rt2x00dev.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011
  1. /*
  2. Copyright (C) 2004 - 2009 rt2x00 SourceForge Project
  3. <http://rt2x00.serialmonkey.com>
  4. This program is free software; you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation; either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program; if not, write to the
  14. Free Software Foundation, Inc.,
  15. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  16. */
  17. /*
  18. Module: rt2x00lib
  19. Abstract: rt2x00 generic device routines.
  20. */
  21. #include <linux/kernel.h>
  22. #include <linux/module.h>
  23. #include "rt2x00.h"
  24. #include "rt2x00lib.h"
  25. /*
  26. * Radio control handlers.
  27. */
  28. int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
  29. {
  30. int status;
  31. /*
  32. * Don't enable the radio twice.
  33. * And check if the hardware button has been disabled.
  34. */
  35. if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  36. return 0;
  37. /*
  38. * Initialize all data queues.
  39. */
  40. rt2x00queue_init_queues(rt2x00dev);
  41. /*
  42. * Enable radio.
  43. */
  44. status =
  45. rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
  46. if (status)
  47. return status;
  48. rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
  49. rt2x00leds_led_radio(rt2x00dev, true);
  50. rt2x00led_led_activity(rt2x00dev, true);
  51. set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
  52. /*
  53. * Enable RX.
  54. */
  55. rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
  56. /*
  57. * Start the TX queues.
  58. */
  59. ieee80211_wake_queues(rt2x00dev->hw);
  60. return 0;
  61. }
  62. void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
  63. {
  64. if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  65. return;
  66. /*
  67. * Stop the TX queues in mac80211.
  68. */
  69. ieee80211_stop_queues(rt2x00dev->hw);
  70. rt2x00queue_stop_queues(rt2x00dev);
  71. /*
  72. * Disable RX.
  73. */
  74. rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
  75. /*
  76. * Disable radio.
  77. */
  78. rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
  79. rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
  80. rt2x00led_led_activity(rt2x00dev, false);
  81. rt2x00leds_led_radio(rt2x00dev, false);
  82. }
  83. void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
  84. {
  85. /*
  86. * When we are disabling the RX, we should also stop the link tuner.
  87. */
  88. if (state == STATE_RADIO_RX_OFF)
  89. rt2x00link_stop_tuner(rt2x00dev);
  90. rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
  91. /*
  92. * When we are enabling the RX, we should also start the link tuner.
  93. */
  94. if (state == STATE_RADIO_RX_ON)
  95. rt2x00link_start_tuner(rt2x00dev);
  96. }
  97. static void rt2x00lib_packetfilter_scheduled(struct work_struct *work)
  98. {
  99. struct rt2x00_dev *rt2x00dev =
  100. container_of(work, struct rt2x00_dev, filter_work);
  101. rt2x00dev->ops->lib->config_filter(rt2x00dev, rt2x00dev->packet_filter);
  102. }
  103. static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
  104. struct ieee80211_vif *vif)
  105. {
  106. struct rt2x00_dev *rt2x00dev = data;
  107. struct rt2x00_intf *intf = vif_to_intf(vif);
  108. struct ieee80211_bss_conf conf;
  109. int delayed_flags;
  110. /*
  111. * Copy all data we need during this action under the protection
  112. * of a spinlock. Otherwise race conditions might occur which results
  113. * into an invalid configuration.
  114. */
  115. spin_lock(&intf->lock);
  116. memcpy(&conf, &vif->bss_conf, sizeof(conf));
  117. delayed_flags = intf->delayed_flags;
  118. intf->delayed_flags = 0;
  119. spin_unlock(&intf->lock);
  120. /*
  121. * It is possible the radio was disabled while the work had been
  122. * scheduled. If that happens we should return here immediately,
  123. * note that in the spinlock protected area above the delayed_flags
  124. * have been cleared correctly.
  125. */
  126. if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  127. return;
  128. if (delayed_flags & DELAYED_UPDATE_BEACON)
  129. rt2x00queue_update_beacon(rt2x00dev, vif, true);
  130. if (delayed_flags & DELAYED_CONFIG_ERP)
  131. rt2x00lib_config_erp(rt2x00dev, intf, &conf);
  132. if (delayed_flags & DELAYED_LED_ASSOC)
  133. rt2x00leds_led_assoc(rt2x00dev, !!rt2x00dev->intf_associated);
  134. }
  135. static void rt2x00lib_intf_scheduled(struct work_struct *work)
  136. {
  137. struct rt2x00_dev *rt2x00dev =
  138. container_of(work, struct rt2x00_dev, intf_work);
  139. /*
  140. * Iterate over each interface and perform the
  141. * requested configurations.
  142. */
  143. ieee80211_iterate_active_interfaces(rt2x00dev->hw,
  144. rt2x00lib_intf_scheduled_iter,
  145. rt2x00dev);
  146. }
  147. /*
  148. * Interrupt context handlers.
  149. */
  150. static void rt2x00lib_beacondone_iter(void *data, u8 *mac,
  151. struct ieee80211_vif *vif)
  152. {
  153. struct rt2x00_intf *intf = vif_to_intf(vif);
  154. if (vif->type != NL80211_IFTYPE_AP &&
  155. vif->type != NL80211_IFTYPE_ADHOC &&
  156. vif->type != NL80211_IFTYPE_MESH_POINT &&
  157. vif->type != NL80211_IFTYPE_WDS)
  158. return;
  159. spin_lock(&intf->lock);
  160. intf->delayed_flags |= DELAYED_UPDATE_BEACON;
  161. spin_unlock(&intf->lock);
  162. }
  163. void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
  164. {
  165. if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  166. return;
  167. ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
  168. rt2x00lib_beacondone_iter,
  169. rt2x00dev);
  170. ieee80211_queue_work(rt2x00dev->hw, &rt2x00dev->intf_work);
  171. }
  172. EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
  173. void rt2x00lib_txdone(struct queue_entry *entry,
  174. struct txdone_entry_desc *txdesc)
  175. {
  176. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  177. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
  178. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  179. enum data_queue_qid qid = skb_get_queue_mapping(entry->skb);
  180. unsigned int header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
  181. u8 rate_idx, rate_flags, retry_rates;
  182. unsigned int i;
  183. /*
  184. * Unmap the skb.
  185. */
  186. rt2x00queue_unmap_skb(rt2x00dev, entry->skb);
  187. /*
  188. * Remove L2 padding which was added during
  189. */
  190. if (test_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags))
  191. rt2x00queue_payload_align(entry->skb, true, header_length);
  192. /*
  193. * If the IV/EIV data was stripped from the frame before it was
  194. * passed to the hardware, we should now reinsert it again because
  195. * mac80211 will expect the the same data to be present it the
  196. * frame as it was passed to us.
  197. */
  198. if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags))
  199. rt2x00crypto_tx_insert_iv(entry->skb, header_length);
  200. /*
  201. * Send frame to debugfs immediately, after this call is completed
  202. * we are going to overwrite the skb->cb array.
  203. */
  204. rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
  205. /*
  206. * Update TX statistics.
  207. */
  208. rt2x00dev->link.qual.tx_success +=
  209. test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
  210. test_bit(TXDONE_UNKNOWN, &txdesc->flags);
  211. rt2x00dev->link.qual.tx_failed +=
  212. test_bit(TXDONE_FAILURE, &txdesc->flags);
  213. rate_idx = skbdesc->tx_rate_idx;
  214. rate_flags = skbdesc->tx_rate_flags;
  215. retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ?
  216. (txdesc->retry + 1) : 1;
  217. /*
  218. * Initialize TX status
  219. */
  220. memset(&tx_info->status, 0, sizeof(tx_info->status));
  221. tx_info->status.ack_signal = 0;
  222. /*
  223. * Frame was send with retries, hardware tried
  224. * different rates to send out the frame, at each
  225. * retry it lowered the rate 1 step.
  226. */
  227. for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) {
  228. tx_info->status.rates[i].idx = rate_idx - i;
  229. tx_info->status.rates[i].flags = rate_flags;
  230. tx_info->status.rates[i].count = 1;
  231. }
  232. if (i < (IEEE80211_TX_MAX_RATES -1))
  233. tx_info->status.rates[i].idx = -1; /* terminate */
  234. if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
  235. if (test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
  236. test_bit(TXDONE_UNKNOWN, &txdesc->flags))
  237. tx_info->flags |= IEEE80211_TX_STAT_ACK;
  238. else if (test_bit(TXDONE_FAILURE, &txdesc->flags))
  239. rt2x00dev->low_level_stats.dot11ACKFailureCount++;
  240. }
  241. if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
  242. if (test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
  243. test_bit(TXDONE_UNKNOWN, &txdesc->flags))
  244. rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
  245. else if (test_bit(TXDONE_FAILURE, &txdesc->flags))
  246. rt2x00dev->low_level_stats.dot11RTSFailureCount++;
  247. }
  248. /*
  249. * Only send the status report to mac80211 when TX status was
  250. * requested by it. If this was a extra frame coming through
  251. * a mac80211 library call (RTS/CTS) then we should not send the
  252. * status report back.
  253. */
  254. if (tx_info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS)
  255. ieee80211_tx_status_irqsafe(rt2x00dev->hw, entry->skb);
  256. else
  257. dev_kfree_skb_irq(entry->skb);
  258. /*
  259. * Make this entry available for reuse.
  260. */
  261. entry->skb = NULL;
  262. entry->flags = 0;
  263. rt2x00dev->ops->lib->clear_entry(entry);
  264. clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
  265. rt2x00queue_index_inc(entry->queue, Q_INDEX_DONE);
  266. /*
  267. * If the data queue was below the threshold before the txdone
  268. * handler we must make sure the packet queue in the mac80211 stack
  269. * is reenabled when the txdone handler has finished.
  270. */
  271. if (!rt2x00queue_threshold(entry->queue))
  272. ieee80211_wake_queue(rt2x00dev->hw, qid);
  273. }
  274. EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
  275. static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
  276. struct rxdone_entry_desc *rxdesc)
  277. {
  278. struct ieee80211_supported_band *sband;
  279. const struct rt2x00_rate *rate;
  280. unsigned int i;
  281. int signal;
  282. int type;
  283. /*
  284. * For non-HT rates the MCS value needs to contain the
  285. * actually used rate modulation (CCK or OFDM).
  286. */
  287. if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
  288. signal = RATE_MCS(rxdesc->rate_mode, rxdesc->signal);
  289. else
  290. signal = rxdesc->signal;
  291. type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
  292. sband = &rt2x00dev->bands[rt2x00dev->curr_band];
  293. for (i = 0; i < sband->n_bitrates; i++) {
  294. rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
  295. if (((type == RXDONE_SIGNAL_PLCP) &&
  296. (rate->plcp == signal)) ||
  297. ((type == RXDONE_SIGNAL_BITRATE) &&
  298. (rate->bitrate == signal)) ||
  299. ((type == RXDONE_SIGNAL_MCS) &&
  300. (rate->mcs == signal))) {
  301. return i;
  302. }
  303. }
  304. WARNING(rt2x00dev, "Frame received with unrecognized signal, "
  305. "signal=0x%.4x, type=%d.\n", signal, type);
  306. return 0;
  307. }
  308. void rt2x00lib_rxdone(struct rt2x00_dev *rt2x00dev,
  309. struct queue_entry *entry)
  310. {
  311. struct rxdone_entry_desc rxdesc;
  312. struct sk_buff *skb;
  313. struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
  314. unsigned int header_length;
  315. bool l2pad;
  316. int rate_idx;
  317. /*
  318. * Allocate a new sk_buffer. If no new buffer available, drop the
  319. * received frame and reuse the existing buffer.
  320. */
  321. skb = rt2x00queue_alloc_rxskb(rt2x00dev, entry);
  322. if (!skb)
  323. return;
  324. /*
  325. * Unmap the skb.
  326. */
  327. rt2x00queue_unmap_skb(rt2x00dev, entry->skb);
  328. /*
  329. * Extract the RXD details.
  330. */
  331. memset(&rxdesc, 0, sizeof(rxdesc));
  332. rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
  333. /* Trim buffer to correct size */
  334. skb_trim(entry->skb, rxdesc.size);
  335. /*
  336. * The data behind the ieee80211 header must be
  337. * aligned on a 4 byte boundary.
  338. */
  339. header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
  340. l2pad = !!(rxdesc.dev_flags & RXDONE_L2PAD);
  341. /*
  342. * Hardware might have stripped the IV/EIV/ICV data,
  343. * in that case it is possible that the data was
  344. * provided seperately (through hardware descriptor)
  345. * in which case we should reinsert the data into the frame.
  346. */
  347. if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
  348. (rxdesc.flags & RX_FLAG_IV_STRIPPED))
  349. rt2x00crypto_rx_insert_iv(entry->skb, l2pad, header_length,
  350. &rxdesc);
  351. else
  352. rt2x00queue_payload_align(entry->skb, l2pad, header_length);
  353. /*
  354. * Check if the frame was received using HT. In that case,
  355. * the rate is the MCS index and should be passed to mac80211
  356. * directly. Otherwise we need to translate the signal to
  357. * the correct bitrate index.
  358. */
  359. if (rxdesc.rate_mode == RATE_MODE_CCK ||
  360. rxdesc.rate_mode == RATE_MODE_OFDM) {
  361. rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
  362. } else {
  363. rxdesc.flags |= RX_FLAG_HT;
  364. rate_idx = rxdesc.signal;
  365. }
  366. /*
  367. * Update extra components
  368. */
  369. rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
  370. rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
  371. rx_status->mactime = rxdesc.timestamp;
  372. rx_status->rate_idx = rate_idx;
  373. rx_status->qual = rt2x00link_calculate_signal(rt2x00dev, rxdesc.rssi);
  374. rx_status->signal = rxdesc.rssi;
  375. rx_status->noise = rxdesc.noise;
  376. rx_status->flag = rxdesc.flags;
  377. rx_status->antenna = rt2x00dev->link.ant.active.rx;
  378. /*
  379. * Send frame to mac80211 & debugfs.
  380. * mac80211 will clean up the skb structure.
  381. */
  382. rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
  383. memcpy(IEEE80211_SKB_RXCB(entry->skb), rx_status, sizeof(*rx_status));
  384. ieee80211_rx_irqsafe(rt2x00dev->hw, entry->skb);
  385. /*
  386. * Replace the skb with the freshly allocated one.
  387. */
  388. entry->skb = skb;
  389. entry->flags = 0;
  390. rt2x00dev->ops->lib->clear_entry(entry);
  391. rt2x00queue_index_inc(entry->queue, Q_INDEX);
  392. }
  393. EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
  394. /*
  395. * Driver initialization handlers.
  396. */
  397. const struct rt2x00_rate rt2x00_supported_rates[12] = {
  398. {
  399. .flags = DEV_RATE_CCK,
  400. .bitrate = 10,
  401. .ratemask = BIT(0),
  402. .plcp = 0x00,
  403. .mcs = RATE_MCS(RATE_MODE_CCK, 0),
  404. },
  405. {
  406. .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
  407. .bitrate = 20,
  408. .ratemask = BIT(1),
  409. .plcp = 0x01,
  410. .mcs = RATE_MCS(RATE_MODE_CCK, 1),
  411. },
  412. {
  413. .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
  414. .bitrate = 55,
  415. .ratemask = BIT(2),
  416. .plcp = 0x02,
  417. .mcs = RATE_MCS(RATE_MODE_CCK, 2),
  418. },
  419. {
  420. .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
  421. .bitrate = 110,
  422. .ratemask = BIT(3),
  423. .plcp = 0x03,
  424. .mcs = RATE_MCS(RATE_MODE_CCK, 3),
  425. },
  426. {
  427. .flags = DEV_RATE_OFDM,
  428. .bitrate = 60,
  429. .ratemask = BIT(4),
  430. .plcp = 0x0b,
  431. .mcs = RATE_MCS(RATE_MODE_OFDM, 0),
  432. },
  433. {
  434. .flags = DEV_RATE_OFDM,
  435. .bitrate = 90,
  436. .ratemask = BIT(5),
  437. .plcp = 0x0f,
  438. .mcs = RATE_MCS(RATE_MODE_OFDM, 1),
  439. },
  440. {
  441. .flags = DEV_RATE_OFDM,
  442. .bitrate = 120,
  443. .ratemask = BIT(6),
  444. .plcp = 0x0a,
  445. .mcs = RATE_MCS(RATE_MODE_OFDM, 2),
  446. },
  447. {
  448. .flags = DEV_RATE_OFDM,
  449. .bitrate = 180,
  450. .ratemask = BIT(7),
  451. .plcp = 0x0e,
  452. .mcs = RATE_MCS(RATE_MODE_OFDM, 3),
  453. },
  454. {
  455. .flags = DEV_RATE_OFDM,
  456. .bitrate = 240,
  457. .ratemask = BIT(8),
  458. .plcp = 0x09,
  459. .mcs = RATE_MCS(RATE_MODE_OFDM, 4),
  460. },
  461. {
  462. .flags = DEV_RATE_OFDM,
  463. .bitrate = 360,
  464. .ratemask = BIT(9),
  465. .plcp = 0x0d,
  466. .mcs = RATE_MCS(RATE_MODE_OFDM, 5),
  467. },
  468. {
  469. .flags = DEV_RATE_OFDM,
  470. .bitrate = 480,
  471. .ratemask = BIT(10),
  472. .plcp = 0x08,
  473. .mcs = RATE_MCS(RATE_MODE_OFDM, 6),
  474. },
  475. {
  476. .flags = DEV_RATE_OFDM,
  477. .bitrate = 540,
  478. .ratemask = BIT(11),
  479. .plcp = 0x0c,
  480. .mcs = RATE_MCS(RATE_MODE_OFDM, 7),
  481. },
  482. };
  483. static void rt2x00lib_channel(struct ieee80211_channel *entry,
  484. const int channel, const int tx_power,
  485. const int value)
  486. {
  487. entry->center_freq = ieee80211_channel_to_frequency(channel);
  488. entry->hw_value = value;
  489. entry->max_power = tx_power;
  490. entry->max_antenna_gain = 0xff;
  491. }
  492. static void rt2x00lib_rate(struct ieee80211_rate *entry,
  493. const u16 index, const struct rt2x00_rate *rate)
  494. {
  495. entry->flags = 0;
  496. entry->bitrate = rate->bitrate;
  497. entry->hw_value =index;
  498. entry->hw_value_short = index;
  499. if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
  500. entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
  501. }
  502. static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
  503. struct hw_mode_spec *spec)
  504. {
  505. struct ieee80211_hw *hw = rt2x00dev->hw;
  506. struct ieee80211_channel *channels;
  507. struct ieee80211_rate *rates;
  508. unsigned int num_rates;
  509. unsigned int i;
  510. num_rates = 0;
  511. if (spec->supported_rates & SUPPORT_RATE_CCK)
  512. num_rates += 4;
  513. if (spec->supported_rates & SUPPORT_RATE_OFDM)
  514. num_rates += 8;
  515. channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
  516. if (!channels)
  517. return -ENOMEM;
  518. rates = kzalloc(sizeof(*rates) * num_rates, GFP_KERNEL);
  519. if (!rates)
  520. goto exit_free_channels;
  521. /*
  522. * Initialize Rate list.
  523. */
  524. for (i = 0; i < num_rates; i++)
  525. rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
  526. /*
  527. * Initialize Channel list.
  528. */
  529. for (i = 0; i < spec->num_channels; i++) {
  530. rt2x00lib_channel(&channels[i],
  531. spec->channels[i].channel,
  532. spec->channels_info[i].tx_power1, i);
  533. }
  534. /*
  535. * Intitialize 802.11b, 802.11g
  536. * Rates: CCK, OFDM.
  537. * Channels: 2.4 GHz
  538. */
  539. if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
  540. rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
  541. rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
  542. rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
  543. rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
  544. hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
  545. &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
  546. memcpy(&rt2x00dev->bands[IEEE80211_BAND_2GHZ].ht_cap,
  547. &spec->ht, sizeof(spec->ht));
  548. }
  549. /*
  550. * Intitialize 802.11a
  551. * Rates: OFDM.
  552. * Channels: OFDM, UNII, HiperLAN2.
  553. */
  554. if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
  555. rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
  556. spec->num_channels - 14;
  557. rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
  558. num_rates - 4;
  559. rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
  560. rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
  561. hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
  562. &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
  563. memcpy(&rt2x00dev->bands[IEEE80211_BAND_5GHZ].ht_cap,
  564. &spec->ht, sizeof(spec->ht));
  565. }
  566. return 0;
  567. exit_free_channels:
  568. kfree(channels);
  569. ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
  570. return -ENOMEM;
  571. }
  572. static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
  573. {
  574. if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
  575. ieee80211_unregister_hw(rt2x00dev->hw);
  576. if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
  577. kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
  578. kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
  579. rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
  580. rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
  581. }
  582. kfree(rt2x00dev->spec.channels_info);
  583. }
  584. static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
  585. {
  586. struct hw_mode_spec *spec = &rt2x00dev->spec;
  587. int status;
  588. if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
  589. return 0;
  590. /*
  591. * Initialize HW modes.
  592. */
  593. status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
  594. if (status)
  595. return status;
  596. /*
  597. * Initialize HW fields.
  598. */
  599. rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
  600. /*
  601. * Register HW.
  602. */
  603. status = ieee80211_register_hw(rt2x00dev->hw);
  604. if (status)
  605. return status;
  606. set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
  607. return 0;
  608. }
  609. /*
  610. * Initialization/uninitialization handlers.
  611. */
  612. static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
  613. {
  614. if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
  615. return;
  616. /*
  617. * Unregister extra components.
  618. */
  619. rt2x00rfkill_unregister(rt2x00dev);
  620. /*
  621. * Allow the HW to uninitialize.
  622. */
  623. rt2x00dev->ops->lib->uninitialize(rt2x00dev);
  624. /*
  625. * Free allocated queue entries.
  626. */
  627. rt2x00queue_uninitialize(rt2x00dev);
  628. }
  629. static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
  630. {
  631. int status;
  632. if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
  633. return 0;
  634. /*
  635. * Allocate all queue entries.
  636. */
  637. status = rt2x00queue_initialize(rt2x00dev);
  638. if (status)
  639. return status;
  640. /*
  641. * Initialize the device.
  642. */
  643. status = rt2x00dev->ops->lib->initialize(rt2x00dev);
  644. if (status) {
  645. rt2x00queue_uninitialize(rt2x00dev);
  646. return status;
  647. }
  648. set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
  649. /*
  650. * Register the extra components.
  651. */
  652. rt2x00rfkill_register(rt2x00dev);
  653. return 0;
  654. }
  655. int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
  656. {
  657. int retval;
  658. if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
  659. return 0;
  660. /*
  661. * If this is the first interface which is added,
  662. * we should load the firmware now.
  663. */
  664. retval = rt2x00lib_load_firmware(rt2x00dev);
  665. if (retval)
  666. return retval;
  667. /*
  668. * Initialize the device.
  669. */
  670. retval = rt2x00lib_initialize(rt2x00dev);
  671. if (retval)
  672. return retval;
  673. rt2x00dev->intf_ap_count = 0;
  674. rt2x00dev->intf_sta_count = 0;
  675. rt2x00dev->intf_associated = 0;
  676. /* Enable the radio */
  677. retval = rt2x00lib_enable_radio(rt2x00dev);
  678. if (retval) {
  679. rt2x00queue_uninitialize(rt2x00dev);
  680. return retval;
  681. }
  682. set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
  683. return 0;
  684. }
  685. void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
  686. {
  687. if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
  688. return;
  689. /*
  690. * Perhaps we can add something smarter here,
  691. * but for now just disabling the radio should do.
  692. */
  693. rt2x00lib_disable_radio(rt2x00dev);
  694. rt2x00dev->intf_ap_count = 0;
  695. rt2x00dev->intf_sta_count = 0;
  696. rt2x00dev->intf_associated = 0;
  697. }
  698. /*
  699. * driver allocation handlers.
  700. */
  701. int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
  702. {
  703. int retval = -ENOMEM;
  704. mutex_init(&rt2x00dev->csr_mutex);
  705. /*
  706. * Make room for rt2x00_intf inside the per-interface
  707. * structure ieee80211_vif.
  708. */
  709. rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
  710. /*
  711. * Determine which operating modes are supported, all modes
  712. * which require beaconing, depend on the availability of
  713. * beacon entries.
  714. */
  715. rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
  716. if (rt2x00dev->ops->bcn->entry_num > 0)
  717. rt2x00dev->hw->wiphy->interface_modes |=
  718. BIT(NL80211_IFTYPE_ADHOC) |
  719. BIT(NL80211_IFTYPE_AP) |
  720. BIT(NL80211_IFTYPE_MESH_POINT) |
  721. BIT(NL80211_IFTYPE_WDS);
  722. /*
  723. * Let the driver probe the device to detect the capabilities.
  724. */
  725. retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
  726. if (retval) {
  727. ERROR(rt2x00dev, "Failed to allocate device.\n");
  728. goto exit;
  729. }
  730. /*
  731. * Initialize configuration work.
  732. */
  733. INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
  734. INIT_WORK(&rt2x00dev->filter_work, rt2x00lib_packetfilter_scheduled);
  735. /*
  736. * Allocate queue array.
  737. */
  738. retval = rt2x00queue_allocate(rt2x00dev);
  739. if (retval)
  740. goto exit;
  741. /*
  742. * Initialize ieee80211 structure.
  743. */
  744. retval = rt2x00lib_probe_hw(rt2x00dev);
  745. if (retval) {
  746. ERROR(rt2x00dev, "Failed to initialize hw.\n");
  747. goto exit;
  748. }
  749. /*
  750. * Register extra components.
  751. */
  752. rt2x00link_register(rt2x00dev);
  753. rt2x00leds_register(rt2x00dev);
  754. rt2x00debug_register(rt2x00dev);
  755. set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
  756. return 0;
  757. exit:
  758. rt2x00lib_remove_dev(rt2x00dev);
  759. return retval;
  760. }
  761. EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
  762. void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
  763. {
  764. clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
  765. /*
  766. * Disable radio.
  767. */
  768. rt2x00lib_disable_radio(rt2x00dev);
  769. /*
  770. * Stop all work.
  771. */
  772. cancel_work_sync(&rt2x00dev->filter_work);
  773. cancel_work_sync(&rt2x00dev->intf_work);
  774. /*
  775. * Uninitialize device.
  776. */
  777. rt2x00lib_uninitialize(rt2x00dev);
  778. /*
  779. * Free extra components
  780. */
  781. rt2x00debug_deregister(rt2x00dev);
  782. rt2x00leds_unregister(rt2x00dev);
  783. /*
  784. * Free ieee80211_hw memory.
  785. */
  786. rt2x00lib_remove_hw(rt2x00dev);
  787. /*
  788. * Free firmware image.
  789. */
  790. rt2x00lib_free_firmware(rt2x00dev);
  791. /*
  792. * Free queue structures.
  793. */
  794. rt2x00queue_free(rt2x00dev);
  795. }
  796. EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
  797. /*
  798. * Device state handlers
  799. */
  800. #ifdef CONFIG_PM
  801. int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
  802. {
  803. NOTICE(rt2x00dev, "Going to sleep.\n");
  804. /*
  805. * Prevent mac80211 from accessing driver while suspended.
  806. */
  807. if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
  808. return 0;
  809. /*
  810. * Cleanup as much as possible.
  811. */
  812. rt2x00lib_uninitialize(rt2x00dev);
  813. /*
  814. * Suspend/disable extra components.
  815. */
  816. rt2x00leds_suspend(rt2x00dev);
  817. rt2x00debug_deregister(rt2x00dev);
  818. /*
  819. * Set device mode to sleep for power management,
  820. * on some hardware this call seems to consistently fail.
  821. * From the specifications it is hard to tell why it fails,
  822. * and if this is a "bad thing".
  823. * Overall it is safe to just ignore the failure and
  824. * continue suspending. The only downside is that the
  825. * device will not be in optimal power save mode, but with
  826. * the radio and the other components already disabled the
  827. * device is as good as disabled.
  828. */
  829. if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
  830. WARNING(rt2x00dev, "Device failed to enter sleep state, "
  831. "continue suspending.\n");
  832. return 0;
  833. }
  834. EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
  835. int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
  836. {
  837. NOTICE(rt2x00dev, "Waking up.\n");
  838. /*
  839. * Restore/enable extra components.
  840. */
  841. rt2x00debug_register(rt2x00dev);
  842. rt2x00leds_resume(rt2x00dev);
  843. /*
  844. * We are ready again to receive requests from mac80211.
  845. */
  846. set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
  847. return 0;
  848. }
  849. EXPORT_SYMBOL_GPL(rt2x00lib_resume);
  850. #endif /* CONFIG_PM */
  851. /*
  852. * rt2x00lib module information.
  853. */
  854. MODULE_AUTHOR(DRV_PROJECT);
  855. MODULE_VERSION(DRV_VERSION);
  856. MODULE_DESCRIPTION("rt2x00 library");
  857. MODULE_LICENSE("GPL");