s2io.c 226 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984
  1. /************************************************************************
  2. * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
  3. * Copyright(c) 2002-2007 Neterion Inc.
  4. * This software may be used and distributed according to the terms of
  5. * the GNU General Public License (GPL), incorporated herein by reference.
  6. * Drivers based on or derived from this code fall under the GPL and must
  7. * retain the authorship, copyright and license notice. This file is not
  8. * a complete program and may only be used when the entire operating
  9. * system is licensed under the GPL.
  10. * See the file COPYING in this distribution for more information.
  11. *
  12. * Credits:
  13. * Jeff Garzik : For pointing out the improper error condition
  14. * check in the s2io_xmit routine and also some
  15. * issues in the Tx watch dog function. Also for
  16. * patiently answering all those innumerable
  17. * questions regaring the 2.6 porting issues.
  18. * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
  19. * macros available only in 2.6 Kernel.
  20. * Francois Romieu : For pointing out all code part that were
  21. * deprecated and also styling related comments.
  22. * Grant Grundler : For helping me get rid of some Architecture
  23. * dependent code.
  24. * Christopher Hellwig : Some more 2.6 specific issues in the driver.
  25. *
  26. * The module loadable parameters that are supported by the driver and a brief
  27. * explaination of all the variables.
  28. *
  29. * rx_ring_num : This can be used to program the number of receive rings used
  30. * in the driver.
  31. * rx_ring_sz: This defines the number of receive blocks each ring can have.
  32. * This is also an array of size 8.
  33. * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
  34. * values are 1, 2.
  35. * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
  36. * tx_fifo_len: This too is an array of 8. Each element defines the number of
  37. * Tx descriptors that can be associated with each corresponding FIFO.
  38. * intr_type: This defines the type of interrupt. The values can be 0(INTA),
  39. * 2(MSI_X). Default value is '2(MSI_X)'
  40. * lro: Specifies whether to enable Large Receive Offload (LRO) or not.
  41. * Possible values '1' for enable '0' for disable. Default is '0'
  42. * lro_max_pkts: This parameter defines maximum number of packets can be
  43. * aggregated as a single large packet
  44. * napi: This parameter used to enable/disable NAPI (polling Rx)
  45. * Possible values '1' for enable and '0' for disable. Default is '1'
  46. * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
  47. * Possible values '1' for enable and '0' for disable. Default is '0'
  48. * vlan_tag_strip: This can be used to enable or disable vlan stripping.
  49. * Possible values '1' for enable , '0' for disable.
  50. * Default is '2' - which means disable in promisc mode
  51. * and enable in non-promiscuous mode.
  52. ************************************************************************/
  53. #include <linux/module.h>
  54. #include <linux/types.h>
  55. #include <linux/errno.h>
  56. #include <linux/ioport.h>
  57. #include <linux/pci.h>
  58. #include <linux/dma-mapping.h>
  59. #include <linux/kernel.h>
  60. #include <linux/netdevice.h>
  61. #include <linux/etherdevice.h>
  62. #include <linux/skbuff.h>
  63. #include <linux/init.h>
  64. #include <linux/delay.h>
  65. #include <linux/stddef.h>
  66. #include <linux/ioctl.h>
  67. #include <linux/timex.h>
  68. #include <linux/ethtool.h>
  69. #include <linux/workqueue.h>
  70. #include <linux/if_vlan.h>
  71. #include <linux/ip.h>
  72. #include <linux/tcp.h>
  73. #include <net/tcp.h>
  74. #include <asm/system.h>
  75. #include <asm/uaccess.h>
  76. #include <asm/io.h>
  77. #include <asm/div64.h>
  78. #include <asm/irq.h>
  79. /* local include */
  80. #include "s2io.h"
  81. #include "s2io-regs.h"
  82. #define DRV_VERSION "2.0.26.1"
  83. /* S2io Driver name & version. */
  84. static char s2io_driver_name[] = "Neterion";
  85. static char s2io_driver_version[] = DRV_VERSION;
  86. static int rxd_size[2] = {32,48};
  87. static int rxd_count[2] = {127,85};
  88. static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
  89. {
  90. int ret;
  91. ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
  92. (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
  93. return ret;
  94. }
  95. /*
  96. * Cards with following subsystem_id have a link state indication
  97. * problem, 600B, 600C, 600D, 640B, 640C and 640D.
  98. * macro below identifies these cards given the subsystem_id.
  99. */
  100. #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
  101. (dev_type == XFRAME_I_DEVICE) ? \
  102. ((((subid >= 0x600B) && (subid <= 0x600D)) || \
  103. ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
  104. #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
  105. ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
  106. #define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
  107. #define PANIC 1
  108. #define LOW 2
  109. static inline int rx_buffer_level(struct s2io_nic * sp, int rxb_size, int ring)
  110. {
  111. struct mac_info *mac_control;
  112. mac_control = &sp->mac_control;
  113. if (rxb_size <= rxd_count[sp->rxd_mode])
  114. return PANIC;
  115. else if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16)
  116. return LOW;
  117. return 0;
  118. }
  119. /* Ethtool related variables and Macros. */
  120. static char s2io_gstrings[][ETH_GSTRING_LEN] = {
  121. "Register test\t(offline)",
  122. "Eeprom test\t(offline)",
  123. "Link test\t(online)",
  124. "RLDRAM test\t(offline)",
  125. "BIST Test\t(offline)"
  126. };
  127. static char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
  128. {"tmac_frms"},
  129. {"tmac_data_octets"},
  130. {"tmac_drop_frms"},
  131. {"tmac_mcst_frms"},
  132. {"tmac_bcst_frms"},
  133. {"tmac_pause_ctrl_frms"},
  134. {"tmac_ttl_octets"},
  135. {"tmac_ucst_frms"},
  136. {"tmac_nucst_frms"},
  137. {"tmac_any_err_frms"},
  138. {"tmac_ttl_less_fb_octets"},
  139. {"tmac_vld_ip_octets"},
  140. {"tmac_vld_ip"},
  141. {"tmac_drop_ip"},
  142. {"tmac_icmp"},
  143. {"tmac_rst_tcp"},
  144. {"tmac_tcp"},
  145. {"tmac_udp"},
  146. {"rmac_vld_frms"},
  147. {"rmac_data_octets"},
  148. {"rmac_fcs_err_frms"},
  149. {"rmac_drop_frms"},
  150. {"rmac_vld_mcst_frms"},
  151. {"rmac_vld_bcst_frms"},
  152. {"rmac_in_rng_len_err_frms"},
  153. {"rmac_out_rng_len_err_frms"},
  154. {"rmac_long_frms"},
  155. {"rmac_pause_ctrl_frms"},
  156. {"rmac_unsup_ctrl_frms"},
  157. {"rmac_ttl_octets"},
  158. {"rmac_accepted_ucst_frms"},
  159. {"rmac_accepted_nucst_frms"},
  160. {"rmac_discarded_frms"},
  161. {"rmac_drop_events"},
  162. {"rmac_ttl_less_fb_octets"},
  163. {"rmac_ttl_frms"},
  164. {"rmac_usized_frms"},
  165. {"rmac_osized_frms"},
  166. {"rmac_frag_frms"},
  167. {"rmac_jabber_frms"},
  168. {"rmac_ttl_64_frms"},
  169. {"rmac_ttl_65_127_frms"},
  170. {"rmac_ttl_128_255_frms"},
  171. {"rmac_ttl_256_511_frms"},
  172. {"rmac_ttl_512_1023_frms"},
  173. {"rmac_ttl_1024_1518_frms"},
  174. {"rmac_ip"},
  175. {"rmac_ip_octets"},
  176. {"rmac_hdr_err_ip"},
  177. {"rmac_drop_ip"},
  178. {"rmac_icmp"},
  179. {"rmac_tcp"},
  180. {"rmac_udp"},
  181. {"rmac_err_drp_udp"},
  182. {"rmac_xgmii_err_sym"},
  183. {"rmac_frms_q0"},
  184. {"rmac_frms_q1"},
  185. {"rmac_frms_q2"},
  186. {"rmac_frms_q3"},
  187. {"rmac_frms_q4"},
  188. {"rmac_frms_q5"},
  189. {"rmac_frms_q6"},
  190. {"rmac_frms_q7"},
  191. {"rmac_full_q0"},
  192. {"rmac_full_q1"},
  193. {"rmac_full_q2"},
  194. {"rmac_full_q3"},
  195. {"rmac_full_q4"},
  196. {"rmac_full_q5"},
  197. {"rmac_full_q6"},
  198. {"rmac_full_q7"},
  199. {"rmac_pause_cnt"},
  200. {"rmac_xgmii_data_err_cnt"},
  201. {"rmac_xgmii_ctrl_err_cnt"},
  202. {"rmac_accepted_ip"},
  203. {"rmac_err_tcp"},
  204. {"rd_req_cnt"},
  205. {"new_rd_req_cnt"},
  206. {"new_rd_req_rtry_cnt"},
  207. {"rd_rtry_cnt"},
  208. {"wr_rtry_rd_ack_cnt"},
  209. {"wr_req_cnt"},
  210. {"new_wr_req_cnt"},
  211. {"new_wr_req_rtry_cnt"},
  212. {"wr_rtry_cnt"},
  213. {"wr_disc_cnt"},
  214. {"rd_rtry_wr_ack_cnt"},
  215. {"txp_wr_cnt"},
  216. {"txd_rd_cnt"},
  217. {"txd_wr_cnt"},
  218. {"rxd_rd_cnt"},
  219. {"rxd_wr_cnt"},
  220. {"txf_rd_cnt"},
  221. {"rxf_wr_cnt"}
  222. };
  223. static char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
  224. {"rmac_ttl_1519_4095_frms"},
  225. {"rmac_ttl_4096_8191_frms"},
  226. {"rmac_ttl_8192_max_frms"},
  227. {"rmac_ttl_gt_max_frms"},
  228. {"rmac_osized_alt_frms"},
  229. {"rmac_jabber_alt_frms"},
  230. {"rmac_gt_max_alt_frms"},
  231. {"rmac_vlan_frms"},
  232. {"rmac_len_discard"},
  233. {"rmac_fcs_discard"},
  234. {"rmac_pf_discard"},
  235. {"rmac_da_discard"},
  236. {"rmac_red_discard"},
  237. {"rmac_rts_discard"},
  238. {"rmac_ingm_full_discard"},
  239. {"link_fault_cnt"}
  240. };
  241. static char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
  242. {"\n DRIVER STATISTICS"},
  243. {"single_bit_ecc_errs"},
  244. {"double_bit_ecc_errs"},
  245. {"parity_err_cnt"},
  246. {"serious_err_cnt"},
  247. {"soft_reset_cnt"},
  248. {"fifo_full_cnt"},
  249. {"ring_full_cnt"},
  250. ("alarm_transceiver_temp_high"),
  251. ("alarm_transceiver_temp_low"),
  252. ("alarm_laser_bias_current_high"),
  253. ("alarm_laser_bias_current_low"),
  254. ("alarm_laser_output_power_high"),
  255. ("alarm_laser_output_power_low"),
  256. ("warn_transceiver_temp_high"),
  257. ("warn_transceiver_temp_low"),
  258. ("warn_laser_bias_current_high"),
  259. ("warn_laser_bias_current_low"),
  260. ("warn_laser_output_power_high"),
  261. ("warn_laser_output_power_low"),
  262. ("lro_aggregated_pkts"),
  263. ("lro_flush_both_count"),
  264. ("lro_out_of_sequence_pkts"),
  265. ("lro_flush_due_to_max_pkts"),
  266. ("lro_avg_aggr_pkts"),
  267. ("mem_alloc_fail_cnt"),
  268. ("pci_map_fail_cnt"),
  269. ("watchdog_timer_cnt"),
  270. ("mem_allocated"),
  271. ("mem_freed"),
  272. ("link_up_cnt"),
  273. ("link_down_cnt"),
  274. ("link_up_time"),
  275. ("link_down_time"),
  276. ("tx_tcode_buf_abort_cnt"),
  277. ("tx_tcode_desc_abort_cnt"),
  278. ("tx_tcode_parity_err_cnt"),
  279. ("tx_tcode_link_loss_cnt"),
  280. ("tx_tcode_list_proc_err_cnt"),
  281. ("rx_tcode_parity_err_cnt"),
  282. ("rx_tcode_abort_cnt"),
  283. ("rx_tcode_parity_abort_cnt"),
  284. ("rx_tcode_rda_fail_cnt"),
  285. ("rx_tcode_unkn_prot_cnt"),
  286. ("rx_tcode_fcs_err_cnt"),
  287. ("rx_tcode_buf_size_err_cnt"),
  288. ("rx_tcode_rxd_corrupt_cnt"),
  289. ("rx_tcode_unkn_err_cnt")
  290. };
  291. #define S2IO_XENA_STAT_LEN sizeof(ethtool_xena_stats_keys)/ ETH_GSTRING_LEN
  292. #define S2IO_ENHANCED_STAT_LEN sizeof(ethtool_enhanced_stats_keys)/ \
  293. ETH_GSTRING_LEN
  294. #define S2IO_DRIVER_STAT_LEN sizeof(ethtool_driver_stats_keys)/ ETH_GSTRING_LEN
  295. #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN )
  296. #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN )
  297. #define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN )
  298. #define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN )
  299. #define S2IO_TEST_LEN sizeof(s2io_gstrings) / ETH_GSTRING_LEN
  300. #define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
  301. #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
  302. init_timer(&timer); \
  303. timer.function = handle; \
  304. timer.data = (unsigned long) arg; \
  305. mod_timer(&timer, (jiffies + exp)) \
  306. /* Add the vlan */
  307. static void s2io_vlan_rx_register(struct net_device *dev,
  308. struct vlan_group *grp)
  309. {
  310. struct s2io_nic *nic = dev->priv;
  311. unsigned long flags;
  312. spin_lock_irqsave(&nic->tx_lock, flags);
  313. nic->vlgrp = grp;
  314. spin_unlock_irqrestore(&nic->tx_lock, flags);
  315. }
  316. /* A flag indicating whether 'RX_PA_CFG_STRIP_VLAN_TAG' bit is set or not */
  317. static int vlan_strip_flag;
  318. /*
  319. * Constants to be programmed into the Xena's registers, to configure
  320. * the XAUI.
  321. */
  322. #define END_SIGN 0x0
  323. static const u64 herc_act_dtx_cfg[] = {
  324. /* Set address */
  325. 0x8000051536750000ULL, 0x80000515367500E0ULL,
  326. /* Write data */
  327. 0x8000051536750004ULL, 0x80000515367500E4ULL,
  328. /* Set address */
  329. 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
  330. /* Write data */
  331. 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
  332. /* Set address */
  333. 0x801205150D440000ULL, 0x801205150D4400E0ULL,
  334. /* Write data */
  335. 0x801205150D440004ULL, 0x801205150D4400E4ULL,
  336. /* Set address */
  337. 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
  338. /* Write data */
  339. 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
  340. /* Done */
  341. END_SIGN
  342. };
  343. static const u64 xena_dtx_cfg[] = {
  344. /* Set address */
  345. 0x8000051500000000ULL, 0x80000515000000E0ULL,
  346. /* Write data */
  347. 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
  348. /* Set address */
  349. 0x8001051500000000ULL, 0x80010515000000E0ULL,
  350. /* Write data */
  351. 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
  352. /* Set address */
  353. 0x8002051500000000ULL, 0x80020515000000E0ULL,
  354. /* Write data */
  355. 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
  356. END_SIGN
  357. };
  358. /*
  359. * Constants for Fixing the MacAddress problem seen mostly on
  360. * Alpha machines.
  361. */
  362. static const u64 fix_mac[] = {
  363. 0x0060000000000000ULL, 0x0060600000000000ULL,
  364. 0x0040600000000000ULL, 0x0000600000000000ULL,
  365. 0x0020600000000000ULL, 0x0060600000000000ULL,
  366. 0x0020600000000000ULL, 0x0060600000000000ULL,
  367. 0x0020600000000000ULL, 0x0060600000000000ULL,
  368. 0x0020600000000000ULL, 0x0060600000000000ULL,
  369. 0x0020600000000000ULL, 0x0060600000000000ULL,
  370. 0x0020600000000000ULL, 0x0060600000000000ULL,
  371. 0x0020600000000000ULL, 0x0060600000000000ULL,
  372. 0x0020600000000000ULL, 0x0060600000000000ULL,
  373. 0x0020600000000000ULL, 0x0060600000000000ULL,
  374. 0x0020600000000000ULL, 0x0060600000000000ULL,
  375. 0x0020600000000000ULL, 0x0000600000000000ULL,
  376. 0x0040600000000000ULL, 0x0060600000000000ULL,
  377. END_SIGN
  378. };
  379. MODULE_LICENSE("GPL");
  380. MODULE_VERSION(DRV_VERSION);
  381. /* Module Loadable parameters. */
  382. S2IO_PARM_INT(tx_fifo_num, 1);
  383. S2IO_PARM_INT(rx_ring_num, 1);
  384. S2IO_PARM_INT(rx_ring_mode, 1);
  385. S2IO_PARM_INT(use_continuous_tx_intrs, 1);
  386. S2IO_PARM_INT(rmac_pause_time, 0x100);
  387. S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
  388. S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
  389. S2IO_PARM_INT(shared_splits, 0);
  390. S2IO_PARM_INT(tmac_util_period, 5);
  391. S2IO_PARM_INT(rmac_util_period, 5);
  392. S2IO_PARM_INT(bimodal, 0);
  393. S2IO_PARM_INT(l3l4hdr_size, 128);
  394. /* Frequency of Rx desc syncs expressed as power of 2 */
  395. S2IO_PARM_INT(rxsync_frequency, 3);
  396. /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
  397. S2IO_PARM_INT(intr_type, 2);
  398. /* Large receive offload feature */
  399. S2IO_PARM_INT(lro, 0);
  400. /* Max pkts to be aggregated by LRO at one time. If not specified,
  401. * aggregation happens until we hit max IP pkt size(64K)
  402. */
  403. S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
  404. S2IO_PARM_INT(indicate_max_pkts, 0);
  405. S2IO_PARM_INT(napi, 1);
  406. S2IO_PARM_INT(ufo, 0);
  407. S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
  408. static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
  409. {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
  410. static unsigned int rx_ring_sz[MAX_RX_RINGS] =
  411. {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
  412. static unsigned int rts_frm_len[MAX_RX_RINGS] =
  413. {[0 ...(MAX_RX_RINGS - 1)] = 0 };
  414. module_param_array(tx_fifo_len, uint, NULL, 0);
  415. module_param_array(rx_ring_sz, uint, NULL, 0);
  416. module_param_array(rts_frm_len, uint, NULL, 0);
  417. /*
  418. * S2IO device table.
  419. * This table lists all the devices that this driver supports.
  420. */
  421. static struct pci_device_id s2io_tbl[] __devinitdata = {
  422. {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
  423. PCI_ANY_ID, PCI_ANY_ID},
  424. {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
  425. PCI_ANY_ID, PCI_ANY_ID},
  426. {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
  427. PCI_ANY_ID, PCI_ANY_ID},
  428. {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
  429. PCI_ANY_ID, PCI_ANY_ID},
  430. {0,}
  431. };
  432. MODULE_DEVICE_TABLE(pci, s2io_tbl);
  433. static struct pci_error_handlers s2io_err_handler = {
  434. .error_detected = s2io_io_error_detected,
  435. .slot_reset = s2io_io_slot_reset,
  436. .resume = s2io_io_resume,
  437. };
  438. static struct pci_driver s2io_driver = {
  439. .name = "S2IO",
  440. .id_table = s2io_tbl,
  441. .probe = s2io_init_nic,
  442. .remove = __devexit_p(s2io_rem_nic),
  443. .err_handler = &s2io_err_handler,
  444. };
  445. /* A simplifier macro used both by init and free shared_mem Fns(). */
  446. #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
  447. /**
  448. * init_shared_mem - Allocation and Initialization of Memory
  449. * @nic: Device private variable.
  450. * Description: The function allocates all the memory areas shared
  451. * between the NIC and the driver. This includes Tx descriptors,
  452. * Rx descriptors and the statistics block.
  453. */
  454. static int init_shared_mem(struct s2io_nic *nic)
  455. {
  456. u32 size;
  457. void *tmp_v_addr, *tmp_v_addr_next;
  458. dma_addr_t tmp_p_addr, tmp_p_addr_next;
  459. struct RxD_block *pre_rxd_blk = NULL;
  460. int i, j, blk_cnt;
  461. int lst_size, lst_per_page;
  462. struct net_device *dev = nic->dev;
  463. unsigned long tmp;
  464. struct buffAdd *ba;
  465. struct mac_info *mac_control;
  466. struct config_param *config;
  467. unsigned long long mem_allocated = 0;
  468. mac_control = &nic->mac_control;
  469. config = &nic->config;
  470. /* Allocation and initialization of TXDLs in FIOFs */
  471. size = 0;
  472. for (i = 0; i < config->tx_fifo_num; i++) {
  473. size += config->tx_cfg[i].fifo_len;
  474. }
  475. if (size > MAX_AVAILABLE_TXDS) {
  476. DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
  477. DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
  478. return -EINVAL;
  479. }
  480. lst_size = (sizeof(struct TxD) * config->max_txds);
  481. lst_per_page = PAGE_SIZE / lst_size;
  482. for (i = 0; i < config->tx_fifo_num; i++) {
  483. int fifo_len = config->tx_cfg[i].fifo_len;
  484. int list_holder_size = fifo_len * sizeof(struct list_info_hold);
  485. mac_control->fifos[i].list_info = kmalloc(list_holder_size,
  486. GFP_KERNEL);
  487. if (!mac_control->fifos[i].list_info) {
  488. DBG_PRINT(INFO_DBG,
  489. "Malloc failed for list_info\n");
  490. return -ENOMEM;
  491. }
  492. mem_allocated += list_holder_size;
  493. memset(mac_control->fifos[i].list_info, 0, list_holder_size);
  494. }
  495. for (i = 0; i < config->tx_fifo_num; i++) {
  496. int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
  497. lst_per_page);
  498. mac_control->fifos[i].tx_curr_put_info.offset = 0;
  499. mac_control->fifos[i].tx_curr_put_info.fifo_len =
  500. config->tx_cfg[i].fifo_len - 1;
  501. mac_control->fifos[i].tx_curr_get_info.offset = 0;
  502. mac_control->fifos[i].tx_curr_get_info.fifo_len =
  503. config->tx_cfg[i].fifo_len - 1;
  504. mac_control->fifos[i].fifo_no = i;
  505. mac_control->fifos[i].nic = nic;
  506. mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
  507. for (j = 0; j < page_num; j++) {
  508. int k = 0;
  509. dma_addr_t tmp_p;
  510. void *tmp_v;
  511. tmp_v = pci_alloc_consistent(nic->pdev,
  512. PAGE_SIZE, &tmp_p);
  513. if (!tmp_v) {
  514. DBG_PRINT(INFO_DBG,
  515. "pci_alloc_consistent ");
  516. DBG_PRINT(INFO_DBG, "failed for TxDL\n");
  517. return -ENOMEM;
  518. }
  519. /* If we got a zero DMA address(can happen on
  520. * certain platforms like PPC), reallocate.
  521. * Store virtual address of page we don't want,
  522. * to be freed later.
  523. */
  524. if (!tmp_p) {
  525. mac_control->zerodma_virt_addr = tmp_v;
  526. DBG_PRINT(INIT_DBG,
  527. "%s: Zero DMA address for TxDL. ", dev->name);
  528. DBG_PRINT(INIT_DBG,
  529. "Virtual address %p\n", tmp_v);
  530. tmp_v = pci_alloc_consistent(nic->pdev,
  531. PAGE_SIZE, &tmp_p);
  532. if (!tmp_v) {
  533. DBG_PRINT(INFO_DBG,
  534. "pci_alloc_consistent ");
  535. DBG_PRINT(INFO_DBG, "failed for TxDL\n");
  536. return -ENOMEM;
  537. }
  538. mem_allocated += PAGE_SIZE;
  539. }
  540. while (k < lst_per_page) {
  541. int l = (j * lst_per_page) + k;
  542. if (l == config->tx_cfg[i].fifo_len)
  543. break;
  544. mac_control->fifos[i].list_info[l].list_virt_addr =
  545. tmp_v + (k * lst_size);
  546. mac_control->fifos[i].list_info[l].list_phy_addr =
  547. tmp_p + (k * lst_size);
  548. k++;
  549. }
  550. }
  551. }
  552. nic->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
  553. if (!nic->ufo_in_band_v)
  554. return -ENOMEM;
  555. mem_allocated += (size * sizeof(u64));
  556. /* Allocation and initialization of RXDs in Rings */
  557. size = 0;
  558. for (i = 0; i < config->rx_ring_num; i++) {
  559. if (config->rx_cfg[i].num_rxd %
  560. (rxd_count[nic->rxd_mode] + 1)) {
  561. DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
  562. DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
  563. i);
  564. DBG_PRINT(ERR_DBG, "RxDs per Block");
  565. return FAILURE;
  566. }
  567. size += config->rx_cfg[i].num_rxd;
  568. mac_control->rings[i].block_count =
  569. config->rx_cfg[i].num_rxd /
  570. (rxd_count[nic->rxd_mode] + 1 );
  571. mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
  572. mac_control->rings[i].block_count;
  573. }
  574. if (nic->rxd_mode == RXD_MODE_1)
  575. size = (size * (sizeof(struct RxD1)));
  576. else
  577. size = (size * (sizeof(struct RxD3)));
  578. for (i = 0; i < config->rx_ring_num; i++) {
  579. mac_control->rings[i].rx_curr_get_info.block_index = 0;
  580. mac_control->rings[i].rx_curr_get_info.offset = 0;
  581. mac_control->rings[i].rx_curr_get_info.ring_len =
  582. config->rx_cfg[i].num_rxd - 1;
  583. mac_control->rings[i].rx_curr_put_info.block_index = 0;
  584. mac_control->rings[i].rx_curr_put_info.offset = 0;
  585. mac_control->rings[i].rx_curr_put_info.ring_len =
  586. config->rx_cfg[i].num_rxd - 1;
  587. mac_control->rings[i].nic = nic;
  588. mac_control->rings[i].ring_no = i;
  589. blk_cnt = config->rx_cfg[i].num_rxd /
  590. (rxd_count[nic->rxd_mode] + 1);
  591. /* Allocating all the Rx blocks */
  592. for (j = 0; j < blk_cnt; j++) {
  593. struct rx_block_info *rx_blocks;
  594. int l;
  595. rx_blocks = &mac_control->rings[i].rx_blocks[j];
  596. size = SIZE_OF_BLOCK; //size is always page size
  597. tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
  598. &tmp_p_addr);
  599. if (tmp_v_addr == NULL) {
  600. /*
  601. * In case of failure, free_shared_mem()
  602. * is called, which should free any
  603. * memory that was alloced till the
  604. * failure happened.
  605. */
  606. rx_blocks->block_virt_addr = tmp_v_addr;
  607. return -ENOMEM;
  608. }
  609. mem_allocated += size;
  610. memset(tmp_v_addr, 0, size);
  611. rx_blocks->block_virt_addr = tmp_v_addr;
  612. rx_blocks->block_dma_addr = tmp_p_addr;
  613. rx_blocks->rxds = kmalloc(sizeof(struct rxd_info)*
  614. rxd_count[nic->rxd_mode],
  615. GFP_KERNEL);
  616. if (!rx_blocks->rxds)
  617. return -ENOMEM;
  618. mem_allocated +=
  619. (sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
  620. for (l=0; l<rxd_count[nic->rxd_mode];l++) {
  621. rx_blocks->rxds[l].virt_addr =
  622. rx_blocks->block_virt_addr +
  623. (rxd_size[nic->rxd_mode] * l);
  624. rx_blocks->rxds[l].dma_addr =
  625. rx_blocks->block_dma_addr +
  626. (rxd_size[nic->rxd_mode] * l);
  627. }
  628. }
  629. /* Interlinking all Rx Blocks */
  630. for (j = 0; j < blk_cnt; j++) {
  631. tmp_v_addr =
  632. mac_control->rings[i].rx_blocks[j].block_virt_addr;
  633. tmp_v_addr_next =
  634. mac_control->rings[i].rx_blocks[(j + 1) %
  635. blk_cnt].block_virt_addr;
  636. tmp_p_addr =
  637. mac_control->rings[i].rx_blocks[j].block_dma_addr;
  638. tmp_p_addr_next =
  639. mac_control->rings[i].rx_blocks[(j + 1) %
  640. blk_cnt].block_dma_addr;
  641. pre_rxd_blk = (struct RxD_block *) tmp_v_addr;
  642. pre_rxd_blk->reserved_2_pNext_RxD_block =
  643. (unsigned long) tmp_v_addr_next;
  644. pre_rxd_blk->pNext_RxD_Blk_physical =
  645. (u64) tmp_p_addr_next;
  646. }
  647. }
  648. if (nic->rxd_mode == RXD_MODE_3B) {
  649. /*
  650. * Allocation of Storages for buffer addresses in 2BUFF mode
  651. * and the buffers as well.
  652. */
  653. for (i = 0; i < config->rx_ring_num; i++) {
  654. blk_cnt = config->rx_cfg[i].num_rxd /
  655. (rxd_count[nic->rxd_mode]+ 1);
  656. mac_control->rings[i].ba =
  657. kmalloc((sizeof(struct buffAdd *) * blk_cnt),
  658. GFP_KERNEL);
  659. if (!mac_control->rings[i].ba)
  660. return -ENOMEM;
  661. mem_allocated +=(sizeof(struct buffAdd *) * blk_cnt);
  662. for (j = 0; j < blk_cnt; j++) {
  663. int k = 0;
  664. mac_control->rings[i].ba[j] =
  665. kmalloc((sizeof(struct buffAdd) *
  666. (rxd_count[nic->rxd_mode] + 1)),
  667. GFP_KERNEL);
  668. if (!mac_control->rings[i].ba[j])
  669. return -ENOMEM;
  670. mem_allocated += (sizeof(struct buffAdd) * \
  671. (rxd_count[nic->rxd_mode] + 1));
  672. while (k != rxd_count[nic->rxd_mode]) {
  673. ba = &mac_control->rings[i].ba[j][k];
  674. ba->ba_0_org = (void *) kmalloc
  675. (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
  676. if (!ba->ba_0_org)
  677. return -ENOMEM;
  678. mem_allocated +=
  679. (BUF0_LEN + ALIGN_SIZE);
  680. tmp = (unsigned long)ba->ba_0_org;
  681. tmp += ALIGN_SIZE;
  682. tmp &= ~((unsigned long) ALIGN_SIZE);
  683. ba->ba_0 = (void *) tmp;
  684. ba->ba_1_org = (void *) kmalloc
  685. (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
  686. if (!ba->ba_1_org)
  687. return -ENOMEM;
  688. mem_allocated
  689. += (BUF1_LEN + ALIGN_SIZE);
  690. tmp = (unsigned long) ba->ba_1_org;
  691. tmp += ALIGN_SIZE;
  692. tmp &= ~((unsigned long) ALIGN_SIZE);
  693. ba->ba_1 = (void *) tmp;
  694. k++;
  695. }
  696. }
  697. }
  698. }
  699. /* Allocation and initialization of Statistics block */
  700. size = sizeof(struct stat_block);
  701. mac_control->stats_mem = pci_alloc_consistent
  702. (nic->pdev, size, &mac_control->stats_mem_phy);
  703. if (!mac_control->stats_mem) {
  704. /*
  705. * In case of failure, free_shared_mem() is called, which
  706. * should free any memory that was alloced till the
  707. * failure happened.
  708. */
  709. return -ENOMEM;
  710. }
  711. mem_allocated += size;
  712. mac_control->stats_mem_sz = size;
  713. tmp_v_addr = mac_control->stats_mem;
  714. mac_control->stats_info = (struct stat_block *) tmp_v_addr;
  715. memset(tmp_v_addr, 0, size);
  716. DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
  717. (unsigned long long) tmp_p_addr);
  718. mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
  719. return SUCCESS;
  720. }
  721. /**
  722. * free_shared_mem - Free the allocated Memory
  723. * @nic: Device private variable.
  724. * Description: This function is to free all memory locations allocated by
  725. * the init_shared_mem() function and return it to the kernel.
  726. */
  727. static void free_shared_mem(struct s2io_nic *nic)
  728. {
  729. int i, j, blk_cnt, size;
  730. u32 ufo_size = 0;
  731. void *tmp_v_addr;
  732. dma_addr_t tmp_p_addr;
  733. struct mac_info *mac_control;
  734. struct config_param *config;
  735. int lst_size, lst_per_page;
  736. struct net_device *dev;
  737. int page_num = 0;
  738. if (!nic)
  739. return;
  740. dev = nic->dev;
  741. mac_control = &nic->mac_control;
  742. config = &nic->config;
  743. lst_size = (sizeof(struct TxD) * config->max_txds);
  744. lst_per_page = PAGE_SIZE / lst_size;
  745. for (i = 0; i < config->tx_fifo_num; i++) {
  746. ufo_size += config->tx_cfg[i].fifo_len;
  747. page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
  748. lst_per_page);
  749. for (j = 0; j < page_num; j++) {
  750. int mem_blks = (j * lst_per_page);
  751. if (!mac_control->fifos[i].list_info)
  752. return;
  753. if (!mac_control->fifos[i].list_info[mem_blks].
  754. list_virt_addr)
  755. break;
  756. pci_free_consistent(nic->pdev, PAGE_SIZE,
  757. mac_control->fifos[i].
  758. list_info[mem_blks].
  759. list_virt_addr,
  760. mac_control->fifos[i].
  761. list_info[mem_blks].
  762. list_phy_addr);
  763. nic->mac_control.stats_info->sw_stat.mem_freed
  764. += PAGE_SIZE;
  765. }
  766. /* If we got a zero DMA address during allocation,
  767. * free the page now
  768. */
  769. if (mac_control->zerodma_virt_addr) {
  770. pci_free_consistent(nic->pdev, PAGE_SIZE,
  771. mac_control->zerodma_virt_addr,
  772. (dma_addr_t)0);
  773. DBG_PRINT(INIT_DBG,
  774. "%s: Freeing TxDL with zero DMA addr. ",
  775. dev->name);
  776. DBG_PRINT(INIT_DBG, "Virtual address %p\n",
  777. mac_control->zerodma_virt_addr);
  778. nic->mac_control.stats_info->sw_stat.mem_freed
  779. += PAGE_SIZE;
  780. }
  781. kfree(mac_control->fifos[i].list_info);
  782. nic->mac_control.stats_info->sw_stat.mem_freed +=
  783. (nic->config.tx_cfg[i].fifo_len *sizeof(struct list_info_hold));
  784. }
  785. size = SIZE_OF_BLOCK;
  786. for (i = 0; i < config->rx_ring_num; i++) {
  787. blk_cnt = mac_control->rings[i].block_count;
  788. for (j = 0; j < blk_cnt; j++) {
  789. tmp_v_addr = mac_control->rings[i].rx_blocks[j].
  790. block_virt_addr;
  791. tmp_p_addr = mac_control->rings[i].rx_blocks[j].
  792. block_dma_addr;
  793. if (tmp_v_addr == NULL)
  794. break;
  795. pci_free_consistent(nic->pdev, size,
  796. tmp_v_addr, tmp_p_addr);
  797. nic->mac_control.stats_info->sw_stat.mem_freed += size;
  798. kfree(mac_control->rings[i].rx_blocks[j].rxds);
  799. nic->mac_control.stats_info->sw_stat.mem_freed +=
  800. ( sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
  801. }
  802. }
  803. if (nic->rxd_mode == RXD_MODE_3B) {
  804. /* Freeing buffer storage addresses in 2BUFF mode. */
  805. for (i = 0; i < config->rx_ring_num; i++) {
  806. blk_cnt = config->rx_cfg[i].num_rxd /
  807. (rxd_count[nic->rxd_mode] + 1);
  808. for (j = 0; j < blk_cnt; j++) {
  809. int k = 0;
  810. if (!mac_control->rings[i].ba[j])
  811. continue;
  812. while (k != rxd_count[nic->rxd_mode]) {
  813. struct buffAdd *ba =
  814. &mac_control->rings[i].ba[j][k];
  815. kfree(ba->ba_0_org);
  816. nic->mac_control.stats_info->sw_stat.\
  817. mem_freed += (BUF0_LEN + ALIGN_SIZE);
  818. kfree(ba->ba_1_org);
  819. nic->mac_control.stats_info->sw_stat.\
  820. mem_freed += (BUF1_LEN + ALIGN_SIZE);
  821. k++;
  822. }
  823. kfree(mac_control->rings[i].ba[j]);
  824. nic->mac_control.stats_info->sw_stat.mem_freed += (sizeof(struct buffAdd) *
  825. (rxd_count[nic->rxd_mode] + 1));
  826. }
  827. kfree(mac_control->rings[i].ba);
  828. nic->mac_control.stats_info->sw_stat.mem_freed +=
  829. (sizeof(struct buffAdd *) * blk_cnt);
  830. }
  831. }
  832. if (mac_control->stats_mem) {
  833. pci_free_consistent(nic->pdev,
  834. mac_control->stats_mem_sz,
  835. mac_control->stats_mem,
  836. mac_control->stats_mem_phy);
  837. nic->mac_control.stats_info->sw_stat.mem_freed +=
  838. mac_control->stats_mem_sz;
  839. }
  840. if (nic->ufo_in_band_v) {
  841. kfree(nic->ufo_in_band_v);
  842. nic->mac_control.stats_info->sw_stat.mem_freed
  843. += (ufo_size * sizeof(u64));
  844. }
  845. }
  846. /**
  847. * s2io_verify_pci_mode -
  848. */
  849. static int s2io_verify_pci_mode(struct s2io_nic *nic)
  850. {
  851. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  852. register u64 val64 = 0;
  853. int mode;
  854. val64 = readq(&bar0->pci_mode);
  855. mode = (u8)GET_PCI_MODE(val64);
  856. if ( val64 & PCI_MODE_UNKNOWN_MODE)
  857. return -1; /* Unknown PCI mode */
  858. return mode;
  859. }
  860. #define NEC_VENID 0x1033
  861. #define NEC_DEVID 0x0125
  862. static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
  863. {
  864. struct pci_dev *tdev = NULL;
  865. while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
  866. if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
  867. if (tdev->bus == s2io_pdev->bus->parent)
  868. pci_dev_put(tdev);
  869. return 1;
  870. }
  871. }
  872. return 0;
  873. }
  874. static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
  875. /**
  876. * s2io_print_pci_mode -
  877. */
  878. static int s2io_print_pci_mode(struct s2io_nic *nic)
  879. {
  880. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  881. register u64 val64 = 0;
  882. int mode;
  883. struct config_param *config = &nic->config;
  884. val64 = readq(&bar0->pci_mode);
  885. mode = (u8)GET_PCI_MODE(val64);
  886. if ( val64 & PCI_MODE_UNKNOWN_MODE)
  887. return -1; /* Unknown PCI mode */
  888. config->bus_speed = bus_speed[mode];
  889. if (s2io_on_nec_bridge(nic->pdev)) {
  890. DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
  891. nic->dev->name);
  892. return mode;
  893. }
  894. if (val64 & PCI_MODE_32_BITS) {
  895. DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
  896. } else {
  897. DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
  898. }
  899. switch(mode) {
  900. case PCI_MODE_PCI_33:
  901. DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
  902. break;
  903. case PCI_MODE_PCI_66:
  904. DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
  905. break;
  906. case PCI_MODE_PCIX_M1_66:
  907. DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
  908. break;
  909. case PCI_MODE_PCIX_M1_100:
  910. DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
  911. break;
  912. case PCI_MODE_PCIX_M1_133:
  913. DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
  914. break;
  915. case PCI_MODE_PCIX_M2_66:
  916. DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
  917. break;
  918. case PCI_MODE_PCIX_M2_100:
  919. DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
  920. break;
  921. case PCI_MODE_PCIX_M2_133:
  922. DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
  923. break;
  924. default:
  925. return -1; /* Unsupported bus speed */
  926. }
  927. return mode;
  928. }
  929. /**
  930. * init_nic - Initialization of hardware
  931. * @nic: device peivate variable
  932. * Description: The function sequentially configures every block
  933. * of the H/W from their reset values.
  934. * Return Value: SUCCESS on success and
  935. * '-1' on failure (endian settings incorrect).
  936. */
  937. static int init_nic(struct s2io_nic *nic)
  938. {
  939. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  940. struct net_device *dev = nic->dev;
  941. register u64 val64 = 0;
  942. void __iomem *add;
  943. u32 time;
  944. int i, j;
  945. struct mac_info *mac_control;
  946. struct config_param *config;
  947. int dtx_cnt = 0;
  948. unsigned long long mem_share;
  949. int mem_size;
  950. mac_control = &nic->mac_control;
  951. config = &nic->config;
  952. /* to set the swapper controle on the card */
  953. if(s2io_set_swapper(nic)) {
  954. DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
  955. return -1;
  956. }
  957. /*
  958. * Herc requires EOI to be removed from reset before XGXS, so..
  959. */
  960. if (nic->device_type & XFRAME_II_DEVICE) {
  961. val64 = 0xA500000000ULL;
  962. writeq(val64, &bar0->sw_reset);
  963. msleep(500);
  964. val64 = readq(&bar0->sw_reset);
  965. }
  966. /* Remove XGXS from reset state */
  967. val64 = 0;
  968. writeq(val64, &bar0->sw_reset);
  969. msleep(500);
  970. val64 = readq(&bar0->sw_reset);
  971. /* Enable Receiving broadcasts */
  972. add = &bar0->mac_cfg;
  973. val64 = readq(&bar0->mac_cfg);
  974. val64 |= MAC_RMAC_BCAST_ENABLE;
  975. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  976. writel((u32) val64, add);
  977. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  978. writel((u32) (val64 >> 32), (add + 4));
  979. /* Read registers in all blocks */
  980. val64 = readq(&bar0->mac_int_mask);
  981. val64 = readq(&bar0->mc_int_mask);
  982. val64 = readq(&bar0->xgxs_int_mask);
  983. /* Set MTU */
  984. val64 = dev->mtu;
  985. writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
  986. if (nic->device_type & XFRAME_II_DEVICE) {
  987. while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
  988. SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
  989. &bar0->dtx_control, UF);
  990. if (dtx_cnt & 0x1)
  991. msleep(1); /* Necessary!! */
  992. dtx_cnt++;
  993. }
  994. } else {
  995. while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
  996. SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
  997. &bar0->dtx_control, UF);
  998. val64 = readq(&bar0->dtx_control);
  999. dtx_cnt++;
  1000. }
  1001. }
  1002. /* Tx DMA Initialization */
  1003. val64 = 0;
  1004. writeq(val64, &bar0->tx_fifo_partition_0);
  1005. writeq(val64, &bar0->tx_fifo_partition_1);
  1006. writeq(val64, &bar0->tx_fifo_partition_2);
  1007. writeq(val64, &bar0->tx_fifo_partition_3);
  1008. for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
  1009. val64 |=
  1010. vBIT(config->tx_cfg[i].fifo_len - 1, ((i * 32) + 19),
  1011. 13) | vBIT(config->tx_cfg[i].fifo_priority,
  1012. ((i * 32) + 5), 3);
  1013. if (i == (config->tx_fifo_num - 1)) {
  1014. if (i % 2 == 0)
  1015. i++;
  1016. }
  1017. switch (i) {
  1018. case 1:
  1019. writeq(val64, &bar0->tx_fifo_partition_0);
  1020. val64 = 0;
  1021. break;
  1022. case 3:
  1023. writeq(val64, &bar0->tx_fifo_partition_1);
  1024. val64 = 0;
  1025. break;
  1026. case 5:
  1027. writeq(val64, &bar0->tx_fifo_partition_2);
  1028. val64 = 0;
  1029. break;
  1030. case 7:
  1031. writeq(val64, &bar0->tx_fifo_partition_3);
  1032. break;
  1033. }
  1034. }
  1035. /*
  1036. * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
  1037. * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
  1038. */
  1039. if ((nic->device_type == XFRAME_I_DEVICE) &&
  1040. (nic->pdev->revision < 4))
  1041. writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
  1042. val64 = readq(&bar0->tx_fifo_partition_0);
  1043. DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
  1044. &bar0->tx_fifo_partition_0, (unsigned long long) val64);
  1045. /*
  1046. * Initialization of Tx_PA_CONFIG register to ignore packet
  1047. * integrity checking.
  1048. */
  1049. val64 = readq(&bar0->tx_pa_cfg);
  1050. val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
  1051. TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
  1052. writeq(val64, &bar0->tx_pa_cfg);
  1053. /* Rx DMA intialization. */
  1054. val64 = 0;
  1055. for (i = 0; i < config->rx_ring_num; i++) {
  1056. val64 |=
  1057. vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
  1058. 3);
  1059. }
  1060. writeq(val64, &bar0->rx_queue_priority);
  1061. /*
  1062. * Allocating equal share of memory to all the
  1063. * configured Rings.
  1064. */
  1065. val64 = 0;
  1066. if (nic->device_type & XFRAME_II_DEVICE)
  1067. mem_size = 32;
  1068. else
  1069. mem_size = 64;
  1070. for (i = 0; i < config->rx_ring_num; i++) {
  1071. switch (i) {
  1072. case 0:
  1073. mem_share = (mem_size / config->rx_ring_num +
  1074. mem_size % config->rx_ring_num);
  1075. val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
  1076. continue;
  1077. case 1:
  1078. mem_share = (mem_size / config->rx_ring_num);
  1079. val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
  1080. continue;
  1081. case 2:
  1082. mem_share = (mem_size / config->rx_ring_num);
  1083. val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
  1084. continue;
  1085. case 3:
  1086. mem_share = (mem_size / config->rx_ring_num);
  1087. val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
  1088. continue;
  1089. case 4:
  1090. mem_share = (mem_size / config->rx_ring_num);
  1091. val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
  1092. continue;
  1093. case 5:
  1094. mem_share = (mem_size / config->rx_ring_num);
  1095. val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
  1096. continue;
  1097. case 6:
  1098. mem_share = (mem_size / config->rx_ring_num);
  1099. val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
  1100. continue;
  1101. case 7:
  1102. mem_share = (mem_size / config->rx_ring_num);
  1103. val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
  1104. continue;
  1105. }
  1106. }
  1107. writeq(val64, &bar0->rx_queue_cfg);
  1108. /*
  1109. * Filling Tx round robin registers
  1110. * as per the number of FIFOs
  1111. */
  1112. switch (config->tx_fifo_num) {
  1113. case 1:
  1114. val64 = 0x0000000000000000ULL;
  1115. writeq(val64, &bar0->tx_w_round_robin_0);
  1116. writeq(val64, &bar0->tx_w_round_robin_1);
  1117. writeq(val64, &bar0->tx_w_round_robin_2);
  1118. writeq(val64, &bar0->tx_w_round_robin_3);
  1119. writeq(val64, &bar0->tx_w_round_robin_4);
  1120. break;
  1121. case 2:
  1122. val64 = 0x0000010000010000ULL;
  1123. writeq(val64, &bar0->tx_w_round_robin_0);
  1124. val64 = 0x0100000100000100ULL;
  1125. writeq(val64, &bar0->tx_w_round_robin_1);
  1126. val64 = 0x0001000001000001ULL;
  1127. writeq(val64, &bar0->tx_w_round_robin_2);
  1128. val64 = 0x0000010000010000ULL;
  1129. writeq(val64, &bar0->tx_w_round_robin_3);
  1130. val64 = 0x0100000000000000ULL;
  1131. writeq(val64, &bar0->tx_w_round_robin_4);
  1132. break;
  1133. case 3:
  1134. val64 = 0x0001000102000001ULL;
  1135. writeq(val64, &bar0->tx_w_round_robin_0);
  1136. val64 = 0x0001020000010001ULL;
  1137. writeq(val64, &bar0->tx_w_round_robin_1);
  1138. val64 = 0x0200000100010200ULL;
  1139. writeq(val64, &bar0->tx_w_round_robin_2);
  1140. val64 = 0x0001000102000001ULL;
  1141. writeq(val64, &bar0->tx_w_round_robin_3);
  1142. val64 = 0x0001020000000000ULL;
  1143. writeq(val64, &bar0->tx_w_round_robin_4);
  1144. break;
  1145. case 4:
  1146. val64 = 0x0001020300010200ULL;
  1147. writeq(val64, &bar0->tx_w_round_robin_0);
  1148. val64 = 0x0100000102030001ULL;
  1149. writeq(val64, &bar0->tx_w_round_robin_1);
  1150. val64 = 0x0200010000010203ULL;
  1151. writeq(val64, &bar0->tx_w_round_robin_2);
  1152. val64 = 0x0001020001000001ULL;
  1153. writeq(val64, &bar0->tx_w_round_robin_3);
  1154. val64 = 0x0203000100000000ULL;
  1155. writeq(val64, &bar0->tx_w_round_robin_4);
  1156. break;
  1157. case 5:
  1158. val64 = 0x0001000203000102ULL;
  1159. writeq(val64, &bar0->tx_w_round_robin_0);
  1160. val64 = 0x0001020001030004ULL;
  1161. writeq(val64, &bar0->tx_w_round_robin_1);
  1162. val64 = 0x0001000203000102ULL;
  1163. writeq(val64, &bar0->tx_w_round_robin_2);
  1164. val64 = 0x0001020001030004ULL;
  1165. writeq(val64, &bar0->tx_w_round_robin_3);
  1166. val64 = 0x0001000000000000ULL;
  1167. writeq(val64, &bar0->tx_w_round_robin_4);
  1168. break;
  1169. case 6:
  1170. val64 = 0x0001020304000102ULL;
  1171. writeq(val64, &bar0->tx_w_round_robin_0);
  1172. val64 = 0x0304050001020001ULL;
  1173. writeq(val64, &bar0->tx_w_round_robin_1);
  1174. val64 = 0x0203000100000102ULL;
  1175. writeq(val64, &bar0->tx_w_round_robin_2);
  1176. val64 = 0x0304000102030405ULL;
  1177. writeq(val64, &bar0->tx_w_round_robin_3);
  1178. val64 = 0x0001000200000000ULL;
  1179. writeq(val64, &bar0->tx_w_round_robin_4);
  1180. break;
  1181. case 7:
  1182. val64 = 0x0001020001020300ULL;
  1183. writeq(val64, &bar0->tx_w_round_robin_0);
  1184. val64 = 0x0102030400010203ULL;
  1185. writeq(val64, &bar0->tx_w_round_robin_1);
  1186. val64 = 0x0405060001020001ULL;
  1187. writeq(val64, &bar0->tx_w_round_robin_2);
  1188. val64 = 0x0304050000010200ULL;
  1189. writeq(val64, &bar0->tx_w_round_robin_3);
  1190. val64 = 0x0102030000000000ULL;
  1191. writeq(val64, &bar0->tx_w_round_robin_4);
  1192. break;
  1193. case 8:
  1194. val64 = 0x0001020300040105ULL;
  1195. writeq(val64, &bar0->tx_w_round_robin_0);
  1196. val64 = 0x0200030106000204ULL;
  1197. writeq(val64, &bar0->tx_w_round_robin_1);
  1198. val64 = 0x0103000502010007ULL;
  1199. writeq(val64, &bar0->tx_w_round_robin_2);
  1200. val64 = 0x0304010002060500ULL;
  1201. writeq(val64, &bar0->tx_w_round_robin_3);
  1202. val64 = 0x0103020400000000ULL;
  1203. writeq(val64, &bar0->tx_w_round_robin_4);
  1204. break;
  1205. }
  1206. /* Enable all configured Tx FIFO partitions */
  1207. val64 = readq(&bar0->tx_fifo_partition_0);
  1208. val64 |= (TX_FIFO_PARTITION_EN);
  1209. writeq(val64, &bar0->tx_fifo_partition_0);
  1210. /* Filling the Rx round robin registers as per the
  1211. * number of Rings and steering based on QoS.
  1212. */
  1213. switch (config->rx_ring_num) {
  1214. case 1:
  1215. val64 = 0x8080808080808080ULL;
  1216. writeq(val64, &bar0->rts_qos_steering);
  1217. break;
  1218. case 2:
  1219. val64 = 0x0000010000010000ULL;
  1220. writeq(val64, &bar0->rx_w_round_robin_0);
  1221. val64 = 0x0100000100000100ULL;
  1222. writeq(val64, &bar0->rx_w_round_robin_1);
  1223. val64 = 0x0001000001000001ULL;
  1224. writeq(val64, &bar0->rx_w_round_robin_2);
  1225. val64 = 0x0000010000010000ULL;
  1226. writeq(val64, &bar0->rx_w_round_robin_3);
  1227. val64 = 0x0100000000000000ULL;
  1228. writeq(val64, &bar0->rx_w_round_robin_4);
  1229. val64 = 0x8080808040404040ULL;
  1230. writeq(val64, &bar0->rts_qos_steering);
  1231. break;
  1232. case 3:
  1233. val64 = 0x0001000102000001ULL;
  1234. writeq(val64, &bar0->rx_w_round_robin_0);
  1235. val64 = 0x0001020000010001ULL;
  1236. writeq(val64, &bar0->rx_w_round_robin_1);
  1237. val64 = 0x0200000100010200ULL;
  1238. writeq(val64, &bar0->rx_w_round_robin_2);
  1239. val64 = 0x0001000102000001ULL;
  1240. writeq(val64, &bar0->rx_w_round_robin_3);
  1241. val64 = 0x0001020000000000ULL;
  1242. writeq(val64, &bar0->rx_w_round_robin_4);
  1243. val64 = 0x8080804040402020ULL;
  1244. writeq(val64, &bar0->rts_qos_steering);
  1245. break;
  1246. case 4:
  1247. val64 = 0x0001020300010200ULL;
  1248. writeq(val64, &bar0->rx_w_round_robin_0);
  1249. val64 = 0x0100000102030001ULL;
  1250. writeq(val64, &bar0->rx_w_round_robin_1);
  1251. val64 = 0x0200010000010203ULL;
  1252. writeq(val64, &bar0->rx_w_round_robin_2);
  1253. val64 = 0x0001020001000001ULL;
  1254. writeq(val64, &bar0->rx_w_round_robin_3);
  1255. val64 = 0x0203000100000000ULL;
  1256. writeq(val64, &bar0->rx_w_round_robin_4);
  1257. val64 = 0x8080404020201010ULL;
  1258. writeq(val64, &bar0->rts_qos_steering);
  1259. break;
  1260. case 5:
  1261. val64 = 0x0001000203000102ULL;
  1262. writeq(val64, &bar0->rx_w_round_robin_0);
  1263. val64 = 0x0001020001030004ULL;
  1264. writeq(val64, &bar0->rx_w_round_robin_1);
  1265. val64 = 0x0001000203000102ULL;
  1266. writeq(val64, &bar0->rx_w_round_robin_2);
  1267. val64 = 0x0001020001030004ULL;
  1268. writeq(val64, &bar0->rx_w_round_robin_3);
  1269. val64 = 0x0001000000000000ULL;
  1270. writeq(val64, &bar0->rx_w_round_robin_4);
  1271. val64 = 0x8080404020201008ULL;
  1272. writeq(val64, &bar0->rts_qos_steering);
  1273. break;
  1274. case 6:
  1275. val64 = 0x0001020304000102ULL;
  1276. writeq(val64, &bar0->rx_w_round_robin_0);
  1277. val64 = 0x0304050001020001ULL;
  1278. writeq(val64, &bar0->rx_w_round_robin_1);
  1279. val64 = 0x0203000100000102ULL;
  1280. writeq(val64, &bar0->rx_w_round_robin_2);
  1281. val64 = 0x0304000102030405ULL;
  1282. writeq(val64, &bar0->rx_w_round_robin_3);
  1283. val64 = 0x0001000200000000ULL;
  1284. writeq(val64, &bar0->rx_w_round_robin_4);
  1285. val64 = 0x8080404020100804ULL;
  1286. writeq(val64, &bar0->rts_qos_steering);
  1287. break;
  1288. case 7:
  1289. val64 = 0x0001020001020300ULL;
  1290. writeq(val64, &bar0->rx_w_round_robin_0);
  1291. val64 = 0x0102030400010203ULL;
  1292. writeq(val64, &bar0->rx_w_round_robin_1);
  1293. val64 = 0x0405060001020001ULL;
  1294. writeq(val64, &bar0->rx_w_round_robin_2);
  1295. val64 = 0x0304050000010200ULL;
  1296. writeq(val64, &bar0->rx_w_round_robin_3);
  1297. val64 = 0x0102030000000000ULL;
  1298. writeq(val64, &bar0->rx_w_round_robin_4);
  1299. val64 = 0x8080402010080402ULL;
  1300. writeq(val64, &bar0->rts_qos_steering);
  1301. break;
  1302. case 8:
  1303. val64 = 0x0001020300040105ULL;
  1304. writeq(val64, &bar0->rx_w_round_robin_0);
  1305. val64 = 0x0200030106000204ULL;
  1306. writeq(val64, &bar0->rx_w_round_robin_1);
  1307. val64 = 0x0103000502010007ULL;
  1308. writeq(val64, &bar0->rx_w_round_robin_2);
  1309. val64 = 0x0304010002060500ULL;
  1310. writeq(val64, &bar0->rx_w_round_robin_3);
  1311. val64 = 0x0103020400000000ULL;
  1312. writeq(val64, &bar0->rx_w_round_robin_4);
  1313. val64 = 0x8040201008040201ULL;
  1314. writeq(val64, &bar0->rts_qos_steering);
  1315. break;
  1316. }
  1317. /* UDP Fix */
  1318. val64 = 0;
  1319. for (i = 0; i < 8; i++)
  1320. writeq(val64, &bar0->rts_frm_len_n[i]);
  1321. /* Set the default rts frame length for the rings configured */
  1322. val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
  1323. for (i = 0 ; i < config->rx_ring_num ; i++)
  1324. writeq(val64, &bar0->rts_frm_len_n[i]);
  1325. /* Set the frame length for the configured rings
  1326. * desired by the user
  1327. */
  1328. for (i = 0; i < config->rx_ring_num; i++) {
  1329. /* If rts_frm_len[i] == 0 then it is assumed that user not
  1330. * specified frame length steering.
  1331. * If the user provides the frame length then program
  1332. * the rts_frm_len register for those values or else
  1333. * leave it as it is.
  1334. */
  1335. if (rts_frm_len[i] != 0) {
  1336. writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
  1337. &bar0->rts_frm_len_n[i]);
  1338. }
  1339. }
  1340. /* Disable differentiated services steering logic */
  1341. for (i = 0; i < 64; i++) {
  1342. if (rts_ds_steer(nic, i, 0) == FAILURE) {
  1343. DBG_PRINT(ERR_DBG, "%s: failed rts ds steering",
  1344. dev->name);
  1345. DBG_PRINT(ERR_DBG, "set on codepoint %d\n", i);
  1346. return FAILURE;
  1347. }
  1348. }
  1349. /* Program statistics memory */
  1350. writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
  1351. if (nic->device_type == XFRAME_II_DEVICE) {
  1352. val64 = STAT_BC(0x320);
  1353. writeq(val64, &bar0->stat_byte_cnt);
  1354. }
  1355. /*
  1356. * Initializing the sampling rate for the device to calculate the
  1357. * bandwidth utilization.
  1358. */
  1359. val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
  1360. MAC_RX_LINK_UTIL_VAL(rmac_util_period);
  1361. writeq(val64, &bar0->mac_link_util);
  1362. /*
  1363. * Initializing the Transmit and Receive Traffic Interrupt
  1364. * Scheme.
  1365. */
  1366. /*
  1367. * TTI Initialization. Default Tx timer gets us about
  1368. * 250 interrupts per sec. Continuous interrupts are enabled
  1369. * by default.
  1370. */
  1371. if (nic->device_type == XFRAME_II_DEVICE) {
  1372. int count = (nic->config.bus_speed * 125)/2;
  1373. val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
  1374. } else {
  1375. val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
  1376. }
  1377. val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
  1378. TTI_DATA1_MEM_TX_URNG_B(0x10) |
  1379. TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN;
  1380. if (use_continuous_tx_intrs)
  1381. val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
  1382. writeq(val64, &bar0->tti_data1_mem);
  1383. val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
  1384. TTI_DATA2_MEM_TX_UFC_B(0x20) |
  1385. TTI_DATA2_MEM_TX_UFC_C(0x40) | TTI_DATA2_MEM_TX_UFC_D(0x80);
  1386. writeq(val64, &bar0->tti_data2_mem);
  1387. val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
  1388. writeq(val64, &bar0->tti_command_mem);
  1389. /*
  1390. * Once the operation completes, the Strobe bit of the command
  1391. * register will be reset. We poll for this particular condition
  1392. * We wait for a maximum of 500ms for the operation to complete,
  1393. * if it's not complete by then we return error.
  1394. */
  1395. time = 0;
  1396. while (TRUE) {
  1397. val64 = readq(&bar0->tti_command_mem);
  1398. if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
  1399. break;
  1400. }
  1401. if (time > 10) {
  1402. DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n",
  1403. dev->name);
  1404. return -1;
  1405. }
  1406. msleep(50);
  1407. time++;
  1408. }
  1409. if (nic->config.bimodal) {
  1410. int k = 0;
  1411. for (k = 0; k < config->rx_ring_num; k++) {
  1412. val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
  1413. val64 |= TTI_CMD_MEM_OFFSET(0x38+k);
  1414. writeq(val64, &bar0->tti_command_mem);
  1415. /*
  1416. * Once the operation completes, the Strobe bit of the command
  1417. * register will be reset. We poll for this particular condition
  1418. * We wait for a maximum of 500ms for the operation to complete,
  1419. * if it's not complete by then we return error.
  1420. */
  1421. time = 0;
  1422. while (TRUE) {
  1423. val64 = readq(&bar0->tti_command_mem);
  1424. if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
  1425. break;
  1426. }
  1427. if (time > 10) {
  1428. DBG_PRINT(ERR_DBG,
  1429. "%s: TTI init Failed\n",
  1430. dev->name);
  1431. return -1;
  1432. }
  1433. time++;
  1434. msleep(50);
  1435. }
  1436. }
  1437. } else {
  1438. /* RTI Initialization */
  1439. if (nic->device_type == XFRAME_II_DEVICE) {
  1440. /*
  1441. * Programmed to generate Apprx 500 Intrs per
  1442. * second
  1443. */
  1444. int count = (nic->config.bus_speed * 125)/4;
  1445. val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
  1446. } else {
  1447. val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
  1448. }
  1449. val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
  1450. RTI_DATA1_MEM_RX_URNG_B(0x10) |
  1451. RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
  1452. writeq(val64, &bar0->rti_data1_mem);
  1453. val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
  1454. RTI_DATA2_MEM_RX_UFC_B(0x2) ;
  1455. if (nic->intr_type == MSI_X)
  1456. val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
  1457. RTI_DATA2_MEM_RX_UFC_D(0x40));
  1458. else
  1459. val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
  1460. RTI_DATA2_MEM_RX_UFC_D(0x80));
  1461. writeq(val64, &bar0->rti_data2_mem);
  1462. for (i = 0; i < config->rx_ring_num; i++) {
  1463. val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
  1464. | RTI_CMD_MEM_OFFSET(i);
  1465. writeq(val64, &bar0->rti_command_mem);
  1466. /*
  1467. * Once the operation completes, the Strobe bit of the
  1468. * command register will be reset. We poll for this
  1469. * particular condition. We wait for a maximum of 500ms
  1470. * for the operation to complete, if it's not complete
  1471. * by then we return error.
  1472. */
  1473. time = 0;
  1474. while (TRUE) {
  1475. val64 = readq(&bar0->rti_command_mem);
  1476. if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD)) {
  1477. break;
  1478. }
  1479. if (time > 10) {
  1480. DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
  1481. dev->name);
  1482. return -1;
  1483. }
  1484. time++;
  1485. msleep(50);
  1486. }
  1487. }
  1488. }
  1489. /*
  1490. * Initializing proper values as Pause threshold into all
  1491. * the 8 Queues on Rx side.
  1492. */
  1493. writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
  1494. writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
  1495. /* Disable RMAC PAD STRIPPING */
  1496. add = &bar0->mac_cfg;
  1497. val64 = readq(&bar0->mac_cfg);
  1498. val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
  1499. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1500. writel((u32) (val64), add);
  1501. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1502. writel((u32) (val64 >> 32), (add + 4));
  1503. val64 = readq(&bar0->mac_cfg);
  1504. /* Enable FCS stripping by adapter */
  1505. add = &bar0->mac_cfg;
  1506. val64 = readq(&bar0->mac_cfg);
  1507. val64 |= MAC_CFG_RMAC_STRIP_FCS;
  1508. if (nic->device_type == XFRAME_II_DEVICE)
  1509. writeq(val64, &bar0->mac_cfg);
  1510. else {
  1511. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1512. writel((u32) (val64), add);
  1513. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1514. writel((u32) (val64 >> 32), (add + 4));
  1515. }
  1516. /*
  1517. * Set the time value to be inserted in the pause frame
  1518. * generated by xena.
  1519. */
  1520. val64 = readq(&bar0->rmac_pause_cfg);
  1521. val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
  1522. val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
  1523. writeq(val64, &bar0->rmac_pause_cfg);
  1524. /*
  1525. * Set the Threshold Limit for Generating the pause frame
  1526. * If the amount of data in any Queue exceeds ratio of
  1527. * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
  1528. * pause frame is generated
  1529. */
  1530. val64 = 0;
  1531. for (i = 0; i < 4; i++) {
  1532. val64 |=
  1533. (((u64) 0xFF00 | nic->mac_control.
  1534. mc_pause_threshold_q0q3)
  1535. << (i * 2 * 8));
  1536. }
  1537. writeq(val64, &bar0->mc_pause_thresh_q0q3);
  1538. val64 = 0;
  1539. for (i = 0; i < 4; i++) {
  1540. val64 |=
  1541. (((u64) 0xFF00 | nic->mac_control.
  1542. mc_pause_threshold_q4q7)
  1543. << (i * 2 * 8));
  1544. }
  1545. writeq(val64, &bar0->mc_pause_thresh_q4q7);
  1546. /*
  1547. * TxDMA will stop Read request if the number of read split has
  1548. * exceeded the limit pointed by shared_splits
  1549. */
  1550. val64 = readq(&bar0->pic_control);
  1551. val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
  1552. writeq(val64, &bar0->pic_control);
  1553. if (nic->config.bus_speed == 266) {
  1554. writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
  1555. writeq(0x0, &bar0->read_retry_delay);
  1556. writeq(0x0, &bar0->write_retry_delay);
  1557. }
  1558. /*
  1559. * Programming the Herc to split every write transaction
  1560. * that does not start on an ADB to reduce disconnects.
  1561. */
  1562. if (nic->device_type == XFRAME_II_DEVICE) {
  1563. val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
  1564. MISC_LINK_STABILITY_PRD(3);
  1565. writeq(val64, &bar0->misc_control);
  1566. val64 = readq(&bar0->pic_control2);
  1567. val64 &= ~(BIT(13)|BIT(14)|BIT(15));
  1568. writeq(val64, &bar0->pic_control2);
  1569. }
  1570. if (strstr(nic->product_name, "CX4")) {
  1571. val64 = TMAC_AVG_IPG(0x17);
  1572. writeq(val64, &bar0->tmac_avg_ipg);
  1573. }
  1574. return SUCCESS;
  1575. }
  1576. #define LINK_UP_DOWN_INTERRUPT 1
  1577. #define MAC_RMAC_ERR_TIMER 2
  1578. static int s2io_link_fault_indication(struct s2io_nic *nic)
  1579. {
  1580. if (nic->intr_type != INTA)
  1581. return MAC_RMAC_ERR_TIMER;
  1582. if (nic->device_type == XFRAME_II_DEVICE)
  1583. return LINK_UP_DOWN_INTERRUPT;
  1584. else
  1585. return MAC_RMAC_ERR_TIMER;
  1586. }
  1587. /**
  1588. * en_dis_able_nic_intrs - Enable or Disable the interrupts
  1589. * @nic: device private variable,
  1590. * @mask: A mask indicating which Intr block must be modified and,
  1591. * @flag: A flag indicating whether to enable or disable the Intrs.
  1592. * Description: This function will either disable or enable the interrupts
  1593. * depending on the flag argument. The mask argument can be used to
  1594. * enable/disable any Intr block.
  1595. * Return Value: NONE.
  1596. */
  1597. static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
  1598. {
  1599. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  1600. register u64 val64 = 0, temp64 = 0;
  1601. /* Top level interrupt classification */
  1602. /* PIC Interrupts */
  1603. if ((mask & (TX_PIC_INTR | RX_PIC_INTR))) {
  1604. /* Enable PIC Intrs in the general intr mask register */
  1605. val64 = TXPIC_INT_M;
  1606. if (flag == ENABLE_INTRS) {
  1607. temp64 = readq(&bar0->general_int_mask);
  1608. temp64 &= ~((u64) val64);
  1609. writeq(temp64, &bar0->general_int_mask);
  1610. /*
  1611. * If Hercules adapter enable GPIO otherwise
  1612. * disable all PCIX, Flash, MDIO, IIC and GPIO
  1613. * interrupts for now.
  1614. * TODO
  1615. */
  1616. if (s2io_link_fault_indication(nic) ==
  1617. LINK_UP_DOWN_INTERRUPT ) {
  1618. temp64 = readq(&bar0->pic_int_mask);
  1619. temp64 &= ~((u64) PIC_INT_GPIO);
  1620. writeq(temp64, &bar0->pic_int_mask);
  1621. temp64 = readq(&bar0->gpio_int_mask);
  1622. temp64 &= ~((u64) GPIO_INT_MASK_LINK_UP);
  1623. writeq(temp64, &bar0->gpio_int_mask);
  1624. } else {
  1625. writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
  1626. }
  1627. /*
  1628. * No MSI Support is available presently, so TTI and
  1629. * RTI interrupts are also disabled.
  1630. */
  1631. } else if (flag == DISABLE_INTRS) {
  1632. /*
  1633. * Disable PIC Intrs in the general
  1634. * intr mask register
  1635. */
  1636. writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
  1637. temp64 = readq(&bar0->general_int_mask);
  1638. val64 |= temp64;
  1639. writeq(val64, &bar0->general_int_mask);
  1640. }
  1641. }
  1642. /* MAC Interrupts */
  1643. /* Enabling/Disabling MAC interrupts */
  1644. if (mask & (TX_MAC_INTR | RX_MAC_INTR)) {
  1645. val64 = TXMAC_INT_M | RXMAC_INT_M;
  1646. if (flag == ENABLE_INTRS) {
  1647. temp64 = readq(&bar0->general_int_mask);
  1648. temp64 &= ~((u64) val64);
  1649. writeq(temp64, &bar0->general_int_mask);
  1650. /*
  1651. * All MAC block error interrupts are disabled for now
  1652. * TODO
  1653. */
  1654. } else if (flag == DISABLE_INTRS) {
  1655. /*
  1656. * Disable MAC Intrs in the general intr mask register
  1657. */
  1658. writeq(DISABLE_ALL_INTRS, &bar0->mac_int_mask);
  1659. writeq(DISABLE_ALL_INTRS,
  1660. &bar0->mac_rmac_err_mask);
  1661. temp64 = readq(&bar0->general_int_mask);
  1662. val64 |= temp64;
  1663. writeq(val64, &bar0->general_int_mask);
  1664. }
  1665. }
  1666. /* Tx traffic interrupts */
  1667. if (mask & TX_TRAFFIC_INTR) {
  1668. val64 = TXTRAFFIC_INT_M;
  1669. if (flag == ENABLE_INTRS) {
  1670. temp64 = readq(&bar0->general_int_mask);
  1671. temp64 &= ~((u64) val64);
  1672. writeq(temp64, &bar0->general_int_mask);
  1673. /*
  1674. * Enable all the Tx side interrupts
  1675. * writing 0 Enables all 64 TX interrupt levels
  1676. */
  1677. writeq(0x0, &bar0->tx_traffic_mask);
  1678. } else if (flag == DISABLE_INTRS) {
  1679. /*
  1680. * Disable Tx Traffic Intrs in the general intr mask
  1681. * register.
  1682. */
  1683. writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
  1684. temp64 = readq(&bar0->general_int_mask);
  1685. val64 |= temp64;
  1686. writeq(val64, &bar0->general_int_mask);
  1687. }
  1688. }
  1689. /* Rx traffic interrupts */
  1690. if (mask & RX_TRAFFIC_INTR) {
  1691. val64 = RXTRAFFIC_INT_M;
  1692. if (flag == ENABLE_INTRS) {
  1693. temp64 = readq(&bar0->general_int_mask);
  1694. temp64 &= ~((u64) val64);
  1695. writeq(temp64, &bar0->general_int_mask);
  1696. /* writing 0 Enables all 8 RX interrupt levels */
  1697. writeq(0x0, &bar0->rx_traffic_mask);
  1698. } else if (flag == DISABLE_INTRS) {
  1699. /*
  1700. * Disable Rx Traffic Intrs in the general intr mask
  1701. * register.
  1702. */
  1703. writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
  1704. temp64 = readq(&bar0->general_int_mask);
  1705. val64 |= temp64;
  1706. writeq(val64, &bar0->general_int_mask);
  1707. }
  1708. }
  1709. }
  1710. /**
  1711. * verify_pcc_quiescent- Checks for PCC quiescent state
  1712. * Return: 1 If PCC is quiescence
  1713. * 0 If PCC is not quiescence
  1714. */
  1715. static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
  1716. {
  1717. int ret = 0, herc;
  1718. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  1719. u64 val64 = readq(&bar0->adapter_status);
  1720. herc = (sp->device_type == XFRAME_II_DEVICE);
  1721. if (flag == FALSE) {
  1722. if ((!herc && (sp->pdev->revision >= 4)) || herc) {
  1723. if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
  1724. ret = 1;
  1725. } else {
  1726. if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
  1727. ret = 1;
  1728. }
  1729. } else {
  1730. if ((!herc && (sp->pdev->revision >= 4)) || herc) {
  1731. if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
  1732. ADAPTER_STATUS_RMAC_PCC_IDLE))
  1733. ret = 1;
  1734. } else {
  1735. if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
  1736. ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
  1737. ret = 1;
  1738. }
  1739. }
  1740. return ret;
  1741. }
  1742. /**
  1743. * verify_xena_quiescence - Checks whether the H/W is ready
  1744. * Description: Returns whether the H/W is ready to go or not. Depending
  1745. * on whether adapter enable bit was written or not the comparison
  1746. * differs and the calling function passes the input argument flag to
  1747. * indicate this.
  1748. * Return: 1 If xena is quiescence
  1749. * 0 If Xena is not quiescence
  1750. */
  1751. static int verify_xena_quiescence(struct s2io_nic *sp)
  1752. {
  1753. int mode;
  1754. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  1755. u64 val64 = readq(&bar0->adapter_status);
  1756. mode = s2io_verify_pci_mode(sp);
  1757. if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
  1758. DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!");
  1759. return 0;
  1760. }
  1761. if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
  1762. DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!");
  1763. return 0;
  1764. }
  1765. if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
  1766. DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!");
  1767. return 0;
  1768. }
  1769. if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
  1770. DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!");
  1771. return 0;
  1772. }
  1773. if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
  1774. DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!");
  1775. return 0;
  1776. }
  1777. if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
  1778. DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!");
  1779. return 0;
  1780. }
  1781. if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
  1782. DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!");
  1783. return 0;
  1784. }
  1785. if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
  1786. DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!");
  1787. return 0;
  1788. }
  1789. /*
  1790. * In PCI 33 mode, the P_PLL is not used, and therefore,
  1791. * the the P_PLL_LOCK bit in the adapter_status register will
  1792. * not be asserted.
  1793. */
  1794. if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
  1795. sp->device_type == XFRAME_II_DEVICE && mode !=
  1796. PCI_MODE_PCI_33) {
  1797. DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!");
  1798. return 0;
  1799. }
  1800. if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
  1801. ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
  1802. DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!");
  1803. return 0;
  1804. }
  1805. return 1;
  1806. }
  1807. /**
  1808. * fix_mac_address - Fix for Mac addr problem on Alpha platforms
  1809. * @sp: Pointer to device specifc structure
  1810. * Description :
  1811. * New procedure to clear mac address reading problems on Alpha platforms
  1812. *
  1813. */
  1814. static void fix_mac_address(struct s2io_nic * sp)
  1815. {
  1816. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  1817. u64 val64;
  1818. int i = 0;
  1819. while (fix_mac[i] != END_SIGN) {
  1820. writeq(fix_mac[i++], &bar0->gpio_control);
  1821. udelay(10);
  1822. val64 = readq(&bar0->gpio_control);
  1823. }
  1824. }
  1825. /**
  1826. * start_nic - Turns the device on
  1827. * @nic : device private variable.
  1828. * Description:
  1829. * This function actually turns the device on. Before this function is
  1830. * called,all Registers are configured from their reset states
  1831. * and shared memory is allocated but the NIC is still quiescent. On
  1832. * calling this function, the device interrupts are cleared and the NIC is
  1833. * literally switched on by writing into the adapter control register.
  1834. * Return Value:
  1835. * SUCCESS on success and -1 on failure.
  1836. */
  1837. static int start_nic(struct s2io_nic *nic)
  1838. {
  1839. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  1840. struct net_device *dev = nic->dev;
  1841. register u64 val64 = 0;
  1842. u16 subid, i;
  1843. struct mac_info *mac_control;
  1844. struct config_param *config;
  1845. mac_control = &nic->mac_control;
  1846. config = &nic->config;
  1847. /* PRC Initialization and configuration */
  1848. for (i = 0; i < config->rx_ring_num; i++) {
  1849. writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
  1850. &bar0->prc_rxd0_n[i]);
  1851. val64 = readq(&bar0->prc_ctrl_n[i]);
  1852. if (nic->config.bimodal)
  1853. val64 |= PRC_CTRL_BIMODAL_INTERRUPT;
  1854. if (nic->rxd_mode == RXD_MODE_1)
  1855. val64 |= PRC_CTRL_RC_ENABLED;
  1856. else
  1857. val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
  1858. if (nic->device_type == XFRAME_II_DEVICE)
  1859. val64 |= PRC_CTRL_GROUP_READS;
  1860. val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
  1861. val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
  1862. writeq(val64, &bar0->prc_ctrl_n[i]);
  1863. }
  1864. if (nic->rxd_mode == RXD_MODE_3B) {
  1865. /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
  1866. val64 = readq(&bar0->rx_pa_cfg);
  1867. val64 |= RX_PA_CFG_IGNORE_L2_ERR;
  1868. writeq(val64, &bar0->rx_pa_cfg);
  1869. }
  1870. if (vlan_tag_strip == 0) {
  1871. val64 = readq(&bar0->rx_pa_cfg);
  1872. val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
  1873. writeq(val64, &bar0->rx_pa_cfg);
  1874. vlan_strip_flag = 0;
  1875. }
  1876. /*
  1877. * Enabling MC-RLDRAM. After enabling the device, we timeout
  1878. * for around 100ms, which is approximately the time required
  1879. * for the device to be ready for operation.
  1880. */
  1881. val64 = readq(&bar0->mc_rldram_mrs);
  1882. val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
  1883. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
  1884. val64 = readq(&bar0->mc_rldram_mrs);
  1885. msleep(100); /* Delay by around 100 ms. */
  1886. /* Enabling ECC Protection. */
  1887. val64 = readq(&bar0->adapter_control);
  1888. val64 &= ~ADAPTER_ECC_EN;
  1889. writeq(val64, &bar0->adapter_control);
  1890. /*
  1891. * Clearing any possible Link state change interrupts that
  1892. * could have popped up just before Enabling the card.
  1893. */
  1894. val64 = readq(&bar0->mac_rmac_err_reg);
  1895. if (val64)
  1896. writeq(val64, &bar0->mac_rmac_err_reg);
  1897. /*
  1898. * Verify if the device is ready to be enabled, if so enable
  1899. * it.
  1900. */
  1901. val64 = readq(&bar0->adapter_status);
  1902. if (!verify_xena_quiescence(nic)) {
  1903. DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
  1904. DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
  1905. (unsigned long long) val64);
  1906. return FAILURE;
  1907. }
  1908. /*
  1909. * With some switches, link might be already up at this point.
  1910. * Because of this weird behavior, when we enable laser,
  1911. * we may not get link. We need to handle this. We cannot
  1912. * figure out which switch is misbehaving. So we are forced to
  1913. * make a global change.
  1914. */
  1915. /* Enabling Laser. */
  1916. val64 = readq(&bar0->adapter_control);
  1917. val64 |= ADAPTER_EOI_TX_ON;
  1918. writeq(val64, &bar0->adapter_control);
  1919. if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
  1920. /*
  1921. * Dont see link state interrupts initally on some switches,
  1922. * so directly scheduling the link state task here.
  1923. */
  1924. schedule_work(&nic->set_link_task);
  1925. }
  1926. /* SXE-002: Initialize link and activity LED */
  1927. subid = nic->pdev->subsystem_device;
  1928. if (((subid & 0xFF) >= 0x07) &&
  1929. (nic->device_type == XFRAME_I_DEVICE)) {
  1930. val64 = readq(&bar0->gpio_control);
  1931. val64 |= 0x0000800000000000ULL;
  1932. writeq(val64, &bar0->gpio_control);
  1933. val64 = 0x0411040400000000ULL;
  1934. writeq(val64, (void __iomem *)bar0 + 0x2700);
  1935. }
  1936. return SUCCESS;
  1937. }
  1938. /**
  1939. * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
  1940. */
  1941. static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, struct \
  1942. TxD *txdlp, int get_off)
  1943. {
  1944. struct s2io_nic *nic = fifo_data->nic;
  1945. struct sk_buff *skb;
  1946. struct TxD *txds;
  1947. u16 j, frg_cnt;
  1948. txds = txdlp;
  1949. if (txds->Host_Control == (u64)(long)nic->ufo_in_band_v) {
  1950. pci_unmap_single(nic->pdev, (dma_addr_t)
  1951. txds->Buffer_Pointer, sizeof(u64),
  1952. PCI_DMA_TODEVICE);
  1953. txds++;
  1954. }
  1955. skb = (struct sk_buff *) ((unsigned long)
  1956. txds->Host_Control);
  1957. if (!skb) {
  1958. memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
  1959. return NULL;
  1960. }
  1961. pci_unmap_single(nic->pdev, (dma_addr_t)
  1962. txds->Buffer_Pointer,
  1963. skb->len - skb->data_len,
  1964. PCI_DMA_TODEVICE);
  1965. frg_cnt = skb_shinfo(skb)->nr_frags;
  1966. if (frg_cnt) {
  1967. txds++;
  1968. for (j = 0; j < frg_cnt; j++, txds++) {
  1969. skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
  1970. if (!txds->Buffer_Pointer)
  1971. break;
  1972. pci_unmap_page(nic->pdev, (dma_addr_t)
  1973. txds->Buffer_Pointer,
  1974. frag->size, PCI_DMA_TODEVICE);
  1975. }
  1976. }
  1977. memset(txdlp,0, (sizeof(struct TxD) * fifo_data->max_txds));
  1978. return(skb);
  1979. }
  1980. /**
  1981. * free_tx_buffers - Free all queued Tx buffers
  1982. * @nic : device private variable.
  1983. * Description:
  1984. * Free all queued Tx buffers.
  1985. * Return Value: void
  1986. */
  1987. static void free_tx_buffers(struct s2io_nic *nic)
  1988. {
  1989. struct net_device *dev = nic->dev;
  1990. struct sk_buff *skb;
  1991. struct TxD *txdp;
  1992. int i, j;
  1993. struct mac_info *mac_control;
  1994. struct config_param *config;
  1995. int cnt = 0;
  1996. mac_control = &nic->mac_control;
  1997. config = &nic->config;
  1998. for (i = 0; i < config->tx_fifo_num; i++) {
  1999. for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) {
  2000. txdp = (struct TxD *) \
  2001. mac_control->fifos[i].list_info[j].list_virt_addr;
  2002. skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
  2003. if (skb) {
  2004. nic->mac_control.stats_info->sw_stat.mem_freed
  2005. += skb->truesize;
  2006. dev_kfree_skb(skb);
  2007. cnt++;
  2008. }
  2009. }
  2010. DBG_PRINT(INTR_DBG,
  2011. "%s:forcibly freeing %d skbs on FIFO%d\n",
  2012. dev->name, cnt, i);
  2013. mac_control->fifos[i].tx_curr_get_info.offset = 0;
  2014. mac_control->fifos[i].tx_curr_put_info.offset = 0;
  2015. }
  2016. }
  2017. /**
  2018. * stop_nic - To stop the nic
  2019. * @nic ; device private variable.
  2020. * Description:
  2021. * This function does exactly the opposite of what the start_nic()
  2022. * function does. This function is called to stop the device.
  2023. * Return Value:
  2024. * void.
  2025. */
  2026. static void stop_nic(struct s2io_nic *nic)
  2027. {
  2028. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  2029. register u64 val64 = 0;
  2030. u16 interruptible;
  2031. struct mac_info *mac_control;
  2032. struct config_param *config;
  2033. mac_control = &nic->mac_control;
  2034. config = &nic->config;
  2035. /* Disable all interrupts */
  2036. interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
  2037. interruptible |= TX_PIC_INTR | RX_PIC_INTR;
  2038. interruptible |= TX_MAC_INTR | RX_MAC_INTR;
  2039. en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
  2040. /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
  2041. val64 = readq(&bar0->adapter_control);
  2042. val64 &= ~(ADAPTER_CNTL_EN);
  2043. writeq(val64, &bar0->adapter_control);
  2044. }
  2045. /**
  2046. * fill_rx_buffers - Allocates the Rx side skbs
  2047. * @nic: device private variable
  2048. * @ring_no: ring number
  2049. * Description:
  2050. * The function allocates Rx side skbs and puts the physical
  2051. * address of these buffers into the RxD buffer pointers, so that the NIC
  2052. * can DMA the received frame into these locations.
  2053. * The NIC supports 3 receive modes, viz
  2054. * 1. single buffer,
  2055. * 2. three buffer and
  2056. * 3. Five buffer modes.
  2057. * Each mode defines how many fragments the received frame will be split
  2058. * up into by the NIC. The frame is split into L3 header, L4 Header,
  2059. * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
  2060. * is split into 3 fragments. As of now only single buffer mode is
  2061. * supported.
  2062. * Return Value:
  2063. * SUCCESS on success or an appropriate -ve value on failure.
  2064. */
  2065. static int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
  2066. {
  2067. struct net_device *dev = nic->dev;
  2068. struct sk_buff *skb;
  2069. struct RxD_t *rxdp;
  2070. int off, off1, size, block_no, block_no1;
  2071. u32 alloc_tab = 0;
  2072. u32 alloc_cnt;
  2073. struct mac_info *mac_control;
  2074. struct config_param *config;
  2075. u64 tmp;
  2076. struct buffAdd *ba;
  2077. unsigned long flags;
  2078. struct RxD_t *first_rxdp = NULL;
  2079. u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
  2080. struct RxD1 *rxdp1;
  2081. struct RxD3 *rxdp3;
  2082. struct swStat *stats = &nic->mac_control.stats_info->sw_stat;
  2083. mac_control = &nic->mac_control;
  2084. config = &nic->config;
  2085. alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
  2086. atomic_read(&nic->rx_bufs_left[ring_no]);
  2087. block_no1 = mac_control->rings[ring_no].rx_curr_get_info.block_index;
  2088. off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
  2089. while (alloc_tab < alloc_cnt) {
  2090. block_no = mac_control->rings[ring_no].rx_curr_put_info.
  2091. block_index;
  2092. off = mac_control->rings[ring_no].rx_curr_put_info.offset;
  2093. rxdp = mac_control->rings[ring_no].
  2094. rx_blocks[block_no].rxds[off].virt_addr;
  2095. if ((block_no == block_no1) && (off == off1) &&
  2096. (rxdp->Host_Control)) {
  2097. DBG_PRINT(INTR_DBG, "%s: Get and Put",
  2098. dev->name);
  2099. DBG_PRINT(INTR_DBG, " info equated\n");
  2100. goto end;
  2101. }
  2102. if (off && (off == rxd_count[nic->rxd_mode])) {
  2103. mac_control->rings[ring_no].rx_curr_put_info.
  2104. block_index++;
  2105. if (mac_control->rings[ring_no].rx_curr_put_info.
  2106. block_index == mac_control->rings[ring_no].
  2107. block_count)
  2108. mac_control->rings[ring_no].rx_curr_put_info.
  2109. block_index = 0;
  2110. block_no = mac_control->rings[ring_no].
  2111. rx_curr_put_info.block_index;
  2112. if (off == rxd_count[nic->rxd_mode])
  2113. off = 0;
  2114. mac_control->rings[ring_no].rx_curr_put_info.
  2115. offset = off;
  2116. rxdp = mac_control->rings[ring_no].
  2117. rx_blocks[block_no].block_virt_addr;
  2118. DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
  2119. dev->name, rxdp);
  2120. }
  2121. if(!napi) {
  2122. spin_lock_irqsave(&nic->put_lock, flags);
  2123. mac_control->rings[ring_no].put_pos =
  2124. (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
  2125. spin_unlock_irqrestore(&nic->put_lock, flags);
  2126. } else {
  2127. mac_control->rings[ring_no].put_pos =
  2128. (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
  2129. }
  2130. if ((rxdp->Control_1 & RXD_OWN_XENA) &&
  2131. ((nic->rxd_mode == RXD_MODE_3B) &&
  2132. (rxdp->Control_2 & BIT(0)))) {
  2133. mac_control->rings[ring_no].rx_curr_put_info.
  2134. offset = off;
  2135. goto end;
  2136. }
  2137. /* calculate size of skb based on ring mode */
  2138. size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
  2139. HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
  2140. if (nic->rxd_mode == RXD_MODE_1)
  2141. size += NET_IP_ALIGN;
  2142. else
  2143. size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
  2144. /* allocate skb */
  2145. skb = dev_alloc_skb(size);
  2146. if(!skb) {
  2147. DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
  2148. DBG_PRINT(INFO_DBG, "memory to allocate SKBs\n");
  2149. if (first_rxdp) {
  2150. wmb();
  2151. first_rxdp->Control_1 |= RXD_OWN_XENA;
  2152. }
  2153. nic->mac_control.stats_info->sw_stat. \
  2154. mem_alloc_fail_cnt++;
  2155. return -ENOMEM ;
  2156. }
  2157. nic->mac_control.stats_info->sw_stat.mem_allocated
  2158. += skb->truesize;
  2159. if (nic->rxd_mode == RXD_MODE_1) {
  2160. /* 1 buffer mode - normal operation mode */
  2161. rxdp1 = (struct RxD1*)rxdp;
  2162. memset(rxdp, 0, sizeof(struct RxD1));
  2163. skb_reserve(skb, NET_IP_ALIGN);
  2164. rxdp1->Buffer0_ptr = pci_map_single
  2165. (nic->pdev, skb->data, size - NET_IP_ALIGN,
  2166. PCI_DMA_FROMDEVICE);
  2167. if( (rxdp1->Buffer0_ptr == 0) ||
  2168. (rxdp1->Buffer0_ptr ==
  2169. DMA_ERROR_CODE))
  2170. goto pci_map_failed;
  2171. rxdp->Control_2 =
  2172. SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
  2173. } else if (nic->rxd_mode == RXD_MODE_3B) {
  2174. /*
  2175. * 2 buffer mode -
  2176. * 2 buffer mode provides 128
  2177. * byte aligned receive buffers.
  2178. */
  2179. rxdp3 = (struct RxD3*)rxdp;
  2180. /* save buffer pointers to avoid frequent dma mapping */
  2181. Buffer0_ptr = rxdp3->Buffer0_ptr;
  2182. Buffer1_ptr = rxdp3->Buffer1_ptr;
  2183. memset(rxdp, 0, sizeof(struct RxD3));
  2184. /* restore the buffer pointers for dma sync*/
  2185. rxdp3->Buffer0_ptr = Buffer0_ptr;
  2186. rxdp3->Buffer1_ptr = Buffer1_ptr;
  2187. ba = &mac_control->rings[ring_no].ba[block_no][off];
  2188. skb_reserve(skb, BUF0_LEN);
  2189. tmp = (u64)(unsigned long) skb->data;
  2190. tmp += ALIGN_SIZE;
  2191. tmp &= ~ALIGN_SIZE;
  2192. skb->data = (void *) (unsigned long)tmp;
  2193. skb_reset_tail_pointer(skb);
  2194. if (!(rxdp3->Buffer0_ptr))
  2195. rxdp3->Buffer0_ptr =
  2196. pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
  2197. PCI_DMA_FROMDEVICE);
  2198. else
  2199. pci_dma_sync_single_for_device(nic->pdev,
  2200. (dma_addr_t) rxdp3->Buffer0_ptr,
  2201. BUF0_LEN, PCI_DMA_FROMDEVICE);
  2202. if( (rxdp3->Buffer0_ptr == 0) ||
  2203. (rxdp3->Buffer0_ptr == DMA_ERROR_CODE))
  2204. goto pci_map_failed;
  2205. rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
  2206. if (nic->rxd_mode == RXD_MODE_3B) {
  2207. /* Two buffer mode */
  2208. /*
  2209. * Buffer2 will have L3/L4 header plus
  2210. * L4 payload
  2211. */
  2212. rxdp3->Buffer2_ptr = pci_map_single
  2213. (nic->pdev, skb->data, dev->mtu + 4,
  2214. PCI_DMA_FROMDEVICE);
  2215. if( (rxdp3->Buffer2_ptr == 0) ||
  2216. (rxdp3->Buffer2_ptr == DMA_ERROR_CODE))
  2217. goto pci_map_failed;
  2218. rxdp3->Buffer1_ptr =
  2219. pci_map_single(nic->pdev,
  2220. ba->ba_1, BUF1_LEN,
  2221. PCI_DMA_FROMDEVICE);
  2222. if( (rxdp3->Buffer1_ptr == 0) ||
  2223. (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
  2224. pci_unmap_single
  2225. (nic->pdev,
  2226. (dma_addr_t)rxdp3->Buffer2_ptr,
  2227. dev->mtu + 4,
  2228. PCI_DMA_FROMDEVICE);
  2229. goto pci_map_failed;
  2230. }
  2231. rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
  2232. rxdp->Control_2 |= SET_BUFFER2_SIZE_3
  2233. (dev->mtu + 4);
  2234. }
  2235. rxdp->Control_2 |= BIT(0);
  2236. }
  2237. rxdp->Host_Control = (unsigned long) (skb);
  2238. if (alloc_tab & ((1 << rxsync_frequency) - 1))
  2239. rxdp->Control_1 |= RXD_OWN_XENA;
  2240. off++;
  2241. if (off == (rxd_count[nic->rxd_mode] + 1))
  2242. off = 0;
  2243. mac_control->rings[ring_no].rx_curr_put_info.offset = off;
  2244. rxdp->Control_2 |= SET_RXD_MARKER;
  2245. if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
  2246. if (first_rxdp) {
  2247. wmb();
  2248. first_rxdp->Control_1 |= RXD_OWN_XENA;
  2249. }
  2250. first_rxdp = rxdp;
  2251. }
  2252. atomic_inc(&nic->rx_bufs_left[ring_no]);
  2253. alloc_tab++;
  2254. }
  2255. end:
  2256. /* Transfer ownership of first descriptor to adapter just before
  2257. * exiting. Before that, use memory barrier so that ownership
  2258. * and other fields are seen by adapter correctly.
  2259. */
  2260. if (first_rxdp) {
  2261. wmb();
  2262. first_rxdp->Control_1 |= RXD_OWN_XENA;
  2263. }
  2264. return SUCCESS;
  2265. pci_map_failed:
  2266. stats->pci_map_fail_cnt++;
  2267. stats->mem_freed += skb->truesize;
  2268. dev_kfree_skb_irq(skb);
  2269. return -ENOMEM;
  2270. }
  2271. static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
  2272. {
  2273. struct net_device *dev = sp->dev;
  2274. int j;
  2275. struct sk_buff *skb;
  2276. struct RxD_t *rxdp;
  2277. struct mac_info *mac_control;
  2278. struct buffAdd *ba;
  2279. struct RxD1 *rxdp1;
  2280. struct RxD3 *rxdp3;
  2281. mac_control = &sp->mac_control;
  2282. for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
  2283. rxdp = mac_control->rings[ring_no].
  2284. rx_blocks[blk].rxds[j].virt_addr;
  2285. skb = (struct sk_buff *)
  2286. ((unsigned long) rxdp->Host_Control);
  2287. if (!skb) {
  2288. continue;
  2289. }
  2290. if (sp->rxd_mode == RXD_MODE_1) {
  2291. rxdp1 = (struct RxD1*)rxdp;
  2292. pci_unmap_single(sp->pdev, (dma_addr_t)
  2293. rxdp1->Buffer0_ptr,
  2294. dev->mtu +
  2295. HEADER_ETHERNET_II_802_3_SIZE
  2296. + HEADER_802_2_SIZE +
  2297. HEADER_SNAP_SIZE,
  2298. PCI_DMA_FROMDEVICE);
  2299. memset(rxdp, 0, sizeof(struct RxD1));
  2300. } else if(sp->rxd_mode == RXD_MODE_3B) {
  2301. rxdp3 = (struct RxD3*)rxdp;
  2302. ba = &mac_control->rings[ring_no].
  2303. ba[blk][j];
  2304. pci_unmap_single(sp->pdev, (dma_addr_t)
  2305. rxdp3->Buffer0_ptr,
  2306. BUF0_LEN,
  2307. PCI_DMA_FROMDEVICE);
  2308. pci_unmap_single(sp->pdev, (dma_addr_t)
  2309. rxdp3->Buffer1_ptr,
  2310. BUF1_LEN,
  2311. PCI_DMA_FROMDEVICE);
  2312. pci_unmap_single(sp->pdev, (dma_addr_t)
  2313. rxdp3->Buffer2_ptr,
  2314. dev->mtu + 4,
  2315. PCI_DMA_FROMDEVICE);
  2316. memset(rxdp, 0, sizeof(struct RxD3));
  2317. }
  2318. sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
  2319. dev_kfree_skb(skb);
  2320. atomic_dec(&sp->rx_bufs_left[ring_no]);
  2321. }
  2322. }
  2323. /**
  2324. * free_rx_buffers - Frees all Rx buffers
  2325. * @sp: device private variable.
  2326. * Description:
  2327. * This function will free all Rx buffers allocated by host.
  2328. * Return Value:
  2329. * NONE.
  2330. */
  2331. static void free_rx_buffers(struct s2io_nic *sp)
  2332. {
  2333. struct net_device *dev = sp->dev;
  2334. int i, blk = 0, buf_cnt = 0;
  2335. struct mac_info *mac_control;
  2336. struct config_param *config;
  2337. mac_control = &sp->mac_control;
  2338. config = &sp->config;
  2339. for (i = 0; i < config->rx_ring_num; i++) {
  2340. for (blk = 0; blk < rx_ring_sz[i]; blk++)
  2341. free_rxd_blk(sp,i,blk);
  2342. mac_control->rings[i].rx_curr_put_info.block_index = 0;
  2343. mac_control->rings[i].rx_curr_get_info.block_index = 0;
  2344. mac_control->rings[i].rx_curr_put_info.offset = 0;
  2345. mac_control->rings[i].rx_curr_get_info.offset = 0;
  2346. atomic_set(&sp->rx_bufs_left[i], 0);
  2347. DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
  2348. dev->name, buf_cnt, i);
  2349. }
  2350. }
  2351. /**
  2352. * s2io_poll - Rx interrupt handler for NAPI support
  2353. * @napi : pointer to the napi structure.
  2354. * @budget : The number of packets that were budgeted to be processed
  2355. * during one pass through the 'Poll" function.
  2356. * Description:
  2357. * Comes into picture only if NAPI support has been incorporated. It does
  2358. * the same thing that rx_intr_handler does, but not in a interrupt context
  2359. * also It will process only a given number of packets.
  2360. * Return value:
  2361. * 0 on success and 1 if there are No Rx packets to be processed.
  2362. */
  2363. static int s2io_poll(struct napi_struct *napi, int budget)
  2364. {
  2365. struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
  2366. struct net_device *dev = nic->dev;
  2367. int pkt_cnt = 0, org_pkts_to_process;
  2368. struct mac_info *mac_control;
  2369. struct config_param *config;
  2370. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  2371. int i;
  2372. atomic_inc(&nic->isr_cnt);
  2373. mac_control = &nic->mac_control;
  2374. config = &nic->config;
  2375. nic->pkts_to_process = budget;
  2376. org_pkts_to_process = nic->pkts_to_process;
  2377. writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
  2378. readl(&bar0->rx_traffic_int);
  2379. for (i = 0; i < config->rx_ring_num; i++) {
  2380. rx_intr_handler(&mac_control->rings[i]);
  2381. pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
  2382. if (!nic->pkts_to_process) {
  2383. /* Quota for the current iteration has been met */
  2384. goto no_rx;
  2385. }
  2386. }
  2387. netif_rx_complete(dev, napi);
  2388. for (i = 0; i < config->rx_ring_num; i++) {
  2389. if (fill_rx_buffers(nic, i) == -ENOMEM) {
  2390. DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
  2391. DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
  2392. break;
  2393. }
  2394. }
  2395. /* Re enable the Rx interrupts. */
  2396. writeq(0x0, &bar0->rx_traffic_mask);
  2397. readl(&bar0->rx_traffic_mask);
  2398. atomic_dec(&nic->isr_cnt);
  2399. return pkt_cnt;
  2400. no_rx:
  2401. for (i = 0; i < config->rx_ring_num; i++) {
  2402. if (fill_rx_buffers(nic, i) == -ENOMEM) {
  2403. DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
  2404. DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
  2405. break;
  2406. }
  2407. }
  2408. atomic_dec(&nic->isr_cnt);
  2409. return pkt_cnt;
  2410. }
  2411. #ifdef CONFIG_NET_POLL_CONTROLLER
  2412. /**
  2413. * s2io_netpoll - netpoll event handler entry point
  2414. * @dev : pointer to the device structure.
  2415. * Description:
  2416. * This function will be called by upper layer to check for events on the
  2417. * interface in situations where interrupts are disabled. It is used for
  2418. * specific in-kernel networking tasks, such as remote consoles and kernel
  2419. * debugging over the network (example netdump in RedHat).
  2420. */
  2421. static void s2io_netpoll(struct net_device *dev)
  2422. {
  2423. struct s2io_nic *nic = dev->priv;
  2424. struct mac_info *mac_control;
  2425. struct config_param *config;
  2426. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  2427. u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
  2428. int i;
  2429. if (pci_channel_offline(nic->pdev))
  2430. return;
  2431. disable_irq(dev->irq);
  2432. atomic_inc(&nic->isr_cnt);
  2433. mac_control = &nic->mac_control;
  2434. config = &nic->config;
  2435. writeq(val64, &bar0->rx_traffic_int);
  2436. writeq(val64, &bar0->tx_traffic_int);
  2437. /* we need to free up the transmitted skbufs or else netpoll will
  2438. * run out of skbs and will fail and eventually netpoll application such
  2439. * as netdump will fail.
  2440. */
  2441. for (i = 0; i < config->tx_fifo_num; i++)
  2442. tx_intr_handler(&mac_control->fifos[i]);
  2443. /* check for received packet and indicate up to network */
  2444. for (i = 0; i < config->rx_ring_num; i++)
  2445. rx_intr_handler(&mac_control->rings[i]);
  2446. for (i = 0; i < config->rx_ring_num; i++) {
  2447. if (fill_rx_buffers(nic, i) == -ENOMEM) {
  2448. DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
  2449. DBG_PRINT(INFO_DBG, " in Rx Netpoll!!\n");
  2450. break;
  2451. }
  2452. }
  2453. atomic_dec(&nic->isr_cnt);
  2454. enable_irq(dev->irq);
  2455. return;
  2456. }
  2457. #endif
  2458. /**
  2459. * rx_intr_handler - Rx interrupt handler
  2460. * @nic: device private variable.
  2461. * Description:
  2462. * If the interrupt is because of a received frame or if the
  2463. * receive ring contains fresh as yet un-processed frames,this function is
  2464. * called. It picks out the RxD at which place the last Rx processing had
  2465. * stopped and sends the skb to the OSM's Rx handler and then increments
  2466. * the offset.
  2467. * Return Value:
  2468. * NONE.
  2469. */
  2470. static void rx_intr_handler(struct ring_info *ring_data)
  2471. {
  2472. struct s2io_nic *nic = ring_data->nic;
  2473. struct net_device *dev = (struct net_device *) nic->dev;
  2474. int get_block, put_block, put_offset;
  2475. struct rx_curr_get_info get_info, put_info;
  2476. struct RxD_t *rxdp;
  2477. struct sk_buff *skb;
  2478. int pkt_cnt = 0;
  2479. int i;
  2480. struct RxD1* rxdp1;
  2481. struct RxD3* rxdp3;
  2482. spin_lock(&nic->rx_lock);
  2483. if (atomic_read(&nic->card_state) == CARD_DOWN) {
  2484. DBG_PRINT(INTR_DBG, "%s: %s going down for reset\n",
  2485. __FUNCTION__, dev->name);
  2486. spin_unlock(&nic->rx_lock);
  2487. return;
  2488. }
  2489. get_info = ring_data->rx_curr_get_info;
  2490. get_block = get_info.block_index;
  2491. memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
  2492. put_block = put_info.block_index;
  2493. rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
  2494. if (!napi) {
  2495. spin_lock(&nic->put_lock);
  2496. put_offset = ring_data->put_pos;
  2497. spin_unlock(&nic->put_lock);
  2498. } else
  2499. put_offset = ring_data->put_pos;
  2500. while (RXD_IS_UP2DT(rxdp)) {
  2501. /*
  2502. * If your are next to put index then it's
  2503. * FIFO full condition
  2504. */
  2505. if ((get_block == put_block) &&
  2506. (get_info.offset + 1) == put_info.offset) {
  2507. DBG_PRINT(INTR_DBG, "%s: Ring Full\n",dev->name);
  2508. break;
  2509. }
  2510. skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
  2511. if (skb == NULL) {
  2512. DBG_PRINT(ERR_DBG, "%s: The skb is ",
  2513. dev->name);
  2514. DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
  2515. spin_unlock(&nic->rx_lock);
  2516. return;
  2517. }
  2518. if (nic->rxd_mode == RXD_MODE_1) {
  2519. rxdp1 = (struct RxD1*)rxdp;
  2520. pci_unmap_single(nic->pdev, (dma_addr_t)
  2521. rxdp1->Buffer0_ptr,
  2522. dev->mtu +
  2523. HEADER_ETHERNET_II_802_3_SIZE +
  2524. HEADER_802_2_SIZE +
  2525. HEADER_SNAP_SIZE,
  2526. PCI_DMA_FROMDEVICE);
  2527. } else if (nic->rxd_mode == RXD_MODE_3B) {
  2528. rxdp3 = (struct RxD3*)rxdp;
  2529. pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
  2530. rxdp3->Buffer0_ptr,
  2531. BUF0_LEN, PCI_DMA_FROMDEVICE);
  2532. pci_unmap_single(nic->pdev, (dma_addr_t)
  2533. rxdp3->Buffer2_ptr,
  2534. dev->mtu + 4,
  2535. PCI_DMA_FROMDEVICE);
  2536. }
  2537. prefetch(skb->data);
  2538. rx_osm_handler(ring_data, rxdp);
  2539. get_info.offset++;
  2540. ring_data->rx_curr_get_info.offset = get_info.offset;
  2541. rxdp = ring_data->rx_blocks[get_block].
  2542. rxds[get_info.offset].virt_addr;
  2543. if (get_info.offset == rxd_count[nic->rxd_mode]) {
  2544. get_info.offset = 0;
  2545. ring_data->rx_curr_get_info.offset = get_info.offset;
  2546. get_block++;
  2547. if (get_block == ring_data->block_count)
  2548. get_block = 0;
  2549. ring_data->rx_curr_get_info.block_index = get_block;
  2550. rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
  2551. }
  2552. nic->pkts_to_process -= 1;
  2553. if ((napi) && (!nic->pkts_to_process))
  2554. break;
  2555. pkt_cnt++;
  2556. if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
  2557. break;
  2558. }
  2559. if (nic->lro) {
  2560. /* Clear all LRO sessions before exiting */
  2561. for (i=0; i<MAX_LRO_SESSIONS; i++) {
  2562. struct lro *lro = &nic->lro0_n[i];
  2563. if (lro->in_use) {
  2564. update_L3L4_header(nic, lro);
  2565. queue_rx_frame(lro->parent);
  2566. clear_lro_session(lro);
  2567. }
  2568. }
  2569. }
  2570. spin_unlock(&nic->rx_lock);
  2571. }
  2572. /**
  2573. * tx_intr_handler - Transmit interrupt handler
  2574. * @nic : device private variable
  2575. * Description:
  2576. * If an interrupt was raised to indicate DMA complete of the
  2577. * Tx packet, this function is called. It identifies the last TxD
  2578. * whose buffer was freed and frees all skbs whose data have already
  2579. * DMA'ed into the NICs internal memory.
  2580. * Return Value:
  2581. * NONE
  2582. */
  2583. static void tx_intr_handler(struct fifo_info *fifo_data)
  2584. {
  2585. struct s2io_nic *nic = fifo_data->nic;
  2586. struct net_device *dev = (struct net_device *) nic->dev;
  2587. struct tx_curr_get_info get_info, put_info;
  2588. struct sk_buff *skb;
  2589. struct TxD *txdlp;
  2590. u8 err_mask;
  2591. get_info = fifo_data->tx_curr_get_info;
  2592. memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
  2593. txdlp = (struct TxD *) fifo_data->list_info[get_info.offset].
  2594. list_virt_addr;
  2595. while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
  2596. (get_info.offset != put_info.offset) &&
  2597. (txdlp->Host_Control)) {
  2598. /* Check for TxD errors */
  2599. if (txdlp->Control_1 & TXD_T_CODE) {
  2600. unsigned long long err;
  2601. err = txdlp->Control_1 & TXD_T_CODE;
  2602. if (err & 0x1) {
  2603. nic->mac_control.stats_info->sw_stat.
  2604. parity_err_cnt++;
  2605. }
  2606. /* update t_code statistics */
  2607. err_mask = err >> 48;
  2608. switch(err_mask) {
  2609. case 2:
  2610. nic->mac_control.stats_info->sw_stat.
  2611. tx_buf_abort_cnt++;
  2612. break;
  2613. case 3:
  2614. nic->mac_control.stats_info->sw_stat.
  2615. tx_desc_abort_cnt++;
  2616. break;
  2617. case 7:
  2618. nic->mac_control.stats_info->sw_stat.
  2619. tx_parity_err_cnt++;
  2620. break;
  2621. case 10:
  2622. nic->mac_control.stats_info->sw_stat.
  2623. tx_link_loss_cnt++;
  2624. break;
  2625. case 15:
  2626. nic->mac_control.stats_info->sw_stat.
  2627. tx_list_proc_err_cnt++;
  2628. break;
  2629. }
  2630. }
  2631. skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
  2632. if (skb == NULL) {
  2633. DBG_PRINT(ERR_DBG, "%s: Null skb ",
  2634. __FUNCTION__);
  2635. DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
  2636. return;
  2637. }
  2638. /* Updating the statistics block */
  2639. nic->stats.tx_bytes += skb->len;
  2640. nic->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
  2641. dev_kfree_skb_irq(skb);
  2642. get_info.offset++;
  2643. if (get_info.offset == get_info.fifo_len + 1)
  2644. get_info.offset = 0;
  2645. txdlp = (struct TxD *) fifo_data->list_info
  2646. [get_info.offset].list_virt_addr;
  2647. fifo_data->tx_curr_get_info.offset =
  2648. get_info.offset;
  2649. }
  2650. spin_lock(&nic->tx_lock);
  2651. if (netif_queue_stopped(dev))
  2652. netif_wake_queue(dev);
  2653. spin_unlock(&nic->tx_lock);
  2654. }
  2655. /**
  2656. * s2io_mdio_write - Function to write in to MDIO registers
  2657. * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
  2658. * @addr : address value
  2659. * @value : data value
  2660. * @dev : pointer to net_device structure
  2661. * Description:
  2662. * This function is used to write values to the MDIO registers
  2663. * NONE
  2664. */
  2665. static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
  2666. {
  2667. u64 val64 = 0x0;
  2668. struct s2io_nic *sp = dev->priv;
  2669. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  2670. //address transaction
  2671. val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
  2672. | MDIO_MMD_DEV_ADDR(mmd_type)
  2673. | MDIO_MMS_PRT_ADDR(0x0);
  2674. writeq(val64, &bar0->mdio_control);
  2675. val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
  2676. writeq(val64, &bar0->mdio_control);
  2677. udelay(100);
  2678. //Data transaction
  2679. val64 = 0x0;
  2680. val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
  2681. | MDIO_MMD_DEV_ADDR(mmd_type)
  2682. | MDIO_MMS_PRT_ADDR(0x0)
  2683. | MDIO_MDIO_DATA(value)
  2684. | MDIO_OP(MDIO_OP_WRITE_TRANS);
  2685. writeq(val64, &bar0->mdio_control);
  2686. val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
  2687. writeq(val64, &bar0->mdio_control);
  2688. udelay(100);
  2689. val64 = 0x0;
  2690. val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
  2691. | MDIO_MMD_DEV_ADDR(mmd_type)
  2692. | MDIO_MMS_PRT_ADDR(0x0)
  2693. | MDIO_OP(MDIO_OP_READ_TRANS);
  2694. writeq(val64, &bar0->mdio_control);
  2695. val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
  2696. writeq(val64, &bar0->mdio_control);
  2697. udelay(100);
  2698. }
  2699. /**
  2700. * s2io_mdio_read - Function to write in to MDIO registers
  2701. * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
  2702. * @addr : address value
  2703. * @dev : pointer to net_device structure
  2704. * Description:
  2705. * This function is used to read values to the MDIO registers
  2706. * NONE
  2707. */
  2708. static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
  2709. {
  2710. u64 val64 = 0x0;
  2711. u64 rval64 = 0x0;
  2712. struct s2io_nic *sp = dev->priv;
  2713. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  2714. /* address transaction */
  2715. val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
  2716. | MDIO_MMD_DEV_ADDR(mmd_type)
  2717. | MDIO_MMS_PRT_ADDR(0x0);
  2718. writeq(val64, &bar0->mdio_control);
  2719. val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
  2720. writeq(val64, &bar0->mdio_control);
  2721. udelay(100);
  2722. /* Data transaction */
  2723. val64 = 0x0;
  2724. val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
  2725. | MDIO_MMD_DEV_ADDR(mmd_type)
  2726. | MDIO_MMS_PRT_ADDR(0x0)
  2727. | MDIO_OP(MDIO_OP_READ_TRANS);
  2728. writeq(val64, &bar0->mdio_control);
  2729. val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
  2730. writeq(val64, &bar0->mdio_control);
  2731. udelay(100);
  2732. /* Read the value from regs */
  2733. rval64 = readq(&bar0->mdio_control);
  2734. rval64 = rval64 & 0xFFFF0000;
  2735. rval64 = rval64 >> 16;
  2736. return rval64;
  2737. }
  2738. /**
  2739. * s2io_chk_xpak_counter - Function to check the status of the xpak counters
  2740. * @counter : couter value to be updated
  2741. * @flag : flag to indicate the status
  2742. * @type : counter type
  2743. * Description:
  2744. * This function is to check the status of the xpak counters value
  2745. * NONE
  2746. */
  2747. static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
  2748. {
  2749. u64 mask = 0x3;
  2750. u64 val64;
  2751. int i;
  2752. for(i = 0; i <index; i++)
  2753. mask = mask << 0x2;
  2754. if(flag > 0)
  2755. {
  2756. *counter = *counter + 1;
  2757. val64 = *regs_stat & mask;
  2758. val64 = val64 >> (index * 0x2);
  2759. val64 = val64 + 1;
  2760. if(val64 == 3)
  2761. {
  2762. switch(type)
  2763. {
  2764. case 1:
  2765. DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
  2766. "service. Excessive temperatures may "
  2767. "result in premature transceiver "
  2768. "failure \n");
  2769. break;
  2770. case 2:
  2771. DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
  2772. "service Excessive bias currents may "
  2773. "indicate imminent laser diode "
  2774. "failure \n");
  2775. break;
  2776. case 3:
  2777. DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
  2778. "service Excessive laser output "
  2779. "power may saturate far-end "
  2780. "receiver\n");
  2781. break;
  2782. default:
  2783. DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
  2784. "type \n");
  2785. }
  2786. val64 = 0x0;
  2787. }
  2788. val64 = val64 << (index * 0x2);
  2789. *regs_stat = (*regs_stat & (~mask)) | (val64);
  2790. } else {
  2791. *regs_stat = *regs_stat & (~mask);
  2792. }
  2793. }
  2794. /**
  2795. * s2io_updt_xpak_counter - Function to update the xpak counters
  2796. * @dev : pointer to net_device struct
  2797. * Description:
  2798. * This function is to upate the status of the xpak counters value
  2799. * NONE
  2800. */
  2801. static void s2io_updt_xpak_counter(struct net_device *dev)
  2802. {
  2803. u16 flag = 0x0;
  2804. u16 type = 0x0;
  2805. u16 val16 = 0x0;
  2806. u64 val64 = 0x0;
  2807. u64 addr = 0x0;
  2808. struct s2io_nic *sp = dev->priv;
  2809. struct stat_block *stat_info = sp->mac_control.stats_info;
  2810. /* Check the communication with the MDIO slave */
  2811. addr = 0x0000;
  2812. val64 = 0x0;
  2813. val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
  2814. if((val64 == 0xFFFF) || (val64 == 0x0000))
  2815. {
  2816. DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
  2817. "Returned %llx\n", (unsigned long long)val64);
  2818. return;
  2819. }
  2820. /* Check for the expecte value of 2040 at PMA address 0x0000 */
  2821. if(val64 != 0x2040)
  2822. {
  2823. DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
  2824. DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
  2825. (unsigned long long)val64);
  2826. return;
  2827. }
  2828. /* Loading the DOM register to MDIO register */
  2829. addr = 0xA100;
  2830. s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
  2831. val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
  2832. /* Reading the Alarm flags */
  2833. addr = 0xA070;
  2834. val64 = 0x0;
  2835. val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
  2836. flag = CHECKBIT(val64, 0x7);
  2837. type = 1;
  2838. s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
  2839. &stat_info->xpak_stat.xpak_regs_stat,
  2840. 0x0, flag, type);
  2841. if(CHECKBIT(val64, 0x6))
  2842. stat_info->xpak_stat.alarm_transceiver_temp_low++;
  2843. flag = CHECKBIT(val64, 0x3);
  2844. type = 2;
  2845. s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
  2846. &stat_info->xpak_stat.xpak_regs_stat,
  2847. 0x2, flag, type);
  2848. if(CHECKBIT(val64, 0x2))
  2849. stat_info->xpak_stat.alarm_laser_bias_current_low++;
  2850. flag = CHECKBIT(val64, 0x1);
  2851. type = 3;
  2852. s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
  2853. &stat_info->xpak_stat.xpak_regs_stat,
  2854. 0x4, flag, type);
  2855. if(CHECKBIT(val64, 0x0))
  2856. stat_info->xpak_stat.alarm_laser_output_power_low++;
  2857. /* Reading the Warning flags */
  2858. addr = 0xA074;
  2859. val64 = 0x0;
  2860. val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
  2861. if(CHECKBIT(val64, 0x7))
  2862. stat_info->xpak_stat.warn_transceiver_temp_high++;
  2863. if(CHECKBIT(val64, 0x6))
  2864. stat_info->xpak_stat.warn_transceiver_temp_low++;
  2865. if(CHECKBIT(val64, 0x3))
  2866. stat_info->xpak_stat.warn_laser_bias_current_high++;
  2867. if(CHECKBIT(val64, 0x2))
  2868. stat_info->xpak_stat.warn_laser_bias_current_low++;
  2869. if(CHECKBIT(val64, 0x1))
  2870. stat_info->xpak_stat.warn_laser_output_power_high++;
  2871. if(CHECKBIT(val64, 0x0))
  2872. stat_info->xpak_stat.warn_laser_output_power_low++;
  2873. }
  2874. /**
  2875. * alarm_intr_handler - Alarm Interrrupt handler
  2876. * @nic: device private variable
  2877. * Description: If the interrupt was neither because of Rx packet or Tx
  2878. * complete, this function is called. If the interrupt was to indicate
  2879. * a loss of link, the OSM link status handler is invoked for any other
  2880. * alarm interrupt the block that raised the interrupt is displayed
  2881. * and a H/W reset is issued.
  2882. * Return Value:
  2883. * NONE
  2884. */
  2885. static void alarm_intr_handler(struct s2io_nic *nic)
  2886. {
  2887. struct net_device *dev = (struct net_device *) nic->dev;
  2888. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  2889. register u64 val64 = 0, err_reg = 0;
  2890. u64 cnt;
  2891. int i;
  2892. if (atomic_read(&nic->card_state) == CARD_DOWN)
  2893. return;
  2894. if (pci_channel_offline(nic->pdev))
  2895. return;
  2896. nic->mac_control.stats_info->sw_stat.ring_full_cnt = 0;
  2897. /* Handling the XPAK counters update */
  2898. if(nic->mac_control.stats_info->xpak_stat.xpak_timer_count < 72000) {
  2899. /* waiting for an hour */
  2900. nic->mac_control.stats_info->xpak_stat.xpak_timer_count++;
  2901. } else {
  2902. s2io_updt_xpak_counter(dev);
  2903. /* reset the count to zero */
  2904. nic->mac_control.stats_info->xpak_stat.xpak_timer_count = 0;
  2905. }
  2906. /* Handling link status change error Intr */
  2907. if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
  2908. err_reg = readq(&bar0->mac_rmac_err_reg);
  2909. writeq(err_reg, &bar0->mac_rmac_err_reg);
  2910. if (err_reg & RMAC_LINK_STATE_CHANGE_INT) {
  2911. schedule_work(&nic->set_link_task);
  2912. }
  2913. }
  2914. /* Handling Ecc errors */
  2915. val64 = readq(&bar0->mc_err_reg);
  2916. writeq(val64, &bar0->mc_err_reg);
  2917. if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
  2918. if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
  2919. nic->mac_control.stats_info->sw_stat.
  2920. double_ecc_errs++;
  2921. DBG_PRINT(INIT_DBG, "%s: Device indicates ",
  2922. dev->name);
  2923. DBG_PRINT(INIT_DBG, "double ECC error!!\n");
  2924. if (nic->device_type != XFRAME_II_DEVICE) {
  2925. /* Reset XframeI only if critical error */
  2926. if (val64 & (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
  2927. MC_ERR_REG_MIRI_ECC_DB_ERR_1)) {
  2928. netif_stop_queue(dev);
  2929. schedule_work(&nic->rst_timer_task);
  2930. nic->mac_control.stats_info->sw_stat.
  2931. soft_reset_cnt++;
  2932. }
  2933. }
  2934. } else {
  2935. nic->mac_control.stats_info->sw_stat.
  2936. single_ecc_errs++;
  2937. }
  2938. }
  2939. /* In case of a serious error, the device will be Reset. */
  2940. val64 = readq(&bar0->serr_source);
  2941. if (val64 & SERR_SOURCE_ANY) {
  2942. nic->mac_control.stats_info->sw_stat.serious_err_cnt++;
  2943. DBG_PRINT(ERR_DBG, "%s: Device indicates ", dev->name);
  2944. DBG_PRINT(ERR_DBG, "serious error %llx!!\n",
  2945. (unsigned long long)val64);
  2946. netif_stop_queue(dev);
  2947. schedule_work(&nic->rst_timer_task);
  2948. nic->mac_control.stats_info->sw_stat.soft_reset_cnt++;
  2949. }
  2950. /*
  2951. * Also as mentioned in the latest Errata sheets if the PCC_FB_ECC
  2952. * Error occurs, the adapter will be recycled by disabling the
  2953. * adapter enable bit and enabling it again after the device
  2954. * becomes Quiescent.
  2955. */
  2956. val64 = readq(&bar0->pcc_err_reg);
  2957. writeq(val64, &bar0->pcc_err_reg);
  2958. if (val64 & PCC_FB_ECC_DB_ERR) {
  2959. u64 ac = readq(&bar0->adapter_control);
  2960. ac &= ~(ADAPTER_CNTL_EN);
  2961. writeq(ac, &bar0->adapter_control);
  2962. ac = readq(&bar0->adapter_control);
  2963. schedule_work(&nic->set_link_task);
  2964. }
  2965. /* Check for data parity error */
  2966. val64 = readq(&bar0->pic_int_status);
  2967. if (val64 & PIC_INT_GPIO) {
  2968. val64 = readq(&bar0->gpio_int_reg);
  2969. if (val64 & GPIO_INT_REG_DP_ERR_INT) {
  2970. nic->mac_control.stats_info->sw_stat.parity_err_cnt++;
  2971. schedule_work(&nic->rst_timer_task);
  2972. nic->mac_control.stats_info->sw_stat.soft_reset_cnt++;
  2973. }
  2974. }
  2975. /* Check for ring full counter */
  2976. if (nic->device_type & XFRAME_II_DEVICE) {
  2977. val64 = readq(&bar0->ring_bump_counter1);
  2978. for (i=0; i<4; i++) {
  2979. cnt = ( val64 & vBIT(0xFFFF,(i*16),16));
  2980. cnt >>= 64 - ((i+1)*16);
  2981. nic->mac_control.stats_info->sw_stat.ring_full_cnt
  2982. += cnt;
  2983. }
  2984. val64 = readq(&bar0->ring_bump_counter2);
  2985. for (i=0; i<4; i++) {
  2986. cnt = ( val64 & vBIT(0xFFFF,(i*16),16));
  2987. cnt >>= 64 - ((i+1)*16);
  2988. nic->mac_control.stats_info->sw_stat.ring_full_cnt
  2989. += cnt;
  2990. }
  2991. }
  2992. /* Other type of interrupts are not being handled now, TODO */
  2993. }
  2994. /**
  2995. * wait_for_cmd_complete - waits for a command to complete.
  2996. * @sp : private member of the device structure, which is a pointer to the
  2997. * s2io_nic structure.
  2998. * Description: Function that waits for a command to Write into RMAC
  2999. * ADDR DATA registers to be completed and returns either success or
  3000. * error depending on whether the command was complete or not.
  3001. * Return value:
  3002. * SUCCESS on success and FAILURE on failure.
  3003. */
  3004. static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
  3005. int bit_state)
  3006. {
  3007. int ret = FAILURE, cnt = 0, delay = 1;
  3008. u64 val64;
  3009. if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
  3010. return FAILURE;
  3011. do {
  3012. val64 = readq(addr);
  3013. if (bit_state == S2IO_BIT_RESET) {
  3014. if (!(val64 & busy_bit)) {
  3015. ret = SUCCESS;
  3016. break;
  3017. }
  3018. } else {
  3019. if (!(val64 & busy_bit)) {
  3020. ret = SUCCESS;
  3021. break;
  3022. }
  3023. }
  3024. if(in_interrupt())
  3025. mdelay(delay);
  3026. else
  3027. msleep(delay);
  3028. if (++cnt >= 10)
  3029. delay = 50;
  3030. } while (cnt < 20);
  3031. return ret;
  3032. }
  3033. /*
  3034. * check_pci_device_id - Checks if the device id is supported
  3035. * @id : device id
  3036. * Description: Function to check if the pci device id is supported by driver.
  3037. * Return value: Actual device id if supported else PCI_ANY_ID
  3038. */
  3039. static u16 check_pci_device_id(u16 id)
  3040. {
  3041. switch (id) {
  3042. case PCI_DEVICE_ID_HERC_WIN:
  3043. case PCI_DEVICE_ID_HERC_UNI:
  3044. return XFRAME_II_DEVICE;
  3045. case PCI_DEVICE_ID_S2IO_UNI:
  3046. case PCI_DEVICE_ID_S2IO_WIN:
  3047. return XFRAME_I_DEVICE;
  3048. default:
  3049. return PCI_ANY_ID;
  3050. }
  3051. }
  3052. /**
  3053. * s2io_reset - Resets the card.
  3054. * @sp : private member of the device structure.
  3055. * Description: Function to Reset the card. This function then also
  3056. * restores the previously saved PCI configuration space registers as
  3057. * the card reset also resets the configuration space.
  3058. * Return value:
  3059. * void.
  3060. */
  3061. static void s2io_reset(struct s2io_nic * sp)
  3062. {
  3063. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  3064. u64 val64;
  3065. u16 subid, pci_cmd;
  3066. int i;
  3067. u16 val16;
  3068. unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
  3069. unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
  3070. DBG_PRINT(INIT_DBG,"%s - Resetting XFrame card %s\n",
  3071. __FUNCTION__, sp->dev->name);
  3072. /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
  3073. pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
  3074. val64 = SW_RESET_ALL;
  3075. writeq(val64, &bar0->sw_reset);
  3076. if (strstr(sp->product_name, "CX4")) {
  3077. msleep(750);
  3078. }
  3079. msleep(250);
  3080. for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
  3081. /* Restore the PCI state saved during initialization. */
  3082. pci_restore_state(sp->pdev);
  3083. pci_read_config_word(sp->pdev, 0x2, &val16);
  3084. if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
  3085. break;
  3086. msleep(200);
  3087. }
  3088. if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) {
  3089. DBG_PRINT(ERR_DBG,"%s SW_Reset failed!\n", __FUNCTION__);
  3090. }
  3091. pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
  3092. s2io_init_pci(sp);
  3093. /* Set swapper to enable I/O register access */
  3094. s2io_set_swapper(sp);
  3095. /* Restore the MSIX table entries from local variables */
  3096. restore_xmsi_data(sp);
  3097. /* Clear certain PCI/PCI-X fields after reset */
  3098. if (sp->device_type == XFRAME_II_DEVICE) {
  3099. /* Clear "detected parity error" bit */
  3100. pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
  3101. /* Clearing PCIX Ecc status register */
  3102. pci_write_config_dword(sp->pdev, 0x68, 0x7C);
  3103. /* Clearing PCI_STATUS error reflected here */
  3104. writeq(BIT(62), &bar0->txpic_int_reg);
  3105. }
  3106. /* Reset device statistics maintained by OS */
  3107. memset(&sp->stats, 0, sizeof (struct net_device_stats));
  3108. up_cnt = sp->mac_control.stats_info->sw_stat.link_up_cnt;
  3109. down_cnt = sp->mac_control.stats_info->sw_stat.link_down_cnt;
  3110. up_time = sp->mac_control.stats_info->sw_stat.link_up_time;
  3111. down_time = sp->mac_control.stats_info->sw_stat.link_down_time;
  3112. reset_cnt = sp->mac_control.stats_info->sw_stat.soft_reset_cnt;
  3113. mem_alloc_cnt = sp->mac_control.stats_info->sw_stat.mem_allocated;
  3114. mem_free_cnt = sp->mac_control.stats_info->sw_stat.mem_freed;
  3115. watchdog_cnt = sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt;
  3116. /* save link up/down time/cnt, reset/memory/watchdog cnt */
  3117. memset(sp->mac_control.stats_info, 0, sizeof(struct stat_block));
  3118. /* restore link up/down time/cnt, reset/memory/watchdog cnt */
  3119. sp->mac_control.stats_info->sw_stat.link_up_cnt = up_cnt;
  3120. sp->mac_control.stats_info->sw_stat.link_down_cnt = down_cnt;
  3121. sp->mac_control.stats_info->sw_stat.link_up_time = up_time;
  3122. sp->mac_control.stats_info->sw_stat.link_down_time = down_time;
  3123. sp->mac_control.stats_info->sw_stat.soft_reset_cnt = reset_cnt;
  3124. sp->mac_control.stats_info->sw_stat.mem_allocated = mem_alloc_cnt;
  3125. sp->mac_control.stats_info->sw_stat.mem_freed = mem_free_cnt;
  3126. sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt = watchdog_cnt;
  3127. /* SXE-002: Configure link and activity LED to turn it off */
  3128. subid = sp->pdev->subsystem_device;
  3129. if (((subid & 0xFF) >= 0x07) &&
  3130. (sp->device_type == XFRAME_I_DEVICE)) {
  3131. val64 = readq(&bar0->gpio_control);
  3132. val64 |= 0x0000800000000000ULL;
  3133. writeq(val64, &bar0->gpio_control);
  3134. val64 = 0x0411040400000000ULL;
  3135. writeq(val64, (void __iomem *)bar0 + 0x2700);
  3136. }
  3137. /*
  3138. * Clear spurious ECC interrupts that would have occured on
  3139. * XFRAME II cards after reset.
  3140. */
  3141. if (sp->device_type == XFRAME_II_DEVICE) {
  3142. val64 = readq(&bar0->pcc_err_reg);
  3143. writeq(val64, &bar0->pcc_err_reg);
  3144. }
  3145. /* restore the previously assigned mac address */
  3146. s2io_set_mac_addr(sp->dev, (u8 *)&sp->def_mac_addr[0].mac_addr);
  3147. sp->device_enabled_once = FALSE;
  3148. }
  3149. /**
  3150. * s2io_set_swapper - to set the swapper controle on the card
  3151. * @sp : private member of the device structure,
  3152. * pointer to the s2io_nic structure.
  3153. * Description: Function to set the swapper control on the card
  3154. * correctly depending on the 'endianness' of the system.
  3155. * Return value:
  3156. * SUCCESS on success and FAILURE on failure.
  3157. */
  3158. static int s2io_set_swapper(struct s2io_nic * sp)
  3159. {
  3160. struct net_device *dev = sp->dev;
  3161. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  3162. u64 val64, valt, valr;
  3163. /*
  3164. * Set proper endian settings and verify the same by reading
  3165. * the PIF Feed-back register.
  3166. */
  3167. val64 = readq(&bar0->pif_rd_swapper_fb);
  3168. if (val64 != 0x0123456789ABCDEFULL) {
  3169. int i = 0;
  3170. u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
  3171. 0x8100008181000081ULL, /* FE=1, SE=0 */
  3172. 0x4200004242000042ULL, /* FE=0, SE=1 */
  3173. 0}; /* FE=0, SE=0 */
  3174. while(i<4) {
  3175. writeq(value[i], &bar0->swapper_ctrl);
  3176. val64 = readq(&bar0->pif_rd_swapper_fb);
  3177. if (val64 == 0x0123456789ABCDEFULL)
  3178. break;
  3179. i++;
  3180. }
  3181. if (i == 4) {
  3182. DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
  3183. dev->name);
  3184. DBG_PRINT(ERR_DBG, "feedback read %llx\n",
  3185. (unsigned long long) val64);
  3186. return FAILURE;
  3187. }
  3188. valr = value[i];
  3189. } else {
  3190. valr = readq(&bar0->swapper_ctrl);
  3191. }
  3192. valt = 0x0123456789ABCDEFULL;
  3193. writeq(valt, &bar0->xmsi_address);
  3194. val64 = readq(&bar0->xmsi_address);
  3195. if(val64 != valt) {
  3196. int i = 0;
  3197. u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
  3198. 0x0081810000818100ULL, /* FE=1, SE=0 */
  3199. 0x0042420000424200ULL, /* FE=0, SE=1 */
  3200. 0}; /* FE=0, SE=0 */
  3201. while(i<4) {
  3202. writeq((value[i] | valr), &bar0->swapper_ctrl);
  3203. writeq(valt, &bar0->xmsi_address);
  3204. val64 = readq(&bar0->xmsi_address);
  3205. if(val64 == valt)
  3206. break;
  3207. i++;
  3208. }
  3209. if(i == 4) {
  3210. unsigned long long x = val64;
  3211. DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
  3212. DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
  3213. return FAILURE;
  3214. }
  3215. }
  3216. val64 = readq(&bar0->swapper_ctrl);
  3217. val64 &= 0xFFFF000000000000ULL;
  3218. #ifdef __BIG_ENDIAN
  3219. /*
  3220. * The device by default set to a big endian format, so a
  3221. * big endian driver need not set anything.
  3222. */
  3223. val64 |= (SWAPPER_CTRL_TXP_FE |
  3224. SWAPPER_CTRL_TXP_SE |
  3225. SWAPPER_CTRL_TXD_R_FE |
  3226. SWAPPER_CTRL_TXD_W_FE |
  3227. SWAPPER_CTRL_TXF_R_FE |
  3228. SWAPPER_CTRL_RXD_R_FE |
  3229. SWAPPER_CTRL_RXD_W_FE |
  3230. SWAPPER_CTRL_RXF_W_FE |
  3231. SWAPPER_CTRL_XMSI_FE |
  3232. SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
  3233. if (sp->intr_type == INTA)
  3234. val64 |= SWAPPER_CTRL_XMSI_SE;
  3235. writeq(val64, &bar0->swapper_ctrl);
  3236. #else
  3237. /*
  3238. * Initially we enable all bits to make it accessible by the
  3239. * driver, then we selectively enable only those bits that
  3240. * we want to set.
  3241. */
  3242. val64 |= (SWAPPER_CTRL_TXP_FE |
  3243. SWAPPER_CTRL_TXP_SE |
  3244. SWAPPER_CTRL_TXD_R_FE |
  3245. SWAPPER_CTRL_TXD_R_SE |
  3246. SWAPPER_CTRL_TXD_W_FE |
  3247. SWAPPER_CTRL_TXD_W_SE |
  3248. SWAPPER_CTRL_TXF_R_FE |
  3249. SWAPPER_CTRL_RXD_R_FE |
  3250. SWAPPER_CTRL_RXD_R_SE |
  3251. SWAPPER_CTRL_RXD_W_FE |
  3252. SWAPPER_CTRL_RXD_W_SE |
  3253. SWAPPER_CTRL_RXF_W_FE |
  3254. SWAPPER_CTRL_XMSI_FE |
  3255. SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
  3256. if (sp->intr_type == INTA)
  3257. val64 |= SWAPPER_CTRL_XMSI_SE;
  3258. writeq(val64, &bar0->swapper_ctrl);
  3259. #endif
  3260. val64 = readq(&bar0->swapper_ctrl);
  3261. /*
  3262. * Verifying if endian settings are accurate by reading a
  3263. * feedback register.
  3264. */
  3265. val64 = readq(&bar0->pif_rd_swapper_fb);
  3266. if (val64 != 0x0123456789ABCDEFULL) {
  3267. /* Endian settings are incorrect, calls for another dekko. */
  3268. DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
  3269. dev->name);
  3270. DBG_PRINT(ERR_DBG, "feedback read %llx\n",
  3271. (unsigned long long) val64);
  3272. return FAILURE;
  3273. }
  3274. return SUCCESS;
  3275. }
  3276. static int wait_for_msix_trans(struct s2io_nic *nic, int i)
  3277. {
  3278. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  3279. u64 val64;
  3280. int ret = 0, cnt = 0;
  3281. do {
  3282. val64 = readq(&bar0->xmsi_access);
  3283. if (!(val64 & BIT(15)))
  3284. break;
  3285. mdelay(1);
  3286. cnt++;
  3287. } while(cnt < 5);
  3288. if (cnt == 5) {
  3289. DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
  3290. ret = 1;
  3291. }
  3292. return ret;
  3293. }
  3294. static void restore_xmsi_data(struct s2io_nic *nic)
  3295. {
  3296. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  3297. u64 val64;
  3298. int i;
  3299. for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
  3300. writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
  3301. writeq(nic->msix_info[i].data, &bar0->xmsi_data);
  3302. val64 = (BIT(7) | BIT(15) | vBIT(i, 26, 6));
  3303. writeq(val64, &bar0->xmsi_access);
  3304. if (wait_for_msix_trans(nic, i)) {
  3305. DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
  3306. continue;
  3307. }
  3308. }
  3309. }
  3310. static void store_xmsi_data(struct s2io_nic *nic)
  3311. {
  3312. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  3313. u64 val64, addr, data;
  3314. int i;
  3315. /* Store and display */
  3316. for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
  3317. val64 = (BIT(15) | vBIT(i, 26, 6));
  3318. writeq(val64, &bar0->xmsi_access);
  3319. if (wait_for_msix_trans(nic, i)) {
  3320. DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
  3321. continue;
  3322. }
  3323. addr = readq(&bar0->xmsi_address);
  3324. data = readq(&bar0->xmsi_data);
  3325. if (addr && data) {
  3326. nic->msix_info[i].addr = addr;
  3327. nic->msix_info[i].data = data;
  3328. }
  3329. }
  3330. }
  3331. static int s2io_enable_msi_x(struct s2io_nic *nic)
  3332. {
  3333. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  3334. u64 tx_mat, rx_mat;
  3335. u16 msi_control; /* Temp variable */
  3336. int ret, i, j, msix_indx = 1;
  3337. nic->entries = kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct msix_entry),
  3338. GFP_KERNEL);
  3339. if (nic->entries == NULL) {
  3340. DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", \
  3341. __FUNCTION__);
  3342. nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
  3343. return -ENOMEM;
  3344. }
  3345. nic->mac_control.stats_info->sw_stat.mem_allocated
  3346. += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
  3347. memset(nic->entries, 0,MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
  3348. nic->s2io_entries =
  3349. kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry),
  3350. GFP_KERNEL);
  3351. if (nic->s2io_entries == NULL) {
  3352. DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
  3353. __FUNCTION__);
  3354. nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
  3355. kfree(nic->entries);
  3356. nic->mac_control.stats_info->sw_stat.mem_freed
  3357. += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
  3358. return -ENOMEM;
  3359. }
  3360. nic->mac_control.stats_info->sw_stat.mem_allocated
  3361. += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
  3362. memset(nic->s2io_entries, 0,
  3363. MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
  3364. for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
  3365. nic->entries[i].entry = i;
  3366. nic->s2io_entries[i].entry = i;
  3367. nic->s2io_entries[i].arg = NULL;
  3368. nic->s2io_entries[i].in_use = 0;
  3369. }
  3370. tx_mat = readq(&bar0->tx_mat0_n[0]);
  3371. for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) {
  3372. tx_mat |= TX_MAT_SET(i, msix_indx);
  3373. nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i];
  3374. nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE;
  3375. nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
  3376. }
  3377. writeq(tx_mat, &bar0->tx_mat0_n[0]);
  3378. if (!nic->config.bimodal) {
  3379. rx_mat = readq(&bar0->rx_mat);
  3380. for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
  3381. rx_mat |= RX_MAT_SET(j, msix_indx);
  3382. nic->s2io_entries[msix_indx].arg
  3383. = &nic->mac_control.rings[j];
  3384. nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
  3385. nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
  3386. }
  3387. writeq(rx_mat, &bar0->rx_mat);
  3388. } else {
  3389. tx_mat = readq(&bar0->tx_mat0_n[7]);
  3390. for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
  3391. tx_mat |= TX_MAT_SET(i, msix_indx);
  3392. nic->s2io_entries[msix_indx].arg
  3393. = &nic->mac_control.rings[j];
  3394. nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
  3395. nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
  3396. }
  3397. writeq(tx_mat, &bar0->tx_mat0_n[7]);
  3398. }
  3399. nic->avail_msix_vectors = 0;
  3400. ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
  3401. /* We fail init if error or we get less vectors than min required */
  3402. if (ret >= (nic->config.tx_fifo_num + nic->config.rx_ring_num + 1)) {
  3403. nic->avail_msix_vectors = ret;
  3404. ret = pci_enable_msix(nic->pdev, nic->entries, ret);
  3405. }
  3406. if (ret) {
  3407. DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
  3408. kfree(nic->entries);
  3409. nic->mac_control.stats_info->sw_stat.mem_freed
  3410. += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
  3411. kfree(nic->s2io_entries);
  3412. nic->mac_control.stats_info->sw_stat.mem_freed
  3413. += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
  3414. nic->entries = NULL;
  3415. nic->s2io_entries = NULL;
  3416. nic->avail_msix_vectors = 0;
  3417. return -ENOMEM;
  3418. }
  3419. if (!nic->avail_msix_vectors)
  3420. nic->avail_msix_vectors = MAX_REQUESTED_MSI_X;
  3421. /*
  3422. * To enable MSI-X, MSI also needs to be enabled, due to a bug
  3423. * in the herc NIC. (Temp change, needs to be removed later)
  3424. */
  3425. pci_read_config_word(nic->pdev, 0x42, &msi_control);
  3426. msi_control |= 0x1; /* Enable MSI */
  3427. pci_write_config_word(nic->pdev, 0x42, msi_control);
  3428. return 0;
  3429. }
  3430. /* Handle software interrupt used during MSI(X) test */
  3431. static irqreturn_t __devinit s2io_test_intr(int irq, void *dev_id)
  3432. {
  3433. struct s2io_nic *sp = dev_id;
  3434. sp->msi_detected = 1;
  3435. wake_up(&sp->msi_wait);
  3436. return IRQ_HANDLED;
  3437. }
  3438. /* Test interrupt path by forcing a a software IRQ */
  3439. static int __devinit s2io_test_msi(struct s2io_nic *sp)
  3440. {
  3441. struct pci_dev *pdev = sp->pdev;
  3442. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  3443. int err;
  3444. u64 val64, saved64;
  3445. err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
  3446. sp->name, sp);
  3447. if (err) {
  3448. DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
  3449. sp->dev->name, pci_name(pdev), pdev->irq);
  3450. return err;
  3451. }
  3452. init_waitqueue_head (&sp->msi_wait);
  3453. sp->msi_detected = 0;
  3454. saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
  3455. val64 |= SCHED_INT_CTRL_ONE_SHOT;
  3456. val64 |= SCHED_INT_CTRL_TIMER_EN;
  3457. val64 |= SCHED_INT_CTRL_INT2MSI(1);
  3458. writeq(val64, &bar0->scheduled_int_ctrl);
  3459. wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
  3460. if (!sp->msi_detected) {
  3461. /* MSI(X) test failed, go back to INTx mode */
  3462. DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated"
  3463. "using MSI(X) during test\n", sp->dev->name,
  3464. pci_name(pdev));
  3465. err = -EOPNOTSUPP;
  3466. }
  3467. free_irq(sp->entries[1].vector, sp);
  3468. writeq(saved64, &bar0->scheduled_int_ctrl);
  3469. return err;
  3470. }
  3471. /* ********************************************************* *
  3472. * Functions defined below concern the OS part of the driver *
  3473. * ********************************************************* */
  3474. /**
  3475. * s2io_open - open entry point of the driver
  3476. * @dev : pointer to the device structure.
  3477. * Description:
  3478. * This function is the open entry point of the driver. It mainly calls a
  3479. * function to allocate Rx buffers and inserts them into the buffer
  3480. * descriptors and then enables the Rx part of the NIC.
  3481. * Return value:
  3482. * 0 on success and an appropriate (-)ve integer as defined in errno.h
  3483. * file on failure.
  3484. */
  3485. static int s2io_open(struct net_device *dev)
  3486. {
  3487. struct s2io_nic *sp = dev->priv;
  3488. int err = 0;
  3489. /*
  3490. * Make sure you have link off by default every time
  3491. * Nic is initialized
  3492. */
  3493. netif_carrier_off(dev);
  3494. sp->last_link_state = 0;
  3495. napi_enable(&sp->napi);
  3496. if (sp->intr_type == MSI_X) {
  3497. int ret = s2io_enable_msi_x(sp);
  3498. if (!ret) {
  3499. u16 msi_control;
  3500. ret = s2io_test_msi(sp);
  3501. /* rollback MSI-X, will re-enable during add_isr() */
  3502. kfree(sp->entries);
  3503. sp->mac_control.stats_info->sw_stat.mem_freed +=
  3504. (MAX_REQUESTED_MSI_X *
  3505. sizeof(struct msix_entry));
  3506. kfree(sp->s2io_entries);
  3507. sp->mac_control.stats_info->sw_stat.mem_freed +=
  3508. (MAX_REQUESTED_MSI_X *
  3509. sizeof(struct s2io_msix_entry));
  3510. sp->entries = NULL;
  3511. sp->s2io_entries = NULL;
  3512. pci_read_config_word(sp->pdev, 0x42, &msi_control);
  3513. msi_control &= 0xFFFE; /* Disable MSI */
  3514. pci_write_config_word(sp->pdev, 0x42, msi_control);
  3515. pci_disable_msix(sp->pdev);
  3516. }
  3517. if (ret) {
  3518. DBG_PRINT(ERR_DBG,
  3519. "%s: MSI-X requested but failed to enable\n",
  3520. dev->name);
  3521. sp->intr_type = INTA;
  3522. }
  3523. }
  3524. /* NAPI doesn't work well with MSI(X) */
  3525. if (sp->intr_type != INTA) {
  3526. if(sp->config.napi)
  3527. sp->config.napi = 0;
  3528. }
  3529. /* Initialize H/W and enable interrupts */
  3530. err = s2io_card_up(sp);
  3531. if (err) {
  3532. DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
  3533. dev->name);
  3534. goto hw_init_failed;
  3535. }
  3536. if (s2io_set_mac_addr(dev, dev->dev_addr) == FAILURE) {
  3537. DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
  3538. s2io_card_down(sp);
  3539. err = -ENODEV;
  3540. goto hw_init_failed;
  3541. }
  3542. netif_start_queue(dev);
  3543. return 0;
  3544. hw_init_failed:
  3545. napi_disable(&sp->napi);
  3546. if (sp->intr_type == MSI_X) {
  3547. if (sp->entries) {
  3548. kfree(sp->entries);
  3549. sp->mac_control.stats_info->sw_stat.mem_freed
  3550. += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
  3551. }
  3552. if (sp->s2io_entries) {
  3553. kfree(sp->s2io_entries);
  3554. sp->mac_control.stats_info->sw_stat.mem_freed
  3555. += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
  3556. }
  3557. }
  3558. return err;
  3559. }
  3560. /**
  3561. * s2io_close -close entry point of the driver
  3562. * @dev : device pointer.
  3563. * Description:
  3564. * This is the stop entry point of the driver. It needs to undo exactly
  3565. * whatever was done by the open entry point,thus it's usually referred to
  3566. * as the close function.Among other things this function mainly stops the
  3567. * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
  3568. * Return value:
  3569. * 0 on success and an appropriate (-)ve integer as defined in errno.h
  3570. * file on failure.
  3571. */
  3572. static int s2io_close(struct net_device *dev)
  3573. {
  3574. struct s2io_nic *sp = dev->priv;
  3575. netif_stop_queue(dev);
  3576. napi_disable(&sp->napi);
  3577. /* Reset card, kill tasklet and free Tx and Rx buffers. */
  3578. s2io_card_down(sp);
  3579. return 0;
  3580. }
  3581. /**
  3582. * s2io_xmit - Tx entry point of te driver
  3583. * @skb : the socket buffer containing the Tx data.
  3584. * @dev : device pointer.
  3585. * Description :
  3586. * This function is the Tx entry point of the driver. S2IO NIC supports
  3587. * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
  3588. * NOTE: when device cant queue the pkt,just the trans_start variable will
  3589. * not be upadted.
  3590. * Return value:
  3591. * 0 on success & 1 on failure.
  3592. */
  3593. static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
  3594. {
  3595. struct s2io_nic *sp = dev->priv;
  3596. u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
  3597. register u64 val64;
  3598. struct TxD *txdp;
  3599. struct TxFIFO_element __iomem *tx_fifo;
  3600. unsigned long flags;
  3601. u16 vlan_tag = 0;
  3602. int vlan_priority = 0;
  3603. struct mac_info *mac_control;
  3604. struct config_param *config;
  3605. int offload_type;
  3606. struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
  3607. mac_control = &sp->mac_control;
  3608. config = &sp->config;
  3609. DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
  3610. if (unlikely(skb->len <= 0)) {
  3611. DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
  3612. dev_kfree_skb_any(skb);
  3613. return 0;
  3614. }
  3615. spin_lock_irqsave(&sp->tx_lock, flags);
  3616. if (atomic_read(&sp->card_state) == CARD_DOWN) {
  3617. DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
  3618. dev->name);
  3619. spin_unlock_irqrestore(&sp->tx_lock, flags);
  3620. dev_kfree_skb(skb);
  3621. return 0;
  3622. }
  3623. queue = 0;
  3624. /* Get Fifo number to Transmit based on vlan priority */
  3625. if (sp->vlgrp && vlan_tx_tag_present(skb)) {
  3626. vlan_tag = vlan_tx_tag_get(skb);
  3627. vlan_priority = vlan_tag >> 13;
  3628. queue = config->fifo_mapping[vlan_priority];
  3629. }
  3630. put_off = (u16) mac_control->fifos[queue].tx_curr_put_info.offset;
  3631. get_off = (u16) mac_control->fifos[queue].tx_curr_get_info.offset;
  3632. txdp = (struct TxD *) mac_control->fifos[queue].list_info[put_off].
  3633. list_virt_addr;
  3634. queue_len = mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1;
  3635. /* Avoid "put" pointer going beyond "get" pointer */
  3636. if (txdp->Host_Control ||
  3637. ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
  3638. DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
  3639. netif_stop_queue(dev);
  3640. dev_kfree_skb(skb);
  3641. spin_unlock_irqrestore(&sp->tx_lock, flags);
  3642. return 0;
  3643. }
  3644. offload_type = s2io_offload_type(skb);
  3645. if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
  3646. txdp->Control_1 |= TXD_TCP_LSO_EN;
  3647. txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
  3648. }
  3649. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  3650. txdp->Control_2 |=
  3651. (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
  3652. TXD_TX_CKO_UDP_EN);
  3653. }
  3654. txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
  3655. txdp->Control_1 |= TXD_LIST_OWN_XENA;
  3656. txdp->Control_2 |= config->tx_intr_type;
  3657. if (sp->vlgrp && vlan_tx_tag_present(skb)) {
  3658. txdp->Control_2 |= TXD_VLAN_ENABLE;
  3659. txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
  3660. }
  3661. frg_len = skb->len - skb->data_len;
  3662. if (offload_type == SKB_GSO_UDP) {
  3663. int ufo_size;
  3664. ufo_size = s2io_udp_mss(skb);
  3665. ufo_size &= ~7;
  3666. txdp->Control_1 |= TXD_UFO_EN;
  3667. txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
  3668. txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
  3669. #ifdef __BIG_ENDIAN
  3670. sp->ufo_in_band_v[put_off] =
  3671. (u64)skb_shinfo(skb)->ip6_frag_id;
  3672. #else
  3673. sp->ufo_in_band_v[put_off] =
  3674. (u64)skb_shinfo(skb)->ip6_frag_id << 32;
  3675. #endif
  3676. txdp->Host_Control = (unsigned long)sp->ufo_in_band_v;
  3677. txdp->Buffer_Pointer = pci_map_single(sp->pdev,
  3678. sp->ufo_in_band_v,
  3679. sizeof(u64), PCI_DMA_TODEVICE);
  3680. if((txdp->Buffer_Pointer == 0) ||
  3681. (txdp->Buffer_Pointer == DMA_ERROR_CODE))
  3682. goto pci_map_failed;
  3683. txdp++;
  3684. }
  3685. txdp->Buffer_Pointer = pci_map_single
  3686. (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
  3687. if((txdp->Buffer_Pointer == 0) ||
  3688. (txdp->Buffer_Pointer == DMA_ERROR_CODE))
  3689. goto pci_map_failed;
  3690. txdp->Host_Control = (unsigned long) skb;
  3691. txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
  3692. if (offload_type == SKB_GSO_UDP)
  3693. txdp->Control_1 |= TXD_UFO_EN;
  3694. frg_cnt = skb_shinfo(skb)->nr_frags;
  3695. /* For fragmented SKB. */
  3696. for (i = 0; i < frg_cnt; i++) {
  3697. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  3698. /* A '0' length fragment will be ignored */
  3699. if (!frag->size)
  3700. continue;
  3701. txdp++;
  3702. txdp->Buffer_Pointer = (u64) pci_map_page
  3703. (sp->pdev, frag->page, frag->page_offset,
  3704. frag->size, PCI_DMA_TODEVICE);
  3705. txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
  3706. if (offload_type == SKB_GSO_UDP)
  3707. txdp->Control_1 |= TXD_UFO_EN;
  3708. }
  3709. txdp->Control_1 |= TXD_GATHER_CODE_LAST;
  3710. if (offload_type == SKB_GSO_UDP)
  3711. frg_cnt++; /* as Txd0 was used for inband header */
  3712. tx_fifo = mac_control->tx_FIFO_start[queue];
  3713. val64 = mac_control->fifos[queue].list_info[put_off].list_phy_addr;
  3714. writeq(val64, &tx_fifo->TxDL_Pointer);
  3715. val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
  3716. TX_FIFO_LAST_LIST);
  3717. if (offload_type)
  3718. val64 |= TX_FIFO_SPECIAL_FUNC;
  3719. writeq(val64, &tx_fifo->List_Control);
  3720. mmiowb();
  3721. put_off++;
  3722. if (put_off == mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1)
  3723. put_off = 0;
  3724. mac_control->fifos[queue].tx_curr_put_info.offset = put_off;
  3725. /* Avoid "put" pointer going beyond "get" pointer */
  3726. if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
  3727. sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
  3728. DBG_PRINT(TX_DBG,
  3729. "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
  3730. put_off, get_off);
  3731. netif_stop_queue(dev);
  3732. }
  3733. mac_control->stats_info->sw_stat.mem_allocated += skb->truesize;
  3734. dev->trans_start = jiffies;
  3735. spin_unlock_irqrestore(&sp->tx_lock, flags);
  3736. return 0;
  3737. pci_map_failed:
  3738. stats->pci_map_fail_cnt++;
  3739. netif_stop_queue(dev);
  3740. stats->mem_freed += skb->truesize;
  3741. dev_kfree_skb(skb);
  3742. spin_unlock_irqrestore(&sp->tx_lock, flags);
  3743. return 0;
  3744. }
  3745. static void
  3746. s2io_alarm_handle(unsigned long data)
  3747. {
  3748. struct s2io_nic *sp = (struct s2io_nic *)data;
  3749. alarm_intr_handler(sp);
  3750. mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
  3751. }
  3752. static int s2io_chk_rx_buffers(struct s2io_nic *sp, int rng_n)
  3753. {
  3754. int rxb_size, level;
  3755. if (!sp->lro) {
  3756. rxb_size = atomic_read(&sp->rx_bufs_left[rng_n]);
  3757. level = rx_buffer_level(sp, rxb_size, rng_n);
  3758. if ((level == PANIC) && (!TASKLET_IN_USE)) {
  3759. int ret;
  3760. DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", __FUNCTION__);
  3761. DBG_PRINT(INTR_DBG, "PANIC levels\n");
  3762. if ((ret = fill_rx_buffers(sp, rng_n)) == -ENOMEM) {
  3763. DBG_PRINT(INFO_DBG, "Out of memory in %s",
  3764. __FUNCTION__);
  3765. clear_bit(0, (&sp->tasklet_status));
  3766. return -1;
  3767. }
  3768. clear_bit(0, (&sp->tasklet_status));
  3769. } else if (level == LOW)
  3770. tasklet_schedule(&sp->task);
  3771. } else if (fill_rx_buffers(sp, rng_n) == -ENOMEM) {
  3772. DBG_PRINT(INFO_DBG, "%s:Out of memory", sp->dev->name);
  3773. DBG_PRINT(INFO_DBG, " in Rx Intr!!\n");
  3774. }
  3775. return 0;
  3776. }
  3777. static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
  3778. {
  3779. struct ring_info *ring = (struct ring_info *)dev_id;
  3780. struct s2io_nic *sp = ring->nic;
  3781. atomic_inc(&sp->isr_cnt);
  3782. rx_intr_handler(ring);
  3783. s2io_chk_rx_buffers(sp, ring->ring_no);
  3784. atomic_dec(&sp->isr_cnt);
  3785. return IRQ_HANDLED;
  3786. }
  3787. static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
  3788. {
  3789. struct fifo_info *fifo = (struct fifo_info *)dev_id;
  3790. struct s2io_nic *sp = fifo->nic;
  3791. atomic_inc(&sp->isr_cnt);
  3792. tx_intr_handler(fifo);
  3793. atomic_dec(&sp->isr_cnt);
  3794. return IRQ_HANDLED;
  3795. }
  3796. static void s2io_txpic_intr_handle(struct s2io_nic *sp)
  3797. {
  3798. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  3799. u64 val64;
  3800. val64 = readq(&bar0->pic_int_status);
  3801. if (val64 & PIC_INT_GPIO) {
  3802. val64 = readq(&bar0->gpio_int_reg);
  3803. if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
  3804. (val64 & GPIO_INT_REG_LINK_UP)) {
  3805. /*
  3806. * This is unstable state so clear both up/down
  3807. * interrupt and adapter to re-evaluate the link state.
  3808. */
  3809. val64 |= GPIO_INT_REG_LINK_DOWN;
  3810. val64 |= GPIO_INT_REG_LINK_UP;
  3811. writeq(val64, &bar0->gpio_int_reg);
  3812. val64 = readq(&bar0->gpio_int_mask);
  3813. val64 &= ~(GPIO_INT_MASK_LINK_UP |
  3814. GPIO_INT_MASK_LINK_DOWN);
  3815. writeq(val64, &bar0->gpio_int_mask);
  3816. }
  3817. else if (val64 & GPIO_INT_REG_LINK_UP) {
  3818. val64 = readq(&bar0->adapter_status);
  3819. /* Enable Adapter */
  3820. val64 = readq(&bar0->adapter_control);
  3821. val64 |= ADAPTER_CNTL_EN;
  3822. writeq(val64, &bar0->adapter_control);
  3823. val64 |= ADAPTER_LED_ON;
  3824. writeq(val64, &bar0->adapter_control);
  3825. if (!sp->device_enabled_once)
  3826. sp->device_enabled_once = 1;
  3827. s2io_link(sp, LINK_UP);
  3828. /*
  3829. * unmask link down interrupt and mask link-up
  3830. * intr
  3831. */
  3832. val64 = readq(&bar0->gpio_int_mask);
  3833. val64 &= ~GPIO_INT_MASK_LINK_DOWN;
  3834. val64 |= GPIO_INT_MASK_LINK_UP;
  3835. writeq(val64, &bar0->gpio_int_mask);
  3836. }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
  3837. val64 = readq(&bar0->adapter_status);
  3838. s2io_link(sp, LINK_DOWN);
  3839. /* Link is down so unmaks link up interrupt */
  3840. val64 = readq(&bar0->gpio_int_mask);
  3841. val64 &= ~GPIO_INT_MASK_LINK_UP;
  3842. val64 |= GPIO_INT_MASK_LINK_DOWN;
  3843. writeq(val64, &bar0->gpio_int_mask);
  3844. /* turn off LED */
  3845. val64 = readq(&bar0->adapter_control);
  3846. val64 = val64 &(~ADAPTER_LED_ON);
  3847. writeq(val64, &bar0->adapter_control);
  3848. }
  3849. }
  3850. val64 = readq(&bar0->gpio_int_mask);
  3851. }
  3852. /**
  3853. * s2io_isr - ISR handler of the device .
  3854. * @irq: the irq of the device.
  3855. * @dev_id: a void pointer to the dev structure of the NIC.
  3856. * Description: This function is the ISR handler of the device. It
  3857. * identifies the reason for the interrupt and calls the relevant
  3858. * service routines. As a contongency measure, this ISR allocates the
  3859. * recv buffers, if their numbers are below the panic value which is
  3860. * presently set to 25% of the original number of rcv buffers allocated.
  3861. * Return value:
  3862. * IRQ_HANDLED: will be returned if IRQ was handled by this routine
  3863. * IRQ_NONE: will be returned if interrupt is not from our device
  3864. */
  3865. static irqreturn_t s2io_isr(int irq, void *dev_id)
  3866. {
  3867. struct net_device *dev = (struct net_device *) dev_id;
  3868. struct s2io_nic *sp = dev->priv;
  3869. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  3870. int i;
  3871. u64 reason = 0;
  3872. struct mac_info *mac_control;
  3873. struct config_param *config;
  3874. /* Pretend we handled any irq's from a disconnected card */
  3875. if (pci_channel_offline(sp->pdev))
  3876. return IRQ_NONE;
  3877. atomic_inc(&sp->isr_cnt);
  3878. mac_control = &sp->mac_control;
  3879. config = &sp->config;
  3880. /*
  3881. * Identify the cause for interrupt and call the appropriate
  3882. * interrupt handler. Causes for the interrupt could be;
  3883. * 1. Rx of packet.
  3884. * 2. Tx complete.
  3885. * 3. Link down.
  3886. * 4. Error in any functional blocks of the NIC.
  3887. */
  3888. reason = readq(&bar0->general_int_status);
  3889. if (!reason) {
  3890. /* The interrupt was not raised by us. */
  3891. atomic_dec(&sp->isr_cnt);
  3892. return IRQ_NONE;
  3893. }
  3894. else if (unlikely(reason == S2IO_MINUS_ONE) ) {
  3895. /* Disable device and get out */
  3896. atomic_dec(&sp->isr_cnt);
  3897. return IRQ_NONE;
  3898. }
  3899. if (napi) {
  3900. if (reason & GEN_INTR_RXTRAFFIC) {
  3901. if (likely (netif_rx_schedule_prep(dev, &sp->napi))) {
  3902. __netif_rx_schedule(dev, &sp->napi);
  3903. writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
  3904. }
  3905. else
  3906. writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
  3907. }
  3908. } else {
  3909. /*
  3910. * Rx handler is called by default, without checking for the
  3911. * cause of interrupt.
  3912. * rx_traffic_int reg is an R1 register, writing all 1's
  3913. * will ensure that the actual interrupt causing bit get's
  3914. * cleared and hence a read can be avoided.
  3915. */
  3916. if (reason & GEN_INTR_RXTRAFFIC)
  3917. writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
  3918. for (i = 0; i < config->rx_ring_num; i++) {
  3919. rx_intr_handler(&mac_control->rings[i]);
  3920. }
  3921. }
  3922. /*
  3923. * tx_traffic_int reg is an R1 register, writing all 1's
  3924. * will ensure that the actual interrupt causing bit get's
  3925. * cleared and hence a read can be avoided.
  3926. */
  3927. if (reason & GEN_INTR_TXTRAFFIC)
  3928. writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
  3929. for (i = 0; i < config->tx_fifo_num; i++)
  3930. tx_intr_handler(&mac_control->fifos[i]);
  3931. if (reason & GEN_INTR_TXPIC)
  3932. s2io_txpic_intr_handle(sp);
  3933. /*
  3934. * If the Rx buffer count is below the panic threshold then
  3935. * reallocate the buffers from the interrupt handler itself,
  3936. * else schedule a tasklet to reallocate the buffers.
  3937. */
  3938. if (!napi) {
  3939. for (i = 0; i < config->rx_ring_num; i++)
  3940. s2io_chk_rx_buffers(sp, i);
  3941. }
  3942. writeq(0, &bar0->general_int_mask);
  3943. readl(&bar0->general_int_status);
  3944. atomic_dec(&sp->isr_cnt);
  3945. return IRQ_HANDLED;
  3946. }
  3947. /**
  3948. * s2io_updt_stats -
  3949. */
  3950. static void s2io_updt_stats(struct s2io_nic *sp)
  3951. {
  3952. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  3953. u64 val64;
  3954. int cnt = 0;
  3955. if (atomic_read(&sp->card_state) == CARD_UP) {
  3956. /* Apprx 30us on a 133 MHz bus */
  3957. val64 = SET_UPDT_CLICKS(10) |
  3958. STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
  3959. writeq(val64, &bar0->stat_cfg);
  3960. do {
  3961. udelay(100);
  3962. val64 = readq(&bar0->stat_cfg);
  3963. if (!(val64 & BIT(0)))
  3964. break;
  3965. cnt++;
  3966. if (cnt == 5)
  3967. break; /* Updt failed */
  3968. } while(1);
  3969. }
  3970. }
  3971. /**
  3972. * s2io_get_stats - Updates the device statistics structure.
  3973. * @dev : pointer to the device structure.
  3974. * Description:
  3975. * This function updates the device statistics structure in the s2io_nic
  3976. * structure and returns a pointer to the same.
  3977. * Return value:
  3978. * pointer to the updated net_device_stats structure.
  3979. */
  3980. static struct net_device_stats *s2io_get_stats(struct net_device *dev)
  3981. {
  3982. struct s2io_nic *sp = dev->priv;
  3983. struct mac_info *mac_control;
  3984. struct config_param *config;
  3985. mac_control = &sp->mac_control;
  3986. config = &sp->config;
  3987. /* Configure Stats for immediate updt */
  3988. s2io_updt_stats(sp);
  3989. sp->stats.tx_packets =
  3990. le32_to_cpu(mac_control->stats_info->tmac_frms);
  3991. sp->stats.tx_errors =
  3992. le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
  3993. sp->stats.rx_errors =
  3994. le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
  3995. sp->stats.multicast =
  3996. le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
  3997. sp->stats.rx_length_errors =
  3998. le64_to_cpu(mac_control->stats_info->rmac_long_frms);
  3999. return (&sp->stats);
  4000. }
  4001. /**
  4002. * s2io_set_multicast - entry point for multicast address enable/disable.
  4003. * @dev : pointer to the device structure
  4004. * Description:
  4005. * This function is a driver entry point which gets called by the kernel
  4006. * whenever multicast addresses must be enabled/disabled. This also gets
  4007. * called to set/reset promiscuous mode. Depending on the deivce flag, we
  4008. * determine, if multicast address must be enabled or if promiscuous mode
  4009. * is to be disabled etc.
  4010. * Return value:
  4011. * void.
  4012. */
  4013. static void s2io_set_multicast(struct net_device *dev)
  4014. {
  4015. int i, j, prev_cnt;
  4016. struct dev_mc_list *mclist;
  4017. struct s2io_nic *sp = dev->priv;
  4018. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4019. u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
  4020. 0xfeffffffffffULL;
  4021. u64 dis_addr = 0xffffffffffffULL, mac_addr = 0;
  4022. void __iomem *add;
  4023. if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
  4024. /* Enable all Multicast addresses */
  4025. writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
  4026. &bar0->rmac_addr_data0_mem);
  4027. writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
  4028. &bar0->rmac_addr_data1_mem);
  4029. val64 = RMAC_ADDR_CMD_MEM_WE |
  4030. RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4031. RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET);
  4032. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4033. /* Wait till command completes */
  4034. wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4035. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
  4036. S2IO_BIT_RESET);
  4037. sp->m_cast_flg = 1;
  4038. sp->all_multi_pos = MAC_MC_ALL_MC_ADDR_OFFSET;
  4039. } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
  4040. /* Disable all Multicast addresses */
  4041. writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
  4042. &bar0->rmac_addr_data0_mem);
  4043. writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
  4044. &bar0->rmac_addr_data1_mem);
  4045. val64 = RMAC_ADDR_CMD_MEM_WE |
  4046. RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4047. RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
  4048. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4049. /* Wait till command completes */
  4050. wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4051. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
  4052. S2IO_BIT_RESET);
  4053. sp->m_cast_flg = 0;
  4054. sp->all_multi_pos = 0;
  4055. }
  4056. if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
  4057. /* Put the NIC into promiscuous mode */
  4058. add = &bar0->mac_cfg;
  4059. val64 = readq(&bar0->mac_cfg);
  4060. val64 |= MAC_CFG_RMAC_PROM_ENABLE;
  4061. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  4062. writel((u32) val64, add);
  4063. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  4064. writel((u32) (val64 >> 32), (add + 4));
  4065. if (vlan_tag_strip != 1) {
  4066. val64 = readq(&bar0->rx_pa_cfg);
  4067. val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
  4068. writeq(val64, &bar0->rx_pa_cfg);
  4069. vlan_strip_flag = 0;
  4070. }
  4071. val64 = readq(&bar0->mac_cfg);
  4072. sp->promisc_flg = 1;
  4073. DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
  4074. dev->name);
  4075. } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
  4076. /* Remove the NIC from promiscuous mode */
  4077. add = &bar0->mac_cfg;
  4078. val64 = readq(&bar0->mac_cfg);
  4079. val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
  4080. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  4081. writel((u32) val64, add);
  4082. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  4083. writel((u32) (val64 >> 32), (add + 4));
  4084. if (vlan_tag_strip != 0) {
  4085. val64 = readq(&bar0->rx_pa_cfg);
  4086. val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
  4087. writeq(val64, &bar0->rx_pa_cfg);
  4088. vlan_strip_flag = 1;
  4089. }
  4090. val64 = readq(&bar0->mac_cfg);
  4091. sp->promisc_flg = 0;
  4092. DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
  4093. dev->name);
  4094. }
  4095. /* Update individual M_CAST address list */
  4096. if ((!sp->m_cast_flg) && dev->mc_count) {
  4097. if (dev->mc_count >
  4098. (MAX_ADDRS_SUPPORTED - MAC_MC_ADDR_START_OFFSET - 1)) {
  4099. DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
  4100. dev->name);
  4101. DBG_PRINT(ERR_DBG, "can be added, please enable ");
  4102. DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
  4103. return;
  4104. }
  4105. prev_cnt = sp->mc_addr_count;
  4106. sp->mc_addr_count = dev->mc_count;
  4107. /* Clear out the previous list of Mc in the H/W. */
  4108. for (i = 0; i < prev_cnt; i++) {
  4109. writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
  4110. &bar0->rmac_addr_data0_mem);
  4111. writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
  4112. &bar0->rmac_addr_data1_mem);
  4113. val64 = RMAC_ADDR_CMD_MEM_WE |
  4114. RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4115. RMAC_ADDR_CMD_MEM_OFFSET
  4116. (MAC_MC_ADDR_START_OFFSET + i);
  4117. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4118. /* Wait for command completes */
  4119. if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4120. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
  4121. S2IO_BIT_RESET)) {
  4122. DBG_PRINT(ERR_DBG, "%s: Adding ",
  4123. dev->name);
  4124. DBG_PRINT(ERR_DBG, "Multicasts failed\n");
  4125. return;
  4126. }
  4127. }
  4128. /* Create the new Rx filter list and update the same in H/W. */
  4129. for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
  4130. i++, mclist = mclist->next) {
  4131. memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
  4132. ETH_ALEN);
  4133. mac_addr = 0;
  4134. for (j = 0; j < ETH_ALEN; j++) {
  4135. mac_addr |= mclist->dmi_addr[j];
  4136. mac_addr <<= 8;
  4137. }
  4138. mac_addr >>= 8;
  4139. writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
  4140. &bar0->rmac_addr_data0_mem);
  4141. writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
  4142. &bar0->rmac_addr_data1_mem);
  4143. val64 = RMAC_ADDR_CMD_MEM_WE |
  4144. RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4145. RMAC_ADDR_CMD_MEM_OFFSET
  4146. (i + MAC_MC_ADDR_START_OFFSET);
  4147. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4148. /* Wait for command completes */
  4149. if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4150. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
  4151. S2IO_BIT_RESET)) {
  4152. DBG_PRINT(ERR_DBG, "%s: Adding ",
  4153. dev->name);
  4154. DBG_PRINT(ERR_DBG, "Multicasts failed\n");
  4155. return;
  4156. }
  4157. }
  4158. }
  4159. }
  4160. /**
  4161. * s2io_set_mac_addr - Programs the Xframe mac address
  4162. * @dev : pointer to the device structure.
  4163. * @addr: a uchar pointer to the new mac address which is to be set.
  4164. * Description : This procedure will program the Xframe to receive
  4165. * frames with new Mac Address
  4166. * Return value: SUCCESS on success and an appropriate (-)ve integer
  4167. * as defined in errno.h file on failure.
  4168. */
  4169. static int s2io_set_mac_addr(struct net_device *dev, u8 * addr)
  4170. {
  4171. struct s2io_nic *sp = dev->priv;
  4172. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4173. register u64 val64, mac_addr = 0;
  4174. int i;
  4175. u64 old_mac_addr = 0;
  4176. /*
  4177. * Set the new MAC address as the new unicast filter and reflect this
  4178. * change on the device address registered with the OS. It will be
  4179. * at offset 0.
  4180. */
  4181. for (i = 0; i < ETH_ALEN; i++) {
  4182. mac_addr <<= 8;
  4183. mac_addr |= addr[i];
  4184. old_mac_addr <<= 8;
  4185. old_mac_addr |= sp->def_mac_addr[0].mac_addr[i];
  4186. }
  4187. if(0 == mac_addr)
  4188. return SUCCESS;
  4189. /* Update the internal structure with this new mac address */
  4190. if(mac_addr != old_mac_addr) {
  4191. memset(sp->def_mac_addr[0].mac_addr, 0, sizeof(ETH_ALEN));
  4192. sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_addr);
  4193. sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_addr >> 8);
  4194. sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_addr >> 16);
  4195. sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_addr >> 24);
  4196. sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_addr >> 32);
  4197. sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_addr >> 40);
  4198. }
  4199. writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
  4200. &bar0->rmac_addr_data0_mem);
  4201. val64 =
  4202. RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4203. RMAC_ADDR_CMD_MEM_OFFSET(0);
  4204. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4205. /* Wait till command completes */
  4206. if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4207. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET)) {
  4208. DBG_PRINT(ERR_DBG, "%s: set_mac_addr failed\n", dev->name);
  4209. return FAILURE;
  4210. }
  4211. return SUCCESS;
  4212. }
  4213. /**
  4214. * s2io_ethtool_sset - Sets different link parameters.
  4215. * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
  4216. * @info: pointer to the structure with parameters given by ethtool to set
  4217. * link information.
  4218. * Description:
  4219. * The function sets different link parameters provided by the user onto
  4220. * the NIC.
  4221. * Return value:
  4222. * 0 on success.
  4223. */
  4224. static int s2io_ethtool_sset(struct net_device *dev,
  4225. struct ethtool_cmd *info)
  4226. {
  4227. struct s2io_nic *sp = dev->priv;
  4228. if ((info->autoneg == AUTONEG_ENABLE) ||
  4229. (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
  4230. return -EINVAL;
  4231. else {
  4232. s2io_close(sp->dev);
  4233. s2io_open(sp->dev);
  4234. }
  4235. return 0;
  4236. }
  4237. /**
  4238. * s2io_ethtol_gset - Return link specific information.
  4239. * @sp : private member of the device structure, pointer to the
  4240. * s2io_nic structure.
  4241. * @info : pointer to the structure with parameters given by ethtool
  4242. * to return link information.
  4243. * Description:
  4244. * Returns link specific information like speed, duplex etc.. to ethtool.
  4245. * Return value :
  4246. * return 0 on success.
  4247. */
  4248. static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
  4249. {
  4250. struct s2io_nic *sp = dev->priv;
  4251. info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
  4252. info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
  4253. info->port = PORT_FIBRE;
  4254. /* info->transceiver?? TODO */
  4255. if (netif_carrier_ok(sp->dev)) {
  4256. info->speed = 10000;
  4257. info->duplex = DUPLEX_FULL;
  4258. } else {
  4259. info->speed = -1;
  4260. info->duplex = -1;
  4261. }
  4262. info->autoneg = AUTONEG_DISABLE;
  4263. return 0;
  4264. }
  4265. /**
  4266. * s2io_ethtool_gdrvinfo - Returns driver specific information.
  4267. * @sp : private member of the device structure, which is a pointer to the
  4268. * s2io_nic structure.
  4269. * @info : pointer to the structure with parameters given by ethtool to
  4270. * return driver information.
  4271. * Description:
  4272. * Returns driver specefic information like name, version etc.. to ethtool.
  4273. * Return value:
  4274. * void
  4275. */
  4276. static void s2io_ethtool_gdrvinfo(struct net_device *dev,
  4277. struct ethtool_drvinfo *info)
  4278. {
  4279. struct s2io_nic *sp = dev->priv;
  4280. strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
  4281. strncpy(info->version, s2io_driver_version, sizeof(info->version));
  4282. strncpy(info->fw_version, "", sizeof(info->fw_version));
  4283. strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
  4284. info->regdump_len = XENA_REG_SPACE;
  4285. info->eedump_len = XENA_EEPROM_SPACE;
  4286. info->testinfo_len = S2IO_TEST_LEN;
  4287. if (sp->device_type == XFRAME_I_DEVICE)
  4288. info->n_stats = XFRAME_I_STAT_LEN;
  4289. else
  4290. info->n_stats = XFRAME_II_STAT_LEN;
  4291. }
  4292. /**
  4293. * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
  4294. * @sp: private member of the device structure, which is a pointer to the
  4295. * s2io_nic structure.
  4296. * @regs : pointer to the structure with parameters given by ethtool for
  4297. * dumping the registers.
  4298. * @reg_space: The input argumnet into which all the registers are dumped.
  4299. * Description:
  4300. * Dumps the entire register space of xFrame NIC into the user given
  4301. * buffer area.
  4302. * Return value :
  4303. * void .
  4304. */
  4305. static void s2io_ethtool_gregs(struct net_device *dev,
  4306. struct ethtool_regs *regs, void *space)
  4307. {
  4308. int i;
  4309. u64 reg;
  4310. u8 *reg_space = (u8 *) space;
  4311. struct s2io_nic *sp = dev->priv;
  4312. regs->len = XENA_REG_SPACE;
  4313. regs->version = sp->pdev->subsystem_device;
  4314. for (i = 0; i < regs->len; i += 8) {
  4315. reg = readq(sp->bar0 + i);
  4316. memcpy((reg_space + i), &reg, 8);
  4317. }
  4318. }
  4319. /**
  4320. * s2io_phy_id - timer function that alternates adapter LED.
  4321. * @data : address of the private member of the device structure, which
  4322. * is a pointer to the s2io_nic structure, provided as an u32.
  4323. * Description: This is actually the timer function that alternates the
  4324. * adapter LED bit of the adapter control bit to set/reset every time on
  4325. * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
  4326. * once every second.
  4327. */
  4328. static void s2io_phy_id(unsigned long data)
  4329. {
  4330. struct s2io_nic *sp = (struct s2io_nic *) data;
  4331. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4332. u64 val64 = 0;
  4333. u16 subid;
  4334. subid = sp->pdev->subsystem_device;
  4335. if ((sp->device_type == XFRAME_II_DEVICE) ||
  4336. ((subid & 0xFF) >= 0x07)) {
  4337. val64 = readq(&bar0->gpio_control);
  4338. val64 ^= GPIO_CTRL_GPIO_0;
  4339. writeq(val64, &bar0->gpio_control);
  4340. } else {
  4341. val64 = readq(&bar0->adapter_control);
  4342. val64 ^= ADAPTER_LED_ON;
  4343. writeq(val64, &bar0->adapter_control);
  4344. }
  4345. mod_timer(&sp->id_timer, jiffies + HZ / 2);
  4346. }
  4347. /**
  4348. * s2io_ethtool_idnic - To physically identify the nic on the system.
  4349. * @sp : private member of the device structure, which is a pointer to the
  4350. * s2io_nic structure.
  4351. * @id : pointer to the structure with identification parameters given by
  4352. * ethtool.
  4353. * Description: Used to physically identify the NIC on the system.
  4354. * The Link LED will blink for a time specified by the user for
  4355. * identification.
  4356. * NOTE: The Link has to be Up to be able to blink the LED. Hence
  4357. * identification is possible only if it's link is up.
  4358. * Return value:
  4359. * int , returns 0 on success
  4360. */
  4361. static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
  4362. {
  4363. u64 val64 = 0, last_gpio_ctrl_val;
  4364. struct s2io_nic *sp = dev->priv;
  4365. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4366. u16 subid;
  4367. subid = sp->pdev->subsystem_device;
  4368. last_gpio_ctrl_val = readq(&bar0->gpio_control);
  4369. if ((sp->device_type == XFRAME_I_DEVICE) &&
  4370. ((subid & 0xFF) < 0x07)) {
  4371. val64 = readq(&bar0->adapter_control);
  4372. if (!(val64 & ADAPTER_CNTL_EN)) {
  4373. printk(KERN_ERR
  4374. "Adapter Link down, cannot blink LED\n");
  4375. return -EFAULT;
  4376. }
  4377. }
  4378. if (sp->id_timer.function == NULL) {
  4379. init_timer(&sp->id_timer);
  4380. sp->id_timer.function = s2io_phy_id;
  4381. sp->id_timer.data = (unsigned long) sp;
  4382. }
  4383. mod_timer(&sp->id_timer, jiffies);
  4384. if (data)
  4385. msleep_interruptible(data * HZ);
  4386. else
  4387. msleep_interruptible(MAX_FLICKER_TIME);
  4388. del_timer_sync(&sp->id_timer);
  4389. if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
  4390. writeq(last_gpio_ctrl_val, &bar0->gpio_control);
  4391. last_gpio_ctrl_val = readq(&bar0->gpio_control);
  4392. }
  4393. return 0;
  4394. }
  4395. static void s2io_ethtool_gringparam(struct net_device *dev,
  4396. struct ethtool_ringparam *ering)
  4397. {
  4398. struct s2io_nic *sp = dev->priv;
  4399. int i,tx_desc_count=0,rx_desc_count=0;
  4400. if (sp->rxd_mode == RXD_MODE_1)
  4401. ering->rx_max_pending = MAX_RX_DESC_1;
  4402. else if (sp->rxd_mode == RXD_MODE_3B)
  4403. ering->rx_max_pending = MAX_RX_DESC_2;
  4404. ering->tx_max_pending = MAX_TX_DESC;
  4405. for (i = 0 ; i < sp->config.tx_fifo_num ; i++)
  4406. tx_desc_count += sp->config.tx_cfg[i].fifo_len;
  4407. DBG_PRINT(INFO_DBG,"\nmax txds : %d\n",sp->config.max_txds);
  4408. ering->tx_pending = tx_desc_count;
  4409. rx_desc_count = 0;
  4410. for (i = 0 ; i < sp->config.rx_ring_num ; i++)
  4411. rx_desc_count += sp->config.rx_cfg[i].num_rxd;
  4412. ering->rx_pending = rx_desc_count;
  4413. ering->rx_mini_max_pending = 0;
  4414. ering->rx_mini_pending = 0;
  4415. if(sp->rxd_mode == RXD_MODE_1)
  4416. ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
  4417. else if (sp->rxd_mode == RXD_MODE_3B)
  4418. ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
  4419. ering->rx_jumbo_pending = rx_desc_count;
  4420. }
  4421. /**
  4422. * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
  4423. * @sp : private member of the device structure, which is a pointer to the
  4424. * s2io_nic structure.
  4425. * @ep : pointer to the structure with pause parameters given by ethtool.
  4426. * Description:
  4427. * Returns the Pause frame generation and reception capability of the NIC.
  4428. * Return value:
  4429. * void
  4430. */
  4431. static void s2io_ethtool_getpause_data(struct net_device *dev,
  4432. struct ethtool_pauseparam *ep)
  4433. {
  4434. u64 val64;
  4435. struct s2io_nic *sp = dev->priv;
  4436. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4437. val64 = readq(&bar0->rmac_pause_cfg);
  4438. if (val64 & RMAC_PAUSE_GEN_ENABLE)
  4439. ep->tx_pause = TRUE;
  4440. if (val64 & RMAC_PAUSE_RX_ENABLE)
  4441. ep->rx_pause = TRUE;
  4442. ep->autoneg = FALSE;
  4443. }
  4444. /**
  4445. * s2io_ethtool_setpause_data - set/reset pause frame generation.
  4446. * @sp : private member of the device structure, which is a pointer to the
  4447. * s2io_nic structure.
  4448. * @ep : pointer to the structure with pause parameters given by ethtool.
  4449. * Description:
  4450. * It can be used to set or reset Pause frame generation or reception
  4451. * support of the NIC.
  4452. * Return value:
  4453. * int, returns 0 on Success
  4454. */
  4455. static int s2io_ethtool_setpause_data(struct net_device *dev,
  4456. struct ethtool_pauseparam *ep)
  4457. {
  4458. u64 val64;
  4459. struct s2io_nic *sp = dev->priv;
  4460. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4461. val64 = readq(&bar0->rmac_pause_cfg);
  4462. if (ep->tx_pause)
  4463. val64 |= RMAC_PAUSE_GEN_ENABLE;
  4464. else
  4465. val64 &= ~RMAC_PAUSE_GEN_ENABLE;
  4466. if (ep->rx_pause)
  4467. val64 |= RMAC_PAUSE_RX_ENABLE;
  4468. else
  4469. val64 &= ~RMAC_PAUSE_RX_ENABLE;
  4470. writeq(val64, &bar0->rmac_pause_cfg);
  4471. return 0;
  4472. }
  4473. /**
  4474. * read_eeprom - reads 4 bytes of data from user given offset.
  4475. * @sp : private member of the device structure, which is a pointer to the
  4476. * s2io_nic structure.
  4477. * @off : offset at which the data must be written
  4478. * @data : Its an output parameter where the data read at the given
  4479. * offset is stored.
  4480. * Description:
  4481. * Will read 4 bytes of data from the user given offset and return the
  4482. * read data.
  4483. * NOTE: Will allow to read only part of the EEPROM visible through the
  4484. * I2C bus.
  4485. * Return value:
  4486. * -1 on failure and 0 on success.
  4487. */
  4488. #define S2IO_DEV_ID 5
  4489. static int read_eeprom(struct s2io_nic * sp, int off, u64 * data)
  4490. {
  4491. int ret = -1;
  4492. u32 exit_cnt = 0;
  4493. u64 val64;
  4494. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4495. if (sp->device_type == XFRAME_I_DEVICE) {
  4496. val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
  4497. I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
  4498. I2C_CONTROL_CNTL_START;
  4499. SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
  4500. while (exit_cnt < 5) {
  4501. val64 = readq(&bar0->i2c_control);
  4502. if (I2C_CONTROL_CNTL_END(val64)) {
  4503. *data = I2C_CONTROL_GET_DATA(val64);
  4504. ret = 0;
  4505. break;
  4506. }
  4507. msleep(50);
  4508. exit_cnt++;
  4509. }
  4510. }
  4511. if (sp->device_type == XFRAME_II_DEVICE) {
  4512. val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
  4513. SPI_CONTROL_BYTECNT(0x3) |
  4514. SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
  4515. SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
  4516. val64 |= SPI_CONTROL_REQ;
  4517. SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
  4518. while (exit_cnt < 5) {
  4519. val64 = readq(&bar0->spi_control);
  4520. if (val64 & SPI_CONTROL_NACK) {
  4521. ret = 1;
  4522. break;
  4523. } else if (val64 & SPI_CONTROL_DONE) {
  4524. *data = readq(&bar0->spi_data);
  4525. *data &= 0xffffff;
  4526. ret = 0;
  4527. break;
  4528. }
  4529. msleep(50);
  4530. exit_cnt++;
  4531. }
  4532. }
  4533. return ret;
  4534. }
  4535. /**
  4536. * write_eeprom - actually writes the relevant part of the data value.
  4537. * @sp : private member of the device structure, which is a pointer to the
  4538. * s2io_nic structure.
  4539. * @off : offset at which the data must be written
  4540. * @data : The data that is to be written
  4541. * @cnt : Number of bytes of the data that are actually to be written into
  4542. * the Eeprom. (max of 3)
  4543. * Description:
  4544. * Actually writes the relevant part of the data value into the Eeprom
  4545. * through the I2C bus.
  4546. * Return value:
  4547. * 0 on success, -1 on failure.
  4548. */
  4549. static int write_eeprom(struct s2io_nic * sp, int off, u64 data, int cnt)
  4550. {
  4551. int exit_cnt = 0, ret = -1;
  4552. u64 val64;
  4553. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4554. if (sp->device_type == XFRAME_I_DEVICE) {
  4555. val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
  4556. I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
  4557. I2C_CONTROL_CNTL_START;
  4558. SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
  4559. while (exit_cnt < 5) {
  4560. val64 = readq(&bar0->i2c_control);
  4561. if (I2C_CONTROL_CNTL_END(val64)) {
  4562. if (!(val64 & I2C_CONTROL_NACK))
  4563. ret = 0;
  4564. break;
  4565. }
  4566. msleep(50);
  4567. exit_cnt++;
  4568. }
  4569. }
  4570. if (sp->device_type == XFRAME_II_DEVICE) {
  4571. int write_cnt = (cnt == 8) ? 0 : cnt;
  4572. writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
  4573. val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
  4574. SPI_CONTROL_BYTECNT(write_cnt) |
  4575. SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
  4576. SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
  4577. val64 |= SPI_CONTROL_REQ;
  4578. SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
  4579. while (exit_cnt < 5) {
  4580. val64 = readq(&bar0->spi_control);
  4581. if (val64 & SPI_CONTROL_NACK) {
  4582. ret = 1;
  4583. break;
  4584. } else if (val64 & SPI_CONTROL_DONE) {
  4585. ret = 0;
  4586. break;
  4587. }
  4588. msleep(50);
  4589. exit_cnt++;
  4590. }
  4591. }
  4592. return ret;
  4593. }
  4594. static void s2io_vpd_read(struct s2io_nic *nic)
  4595. {
  4596. u8 *vpd_data;
  4597. u8 data;
  4598. int i=0, cnt, fail = 0;
  4599. int vpd_addr = 0x80;
  4600. if (nic->device_type == XFRAME_II_DEVICE) {
  4601. strcpy(nic->product_name, "Xframe II 10GbE network adapter");
  4602. vpd_addr = 0x80;
  4603. }
  4604. else {
  4605. strcpy(nic->product_name, "Xframe I 10GbE network adapter");
  4606. vpd_addr = 0x50;
  4607. }
  4608. strcpy(nic->serial_num, "NOT AVAILABLE");
  4609. vpd_data = kmalloc(256, GFP_KERNEL);
  4610. if (!vpd_data) {
  4611. nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
  4612. return;
  4613. }
  4614. nic->mac_control.stats_info->sw_stat.mem_allocated += 256;
  4615. for (i = 0; i < 256; i +=4 ) {
  4616. pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
  4617. pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
  4618. pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
  4619. for (cnt = 0; cnt <5; cnt++) {
  4620. msleep(2);
  4621. pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
  4622. if (data == 0x80)
  4623. break;
  4624. }
  4625. if (cnt >= 5) {
  4626. DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
  4627. fail = 1;
  4628. break;
  4629. }
  4630. pci_read_config_dword(nic->pdev, (vpd_addr + 4),
  4631. (u32 *)&vpd_data[i]);
  4632. }
  4633. if(!fail) {
  4634. /* read serial number of adapter */
  4635. for (cnt = 0; cnt < 256; cnt++) {
  4636. if ((vpd_data[cnt] == 'S') &&
  4637. (vpd_data[cnt+1] == 'N') &&
  4638. (vpd_data[cnt+2] < VPD_STRING_LEN)) {
  4639. memset(nic->serial_num, 0, VPD_STRING_LEN);
  4640. memcpy(nic->serial_num, &vpd_data[cnt + 3],
  4641. vpd_data[cnt+2]);
  4642. break;
  4643. }
  4644. }
  4645. }
  4646. if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
  4647. memset(nic->product_name, 0, vpd_data[1]);
  4648. memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
  4649. }
  4650. kfree(vpd_data);
  4651. nic->mac_control.stats_info->sw_stat.mem_freed += 256;
  4652. }
  4653. /**
  4654. * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
  4655. * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
  4656. * @eeprom : pointer to the user level structure provided by ethtool,
  4657. * containing all relevant information.
  4658. * @data_buf : user defined value to be written into Eeprom.
  4659. * Description: Reads the values stored in the Eeprom at given offset
  4660. * for a given length. Stores these values int the input argument data
  4661. * buffer 'data_buf' and returns these to the caller (ethtool.)
  4662. * Return value:
  4663. * int 0 on success
  4664. */
  4665. static int s2io_ethtool_geeprom(struct net_device *dev,
  4666. struct ethtool_eeprom *eeprom, u8 * data_buf)
  4667. {
  4668. u32 i, valid;
  4669. u64 data;
  4670. struct s2io_nic *sp = dev->priv;
  4671. eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
  4672. if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
  4673. eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
  4674. for (i = 0; i < eeprom->len; i += 4) {
  4675. if (read_eeprom(sp, (eeprom->offset + i), &data)) {
  4676. DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
  4677. return -EFAULT;
  4678. }
  4679. valid = INV(data);
  4680. memcpy((data_buf + i), &valid, 4);
  4681. }
  4682. return 0;
  4683. }
  4684. /**
  4685. * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
  4686. * @sp : private member of the device structure, which is a pointer to the
  4687. * s2io_nic structure.
  4688. * @eeprom : pointer to the user level structure provided by ethtool,
  4689. * containing all relevant information.
  4690. * @data_buf ; user defined value to be written into Eeprom.
  4691. * Description:
  4692. * Tries to write the user provided value in the Eeprom, at the offset
  4693. * given by the user.
  4694. * Return value:
  4695. * 0 on success, -EFAULT on failure.
  4696. */
  4697. static int s2io_ethtool_seeprom(struct net_device *dev,
  4698. struct ethtool_eeprom *eeprom,
  4699. u8 * data_buf)
  4700. {
  4701. int len = eeprom->len, cnt = 0;
  4702. u64 valid = 0, data;
  4703. struct s2io_nic *sp = dev->priv;
  4704. if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
  4705. DBG_PRINT(ERR_DBG,
  4706. "ETHTOOL_WRITE_EEPROM Err: Magic value ");
  4707. DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
  4708. eeprom->magic);
  4709. return -EFAULT;
  4710. }
  4711. while (len) {
  4712. data = (u32) data_buf[cnt] & 0x000000FF;
  4713. if (data) {
  4714. valid = (u32) (data << 24);
  4715. } else
  4716. valid = data;
  4717. if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
  4718. DBG_PRINT(ERR_DBG,
  4719. "ETHTOOL_WRITE_EEPROM Err: Cannot ");
  4720. DBG_PRINT(ERR_DBG,
  4721. "write into the specified offset\n");
  4722. return -EFAULT;
  4723. }
  4724. cnt++;
  4725. len--;
  4726. }
  4727. return 0;
  4728. }
  4729. /**
  4730. * s2io_register_test - reads and writes into all clock domains.
  4731. * @sp : private member of the device structure, which is a pointer to the
  4732. * s2io_nic structure.
  4733. * @data : variable that returns the result of each of the test conducted b
  4734. * by the driver.
  4735. * Description:
  4736. * Read and write into all clock domains. The NIC has 3 clock domains,
  4737. * see that registers in all the three regions are accessible.
  4738. * Return value:
  4739. * 0 on success.
  4740. */
  4741. static int s2io_register_test(struct s2io_nic * sp, uint64_t * data)
  4742. {
  4743. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4744. u64 val64 = 0, exp_val;
  4745. int fail = 0;
  4746. val64 = readq(&bar0->pif_rd_swapper_fb);
  4747. if (val64 != 0x123456789abcdefULL) {
  4748. fail = 1;
  4749. DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
  4750. }
  4751. val64 = readq(&bar0->rmac_pause_cfg);
  4752. if (val64 != 0xc000ffff00000000ULL) {
  4753. fail = 1;
  4754. DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
  4755. }
  4756. val64 = readq(&bar0->rx_queue_cfg);
  4757. if (sp->device_type == XFRAME_II_DEVICE)
  4758. exp_val = 0x0404040404040404ULL;
  4759. else
  4760. exp_val = 0x0808080808080808ULL;
  4761. if (val64 != exp_val) {
  4762. fail = 1;
  4763. DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
  4764. }
  4765. val64 = readq(&bar0->xgxs_efifo_cfg);
  4766. if (val64 != 0x000000001923141EULL) {
  4767. fail = 1;
  4768. DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
  4769. }
  4770. val64 = 0x5A5A5A5A5A5A5A5AULL;
  4771. writeq(val64, &bar0->xmsi_data);
  4772. val64 = readq(&bar0->xmsi_data);
  4773. if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
  4774. fail = 1;
  4775. DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
  4776. }
  4777. val64 = 0xA5A5A5A5A5A5A5A5ULL;
  4778. writeq(val64, &bar0->xmsi_data);
  4779. val64 = readq(&bar0->xmsi_data);
  4780. if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
  4781. fail = 1;
  4782. DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
  4783. }
  4784. *data = fail;
  4785. return fail;
  4786. }
  4787. /**
  4788. * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
  4789. * @sp : private member of the device structure, which is a pointer to the
  4790. * s2io_nic structure.
  4791. * @data:variable that returns the result of each of the test conducted by
  4792. * the driver.
  4793. * Description:
  4794. * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
  4795. * register.
  4796. * Return value:
  4797. * 0 on success.
  4798. */
  4799. static int s2io_eeprom_test(struct s2io_nic * sp, uint64_t * data)
  4800. {
  4801. int fail = 0;
  4802. u64 ret_data, org_4F0, org_7F0;
  4803. u8 saved_4F0 = 0, saved_7F0 = 0;
  4804. struct net_device *dev = sp->dev;
  4805. /* Test Write Error at offset 0 */
  4806. /* Note that SPI interface allows write access to all areas
  4807. * of EEPROM. Hence doing all negative testing only for Xframe I.
  4808. */
  4809. if (sp->device_type == XFRAME_I_DEVICE)
  4810. if (!write_eeprom(sp, 0, 0, 3))
  4811. fail = 1;
  4812. /* Save current values at offsets 0x4F0 and 0x7F0 */
  4813. if (!read_eeprom(sp, 0x4F0, &org_4F0))
  4814. saved_4F0 = 1;
  4815. if (!read_eeprom(sp, 0x7F0, &org_7F0))
  4816. saved_7F0 = 1;
  4817. /* Test Write at offset 4f0 */
  4818. if (write_eeprom(sp, 0x4F0, 0x012345, 3))
  4819. fail = 1;
  4820. if (read_eeprom(sp, 0x4F0, &ret_data))
  4821. fail = 1;
  4822. if (ret_data != 0x012345) {
  4823. DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
  4824. "Data written %llx Data read %llx\n",
  4825. dev->name, (unsigned long long)0x12345,
  4826. (unsigned long long)ret_data);
  4827. fail = 1;
  4828. }
  4829. /* Reset the EEPROM data go FFFF */
  4830. write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
  4831. /* Test Write Request Error at offset 0x7c */
  4832. if (sp->device_type == XFRAME_I_DEVICE)
  4833. if (!write_eeprom(sp, 0x07C, 0, 3))
  4834. fail = 1;
  4835. /* Test Write Request at offset 0x7f0 */
  4836. if (write_eeprom(sp, 0x7F0, 0x012345, 3))
  4837. fail = 1;
  4838. if (read_eeprom(sp, 0x7F0, &ret_data))
  4839. fail = 1;
  4840. if (ret_data != 0x012345) {
  4841. DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
  4842. "Data written %llx Data read %llx\n",
  4843. dev->name, (unsigned long long)0x12345,
  4844. (unsigned long long)ret_data);
  4845. fail = 1;
  4846. }
  4847. /* Reset the EEPROM data go FFFF */
  4848. write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
  4849. if (sp->device_type == XFRAME_I_DEVICE) {
  4850. /* Test Write Error at offset 0x80 */
  4851. if (!write_eeprom(sp, 0x080, 0, 3))
  4852. fail = 1;
  4853. /* Test Write Error at offset 0xfc */
  4854. if (!write_eeprom(sp, 0x0FC, 0, 3))
  4855. fail = 1;
  4856. /* Test Write Error at offset 0x100 */
  4857. if (!write_eeprom(sp, 0x100, 0, 3))
  4858. fail = 1;
  4859. /* Test Write Error at offset 4ec */
  4860. if (!write_eeprom(sp, 0x4EC, 0, 3))
  4861. fail = 1;
  4862. }
  4863. /* Restore values at offsets 0x4F0 and 0x7F0 */
  4864. if (saved_4F0)
  4865. write_eeprom(sp, 0x4F0, org_4F0, 3);
  4866. if (saved_7F0)
  4867. write_eeprom(sp, 0x7F0, org_7F0, 3);
  4868. *data = fail;
  4869. return fail;
  4870. }
  4871. /**
  4872. * s2io_bist_test - invokes the MemBist test of the card .
  4873. * @sp : private member of the device structure, which is a pointer to the
  4874. * s2io_nic structure.
  4875. * @data:variable that returns the result of each of the test conducted by
  4876. * the driver.
  4877. * Description:
  4878. * This invokes the MemBist test of the card. We give around
  4879. * 2 secs time for the Test to complete. If it's still not complete
  4880. * within this peiod, we consider that the test failed.
  4881. * Return value:
  4882. * 0 on success and -1 on failure.
  4883. */
  4884. static int s2io_bist_test(struct s2io_nic * sp, uint64_t * data)
  4885. {
  4886. u8 bist = 0;
  4887. int cnt = 0, ret = -1;
  4888. pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
  4889. bist |= PCI_BIST_START;
  4890. pci_write_config_word(sp->pdev, PCI_BIST, bist);
  4891. while (cnt < 20) {
  4892. pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
  4893. if (!(bist & PCI_BIST_START)) {
  4894. *data = (bist & PCI_BIST_CODE_MASK);
  4895. ret = 0;
  4896. break;
  4897. }
  4898. msleep(100);
  4899. cnt++;
  4900. }
  4901. return ret;
  4902. }
  4903. /**
  4904. * s2io-link_test - verifies the link state of the nic
  4905. * @sp ; private member of the device structure, which is a pointer to the
  4906. * s2io_nic structure.
  4907. * @data: variable that returns the result of each of the test conducted by
  4908. * the driver.
  4909. * Description:
  4910. * The function verifies the link state of the NIC and updates the input
  4911. * argument 'data' appropriately.
  4912. * Return value:
  4913. * 0 on success.
  4914. */
  4915. static int s2io_link_test(struct s2io_nic * sp, uint64_t * data)
  4916. {
  4917. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4918. u64 val64;
  4919. val64 = readq(&bar0->adapter_status);
  4920. if(!(LINK_IS_UP(val64)))
  4921. *data = 1;
  4922. else
  4923. *data = 0;
  4924. return *data;
  4925. }
  4926. /**
  4927. * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
  4928. * @sp - private member of the device structure, which is a pointer to the
  4929. * s2io_nic structure.
  4930. * @data - variable that returns the result of each of the test
  4931. * conducted by the driver.
  4932. * Description:
  4933. * This is one of the offline test that tests the read and write
  4934. * access to the RldRam chip on the NIC.
  4935. * Return value:
  4936. * 0 on success.
  4937. */
  4938. static int s2io_rldram_test(struct s2io_nic * sp, uint64_t * data)
  4939. {
  4940. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4941. u64 val64;
  4942. int cnt, iteration = 0, test_fail = 0;
  4943. val64 = readq(&bar0->adapter_control);
  4944. val64 &= ~ADAPTER_ECC_EN;
  4945. writeq(val64, &bar0->adapter_control);
  4946. val64 = readq(&bar0->mc_rldram_test_ctrl);
  4947. val64 |= MC_RLDRAM_TEST_MODE;
  4948. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
  4949. val64 = readq(&bar0->mc_rldram_mrs);
  4950. val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
  4951. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
  4952. val64 |= MC_RLDRAM_MRS_ENABLE;
  4953. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
  4954. while (iteration < 2) {
  4955. val64 = 0x55555555aaaa0000ULL;
  4956. if (iteration == 1) {
  4957. val64 ^= 0xFFFFFFFFFFFF0000ULL;
  4958. }
  4959. writeq(val64, &bar0->mc_rldram_test_d0);
  4960. val64 = 0xaaaa5a5555550000ULL;
  4961. if (iteration == 1) {
  4962. val64 ^= 0xFFFFFFFFFFFF0000ULL;
  4963. }
  4964. writeq(val64, &bar0->mc_rldram_test_d1);
  4965. val64 = 0x55aaaaaaaa5a0000ULL;
  4966. if (iteration == 1) {
  4967. val64 ^= 0xFFFFFFFFFFFF0000ULL;
  4968. }
  4969. writeq(val64, &bar0->mc_rldram_test_d2);
  4970. val64 = (u64) (0x0000003ffffe0100ULL);
  4971. writeq(val64, &bar0->mc_rldram_test_add);
  4972. val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
  4973. MC_RLDRAM_TEST_GO;
  4974. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
  4975. for (cnt = 0; cnt < 5; cnt++) {
  4976. val64 = readq(&bar0->mc_rldram_test_ctrl);
  4977. if (val64 & MC_RLDRAM_TEST_DONE)
  4978. break;
  4979. msleep(200);
  4980. }
  4981. if (cnt == 5)
  4982. break;
  4983. val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
  4984. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
  4985. for (cnt = 0; cnt < 5; cnt++) {
  4986. val64 = readq(&bar0->mc_rldram_test_ctrl);
  4987. if (val64 & MC_RLDRAM_TEST_DONE)
  4988. break;
  4989. msleep(500);
  4990. }
  4991. if (cnt == 5)
  4992. break;
  4993. val64 = readq(&bar0->mc_rldram_test_ctrl);
  4994. if (!(val64 & MC_RLDRAM_TEST_PASS))
  4995. test_fail = 1;
  4996. iteration++;
  4997. }
  4998. *data = test_fail;
  4999. /* Bring the adapter out of test mode */
  5000. SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
  5001. return test_fail;
  5002. }
  5003. /**
  5004. * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
  5005. * @sp : private member of the device structure, which is a pointer to the
  5006. * s2io_nic structure.
  5007. * @ethtest : pointer to a ethtool command specific structure that will be
  5008. * returned to the user.
  5009. * @data : variable that returns the result of each of the test
  5010. * conducted by the driver.
  5011. * Description:
  5012. * This function conducts 6 tests ( 4 offline and 2 online) to determine
  5013. * the health of the card.
  5014. * Return value:
  5015. * void
  5016. */
  5017. static void s2io_ethtool_test(struct net_device *dev,
  5018. struct ethtool_test *ethtest,
  5019. uint64_t * data)
  5020. {
  5021. struct s2io_nic *sp = dev->priv;
  5022. int orig_state = netif_running(sp->dev);
  5023. if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
  5024. /* Offline Tests. */
  5025. if (orig_state)
  5026. s2io_close(sp->dev);
  5027. if (s2io_register_test(sp, &data[0]))
  5028. ethtest->flags |= ETH_TEST_FL_FAILED;
  5029. s2io_reset(sp);
  5030. if (s2io_rldram_test(sp, &data[3]))
  5031. ethtest->flags |= ETH_TEST_FL_FAILED;
  5032. s2io_reset(sp);
  5033. if (s2io_eeprom_test(sp, &data[1]))
  5034. ethtest->flags |= ETH_TEST_FL_FAILED;
  5035. if (s2io_bist_test(sp, &data[4]))
  5036. ethtest->flags |= ETH_TEST_FL_FAILED;
  5037. if (orig_state)
  5038. s2io_open(sp->dev);
  5039. data[2] = 0;
  5040. } else {
  5041. /* Online Tests. */
  5042. if (!orig_state) {
  5043. DBG_PRINT(ERR_DBG,
  5044. "%s: is not up, cannot run test\n",
  5045. dev->name);
  5046. data[0] = -1;
  5047. data[1] = -1;
  5048. data[2] = -1;
  5049. data[3] = -1;
  5050. data[4] = -1;
  5051. }
  5052. if (s2io_link_test(sp, &data[2]))
  5053. ethtest->flags |= ETH_TEST_FL_FAILED;
  5054. data[0] = 0;
  5055. data[1] = 0;
  5056. data[3] = 0;
  5057. data[4] = 0;
  5058. }
  5059. }
  5060. static void s2io_get_ethtool_stats(struct net_device *dev,
  5061. struct ethtool_stats *estats,
  5062. u64 * tmp_stats)
  5063. {
  5064. int i = 0;
  5065. struct s2io_nic *sp = dev->priv;
  5066. struct stat_block *stat_info = sp->mac_control.stats_info;
  5067. s2io_updt_stats(sp);
  5068. tmp_stats[i++] =
  5069. (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32 |
  5070. le32_to_cpu(stat_info->tmac_frms);
  5071. tmp_stats[i++] =
  5072. (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
  5073. le32_to_cpu(stat_info->tmac_data_octets);
  5074. tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
  5075. tmp_stats[i++] =
  5076. (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
  5077. le32_to_cpu(stat_info->tmac_mcst_frms);
  5078. tmp_stats[i++] =
  5079. (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
  5080. le32_to_cpu(stat_info->tmac_bcst_frms);
  5081. tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
  5082. tmp_stats[i++] =
  5083. (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
  5084. le32_to_cpu(stat_info->tmac_ttl_octets);
  5085. tmp_stats[i++] =
  5086. (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
  5087. le32_to_cpu(stat_info->tmac_ucst_frms);
  5088. tmp_stats[i++] =
  5089. (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
  5090. le32_to_cpu(stat_info->tmac_nucst_frms);
  5091. tmp_stats[i++] =
  5092. (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
  5093. le32_to_cpu(stat_info->tmac_any_err_frms);
  5094. tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
  5095. tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
  5096. tmp_stats[i++] =
  5097. (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
  5098. le32_to_cpu(stat_info->tmac_vld_ip);
  5099. tmp_stats[i++] =
  5100. (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
  5101. le32_to_cpu(stat_info->tmac_drop_ip);
  5102. tmp_stats[i++] =
  5103. (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
  5104. le32_to_cpu(stat_info->tmac_icmp);
  5105. tmp_stats[i++] =
  5106. (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
  5107. le32_to_cpu(stat_info->tmac_rst_tcp);
  5108. tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
  5109. tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
  5110. le32_to_cpu(stat_info->tmac_udp);
  5111. tmp_stats[i++] =
  5112. (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
  5113. le32_to_cpu(stat_info->rmac_vld_frms);
  5114. tmp_stats[i++] =
  5115. (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
  5116. le32_to_cpu(stat_info->rmac_data_octets);
  5117. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
  5118. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
  5119. tmp_stats[i++] =
  5120. (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
  5121. le32_to_cpu(stat_info->rmac_vld_mcst_frms);
  5122. tmp_stats[i++] =
  5123. (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
  5124. le32_to_cpu(stat_info->rmac_vld_bcst_frms);
  5125. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
  5126. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
  5127. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
  5128. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
  5129. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
  5130. tmp_stats[i++] =
  5131. (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
  5132. le32_to_cpu(stat_info->rmac_ttl_octets);
  5133. tmp_stats[i++] =
  5134. (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
  5135. << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
  5136. tmp_stats[i++] =
  5137. (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
  5138. << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
  5139. tmp_stats[i++] =
  5140. (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
  5141. le32_to_cpu(stat_info->rmac_discarded_frms);
  5142. tmp_stats[i++] =
  5143. (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
  5144. << 32 | le32_to_cpu(stat_info->rmac_drop_events);
  5145. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
  5146. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
  5147. tmp_stats[i++] =
  5148. (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
  5149. le32_to_cpu(stat_info->rmac_usized_frms);
  5150. tmp_stats[i++] =
  5151. (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
  5152. le32_to_cpu(stat_info->rmac_osized_frms);
  5153. tmp_stats[i++] =
  5154. (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
  5155. le32_to_cpu(stat_info->rmac_frag_frms);
  5156. tmp_stats[i++] =
  5157. (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
  5158. le32_to_cpu(stat_info->rmac_jabber_frms);
  5159. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
  5160. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
  5161. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
  5162. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
  5163. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
  5164. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
  5165. tmp_stats[i++] =
  5166. (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
  5167. le32_to_cpu(stat_info->rmac_ip);
  5168. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
  5169. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
  5170. tmp_stats[i++] =
  5171. (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
  5172. le32_to_cpu(stat_info->rmac_drop_ip);
  5173. tmp_stats[i++] =
  5174. (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
  5175. le32_to_cpu(stat_info->rmac_icmp);
  5176. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
  5177. tmp_stats[i++] =
  5178. (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
  5179. le32_to_cpu(stat_info->rmac_udp);
  5180. tmp_stats[i++] =
  5181. (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
  5182. le32_to_cpu(stat_info->rmac_err_drp_udp);
  5183. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
  5184. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
  5185. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
  5186. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
  5187. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
  5188. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
  5189. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
  5190. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
  5191. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
  5192. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
  5193. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
  5194. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
  5195. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
  5196. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
  5197. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
  5198. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
  5199. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
  5200. tmp_stats[i++] =
  5201. (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
  5202. le32_to_cpu(stat_info->rmac_pause_cnt);
  5203. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
  5204. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
  5205. tmp_stats[i++] =
  5206. (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
  5207. le32_to_cpu(stat_info->rmac_accepted_ip);
  5208. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
  5209. tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
  5210. tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
  5211. tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
  5212. tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
  5213. tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
  5214. tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
  5215. tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
  5216. tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
  5217. tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
  5218. tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
  5219. tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
  5220. tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
  5221. tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
  5222. tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
  5223. tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
  5224. tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
  5225. tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
  5226. tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
  5227. /* Enhanced statistics exist only for Hercules */
  5228. if(sp->device_type == XFRAME_II_DEVICE) {
  5229. tmp_stats[i++] =
  5230. le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
  5231. tmp_stats[i++] =
  5232. le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
  5233. tmp_stats[i++] =
  5234. le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
  5235. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
  5236. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
  5237. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
  5238. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
  5239. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
  5240. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
  5241. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
  5242. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
  5243. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
  5244. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
  5245. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
  5246. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
  5247. tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
  5248. }
  5249. tmp_stats[i++] = 0;
  5250. tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
  5251. tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
  5252. tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
  5253. tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
  5254. tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
  5255. tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
  5256. tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt;
  5257. tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
  5258. tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
  5259. tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
  5260. tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
  5261. tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
  5262. tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
  5263. tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
  5264. tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
  5265. tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
  5266. tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
  5267. tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
  5268. tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
  5269. tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
  5270. tmp_stats[i++] = stat_info->sw_stat.sending_both;
  5271. tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
  5272. tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
  5273. if (stat_info->sw_stat.num_aggregations) {
  5274. u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
  5275. int count = 0;
  5276. /*
  5277. * Since 64-bit divide does not work on all platforms,
  5278. * do repeated subtraction.
  5279. */
  5280. while (tmp >= stat_info->sw_stat.num_aggregations) {
  5281. tmp -= stat_info->sw_stat.num_aggregations;
  5282. count++;
  5283. }
  5284. tmp_stats[i++] = count;
  5285. }
  5286. else
  5287. tmp_stats[i++] = 0;
  5288. tmp_stats[i++] = stat_info->sw_stat.mem_alloc_fail_cnt;
  5289. tmp_stats[i++] = stat_info->sw_stat.pci_map_fail_cnt;
  5290. tmp_stats[i++] = stat_info->sw_stat.watchdog_timer_cnt;
  5291. tmp_stats[i++] = stat_info->sw_stat.mem_allocated;
  5292. tmp_stats[i++] = stat_info->sw_stat.mem_freed;
  5293. tmp_stats[i++] = stat_info->sw_stat.link_up_cnt;
  5294. tmp_stats[i++] = stat_info->sw_stat.link_down_cnt;
  5295. tmp_stats[i++] = stat_info->sw_stat.link_up_time;
  5296. tmp_stats[i++] = stat_info->sw_stat.link_down_time;
  5297. tmp_stats[i++] = stat_info->sw_stat.tx_buf_abort_cnt;
  5298. tmp_stats[i++] = stat_info->sw_stat.tx_desc_abort_cnt;
  5299. tmp_stats[i++] = stat_info->sw_stat.tx_parity_err_cnt;
  5300. tmp_stats[i++] = stat_info->sw_stat.tx_link_loss_cnt;
  5301. tmp_stats[i++] = stat_info->sw_stat.tx_list_proc_err_cnt;
  5302. tmp_stats[i++] = stat_info->sw_stat.rx_parity_err_cnt;
  5303. tmp_stats[i++] = stat_info->sw_stat.rx_abort_cnt;
  5304. tmp_stats[i++] = stat_info->sw_stat.rx_parity_abort_cnt;
  5305. tmp_stats[i++] = stat_info->sw_stat.rx_rda_fail_cnt;
  5306. tmp_stats[i++] = stat_info->sw_stat.rx_unkn_prot_cnt;
  5307. tmp_stats[i++] = stat_info->sw_stat.rx_fcs_err_cnt;
  5308. tmp_stats[i++] = stat_info->sw_stat.rx_buf_size_err_cnt;
  5309. tmp_stats[i++] = stat_info->sw_stat.rx_rxd_corrupt_cnt;
  5310. tmp_stats[i++] = stat_info->sw_stat.rx_unkn_err_cnt;
  5311. }
  5312. static int s2io_ethtool_get_regs_len(struct net_device *dev)
  5313. {
  5314. return (XENA_REG_SPACE);
  5315. }
  5316. static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
  5317. {
  5318. struct s2io_nic *sp = dev->priv;
  5319. return (sp->rx_csum);
  5320. }
  5321. static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
  5322. {
  5323. struct s2io_nic *sp = dev->priv;
  5324. if (data)
  5325. sp->rx_csum = 1;
  5326. else
  5327. sp->rx_csum = 0;
  5328. return 0;
  5329. }
  5330. static int s2io_get_eeprom_len(struct net_device *dev)
  5331. {
  5332. return (XENA_EEPROM_SPACE);
  5333. }
  5334. static int s2io_ethtool_self_test_count(struct net_device *dev)
  5335. {
  5336. return (S2IO_TEST_LEN);
  5337. }
  5338. static void s2io_ethtool_get_strings(struct net_device *dev,
  5339. u32 stringset, u8 * data)
  5340. {
  5341. int stat_size = 0;
  5342. struct s2io_nic *sp = dev->priv;
  5343. switch (stringset) {
  5344. case ETH_SS_TEST:
  5345. memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
  5346. break;
  5347. case ETH_SS_STATS:
  5348. stat_size = sizeof(ethtool_xena_stats_keys);
  5349. memcpy(data, &ethtool_xena_stats_keys,stat_size);
  5350. if(sp->device_type == XFRAME_II_DEVICE) {
  5351. memcpy(data + stat_size,
  5352. &ethtool_enhanced_stats_keys,
  5353. sizeof(ethtool_enhanced_stats_keys));
  5354. stat_size += sizeof(ethtool_enhanced_stats_keys);
  5355. }
  5356. memcpy(data + stat_size, &ethtool_driver_stats_keys,
  5357. sizeof(ethtool_driver_stats_keys));
  5358. }
  5359. }
  5360. static int s2io_ethtool_get_stats_count(struct net_device *dev)
  5361. {
  5362. struct s2io_nic *sp = dev->priv;
  5363. int stat_count = 0;
  5364. switch(sp->device_type) {
  5365. case XFRAME_I_DEVICE:
  5366. stat_count = XFRAME_I_STAT_LEN;
  5367. break;
  5368. case XFRAME_II_DEVICE:
  5369. stat_count = XFRAME_II_STAT_LEN;
  5370. break;
  5371. }
  5372. return stat_count;
  5373. }
  5374. static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
  5375. {
  5376. if (data)
  5377. dev->features |= NETIF_F_IP_CSUM;
  5378. else
  5379. dev->features &= ~NETIF_F_IP_CSUM;
  5380. return 0;
  5381. }
  5382. static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
  5383. {
  5384. return (dev->features & NETIF_F_TSO) != 0;
  5385. }
  5386. static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
  5387. {
  5388. if (data)
  5389. dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
  5390. else
  5391. dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
  5392. return 0;
  5393. }
  5394. static const struct ethtool_ops netdev_ethtool_ops = {
  5395. .get_settings = s2io_ethtool_gset,
  5396. .set_settings = s2io_ethtool_sset,
  5397. .get_drvinfo = s2io_ethtool_gdrvinfo,
  5398. .get_regs_len = s2io_ethtool_get_regs_len,
  5399. .get_regs = s2io_ethtool_gregs,
  5400. .get_link = ethtool_op_get_link,
  5401. .get_eeprom_len = s2io_get_eeprom_len,
  5402. .get_eeprom = s2io_ethtool_geeprom,
  5403. .set_eeprom = s2io_ethtool_seeprom,
  5404. .get_ringparam = s2io_ethtool_gringparam,
  5405. .get_pauseparam = s2io_ethtool_getpause_data,
  5406. .set_pauseparam = s2io_ethtool_setpause_data,
  5407. .get_rx_csum = s2io_ethtool_get_rx_csum,
  5408. .set_rx_csum = s2io_ethtool_set_rx_csum,
  5409. .get_tx_csum = ethtool_op_get_tx_csum,
  5410. .set_tx_csum = s2io_ethtool_op_set_tx_csum,
  5411. .get_sg = ethtool_op_get_sg,
  5412. .set_sg = ethtool_op_set_sg,
  5413. .get_tso = s2io_ethtool_op_get_tso,
  5414. .set_tso = s2io_ethtool_op_set_tso,
  5415. .get_ufo = ethtool_op_get_ufo,
  5416. .set_ufo = ethtool_op_set_ufo,
  5417. .self_test_count = s2io_ethtool_self_test_count,
  5418. .self_test = s2io_ethtool_test,
  5419. .get_strings = s2io_ethtool_get_strings,
  5420. .phys_id = s2io_ethtool_idnic,
  5421. .get_stats_count = s2io_ethtool_get_stats_count,
  5422. .get_ethtool_stats = s2io_get_ethtool_stats
  5423. };
  5424. /**
  5425. * s2io_ioctl - Entry point for the Ioctl
  5426. * @dev : Device pointer.
  5427. * @ifr : An IOCTL specefic structure, that can contain a pointer to
  5428. * a proprietary structure used to pass information to the driver.
  5429. * @cmd : This is used to distinguish between the different commands that
  5430. * can be passed to the IOCTL functions.
  5431. * Description:
  5432. * Currently there are no special functionality supported in IOCTL, hence
  5433. * function always return EOPNOTSUPPORTED
  5434. */
  5435. static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
  5436. {
  5437. return -EOPNOTSUPP;
  5438. }
  5439. /**
  5440. * s2io_change_mtu - entry point to change MTU size for the device.
  5441. * @dev : device pointer.
  5442. * @new_mtu : the new MTU size for the device.
  5443. * Description: A driver entry point to change MTU size for the device.
  5444. * Before changing the MTU the device must be stopped.
  5445. * Return value:
  5446. * 0 on success and an appropriate (-)ve integer as defined in errno.h
  5447. * file on failure.
  5448. */
  5449. static int s2io_change_mtu(struct net_device *dev, int new_mtu)
  5450. {
  5451. struct s2io_nic *sp = dev->priv;
  5452. if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
  5453. DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
  5454. dev->name);
  5455. return -EPERM;
  5456. }
  5457. dev->mtu = new_mtu;
  5458. if (netif_running(dev)) {
  5459. s2io_card_down(sp);
  5460. netif_stop_queue(dev);
  5461. if (s2io_card_up(sp)) {
  5462. DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
  5463. __FUNCTION__);
  5464. }
  5465. if (netif_queue_stopped(dev))
  5466. netif_wake_queue(dev);
  5467. } else { /* Device is down */
  5468. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  5469. u64 val64 = new_mtu;
  5470. writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
  5471. }
  5472. return 0;
  5473. }
  5474. /**
  5475. * s2io_tasklet - Bottom half of the ISR.
  5476. * @dev_adr : address of the device structure in dma_addr_t format.
  5477. * Description:
  5478. * This is the tasklet or the bottom half of the ISR. This is
  5479. * an extension of the ISR which is scheduled by the scheduler to be run
  5480. * when the load on the CPU is low. All low priority tasks of the ISR can
  5481. * be pushed into the tasklet. For now the tasklet is used only to
  5482. * replenish the Rx buffers in the Rx buffer descriptors.
  5483. * Return value:
  5484. * void.
  5485. */
  5486. static void s2io_tasklet(unsigned long dev_addr)
  5487. {
  5488. struct net_device *dev = (struct net_device *) dev_addr;
  5489. struct s2io_nic *sp = dev->priv;
  5490. int i, ret;
  5491. struct mac_info *mac_control;
  5492. struct config_param *config;
  5493. mac_control = &sp->mac_control;
  5494. config = &sp->config;
  5495. if (!TASKLET_IN_USE) {
  5496. for (i = 0; i < config->rx_ring_num; i++) {
  5497. ret = fill_rx_buffers(sp, i);
  5498. if (ret == -ENOMEM) {
  5499. DBG_PRINT(INFO_DBG, "%s: Out of ",
  5500. dev->name);
  5501. DBG_PRINT(INFO_DBG, "memory in tasklet\n");
  5502. break;
  5503. } else if (ret == -EFILL) {
  5504. DBG_PRINT(INFO_DBG,
  5505. "%s: Rx Ring %d is full\n",
  5506. dev->name, i);
  5507. break;
  5508. }
  5509. }
  5510. clear_bit(0, (&sp->tasklet_status));
  5511. }
  5512. }
  5513. /**
  5514. * s2io_set_link - Set the LInk status
  5515. * @data: long pointer to device private structue
  5516. * Description: Sets the link status for the adapter
  5517. */
  5518. static void s2io_set_link(struct work_struct *work)
  5519. {
  5520. struct s2io_nic *nic = container_of(work, struct s2io_nic, set_link_task);
  5521. struct net_device *dev = nic->dev;
  5522. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  5523. register u64 val64;
  5524. u16 subid;
  5525. rtnl_lock();
  5526. if (!netif_running(dev))
  5527. goto out_unlock;
  5528. if (test_and_set_bit(0, &(nic->link_state))) {
  5529. /* The card is being reset, no point doing anything */
  5530. goto out_unlock;
  5531. }
  5532. subid = nic->pdev->subsystem_device;
  5533. if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
  5534. /*
  5535. * Allow a small delay for the NICs self initiated
  5536. * cleanup to complete.
  5537. */
  5538. msleep(100);
  5539. }
  5540. val64 = readq(&bar0->adapter_status);
  5541. if (LINK_IS_UP(val64)) {
  5542. if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
  5543. if (verify_xena_quiescence(nic)) {
  5544. val64 = readq(&bar0->adapter_control);
  5545. val64 |= ADAPTER_CNTL_EN;
  5546. writeq(val64, &bar0->adapter_control);
  5547. if (CARDS_WITH_FAULTY_LINK_INDICATORS(
  5548. nic->device_type, subid)) {
  5549. val64 = readq(&bar0->gpio_control);
  5550. val64 |= GPIO_CTRL_GPIO_0;
  5551. writeq(val64, &bar0->gpio_control);
  5552. val64 = readq(&bar0->gpio_control);
  5553. } else {
  5554. val64 |= ADAPTER_LED_ON;
  5555. writeq(val64, &bar0->adapter_control);
  5556. }
  5557. nic->device_enabled_once = TRUE;
  5558. } else {
  5559. DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
  5560. DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
  5561. netif_stop_queue(dev);
  5562. }
  5563. }
  5564. val64 = readq(&bar0->adapter_control);
  5565. val64 |= ADAPTER_LED_ON;
  5566. writeq(val64, &bar0->adapter_control);
  5567. s2io_link(nic, LINK_UP);
  5568. } else {
  5569. if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
  5570. subid)) {
  5571. val64 = readq(&bar0->gpio_control);
  5572. val64 &= ~GPIO_CTRL_GPIO_0;
  5573. writeq(val64, &bar0->gpio_control);
  5574. val64 = readq(&bar0->gpio_control);
  5575. }
  5576. /* turn off LED */
  5577. val64 = readq(&bar0->adapter_control);
  5578. val64 = val64 &(~ADAPTER_LED_ON);
  5579. writeq(val64, &bar0->adapter_control);
  5580. s2io_link(nic, LINK_DOWN);
  5581. }
  5582. clear_bit(0, &(nic->link_state));
  5583. out_unlock:
  5584. rtnl_unlock();
  5585. }
  5586. static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
  5587. struct buffAdd *ba,
  5588. struct sk_buff **skb, u64 *temp0, u64 *temp1,
  5589. u64 *temp2, int size)
  5590. {
  5591. struct net_device *dev = sp->dev;
  5592. struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
  5593. if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
  5594. struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
  5595. /* allocate skb */
  5596. if (*skb) {
  5597. DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
  5598. /*
  5599. * As Rx frame are not going to be processed,
  5600. * using same mapped address for the Rxd
  5601. * buffer pointer
  5602. */
  5603. rxdp1->Buffer0_ptr = *temp0;
  5604. } else {
  5605. *skb = dev_alloc_skb(size);
  5606. if (!(*skb)) {
  5607. DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
  5608. DBG_PRINT(INFO_DBG, "memory to allocate ");
  5609. DBG_PRINT(INFO_DBG, "1 buf mode SKBs\n");
  5610. sp->mac_control.stats_info->sw_stat. \
  5611. mem_alloc_fail_cnt++;
  5612. return -ENOMEM ;
  5613. }
  5614. sp->mac_control.stats_info->sw_stat.mem_allocated
  5615. += (*skb)->truesize;
  5616. /* storing the mapped addr in a temp variable
  5617. * such it will be used for next rxd whose
  5618. * Host Control is NULL
  5619. */
  5620. rxdp1->Buffer0_ptr = *temp0 =
  5621. pci_map_single( sp->pdev, (*skb)->data,
  5622. size - NET_IP_ALIGN,
  5623. PCI_DMA_FROMDEVICE);
  5624. if( (rxdp1->Buffer0_ptr == 0) ||
  5625. (rxdp1->Buffer0_ptr == DMA_ERROR_CODE)) {
  5626. goto memalloc_failed;
  5627. }
  5628. rxdp->Host_Control = (unsigned long) (*skb);
  5629. }
  5630. } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
  5631. struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
  5632. /* Two buffer Mode */
  5633. if (*skb) {
  5634. rxdp3->Buffer2_ptr = *temp2;
  5635. rxdp3->Buffer0_ptr = *temp0;
  5636. rxdp3->Buffer1_ptr = *temp1;
  5637. } else {
  5638. *skb = dev_alloc_skb(size);
  5639. if (!(*skb)) {
  5640. DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
  5641. DBG_PRINT(INFO_DBG, "memory to allocate ");
  5642. DBG_PRINT(INFO_DBG, "2 buf mode SKBs\n");
  5643. sp->mac_control.stats_info->sw_stat. \
  5644. mem_alloc_fail_cnt++;
  5645. return -ENOMEM;
  5646. }
  5647. sp->mac_control.stats_info->sw_stat.mem_allocated
  5648. += (*skb)->truesize;
  5649. rxdp3->Buffer2_ptr = *temp2 =
  5650. pci_map_single(sp->pdev, (*skb)->data,
  5651. dev->mtu + 4,
  5652. PCI_DMA_FROMDEVICE);
  5653. if( (rxdp3->Buffer2_ptr == 0) ||
  5654. (rxdp3->Buffer2_ptr == DMA_ERROR_CODE)) {
  5655. goto memalloc_failed;
  5656. }
  5657. rxdp3->Buffer0_ptr = *temp0 =
  5658. pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
  5659. PCI_DMA_FROMDEVICE);
  5660. if( (rxdp3->Buffer0_ptr == 0) ||
  5661. (rxdp3->Buffer0_ptr == DMA_ERROR_CODE)) {
  5662. pci_unmap_single (sp->pdev,
  5663. (dma_addr_t)rxdp3->Buffer2_ptr,
  5664. dev->mtu + 4, PCI_DMA_FROMDEVICE);
  5665. goto memalloc_failed;
  5666. }
  5667. rxdp->Host_Control = (unsigned long) (*skb);
  5668. /* Buffer-1 will be dummy buffer not used */
  5669. rxdp3->Buffer1_ptr = *temp1 =
  5670. pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
  5671. PCI_DMA_FROMDEVICE);
  5672. if( (rxdp3->Buffer1_ptr == 0) ||
  5673. (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
  5674. pci_unmap_single (sp->pdev,
  5675. (dma_addr_t)rxdp3->Buffer0_ptr,
  5676. BUF0_LEN, PCI_DMA_FROMDEVICE);
  5677. pci_unmap_single (sp->pdev,
  5678. (dma_addr_t)rxdp3->Buffer2_ptr,
  5679. dev->mtu + 4, PCI_DMA_FROMDEVICE);
  5680. goto memalloc_failed;
  5681. }
  5682. }
  5683. }
  5684. return 0;
  5685. memalloc_failed:
  5686. stats->pci_map_fail_cnt++;
  5687. stats->mem_freed += (*skb)->truesize;
  5688. dev_kfree_skb(*skb);
  5689. return -ENOMEM;
  5690. }
  5691. static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
  5692. int size)
  5693. {
  5694. struct net_device *dev = sp->dev;
  5695. if (sp->rxd_mode == RXD_MODE_1) {
  5696. rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
  5697. } else if (sp->rxd_mode == RXD_MODE_3B) {
  5698. rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
  5699. rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
  5700. rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
  5701. }
  5702. }
  5703. static int rxd_owner_bit_reset(struct s2io_nic *sp)
  5704. {
  5705. int i, j, k, blk_cnt = 0, size;
  5706. struct mac_info * mac_control = &sp->mac_control;
  5707. struct config_param *config = &sp->config;
  5708. struct net_device *dev = sp->dev;
  5709. struct RxD_t *rxdp = NULL;
  5710. struct sk_buff *skb = NULL;
  5711. struct buffAdd *ba = NULL;
  5712. u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
  5713. /* Calculate the size based on ring mode */
  5714. size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
  5715. HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
  5716. if (sp->rxd_mode == RXD_MODE_1)
  5717. size += NET_IP_ALIGN;
  5718. else if (sp->rxd_mode == RXD_MODE_3B)
  5719. size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
  5720. for (i = 0; i < config->rx_ring_num; i++) {
  5721. blk_cnt = config->rx_cfg[i].num_rxd /
  5722. (rxd_count[sp->rxd_mode] +1);
  5723. for (j = 0; j < blk_cnt; j++) {
  5724. for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
  5725. rxdp = mac_control->rings[i].
  5726. rx_blocks[j].rxds[k].virt_addr;
  5727. if(sp->rxd_mode == RXD_MODE_3B)
  5728. ba = &mac_control->rings[i].ba[j][k];
  5729. if (set_rxd_buffer_pointer(sp, rxdp, ba,
  5730. &skb,(u64 *)&temp0_64,
  5731. (u64 *)&temp1_64,
  5732. (u64 *)&temp2_64,
  5733. size) == ENOMEM) {
  5734. return 0;
  5735. }
  5736. set_rxd_buffer_size(sp, rxdp, size);
  5737. wmb();
  5738. /* flip the Ownership bit to Hardware */
  5739. rxdp->Control_1 |= RXD_OWN_XENA;
  5740. }
  5741. }
  5742. }
  5743. return 0;
  5744. }
  5745. static int s2io_add_isr(struct s2io_nic * sp)
  5746. {
  5747. int ret = 0;
  5748. struct net_device *dev = sp->dev;
  5749. int err = 0;
  5750. if (sp->intr_type == MSI_X)
  5751. ret = s2io_enable_msi_x(sp);
  5752. if (ret) {
  5753. DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
  5754. sp->intr_type = INTA;
  5755. }
  5756. /* Store the values of the MSIX table in the struct s2io_nic structure */
  5757. store_xmsi_data(sp);
  5758. /* After proper initialization of H/W, register ISR */
  5759. if (sp->intr_type == MSI_X) {
  5760. int i, msix_tx_cnt=0,msix_rx_cnt=0;
  5761. for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
  5762. if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) {
  5763. sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
  5764. dev->name, i);
  5765. err = request_irq(sp->entries[i].vector,
  5766. s2io_msix_fifo_handle, 0, sp->desc[i],
  5767. sp->s2io_entries[i].arg);
  5768. /* If either data or addr is zero print it */
  5769. if(!(sp->msix_info[i].addr &&
  5770. sp->msix_info[i].data)) {
  5771. DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx"
  5772. "Data:0x%lx\n",sp->desc[i],
  5773. (unsigned long long)
  5774. sp->msix_info[i].addr,
  5775. (unsigned long)
  5776. ntohl(sp->msix_info[i].data));
  5777. } else {
  5778. msix_tx_cnt++;
  5779. }
  5780. } else {
  5781. sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
  5782. dev->name, i);
  5783. err = request_irq(sp->entries[i].vector,
  5784. s2io_msix_ring_handle, 0, sp->desc[i],
  5785. sp->s2io_entries[i].arg);
  5786. /* If either data or addr is zero print it */
  5787. if(!(sp->msix_info[i].addr &&
  5788. sp->msix_info[i].data)) {
  5789. DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx"
  5790. "Data:0x%lx\n",sp->desc[i],
  5791. (unsigned long long)
  5792. sp->msix_info[i].addr,
  5793. (unsigned long)
  5794. ntohl(sp->msix_info[i].data));
  5795. } else {
  5796. msix_rx_cnt++;
  5797. }
  5798. }
  5799. if (err) {
  5800. DBG_PRINT(ERR_DBG,"%s:MSI-X-%d registration "
  5801. "failed\n", dev->name, i);
  5802. DBG_PRINT(ERR_DBG, "Returned: %d\n", err);
  5803. return -1;
  5804. }
  5805. sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS;
  5806. }
  5807. printk("MSI-X-TX %d entries enabled\n",msix_tx_cnt);
  5808. printk("MSI-X-RX %d entries enabled\n",msix_rx_cnt);
  5809. }
  5810. if (sp->intr_type == INTA) {
  5811. err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
  5812. sp->name, dev);
  5813. if (err) {
  5814. DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
  5815. dev->name);
  5816. return -1;
  5817. }
  5818. }
  5819. return 0;
  5820. }
  5821. static void s2io_rem_isr(struct s2io_nic * sp)
  5822. {
  5823. int cnt = 0;
  5824. struct net_device *dev = sp->dev;
  5825. struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
  5826. if (sp->intr_type == MSI_X) {
  5827. int i;
  5828. u16 msi_control;
  5829. for (i=1; (sp->s2io_entries[i].in_use ==
  5830. MSIX_REGISTERED_SUCCESS); i++) {
  5831. int vector = sp->entries[i].vector;
  5832. void *arg = sp->s2io_entries[i].arg;
  5833. free_irq(vector, arg);
  5834. }
  5835. kfree(sp->entries);
  5836. stats->mem_freed +=
  5837. (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
  5838. kfree(sp->s2io_entries);
  5839. stats->mem_freed +=
  5840. (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
  5841. sp->entries = NULL;
  5842. sp->s2io_entries = NULL;
  5843. pci_read_config_word(sp->pdev, 0x42, &msi_control);
  5844. msi_control &= 0xFFFE; /* Disable MSI */
  5845. pci_write_config_word(sp->pdev, 0x42, msi_control);
  5846. pci_disable_msix(sp->pdev);
  5847. } else {
  5848. free_irq(sp->pdev->irq, dev);
  5849. }
  5850. /* Waiting till all Interrupt handlers are complete */
  5851. cnt = 0;
  5852. do {
  5853. msleep(10);
  5854. if (!atomic_read(&sp->isr_cnt))
  5855. break;
  5856. cnt++;
  5857. } while(cnt < 5);
  5858. }
  5859. static void do_s2io_card_down(struct s2io_nic * sp, int do_io)
  5860. {
  5861. int cnt = 0;
  5862. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  5863. unsigned long flags;
  5864. register u64 val64 = 0;
  5865. del_timer_sync(&sp->alarm_timer);
  5866. /* If s2io_set_link task is executing, wait till it completes. */
  5867. while (test_and_set_bit(0, &(sp->link_state))) {
  5868. msleep(50);
  5869. }
  5870. atomic_set(&sp->card_state, CARD_DOWN);
  5871. /* disable Tx and Rx traffic on the NIC */
  5872. if (do_io)
  5873. stop_nic(sp);
  5874. s2io_rem_isr(sp);
  5875. /* Kill tasklet. */
  5876. tasklet_kill(&sp->task);
  5877. /* Check if the device is Quiescent and then Reset the NIC */
  5878. while(do_io) {
  5879. /* As per the HW requirement we need to replenish the
  5880. * receive buffer to avoid the ring bump. Since there is
  5881. * no intention of processing the Rx frame at this pointwe are
  5882. * just settting the ownership bit of rxd in Each Rx
  5883. * ring to HW and set the appropriate buffer size
  5884. * based on the ring mode
  5885. */
  5886. rxd_owner_bit_reset(sp);
  5887. val64 = readq(&bar0->adapter_status);
  5888. if (verify_xena_quiescence(sp)) {
  5889. if(verify_pcc_quiescent(sp, sp->device_enabled_once))
  5890. break;
  5891. }
  5892. msleep(50);
  5893. cnt++;
  5894. if (cnt == 10) {
  5895. DBG_PRINT(ERR_DBG,
  5896. "s2io_close:Device not Quiescent ");
  5897. DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
  5898. (unsigned long long) val64);
  5899. break;
  5900. }
  5901. }
  5902. if (do_io)
  5903. s2io_reset(sp);
  5904. spin_lock_irqsave(&sp->tx_lock, flags);
  5905. /* Free all Tx buffers */
  5906. free_tx_buffers(sp);
  5907. spin_unlock_irqrestore(&sp->tx_lock, flags);
  5908. /* Free all Rx buffers */
  5909. spin_lock_irqsave(&sp->rx_lock, flags);
  5910. free_rx_buffers(sp);
  5911. spin_unlock_irqrestore(&sp->rx_lock, flags);
  5912. clear_bit(0, &(sp->link_state));
  5913. }
  5914. static void s2io_card_down(struct s2io_nic * sp)
  5915. {
  5916. do_s2io_card_down(sp, 1);
  5917. }
  5918. static int s2io_card_up(struct s2io_nic * sp)
  5919. {
  5920. int i, ret = 0;
  5921. struct mac_info *mac_control;
  5922. struct config_param *config;
  5923. struct net_device *dev = (struct net_device *) sp->dev;
  5924. u16 interruptible;
  5925. /* Initialize the H/W I/O registers */
  5926. if (init_nic(sp) != 0) {
  5927. DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
  5928. dev->name);
  5929. s2io_reset(sp);
  5930. return -ENODEV;
  5931. }
  5932. /*
  5933. * Initializing the Rx buffers. For now we are considering only 1
  5934. * Rx ring and initializing buffers into 30 Rx blocks
  5935. */
  5936. mac_control = &sp->mac_control;
  5937. config = &sp->config;
  5938. for (i = 0; i < config->rx_ring_num; i++) {
  5939. if ((ret = fill_rx_buffers(sp, i))) {
  5940. DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
  5941. dev->name);
  5942. s2io_reset(sp);
  5943. free_rx_buffers(sp);
  5944. return -ENOMEM;
  5945. }
  5946. DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
  5947. atomic_read(&sp->rx_bufs_left[i]));
  5948. }
  5949. /* Maintain the state prior to the open */
  5950. if (sp->promisc_flg)
  5951. sp->promisc_flg = 0;
  5952. if (sp->m_cast_flg) {
  5953. sp->m_cast_flg = 0;
  5954. sp->all_multi_pos= 0;
  5955. }
  5956. /* Setting its receive mode */
  5957. s2io_set_multicast(dev);
  5958. if (sp->lro) {
  5959. /* Initialize max aggregatable pkts per session based on MTU */
  5960. sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
  5961. /* Check if we can use(if specified) user provided value */
  5962. if (lro_max_pkts < sp->lro_max_aggr_per_sess)
  5963. sp->lro_max_aggr_per_sess = lro_max_pkts;
  5964. }
  5965. /* Enable Rx Traffic and interrupts on the NIC */
  5966. if (start_nic(sp)) {
  5967. DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
  5968. s2io_reset(sp);
  5969. free_rx_buffers(sp);
  5970. return -ENODEV;
  5971. }
  5972. /* Add interrupt service routine */
  5973. if (s2io_add_isr(sp) != 0) {
  5974. if (sp->intr_type == MSI_X)
  5975. s2io_rem_isr(sp);
  5976. s2io_reset(sp);
  5977. free_rx_buffers(sp);
  5978. return -ENODEV;
  5979. }
  5980. S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
  5981. /* Enable tasklet for the device */
  5982. tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev);
  5983. /* Enable select interrupts */
  5984. if (sp->intr_type != INTA)
  5985. en_dis_able_nic_intrs(sp, ENA_ALL_INTRS, DISABLE_INTRS);
  5986. else {
  5987. interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
  5988. interruptible |= TX_PIC_INTR | RX_PIC_INTR;
  5989. interruptible |= TX_MAC_INTR | RX_MAC_INTR;
  5990. en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
  5991. }
  5992. atomic_set(&sp->card_state, CARD_UP);
  5993. return 0;
  5994. }
  5995. /**
  5996. * s2io_restart_nic - Resets the NIC.
  5997. * @data : long pointer to the device private structure
  5998. * Description:
  5999. * This function is scheduled to be run by the s2io_tx_watchdog
  6000. * function after 0.5 secs to reset the NIC. The idea is to reduce
  6001. * the run time of the watch dog routine which is run holding a
  6002. * spin lock.
  6003. */
  6004. static void s2io_restart_nic(struct work_struct *work)
  6005. {
  6006. struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
  6007. struct net_device *dev = sp->dev;
  6008. rtnl_lock();
  6009. if (!netif_running(dev))
  6010. goto out_unlock;
  6011. s2io_card_down(sp);
  6012. if (s2io_card_up(sp)) {
  6013. DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
  6014. dev->name);
  6015. }
  6016. netif_wake_queue(dev);
  6017. DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
  6018. dev->name);
  6019. out_unlock:
  6020. rtnl_unlock();
  6021. }
  6022. /**
  6023. * s2io_tx_watchdog - Watchdog for transmit side.
  6024. * @dev : Pointer to net device structure
  6025. * Description:
  6026. * This function is triggered if the Tx Queue is stopped
  6027. * for a pre-defined amount of time when the Interface is still up.
  6028. * If the Interface is jammed in such a situation, the hardware is
  6029. * reset (by s2io_close) and restarted again (by s2io_open) to
  6030. * overcome any problem that might have been caused in the hardware.
  6031. * Return value:
  6032. * void
  6033. */
  6034. static void s2io_tx_watchdog(struct net_device *dev)
  6035. {
  6036. struct s2io_nic *sp = dev->priv;
  6037. if (netif_carrier_ok(dev)) {
  6038. sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt++;
  6039. schedule_work(&sp->rst_timer_task);
  6040. sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
  6041. }
  6042. }
  6043. /**
  6044. * rx_osm_handler - To perform some OS related operations on SKB.
  6045. * @sp: private member of the device structure,pointer to s2io_nic structure.
  6046. * @skb : the socket buffer pointer.
  6047. * @len : length of the packet
  6048. * @cksum : FCS checksum of the frame.
  6049. * @ring_no : the ring from which this RxD was extracted.
  6050. * Description:
  6051. * This function is called by the Rx interrupt serivce routine to perform
  6052. * some OS related operations on the SKB before passing it to the upper
  6053. * layers. It mainly checks if the checksum is OK, if so adds it to the
  6054. * SKBs cksum variable, increments the Rx packet count and passes the SKB
  6055. * to the upper layer. If the checksum is wrong, it increments the Rx
  6056. * packet error count, frees the SKB and returns error.
  6057. * Return value:
  6058. * SUCCESS on success and -1 on failure.
  6059. */
  6060. static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
  6061. {
  6062. struct s2io_nic *sp = ring_data->nic;
  6063. struct net_device *dev = (struct net_device *) sp->dev;
  6064. struct sk_buff *skb = (struct sk_buff *)
  6065. ((unsigned long) rxdp->Host_Control);
  6066. int ring_no = ring_data->ring_no;
  6067. u16 l3_csum, l4_csum;
  6068. unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
  6069. struct lro *lro;
  6070. u8 err_mask;
  6071. skb->dev = dev;
  6072. if (err) {
  6073. /* Check for parity error */
  6074. if (err & 0x1) {
  6075. sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
  6076. }
  6077. err_mask = err >> 48;
  6078. switch(err_mask) {
  6079. case 1:
  6080. sp->mac_control.stats_info->sw_stat.
  6081. rx_parity_err_cnt++;
  6082. break;
  6083. case 2:
  6084. sp->mac_control.stats_info->sw_stat.
  6085. rx_abort_cnt++;
  6086. break;
  6087. case 3:
  6088. sp->mac_control.stats_info->sw_stat.
  6089. rx_parity_abort_cnt++;
  6090. break;
  6091. case 4:
  6092. sp->mac_control.stats_info->sw_stat.
  6093. rx_rda_fail_cnt++;
  6094. break;
  6095. case 5:
  6096. sp->mac_control.stats_info->sw_stat.
  6097. rx_unkn_prot_cnt++;
  6098. break;
  6099. case 6:
  6100. sp->mac_control.stats_info->sw_stat.
  6101. rx_fcs_err_cnt++;
  6102. break;
  6103. case 7:
  6104. sp->mac_control.stats_info->sw_stat.
  6105. rx_buf_size_err_cnt++;
  6106. break;
  6107. case 8:
  6108. sp->mac_control.stats_info->sw_stat.
  6109. rx_rxd_corrupt_cnt++;
  6110. break;
  6111. case 15:
  6112. sp->mac_control.stats_info->sw_stat.
  6113. rx_unkn_err_cnt++;
  6114. break;
  6115. }
  6116. /*
  6117. * Drop the packet if bad transfer code. Exception being
  6118. * 0x5, which could be due to unsupported IPv6 extension header.
  6119. * In this case, we let stack handle the packet.
  6120. * Note that in this case, since checksum will be incorrect,
  6121. * stack will validate the same.
  6122. */
  6123. if (err_mask != 0x5) {
  6124. DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
  6125. dev->name, err_mask);
  6126. sp->stats.rx_crc_errors++;
  6127. sp->mac_control.stats_info->sw_stat.mem_freed
  6128. += skb->truesize;
  6129. dev_kfree_skb(skb);
  6130. atomic_dec(&sp->rx_bufs_left[ring_no]);
  6131. rxdp->Host_Control = 0;
  6132. return 0;
  6133. }
  6134. }
  6135. /* Updating statistics */
  6136. sp->stats.rx_packets++;
  6137. rxdp->Host_Control = 0;
  6138. if (sp->rxd_mode == RXD_MODE_1) {
  6139. int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
  6140. sp->stats.rx_bytes += len;
  6141. skb_put(skb, len);
  6142. } else if (sp->rxd_mode == RXD_MODE_3B) {
  6143. int get_block = ring_data->rx_curr_get_info.block_index;
  6144. int get_off = ring_data->rx_curr_get_info.offset;
  6145. int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
  6146. int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
  6147. unsigned char *buff = skb_push(skb, buf0_len);
  6148. struct buffAdd *ba = &ring_data->ba[get_block][get_off];
  6149. sp->stats.rx_bytes += buf0_len + buf2_len;
  6150. memcpy(buff, ba->ba_0, buf0_len);
  6151. skb_put(skb, buf2_len);
  6152. }
  6153. if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!sp->lro) ||
  6154. (sp->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
  6155. (sp->rx_csum)) {
  6156. l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
  6157. l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
  6158. if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
  6159. /*
  6160. * NIC verifies if the Checksum of the received
  6161. * frame is Ok or not and accordingly returns
  6162. * a flag in the RxD.
  6163. */
  6164. skb->ip_summed = CHECKSUM_UNNECESSARY;
  6165. if (sp->lro) {
  6166. u32 tcp_len;
  6167. u8 *tcp;
  6168. int ret = 0;
  6169. ret = s2io_club_tcp_session(skb->data, &tcp,
  6170. &tcp_len, &lro, rxdp, sp);
  6171. switch (ret) {
  6172. case 3: /* Begin anew */
  6173. lro->parent = skb;
  6174. goto aggregate;
  6175. case 1: /* Aggregate */
  6176. {
  6177. lro_append_pkt(sp, lro,
  6178. skb, tcp_len);
  6179. goto aggregate;
  6180. }
  6181. case 4: /* Flush session */
  6182. {
  6183. lro_append_pkt(sp, lro,
  6184. skb, tcp_len);
  6185. queue_rx_frame(lro->parent);
  6186. clear_lro_session(lro);
  6187. sp->mac_control.stats_info->
  6188. sw_stat.flush_max_pkts++;
  6189. goto aggregate;
  6190. }
  6191. case 2: /* Flush both */
  6192. lro->parent->data_len =
  6193. lro->frags_len;
  6194. sp->mac_control.stats_info->
  6195. sw_stat.sending_both++;
  6196. queue_rx_frame(lro->parent);
  6197. clear_lro_session(lro);
  6198. goto send_up;
  6199. case 0: /* sessions exceeded */
  6200. case -1: /* non-TCP or not
  6201. * L2 aggregatable
  6202. */
  6203. case 5: /*
  6204. * First pkt in session not
  6205. * L3/L4 aggregatable
  6206. */
  6207. break;
  6208. default:
  6209. DBG_PRINT(ERR_DBG,
  6210. "%s: Samadhana!!\n",
  6211. __FUNCTION__);
  6212. BUG();
  6213. }
  6214. }
  6215. } else {
  6216. /*
  6217. * Packet with erroneous checksum, let the
  6218. * upper layers deal with it.
  6219. */
  6220. skb->ip_summed = CHECKSUM_NONE;
  6221. }
  6222. } else {
  6223. skb->ip_summed = CHECKSUM_NONE;
  6224. }
  6225. sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
  6226. if (!sp->lro) {
  6227. skb->protocol = eth_type_trans(skb, dev);
  6228. if ((sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2) &&
  6229. vlan_strip_flag)) {
  6230. /* Queueing the vlan frame to the upper layer */
  6231. if (napi)
  6232. vlan_hwaccel_receive_skb(skb, sp->vlgrp,
  6233. RXD_GET_VLAN_TAG(rxdp->Control_2));
  6234. else
  6235. vlan_hwaccel_rx(skb, sp->vlgrp,
  6236. RXD_GET_VLAN_TAG(rxdp->Control_2));
  6237. } else {
  6238. if (napi)
  6239. netif_receive_skb(skb);
  6240. else
  6241. netif_rx(skb);
  6242. }
  6243. } else {
  6244. send_up:
  6245. queue_rx_frame(skb);
  6246. }
  6247. dev->last_rx = jiffies;
  6248. aggregate:
  6249. atomic_dec(&sp->rx_bufs_left[ring_no]);
  6250. return SUCCESS;
  6251. }
  6252. /**
  6253. * s2io_link - stops/starts the Tx queue.
  6254. * @sp : private member of the device structure, which is a pointer to the
  6255. * s2io_nic structure.
  6256. * @link : inidicates whether link is UP/DOWN.
  6257. * Description:
  6258. * This function stops/starts the Tx queue depending on whether the link
  6259. * status of the NIC is is down or up. This is called by the Alarm
  6260. * interrupt handler whenever a link change interrupt comes up.
  6261. * Return value:
  6262. * void.
  6263. */
  6264. static void s2io_link(struct s2io_nic * sp, int link)
  6265. {
  6266. struct net_device *dev = (struct net_device *) sp->dev;
  6267. if (link != sp->last_link_state) {
  6268. if (link == LINK_DOWN) {
  6269. DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
  6270. netif_carrier_off(dev);
  6271. if(sp->mac_control.stats_info->sw_stat.link_up_cnt)
  6272. sp->mac_control.stats_info->sw_stat.link_up_time =
  6273. jiffies - sp->start_time;
  6274. sp->mac_control.stats_info->sw_stat.link_down_cnt++;
  6275. } else {
  6276. DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
  6277. if (sp->mac_control.stats_info->sw_stat.link_down_cnt)
  6278. sp->mac_control.stats_info->sw_stat.link_down_time =
  6279. jiffies - sp->start_time;
  6280. sp->mac_control.stats_info->sw_stat.link_up_cnt++;
  6281. netif_carrier_on(dev);
  6282. }
  6283. }
  6284. sp->last_link_state = link;
  6285. sp->start_time = jiffies;
  6286. }
  6287. /**
  6288. * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
  6289. * @sp : private member of the device structure, which is a pointer to the
  6290. * s2io_nic structure.
  6291. * Description:
  6292. * This function initializes a few of the PCI and PCI-X configuration registers
  6293. * with recommended values.
  6294. * Return value:
  6295. * void
  6296. */
  6297. static void s2io_init_pci(struct s2io_nic * sp)
  6298. {
  6299. u16 pci_cmd = 0, pcix_cmd = 0;
  6300. /* Enable Data Parity Error Recovery in PCI-X command register. */
  6301. pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
  6302. &(pcix_cmd));
  6303. pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
  6304. (pcix_cmd | 1));
  6305. pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
  6306. &(pcix_cmd));
  6307. /* Set the PErr Response bit in PCI command register. */
  6308. pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
  6309. pci_write_config_word(sp->pdev, PCI_COMMAND,
  6310. (pci_cmd | PCI_COMMAND_PARITY));
  6311. pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
  6312. }
  6313. static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type)
  6314. {
  6315. if ( tx_fifo_num > 8) {
  6316. DBG_PRINT(ERR_DBG, "s2io: Requested number of Tx fifos not "
  6317. "supported\n");
  6318. DBG_PRINT(ERR_DBG, "s2io: Default to 8 Tx fifos\n");
  6319. tx_fifo_num = 8;
  6320. }
  6321. if ( rx_ring_num > 8) {
  6322. DBG_PRINT(ERR_DBG, "s2io: Requested number of Rx rings not "
  6323. "supported\n");
  6324. DBG_PRINT(ERR_DBG, "s2io: Default to 8 Rx rings\n");
  6325. rx_ring_num = 8;
  6326. }
  6327. if (*dev_intr_type != INTA)
  6328. napi = 0;
  6329. #ifndef CONFIG_PCI_MSI
  6330. if (*dev_intr_type != INTA) {
  6331. DBG_PRINT(ERR_DBG, "s2io: This kernel does not support"
  6332. "MSI/MSI-X. Defaulting to INTA\n");
  6333. *dev_intr_type = INTA;
  6334. }
  6335. #else
  6336. if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
  6337. DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
  6338. "Defaulting to INTA\n");
  6339. *dev_intr_type = INTA;
  6340. }
  6341. #endif
  6342. if ((*dev_intr_type == MSI_X) &&
  6343. ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
  6344. (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
  6345. DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
  6346. "Defaulting to INTA\n");
  6347. *dev_intr_type = INTA;
  6348. }
  6349. if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
  6350. DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
  6351. DBG_PRINT(ERR_DBG, "s2io: Defaulting to 1-buffer mode\n");
  6352. rx_ring_mode = 1;
  6353. }
  6354. return SUCCESS;
  6355. }
  6356. /**
  6357. * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
  6358. * or Traffic class respectively.
  6359. * @nic: device peivate variable
  6360. * Description: The function configures the receive steering to
  6361. * desired receive ring.
  6362. * Return Value: SUCCESS on success and
  6363. * '-1' on failure (endian settings incorrect).
  6364. */
  6365. static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
  6366. {
  6367. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  6368. register u64 val64 = 0;
  6369. if (ds_codepoint > 63)
  6370. return FAILURE;
  6371. val64 = RTS_DS_MEM_DATA(ring);
  6372. writeq(val64, &bar0->rts_ds_mem_data);
  6373. val64 = RTS_DS_MEM_CTRL_WE |
  6374. RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
  6375. RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
  6376. writeq(val64, &bar0->rts_ds_mem_ctrl);
  6377. return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
  6378. RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
  6379. S2IO_BIT_RESET);
  6380. }
  6381. /**
  6382. * s2io_init_nic - Initialization of the adapter .
  6383. * @pdev : structure containing the PCI related information of the device.
  6384. * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
  6385. * Description:
  6386. * The function initializes an adapter identified by the pci_dec structure.
  6387. * All OS related initialization including memory and device structure and
  6388. * initlaization of the device private variable is done. Also the swapper
  6389. * control register is initialized to enable read and write into the I/O
  6390. * registers of the device.
  6391. * Return value:
  6392. * returns 0 on success and negative on failure.
  6393. */
  6394. static int __devinit
  6395. s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
  6396. {
  6397. struct s2io_nic *sp;
  6398. struct net_device *dev;
  6399. int i, j, ret;
  6400. int dma_flag = FALSE;
  6401. u32 mac_up, mac_down;
  6402. u64 val64 = 0, tmp64 = 0;
  6403. struct XENA_dev_config __iomem *bar0 = NULL;
  6404. u16 subid;
  6405. struct mac_info *mac_control;
  6406. struct config_param *config;
  6407. int mode;
  6408. u8 dev_intr_type = intr_type;
  6409. if ((ret = s2io_verify_parm(pdev, &dev_intr_type)))
  6410. return ret;
  6411. if ((ret = pci_enable_device(pdev))) {
  6412. DBG_PRINT(ERR_DBG,
  6413. "s2io_init_nic: pci_enable_device failed\n");
  6414. return ret;
  6415. }
  6416. if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
  6417. DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
  6418. dma_flag = TRUE;
  6419. if (pci_set_consistent_dma_mask
  6420. (pdev, DMA_64BIT_MASK)) {
  6421. DBG_PRINT(ERR_DBG,
  6422. "Unable to obtain 64bit DMA for \
  6423. consistent allocations\n");
  6424. pci_disable_device(pdev);
  6425. return -ENOMEM;
  6426. }
  6427. } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
  6428. DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
  6429. } else {
  6430. pci_disable_device(pdev);
  6431. return -ENOMEM;
  6432. }
  6433. if ((ret = pci_request_regions(pdev, s2io_driver_name))) {
  6434. DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x \n", __FUNCTION__, ret);
  6435. pci_disable_device(pdev);
  6436. return -ENODEV;
  6437. }
  6438. dev = alloc_etherdev(sizeof(struct s2io_nic));
  6439. if (dev == NULL) {
  6440. DBG_PRINT(ERR_DBG, "Device allocation failed\n");
  6441. pci_disable_device(pdev);
  6442. pci_release_regions(pdev);
  6443. return -ENODEV;
  6444. }
  6445. pci_set_master(pdev);
  6446. pci_set_drvdata(pdev, dev);
  6447. SET_MODULE_OWNER(dev);
  6448. SET_NETDEV_DEV(dev, &pdev->dev);
  6449. /* Private member variable initialized to s2io NIC structure */
  6450. sp = dev->priv;
  6451. memset(sp, 0, sizeof(struct s2io_nic));
  6452. sp->dev = dev;
  6453. sp->pdev = pdev;
  6454. sp->high_dma_flag = dma_flag;
  6455. sp->device_enabled_once = FALSE;
  6456. if (rx_ring_mode == 1)
  6457. sp->rxd_mode = RXD_MODE_1;
  6458. if (rx_ring_mode == 2)
  6459. sp->rxd_mode = RXD_MODE_3B;
  6460. sp->intr_type = dev_intr_type;
  6461. if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
  6462. (pdev->device == PCI_DEVICE_ID_HERC_UNI))
  6463. sp->device_type = XFRAME_II_DEVICE;
  6464. else
  6465. sp->device_type = XFRAME_I_DEVICE;
  6466. sp->lro = lro;
  6467. /* Initialize some PCI/PCI-X fields of the NIC. */
  6468. s2io_init_pci(sp);
  6469. /*
  6470. * Setting the device configuration parameters.
  6471. * Most of these parameters can be specified by the user during
  6472. * module insertion as they are module loadable parameters. If
  6473. * these parameters are not not specified during load time, they
  6474. * are initialized with default values.
  6475. */
  6476. mac_control = &sp->mac_control;
  6477. config = &sp->config;
  6478. /* Tx side parameters. */
  6479. config->tx_fifo_num = tx_fifo_num;
  6480. for (i = 0; i < MAX_TX_FIFOS; i++) {
  6481. config->tx_cfg[i].fifo_len = tx_fifo_len[i];
  6482. config->tx_cfg[i].fifo_priority = i;
  6483. }
  6484. /* mapping the QoS priority to the configured fifos */
  6485. for (i = 0; i < MAX_TX_FIFOS; i++)
  6486. config->fifo_mapping[i] = fifo_map[config->tx_fifo_num][i];
  6487. config->tx_intr_type = TXD_INT_TYPE_UTILZ;
  6488. for (i = 0; i < config->tx_fifo_num; i++) {
  6489. config->tx_cfg[i].f_no_snoop =
  6490. (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
  6491. if (config->tx_cfg[i].fifo_len < 65) {
  6492. config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
  6493. break;
  6494. }
  6495. }
  6496. /* + 2 because one Txd for skb->data and one Txd for UFO */
  6497. config->max_txds = MAX_SKB_FRAGS + 2;
  6498. /* Rx side parameters. */
  6499. config->rx_ring_num = rx_ring_num;
  6500. for (i = 0; i < MAX_RX_RINGS; i++) {
  6501. config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
  6502. (rxd_count[sp->rxd_mode] + 1);
  6503. config->rx_cfg[i].ring_priority = i;
  6504. }
  6505. for (i = 0; i < rx_ring_num; i++) {
  6506. config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
  6507. config->rx_cfg[i].f_no_snoop =
  6508. (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
  6509. }
  6510. /* Setting Mac Control parameters */
  6511. mac_control->rmac_pause_time = rmac_pause_time;
  6512. mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
  6513. mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
  6514. /* Initialize Ring buffer parameters. */
  6515. for (i = 0; i < config->rx_ring_num; i++)
  6516. atomic_set(&sp->rx_bufs_left[i], 0);
  6517. /* Initialize the number of ISRs currently running */
  6518. atomic_set(&sp->isr_cnt, 0);
  6519. /* initialize the shared memory used by the NIC and the host */
  6520. if (init_shared_mem(sp)) {
  6521. DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
  6522. dev->name);
  6523. ret = -ENOMEM;
  6524. goto mem_alloc_failed;
  6525. }
  6526. sp->bar0 = ioremap(pci_resource_start(pdev, 0),
  6527. pci_resource_len(pdev, 0));
  6528. if (!sp->bar0) {
  6529. DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
  6530. dev->name);
  6531. ret = -ENOMEM;
  6532. goto bar0_remap_failed;
  6533. }
  6534. sp->bar1 = ioremap(pci_resource_start(pdev, 2),
  6535. pci_resource_len(pdev, 2));
  6536. if (!sp->bar1) {
  6537. DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
  6538. dev->name);
  6539. ret = -ENOMEM;
  6540. goto bar1_remap_failed;
  6541. }
  6542. dev->irq = pdev->irq;
  6543. dev->base_addr = (unsigned long) sp->bar0;
  6544. /* Initializing the BAR1 address as the start of the FIFO pointer. */
  6545. for (j = 0; j < MAX_TX_FIFOS; j++) {
  6546. mac_control->tx_FIFO_start[j] = (struct TxFIFO_element __iomem *)
  6547. (sp->bar1 + (j * 0x00020000));
  6548. }
  6549. /* Driver entry points */
  6550. dev->open = &s2io_open;
  6551. dev->stop = &s2io_close;
  6552. dev->hard_start_xmit = &s2io_xmit;
  6553. dev->get_stats = &s2io_get_stats;
  6554. dev->set_multicast_list = &s2io_set_multicast;
  6555. dev->do_ioctl = &s2io_ioctl;
  6556. dev->change_mtu = &s2io_change_mtu;
  6557. SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
  6558. dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
  6559. dev->vlan_rx_register = s2io_vlan_rx_register;
  6560. /*
  6561. * will use eth_mac_addr() for dev->set_mac_address
  6562. * mac address will be set every time dev->open() is called
  6563. */
  6564. netif_napi_add(dev, &sp->napi, s2io_poll, 32);
  6565. #ifdef CONFIG_NET_POLL_CONTROLLER
  6566. dev->poll_controller = s2io_netpoll;
  6567. #endif
  6568. dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
  6569. if (sp->high_dma_flag == TRUE)
  6570. dev->features |= NETIF_F_HIGHDMA;
  6571. dev->features |= NETIF_F_TSO;
  6572. dev->features |= NETIF_F_TSO6;
  6573. if ((sp->device_type & XFRAME_II_DEVICE) && (ufo)) {
  6574. dev->features |= NETIF_F_UFO;
  6575. dev->features |= NETIF_F_HW_CSUM;
  6576. }
  6577. dev->tx_timeout = &s2io_tx_watchdog;
  6578. dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
  6579. INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
  6580. INIT_WORK(&sp->set_link_task, s2io_set_link);
  6581. pci_save_state(sp->pdev);
  6582. /* Setting swapper control on the NIC, for proper reset operation */
  6583. if (s2io_set_swapper(sp)) {
  6584. DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
  6585. dev->name);
  6586. ret = -EAGAIN;
  6587. goto set_swap_failed;
  6588. }
  6589. /* Verify if the Herc works on the slot its placed into */
  6590. if (sp->device_type & XFRAME_II_DEVICE) {
  6591. mode = s2io_verify_pci_mode(sp);
  6592. if (mode < 0) {
  6593. DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
  6594. DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
  6595. ret = -EBADSLT;
  6596. goto set_swap_failed;
  6597. }
  6598. }
  6599. /* Not needed for Herc */
  6600. if (sp->device_type & XFRAME_I_DEVICE) {
  6601. /*
  6602. * Fix for all "FFs" MAC address problems observed on
  6603. * Alpha platforms
  6604. */
  6605. fix_mac_address(sp);
  6606. s2io_reset(sp);
  6607. }
  6608. /*
  6609. * MAC address initialization.
  6610. * For now only one mac address will be read and used.
  6611. */
  6612. bar0 = sp->bar0;
  6613. val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  6614. RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET);
  6615. writeq(val64, &bar0->rmac_addr_cmd_mem);
  6616. wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  6617. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET);
  6618. tmp64 = readq(&bar0->rmac_addr_data0_mem);
  6619. mac_down = (u32) tmp64;
  6620. mac_up = (u32) (tmp64 >> 32);
  6621. sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
  6622. sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
  6623. sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
  6624. sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
  6625. sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
  6626. sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
  6627. /* Set the factory defined MAC address initially */
  6628. dev->addr_len = ETH_ALEN;
  6629. memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
  6630. /* Store the values of the MSIX table in the s2io_nic structure */
  6631. store_xmsi_data(sp);
  6632. /* reset Nic and bring it to known state */
  6633. s2io_reset(sp);
  6634. /*
  6635. * Initialize the tasklet status and link state flags
  6636. * and the card state parameter
  6637. */
  6638. atomic_set(&(sp->card_state), 0);
  6639. sp->tasklet_status = 0;
  6640. sp->link_state = 0;
  6641. /* Initialize spinlocks */
  6642. spin_lock_init(&sp->tx_lock);
  6643. if (!napi)
  6644. spin_lock_init(&sp->put_lock);
  6645. spin_lock_init(&sp->rx_lock);
  6646. /*
  6647. * SXE-002: Configure link and activity LED to init state
  6648. * on driver load.
  6649. */
  6650. subid = sp->pdev->subsystem_device;
  6651. if ((subid & 0xFF) >= 0x07) {
  6652. val64 = readq(&bar0->gpio_control);
  6653. val64 |= 0x0000800000000000ULL;
  6654. writeq(val64, &bar0->gpio_control);
  6655. val64 = 0x0411040400000000ULL;
  6656. writeq(val64, (void __iomem *) bar0 + 0x2700);
  6657. val64 = readq(&bar0->gpio_control);
  6658. }
  6659. sp->rx_csum = 1; /* Rx chksum verify enabled by default */
  6660. if (register_netdev(dev)) {
  6661. DBG_PRINT(ERR_DBG, "Device registration failed\n");
  6662. ret = -ENODEV;
  6663. goto register_failed;
  6664. }
  6665. s2io_vpd_read(sp);
  6666. DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n");
  6667. DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name,
  6668. sp->product_name, pdev->revision);
  6669. DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
  6670. s2io_driver_version);
  6671. DBG_PRINT(ERR_DBG, "%s: MAC ADDR: "
  6672. "%02x:%02x:%02x:%02x:%02x:%02x", dev->name,
  6673. sp->def_mac_addr[0].mac_addr[0],
  6674. sp->def_mac_addr[0].mac_addr[1],
  6675. sp->def_mac_addr[0].mac_addr[2],
  6676. sp->def_mac_addr[0].mac_addr[3],
  6677. sp->def_mac_addr[0].mac_addr[4],
  6678. sp->def_mac_addr[0].mac_addr[5]);
  6679. DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num);
  6680. if (sp->device_type & XFRAME_II_DEVICE) {
  6681. mode = s2io_print_pci_mode(sp);
  6682. if (mode < 0) {
  6683. DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
  6684. ret = -EBADSLT;
  6685. unregister_netdev(dev);
  6686. goto set_swap_failed;
  6687. }
  6688. }
  6689. switch(sp->rxd_mode) {
  6690. case RXD_MODE_1:
  6691. DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
  6692. dev->name);
  6693. break;
  6694. case RXD_MODE_3B:
  6695. DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
  6696. dev->name);
  6697. break;
  6698. }
  6699. if (napi)
  6700. DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
  6701. switch(sp->intr_type) {
  6702. case INTA:
  6703. DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
  6704. break;
  6705. case MSI_X:
  6706. DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
  6707. break;
  6708. }
  6709. if (sp->lro)
  6710. DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
  6711. dev->name);
  6712. if (ufo)
  6713. DBG_PRINT(ERR_DBG, "%s: UDP Fragmentation Offload(UFO)"
  6714. " enabled\n", dev->name);
  6715. /* Initialize device name */
  6716. sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
  6717. /* Initialize bimodal Interrupts */
  6718. sp->config.bimodal = bimodal;
  6719. if (!(sp->device_type & XFRAME_II_DEVICE) && bimodal) {
  6720. sp->config.bimodal = 0;
  6721. DBG_PRINT(ERR_DBG,"%s:Bimodal intr not supported by Xframe I\n",
  6722. dev->name);
  6723. }
  6724. /*
  6725. * Make Link state as off at this point, when the Link change
  6726. * interrupt comes the state will be automatically changed to
  6727. * the right state.
  6728. */
  6729. netif_carrier_off(dev);
  6730. return 0;
  6731. register_failed:
  6732. set_swap_failed:
  6733. iounmap(sp->bar1);
  6734. bar1_remap_failed:
  6735. iounmap(sp->bar0);
  6736. bar0_remap_failed:
  6737. mem_alloc_failed:
  6738. free_shared_mem(sp);
  6739. pci_disable_device(pdev);
  6740. pci_release_regions(pdev);
  6741. pci_set_drvdata(pdev, NULL);
  6742. free_netdev(dev);
  6743. return ret;
  6744. }
  6745. /**
  6746. * s2io_rem_nic - Free the PCI device
  6747. * @pdev: structure containing the PCI related information of the device.
  6748. * Description: This function is called by the Pci subsystem to release a
  6749. * PCI device and free up all resource held up by the device. This could
  6750. * be in response to a Hot plug event or when the driver is to be removed
  6751. * from memory.
  6752. */
  6753. static void __devexit s2io_rem_nic(struct pci_dev *pdev)
  6754. {
  6755. struct net_device *dev =
  6756. (struct net_device *) pci_get_drvdata(pdev);
  6757. struct s2io_nic *sp;
  6758. if (dev == NULL) {
  6759. DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
  6760. return;
  6761. }
  6762. flush_scheduled_work();
  6763. sp = dev->priv;
  6764. unregister_netdev(dev);
  6765. free_shared_mem(sp);
  6766. iounmap(sp->bar0);
  6767. iounmap(sp->bar1);
  6768. pci_release_regions(pdev);
  6769. pci_set_drvdata(pdev, NULL);
  6770. free_netdev(dev);
  6771. pci_disable_device(pdev);
  6772. }
  6773. /**
  6774. * s2io_starter - Entry point for the driver
  6775. * Description: This function is the entry point for the driver. It verifies
  6776. * the module loadable parameters and initializes PCI configuration space.
  6777. */
  6778. int __init s2io_starter(void)
  6779. {
  6780. return pci_register_driver(&s2io_driver);
  6781. }
  6782. /**
  6783. * s2io_closer - Cleanup routine for the driver
  6784. * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
  6785. */
  6786. static __exit void s2io_closer(void)
  6787. {
  6788. pci_unregister_driver(&s2io_driver);
  6789. DBG_PRINT(INIT_DBG, "cleanup done\n");
  6790. }
  6791. module_init(s2io_starter);
  6792. module_exit(s2io_closer);
  6793. static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
  6794. struct tcphdr **tcp, struct RxD_t *rxdp)
  6795. {
  6796. int ip_off;
  6797. u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
  6798. if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
  6799. DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
  6800. __FUNCTION__);
  6801. return -1;
  6802. }
  6803. /* TODO:
  6804. * By default the VLAN field in the MAC is stripped by the card, if this
  6805. * feature is turned off in rx_pa_cfg register, then the ip_off field
  6806. * has to be shifted by a further 2 bytes
  6807. */
  6808. switch (l2_type) {
  6809. case 0: /* DIX type */
  6810. case 4: /* DIX type with VLAN */
  6811. ip_off = HEADER_ETHERNET_II_802_3_SIZE;
  6812. break;
  6813. /* LLC, SNAP etc are considered non-mergeable */
  6814. default:
  6815. return -1;
  6816. }
  6817. *ip = (struct iphdr *)((u8 *)buffer + ip_off);
  6818. ip_len = (u8)((*ip)->ihl);
  6819. ip_len <<= 2;
  6820. *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
  6821. return 0;
  6822. }
  6823. static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
  6824. struct tcphdr *tcp)
  6825. {
  6826. DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
  6827. if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
  6828. (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
  6829. return -1;
  6830. return 0;
  6831. }
  6832. static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
  6833. {
  6834. return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
  6835. }
  6836. static void initiate_new_session(struct lro *lro, u8 *l2h,
  6837. struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len)
  6838. {
  6839. DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
  6840. lro->l2h = l2h;
  6841. lro->iph = ip;
  6842. lro->tcph = tcp;
  6843. lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
  6844. lro->tcp_ack = ntohl(tcp->ack_seq);
  6845. lro->sg_num = 1;
  6846. lro->total_len = ntohs(ip->tot_len);
  6847. lro->frags_len = 0;
  6848. /*
  6849. * check if we saw TCP timestamp. Other consistency checks have
  6850. * already been done.
  6851. */
  6852. if (tcp->doff == 8) {
  6853. u32 *ptr;
  6854. ptr = (u32 *)(tcp+1);
  6855. lro->saw_ts = 1;
  6856. lro->cur_tsval = *(ptr+1);
  6857. lro->cur_tsecr = *(ptr+2);
  6858. }
  6859. lro->in_use = 1;
  6860. }
  6861. static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
  6862. {
  6863. struct iphdr *ip = lro->iph;
  6864. struct tcphdr *tcp = lro->tcph;
  6865. __sum16 nchk;
  6866. struct stat_block *statinfo = sp->mac_control.stats_info;
  6867. DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
  6868. /* Update L3 header */
  6869. ip->tot_len = htons(lro->total_len);
  6870. ip->check = 0;
  6871. nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
  6872. ip->check = nchk;
  6873. /* Update L4 header */
  6874. tcp->ack_seq = lro->tcp_ack;
  6875. tcp->window = lro->window;
  6876. /* Update tsecr field if this session has timestamps enabled */
  6877. if (lro->saw_ts) {
  6878. u32 *ptr = (u32 *)(tcp + 1);
  6879. *(ptr+2) = lro->cur_tsecr;
  6880. }
  6881. /* Update counters required for calculation of
  6882. * average no. of packets aggregated.
  6883. */
  6884. statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
  6885. statinfo->sw_stat.num_aggregations++;
  6886. }
  6887. static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
  6888. struct tcphdr *tcp, u32 l4_pyld)
  6889. {
  6890. DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
  6891. lro->total_len += l4_pyld;
  6892. lro->frags_len += l4_pyld;
  6893. lro->tcp_next_seq += l4_pyld;
  6894. lro->sg_num++;
  6895. /* Update ack seq no. and window ad(from this pkt) in LRO object */
  6896. lro->tcp_ack = tcp->ack_seq;
  6897. lro->window = tcp->window;
  6898. if (lro->saw_ts) {
  6899. u32 *ptr;
  6900. /* Update tsecr and tsval from this packet */
  6901. ptr = (u32 *) (tcp + 1);
  6902. lro->cur_tsval = *(ptr + 1);
  6903. lro->cur_tsecr = *(ptr + 2);
  6904. }
  6905. }
  6906. static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
  6907. struct tcphdr *tcp, u32 tcp_pyld_len)
  6908. {
  6909. u8 *ptr;
  6910. DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
  6911. if (!tcp_pyld_len) {
  6912. /* Runt frame or a pure ack */
  6913. return -1;
  6914. }
  6915. if (ip->ihl != 5) /* IP has options */
  6916. return -1;
  6917. /* If we see CE codepoint in IP header, packet is not mergeable */
  6918. if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
  6919. return -1;
  6920. /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
  6921. if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
  6922. tcp->ece || tcp->cwr || !tcp->ack) {
  6923. /*
  6924. * Currently recognize only the ack control word and
  6925. * any other control field being set would result in
  6926. * flushing the LRO session
  6927. */
  6928. return -1;
  6929. }
  6930. /*
  6931. * Allow only one TCP timestamp option. Don't aggregate if
  6932. * any other options are detected.
  6933. */
  6934. if (tcp->doff != 5 && tcp->doff != 8)
  6935. return -1;
  6936. if (tcp->doff == 8) {
  6937. ptr = (u8 *)(tcp + 1);
  6938. while (*ptr == TCPOPT_NOP)
  6939. ptr++;
  6940. if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
  6941. return -1;
  6942. /* Ensure timestamp value increases monotonically */
  6943. if (l_lro)
  6944. if (l_lro->cur_tsval > *((u32 *)(ptr+2)))
  6945. return -1;
  6946. /* timestamp echo reply should be non-zero */
  6947. if (*((u32 *)(ptr+6)) == 0)
  6948. return -1;
  6949. }
  6950. return 0;
  6951. }
  6952. static int
  6953. s2io_club_tcp_session(u8 *buffer, u8 **tcp, u32 *tcp_len, struct lro **lro,
  6954. struct RxD_t *rxdp, struct s2io_nic *sp)
  6955. {
  6956. struct iphdr *ip;
  6957. struct tcphdr *tcph;
  6958. int ret = 0, i;
  6959. if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
  6960. rxdp))) {
  6961. DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
  6962. ip->saddr, ip->daddr);
  6963. } else {
  6964. return ret;
  6965. }
  6966. tcph = (struct tcphdr *)*tcp;
  6967. *tcp_len = get_l4_pyld_length(ip, tcph);
  6968. for (i=0; i<MAX_LRO_SESSIONS; i++) {
  6969. struct lro *l_lro = &sp->lro0_n[i];
  6970. if (l_lro->in_use) {
  6971. if (check_for_socket_match(l_lro, ip, tcph))
  6972. continue;
  6973. /* Sock pair matched */
  6974. *lro = l_lro;
  6975. if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
  6976. DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
  6977. "0x%x, actual 0x%x\n", __FUNCTION__,
  6978. (*lro)->tcp_next_seq,
  6979. ntohl(tcph->seq));
  6980. sp->mac_control.stats_info->
  6981. sw_stat.outof_sequence_pkts++;
  6982. ret = 2;
  6983. break;
  6984. }
  6985. if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
  6986. ret = 1; /* Aggregate */
  6987. else
  6988. ret = 2; /* Flush both */
  6989. break;
  6990. }
  6991. }
  6992. if (ret == 0) {
  6993. /* Before searching for available LRO objects,
  6994. * check if the pkt is L3/L4 aggregatable. If not
  6995. * don't create new LRO session. Just send this
  6996. * packet up.
  6997. */
  6998. if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
  6999. return 5;
  7000. }
  7001. for (i=0; i<MAX_LRO_SESSIONS; i++) {
  7002. struct lro *l_lro = &sp->lro0_n[i];
  7003. if (!(l_lro->in_use)) {
  7004. *lro = l_lro;
  7005. ret = 3; /* Begin anew */
  7006. break;
  7007. }
  7008. }
  7009. }
  7010. if (ret == 0) { /* sessions exceeded */
  7011. DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
  7012. __FUNCTION__);
  7013. *lro = NULL;
  7014. return ret;
  7015. }
  7016. switch (ret) {
  7017. case 3:
  7018. initiate_new_session(*lro, buffer, ip, tcph, *tcp_len);
  7019. break;
  7020. case 2:
  7021. update_L3L4_header(sp, *lro);
  7022. break;
  7023. case 1:
  7024. aggregate_new_rx(*lro, ip, tcph, *tcp_len);
  7025. if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
  7026. update_L3L4_header(sp, *lro);
  7027. ret = 4; /* Flush the LRO */
  7028. }
  7029. break;
  7030. default:
  7031. DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
  7032. __FUNCTION__);
  7033. break;
  7034. }
  7035. return ret;
  7036. }
  7037. static void clear_lro_session(struct lro *lro)
  7038. {
  7039. static u16 lro_struct_size = sizeof(struct lro);
  7040. memset(lro, 0, lro_struct_size);
  7041. }
  7042. static void queue_rx_frame(struct sk_buff *skb)
  7043. {
  7044. struct net_device *dev = skb->dev;
  7045. skb->protocol = eth_type_trans(skb, dev);
  7046. if (napi)
  7047. netif_receive_skb(skb);
  7048. else
  7049. netif_rx(skb);
  7050. }
  7051. static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
  7052. struct sk_buff *skb,
  7053. u32 tcp_len)
  7054. {
  7055. struct sk_buff *first = lro->parent;
  7056. first->len += tcp_len;
  7057. first->data_len = lro->frags_len;
  7058. skb_pull(skb, (skb->len - tcp_len));
  7059. if (skb_shinfo(first)->frag_list)
  7060. lro->last_frag->next = skb;
  7061. else
  7062. skb_shinfo(first)->frag_list = skb;
  7063. first->truesize += skb->truesize;
  7064. lro->last_frag = skb;
  7065. sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
  7066. return;
  7067. }
  7068. /**
  7069. * s2io_io_error_detected - called when PCI error is detected
  7070. * @pdev: Pointer to PCI device
  7071. * @state: The current pci connection state
  7072. *
  7073. * This function is called after a PCI bus error affecting
  7074. * this device has been detected.
  7075. */
  7076. static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
  7077. pci_channel_state_t state)
  7078. {
  7079. struct net_device *netdev = pci_get_drvdata(pdev);
  7080. struct s2io_nic *sp = netdev->priv;
  7081. netif_device_detach(netdev);
  7082. if (netif_running(netdev)) {
  7083. /* Bring down the card, while avoiding PCI I/O */
  7084. do_s2io_card_down(sp, 0);
  7085. }
  7086. pci_disable_device(pdev);
  7087. return PCI_ERS_RESULT_NEED_RESET;
  7088. }
  7089. /**
  7090. * s2io_io_slot_reset - called after the pci bus has been reset.
  7091. * @pdev: Pointer to PCI device
  7092. *
  7093. * Restart the card from scratch, as if from a cold-boot.
  7094. * At this point, the card has exprienced a hard reset,
  7095. * followed by fixups by BIOS, and has its config space
  7096. * set up identically to what it was at cold boot.
  7097. */
  7098. static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
  7099. {
  7100. struct net_device *netdev = pci_get_drvdata(pdev);
  7101. struct s2io_nic *sp = netdev->priv;
  7102. if (pci_enable_device(pdev)) {
  7103. printk(KERN_ERR "s2io: "
  7104. "Cannot re-enable PCI device after reset.\n");
  7105. return PCI_ERS_RESULT_DISCONNECT;
  7106. }
  7107. pci_set_master(pdev);
  7108. s2io_reset(sp);
  7109. return PCI_ERS_RESULT_RECOVERED;
  7110. }
  7111. /**
  7112. * s2io_io_resume - called when traffic can start flowing again.
  7113. * @pdev: Pointer to PCI device
  7114. *
  7115. * This callback is called when the error recovery driver tells
  7116. * us that its OK to resume normal operation.
  7117. */
  7118. static void s2io_io_resume(struct pci_dev *pdev)
  7119. {
  7120. struct net_device *netdev = pci_get_drvdata(pdev);
  7121. struct s2io_nic *sp = netdev->priv;
  7122. if (netif_running(netdev)) {
  7123. if (s2io_card_up(sp)) {
  7124. printk(KERN_ERR "s2io: "
  7125. "Can't bring device back up after reset.\n");
  7126. return;
  7127. }
  7128. if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
  7129. s2io_card_down(sp);
  7130. printk(KERN_ERR "s2io: "
  7131. "Can't resetore mac addr after reset.\n");
  7132. return;
  7133. }
  7134. }
  7135. netif_device_attach(netdev);
  7136. netif_wake_queue(netdev);
  7137. }