dm.c 36 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776
  1. /*
  2. * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
  3. * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
  4. *
  5. * This file is released under the GPL.
  6. */
  7. #include "dm.h"
  8. #include "dm-bio-list.h"
  9. #include "dm-uevent.h"
  10. #include <linux/init.h>
  11. #include <linux/module.h>
  12. #include <linux/mutex.h>
  13. #include <linux/moduleparam.h>
  14. #include <linux/blkpg.h>
  15. #include <linux/bio.h>
  16. #include <linux/buffer_head.h>
  17. #include <linux/mempool.h>
  18. #include <linux/slab.h>
  19. #include <linux/idr.h>
  20. #include <linux/hdreg.h>
  21. #include <linux/blktrace_api.h>
  22. #include <trace/block.h>
  23. #define DM_MSG_PREFIX "core"
  24. static const char *_name = DM_NAME;
  25. static unsigned int major = 0;
  26. static unsigned int _major = 0;
  27. static DEFINE_SPINLOCK(_minor_lock);
  28. /*
  29. * For bio-based dm.
  30. * One of these is allocated per bio.
  31. */
  32. struct dm_io {
  33. struct mapped_device *md;
  34. int error;
  35. atomic_t io_count;
  36. struct bio *bio;
  37. unsigned long start_time;
  38. };
  39. /*
  40. * For bio-based dm.
  41. * One of these is allocated per target within a bio. Hopefully
  42. * this will be simplified out one day.
  43. */
  44. struct dm_target_io {
  45. struct dm_io *io;
  46. struct dm_target *ti;
  47. union map_info info;
  48. };
  49. DEFINE_TRACE(block_bio_complete);
  50. /*
  51. * For request-based dm.
  52. * One of these is allocated per request.
  53. */
  54. struct dm_rq_target_io {
  55. struct mapped_device *md;
  56. struct dm_target *ti;
  57. struct request *orig, clone;
  58. int error;
  59. union map_info info;
  60. };
  61. /*
  62. * For request-based dm.
  63. * One of these is allocated per bio.
  64. */
  65. struct dm_rq_clone_bio_info {
  66. struct bio *orig;
  67. struct request *rq;
  68. };
  69. union map_info *dm_get_mapinfo(struct bio *bio)
  70. {
  71. if (bio && bio->bi_private)
  72. return &((struct dm_target_io *)bio->bi_private)->info;
  73. return NULL;
  74. }
  75. #define MINOR_ALLOCED ((void *)-1)
  76. /*
  77. * Bits for the md->flags field.
  78. */
  79. #define DMF_BLOCK_IO_FOR_SUSPEND 0
  80. #define DMF_SUSPENDED 1
  81. #define DMF_FROZEN 2
  82. #define DMF_FREEING 3
  83. #define DMF_DELETING 4
  84. #define DMF_NOFLUSH_SUSPENDING 5
  85. #define DMF_QUEUE_IO_TO_THREAD 6
  86. /*
  87. * Work processed by per-device workqueue.
  88. */
  89. struct mapped_device {
  90. struct rw_semaphore io_lock;
  91. struct mutex suspend_lock;
  92. rwlock_t map_lock;
  93. atomic_t holders;
  94. atomic_t open_count;
  95. unsigned long flags;
  96. struct request_queue *queue;
  97. struct gendisk *disk;
  98. char name[16];
  99. void *interface_ptr;
  100. /*
  101. * A list of ios that arrived while we were suspended.
  102. */
  103. atomic_t pending;
  104. wait_queue_head_t wait;
  105. struct work_struct work;
  106. struct bio_list deferred;
  107. spinlock_t deferred_lock;
  108. /*
  109. * Processing queue (flush/barriers)
  110. */
  111. struct workqueue_struct *wq;
  112. /*
  113. * The current mapping.
  114. */
  115. struct dm_table *map;
  116. /*
  117. * io objects are allocated from here.
  118. */
  119. mempool_t *io_pool;
  120. mempool_t *tio_pool;
  121. struct bio_set *bs;
  122. /*
  123. * Event handling.
  124. */
  125. atomic_t event_nr;
  126. wait_queue_head_t eventq;
  127. atomic_t uevent_seq;
  128. struct list_head uevent_list;
  129. spinlock_t uevent_lock; /* Protect access to uevent_list */
  130. /*
  131. * freeze/thaw support require holding onto a super block
  132. */
  133. struct super_block *frozen_sb;
  134. struct block_device *suspended_bdev;
  135. /* forced geometry settings */
  136. struct hd_geometry geometry;
  137. /* sysfs handle */
  138. struct kobject kobj;
  139. };
  140. #define MIN_IOS 256
  141. static struct kmem_cache *_io_cache;
  142. static struct kmem_cache *_tio_cache;
  143. static struct kmem_cache *_rq_tio_cache;
  144. static struct kmem_cache *_rq_bio_info_cache;
  145. static int __init local_init(void)
  146. {
  147. int r = -ENOMEM;
  148. /* allocate a slab for the dm_ios */
  149. _io_cache = KMEM_CACHE(dm_io, 0);
  150. if (!_io_cache)
  151. return r;
  152. /* allocate a slab for the target ios */
  153. _tio_cache = KMEM_CACHE(dm_target_io, 0);
  154. if (!_tio_cache)
  155. goto out_free_io_cache;
  156. _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
  157. if (!_rq_tio_cache)
  158. goto out_free_tio_cache;
  159. _rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
  160. if (!_rq_bio_info_cache)
  161. goto out_free_rq_tio_cache;
  162. r = dm_uevent_init();
  163. if (r)
  164. goto out_free_rq_bio_info_cache;
  165. _major = major;
  166. r = register_blkdev(_major, _name);
  167. if (r < 0)
  168. goto out_uevent_exit;
  169. if (!_major)
  170. _major = r;
  171. return 0;
  172. out_uevent_exit:
  173. dm_uevent_exit();
  174. out_free_rq_bio_info_cache:
  175. kmem_cache_destroy(_rq_bio_info_cache);
  176. out_free_rq_tio_cache:
  177. kmem_cache_destroy(_rq_tio_cache);
  178. out_free_tio_cache:
  179. kmem_cache_destroy(_tio_cache);
  180. out_free_io_cache:
  181. kmem_cache_destroy(_io_cache);
  182. return r;
  183. }
  184. static void local_exit(void)
  185. {
  186. kmem_cache_destroy(_rq_bio_info_cache);
  187. kmem_cache_destroy(_rq_tio_cache);
  188. kmem_cache_destroy(_tio_cache);
  189. kmem_cache_destroy(_io_cache);
  190. unregister_blkdev(_major, _name);
  191. dm_uevent_exit();
  192. _major = 0;
  193. DMINFO("cleaned up");
  194. }
  195. static int (*_inits[])(void) __initdata = {
  196. local_init,
  197. dm_target_init,
  198. dm_linear_init,
  199. dm_stripe_init,
  200. dm_kcopyd_init,
  201. dm_interface_init,
  202. };
  203. static void (*_exits[])(void) = {
  204. local_exit,
  205. dm_target_exit,
  206. dm_linear_exit,
  207. dm_stripe_exit,
  208. dm_kcopyd_exit,
  209. dm_interface_exit,
  210. };
  211. static int __init dm_init(void)
  212. {
  213. const int count = ARRAY_SIZE(_inits);
  214. int r, i;
  215. for (i = 0; i < count; i++) {
  216. r = _inits[i]();
  217. if (r)
  218. goto bad;
  219. }
  220. return 0;
  221. bad:
  222. while (i--)
  223. _exits[i]();
  224. return r;
  225. }
  226. static void __exit dm_exit(void)
  227. {
  228. int i = ARRAY_SIZE(_exits);
  229. while (i--)
  230. _exits[i]();
  231. }
  232. /*
  233. * Block device functions
  234. */
  235. static int dm_blk_open(struct block_device *bdev, fmode_t mode)
  236. {
  237. struct mapped_device *md;
  238. spin_lock(&_minor_lock);
  239. md = bdev->bd_disk->private_data;
  240. if (!md)
  241. goto out;
  242. if (test_bit(DMF_FREEING, &md->flags) ||
  243. test_bit(DMF_DELETING, &md->flags)) {
  244. md = NULL;
  245. goto out;
  246. }
  247. dm_get(md);
  248. atomic_inc(&md->open_count);
  249. out:
  250. spin_unlock(&_minor_lock);
  251. return md ? 0 : -ENXIO;
  252. }
  253. static int dm_blk_close(struct gendisk *disk, fmode_t mode)
  254. {
  255. struct mapped_device *md = disk->private_data;
  256. atomic_dec(&md->open_count);
  257. dm_put(md);
  258. return 0;
  259. }
  260. int dm_open_count(struct mapped_device *md)
  261. {
  262. return atomic_read(&md->open_count);
  263. }
  264. /*
  265. * Guarantees nothing is using the device before it's deleted.
  266. */
  267. int dm_lock_for_deletion(struct mapped_device *md)
  268. {
  269. int r = 0;
  270. spin_lock(&_minor_lock);
  271. if (dm_open_count(md))
  272. r = -EBUSY;
  273. else
  274. set_bit(DMF_DELETING, &md->flags);
  275. spin_unlock(&_minor_lock);
  276. return r;
  277. }
  278. static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  279. {
  280. struct mapped_device *md = bdev->bd_disk->private_data;
  281. return dm_get_geometry(md, geo);
  282. }
  283. static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
  284. unsigned int cmd, unsigned long arg)
  285. {
  286. struct mapped_device *md = bdev->bd_disk->private_data;
  287. struct dm_table *map = dm_get_table(md);
  288. struct dm_target *tgt;
  289. int r = -ENOTTY;
  290. if (!map || !dm_table_get_size(map))
  291. goto out;
  292. /* We only support devices that have a single target */
  293. if (dm_table_get_num_targets(map) != 1)
  294. goto out;
  295. tgt = dm_table_get_target(map, 0);
  296. if (dm_suspended(md)) {
  297. r = -EAGAIN;
  298. goto out;
  299. }
  300. if (tgt->type->ioctl)
  301. r = tgt->type->ioctl(tgt, cmd, arg);
  302. out:
  303. dm_table_put(map);
  304. return r;
  305. }
  306. static struct dm_io *alloc_io(struct mapped_device *md)
  307. {
  308. return mempool_alloc(md->io_pool, GFP_NOIO);
  309. }
  310. static void free_io(struct mapped_device *md, struct dm_io *io)
  311. {
  312. mempool_free(io, md->io_pool);
  313. }
  314. static struct dm_target_io *alloc_tio(struct mapped_device *md)
  315. {
  316. return mempool_alloc(md->tio_pool, GFP_NOIO);
  317. }
  318. static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
  319. {
  320. mempool_free(tio, md->tio_pool);
  321. }
  322. static void start_io_acct(struct dm_io *io)
  323. {
  324. struct mapped_device *md = io->md;
  325. int cpu;
  326. io->start_time = jiffies;
  327. cpu = part_stat_lock();
  328. part_round_stats(cpu, &dm_disk(md)->part0);
  329. part_stat_unlock();
  330. dm_disk(md)->part0.in_flight = atomic_inc_return(&md->pending);
  331. }
  332. static void end_io_acct(struct dm_io *io)
  333. {
  334. struct mapped_device *md = io->md;
  335. struct bio *bio = io->bio;
  336. unsigned long duration = jiffies - io->start_time;
  337. int pending, cpu;
  338. int rw = bio_data_dir(bio);
  339. cpu = part_stat_lock();
  340. part_round_stats(cpu, &dm_disk(md)->part0);
  341. part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
  342. part_stat_unlock();
  343. dm_disk(md)->part0.in_flight = pending =
  344. atomic_dec_return(&md->pending);
  345. /* nudge anyone waiting on suspend queue */
  346. if (!pending)
  347. wake_up(&md->wait);
  348. }
  349. /*
  350. * Add the bio to the list of deferred io.
  351. */
  352. static void queue_io(struct mapped_device *md, struct bio *bio)
  353. {
  354. down_write(&md->io_lock);
  355. spin_lock_irq(&md->deferred_lock);
  356. bio_list_add(&md->deferred, bio);
  357. spin_unlock_irq(&md->deferred_lock);
  358. if (!test_and_set_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags))
  359. queue_work(md->wq, &md->work);
  360. up_write(&md->io_lock);
  361. }
  362. /*
  363. * Everyone (including functions in this file), should use this
  364. * function to access the md->map field, and make sure they call
  365. * dm_table_put() when finished.
  366. */
  367. struct dm_table *dm_get_table(struct mapped_device *md)
  368. {
  369. struct dm_table *t;
  370. read_lock(&md->map_lock);
  371. t = md->map;
  372. if (t)
  373. dm_table_get(t);
  374. read_unlock(&md->map_lock);
  375. return t;
  376. }
  377. /*
  378. * Get the geometry associated with a dm device
  379. */
  380. int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
  381. {
  382. *geo = md->geometry;
  383. return 0;
  384. }
  385. /*
  386. * Set the geometry of a device.
  387. */
  388. int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
  389. {
  390. sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
  391. if (geo->start > sz) {
  392. DMWARN("Start sector is beyond the geometry limits.");
  393. return -EINVAL;
  394. }
  395. md->geometry = *geo;
  396. return 0;
  397. }
  398. /*-----------------------------------------------------------------
  399. * CRUD START:
  400. * A more elegant soln is in the works that uses the queue
  401. * merge fn, unfortunately there are a couple of changes to
  402. * the block layer that I want to make for this. So in the
  403. * interests of getting something for people to use I give
  404. * you this clearly demarcated crap.
  405. *---------------------------------------------------------------*/
  406. static int __noflush_suspending(struct mapped_device *md)
  407. {
  408. return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
  409. }
  410. /*
  411. * Decrements the number of outstanding ios that a bio has been
  412. * cloned into, completing the original io if necc.
  413. */
  414. static void dec_pending(struct dm_io *io, int error)
  415. {
  416. unsigned long flags;
  417. int io_error;
  418. struct bio *bio;
  419. struct mapped_device *md = io->md;
  420. /* Push-back supersedes any I/O errors */
  421. if (error && !(io->error > 0 && __noflush_suspending(md)))
  422. io->error = error;
  423. if (atomic_dec_and_test(&io->io_count)) {
  424. if (io->error == DM_ENDIO_REQUEUE) {
  425. /*
  426. * Target requested pushing back the I/O.
  427. */
  428. spin_lock_irqsave(&md->deferred_lock, flags);
  429. if (__noflush_suspending(md))
  430. bio_list_add(&md->deferred, io->bio);
  431. else
  432. /* noflush suspend was interrupted. */
  433. io->error = -EIO;
  434. spin_unlock_irqrestore(&md->deferred_lock, flags);
  435. }
  436. end_io_acct(io);
  437. io_error = io->error;
  438. bio = io->bio;
  439. free_io(md, io);
  440. if (io_error != DM_ENDIO_REQUEUE) {
  441. trace_block_bio_complete(md->queue, bio);
  442. bio_endio(bio, io_error);
  443. }
  444. }
  445. }
  446. static void clone_endio(struct bio *bio, int error)
  447. {
  448. int r = 0;
  449. struct dm_target_io *tio = bio->bi_private;
  450. struct dm_io *io = tio->io;
  451. struct mapped_device *md = tio->io->md;
  452. dm_endio_fn endio = tio->ti->type->end_io;
  453. if (!bio_flagged(bio, BIO_UPTODATE) && !error)
  454. error = -EIO;
  455. if (endio) {
  456. r = endio(tio->ti, bio, error, &tio->info);
  457. if (r < 0 || r == DM_ENDIO_REQUEUE)
  458. /*
  459. * error and requeue request are handled
  460. * in dec_pending().
  461. */
  462. error = r;
  463. else if (r == DM_ENDIO_INCOMPLETE)
  464. /* The target will handle the io */
  465. return;
  466. else if (r) {
  467. DMWARN("unimplemented target endio return value: %d", r);
  468. BUG();
  469. }
  470. }
  471. /*
  472. * Store md for cleanup instead of tio which is about to get freed.
  473. */
  474. bio->bi_private = md->bs;
  475. free_tio(md, tio);
  476. bio_put(bio);
  477. dec_pending(io, error);
  478. }
  479. static sector_t max_io_len(struct mapped_device *md,
  480. sector_t sector, struct dm_target *ti)
  481. {
  482. sector_t offset = sector - ti->begin;
  483. sector_t len = ti->len - offset;
  484. /*
  485. * Does the target need to split even further ?
  486. */
  487. if (ti->split_io) {
  488. sector_t boundary;
  489. boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
  490. - offset;
  491. if (len > boundary)
  492. len = boundary;
  493. }
  494. return len;
  495. }
  496. static void __map_bio(struct dm_target *ti, struct bio *clone,
  497. struct dm_target_io *tio)
  498. {
  499. int r;
  500. sector_t sector;
  501. struct mapped_device *md;
  502. /*
  503. * Sanity checks.
  504. */
  505. BUG_ON(!clone->bi_size);
  506. clone->bi_end_io = clone_endio;
  507. clone->bi_private = tio;
  508. /*
  509. * Map the clone. If r == 0 we don't need to do
  510. * anything, the target has assumed ownership of
  511. * this io.
  512. */
  513. atomic_inc(&tio->io->io_count);
  514. sector = clone->bi_sector;
  515. r = ti->type->map(ti, clone, &tio->info);
  516. if (r == DM_MAPIO_REMAPPED) {
  517. /* the bio has been remapped so dispatch it */
  518. trace_block_remap(bdev_get_queue(clone->bi_bdev), clone,
  519. tio->io->bio->bi_bdev->bd_dev,
  520. clone->bi_sector, sector);
  521. generic_make_request(clone);
  522. } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
  523. /* error the io and bail out, or requeue it if needed */
  524. md = tio->io->md;
  525. dec_pending(tio->io, r);
  526. /*
  527. * Store bio_set for cleanup.
  528. */
  529. clone->bi_private = md->bs;
  530. bio_put(clone);
  531. free_tio(md, tio);
  532. } else if (r) {
  533. DMWARN("unimplemented target map return value: %d", r);
  534. BUG();
  535. }
  536. }
  537. struct clone_info {
  538. struct mapped_device *md;
  539. struct dm_table *map;
  540. struct bio *bio;
  541. struct dm_io *io;
  542. sector_t sector;
  543. sector_t sector_count;
  544. unsigned short idx;
  545. };
  546. static void dm_bio_destructor(struct bio *bio)
  547. {
  548. struct bio_set *bs = bio->bi_private;
  549. bio_free(bio, bs);
  550. }
  551. /*
  552. * Creates a little bio that is just does part of a bvec.
  553. */
  554. static struct bio *split_bvec(struct bio *bio, sector_t sector,
  555. unsigned short idx, unsigned int offset,
  556. unsigned int len, struct bio_set *bs)
  557. {
  558. struct bio *clone;
  559. struct bio_vec *bv = bio->bi_io_vec + idx;
  560. clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
  561. clone->bi_destructor = dm_bio_destructor;
  562. *clone->bi_io_vec = *bv;
  563. clone->bi_sector = sector;
  564. clone->bi_bdev = bio->bi_bdev;
  565. clone->bi_rw = bio->bi_rw;
  566. clone->bi_vcnt = 1;
  567. clone->bi_size = to_bytes(len);
  568. clone->bi_io_vec->bv_offset = offset;
  569. clone->bi_io_vec->bv_len = clone->bi_size;
  570. clone->bi_flags |= 1 << BIO_CLONED;
  571. if (bio_integrity(bio)) {
  572. bio_integrity_clone(clone, bio, GFP_NOIO);
  573. bio_integrity_trim(clone,
  574. bio_sector_offset(bio, idx, offset), len);
  575. }
  576. return clone;
  577. }
  578. /*
  579. * Creates a bio that consists of range of complete bvecs.
  580. */
  581. static struct bio *clone_bio(struct bio *bio, sector_t sector,
  582. unsigned short idx, unsigned short bv_count,
  583. unsigned int len, struct bio_set *bs)
  584. {
  585. struct bio *clone;
  586. clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
  587. __bio_clone(clone, bio);
  588. clone->bi_destructor = dm_bio_destructor;
  589. clone->bi_sector = sector;
  590. clone->bi_idx = idx;
  591. clone->bi_vcnt = idx + bv_count;
  592. clone->bi_size = to_bytes(len);
  593. clone->bi_flags &= ~(1 << BIO_SEG_VALID);
  594. if (bio_integrity(bio)) {
  595. bio_integrity_clone(clone, bio, GFP_NOIO);
  596. if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
  597. bio_integrity_trim(clone,
  598. bio_sector_offset(bio, idx, 0), len);
  599. }
  600. return clone;
  601. }
  602. static int __clone_and_map(struct clone_info *ci)
  603. {
  604. struct bio *clone, *bio = ci->bio;
  605. struct dm_target *ti;
  606. sector_t len = 0, max;
  607. struct dm_target_io *tio;
  608. ti = dm_table_find_target(ci->map, ci->sector);
  609. if (!dm_target_is_valid(ti))
  610. return -EIO;
  611. max = max_io_len(ci->md, ci->sector, ti);
  612. /*
  613. * Allocate a target io object.
  614. */
  615. tio = alloc_tio(ci->md);
  616. tio->io = ci->io;
  617. tio->ti = ti;
  618. memset(&tio->info, 0, sizeof(tio->info));
  619. if (ci->sector_count <= max) {
  620. /*
  621. * Optimise for the simple case where we can do all of
  622. * the remaining io with a single clone.
  623. */
  624. clone = clone_bio(bio, ci->sector, ci->idx,
  625. bio->bi_vcnt - ci->idx, ci->sector_count,
  626. ci->md->bs);
  627. __map_bio(ti, clone, tio);
  628. ci->sector_count = 0;
  629. } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
  630. /*
  631. * There are some bvecs that don't span targets.
  632. * Do as many of these as possible.
  633. */
  634. int i;
  635. sector_t remaining = max;
  636. sector_t bv_len;
  637. for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
  638. bv_len = to_sector(bio->bi_io_vec[i].bv_len);
  639. if (bv_len > remaining)
  640. break;
  641. remaining -= bv_len;
  642. len += bv_len;
  643. }
  644. clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
  645. ci->md->bs);
  646. __map_bio(ti, clone, tio);
  647. ci->sector += len;
  648. ci->sector_count -= len;
  649. ci->idx = i;
  650. } else {
  651. /*
  652. * Handle a bvec that must be split between two or more targets.
  653. */
  654. struct bio_vec *bv = bio->bi_io_vec + ci->idx;
  655. sector_t remaining = to_sector(bv->bv_len);
  656. unsigned int offset = 0;
  657. do {
  658. if (offset) {
  659. ti = dm_table_find_target(ci->map, ci->sector);
  660. if (!dm_target_is_valid(ti))
  661. return -EIO;
  662. max = max_io_len(ci->md, ci->sector, ti);
  663. tio = alloc_tio(ci->md);
  664. tio->io = ci->io;
  665. tio->ti = ti;
  666. memset(&tio->info, 0, sizeof(tio->info));
  667. }
  668. len = min(remaining, max);
  669. clone = split_bvec(bio, ci->sector, ci->idx,
  670. bv->bv_offset + offset, len,
  671. ci->md->bs);
  672. __map_bio(ti, clone, tio);
  673. ci->sector += len;
  674. ci->sector_count -= len;
  675. offset += to_bytes(len);
  676. } while (remaining -= len);
  677. ci->idx++;
  678. }
  679. return 0;
  680. }
  681. /*
  682. * Split the bio into several clones and submit it to targets.
  683. */
  684. static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
  685. {
  686. struct clone_info ci;
  687. int error = 0;
  688. ci.map = dm_get_table(md);
  689. if (unlikely(!ci.map)) {
  690. bio_io_error(bio);
  691. return;
  692. }
  693. ci.md = md;
  694. ci.bio = bio;
  695. ci.io = alloc_io(md);
  696. ci.io->error = 0;
  697. atomic_set(&ci.io->io_count, 1);
  698. ci.io->bio = bio;
  699. ci.io->md = md;
  700. ci.sector = bio->bi_sector;
  701. ci.sector_count = bio_sectors(bio);
  702. ci.idx = bio->bi_idx;
  703. start_io_acct(ci.io);
  704. while (ci.sector_count && !error)
  705. error = __clone_and_map(&ci);
  706. /* drop the extra reference count */
  707. dec_pending(ci.io, error);
  708. dm_table_put(ci.map);
  709. }
  710. /*-----------------------------------------------------------------
  711. * CRUD END
  712. *---------------------------------------------------------------*/
  713. static int dm_merge_bvec(struct request_queue *q,
  714. struct bvec_merge_data *bvm,
  715. struct bio_vec *biovec)
  716. {
  717. struct mapped_device *md = q->queuedata;
  718. struct dm_table *map = dm_get_table(md);
  719. struct dm_target *ti;
  720. sector_t max_sectors;
  721. int max_size = 0;
  722. if (unlikely(!map))
  723. goto out;
  724. ti = dm_table_find_target(map, bvm->bi_sector);
  725. if (!dm_target_is_valid(ti))
  726. goto out_table;
  727. /*
  728. * Find maximum amount of I/O that won't need splitting
  729. */
  730. max_sectors = min(max_io_len(md, bvm->bi_sector, ti),
  731. (sector_t) BIO_MAX_SECTORS);
  732. max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
  733. if (max_size < 0)
  734. max_size = 0;
  735. /*
  736. * merge_bvec_fn() returns number of bytes
  737. * it can accept at this offset
  738. * max is precomputed maximal io size
  739. */
  740. if (max_size && ti->type->merge)
  741. max_size = ti->type->merge(ti, bvm, biovec, max_size);
  742. out_table:
  743. dm_table_put(map);
  744. out:
  745. /*
  746. * Always allow an entire first page
  747. */
  748. if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
  749. max_size = biovec->bv_len;
  750. return max_size;
  751. }
  752. /*
  753. * The request function that just remaps the bio built up by
  754. * dm_merge_bvec.
  755. */
  756. static int dm_request(struct request_queue *q, struct bio *bio)
  757. {
  758. int rw = bio_data_dir(bio);
  759. struct mapped_device *md = q->queuedata;
  760. int cpu;
  761. /*
  762. * There is no use in forwarding any barrier request since we can't
  763. * guarantee it is (or can be) handled by the targets correctly.
  764. */
  765. if (unlikely(bio_barrier(bio))) {
  766. bio_endio(bio, -EOPNOTSUPP);
  767. return 0;
  768. }
  769. down_read(&md->io_lock);
  770. cpu = part_stat_lock();
  771. part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
  772. part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
  773. part_stat_unlock();
  774. /*
  775. * If we're suspended or the thread is processing barriers
  776. * we have to queue this io for later.
  777. */
  778. if (unlikely(test_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags))) {
  779. up_read(&md->io_lock);
  780. if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) &&
  781. bio_rw(bio) == READA) {
  782. bio_io_error(bio);
  783. return 0;
  784. }
  785. queue_io(md, bio);
  786. return 0;
  787. }
  788. __split_and_process_bio(md, bio);
  789. up_read(&md->io_lock);
  790. return 0;
  791. }
  792. static void dm_unplug_all(struct request_queue *q)
  793. {
  794. struct mapped_device *md = q->queuedata;
  795. struct dm_table *map = dm_get_table(md);
  796. if (map) {
  797. dm_table_unplug_all(map);
  798. dm_table_put(map);
  799. }
  800. }
  801. static int dm_any_congested(void *congested_data, int bdi_bits)
  802. {
  803. int r = bdi_bits;
  804. struct mapped_device *md = congested_data;
  805. struct dm_table *map;
  806. if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
  807. map = dm_get_table(md);
  808. if (map) {
  809. r = dm_table_any_congested(map, bdi_bits);
  810. dm_table_put(map);
  811. }
  812. }
  813. return r;
  814. }
  815. /*-----------------------------------------------------------------
  816. * An IDR is used to keep track of allocated minor numbers.
  817. *---------------------------------------------------------------*/
  818. static DEFINE_IDR(_minor_idr);
  819. static void free_minor(int minor)
  820. {
  821. spin_lock(&_minor_lock);
  822. idr_remove(&_minor_idr, minor);
  823. spin_unlock(&_minor_lock);
  824. }
  825. /*
  826. * See if the device with a specific minor # is free.
  827. */
  828. static int specific_minor(int minor)
  829. {
  830. int r, m;
  831. if (minor >= (1 << MINORBITS))
  832. return -EINVAL;
  833. r = idr_pre_get(&_minor_idr, GFP_KERNEL);
  834. if (!r)
  835. return -ENOMEM;
  836. spin_lock(&_minor_lock);
  837. if (idr_find(&_minor_idr, minor)) {
  838. r = -EBUSY;
  839. goto out;
  840. }
  841. r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
  842. if (r)
  843. goto out;
  844. if (m != minor) {
  845. idr_remove(&_minor_idr, m);
  846. r = -EBUSY;
  847. goto out;
  848. }
  849. out:
  850. spin_unlock(&_minor_lock);
  851. return r;
  852. }
  853. static int next_free_minor(int *minor)
  854. {
  855. int r, m;
  856. r = idr_pre_get(&_minor_idr, GFP_KERNEL);
  857. if (!r)
  858. return -ENOMEM;
  859. spin_lock(&_minor_lock);
  860. r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
  861. if (r)
  862. goto out;
  863. if (m >= (1 << MINORBITS)) {
  864. idr_remove(&_minor_idr, m);
  865. r = -ENOSPC;
  866. goto out;
  867. }
  868. *minor = m;
  869. out:
  870. spin_unlock(&_minor_lock);
  871. return r;
  872. }
  873. static struct block_device_operations dm_blk_dops;
  874. static void dm_wq_work(struct work_struct *work);
  875. /*
  876. * Allocate and initialise a blank device with a given minor.
  877. */
  878. static struct mapped_device *alloc_dev(int minor)
  879. {
  880. int r;
  881. struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
  882. void *old_md;
  883. if (!md) {
  884. DMWARN("unable to allocate device, out of memory.");
  885. return NULL;
  886. }
  887. if (!try_module_get(THIS_MODULE))
  888. goto bad_module_get;
  889. /* get a minor number for the dev */
  890. if (minor == DM_ANY_MINOR)
  891. r = next_free_minor(&minor);
  892. else
  893. r = specific_minor(minor);
  894. if (r < 0)
  895. goto bad_minor;
  896. init_rwsem(&md->io_lock);
  897. mutex_init(&md->suspend_lock);
  898. spin_lock_init(&md->deferred_lock);
  899. rwlock_init(&md->map_lock);
  900. atomic_set(&md->holders, 1);
  901. atomic_set(&md->open_count, 0);
  902. atomic_set(&md->event_nr, 0);
  903. atomic_set(&md->uevent_seq, 0);
  904. INIT_LIST_HEAD(&md->uevent_list);
  905. spin_lock_init(&md->uevent_lock);
  906. md->queue = blk_alloc_queue(GFP_KERNEL);
  907. if (!md->queue)
  908. goto bad_queue;
  909. md->queue->queuedata = md;
  910. md->queue->backing_dev_info.congested_fn = dm_any_congested;
  911. md->queue->backing_dev_info.congested_data = md;
  912. blk_queue_make_request(md->queue, dm_request);
  913. blk_queue_ordered(md->queue, QUEUE_ORDERED_DRAIN, NULL);
  914. blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
  915. md->queue->unplug_fn = dm_unplug_all;
  916. blk_queue_merge_bvec(md->queue, dm_merge_bvec);
  917. md->io_pool = mempool_create_slab_pool(MIN_IOS, _io_cache);
  918. if (!md->io_pool)
  919. goto bad_io_pool;
  920. md->tio_pool = mempool_create_slab_pool(MIN_IOS, _tio_cache);
  921. if (!md->tio_pool)
  922. goto bad_tio_pool;
  923. md->bs = bioset_create(16, 0);
  924. if (!md->bs)
  925. goto bad_no_bioset;
  926. md->disk = alloc_disk(1);
  927. if (!md->disk)
  928. goto bad_disk;
  929. atomic_set(&md->pending, 0);
  930. init_waitqueue_head(&md->wait);
  931. INIT_WORK(&md->work, dm_wq_work);
  932. init_waitqueue_head(&md->eventq);
  933. md->disk->major = _major;
  934. md->disk->first_minor = minor;
  935. md->disk->fops = &dm_blk_dops;
  936. md->disk->queue = md->queue;
  937. md->disk->private_data = md;
  938. sprintf(md->disk->disk_name, "dm-%d", minor);
  939. add_disk(md->disk);
  940. format_dev_t(md->name, MKDEV(_major, minor));
  941. md->wq = create_singlethread_workqueue("kdmflush");
  942. if (!md->wq)
  943. goto bad_thread;
  944. /* Populate the mapping, nobody knows we exist yet */
  945. spin_lock(&_minor_lock);
  946. old_md = idr_replace(&_minor_idr, md, minor);
  947. spin_unlock(&_minor_lock);
  948. BUG_ON(old_md != MINOR_ALLOCED);
  949. return md;
  950. bad_thread:
  951. put_disk(md->disk);
  952. bad_disk:
  953. bioset_free(md->bs);
  954. bad_no_bioset:
  955. mempool_destroy(md->tio_pool);
  956. bad_tio_pool:
  957. mempool_destroy(md->io_pool);
  958. bad_io_pool:
  959. blk_cleanup_queue(md->queue);
  960. bad_queue:
  961. free_minor(minor);
  962. bad_minor:
  963. module_put(THIS_MODULE);
  964. bad_module_get:
  965. kfree(md);
  966. return NULL;
  967. }
  968. static void unlock_fs(struct mapped_device *md);
  969. static void free_dev(struct mapped_device *md)
  970. {
  971. int minor = MINOR(disk_devt(md->disk));
  972. if (md->suspended_bdev) {
  973. unlock_fs(md);
  974. bdput(md->suspended_bdev);
  975. }
  976. destroy_workqueue(md->wq);
  977. mempool_destroy(md->tio_pool);
  978. mempool_destroy(md->io_pool);
  979. bioset_free(md->bs);
  980. blk_integrity_unregister(md->disk);
  981. del_gendisk(md->disk);
  982. free_minor(minor);
  983. spin_lock(&_minor_lock);
  984. md->disk->private_data = NULL;
  985. spin_unlock(&_minor_lock);
  986. put_disk(md->disk);
  987. blk_cleanup_queue(md->queue);
  988. module_put(THIS_MODULE);
  989. kfree(md);
  990. }
  991. /*
  992. * Bind a table to the device.
  993. */
  994. static void event_callback(void *context)
  995. {
  996. unsigned long flags;
  997. LIST_HEAD(uevents);
  998. struct mapped_device *md = (struct mapped_device *) context;
  999. spin_lock_irqsave(&md->uevent_lock, flags);
  1000. list_splice_init(&md->uevent_list, &uevents);
  1001. spin_unlock_irqrestore(&md->uevent_lock, flags);
  1002. dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
  1003. atomic_inc(&md->event_nr);
  1004. wake_up(&md->eventq);
  1005. }
  1006. static void __set_size(struct mapped_device *md, sector_t size)
  1007. {
  1008. set_capacity(md->disk, size);
  1009. mutex_lock(&md->suspended_bdev->bd_inode->i_mutex);
  1010. i_size_write(md->suspended_bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
  1011. mutex_unlock(&md->suspended_bdev->bd_inode->i_mutex);
  1012. }
  1013. static int __bind(struct mapped_device *md, struct dm_table *t)
  1014. {
  1015. struct request_queue *q = md->queue;
  1016. sector_t size;
  1017. size = dm_table_get_size(t);
  1018. /*
  1019. * Wipe any geometry if the size of the table changed.
  1020. */
  1021. if (size != get_capacity(md->disk))
  1022. memset(&md->geometry, 0, sizeof(md->geometry));
  1023. if (md->suspended_bdev)
  1024. __set_size(md, size);
  1025. if (!size) {
  1026. dm_table_destroy(t);
  1027. return 0;
  1028. }
  1029. dm_table_event_callback(t, event_callback, md);
  1030. write_lock(&md->map_lock);
  1031. md->map = t;
  1032. dm_table_set_restrictions(t, q);
  1033. write_unlock(&md->map_lock);
  1034. return 0;
  1035. }
  1036. static void __unbind(struct mapped_device *md)
  1037. {
  1038. struct dm_table *map = md->map;
  1039. if (!map)
  1040. return;
  1041. dm_table_event_callback(map, NULL, NULL);
  1042. write_lock(&md->map_lock);
  1043. md->map = NULL;
  1044. write_unlock(&md->map_lock);
  1045. dm_table_destroy(map);
  1046. }
  1047. /*
  1048. * Constructor for a new device.
  1049. */
  1050. int dm_create(int minor, struct mapped_device **result)
  1051. {
  1052. struct mapped_device *md;
  1053. md = alloc_dev(minor);
  1054. if (!md)
  1055. return -ENXIO;
  1056. dm_sysfs_init(md);
  1057. *result = md;
  1058. return 0;
  1059. }
  1060. static struct mapped_device *dm_find_md(dev_t dev)
  1061. {
  1062. struct mapped_device *md;
  1063. unsigned minor = MINOR(dev);
  1064. if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
  1065. return NULL;
  1066. spin_lock(&_minor_lock);
  1067. md = idr_find(&_minor_idr, minor);
  1068. if (md && (md == MINOR_ALLOCED ||
  1069. (MINOR(disk_devt(dm_disk(md))) != minor) ||
  1070. test_bit(DMF_FREEING, &md->flags))) {
  1071. md = NULL;
  1072. goto out;
  1073. }
  1074. out:
  1075. spin_unlock(&_minor_lock);
  1076. return md;
  1077. }
  1078. struct mapped_device *dm_get_md(dev_t dev)
  1079. {
  1080. struct mapped_device *md = dm_find_md(dev);
  1081. if (md)
  1082. dm_get(md);
  1083. return md;
  1084. }
  1085. void *dm_get_mdptr(struct mapped_device *md)
  1086. {
  1087. return md->interface_ptr;
  1088. }
  1089. void dm_set_mdptr(struct mapped_device *md, void *ptr)
  1090. {
  1091. md->interface_ptr = ptr;
  1092. }
  1093. void dm_get(struct mapped_device *md)
  1094. {
  1095. atomic_inc(&md->holders);
  1096. }
  1097. const char *dm_device_name(struct mapped_device *md)
  1098. {
  1099. return md->name;
  1100. }
  1101. EXPORT_SYMBOL_GPL(dm_device_name);
  1102. void dm_put(struct mapped_device *md)
  1103. {
  1104. struct dm_table *map;
  1105. BUG_ON(test_bit(DMF_FREEING, &md->flags));
  1106. if (atomic_dec_and_lock(&md->holders, &_minor_lock)) {
  1107. map = dm_get_table(md);
  1108. idr_replace(&_minor_idr, MINOR_ALLOCED,
  1109. MINOR(disk_devt(dm_disk(md))));
  1110. set_bit(DMF_FREEING, &md->flags);
  1111. spin_unlock(&_minor_lock);
  1112. if (!dm_suspended(md)) {
  1113. dm_table_presuspend_targets(map);
  1114. dm_table_postsuspend_targets(map);
  1115. }
  1116. dm_sysfs_exit(md);
  1117. dm_table_put(map);
  1118. __unbind(md);
  1119. free_dev(md);
  1120. }
  1121. }
  1122. EXPORT_SYMBOL_GPL(dm_put);
  1123. static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
  1124. {
  1125. int r = 0;
  1126. DECLARE_WAITQUEUE(wait, current);
  1127. dm_unplug_all(md->queue);
  1128. add_wait_queue(&md->wait, &wait);
  1129. while (1) {
  1130. set_current_state(interruptible);
  1131. smp_mb();
  1132. if (!atomic_read(&md->pending))
  1133. break;
  1134. if (interruptible == TASK_INTERRUPTIBLE &&
  1135. signal_pending(current)) {
  1136. r = -EINTR;
  1137. break;
  1138. }
  1139. io_schedule();
  1140. }
  1141. set_current_state(TASK_RUNNING);
  1142. remove_wait_queue(&md->wait, &wait);
  1143. return r;
  1144. }
  1145. /*
  1146. * Process the deferred bios
  1147. */
  1148. static void dm_wq_work(struct work_struct *work)
  1149. {
  1150. struct mapped_device *md = container_of(work, struct mapped_device,
  1151. work);
  1152. struct bio *c;
  1153. down_write(&md->io_lock);
  1154. while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
  1155. spin_lock_irq(&md->deferred_lock);
  1156. c = bio_list_pop(&md->deferred);
  1157. spin_unlock_irq(&md->deferred_lock);
  1158. if (!c) {
  1159. clear_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags);
  1160. break;
  1161. }
  1162. up_write(&md->io_lock);
  1163. __split_and_process_bio(md, c);
  1164. down_write(&md->io_lock);
  1165. }
  1166. up_write(&md->io_lock);
  1167. }
  1168. static void dm_queue_flush(struct mapped_device *md)
  1169. {
  1170. clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
  1171. smp_mb__after_clear_bit();
  1172. queue_work(md->wq, &md->work);
  1173. }
  1174. /*
  1175. * Swap in a new table (destroying old one).
  1176. */
  1177. int dm_swap_table(struct mapped_device *md, struct dm_table *table)
  1178. {
  1179. int r = -EINVAL;
  1180. mutex_lock(&md->suspend_lock);
  1181. /* device must be suspended */
  1182. if (!dm_suspended(md))
  1183. goto out;
  1184. /* without bdev, the device size cannot be changed */
  1185. if (!md->suspended_bdev)
  1186. if (get_capacity(md->disk) != dm_table_get_size(table))
  1187. goto out;
  1188. __unbind(md);
  1189. r = __bind(md, table);
  1190. out:
  1191. mutex_unlock(&md->suspend_lock);
  1192. return r;
  1193. }
  1194. /*
  1195. * Functions to lock and unlock any filesystem running on the
  1196. * device.
  1197. */
  1198. static int lock_fs(struct mapped_device *md)
  1199. {
  1200. int r;
  1201. WARN_ON(md->frozen_sb);
  1202. md->frozen_sb = freeze_bdev(md->suspended_bdev);
  1203. if (IS_ERR(md->frozen_sb)) {
  1204. r = PTR_ERR(md->frozen_sb);
  1205. md->frozen_sb = NULL;
  1206. return r;
  1207. }
  1208. set_bit(DMF_FROZEN, &md->flags);
  1209. /* don't bdput right now, we don't want the bdev
  1210. * to go away while it is locked.
  1211. */
  1212. return 0;
  1213. }
  1214. static void unlock_fs(struct mapped_device *md)
  1215. {
  1216. if (!test_bit(DMF_FROZEN, &md->flags))
  1217. return;
  1218. thaw_bdev(md->suspended_bdev, md->frozen_sb);
  1219. md->frozen_sb = NULL;
  1220. clear_bit(DMF_FROZEN, &md->flags);
  1221. }
  1222. /*
  1223. * We need to be able to change a mapping table under a mounted
  1224. * filesystem. For example we might want to move some data in
  1225. * the background. Before the table can be swapped with
  1226. * dm_bind_table, dm_suspend must be called to flush any in
  1227. * flight bios and ensure that any further io gets deferred.
  1228. */
  1229. int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
  1230. {
  1231. struct dm_table *map = NULL;
  1232. int r = 0;
  1233. int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
  1234. int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
  1235. mutex_lock(&md->suspend_lock);
  1236. if (dm_suspended(md)) {
  1237. r = -EINVAL;
  1238. goto out_unlock;
  1239. }
  1240. map = dm_get_table(md);
  1241. /*
  1242. * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
  1243. * This flag is cleared before dm_suspend returns.
  1244. */
  1245. if (noflush)
  1246. set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
  1247. /* This does not get reverted if there's an error later. */
  1248. dm_table_presuspend_targets(map);
  1249. /* bdget() can stall if the pending I/Os are not flushed */
  1250. if (!noflush) {
  1251. md->suspended_bdev = bdget_disk(md->disk, 0);
  1252. if (!md->suspended_bdev) {
  1253. DMWARN("bdget failed in dm_suspend");
  1254. r = -ENOMEM;
  1255. goto out;
  1256. }
  1257. /*
  1258. * Flush I/O to the device. noflush supersedes do_lockfs,
  1259. * because lock_fs() needs to flush I/Os.
  1260. */
  1261. if (do_lockfs) {
  1262. r = lock_fs(md);
  1263. if (r)
  1264. goto out;
  1265. }
  1266. }
  1267. /*
  1268. * Here we must make sure that no processes are submitting requests
  1269. * to target drivers i.e. no one may be executing
  1270. * __split_and_process_bio. This is called from dm_request and
  1271. * dm_wq_work.
  1272. *
  1273. * To get all processes out of __split_and_process_bio in dm_request,
  1274. * we take the write lock. To prevent any process from reentering
  1275. * __split_and_process_bio from dm_request, we set
  1276. * DMF_QUEUE_IO_TO_THREAD.
  1277. *
  1278. * To quiesce the thread (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND
  1279. * and call flush_workqueue(md->wq). flush_workqueue will wait until
  1280. * dm_wq_work exits and DMF_BLOCK_IO_FOR_SUSPEND will prevent any
  1281. * further calls to __split_and_process_bio from dm_wq_work.
  1282. */
  1283. down_write(&md->io_lock);
  1284. set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
  1285. set_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags);
  1286. up_write(&md->io_lock);
  1287. flush_workqueue(md->wq);
  1288. /*
  1289. * At this point no more requests are entering target request routines.
  1290. * We call dm_wait_for_completion to wait for all existing requests
  1291. * to finish.
  1292. */
  1293. r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
  1294. down_write(&md->io_lock);
  1295. if (noflush)
  1296. clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
  1297. up_write(&md->io_lock);
  1298. /* were we interrupted ? */
  1299. if (r < 0) {
  1300. dm_queue_flush(md);
  1301. unlock_fs(md);
  1302. goto out; /* pushback list is already flushed, so skip flush */
  1303. }
  1304. /*
  1305. * If dm_wait_for_completion returned 0, the device is completely
  1306. * quiescent now. There is no request-processing activity. All new
  1307. * requests are being added to md->deferred list.
  1308. */
  1309. dm_table_postsuspend_targets(map);
  1310. set_bit(DMF_SUSPENDED, &md->flags);
  1311. out:
  1312. if (r && md->suspended_bdev) {
  1313. bdput(md->suspended_bdev);
  1314. md->suspended_bdev = NULL;
  1315. }
  1316. dm_table_put(map);
  1317. out_unlock:
  1318. mutex_unlock(&md->suspend_lock);
  1319. return r;
  1320. }
  1321. int dm_resume(struct mapped_device *md)
  1322. {
  1323. int r = -EINVAL;
  1324. struct dm_table *map = NULL;
  1325. mutex_lock(&md->suspend_lock);
  1326. if (!dm_suspended(md))
  1327. goto out;
  1328. map = dm_get_table(md);
  1329. if (!map || !dm_table_get_size(map))
  1330. goto out;
  1331. r = dm_table_resume_targets(map);
  1332. if (r)
  1333. goto out;
  1334. dm_queue_flush(md);
  1335. unlock_fs(md);
  1336. if (md->suspended_bdev) {
  1337. bdput(md->suspended_bdev);
  1338. md->suspended_bdev = NULL;
  1339. }
  1340. clear_bit(DMF_SUSPENDED, &md->flags);
  1341. dm_table_unplug_all(map);
  1342. dm_kobject_uevent(md);
  1343. r = 0;
  1344. out:
  1345. dm_table_put(map);
  1346. mutex_unlock(&md->suspend_lock);
  1347. return r;
  1348. }
  1349. /*-----------------------------------------------------------------
  1350. * Event notification.
  1351. *---------------------------------------------------------------*/
  1352. void dm_kobject_uevent(struct mapped_device *md)
  1353. {
  1354. kobject_uevent(&disk_to_dev(md->disk)->kobj, KOBJ_CHANGE);
  1355. }
  1356. uint32_t dm_next_uevent_seq(struct mapped_device *md)
  1357. {
  1358. return atomic_add_return(1, &md->uevent_seq);
  1359. }
  1360. uint32_t dm_get_event_nr(struct mapped_device *md)
  1361. {
  1362. return atomic_read(&md->event_nr);
  1363. }
  1364. int dm_wait_event(struct mapped_device *md, int event_nr)
  1365. {
  1366. return wait_event_interruptible(md->eventq,
  1367. (event_nr != atomic_read(&md->event_nr)));
  1368. }
  1369. void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
  1370. {
  1371. unsigned long flags;
  1372. spin_lock_irqsave(&md->uevent_lock, flags);
  1373. list_add(elist, &md->uevent_list);
  1374. spin_unlock_irqrestore(&md->uevent_lock, flags);
  1375. }
  1376. /*
  1377. * The gendisk is only valid as long as you have a reference
  1378. * count on 'md'.
  1379. */
  1380. struct gendisk *dm_disk(struct mapped_device *md)
  1381. {
  1382. return md->disk;
  1383. }
  1384. struct kobject *dm_kobject(struct mapped_device *md)
  1385. {
  1386. return &md->kobj;
  1387. }
  1388. /*
  1389. * struct mapped_device should not be exported outside of dm.c
  1390. * so use this check to verify that kobj is part of md structure
  1391. */
  1392. struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
  1393. {
  1394. struct mapped_device *md;
  1395. md = container_of(kobj, struct mapped_device, kobj);
  1396. if (&md->kobj != kobj)
  1397. return NULL;
  1398. dm_get(md);
  1399. return md;
  1400. }
  1401. int dm_suspended(struct mapped_device *md)
  1402. {
  1403. return test_bit(DMF_SUSPENDED, &md->flags);
  1404. }
  1405. int dm_noflush_suspending(struct dm_target *ti)
  1406. {
  1407. struct mapped_device *md = dm_table_get_md(ti->table);
  1408. int r = __noflush_suspending(md);
  1409. dm_put(md);
  1410. return r;
  1411. }
  1412. EXPORT_SYMBOL_GPL(dm_noflush_suspending);
  1413. static struct block_device_operations dm_blk_dops = {
  1414. .open = dm_blk_open,
  1415. .release = dm_blk_close,
  1416. .ioctl = dm_blk_ioctl,
  1417. .getgeo = dm_blk_getgeo,
  1418. .owner = THIS_MODULE
  1419. };
  1420. EXPORT_SYMBOL(dm_get_mapinfo);
  1421. /*
  1422. * module hooks
  1423. */
  1424. module_init(dm_init);
  1425. module_exit(dm_exit);
  1426. module_param(major, uint, 0);
  1427. MODULE_PARM_DESC(major, "The major number of the device mapper");
  1428. MODULE_DESCRIPTION(DM_NAME " driver");
  1429. MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
  1430. MODULE_LICENSE("GPL");