int irq, void *dev)
  303. {
  304. struct platform_device *plat_device = armpmu->plat_device;
  305. struct arm_pmu_platdata *plat = dev_get_platdata(&plat_device->dev);
  306. return plat->handle_irq(irq, dev, armpmu->handle_irq);
  307. }
  308. static void
  309. armpmu_release_hardware(void)
  310. {
  311. int i, irq, irqs;
  312. struct platform_device *pmu_device = armpmu->plat_device;
  313. irqs = min(pmu_device->num_resources, num_possible_cpus());
  314. for (i = 0; i < irqs; ++i) {
  315. if (!cpumask_test_and_clear_cpu(i, &armpmu->active_irqs))
  316. continue;
  317. irq = platform_get_irq(pmu_device, i);
  318. if (irq >= 0)
  319. free_irq(irq, NULL);
  320. }
  321. armpmu->stop();
  322. release_pmu(ARM_PMU_DEVICE_CPU);
  323. }
  324. static int
  325. armpmu_reserve_hardware(void)
  326. {
  327. struct arm_pmu_platdata *plat;
  328. irq_handler_t handle_irq;
  329. int i, err, irq, irqs;
  330. struct platform_device *pmu_device = armpmu->plat_device;
  331. err = reserve_pmu(ARM_PMU_DEVICE_CPU);
  332. if (err) {
  333. pr_warning("unable to reserve pmu\n");
  334. return err;
  335. }
  336. plat = dev_get_platdata(&pmu_device->dev);
  337. if (plat && plat->handle_irq)
  338. handle_irq = armpmu_platform_irq;
  339. else
  340. handle_irq = armpmu->handle_irq;
  341. irqs = min(pmu_device->num_resources, num_possible_cpus());
  342. if (irqs < 1) {
  343. pr_err("no irqs for PMUs defined\n");
  344. return -ENODEV;
  345. }
  346. for (i = 0; i < irqs; ++i) {
  347. err = 0;
  348. irq = platform_get_irq(pmu_device, i);
  349. if (irq < 0)
  350. continue;
  351. /*
  352. * If we have a single PMU interrupt that we can't shift,
  353. * assume that we're running on a uniprocessor machine and
  354. * continue. Otherwise, continue without this interrupt.
  355. */
  356. if (irq_set_affinity(irq, cpumask_of(i)) && irqs > 1) {
  357. pr_warning("unable to set irq affinity (irq=%d, cpu=%u)\n",
  358. irq, i);
  359. continue;
  360. }
  361. err = request_irq(irq, handle_irq,
  362. IRQF_DISABLED | IRQF_NOBALANCING,
  363. "arm-pmu", NULL);
  364. if (err) {
  365. pr_err("unable to request IRQ%d for ARM PMU counters\n",
  366. irq);
  367. armpmu_release_hardware();
  368. return err;
  369. }
  370. cpumask_set_cpu(i, &armpmu->active_irqs);
  371. }
  372. return 0;
  373. }
  374. static void
  375. hw_perf_event_destroy(struct perf_event *event)
  376. {
  377. atomic_t *active_events = &armpmu->active_events;
  378. struct mutex *pmu_reserve_mutex = &armpmu->reserve_mutex;
  379. if (atomic_dec_and_mutex_lock(active_events, pmu_reserve_mutex)) {
  380. armpmu_release_hardware();
  381. mutex_unlock(pmu_reserve_mutex);
  382. }
  383. }
  384. static int
  385. event_requires_mode_exclusion(struct perf_event_attr *attr)
  386. {
  387. return attr->exclude_idle || attr->exclude_user ||
  388. attr->exclude_kernel || attr->exclude_hv;
  389. }
  390. static int
  391. __hw_perf_event_init(struct perf_event *event)
  392. {
  393. struct hw_perf_event *hwc = &event->hw;
  394. int mapping, err;
  395. /* Decode the generic type into an ARM event identifier. */
  396. if (PERF_TYPE_HARDWARE == event->attr.type) {
  397. mapping = armpmu_map_event(event->attr.config);
  398. } else if (PERF_TYPE_HW_CACHE == event->attr.type) {
  399. mapping = armpmu_map_cache_event(event->attr.config);
  400. } else if (PERF_TYPE_RAW == event->attr.type) {
  401. mapping = armpmu_map_raw_event(event->attr.config);
  402. } else {
  403. pr_debug("event type %x not supported\n", event->attr.type);
  404. return -EOPNOTSUPP;
  405. }
  406. if (mapping < 0) {
  407. pr_debug("event %x:%llx not supported\n", event->attr.type,
  408. event->attr.config);
  409. return mapping;
  410. }
  411. /*
  412. * We don't assign an index until we actually place the event onto
  413. * hardware. Use -1 to signify that we haven't decided where to put it
  414. * yet. For SMP systems, each core has it's own PMU so we can't do any
  415. * clever allocation or constraints checking at this point.
  416. */
  417. hwc->idx = -1;
  418. hwc->config_base = 0;
  419. hwc->config = 0;
  420. hwc->event_base = 0;
  421. /*
  422. * Check whether we need to exclude the counter from certain modes.
  423. */
  424. if ((!armpmu->set_event_filter ||
  425. armpmu->set_event_filter(hwc, &event->attr)) &&
  426. event_requires_mode_exclusion(&event->attr)) {
  427. pr_debug("ARM performance counters do not support "
  428. "mode exclusion\n");
  429. return -EPERM;
  430. }
  431. /*
  432. * Store the event encoding into the config_base field.
  433. */
  434. hwc->config_base |= (unsigned long)mapping;
  435. if (!hwc->sample_period) {
  436. hwc->sample_period = armpmu->max_period;
  437. hwc->last_period = hwc->sample_period;
  438. local64_set(&hwc->period_left, hwc->sample_period);
  439. }
  440. err = 0;
  441. if (event->group_leader != event) {
  442. err = validate_group(event);
  443. if (err)
  444. return -EINVAL;
  445. }
  446. return err;
  447. }
  448. static int armpmu_event_init(struct perf_event *event)
  449. {
  450. int err = 0;
  451. atomic_t *active_events = &armpmu->active_events;
  452. switch (event->attr.type) {
  453. case PERF_TYPE_RAW:
  454. case PERF_TYPE_HARDWARE:
  455. case PERF_TYPE_HW_CACHE:
  456. break;
  457. default:
  458. return -ENOENT;
  459. }
  460. event->destroy = hw_perf_event_destroy;
  461. if (!atomic_inc_not_zero(active_events)) {
  462. mutex_lock(&armpmu->reserve_mutex);
  463. if (atomic_read(active_events) == 0)
  464. err = armpmu_reserve_hardware();
  465. if (!err)
  466. atomic_inc(active_events);
  467. mutex_unlock(&armpmu->reserve_mutex);
  468. }
  469. if (err)
  470. return err;
  471. err = __hw_perf_event_init(event);
  472. if (err)
  473. hw_perf_event_destroy(event);
  474. return err;
  475. }
  476. static void armpmu_enable(struct pmu *pmu)
  477. {
  478. /* Enable all of the perf events on hardware. */
  479. int idx, enabled = 0;
  480. struct cpu_hw_events *cpuc = armpmu->get_hw_events();
  481. for (idx = 0; idx < armpmu->num_events; ++idx) {
  482. struct perf_event *event = cpuc->events[idx];
  483. if (!event)
  484. continue;
  485. armpmu->enable(&event->hw, idx);
  486. enabled = 1;
  487. }
  488. if (enabled)
  489. armpmu->start();
  490. }
  491. static void armpmu_disable(struct pmu *pmu)
  492. {
  493. armpmu->stop();
  494. }
  495. static struct pmu pmu = {
  496. .pmu_enable = armpmu_enable,
  497. .pmu_disable = armpmu_disable,
  498. .event_init = armpmu_event_init,
  499. .add = armpmu_add,
  500. .del = armpmu_del,
  501. .start = armpmu_start,
  502. .stop = armpmu_stop,
  503. .read = armpmu_read,
  504. };
  505. static void __init armpmu_init(struct arm_pmu *armpmu)
  506. {
  507. atomic_set(&armpmu->active_events, 0);
  508. mutex_init(&armpmu->reserve_mutex);
  509. }
  510. /* Include the PMU-specific implementations. */
  511. #include "perf_event_xscale.c"
  512. #include "perf_event_v6.c"
  513. #include "perf_event_v7.c"
  514. /*
  515. * Ensure the PMU has sane values out of reset.
  516. * This requires SMP to be available, so exists as a separate initcall.
  517. */
  518. static int __init
  519. armpmu_reset(void)
  520. {
  521. if (armpmu && armpmu->reset)
  522. return on_each_cpu(armpmu->reset, NULL, 1);
  523. return 0;
  524. }
  525. arch_initcall(armpmu_reset);
  526. /*
  527. * PMU platform driver and devicetree bindings.
  528. */
  529. static struct of_device_id armpmu_of_device_ids[] = {
  530. {.compatible = "arm,cortex-a9-pmu"},
  531. {.compatible = "arm,cortex-a8-pmu"},
  532. {.compatible = "arm,arm1136-pmu"},
  533. {.compatible = "arm,arm1176-pmu"},
  534. {},
  535. };
  536. static struct platform_device_id armpmu_plat_device_ids[] = {
  537. {.name = "arm-pmu"},
  538. {},
  539. };
  540. static int __devinit armpmu_device_probe(struct platform_device *pdev)
  541. {
  542. armpmu->plat_device = pdev;
  543. return 0;
  544. }
  545. static struct platform_driver armpmu_driver = {
  546. .driver = {
  547. .name = "arm-pmu",
  548. .of_match_table = armpmu_of_device_ids,
  549. },
  550. .probe = armpmu_device_probe,
  551. .id_table = armpmu_plat_device_ids,
  552. };
  553. static int __init register_pmu_driver(void)
  554. {
  555. return platform_driver_register(&armpmu_driver);
  556. }
  557. device_initcall(register_pmu_driver);
  558. static struct cpu_hw_events *armpmu_get_cpu_events(void)
  559. {
  560. return &__get_cpu_var(cpu_hw_events);
  561. }
  562. static void __init cpu_pmu_init(struct arm_pmu *armpmu)
  563. {
  564. armpmu->get_hw_events = armpmu_get_cpu_events;
  565. }
  566. /*
  567. * CPU PMU identification and registration.
  568. */
  569. static int __init
  570. init_hw_perf_events(void)
  571. {
  572. unsigned long cpuid = read_cpuid_id();
  573. unsigned long implementor = (cpuid & 0xFF000000) >> 24;
  574. unsigned long part_number = (cpuid & 0xFFF0);
  575. /* ARM Ltd CPUs. */
  576. if (0x41 == implementor) {
  577. switch (part_number) {
  578. case 0xB360: /* ARM1136 */
  579. case 0xB560: /* ARM1156 */
  580. case 0xB760: /* ARM1176 */
  581. armpmu = armv6pmu_init();
  582. break;
  583. case 0xB020: /* ARM11mpcore */
  584. armpmu = armv6mpcore_pmu_init();
  585. break;
  586. case 0xC080: /* Cortex-A8 */
  587. armpmu = armv7_a8_pmu_init();
  588. break;
  589. case 0xC090: /* Cortex-A9 */
  590. armpmu = armv7_a9_pmu_init();
  591. break;
  592. case 0xC050: /* Cortex-A5 */
  593. armpmu = armv7_a5_pmu_init();
  594. break;
  595. case 0xC0F0: /* Cortex-A15 */
  596. armpmu = armv7_a15_pmu_init();
  597. break;
  598. }
  599. /* Intel CPUs [xscale]. */
  600. } else if (0x69 == implementor) {
  601. part_number = (cpuid >> 13) & 0x7;
  602. switch (part_number) {
  603. case 1:
  604. armpmu = xscale1pmu_init();
  605. break;
  606. case 2:
  607. armpmu = xscale2pmu_init();
  608. break;
  609. }
  610. }
  611. if (armpmu) {
  612. pr_info("enabled with %s PMU driver, %d counters available\n",
  613. armpmu->name, armpmu->num_events);
  614. cpu_pmu_init(armpmu);
  615. armpmu_init(armpmu);
  616. perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
  617. } else {
  618. pr_info("no hardware support available\n");
  619. }
  620. return 0;
  621. }
  622. early_initcall(init_hw_perf_events);
  623. /*
  624. * Callchain handling code.
  625. */
  626. /*
  627. * The registers we're interested in are at the end of the variable
  628. * length saved register structure. The fp points at the end of this
  629. * structure so the address of this struct is:
  630. * (struct frame_tail *)(xxx->fp)-1
  631. *
  632. * This code has been adapted from the ARM OProfile support.
  633. */
  634. struct frame_tail {
  635. struct frame_tail __user *fp;
  636. unsigned long sp;
  637. unsigned long lr;
  638. } __attribute__((packed));
  639. /*
  640. * Get the return address for a single stackframe and return a pointer to the
  641. * next frame tail.
  642. */
  643. static struct frame_tail __user *
  644. user_backtrace(struct frame_tail __user *tail,
  645. struct perf_callchain_entry *entry)
  646. {
  647. struct frame_tail buftail;
  648. /* Also check accessibility of one struct frame_tail beyond */
  649. if (!access_ok(VERIFY_READ, tail, sizeof(buftail)))
  650. return NULL;
  651. if (__copy_from_user_inatomic(&buftail, tail, sizeof(buftail)))
  652. return NULL;
  653. perf_callchain_store(entry, buftail.lr);
  654. /*
  655. * Frame pointers should strictly progress back up the stack
  656. * (towards higher addresses).
  657. */
  658. if (tail + 1 >= buftail.fp)
  659. return NULL;
  660. return buftail.fp - 1;
  661. }
  662. void
  663. perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
  664. {
  665. struct frame_tail __user *tail;
  666. tail = (struct frame_tail __user *)regs->ARM_fp - 1;
  667. while ((entry->nr < PERF_MAX_STACK_DEPTH) &&
  668. tail && !((unsigned long)tail & 0x3))
  669. tail = user_backtrace(tail, entry);
  670. }
  671. /*
  672. * Gets called by walk_stackframe() for every stackframe. This will be called
  673. * whist unwinding the stackframe and is like a subroutine return so we use
  674. * the PC.
  675. */
  676. static int
  677. callchain_trace(struct stackframe *fr,
  678. void *data)
  679. {
  680. struct perf_callchain_entry *entry = data;
  681. perf_callchain_store(entry, fr->pc);
  682. return 0;
  683. }
  684. void
  685. perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
  686. {
  687. struct stackframe fr;
  688. fr.fp = regs->ARM_fp;
  689. fr.sp = regs->ARM_sp;
  690. fr.lr = regs->ARM_lr;
  691. fr.pc = regs->ARM_pc;
  692. walk_stackframe(&fr, callchain_trace, entry);
  693. }