sched.c 225 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/kthread.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/reciprocal_div.h>
  65. #include <linux/unistd.h>
  66. #include <linux/pagemap.h>
  67. #include <linux/hrtimer.h>
  68. #include <linux/tick.h>
  69. #include <linux/bootmem.h>
  70. #include <linux/debugfs.h>
  71. #include <linux/ctype.h>
  72. #include <linux/ftrace.h>
  73. #include <trace/sched.h>
  74. #include <asm/tlb.h>
  75. #include <asm/irq_regs.h>
  76. #include "sched_cpupri.h"
  77. /*
  78. * Convert user-nice values [ -20 ... 0 ... 19 ]
  79. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  80. * and back.
  81. */
  82. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  83. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  84. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  85. /*
  86. * 'User priority' is the nice value converted to something we
  87. * can work with better when scaling various scheduler parameters,
  88. * it's a [ 0 ... 39 ] range.
  89. */
  90. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  91. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  92. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  93. /*
  94. * Helpers for converting nanosecond timing to jiffy resolution
  95. */
  96. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  97. #define NICE_0_LOAD SCHED_LOAD_SCALE
  98. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  99. /*
  100. * These are the 'tuning knobs' of the scheduler:
  101. *
  102. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  103. * Timeslices get refilled after they expire.
  104. */
  105. #define DEF_TIMESLICE (100 * HZ / 1000)
  106. /*
  107. * single value that denotes runtime == period, ie unlimited time.
  108. */
  109. #define RUNTIME_INF ((u64)~0ULL)
  110. #ifdef CONFIG_SMP
  111. /*
  112. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  113. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  114. */
  115. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  116. {
  117. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  118. }
  119. /*
  120. * Each time a sched group cpu_power is changed,
  121. * we must compute its reciprocal value
  122. */
  123. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  124. {
  125. sg->__cpu_power += val;
  126. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  127. }
  128. #endif
  129. static inline int rt_policy(int policy)
  130. {
  131. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  132. return 1;
  133. return 0;
  134. }
  135. static inline int task_has_rt_policy(struct task_struct *p)
  136. {
  137. return rt_policy(p->policy);
  138. }
  139. /*
  140. * This is the priority-queue data structure of the RT scheduling class:
  141. */
  142. struct rt_prio_array {
  143. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  144. struct list_head queue[MAX_RT_PRIO];
  145. };
  146. struct rt_bandwidth {
  147. /* nests inside the rq lock: */
  148. spinlock_t rt_runtime_lock;
  149. ktime_t rt_period;
  150. u64 rt_runtime;
  151. struct hrtimer rt_period_timer;
  152. };
  153. static struct rt_bandwidth def_rt_bandwidth;
  154. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  155. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  156. {
  157. struct rt_bandwidth *rt_b =
  158. container_of(timer, struct rt_bandwidth, rt_period_timer);
  159. ktime_t now;
  160. int overrun;
  161. int idle = 0;
  162. for (;;) {
  163. now = hrtimer_cb_get_time(timer);
  164. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  165. if (!overrun)
  166. break;
  167. idle = do_sched_rt_period_timer(rt_b, overrun);
  168. }
  169. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  170. }
  171. static
  172. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  173. {
  174. rt_b->rt_period = ns_to_ktime(period);
  175. rt_b->rt_runtime = runtime;
  176. spin_lock_init(&rt_b->rt_runtime_lock);
  177. hrtimer_init(&rt_b->rt_period_timer,
  178. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  179. rt_b->rt_period_timer.function = sched_rt_period_timer;
  180. rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
  181. }
  182. static inline int rt_bandwidth_enabled(void)
  183. {
  184. return sysctl_sched_rt_runtime >= 0;
  185. }
  186. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  187. {
  188. ktime_t now;
  189. if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
  190. return;
  191. if (hrtimer_active(&rt_b->rt_period_timer))
  192. return;
  193. spin_lock(&rt_b->rt_runtime_lock);
  194. for (;;) {
  195. if (hrtimer_active(&rt_b->rt_period_timer))
  196. break;
  197. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  198. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  199. hrtimer_start(&rt_b->rt_period_timer,
  200. rt_b->rt_period_timer.expires,
  201. HRTIMER_MODE_ABS);
  202. }
  203. spin_unlock(&rt_b->rt_runtime_lock);
  204. }
  205. #ifdef CONFIG_RT_GROUP_SCHED
  206. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  207. {
  208. hrtimer_cancel(&rt_b->rt_period_timer);
  209. }
  210. #endif
  211. /*
  212. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  213. * detach_destroy_domains and partition_sched_domains.
  214. */
  215. static DEFINE_MUTEX(sched_domains_mutex);
  216. #ifdef CONFIG_GROUP_SCHED
  217. #include <linux/cgroup.h>
  218. struct cfs_rq;
  219. static LIST_HEAD(task_groups);
  220. /* task group related information */
  221. struct task_group {
  222. #ifdef CONFIG_CGROUP_SCHED
  223. struct cgroup_subsys_state css;
  224. #endif
  225. #ifdef CONFIG_FAIR_GROUP_SCHED
  226. /* schedulable entities of this group on each cpu */
  227. struct sched_entity **se;
  228. /* runqueue "owned" by this group on each cpu */
  229. struct cfs_rq **cfs_rq;
  230. unsigned long shares;
  231. #endif
  232. #ifdef CONFIG_RT_GROUP_SCHED
  233. struct sched_rt_entity **rt_se;
  234. struct rt_rq **rt_rq;
  235. struct rt_bandwidth rt_bandwidth;
  236. #endif
  237. struct rcu_head rcu;
  238. struct list_head list;
  239. struct task_group *parent;
  240. struct list_head siblings;
  241. struct list_head children;
  242. };
  243. #ifdef CONFIG_USER_SCHED
  244. /*
  245. * Root task group.
  246. * Every UID task group (including init_task_group aka UID-0) will
  247. * be a child to this group.
  248. */
  249. struct task_group root_task_group;
  250. #ifdef CONFIG_FAIR_GROUP_SCHED
  251. /* Default task group's sched entity on each cpu */
  252. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  253. /* Default task group's cfs_rq on each cpu */
  254. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  255. #endif /* CONFIG_FAIR_GROUP_SCHED */
  256. #ifdef CONFIG_RT_GROUP_SCHED
  257. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  258. static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
  259. #endif /* CONFIG_RT_GROUP_SCHED */
  260. #else /* !CONFIG_USER_SCHED */
  261. #define root_task_group init_task_group
  262. #endif /* CONFIG_USER_SCHED */
  263. /* task_group_lock serializes add/remove of task groups and also changes to
  264. * a task group's cpu shares.
  265. */
  266. static DEFINE_SPINLOCK(task_group_lock);
  267. #ifdef CONFIG_FAIR_GROUP_SCHED
  268. #ifdef CONFIG_USER_SCHED
  269. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  270. #else /* !CONFIG_USER_SCHED */
  271. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  272. #endif /* CONFIG_USER_SCHED */
  273. /*
  274. * A weight of 0 or 1 can cause arithmetics problems.
  275. * A weight of a cfs_rq is the sum of weights of which entities
  276. * are queued on this cfs_rq, so a weight of a entity should not be
  277. * too large, so as the shares value of a task group.
  278. * (The default weight is 1024 - so there's no practical
  279. * limitation from this.)
  280. */
  281. #define MIN_SHARES 2
  282. #define MAX_SHARES (1UL << 18)
  283. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  284. #endif
  285. /* Default task group.
  286. * Every task in system belong to this group at bootup.
  287. */
  288. struct task_group init_task_group;
  289. /* return group to which a task belongs */
  290. static inline struct task_group *task_group(struct task_struct *p)
  291. {
  292. struct task_group *tg;
  293. #ifdef CONFIG_USER_SCHED
  294. tg = p->user->tg;
  295. #elif defined(CONFIG_CGROUP_SCHED)
  296. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  297. struct task_group, css);
  298. #else
  299. tg = &init_task_group;
  300. #endif
  301. return tg;
  302. }
  303. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  304. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  305. {
  306. #ifdef CONFIG_FAIR_GROUP_SCHED
  307. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  308. p->se.parent = task_group(p)->se[cpu];
  309. #endif
  310. #ifdef CONFIG_RT_GROUP_SCHED
  311. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  312. p->rt.parent = task_group(p)->rt_se[cpu];
  313. #endif
  314. }
  315. #else
  316. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  317. static inline struct task_group *task_group(struct task_struct *p)
  318. {
  319. return NULL;
  320. }
  321. #endif /* CONFIG_GROUP_SCHED */
  322. /* CFS-related fields in a runqueue */
  323. struct cfs_rq {
  324. struct load_weight load;
  325. unsigned long nr_running;
  326. u64 exec_clock;
  327. u64 min_vruntime;
  328. u64 pair_start;
  329. struct rb_root tasks_timeline;
  330. struct rb_node *rb_leftmost;
  331. struct list_head tasks;
  332. struct list_head *balance_iterator;
  333. /*
  334. * 'curr' points to currently running entity on this cfs_rq.
  335. * It is set to NULL otherwise (i.e when none are currently running).
  336. */
  337. struct sched_entity *curr, *next;
  338. unsigned long nr_spread_over;
  339. #ifdef CONFIG_FAIR_GROUP_SCHED
  340. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  341. /*
  342. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  343. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  344. * (like users, containers etc.)
  345. *
  346. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  347. * list is used during load balance.
  348. */
  349. struct list_head leaf_cfs_rq_list;
  350. struct task_group *tg; /* group that "owns" this runqueue */
  351. #ifdef CONFIG_SMP
  352. /*
  353. * the part of load.weight contributed by tasks
  354. */
  355. unsigned long task_weight;
  356. /*
  357. * h_load = weight * f(tg)
  358. *
  359. * Where f(tg) is the recursive weight fraction assigned to
  360. * this group.
  361. */
  362. unsigned long h_load;
  363. /*
  364. * this cpu's part of tg->shares
  365. */
  366. unsigned long shares;
  367. /*
  368. * load.weight at the time we set shares
  369. */
  370. unsigned long rq_weight;
  371. #endif
  372. #endif
  373. };
  374. /* Real-Time classes' related field in a runqueue: */
  375. struct rt_rq {
  376. struct rt_prio_array active;
  377. unsigned long rt_nr_running;
  378. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  379. int highest_prio; /* highest queued rt task prio */
  380. #endif
  381. #ifdef CONFIG_SMP
  382. unsigned long rt_nr_migratory;
  383. int overloaded;
  384. #endif
  385. int rt_throttled;
  386. u64 rt_time;
  387. u64 rt_runtime;
  388. /* Nests inside the rq lock: */
  389. spinlock_t rt_runtime_lock;
  390. #ifdef CONFIG_RT_GROUP_SCHED
  391. unsigned long rt_nr_boosted;
  392. struct rq *rq;
  393. struct list_head leaf_rt_rq_list;
  394. struct task_group *tg;
  395. struct sched_rt_entity *rt_se;
  396. #endif
  397. };
  398. #ifdef CONFIG_SMP
  399. /*
  400. * We add the notion of a root-domain which will be used to define per-domain
  401. * variables. Each exclusive cpuset essentially defines an island domain by
  402. * fully partitioning the member cpus from any other cpuset. Whenever a new
  403. * exclusive cpuset is created, we also create and attach a new root-domain
  404. * object.
  405. *
  406. */
  407. struct root_domain {
  408. atomic_t refcount;
  409. cpumask_t span;
  410. cpumask_t online;
  411. /*
  412. * The "RT overload" flag: it gets set if a CPU has more than
  413. * one runnable RT task.
  414. */
  415. cpumask_t rto_mask;
  416. atomic_t rto_count;
  417. #ifdef CONFIG_SMP
  418. struct cpupri cpupri;
  419. #endif
  420. };
  421. /*
  422. * By default the system creates a single root-domain with all cpus as
  423. * members (mimicking the global state we have today).
  424. */
  425. static struct root_domain def_root_domain;
  426. #endif
  427. /*
  428. * This is the main, per-CPU runqueue data structure.
  429. *
  430. * Locking rule: those places that want to lock multiple runqueues
  431. * (such as the load balancing or the thread migration code), lock
  432. * acquire operations must be ordered by ascending &runqueue.
  433. */
  434. struct rq {
  435. /* runqueue lock: */
  436. spinlock_t lock;
  437. /*
  438. * nr_running and cpu_load should be in the same cacheline because
  439. * remote CPUs use both these fields when doing load calculation.
  440. */
  441. unsigned long nr_running;
  442. #define CPU_LOAD_IDX_MAX 5
  443. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  444. unsigned char idle_at_tick;
  445. #ifdef CONFIG_NO_HZ
  446. unsigned long last_tick_seen;
  447. unsigned char in_nohz_recently;
  448. #endif
  449. /* capture load from *all* tasks on this cpu: */
  450. struct load_weight load;
  451. unsigned long nr_load_updates;
  452. u64 nr_switches;
  453. struct cfs_rq cfs;
  454. struct rt_rq rt;
  455. #ifdef CONFIG_FAIR_GROUP_SCHED
  456. /* list of leaf cfs_rq on this cpu: */
  457. struct list_head leaf_cfs_rq_list;
  458. #endif
  459. #ifdef CONFIG_RT_GROUP_SCHED
  460. struct list_head leaf_rt_rq_list;
  461. #endif
  462. /*
  463. * This is part of a global counter where only the total sum
  464. * over all CPUs matters. A task can increase this counter on
  465. * one CPU and if it got migrated afterwards it may decrease
  466. * it on another CPU. Always updated under the runqueue lock:
  467. */
  468. unsigned long nr_uninterruptible;
  469. struct task_struct *curr, *idle;
  470. unsigned long next_balance;
  471. struct mm_struct *prev_mm;
  472. u64 clock;
  473. atomic_t nr_iowait;
  474. #ifdef CONFIG_SMP
  475. struct root_domain *rd;
  476. struct sched_domain *sd;
  477. /* For active balancing */
  478. int active_balance;
  479. int push_cpu;
  480. /* cpu of this runqueue: */
  481. int cpu;
  482. int online;
  483. unsigned long avg_load_per_task;
  484. struct task_struct *migration_thread;
  485. struct list_head migration_queue;
  486. #endif
  487. #ifdef CONFIG_SCHED_HRTICK
  488. #ifdef CONFIG_SMP
  489. int hrtick_csd_pending;
  490. struct call_single_data hrtick_csd;
  491. #endif
  492. struct hrtimer hrtick_timer;
  493. #endif
  494. #ifdef CONFIG_SCHEDSTATS
  495. /* latency stats */
  496. struct sched_info rq_sched_info;
  497. /* sys_sched_yield() stats */
  498. unsigned int yld_exp_empty;
  499. unsigned int yld_act_empty;
  500. unsigned int yld_both_empty;
  501. unsigned int yld_count;
  502. /* schedule() stats */
  503. unsigned int sched_switch;
  504. unsigned int sched_count;
  505. unsigned int sched_goidle;
  506. /* try_to_wake_up() stats */
  507. unsigned int ttwu_count;
  508. unsigned int ttwu_local;
  509. /* BKL stats */
  510. unsigned int bkl_count;
  511. #endif
  512. };
  513. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  514. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
  515. {
  516. rq->curr->sched_class->check_preempt_curr(rq, p, sync);
  517. }
  518. static inline int cpu_of(struct rq *rq)
  519. {
  520. #ifdef CONFIG_SMP
  521. return rq->cpu;
  522. #else
  523. return 0;
  524. #endif
  525. }
  526. /*
  527. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  528. * See detach_destroy_domains: synchronize_sched for details.
  529. *
  530. * The domain tree of any CPU may only be accessed from within
  531. * preempt-disabled sections.
  532. */
  533. #define for_each_domain(cpu, __sd) \
  534. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  535. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  536. #define this_rq() (&__get_cpu_var(runqueues))
  537. #define task_rq(p) cpu_rq(task_cpu(p))
  538. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  539. static inline void update_rq_clock(struct rq *rq)
  540. {
  541. rq->clock = sched_clock_cpu(cpu_of(rq));
  542. }
  543. /*
  544. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  545. */
  546. #ifdef CONFIG_SCHED_DEBUG
  547. # define const_debug __read_mostly
  548. #else
  549. # define const_debug static const
  550. #endif
  551. /**
  552. * runqueue_is_locked
  553. *
  554. * Returns true if the current cpu runqueue is locked.
  555. * This interface allows printk to be called with the runqueue lock
  556. * held and know whether or not it is OK to wake up the klogd.
  557. */
  558. int runqueue_is_locked(void)
  559. {
  560. int cpu = get_cpu();
  561. struct rq *rq = cpu_rq(cpu);
  562. int ret;
  563. ret = spin_is_locked(&rq->lock);
  564. put_cpu();
  565. return ret;
  566. }
  567. /*
  568. * Debugging: various feature bits
  569. */
  570. #define SCHED_FEAT(name, enabled) \
  571. __SCHED_FEAT_##name ,
  572. enum {
  573. #include "sched_features.h"
  574. };
  575. #undef SCHED_FEAT
  576. #define SCHED_FEAT(name, enabled) \
  577. (1UL << __SCHED_FEAT_##name) * enabled |
  578. const_debug unsigned int sysctl_sched_features =
  579. #include "sched_features.h"
  580. 0;
  581. #undef SCHED_FEAT
  582. #ifdef CONFIG_SCHED_DEBUG
  583. #define SCHED_FEAT(name, enabled) \
  584. #name ,
  585. static __read_mostly char *sched_feat_names[] = {
  586. #include "sched_features.h"
  587. NULL
  588. };
  589. #undef SCHED_FEAT
  590. static int sched_feat_open(struct inode *inode, struct file *filp)
  591. {
  592. filp->private_data = inode->i_private;
  593. return 0;
  594. }
  595. static ssize_t
  596. sched_feat_read(struct file *filp, char __user *ubuf,
  597. size_t cnt, loff_t *ppos)
  598. {
  599. char *buf;
  600. int r = 0;
  601. int len = 0;
  602. int i;
  603. for (i = 0; sched_feat_names[i]; i++) {
  604. len += strlen(sched_feat_names[i]);
  605. len += 4;
  606. }
  607. buf = kmalloc(len + 2, GFP_KERNEL);
  608. if (!buf)
  609. return -ENOMEM;
  610. for (i = 0; sched_feat_names[i]; i++) {
  611. if (sysctl_sched_features & (1UL << i))
  612. r += sprintf(buf + r, "%s ", sched_feat_names[i]);
  613. else
  614. r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
  615. }
  616. r += sprintf(buf + r, "\n");
  617. WARN_ON(r >= len + 2);
  618. r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
  619. kfree(buf);
  620. return r;
  621. }
  622. static ssize_t
  623. sched_feat_write(struct file *filp, const char __user *ubuf,
  624. size_t cnt, loff_t *ppos)
  625. {
  626. char buf[64];
  627. char *cmp = buf;
  628. int neg = 0;
  629. int i;
  630. if (cnt > 63)
  631. cnt = 63;
  632. if (copy_from_user(&buf, ubuf, cnt))
  633. return -EFAULT;
  634. buf[cnt] = 0;
  635. if (strncmp(buf, "NO_", 3) == 0) {
  636. neg = 1;
  637. cmp += 3;
  638. }
  639. for (i = 0; sched_feat_names[i]; i++) {
  640. int len = strlen(sched_feat_names[i]);
  641. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  642. if (neg)
  643. sysctl_sched_features &= ~(1UL << i);
  644. else
  645. sysctl_sched_features |= (1UL << i);
  646. break;
  647. }
  648. }
  649. if (!sched_feat_names[i])
  650. return -EINVAL;
  651. filp->f_pos += cnt;
  652. return cnt;
  653. }
  654. static struct file_operations sched_feat_fops = {
  655. .open = sched_feat_open,
  656. .read = sched_feat_read,
  657. .write = sched_feat_write,
  658. };
  659. static __init int sched_init_debug(void)
  660. {
  661. debugfs_create_file("sched_features", 0644, NULL, NULL,
  662. &sched_feat_fops);
  663. return 0;
  664. }
  665. late_initcall(sched_init_debug);
  666. #endif
  667. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  668. /*
  669. * Number of tasks to iterate in a single balance run.
  670. * Limited because this is done with IRQs disabled.
  671. */
  672. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  673. /*
  674. * ratelimit for updating the group shares.
  675. * default: 0.25ms
  676. */
  677. unsigned int sysctl_sched_shares_ratelimit = 250000;
  678. /*
  679. * period over which we measure -rt task cpu usage in us.
  680. * default: 1s
  681. */
  682. unsigned int sysctl_sched_rt_period = 1000000;
  683. static __read_mostly int scheduler_running;
  684. /*
  685. * part of the period that we allow rt tasks to run in us.
  686. * default: 0.95s
  687. */
  688. int sysctl_sched_rt_runtime = 950000;
  689. static inline u64 global_rt_period(void)
  690. {
  691. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  692. }
  693. static inline u64 global_rt_runtime(void)
  694. {
  695. if (sysctl_sched_rt_runtime < 0)
  696. return RUNTIME_INF;
  697. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  698. }
  699. #ifndef prepare_arch_switch
  700. # define prepare_arch_switch(next) do { } while (0)
  701. #endif
  702. #ifndef finish_arch_switch
  703. # define finish_arch_switch(prev) do { } while (0)
  704. #endif
  705. static inline int task_current(struct rq *rq, struct task_struct *p)
  706. {
  707. return rq->curr == p;
  708. }
  709. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  710. static inline int task_running(struct rq *rq, struct task_struct *p)
  711. {
  712. return task_current(rq, p);
  713. }
  714. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  715. {
  716. }
  717. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  718. {
  719. #ifdef CONFIG_DEBUG_SPINLOCK
  720. /* this is a valid case when another task releases the spinlock */
  721. rq->lock.owner = current;
  722. #endif
  723. /*
  724. * If we are tracking spinlock dependencies then we have to
  725. * fix up the runqueue lock - which gets 'carried over' from
  726. * prev into current:
  727. */
  728. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  729. spin_unlock_irq(&rq->lock);
  730. }
  731. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  732. static inline int task_running(struct rq *rq, struct task_struct *p)
  733. {
  734. #ifdef CONFIG_SMP
  735. return p->oncpu;
  736. #else
  737. return task_current(rq, p);
  738. #endif
  739. }
  740. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  741. {
  742. #ifdef CONFIG_SMP
  743. /*
  744. * We can optimise this out completely for !SMP, because the
  745. * SMP rebalancing from interrupt is the only thing that cares
  746. * here.
  747. */
  748. next->oncpu = 1;
  749. #endif
  750. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  751. spin_unlock_irq(&rq->lock);
  752. #else
  753. spin_unlock(&rq->lock);
  754. #endif
  755. }
  756. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  757. {
  758. #ifdef CONFIG_SMP
  759. /*
  760. * After ->oncpu is cleared, the task can be moved to a different CPU.
  761. * We must ensure this doesn't happen until the switch is completely
  762. * finished.
  763. */
  764. smp_wmb();
  765. prev->oncpu = 0;
  766. #endif
  767. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  768. local_irq_enable();
  769. #endif
  770. }
  771. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  772. /*
  773. * __task_rq_lock - lock the runqueue a given task resides on.
  774. * Must be called interrupts disabled.
  775. */
  776. static inline struct rq *__task_rq_lock(struct task_struct *p)
  777. __acquires(rq->lock)
  778. {
  779. for (;;) {
  780. struct rq *rq = task_rq(p);
  781. spin_lock(&rq->lock);
  782. if (likely(rq == task_rq(p)))
  783. return rq;
  784. spin_unlock(&rq->lock);
  785. }
  786. }
  787. /*
  788. * task_rq_lock - lock the runqueue a given task resides on and disable
  789. * interrupts. Note the ordering: we can safely lookup the task_rq without
  790. * explicitly disabling preemption.
  791. */
  792. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  793. __acquires(rq->lock)
  794. {
  795. struct rq *rq;
  796. for (;;) {
  797. local_irq_save(*flags);
  798. rq = task_rq(p);
  799. spin_lock(&rq->lock);
  800. if (likely(rq == task_rq(p)))
  801. return rq;
  802. spin_unlock_irqrestore(&rq->lock, *flags);
  803. }
  804. }
  805. static void __task_rq_unlock(struct rq *rq)
  806. __releases(rq->lock)
  807. {
  808. spin_unlock(&rq->lock);
  809. }
  810. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  811. __releases(rq->lock)
  812. {
  813. spin_unlock_irqrestore(&rq->lock, *flags);
  814. }
  815. /*
  816. * this_rq_lock - lock this runqueue and disable interrupts.
  817. */
  818. static struct rq *this_rq_lock(void)
  819. __acquires(rq->lock)
  820. {
  821. struct rq *rq;
  822. local_irq_disable();
  823. rq = this_rq();
  824. spin_lock(&rq->lock);
  825. return rq;
  826. }
  827. #ifdef CONFIG_SCHED_HRTICK
  828. /*
  829. * Use HR-timers to deliver accurate preemption points.
  830. *
  831. * Its all a bit involved since we cannot program an hrt while holding the
  832. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  833. * reschedule event.
  834. *
  835. * When we get rescheduled we reprogram the hrtick_timer outside of the
  836. * rq->lock.
  837. */
  838. /*
  839. * Use hrtick when:
  840. * - enabled by features
  841. * - hrtimer is actually high res
  842. */
  843. static inline int hrtick_enabled(struct rq *rq)
  844. {
  845. if (!sched_feat(HRTICK))
  846. return 0;
  847. if (!cpu_active(cpu_of(rq)))
  848. return 0;
  849. return hrtimer_is_hres_active(&rq->hrtick_timer);
  850. }
  851. static void hrtick_clear(struct rq *rq)
  852. {
  853. if (hrtimer_active(&rq->hrtick_timer))
  854. hrtimer_cancel(&rq->hrtick_timer);
  855. }
  856. /*
  857. * High-resolution timer tick.
  858. * Runs from hardirq context with interrupts disabled.
  859. */
  860. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  861. {
  862. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  863. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  864. spin_lock(&rq->lock);
  865. update_rq_clock(rq);
  866. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  867. spin_unlock(&rq->lock);
  868. return HRTIMER_NORESTART;
  869. }
  870. #ifdef CONFIG_SMP
  871. /*
  872. * called from hardirq (IPI) context
  873. */
  874. static void __hrtick_start(void *arg)
  875. {
  876. struct rq *rq = arg;
  877. spin_lock(&rq->lock);
  878. hrtimer_restart(&rq->hrtick_timer);
  879. rq->hrtick_csd_pending = 0;
  880. spin_unlock(&rq->lock);
  881. }
  882. /*
  883. * Called to set the hrtick timer state.
  884. *
  885. * called with rq->lock held and irqs disabled
  886. */
  887. static void hrtick_start(struct rq *rq, u64 delay)
  888. {
  889. struct hrtimer *timer = &rq->hrtick_timer;
  890. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  891. timer->expires = time;
  892. if (rq == this_rq()) {
  893. hrtimer_restart(timer);
  894. } else if (!rq->hrtick_csd_pending) {
  895. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
  896. rq->hrtick_csd_pending = 1;
  897. }
  898. }
  899. static int
  900. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  901. {
  902. int cpu = (int)(long)hcpu;
  903. switch (action) {
  904. case CPU_UP_CANCELED:
  905. case CPU_UP_CANCELED_FROZEN:
  906. case CPU_DOWN_PREPARE:
  907. case CPU_DOWN_PREPARE_FROZEN:
  908. case CPU_DEAD:
  909. case CPU_DEAD_FROZEN:
  910. hrtick_clear(cpu_rq(cpu));
  911. return NOTIFY_OK;
  912. }
  913. return NOTIFY_DONE;
  914. }
  915. static __init void init_hrtick(void)
  916. {
  917. hotcpu_notifier(hotplug_hrtick, 0);
  918. }
  919. #else
  920. /*
  921. * Called to set the hrtick timer state.
  922. *
  923. * called with rq->lock held and irqs disabled
  924. */
  925. static void hrtick_start(struct rq *rq, u64 delay)
  926. {
  927. hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
  928. }
  929. static inline void init_hrtick(void)
  930. {
  931. }
  932. #endif /* CONFIG_SMP */
  933. static void init_rq_hrtick(struct rq *rq)
  934. {
  935. #ifdef CONFIG_SMP
  936. rq->hrtick_csd_pending = 0;
  937. rq->hrtick_csd.flags = 0;
  938. rq->hrtick_csd.func = __hrtick_start;
  939. rq->hrtick_csd.info = rq;
  940. #endif
  941. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  942. rq->hrtick_timer.function = hrtick;
  943. rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
  944. }
  945. #else /* CONFIG_SCHED_HRTICK */
  946. static inline void hrtick_clear(struct rq *rq)
  947. {
  948. }
  949. static inline void init_rq_hrtick(struct rq *rq)
  950. {
  951. }
  952. static inline void init_hrtick(void)
  953. {
  954. }
  955. #endif /* CONFIG_SCHED_HRTICK */
  956. /*
  957. * resched_task - mark a task 'to be rescheduled now'.
  958. *
  959. * On UP this means the setting of the need_resched flag, on SMP it
  960. * might also involve a cross-CPU call to trigger the scheduler on
  961. * the target CPU.
  962. */
  963. #ifdef CONFIG_SMP
  964. #ifndef tsk_is_polling
  965. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  966. #endif
  967. static void resched_task(struct task_struct *p)
  968. {
  969. int cpu;
  970. assert_spin_locked(&task_rq(p)->lock);
  971. if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
  972. return;
  973. set_tsk_thread_flag(p, TIF_NEED_RESCHED);
  974. cpu = task_cpu(p);
  975. if (cpu == smp_processor_id())
  976. return;
  977. /* NEED_RESCHED must be visible before we test polling */
  978. smp_mb();
  979. if (!tsk_is_polling(p))
  980. smp_send_reschedule(cpu);
  981. }
  982. static void resched_cpu(int cpu)
  983. {
  984. struct rq *rq = cpu_rq(cpu);
  985. unsigned long flags;
  986. if (!spin_trylock_irqsave(&rq->lock, flags))
  987. return;
  988. resched_task(cpu_curr(cpu));
  989. spin_unlock_irqrestore(&rq->lock, flags);
  990. }
  991. #ifdef CONFIG_NO_HZ
  992. /*
  993. * When add_timer_on() enqueues a timer into the timer wheel of an
  994. * idle CPU then this timer might expire before the next timer event
  995. * which is scheduled to wake up that CPU. In case of a completely
  996. * idle system the next event might even be infinite time into the
  997. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  998. * leaves the inner idle loop so the newly added timer is taken into
  999. * account when the CPU goes back to idle and evaluates the timer
  1000. * wheel for the next timer event.
  1001. */
  1002. void wake_up_idle_cpu(int cpu)
  1003. {
  1004. struct rq *rq = cpu_rq(cpu);
  1005. if (cpu == smp_processor_id())
  1006. return;
  1007. /*
  1008. * This is safe, as this function is called with the timer
  1009. * wheel base lock of (cpu) held. When the CPU is on the way
  1010. * to idle and has not yet set rq->curr to idle then it will
  1011. * be serialized on the timer wheel base lock and take the new
  1012. * timer into account automatically.
  1013. */
  1014. if (rq->curr != rq->idle)
  1015. return;
  1016. /*
  1017. * We can set TIF_RESCHED on the idle task of the other CPU
  1018. * lockless. The worst case is that the other CPU runs the
  1019. * idle task through an additional NOOP schedule()
  1020. */
  1021. set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
  1022. /* NEED_RESCHED must be visible before we test polling */
  1023. smp_mb();
  1024. if (!tsk_is_polling(rq->idle))
  1025. smp_send_reschedule(cpu);
  1026. }
  1027. #endif /* CONFIG_NO_HZ */
  1028. #else /* !CONFIG_SMP */
  1029. static void resched_task(struct task_struct *p)
  1030. {
  1031. assert_spin_locked(&task_rq(p)->lock);
  1032. set_tsk_need_resched(p);
  1033. }
  1034. #endif /* CONFIG_SMP */
  1035. #if BITS_PER_LONG == 32
  1036. # define WMULT_CONST (~0UL)
  1037. #else
  1038. # define WMULT_CONST (1UL << 32)
  1039. #endif
  1040. #define WMULT_SHIFT 32
  1041. /*
  1042. * Shift right and round:
  1043. */
  1044. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1045. /*
  1046. * delta *= weight / lw
  1047. */
  1048. static unsigned long
  1049. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1050. struct load_weight *lw)
  1051. {
  1052. u64 tmp;
  1053. if (!lw->inv_weight) {
  1054. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1055. lw->inv_weight = 1;
  1056. else
  1057. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1058. / (lw->weight+1);
  1059. }
  1060. tmp = (u64)delta_exec * weight;
  1061. /*
  1062. * Check whether we'd overflow the 64-bit multiplication:
  1063. */
  1064. if (unlikely(tmp > WMULT_CONST))
  1065. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1066. WMULT_SHIFT/2);
  1067. else
  1068. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1069. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1070. }
  1071. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1072. {
  1073. lw->weight += inc;
  1074. lw->inv_weight = 0;
  1075. }
  1076. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1077. {
  1078. lw->weight -= dec;
  1079. lw->inv_weight = 0;
  1080. }
  1081. /*
  1082. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1083. * of tasks with abnormal "nice" values across CPUs the contribution that
  1084. * each task makes to its run queue's load is weighted according to its
  1085. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1086. * scaled version of the new time slice allocation that they receive on time
  1087. * slice expiry etc.
  1088. */
  1089. #define WEIGHT_IDLEPRIO 2
  1090. #define WMULT_IDLEPRIO (1 << 31)
  1091. /*
  1092. * Nice levels are multiplicative, with a gentle 10% change for every
  1093. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1094. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1095. * that remained on nice 0.
  1096. *
  1097. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1098. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1099. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1100. * If a task goes up by ~10% and another task goes down by ~10% then
  1101. * the relative distance between them is ~25%.)
  1102. */
  1103. static const int prio_to_weight[40] = {
  1104. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1105. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1106. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1107. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1108. /* 0 */ 1024, 820, 655, 526, 423,
  1109. /* 5 */ 335, 272, 215, 172, 137,
  1110. /* 10 */ 110, 87, 70, 56, 45,
  1111. /* 15 */ 36, 29, 23, 18, 15,
  1112. };
  1113. /*
  1114. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1115. *
  1116. * In cases where the weight does not change often, we can use the
  1117. * precalculated inverse to speed up arithmetics by turning divisions
  1118. * into multiplications:
  1119. */
  1120. static const u32 prio_to_wmult[40] = {
  1121. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1122. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1123. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1124. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1125. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1126. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1127. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1128. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1129. };
  1130. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1131. /*
  1132. * runqueue iterator, to support SMP load-balancing between different
  1133. * scheduling classes, without having to expose their internal data
  1134. * structures to the load-balancing proper:
  1135. */
  1136. struct rq_iterator {
  1137. void *arg;
  1138. struct task_struct *(*start)(void *);
  1139. struct task_struct *(*next)(void *);
  1140. };
  1141. #ifdef CONFIG_SMP
  1142. static unsigned long
  1143. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1144. unsigned long max_load_move, struct sched_domain *sd,
  1145. enum cpu_idle_type idle, int *all_pinned,
  1146. int *this_best_prio, struct rq_iterator *iterator);
  1147. static int
  1148. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1149. struct sched_domain *sd, enum cpu_idle_type idle,
  1150. struct rq_iterator *iterator);
  1151. #endif
  1152. #ifdef CONFIG_CGROUP_CPUACCT
  1153. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1154. #else
  1155. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1156. #endif
  1157. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1158. {
  1159. update_load_add(&rq->load, load);
  1160. }
  1161. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1162. {
  1163. update_load_sub(&rq->load, load);
  1164. }
  1165. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1166. typedef int (*tg_visitor)(struct task_group *, void *);
  1167. /*
  1168. * Iterate the full tree, calling @down when first entering a node and @up when
  1169. * leaving it for the final time.
  1170. */
  1171. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1172. {
  1173. struct task_group *parent, *child;
  1174. int ret;
  1175. rcu_read_lock();
  1176. parent = &root_task_group;
  1177. down:
  1178. ret = (*down)(parent, data);
  1179. if (ret)
  1180. goto out_unlock;
  1181. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1182. parent = child;
  1183. goto down;
  1184. up:
  1185. continue;
  1186. }
  1187. ret = (*up)(parent, data);
  1188. if (ret)
  1189. goto out_unlock;
  1190. child = parent;
  1191. parent = parent->parent;
  1192. if (parent)
  1193. goto up;
  1194. out_unlock:
  1195. rcu_read_unlock();
  1196. return ret;
  1197. }
  1198. static int tg_nop(struct task_group *tg, void *data)
  1199. {
  1200. return 0;
  1201. }
  1202. #endif
  1203. #ifdef CONFIG_SMP
  1204. static unsigned long source_load(int cpu, int type);
  1205. static unsigned long target_load(int cpu, int type);
  1206. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1207. static unsigned long cpu_avg_load_per_task(int cpu)
  1208. {
  1209. struct rq *rq = cpu_rq(cpu);
  1210. if (rq->nr_running)
  1211. rq->avg_load_per_task = rq->load.weight / rq->nr_running;
  1212. return rq->avg_load_per_task;
  1213. }
  1214. #ifdef CONFIG_FAIR_GROUP_SCHED
  1215. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1216. /*
  1217. * Calculate and set the cpu's group shares.
  1218. */
  1219. static void
  1220. __update_group_shares_cpu(struct task_group *tg, int cpu,
  1221. unsigned long sd_shares, unsigned long sd_rq_weight)
  1222. {
  1223. int boost = 0;
  1224. unsigned long shares;
  1225. unsigned long rq_weight;
  1226. if (!tg->se[cpu])
  1227. return;
  1228. rq_weight = tg->cfs_rq[cpu]->load.weight;
  1229. /*
  1230. * If there are currently no tasks on the cpu pretend there is one of
  1231. * average load so that when a new task gets to run here it will not
  1232. * get delayed by group starvation.
  1233. */
  1234. if (!rq_weight) {
  1235. boost = 1;
  1236. rq_weight = NICE_0_LOAD;
  1237. }
  1238. if (unlikely(rq_weight > sd_rq_weight))
  1239. rq_weight = sd_rq_weight;
  1240. /*
  1241. * \Sum shares * rq_weight
  1242. * shares = -----------------------
  1243. * \Sum rq_weight
  1244. *
  1245. */
  1246. shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
  1247. /*
  1248. * record the actual number of shares, not the boosted amount.
  1249. */
  1250. tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
  1251. tg->cfs_rq[cpu]->rq_weight = rq_weight;
  1252. if (shares < MIN_SHARES)
  1253. shares = MIN_SHARES;
  1254. else if (shares > MAX_SHARES)
  1255. shares = MAX_SHARES;
  1256. __set_se_shares(tg->se[cpu], shares);
  1257. }
  1258. /*
  1259. * Re-compute the task group their per cpu shares over the given domain.
  1260. * This needs to be done in a bottom-up fashion because the rq weight of a
  1261. * parent group depends on the shares of its child groups.
  1262. */
  1263. static int tg_shares_up(struct task_group *tg, void *data)
  1264. {
  1265. unsigned long rq_weight = 0;
  1266. unsigned long shares = 0;
  1267. struct sched_domain *sd = data;
  1268. int i;
  1269. for_each_cpu_mask(i, sd->span) {
  1270. rq_weight += tg->cfs_rq[i]->load.weight;
  1271. shares += tg->cfs_rq[i]->shares;
  1272. }
  1273. if ((!shares && rq_weight) || shares > tg->shares)
  1274. shares = tg->shares;
  1275. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1276. shares = tg->shares;
  1277. if (!rq_weight)
  1278. rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;
  1279. for_each_cpu_mask(i, sd->span) {
  1280. struct rq *rq = cpu_rq(i);
  1281. unsigned long flags;
  1282. spin_lock_irqsave(&rq->lock, flags);
  1283. __update_group_shares_cpu(tg, i, shares, rq_weight);
  1284. spin_unlock_irqrestore(&rq->lock, flags);
  1285. }
  1286. return 0;
  1287. }
  1288. /*
  1289. * Compute the cpu's hierarchical load factor for each task group.
  1290. * This needs to be done in a top-down fashion because the load of a child
  1291. * group is a fraction of its parents load.
  1292. */
  1293. static int tg_load_down(struct task_group *tg, void *data)
  1294. {
  1295. unsigned long load;
  1296. long cpu = (long)data;
  1297. if (!tg->parent) {
  1298. load = cpu_rq(cpu)->load.weight;
  1299. } else {
  1300. load = tg->parent->cfs_rq[cpu]->h_load;
  1301. load *= tg->cfs_rq[cpu]->shares;
  1302. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1303. }
  1304. tg->cfs_rq[cpu]->h_load = load;
  1305. return 0;
  1306. }
  1307. static void update_shares(struct sched_domain *sd)
  1308. {
  1309. u64 now = cpu_clock(raw_smp_processor_id());
  1310. s64 elapsed = now - sd->last_update;
  1311. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1312. sd->last_update = now;
  1313. walk_tg_tree(tg_nop, tg_shares_up, sd);
  1314. }
  1315. }
  1316. static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1317. {
  1318. spin_unlock(&rq->lock);
  1319. update_shares(sd);
  1320. spin_lock(&rq->lock);
  1321. }
  1322. static void update_h_load(long cpu)
  1323. {
  1324. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1325. }
  1326. #else
  1327. static inline void update_shares(struct sched_domain *sd)
  1328. {
  1329. }
  1330. static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1331. {
  1332. }
  1333. #endif
  1334. #endif
  1335. #ifdef CONFIG_FAIR_GROUP_SCHED
  1336. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1337. {
  1338. #ifdef CONFIG_SMP
  1339. cfs_rq->shares = shares;
  1340. #endif
  1341. }
  1342. #endif
  1343. #include "sched_stats.h"
  1344. #include "sched_idletask.c"
  1345. #include "sched_fair.c"
  1346. #include "sched_rt.c"
  1347. #ifdef CONFIG_SCHED_DEBUG
  1348. # include "sched_debug.c"
  1349. #endif
  1350. #define sched_class_highest (&rt_sched_class)
  1351. #define for_each_class(class) \
  1352. for (class = sched_class_highest; class; class = class->next)
  1353. static void inc_nr_running(struct rq *rq)
  1354. {
  1355. rq->nr_running++;
  1356. }
  1357. static void dec_nr_running(struct rq *rq)
  1358. {
  1359. rq->nr_running--;
  1360. }
  1361. static void set_load_weight(struct task_struct *p)
  1362. {
  1363. if (task_has_rt_policy(p)) {
  1364. p->se.load.weight = prio_to_weight[0] * 2;
  1365. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1366. return;
  1367. }
  1368. /*
  1369. * SCHED_IDLE tasks get minimal weight:
  1370. */
  1371. if (p->policy == SCHED_IDLE) {
  1372. p->se.load.weight = WEIGHT_IDLEPRIO;
  1373. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1374. return;
  1375. }
  1376. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1377. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1378. }
  1379. static void update_avg(u64 *avg, u64 sample)
  1380. {
  1381. s64 diff = sample - *avg;
  1382. *avg += diff >> 3;
  1383. }
  1384. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1385. {
  1386. sched_info_queued(p);
  1387. p->sched_class->enqueue_task(rq, p, wakeup);
  1388. p->se.on_rq = 1;
  1389. }
  1390. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1391. {
  1392. if (sleep && p->se.last_wakeup) {
  1393. update_avg(&p->se.avg_overlap,
  1394. p->se.sum_exec_runtime - p->se.last_wakeup);
  1395. p->se.last_wakeup = 0;
  1396. }
  1397. sched_info_dequeued(p);
  1398. p->sched_class->dequeue_task(rq, p, sleep);
  1399. p->se.on_rq = 0;
  1400. }
  1401. /*
  1402. * __normal_prio - return the priority that is based on the static prio
  1403. */
  1404. static inline int __normal_prio(struct task_struct *p)
  1405. {
  1406. return p->static_prio;
  1407. }
  1408. /*
  1409. * Calculate the expected normal priority: i.e. priority
  1410. * without taking RT-inheritance into account. Might be
  1411. * boosted by interactivity modifiers. Changes upon fork,
  1412. * setprio syscalls, and whenever the interactivity
  1413. * estimator recalculates.
  1414. */
  1415. static inline int normal_prio(struct task_struct *p)
  1416. {
  1417. int prio;
  1418. if (task_has_rt_policy(p))
  1419. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1420. else
  1421. prio = __normal_prio(p);
  1422. return prio;
  1423. }
  1424. /*
  1425. * Calculate the current priority, i.e. the priority
  1426. * taken into account by the scheduler. This value might
  1427. * be boosted by RT tasks, or might be boosted by
  1428. * interactivity modifiers. Will be RT if the task got
  1429. * RT-boosted. If not then it returns p->normal_prio.
  1430. */
  1431. static int effective_prio(struct task_struct *p)
  1432. {
  1433. p->normal_prio = normal_prio(p);
  1434. /*
  1435. * If we are RT tasks or we were boosted to RT priority,
  1436. * keep the priority unchanged. Otherwise, update priority
  1437. * to the normal priority:
  1438. */
  1439. if (!rt_prio(p->prio))
  1440. return p->normal_prio;
  1441. return p->prio;
  1442. }
  1443. /*
  1444. * activate_task - move a task to the runqueue.
  1445. */
  1446. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1447. {
  1448. if (task_contributes_to_load(p))
  1449. rq->nr_uninterruptible--;
  1450. enqueue_task(rq, p, wakeup);
  1451. inc_nr_running(rq);
  1452. }
  1453. /*
  1454. * deactivate_task - remove a task from the runqueue.
  1455. */
  1456. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1457. {
  1458. if (task_contributes_to_load(p))
  1459. rq->nr_uninterruptible++;
  1460. dequeue_task(rq, p, sleep);
  1461. dec_nr_running(rq);
  1462. }
  1463. /**
  1464. * task_curr - is this task currently executing on a CPU?
  1465. * @p: the task in question.
  1466. */
  1467. inline int task_curr(const struct task_struct *p)
  1468. {
  1469. return cpu_curr(task_cpu(p)) == p;
  1470. }
  1471. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1472. {
  1473. set_task_rq(p, cpu);
  1474. #ifdef CONFIG_SMP
  1475. /*
  1476. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1477. * successfuly executed on another CPU. We must ensure that updates of
  1478. * per-task data have been completed by this moment.
  1479. */
  1480. smp_wmb();
  1481. task_thread_info(p)->cpu = cpu;
  1482. #endif
  1483. }
  1484. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1485. const struct sched_class *prev_class,
  1486. int oldprio, int running)
  1487. {
  1488. if (prev_class != p->sched_class) {
  1489. if (prev_class->switched_from)
  1490. prev_class->switched_from(rq, p, running);
  1491. p->sched_class->switched_to(rq, p, running);
  1492. } else
  1493. p->sched_class->prio_changed(rq, p, oldprio, running);
  1494. }
  1495. #ifdef CONFIG_SMP
  1496. /* Used instead of source_load when we know the type == 0 */
  1497. static unsigned long weighted_cpuload(const int cpu)
  1498. {
  1499. return cpu_rq(cpu)->load.weight;
  1500. }
  1501. /*
  1502. * Is this task likely cache-hot:
  1503. */
  1504. static int
  1505. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1506. {
  1507. s64 delta;
  1508. /*
  1509. * Buddy candidates are cache hot:
  1510. */
  1511. if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
  1512. return 1;
  1513. if (p->sched_class != &fair_sched_class)
  1514. return 0;
  1515. if (sysctl_sched_migration_cost == -1)
  1516. return 1;
  1517. if (sysctl_sched_migration_cost == 0)
  1518. return 0;
  1519. delta = now - p->se.exec_start;
  1520. return delta < (s64)sysctl_sched_migration_cost;
  1521. }
  1522. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1523. {
  1524. int old_cpu = task_cpu(p);
  1525. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1526. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1527. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1528. u64 clock_offset;
  1529. clock_offset = old_rq->clock - new_rq->clock;
  1530. #ifdef CONFIG_SCHEDSTATS
  1531. if (p->se.wait_start)
  1532. p->se.wait_start -= clock_offset;
  1533. if (p->se.sleep_start)
  1534. p->se.sleep_start -= clock_offset;
  1535. if (p->se.block_start)
  1536. p->se.block_start -= clock_offset;
  1537. if (old_cpu != new_cpu) {
  1538. schedstat_inc(p, se.nr_migrations);
  1539. if (task_hot(p, old_rq->clock, NULL))
  1540. schedstat_inc(p, se.nr_forced2_migrations);
  1541. }
  1542. #endif
  1543. p->se.vruntime -= old_cfsrq->min_vruntime -
  1544. new_cfsrq->min_vruntime;
  1545. __set_task_cpu(p, new_cpu);
  1546. }
  1547. struct migration_req {
  1548. struct list_head list;
  1549. struct task_struct *task;
  1550. int dest_cpu;
  1551. struct completion done;
  1552. };
  1553. /*
  1554. * The task's runqueue lock must be held.
  1555. * Returns true if you have to wait for migration thread.
  1556. */
  1557. static int
  1558. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1559. {
  1560. struct rq *rq = task_rq(p);
  1561. /*
  1562. * If the task is not on a runqueue (and not running), then
  1563. * it is sufficient to simply update the task's cpu field.
  1564. */
  1565. if (!p->se.on_rq && !task_running(rq, p)) {
  1566. set_task_cpu(p, dest_cpu);
  1567. return 0;
  1568. }
  1569. init_completion(&req->done);
  1570. req->task = p;
  1571. req->dest_cpu = dest_cpu;
  1572. list_add(&req->list, &rq->migration_queue);
  1573. return 1;
  1574. }
  1575. /*
  1576. * wait_task_inactive - wait for a thread to unschedule.
  1577. *
  1578. * If @match_state is nonzero, it's the @p->state value just checked and
  1579. * not expected to change. If it changes, i.e. @p might have woken up,
  1580. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1581. * we return a positive number (its total switch count). If a second call
  1582. * a short while later returns the same number, the caller can be sure that
  1583. * @p has remained unscheduled the whole time.
  1584. *
  1585. * The caller must ensure that the task *will* unschedule sometime soon,
  1586. * else this function might spin for a *long* time. This function can't
  1587. * be called with interrupts off, or it may introduce deadlock with
  1588. * smp_call_function() if an IPI is sent by the same process we are
  1589. * waiting to become inactive.
  1590. */
  1591. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1592. {
  1593. unsigned long flags;
  1594. int running, on_rq;
  1595. unsigned long ncsw;
  1596. struct rq *rq;
  1597. for (;;) {
  1598. /*
  1599. * We do the initial early heuristics without holding
  1600. * any task-queue locks at all. We'll only try to get
  1601. * the runqueue lock when things look like they will
  1602. * work out!
  1603. */
  1604. rq = task_rq(p);
  1605. /*
  1606. * If the task is actively running on another CPU
  1607. * still, just relax and busy-wait without holding
  1608. * any locks.
  1609. *
  1610. * NOTE! Since we don't hold any locks, it's not
  1611. * even sure that "rq" stays as the right runqueue!
  1612. * But we don't care, since "task_running()" will
  1613. * return false if the runqueue has changed and p
  1614. * is actually now running somewhere else!
  1615. */
  1616. while (task_running(rq, p)) {
  1617. if (match_state && unlikely(p->state != match_state))
  1618. return 0;
  1619. cpu_relax();
  1620. }
  1621. /*
  1622. * Ok, time to look more closely! We need the rq
  1623. * lock now, to be *sure*. If we're wrong, we'll
  1624. * just go back and repeat.
  1625. */
  1626. rq = task_rq_lock(p, &flags);
  1627. trace_sched_wait_task(rq, p);
  1628. running = task_running(rq, p);
  1629. on_rq = p->se.on_rq;
  1630. ncsw = 0;
  1631. if (!match_state || p->state == match_state)
  1632. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1633. task_rq_unlock(rq, &flags);
  1634. /*
  1635. * If it changed from the expected state, bail out now.
  1636. */
  1637. if (unlikely(!ncsw))
  1638. break;
  1639. /*
  1640. * Was it really running after all now that we
  1641. * checked with the proper locks actually held?
  1642. *
  1643. * Oops. Go back and try again..
  1644. */
  1645. if (unlikely(running)) {
  1646. cpu_relax();
  1647. continue;
  1648. }
  1649. /*
  1650. * It's not enough that it's not actively running,
  1651. * it must be off the runqueue _entirely_, and not
  1652. * preempted!
  1653. *
  1654. * So if it wa still runnable (but just not actively
  1655. * running right now), it's preempted, and we should
  1656. * yield - it could be a while.
  1657. */
  1658. if (unlikely(on_rq)) {
  1659. schedule_timeout_uninterruptible(1);
  1660. continue;
  1661. }
  1662. /*
  1663. * Ahh, all good. It wasn't running, and it wasn't
  1664. * runnable, which means that it will never become
  1665. * running in the future either. We're all done!
  1666. */
  1667. break;
  1668. }
  1669. return ncsw;
  1670. }
  1671. /***
  1672. * kick_process - kick a running thread to enter/exit the kernel
  1673. * @p: the to-be-kicked thread
  1674. *
  1675. * Cause a process which is running on another CPU to enter
  1676. * kernel-mode, without any delay. (to get signals handled.)
  1677. *
  1678. * NOTE: this function doesnt have to take the runqueue lock,
  1679. * because all it wants to ensure is that the remote task enters
  1680. * the kernel. If the IPI races and the task has been migrated
  1681. * to another CPU then no harm is done and the purpose has been
  1682. * achieved as well.
  1683. */
  1684. void kick_process(struct task_struct *p)
  1685. {
  1686. int cpu;
  1687. preempt_disable();
  1688. cpu = task_cpu(p);
  1689. if ((cpu != smp_processor_id()) && task_curr(p))
  1690. smp_send_reschedule(cpu);
  1691. preempt_enable();
  1692. }
  1693. /*
  1694. * Return a low guess at the load of a migration-source cpu weighted
  1695. * according to the scheduling class and "nice" value.
  1696. *
  1697. * We want to under-estimate the load of migration sources, to
  1698. * balance conservatively.
  1699. */
  1700. static unsigned long source_load(int cpu, int type)
  1701. {
  1702. struct rq *rq = cpu_rq(cpu);
  1703. unsigned long total = weighted_cpuload(cpu);
  1704. if (type == 0 || !sched_feat(LB_BIAS))
  1705. return total;
  1706. return min(rq->cpu_load[type-1], total);
  1707. }
  1708. /*
  1709. * Return a high guess at the load of a migration-target cpu weighted
  1710. * according to the scheduling class and "nice" value.
  1711. */
  1712. static unsigned long target_load(int cpu, int type)
  1713. {
  1714. struct rq *rq = cpu_rq(cpu);
  1715. unsigned long total = weighted_cpuload(cpu);
  1716. if (type == 0 || !sched_feat(LB_BIAS))
  1717. return total;
  1718. return max(rq->cpu_load[type-1], total);
  1719. }
  1720. /*
  1721. * find_idlest_group finds and returns the least busy CPU group within the
  1722. * domain.
  1723. */
  1724. static struct sched_group *
  1725. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1726. {
  1727. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1728. unsigned long min_load = ULONG_MAX, this_load = 0;
  1729. int load_idx = sd->forkexec_idx;
  1730. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1731. do {
  1732. unsigned long load, avg_load;
  1733. int local_group;
  1734. int i;
  1735. /* Skip over this group if it has no CPUs allowed */
  1736. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1737. continue;
  1738. local_group = cpu_isset(this_cpu, group->cpumask);
  1739. /* Tally up the load of all CPUs in the group */
  1740. avg_load = 0;
  1741. for_each_cpu_mask_nr(i, group->cpumask) {
  1742. /* Bias balancing toward cpus of our domain */
  1743. if (local_group)
  1744. load = source_load(i, load_idx);
  1745. else
  1746. load = target_load(i, load_idx);
  1747. avg_load += load;
  1748. }
  1749. /* Adjust by relative CPU power of the group */
  1750. avg_load = sg_div_cpu_power(group,
  1751. avg_load * SCHED_LOAD_SCALE);
  1752. if (local_group) {
  1753. this_load = avg_load;
  1754. this = group;
  1755. } else if (avg_load < min_load) {
  1756. min_load = avg_load;
  1757. idlest = group;
  1758. }
  1759. } while (group = group->next, group != sd->groups);
  1760. if (!idlest || 100*this_load < imbalance*min_load)
  1761. return NULL;
  1762. return idlest;
  1763. }
  1764. /*
  1765. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1766. */
  1767. static int
  1768. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
  1769. cpumask_t *tmp)
  1770. {
  1771. unsigned long load, min_load = ULONG_MAX;
  1772. int idlest = -1;
  1773. int i;
  1774. /* Traverse only the allowed CPUs */
  1775. cpus_and(*tmp, group->cpumask, p->cpus_allowed);
  1776. for_each_cpu_mask_nr(i, *tmp) {
  1777. load = weighted_cpuload(i);
  1778. if (load < min_load || (load == min_load && i == this_cpu)) {
  1779. min_load = load;
  1780. idlest = i;
  1781. }
  1782. }
  1783. return idlest;
  1784. }
  1785. /*
  1786. * sched_balance_self: balance the current task (running on cpu) in domains
  1787. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1788. * SD_BALANCE_EXEC.
  1789. *
  1790. * Balance, ie. select the least loaded group.
  1791. *
  1792. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1793. *
  1794. * preempt must be disabled.
  1795. */
  1796. static int sched_balance_self(int cpu, int flag)
  1797. {
  1798. struct task_struct *t = current;
  1799. struct sched_domain *tmp, *sd = NULL;
  1800. for_each_domain(cpu, tmp) {
  1801. /*
  1802. * If power savings logic is enabled for a domain, stop there.
  1803. */
  1804. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1805. break;
  1806. if (tmp->flags & flag)
  1807. sd = tmp;
  1808. }
  1809. if (sd)
  1810. update_shares(sd);
  1811. while (sd) {
  1812. cpumask_t span, tmpmask;
  1813. struct sched_group *group;
  1814. int new_cpu, weight;
  1815. if (!(sd->flags & flag)) {
  1816. sd = sd->child;
  1817. continue;
  1818. }
  1819. span = sd->span;
  1820. group = find_idlest_group(sd, t, cpu);
  1821. if (!group) {
  1822. sd = sd->child;
  1823. continue;
  1824. }
  1825. new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
  1826. if (new_cpu == -1 || new_cpu == cpu) {
  1827. /* Now try balancing at a lower domain level of cpu */
  1828. sd = sd->child;
  1829. continue;
  1830. }
  1831. /* Now try balancing at a lower domain level of new_cpu */
  1832. cpu = new_cpu;
  1833. sd = NULL;
  1834. weight = cpus_weight(span);
  1835. for_each_domain(cpu, tmp) {
  1836. if (weight <= cpus_weight(tmp->span))
  1837. break;
  1838. if (tmp->flags & flag)
  1839. sd = tmp;
  1840. }
  1841. /* while loop will break here if sd == NULL */
  1842. }
  1843. return cpu;
  1844. }
  1845. #endif /* CONFIG_SMP */
  1846. /***
  1847. * try_to_wake_up - wake up a thread
  1848. * @p: the to-be-woken-up thread
  1849. * @state: the mask of task states that can be woken
  1850. * @sync: do a synchronous wakeup?
  1851. *
  1852. * Put it on the run-queue if it's not already there. The "current"
  1853. * thread is always on the run-queue (except when the actual
  1854. * re-schedule is in progress), and as such you're allowed to do
  1855. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1856. * runnable without the overhead of this.
  1857. *
  1858. * returns failure only if the task is already active.
  1859. */
  1860. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1861. {
  1862. int cpu, orig_cpu, this_cpu, success = 0;
  1863. unsigned long flags;
  1864. long old_state;
  1865. struct rq *rq;
  1866. if (!sched_feat(SYNC_WAKEUPS))
  1867. sync = 0;
  1868. #ifdef CONFIG_SMP
  1869. if (sched_feat(LB_WAKEUP_UPDATE)) {
  1870. struct sched_domain *sd;
  1871. this_cpu = raw_smp_processor_id();
  1872. cpu = task_cpu(p);
  1873. for_each_domain(this_cpu, sd) {
  1874. if (cpu_isset(cpu, sd->span)) {
  1875. update_shares(sd);
  1876. break;
  1877. }
  1878. }
  1879. }
  1880. #endif
  1881. smp_wmb();
  1882. rq = task_rq_lock(p, &flags);
  1883. old_state = p->state;
  1884. if (!(old_state & state))
  1885. goto out;
  1886. if (p->se.on_rq)
  1887. goto out_running;
  1888. cpu = task_cpu(p);
  1889. orig_cpu = cpu;
  1890. this_cpu = smp_processor_id();
  1891. #ifdef CONFIG_SMP
  1892. if (unlikely(task_running(rq, p)))
  1893. goto out_activate;
  1894. cpu = p->sched_class->select_task_rq(p, sync);
  1895. if (cpu != orig_cpu) {
  1896. set_task_cpu(p, cpu);
  1897. task_rq_unlock(rq, &flags);
  1898. /* might preempt at this point */
  1899. rq = task_rq_lock(p, &flags);
  1900. old_state = p->state;
  1901. if (!(old_state & state))
  1902. goto out;
  1903. if (p->se.on_rq)
  1904. goto out_running;
  1905. this_cpu = smp_processor_id();
  1906. cpu = task_cpu(p);
  1907. }
  1908. #ifdef CONFIG_SCHEDSTATS
  1909. schedstat_inc(rq, ttwu_count);
  1910. if (cpu == this_cpu)
  1911. schedstat_inc(rq, ttwu_local);
  1912. else {
  1913. struct sched_domain *sd;
  1914. for_each_domain(this_cpu, sd) {
  1915. if (cpu_isset(cpu, sd->span)) {
  1916. schedstat_inc(sd, ttwu_wake_remote);
  1917. break;
  1918. }
  1919. }
  1920. }
  1921. #endif /* CONFIG_SCHEDSTATS */
  1922. out_activate:
  1923. #endif /* CONFIG_SMP */
  1924. schedstat_inc(p, se.nr_wakeups);
  1925. if (sync)
  1926. schedstat_inc(p, se.nr_wakeups_sync);
  1927. if (orig_cpu != cpu)
  1928. schedstat_inc(p, se.nr_wakeups_migrate);
  1929. if (cpu == this_cpu)
  1930. schedstat_inc(p, se.nr_wakeups_local);
  1931. else
  1932. schedstat_inc(p, se.nr_wakeups_remote);
  1933. update_rq_clock(rq);
  1934. activate_task(rq, p, 1);
  1935. success = 1;
  1936. out_running:
  1937. trace_sched_wakeup(rq, p);
  1938. check_preempt_curr(rq, p, sync);
  1939. p->state = TASK_RUNNING;
  1940. #ifdef CONFIG_SMP
  1941. if (p->sched_class->task_wake_up)
  1942. p->sched_class->task_wake_up(rq, p);
  1943. #endif
  1944. out:
  1945. current->se.last_wakeup = current->se.sum_exec_runtime;
  1946. task_rq_unlock(rq, &flags);
  1947. return success;
  1948. }
  1949. int wake_up_process(struct task_struct *p)
  1950. {
  1951. return try_to_wake_up(p, TASK_ALL, 0);
  1952. }
  1953. EXPORT_SYMBOL(wake_up_process);
  1954. int wake_up_state(struct task_struct *p, unsigned int state)
  1955. {
  1956. return try_to_wake_up(p, state, 0);
  1957. }
  1958. /*
  1959. * Perform scheduler related setup for a newly forked process p.
  1960. * p is forked by current.
  1961. *
  1962. * __sched_fork() is basic setup used by init_idle() too:
  1963. */
  1964. static void __sched_fork(struct task_struct *p)
  1965. {
  1966. p->se.exec_start = 0;
  1967. p->se.sum_exec_runtime = 0;
  1968. p->se.prev_sum_exec_runtime = 0;
  1969. p->se.last_wakeup = 0;
  1970. p->se.avg_overlap = 0;
  1971. #ifdef CONFIG_SCHEDSTATS
  1972. p->se.wait_start = 0;
  1973. p->se.sum_sleep_runtime = 0;
  1974. p->se.sleep_start = 0;
  1975. p->se.block_start = 0;
  1976. p->se.sleep_max = 0;
  1977. p->se.block_max = 0;
  1978. p->se.exec_max = 0;
  1979. p->se.slice_max = 0;
  1980. p->se.wait_max = 0;
  1981. #endif
  1982. INIT_LIST_HEAD(&p->rt.run_list);
  1983. p->se.on_rq = 0;
  1984. INIT_LIST_HEAD(&p->se.group_node);
  1985. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1986. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1987. #endif
  1988. /*
  1989. * We mark the process as running here, but have not actually
  1990. * inserted it onto the runqueue yet. This guarantees that
  1991. * nobody will actually run it, and a signal or other external
  1992. * event cannot wake it up and insert it on the runqueue either.
  1993. */
  1994. p->state = TASK_RUNNING;
  1995. }
  1996. /*
  1997. * fork()/clone()-time setup:
  1998. */
  1999. void sched_fork(struct task_struct *p, int clone_flags)
  2000. {
  2001. int cpu = get_cpu();
  2002. __sched_fork(p);
  2003. #ifdef CONFIG_SMP
  2004. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  2005. #endif
  2006. set_task_cpu(p, cpu);
  2007. /*
  2008. * Make sure we do not leak PI boosting priority to the child:
  2009. */
  2010. p->prio = current->normal_prio;
  2011. if (!rt_prio(p->prio))
  2012. p->sched_class = &fair_sched_class;
  2013. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2014. if (likely(sched_info_on()))
  2015. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2016. #endif
  2017. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2018. p->oncpu = 0;
  2019. #endif
  2020. #ifdef CONFIG_PREEMPT
  2021. /* Want to start with kernel preemption disabled. */
  2022. task_thread_info(p)->preempt_count = 1;
  2023. #endif
  2024. put_cpu();
  2025. }
  2026. /*
  2027. * wake_up_new_task - wake up a newly created task for the first time.
  2028. *
  2029. * This function will do some initial scheduler statistics housekeeping
  2030. * that must be done for every newly created context, then puts the task
  2031. * on the runqueue and wakes it.
  2032. */
  2033. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2034. {
  2035. unsigned long flags;
  2036. struct rq *rq;
  2037. rq = task_rq_lock(p, &flags);
  2038. BUG_ON(p->state != TASK_RUNNING);
  2039. update_rq_clock(rq);
  2040. p->prio = effective_prio(p);
  2041. if (!p->sched_class->task_new || !current->se.on_rq) {
  2042. activate_task(rq, p, 0);
  2043. } else {
  2044. /*
  2045. * Let the scheduling class do new task startup
  2046. * management (if any):
  2047. */
  2048. p->sched_class->task_new(rq, p);
  2049. inc_nr_running(rq);
  2050. }
  2051. trace_sched_wakeup_new(rq, p);
  2052. check_preempt_curr(rq, p, 0);
  2053. #ifdef CONFIG_SMP
  2054. if (p->sched_class->task_wake_up)
  2055. p->sched_class->task_wake_up(rq, p);
  2056. #endif
  2057. task_rq_unlock(rq, &flags);
  2058. }
  2059. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2060. /**
  2061. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  2062. * @notifier: notifier struct to register
  2063. */
  2064. void preempt_notifier_register(struct preempt_notifier *notifier)
  2065. {
  2066. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2067. }
  2068. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2069. /**
  2070. * preempt_notifier_unregister - no longer interested in preemption notifications
  2071. * @notifier: notifier struct to unregister
  2072. *
  2073. * This is safe to call from within a preemption notifier.
  2074. */
  2075. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2076. {
  2077. hlist_del(&notifier->link);
  2078. }
  2079. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2080. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2081. {
  2082. struct preempt_notifier *notifier;
  2083. struct hlist_node *node;
  2084. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2085. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2086. }
  2087. static void
  2088. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2089. struct task_struct *next)
  2090. {
  2091. struct preempt_notifier *notifier;
  2092. struct hlist_node *node;
  2093. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2094. notifier->ops->sched_out(notifier, next);
  2095. }
  2096. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2097. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2098. {
  2099. }
  2100. static void
  2101. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2102. struct task_struct *next)
  2103. {
  2104. }
  2105. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2106. /**
  2107. * prepare_task_switch - prepare to switch tasks
  2108. * @rq: the runqueue preparing to switch
  2109. * @prev: the current task that is being switched out
  2110. * @next: the task we are going to switch to.
  2111. *
  2112. * This is called with the rq lock held and interrupts off. It must
  2113. * be paired with a subsequent finish_task_switch after the context
  2114. * switch.
  2115. *
  2116. * prepare_task_switch sets up locking and calls architecture specific
  2117. * hooks.
  2118. */
  2119. static inline void
  2120. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2121. struct task_struct *next)
  2122. {
  2123. fire_sched_out_preempt_notifiers(prev, next);
  2124. prepare_lock_switch(rq, next);
  2125. prepare_arch_switch(next);
  2126. }
  2127. /**
  2128. * finish_task_switch - clean up after a task-switch
  2129. * @rq: runqueue associated with task-switch
  2130. * @prev: the thread we just switched away from.
  2131. *
  2132. * finish_task_switch must be called after the context switch, paired
  2133. * with a prepare_task_switch call before the context switch.
  2134. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2135. * and do any other architecture-specific cleanup actions.
  2136. *
  2137. * Note that we may have delayed dropping an mm in context_switch(). If
  2138. * so, we finish that here outside of the runqueue lock. (Doing it
  2139. * with the lock held can cause deadlocks; see schedule() for
  2140. * details.)
  2141. */
  2142. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2143. __releases(rq->lock)
  2144. {
  2145. struct mm_struct *mm = rq->prev_mm;
  2146. long prev_state;
  2147. rq->prev_mm = NULL;
  2148. /*
  2149. * A task struct has one reference for the use as "current".
  2150. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2151. * schedule one last time. The schedule call will never return, and
  2152. * the scheduled task must drop that reference.
  2153. * The test for TASK_DEAD must occur while the runqueue locks are
  2154. * still held, otherwise prev could be scheduled on another cpu, die
  2155. * there before we look at prev->state, and then the reference would
  2156. * be dropped twice.
  2157. * Manfred Spraul <manfred@colorfullife.com>
  2158. */
  2159. prev_state = prev->state;
  2160. finish_arch_switch(prev);
  2161. finish_lock_switch(rq, prev);
  2162. #ifdef CONFIG_SMP
  2163. if (current->sched_class->post_schedule)
  2164. current->sched_class->post_schedule(rq);
  2165. #endif
  2166. fire_sched_in_preempt_notifiers(current);
  2167. if (mm)
  2168. mmdrop(mm);
  2169. if (unlikely(prev_state == TASK_DEAD)) {
  2170. /*
  2171. * Remove function-return probe instances associated with this
  2172. * task and put them back on the free list.
  2173. */
  2174. kprobe_flush_task(prev);
  2175. put_task_struct(prev);
  2176. }
  2177. }
  2178. /**
  2179. * schedule_tail - first thing a freshly forked thread must call.
  2180. * @prev: the thread we just switched away from.
  2181. */
  2182. asmlinkage void schedule_tail(struct task_struct *prev)
  2183. __releases(rq->lock)
  2184. {
  2185. struct rq *rq = this_rq();
  2186. finish_task_switch(rq, prev);
  2187. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2188. /* In this case, finish_task_switch does not reenable preemption */
  2189. preempt_enable();
  2190. #endif
  2191. if (current->set_child_tid)
  2192. put_user(task_pid_vnr(current), current->set_child_tid);
  2193. }
  2194. /*
  2195. * context_switch - switch to the new MM and the new
  2196. * thread's register state.
  2197. */
  2198. static inline void
  2199. context_switch(struct rq *rq, struct task_struct *prev,
  2200. struct task_struct *next)
  2201. {
  2202. struct mm_struct *mm, *oldmm;
  2203. prepare_task_switch(rq, prev, next);
  2204. trace_sched_switch(rq, prev, next);
  2205. mm = next->mm;
  2206. oldmm = prev->active_mm;
  2207. /*
  2208. * For paravirt, this is coupled with an exit in switch_to to
  2209. * combine the page table reload and the switch backend into
  2210. * one hypercall.
  2211. */
  2212. arch_enter_lazy_cpu_mode();
  2213. if (unlikely(!mm)) {
  2214. next->active_mm = oldmm;
  2215. atomic_inc(&oldmm->mm_count);
  2216. enter_lazy_tlb(oldmm, next);
  2217. } else
  2218. switch_mm(oldmm, mm, next);
  2219. if (unlikely(!prev->mm)) {
  2220. prev->active_mm = NULL;
  2221. rq->prev_mm = oldmm;
  2222. }
  2223. /*
  2224. * Since the runqueue lock will be released by the next
  2225. * task (which is an invalid locking op but in the case
  2226. * of the scheduler it's an obvious special-case), so we
  2227. * do an early lockdep release here:
  2228. */
  2229. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2230. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2231. #endif
  2232. /* Here we just switch the register state and the stack. */
  2233. switch_to(prev, next, prev);
  2234. barrier();
  2235. /*
  2236. * this_rq must be evaluated again because prev may have moved
  2237. * CPUs since it called schedule(), thus the 'rq' on its stack
  2238. * frame will be invalid.
  2239. */
  2240. finish_task_switch(this_rq(), prev);
  2241. }
  2242. /*
  2243. * nr_running, nr_uninterruptible and nr_context_switches:
  2244. *
  2245. * externally visible scheduler statistics: current number of runnable
  2246. * threads, current number of uninterruptible-sleeping threads, total
  2247. * number of context switches performed since bootup.
  2248. */
  2249. unsigned long nr_running(void)
  2250. {
  2251. unsigned long i, sum = 0;
  2252. for_each_online_cpu(i)
  2253. sum += cpu_rq(i)->nr_running;
  2254. return sum;
  2255. }
  2256. unsigned long nr_uninterruptible(void)
  2257. {
  2258. unsigned long i, sum = 0;
  2259. for_each_possible_cpu(i)
  2260. sum += cpu_rq(i)->nr_uninterruptible;
  2261. /*
  2262. * Since we read the counters lockless, it might be slightly
  2263. * inaccurate. Do not allow it to go below zero though:
  2264. */
  2265. if (unlikely((long)sum < 0))
  2266. sum = 0;
  2267. return sum;
  2268. }
  2269. unsigned long long nr_context_switches(void)
  2270. {
  2271. int i;
  2272. unsigned long long sum = 0;
  2273. for_each_possible_cpu(i)
  2274. sum += cpu_rq(i)->nr_switches;
  2275. return sum;
  2276. }
  2277. unsigned long nr_iowait(void)
  2278. {
  2279. unsigned long i, sum = 0;
  2280. for_each_possible_cpu(i)
  2281. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2282. return sum;
  2283. }
  2284. unsigned long nr_active(void)
  2285. {
  2286. unsigned long i, running = 0, uninterruptible = 0;
  2287. for_each_online_cpu(i) {
  2288. running += cpu_rq(i)->nr_running;
  2289. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  2290. }
  2291. if (unlikely((long)uninterruptible < 0))
  2292. uninterruptible = 0;
  2293. return running + uninterruptible;
  2294. }
  2295. /*
  2296. * Update rq->cpu_load[] statistics. This function is usually called every
  2297. * scheduler tick (TICK_NSEC).
  2298. */
  2299. static void update_cpu_load(struct rq *this_rq)
  2300. {
  2301. unsigned long this_load = this_rq->load.weight;
  2302. int i, scale;
  2303. this_rq->nr_load_updates++;
  2304. /* Update our load: */
  2305. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2306. unsigned long old_load, new_load;
  2307. /* scale is effectively 1 << i now, and >> i divides by scale */
  2308. old_load = this_rq->cpu_load[i];
  2309. new_load = this_load;
  2310. /*
  2311. * Round up the averaging division if load is increasing. This
  2312. * prevents us from getting stuck on 9 if the load is 10, for
  2313. * example.
  2314. */
  2315. if (new_load > old_load)
  2316. new_load += scale-1;
  2317. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2318. }
  2319. }
  2320. #ifdef CONFIG_SMP
  2321. /*
  2322. * double_rq_lock - safely lock two runqueues
  2323. *
  2324. * Note this does not disable interrupts like task_rq_lock,
  2325. * you need to do so manually before calling.
  2326. */
  2327. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2328. __acquires(rq1->lock)
  2329. __acquires(rq2->lock)
  2330. {
  2331. BUG_ON(!irqs_disabled());
  2332. if (rq1 == rq2) {
  2333. spin_lock(&rq1->lock);
  2334. __acquire(rq2->lock); /* Fake it out ;) */
  2335. } else {
  2336. if (rq1 < rq2) {
  2337. spin_lock(&rq1->lock);
  2338. spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  2339. } else {
  2340. spin_lock(&rq2->lock);
  2341. spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  2342. }
  2343. }
  2344. update_rq_clock(rq1);
  2345. update_rq_clock(rq2);
  2346. }
  2347. /*
  2348. * double_rq_unlock - safely unlock two runqueues
  2349. *
  2350. * Note this does not restore interrupts like task_rq_unlock,
  2351. * you need to do so manually after calling.
  2352. */
  2353. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2354. __releases(rq1->lock)
  2355. __releases(rq2->lock)
  2356. {
  2357. spin_unlock(&rq1->lock);
  2358. if (rq1 != rq2)
  2359. spin_unlock(&rq2->lock);
  2360. else
  2361. __release(rq2->lock);
  2362. }
  2363. /*
  2364. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  2365. */
  2366. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  2367. __releases(this_rq->lock)
  2368. __acquires(busiest->lock)
  2369. __acquires(this_rq->lock)
  2370. {
  2371. int ret = 0;
  2372. if (unlikely(!irqs_disabled())) {
  2373. /* printk() doesn't work good under rq->lock */
  2374. spin_unlock(&this_rq->lock);
  2375. BUG_ON(1);
  2376. }
  2377. if (unlikely(!spin_trylock(&busiest->lock))) {
  2378. if (busiest < this_rq) {
  2379. spin_unlock(&this_rq->lock);
  2380. spin_lock(&busiest->lock);
  2381. spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
  2382. ret = 1;
  2383. } else
  2384. spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
  2385. }
  2386. return ret;
  2387. }
  2388. static void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  2389. __releases(busiest->lock)
  2390. {
  2391. spin_unlock(&busiest->lock);
  2392. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  2393. }
  2394. /*
  2395. * If dest_cpu is allowed for this process, migrate the task to it.
  2396. * This is accomplished by forcing the cpu_allowed mask to only
  2397. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2398. * the cpu_allowed mask is restored.
  2399. */
  2400. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2401. {
  2402. struct migration_req req;
  2403. unsigned long flags;
  2404. struct rq *rq;
  2405. rq = task_rq_lock(p, &flags);
  2406. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  2407. || unlikely(!cpu_active(dest_cpu)))
  2408. goto out;
  2409. trace_sched_migrate_task(rq, p, dest_cpu);
  2410. /* force the process onto the specified CPU */
  2411. if (migrate_task(p, dest_cpu, &req)) {
  2412. /* Need to wait for migration thread (might exit: take ref). */
  2413. struct task_struct *mt = rq->migration_thread;
  2414. get_task_struct(mt);
  2415. task_rq_unlock(rq, &flags);
  2416. wake_up_process(mt);
  2417. put_task_struct(mt);
  2418. wait_for_completion(&req.done);
  2419. return;
  2420. }
  2421. out:
  2422. task_rq_unlock(rq, &flags);
  2423. }
  2424. /*
  2425. * sched_exec - execve() is a valuable balancing opportunity, because at
  2426. * this point the task has the smallest effective memory and cache footprint.
  2427. */
  2428. void sched_exec(void)
  2429. {
  2430. int new_cpu, this_cpu = get_cpu();
  2431. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  2432. put_cpu();
  2433. if (new_cpu != this_cpu)
  2434. sched_migrate_task(current, new_cpu);
  2435. }
  2436. /*
  2437. * pull_task - move a task from a remote runqueue to the local runqueue.
  2438. * Both runqueues must be locked.
  2439. */
  2440. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2441. struct rq *this_rq, int this_cpu)
  2442. {
  2443. deactivate_task(src_rq, p, 0);
  2444. set_task_cpu(p, this_cpu);
  2445. activate_task(this_rq, p, 0);
  2446. /*
  2447. * Note that idle threads have a prio of MAX_PRIO, for this test
  2448. * to be always true for them.
  2449. */
  2450. check_preempt_curr(this_rq, p, 0);
  2451. }
  2452. /*
  2453. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2454. */
  2455. static
  2456. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2457. struct sched_domain *sd, enum cpu_idle_type idle,
  2458. int *all_pinned)
  2459. {
  2460. /*
  2461. * We do not migrate tasks that are:
  2462. * 1) running (obviously), or
  2463. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2464. * 3) are cache-hot on their current CPU.
  2465. */
  2466. if (!cpu_isset(this_cpu, p->cpus_allowed)) {
  2467. schedstat_inc(p, se.nr_failed_migrations_affine);
  2468. return 0;
  2469. }
  2470. *all_pinned = 0;
  2471. if (task_running(rq, p)) {
  2472. schedstat_inc(p, se.nr_failed_migrations_running);
  2473. return 0;
  2474. }
  2475. /*
  2476. * Aggressive migration if:
  2477. * 1) task is cache cold, or
  2478. * 2) too many balance attempts have failed.
  2479. */
  2480. if (!task_hot(p, rq->clock, sd) ||
  2481. sd->nr_balance_failed > sd->cache_nice_tries) {
  2482. #ifdef CONFIG_SCHEDSTATS
  2483. if (task_hot(p, rq->clock, sd)) {
  2484. schedstat_inc(sd, lb_hot_gained[idle]);
  2485. schedstat_inc(p, se.nr_forced_migrations);
  2486. }
  2487. #endif
  2488. return 1;
  2489. }
  2490. if (task_hot(p, rq->clock, sd)) {
  2491. schedstat_inc(p, se.nr_failed_migrations_hot);
  2492. return 0;
  2493. }
  2494. return 1;
  2495. }
  2496. static unsigned long
  2497. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2498. unsigned long max_load_move, struct sched_domain *sd,
  2499. enum cpu_idle_type idle, int *all_pinned,
  2500. int *this_best_prio, struct rq_iterator *iterator)
  2501. {
  2502. int loops = 0, pulled = 0, pinned = 0;
  2503. struct task_struct *p;
  2504. long rem_load_move = max_load_move;
  2505. if (max_load_move == 0)
  2506. goto out;
  2507. pinned = 1;
  2508. /*
  2509. * Start the load-balancing iterator:
  2510. */
  2511. p = iterator->start(iterator->arg);
  2512. next:
  2513. if (!p || loops++ > sysctl_sched_nr_migrate)
  2514. goto out;
  2515. if ((p->se.load.weight >> 1) > rem_load_move ||
  2516. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2517. p = iterator->next(iterator->arg);
  2518. goto next;
  2519. }
  2520. pull_task(busiest, p, this_rq, this_cpu);
  2521. pulled++;
  2522. rem_load_move -= p->se.load.weight;
  2523. /*
  2524. * We only want to steal up to the prescribed amount of weighted load.
  2525. */
  2526. if (rem_load_move > 0) {
  2527. if (p->prio < *this_best_prio)
  2528. *this_best_prio = p->prio;
  2529. p = iterator->next(iterator->arg);
  2530. goto next;
  2531. }
  2532. out:
  2533. /*
  2534. * Right now, this is one of only two places pull_task() is called,
  2535. * so we can safely collect pull_task() stats here rather than
  2536. * inside pull_task().
  2537. */
  2538. schedstat_add(sd, lb_gained[idle], pulled);
  2539. if (all_pinned)
  2540. *all_pinned = pinned;
  2541. return max_load_move - rem_load_move;
  2542. }
  2543. /*
  2544. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2545. * this_rq, as part of a balancing operation within domain "sd".
  2546. * Returns 1 if successful and 0 otherwise.
  2547. *
  2548. * Called with both runqueues locked.
  2549. */
  2550. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2551. unsigned long max_load_move,
  2552. struct sched_domain *sd, enum cpu_idle_type idle,
  2553. int *all_pinned)
  2554. {
  2555. const struct sched_class *class = sched_class_highest;
  2556. unsigned long total_load_moved = 0;
  2557. int this_best_prio = this_rq->curr->prio;
  2558. do {
  2559. total_load_moved +=
  2560. class->load_balance(this_rq, this_cpu, busiest,
  2561. max_load_move - total_load_moved,
  2562. sd, idle, all_pinned, &this_best_prio);
  2563. class = class->next;
  2564. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  2565. break;
  2566. } while (class && max_load_move > total_load_moved);
  2567. return total_load_moved > 0;
  2568. }
  2569. static int
  2570. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2571. struct sched_domain *sd, enum cpu_idle_type idle,
  2572. struct rq_iterator *iterator)
  2573. {
  2574. struct task_struct *p = iterator->start(iterator->arg);
  2575. int pinned = 0;
  2576. while (p) {
  2577. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2578. pull_task(busiest, p, this_rq, this_cpu);
  2579. /*
  2580. * Right now, this is only the second place pull_task()
  2581. * is called, so we can safely collect pull_task()
  2582. * stats here rather than inside pull_task().
  2583. */
  2584. schedstat_inc(sd, lb_gained[idle]);
  2585. return 1;
  2586. }
  2587. p = iterator->next(iterator->arg);
  2588. }
  2589. return 0;
  2590. }
  2591. /*
  2592. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2593. * part of active balancing operations within "domain".
  2594. * Returns 1 if successful and 0 otherwise.
  2595. *
  2596. * Called with both runqueues locked.
  2597. */
  2598. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2599. struct sched_domain *sd, enum cpu_idle_type idle)
  2600. {
  2601. const struct sched_class *class;
  2602. for (class = sched_class_highest; class; class = class->next)
  2603. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2604. return 1;
  2605. return 0;
  2606. }
  2607. /*
  2608. * find_busiest_group finds and returns the busiest CPU group within the
  2609. * domain. It calculates and returns the amount of weighted load which
  2610. * should be moved to restore balance via the imbalance parameter.
  2611. */
  2612. static struct sched_group *
  2613. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2614. unsigned long *imbalance, enum cpu_idle_type idle,
  2615. int *sd_idle, const cpumask_t *cpus, int *balance)
  2616. {
  2617. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  2618. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  2619. unsigned long max_pull;
  2620. unsigned long busiest_load_per_task, busiest_nr_running;
  2621. unsigned long this_load_per_task, this_nr_running;
  2622. int load_idx, group_imb = 0;
  2623. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2624. int power_savings_balance = 1;
  2625. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2626. unsigned long min_nr_running = ULONG_MAX;
  2627. struct sched_group *group_min = NULL, *group_leader = NULL;
  2628. #endif
  2629. max_load = this_load = total_load = total_pwr = 0;
  2630. busiest_load_per_task = busiest_nr_running = 0;
  2631. this_load_per_task = this_nr_running = 0;
  2632. if (idle == CPU_NOT_IDLE)
  2633. load_idx = sd->busy_idx;
  2634. else if (idle == CPU_NEWLY_IDLE)
  2635. load_idx = sd->newidle_idx;
  2636. else
  2637. load_idx = sd->idle_idx;
  2638. do {
  2639. unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
  2640. int local_group;
  2641. int i;
  2642. int __group_imb = 0;
  2643. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2644. unsigned long sum_nr_running, sum_weighted_load;
  2645. unsigned long sum_avg_load_per_task;
  2646. unsigned long avg_load_per_task;
  2647. local_group = cpu_isset(this_cpu, group->cpumask);
  2648. if (local_group)
  2649. balance_cpu = first_cpu(group->cpumask);
  2650. /* Tally up the load of all CPUs in the group */
  2651. sum_weighted_load = sum_nr_running = avg_load = 0;
  2652. sum_avg_load_per_task = avg_load_per_task = 0;
  2653. max_cpu_load = 0;
  2654. min_cpu_load = ~0UL;
  2655. for_each_cpu_mask_nr(i, group->cpumask) {
  2656. struct rq *rq;
  2657. if (!cpu_isset(i, *cpus))
  2658. continue;
  2659. rq = cpu_rq(i);
  2660. if (*sd_idle && rq->nr_running)
  2661. *sd_idle = 0;
  2662. /* Bias balancing toward cpus of our domain */
  2663. if (local_group) {
  2664. if (idle_cpu(i) && !first_idle_cpu) {
  2665. first_idle_cpu = 1;
  2666. balance_cpu = i;
  2667. }
  2668. load = target_load(i, load_idx);
  2669. } else {
  2670. load = source_load(i, load_idx);
  2671. if (load > max_cpu_load)
  2672. max_cpu_load = load;
  2673. if (min_cpu_load > load)
  2674. min_cpu_load = load;
  2675. }
  2676. avg_load += load;
  2677. sum_nr_running += rq->nr_running;
  2678. sum_weighted_load += weighted_cpuload(i);
  2679. sum_avg_load_per_task += cpu_avg_load_per_task(i);
  2680. }
  2681. /*
  2682. * First idle cpu or the first cpu(busiest) in this sched group
  2683. * is eligible for doing load balancing at this and above
  2684. * domains. In the newly idle case, we will allow all the cpu's
  2685. * to do the newly idle load balance.
  2686. */
  2687. if (idle != CPU_NEWLY_IDLE && local_group &&
  2688. balance_cpu != this_cpu && balance) {
  2689. *balance = 0;
  2690. goto ret;
  2691. }
  2692. total_load += avg_load;
  2693. total_pwr += group->__cpu_power;
  2694. /* Adjust by relative CPU power of the group */
  2695. avg_load = sg_div_cpu_power(group,
  2696. avg_load * SCHED_LOAD_SCALE);
  2697. /*
  2698. * Consider the group unbalanced when the imbalance is larger
  2699. * than the average weight of two tasks.
  2700. *
  2701. * APZ: with cgroup the avg task weight can vary wildly and
  2702. * might not be a suitable number - should we keep a
  2703. * normalized nr_running number somewhere that negates
  2704. * the hierarchy?
  2705. */
  2706. avg_load_per_task = sg_div_cpu_power(group,
  2707. sum_avg_load_per_task * SCHED_LOAD_SCALE);
  2708. if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
  2709. __group_imb = 1;
  2710. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2711. if (local_group) {
  2712. this_load = avg_load;
  2713. this = group;
  2714. this_nr_running = sum_nr_running;
  2715. this_load_per_task = sum_weighted_load;
  2716. } else if (avg_load > max_load &&
  2717. (sum_nr_running > group_capacity || __group_imb)) {
  2718. max_load = avg_load;
  2719. busiest = group;
  2720. busiest_nr_running = sum_nr_running;
  2721. busiest_load_per_task = sum_weighted_load;
  2722. group_imb = __group_imb;
  2723. }
  2724. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2725. /*
  2726. * Busy processors will not participate in power savings
  2727. * balance.
  2728. */
  2729. if (idle == CPU_NOT_IDLE ||
  2730. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2731. goto group_next;
  2732. /*
  2733. * If the local group is idle or completely loaded
  2734. * no need to do power savings balance at this domain
  2735. */
  2736. if (local_group && (this_nr_running >= group_capacity ||
  2737. !this_nr_running))
  2738. power_savings_balance = 0;
  2739. /*
  2740. * If a group is already running at full capacity or idle,
  2741. * don't include that group in power savings calculations
  2742. */
  2743. if (!power_savings_balance || sum_nr_running >= group_capacity
  2744. || !sum_nr_running)
  2745. goto group_next;
  2746. /*
  2747. * Calculate the group which has the least non-idle load.
  2748. * This is the group from where we need to pick up the load
  2749. * for saving power
  2750. */
  2751. if ((sum_nr_running < min_nr_running) ||
  2752. (sum_nr_running == min_nr_running &&
  2753. first_cpu(group->cpumask) <
  2754. first_cpu(group_min->cpumask))) {
  2755. group_min = group;
  2756. min_nr_running = sum_nr_running;
  2757. min_load_per_task = sum_weighted_load /
  2758. sum_nr_running;
  2759. }
  2760. /*
  2761. * Calculate the group which is almost near its
  2762. * capacity but still has some space to pick up some load
  2763. * from other group and save more power
  2764. */
  2765. if (sum_nr_running <= group_capacity - 1) {
  2766. if (sum_nr_running > leader_nr_running ||
  2767. (sum_nr_running == leader_nr_running &&
  2768. first_cpu(group->cpumask) >
  2769. first_cpu(group_leader->cpumask))) {
  2770. group_leader = group;
  2771. leader_nr_running = sum_nr_running;
  2772. }
  2773. }
  2774. group_next:
  2775. #endif
  2776. group = group->next;
  2777. } while (group != sd->groups);
  2778. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2779. goto out_balanced;
  2780. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2781. if (this_load >= avg_load ||
  2782. 100*max_load <= sd->imbalance_pct*this_load)
  2783. goto out_balanced;
  2784. busiest_load_per_task /= busiest_nr_running;
  2785. if (group_imb)
  2786. busiest_load_per_task = min(busiest_load_per_task, avg_load);
  2787. /*
  2788. * We're trying to get all the cpus to the average_load, so we don't
  2789. * want to push ourselves above the average load, nor do we wish to
  2790. * reduce the max loaded cpu below the average load, as either of these
  2791. * actions would just result in more rebalancing later, and ping-pong
  2792. * tasks around. Thus we look for the minimum possible imbalance.
  2793. * Negative imbalances (*we* are more loaded than anyone else) will
  2794. * be counted as no imbalance for these purposes -- we can't fix that
  2795. * by pulling tasks to us. Be careful of negative numbers as they'll
  2796. * appear as very large values with unsigned longs.
  2797. */
  2798. if (max_load <= busiest_load_per_task)
  2799. goto out_balanced;
  2800. /*
  2801. * In the presence of smp nice balancing, certain scenarios can have
  2802. * max load less than avg load(as we skip the groups at or below
  2803. * its cpu_power, while calculating max_load..)
  2804. */
  2805. if (max_load < avg_load) {
  2806. *imbalance = 0;
  2807. goto small_imbalance;
  2808. }
  2809. /* Don't want to pull so many tasks that a group would go idle */
  2810. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2811. /* How much load to actually move to equalise the imbalance */
  2812. *imbalance = min(max_pull * busiest->__cpu_power,
  2813. (avg_load - this_load) * this->__cpu_power)
  2814. / SCHED_LOAD_SCALE;
  2815. /*
  2816. * if *imbalance is less than the average load per runnable task
  2817. * there is no gaurantee that any tasks will be moved so we'll have
  2818. * a think about bumping its value to force at least one task to be
  2819. * moved
  2820. */
  2821. if (*imbalance < busiest_load_per_task) {
  2822. unsigned long tmp, pwr_now, pwr_move;
  2823. unsigned int imbn;
  2824. small_imbalance:
  2825. pwr_move = pwr_now = 0;
  2826. imbn = 2;
  2827. if (this_nr_running) {
  2828. this_load_per_task /= this_nr_running;
  2829. if (busiest_load_per_task > this_load_per_task)
  2830. imbn = 1;
  2831. } else
  2832. this_load_per_task = cpu_avg_load_per_task(this_cpu);
  2833. if (max_load - this_load + 2*busiest_load_per_task >=
  2834. busiest_load_per_task * imbn) {
  2835. *imbalance = busiest_load_per_task;
  2836. return busiest;
  2837. }
  2838. /*
  2839. * OK, we don't have enough imbalance to justify moving tasks,
  2840. * however we may be able to increase total CPU power used by
  2841. * moving them.
  2842. */
  2843. pwr_now += busiest->__cpu_power *
  2844. min(busiest_load_per_task, max_load);
  2845. pwr_now += this->__cpu_power *
  2846. min(this_load_per_task, this_load);
  2847. pwr_now /= SCHED_LOAD_SCALE;
  2848. /* Amount of load we'd subtract */
  2849. tmp = sg_div_cpu_power(busiest,
  2850. busiest_load_per_task * SCHED_LOAD_SCALE);
  2851. if (max_load > tmp)
  2852. pwr_move += busiest->__cpu_power *
  2853. min(busiest_load_per_task, max_load - tmp);
  2854. /* Amount of load we'd add */
  2855. if (max_load * busiest->__cpu_power <
  2856. busiest_load_per_task * SCHED_LOAD_SCALE)
  2857. tmp = sg_div_cpu_power(this,
  2858. max_load * busiest->__cpu_power);
  2859. else
  2860. tmp = sg_div_cpu_power(this,
  2861. busiest_load_per_task * SCHED_LOAD_SCALE);
  2862. pwr_move += this->__cpu_power *
  2863. min(this_load_per_task, this_load + tmp);
  2864. pwr_move /= SCHED_LOAD_SCALE;
  2865. /* Move if we gain throughput */
  2866. if (pwr_move > pwr_now)
  2867. *imbalance = busiest_load_per_task;
  2868. }
  2869. return busiest;
  2870. out_balanced:
  2871. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2872. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2873. goto ret;
  2874. if (this == group_leader && group_leader != group_min) {
  2875. *imbalance = min_load_per_task;
  2876. return group_min;
  2877. }
  2878. #endif
  2879. ret:
  2880. *imbalance = 0;
  2881. return NULL;
  2882. }
  2883. /*
  2884. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2885. */
  2886. static struct rq *
  2887. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2888. unsigned long imbalance, const cpumask_t *cpus)
  2889. {
  2890. struct rq *busiest = NULL, *rq;
  2891. unsigned long max_load = 0;
  2892. int i;
  2893. for_each_cpu_mask_nr(i, group->cpumask) {
  2894. unsigned long wl;
  2895. if (!cpu_isset(i, *cpus))
  2896. continue;
  2897. rq = cpu_rq(i);
  2898. wl = weighted_cpuload(i);
  2899. if (rq->nr_running == 1 && wl > imbalance)
  2900. continue;
  2901. if (wl > max_load) {
  2902. max_load = wl;
  2903. busiest = rq;
  2904. }
  2905. }
  2906. return busiest;
  2907. }
  2908. /*
  2909. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2910. * so long as it is large enough.
  2911. */
  2912. #define MAX_PINNED_INTERVAL 512
  2913. /*
  2914. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2915. * tasks if there is an imbalance.
  2916. */
  2917. static int load_balance(int this_cpu, struct rq *this_rq,
  2918. struct sched_domain *sd, enum cpu_idle_type idle,
  2919. int *balance, cpumask_t *cpus)
  2920. {
  2921. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2922. struct sched_group *group;
  2923. unsigned long imbalance;
  2924. struct rq *busiest;
  2925. unsigned long flags;
  2926. cpus_setall(*cpus);
  2927. /*
  2928. * When power savings policy is enabled for the parent domain, idle
  2929. * sibling can pick up load irrespective of busy siblings. In this case,
  2930. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2931. * portraying it as CPU_NOT_IDLE.
  2932. */
  2933. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2934. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2935. sd_idle = 1;
  2936. schedstat_inc(sd, lb_count[idle]);
  2937. redo:
  2938. update_shares(sd);
  2939. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2940. cpus, balance);
  2941. if (*balance == 0)
  2942. goto out_balanced;
  2943. if (!group) {
  2944. schedstat_inc(sd, lb_nobusyg[idle]);
  2945. goto out_balanced;
  2946. }
  2947. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  2948. if (!busiest) {
  2949. schedstat_inc(sd, lb_nobusyq[idle]);
  2950. goto out_balanced;
  2951. }
  2952. BUG_ON(busiest == this_rq);
  2953. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2954. ld_moved = 0;
  2955. if (busiest->nr_running > 1) {
  2956. /*
  2957. * Attempt to move tasks. If find_busiest_group has found
  2958. * an imbalance but busiest->nr_running <= 1, the group is
  2959. * still unbalanced. ld_moved simply stays zero, so it is
  2960. * correctly treated as an imbalance.
  2961. */
  2962. local_irq_save(flags);
  2963. double_rq_lock(this_rq, busiest);
  2964. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2965. imbalance, sd, idle, &all_pinned);
  2966. double_rq_unlock(this_rq, busiest);
  2967. local_irq_restore(flags);
  2968. /*
  2969. * some other cpu did the load balance for us.
  2970. */
  2971. if (ld_moved && this_cpu != smp_processor_id())
  2972. resched_cpu(this_cpu);
  2973. /* All tasks on this runqueue were pinned by CPU affinity */
  2974. if (unlikely(all_pinned)) {
  2975. cpu_clear(cpu_of(busiest), *cpus);
  2976. if (!cpus_empty(*cpus))
  2977. goto redo;
  2978. goto out_balanced;
  2979. }
  2980. }
  2981. if (!ld_moved) {
  2982. schedstat_inc(sd, lb_failed[idle]);
  2983. sd->nr_balance_failed++;
  2984. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2985. spin_lock_irqsave(&busiest->lock, flags);
  2986. /* don't kick the migration_thread, if the curr
  2987. * task on busiest cpu can't be moved to this_cpu
  2988. */
  2989. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2990. spin_unlock_irqrestore(&busiest->lock, flags);
  2991. all_pinned = 1;
  2992. goto out_one_pinned;
  2993. }
  2994. if (!busiest->active_balance) {
  2995. busiest->active_balance = 1;
  2996. busiest->push_cpu = this_cpu;
  2997. active_balance = 1;
  2998. }
  2999. spin_unlock_irqrestore(&busiest->lock, flags);
  3000. if (active_balance)
  3001. wake_up_process(busiest->migration_thread);
  3002. /*
  3003. * We've kicked active balancing, reset the failure
  3004. * counter.
  3005. */
  3006. sd->nr_balance_failed = sd->cache_nice_tries+1;
  3007. }
  3008. } else
  3009. sd->nr_balance_failed = 0;
  3010. if (likely(!active_balance)) {
  3011. /* We were unbalanced, so reset the balancing interval */
  3012. sd->balance_interval = sd->min_interval;
  3013. } else {
  3014. /*
  3015. * If we've begun active balancing, start to back off. This
  3016. * case may not be covered by the all_pinned logic if there
  3017. * is only 1 task on the busy runqueue (because we don't call
  3018. * move_tasks).
  3019. */
  3020. if (sd->balance_interval < sd->max_interval)
  3021. sd->balance_interval *= 2;
  3022. }
  3023. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3024. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3025. ld_moved = -1;
  3026. goto out;
  3027. out_balanced:
  3028. schedstat_inc(sd, lb_balanced[idle]);
  3029. sd->nr_balance_failed = 0;
  3030. out_one_pinned:
  3031. /* tune up the balancing interval */
  3032. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3033. (sd->balance_interval < sd->max_interval))
  3034. sd->balance_interval *= 2;
  3035. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3036. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3037. ld_moved = -1;
  3038. else
  3039. ld_moved = 0;
  3040. out:
  3041. if (ld_moved)
  3042. update_shares(sd);
  3043. return ld_moved;
  3044. }
  3045. /*
  3046. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3047. * tasks if there is an imbalance.
  3048. *
  3049. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  3050. * this_rq is locked.
  3051. */
  3052. static int
  3053. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
  3054. cpumask_t *cpus)
  3055. {
  3056. struct sched_group *group;
  3057. struct rq *busiest = NULL;
  3058. unsigned long imbalance;
  3059. int ld_moved = 0;
  3060. int sd_idle = 0;
  3061. int all_pinned = 0;
  3062. cpus_setall(*cpus);
  3063. /*
  3064. * When power savings policy is enabled for the parent domain, idle
  3065. * sibling can pick up load irrespective of busy siblings. In this case,
  3066. * let the state of idle sibling percolate up as IDLE, instead of
  3067. * portraying it as CPU_NOT_IDLE.
  3068. */
  3069. if (sd->flags & SD_SHARE_CPUPOWER &&
  3070. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3071. sd_idle = 1;
  3072. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  3073. redo:
  3074. update_shares_locked(this_rq, sd);
  3075. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  3076. &sd_idle, cpus, NULL);
  3077. if (!group) {
  3078. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  3079. goto out_balanced;
  3080. }
  3081. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  3082. if (!busiest) {
  3083. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  3084. goto out_balanced;
  3085. }
  3086. BUG_ON(busiest == this_rq);
  3087. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  3088. ld_moved = 0;
  3089. if (busiest->nr_running > 1) {
  3090. /* Attempt to move tasks */
  3091. double_lock_balance(this_rq, busiest);
  3092. /* this_rq->clock is already updated */
  3093. update_rq_clock(busiest);
  3094. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3095. imbalance, sd, CPU_NEWLY_IDLE,
  3096. &all_pinned);
  3097. double_unlock_balance(this_rq, busiest);
  3098. if (unlikely(all_pinned)) {
  3099. cpu_clear(cpu_of(busiest), *cpus);
  3100. if (!cpus_empty(*cpus))
  3101. goto redo;
  3102. }
  3103. }
  3104. if (!ld_moved) {
  3105. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  3106. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3107. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3108. return -1;
  3109. } else
  3110. sd->nr_balance_failed = 0;
  3111. update_shares_locked(this_rq, sd);
  3112. return ld_moved;
  3113. out_balanced:
  3114. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  3115. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3116. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3117. return -1;
  3118. sd->nr_balance_failed = 0;
  3119. return 0;
  3120. }
  3121. /*
  3122. * idle_balance is called by schedule() if this_cpu is about to become
  3123. * idle. Attempts to pull tasks from other CPUs.
  3124. */
  3125. static void idle_balance(int this_cpu, struct rq *this_rq)
  3126. {
  3127. struct sched_domain *sd;
  3128. int pulled_task = -1;
  3129. unsigned long next_balance = jiffies + HZ;
  3130. cpumask_t tmpmask;
  3131. for_each_domain(this_cpu, sd) {
  3132. unsigned long interval;
  3133. if (!(sd->flags & SD_LOAD_BALANCE))
  3134. continue;
  3135. if (sd->flags & SD_BALANCE_NEWIDLE)
  3136. /* If we've pulled tasks over stop searching: */
  3137. pulled_task = load_balance_newidle(this_cpu, this_rq,
  3138. sd, &tmpmask);
  3139. interval = msecs_to_jiffies(sd->balance_interval);
  3140. if (time_after(next_balance, sd->last_balance + interval))
  3141. next_balance = sd->last_balance + interval;
  3142. if (pulled_task)
  3143. break;
  3144. }
  3145. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3146. /*
  3147. * We are going idle. next_balance may be set based on
  3148. * a busy processor. So reset next_balance.
  3149. */
  3150. this_rq->next_balance = next_balance;
  3151. }
  3152. }
  3153. /*
  3154. * active_load_balance is run by migration threads. It pushes running tasks
  3155. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  3156. * running on each physical CPU where possible, and avoids physical /
  3157. * logical imbalances.
  3158. *
  3159. * Called with busiest_rq locked.
  3160. */
  3161. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  3162. {
  3163. int target_cpu = busiest_rq->push_cpu;
  3164. struct sched_domain *sd;
  3165. struct rq *target_rq;
  3166. /* Is there any task to move? */
  3167. if (busiest_rq->nr_running <= 1)
  3168. return;
  3169. target_rq = cpu_rq(target_cpu);
  3170. /*
  3171. * This condition is "impossible", if it occurs
  3172. * we need to fix it. Originally reported by
  3173. * Bjorn Helgaas on a 128-cpu setup.
  3174. */
  3175. BUG_ON(busiest_rq == target_rq);
  3176. /* move a task from busiest_rq to target_rq */
  3177. double_lock_balance(busiest_rq, target_rq);
  3178. update_rq_clock(busiest_rq);
  3179. update_rq_clock(target_rq);
  3180. /* Search for an sd spanning us and the target CPU. */
  3181. for_each_domain(target_cpu, sd) {
  3182. if ((sd->flags & SD_LOAD_BALANCE) &&
  3183. cpu_isset(busiest_cpu, sd->span))
  3184. break;
  3185. }
  3186. if (likely(sd)) {
  3187. schedstat_inc(sd, alb_count);
  3188. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3189. sd, CPU_IDLE))
  3190. schedstat_inc(sd, alb_pushed);
  3191. else
  3192. schedstat_inc(sd, alb_failed);
  3193. }
  3194. double_unlock_balance(busiest_rq, target_rq);
  3195. }
  3196. #ifdef CONFIG_NO_HZ
  3197. static struct {
  3198. atomic_t load_balancer;
  3199. cpumask_t cpu_mask;
  3200. } nohz ____cacheline_aligned = {
  3201. .load_balancer = ATOMIC_INIT(-1),
  3202. .cpu_mask = CPU_MASK_NONE,
  3203. };
  3204. /*
  3205. * This routine will try to nominate the ilb (idle load balancing)
  3206. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3207. * load balancing on behalf of all those cpus. If all the cpus in the system
  3208. * go into this tickless mode, then there will be no ilb owner (as there is
  3209. * no need for one) and all the cpus will sleep till the next wakeup event
  3210. * arrives...
  3211. *
  3212. * For the ilb owner, tick is not stopped. And this tick will be used
  3213. * for idle load balancing. ilb owner will still be part of
  3214. * nohz.cpu_mask..
  3215. *
  3216. * While stopping the tick, this cpu will become the ilb owner if there
  3217. * is no other owner. And will be the owner till that cpu becomes busy
  3218. * or if all cpus in the system stop their ticks at which point
  3219. * there is no need for ilb owner.
  3220. *
  3221. * When the ilb owner becomes busy, it nominates another owner, during the
  3222. * next busy scheduler_tick()
  3223. */
  3224. int select_nohz_load_balancer(int stop_tick)
  3225. {
  3226. int cpu = smp_processor_id();
  3227. if (stop_tick) {
  3228. cpu_set(cpu, nohz.cpu_mask);
  3229. cpu_rq(cpu)->in_nohz_recently = 1;
  3230. /*
  3231. * If we are going offline and still the leader, give up!
  3232. */
  3233. if (!cpu_active(cpu) &&
  3234. atomic_read(&nohz.load_balancer) == cpu) {
  3235. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3236. BUG();
  3237. return 0;
  3238. }
  3239. /* time for ilb owner also to sleep */
  3240. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3241. if (atomic_read(&nohz.load_balancer) == cpu)
  3242. atomic_set(&nohz.load_balancer, -1);
  3243. return 0;
  3244. }
  3245. if (atomic_read(&nohz.load_balancer) == -1) {
  3246. /* make me the ilb owner */
  3247. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  3248. return 1;
  3249. } else if (atomic_read(&nohz.load_balancer) == cpu)
  3250. return 1;
  3251. } else {
  3252. if (!cpu_isset(cpu, nohz.cpu_mask))
  3253. return 0;
  3254. cpu_clear(cpu, nohz.cpu_mask);
  3255. if (atomic_read(&nohz.load_balancer) == cpu)
  3256. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3257. BUG();
  3258. }
  3259. return 0;
  3260. }
  3261. #endif
  3262. static DEFINE_SPINLOCK(balancing);
  3263. /*
  3264. * It checks each scheduling domain to see if it is due to be balanced,
  3265. * and initiates a balancing operation if so.
  3266. *
  3267. * Balancing parameters are set up in arch_init_sched_domains.
  3268. */
  3269. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3270. {
  3271. int balance = 1;
  3272. struct rq *rq = cpu_rq(cpu);
  3273. unsigned long interval;
  3274. struct sched_domain *sd;
  3275. /* Earliest time when we have to do rebalance again */
  3276. unsigned long next_balance = jiffies + 60*HZ;
  3277. int update_next_balance = 0;
  3278. int need_serialize;
  3279. cpumask_t tmp;
  3280. for_each_domain(cpu, sd) {
  3281. if (!(sd->flags & SD_LOAD_BALANCE))
  3282. continue;
  3283. interval = sd->balance_interval;
  3284. if (idle != CPU_IDLE)
  3285. interval *= sd->busy_factor;
  3286. /* scale ms to jiffies */
  3287. interval = msecs_to_jiffies(interval);
  3288. if (unlikely(!interval))
  3289. interval = 1;
  3290. if (interval > HZ*NR_CPUS/10)
  3291. interval = HZ*NR_CPUS/10;
  3292. need_serialize = sd->flags & SD_SERIALIZE;
  3293. if (need_serialize) {
  3294. if (!spin_trylock(&balancing))
  3295. goto out;
  3296. }
  3297. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3298. if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
  3299. /*
  3300. * We've pulled tasks over so either we're no
  3301. * longer idle, or one of our SMT siblings is
  3302. * not idle.
  3303. */
  3304. idle = CPU_NOT_IDLE;
  3305. }
  3306. sd->last_balance = jiffies;
  3307. }
  3308. if (need_serialize)
  3309. spin_unlock(&balancing);
  3310. out:
  3311. if (time_after(next_balance, sd->last_balance + interval)) {
  3312. next_balance = sd->last_balance + interval;
  3313. update_next_balance = 1;
  3314. }
  3315. /*
  3316. * Stop the load balance at this level. There is another
  3317. * CPU in our sched group which is doing load balancing more
  3318. * actively.
  3319. */
  3320. if (!balance)
  3321. break;
  3322. }
  3323. /*
  3324. * next_balance will be updated only when there is a need.
  3325. * When the cpu is attached to null domain for ex, it will not be
  3326. * updated.
  3327. */
  3328. if (likely(update_next_balance))
  3329. rq->next_balance = next_balance;
  3330. }
  3331. /*
  3332. * run_rebalance_domains is triggered when needed from the scheduler tick.
  3333. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  3334. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3335. */
  3336. static void run_rebalance_domains(struct softirq_action *h)
  3337. {
  3338. int this_cpu = smp_processor_id();
  3339. struct rq *this_rq = cpu_rq(this_cpu);
  3340. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  3341. CPU_IDLE : CPU_NOT_IDLE;
  3342. rebalance_domains(this_cpu, idle);
  3343. #ifdef CONFIG_NO_HZ
  3344. /*
  3345. * If this cpu is the owner for idle load balancing, then do the
  3346. * balancing on behalf of the other idle cpus whose ticks are
  3347. * stopped.
  3348. */
  3349. if (this_rq->idle_at_tick &&
  3350. atomic_read(&nohz.load_balancer) == this_cpu) {
  3351. cpumask_t cpus = nohz.cpu_mask;
  3352. struct rq *rq;
  3353. int balance_cpu;
  3354. cpu_clear(this_cpu, cpus);
  3355. for_each_cpu_mask_nr(balance_cpu, cpus) {
  3356. /*
  3357. * If this cpu gets work to do, stop the load balancing
  3358. * work being done for other cpus. Next load
  3359. * balancing owner will pick it up.
  3360. */
  3361. if (need_resched())
  3362. break;
  3363. rebalance_domains(balance_cpu, CPU_IDLE);
  3364. rq = cpu_rq(balance_cpu);
  3365. if (time_after(this_rq->next_balance, rq->next_balance))
  3366. this_rq->next_balance = rq->next_balance;
  3367. }
  3368. }
  3369. #endif
  3370. }
  3371. /*
  3372. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  3373. *
  3374. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  3375. * idle load balancing owner or decide to stop the periodic load balancing,
  3376. * if the whole system is idle.
  3377. */
  3378. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3379. {
  3380. #ifdef CONFIG_NO_HZ
  3381. /*
  3382. * If we were in the nohz mode recently and busy at the current
  3383. * scheduler tick, then check if we need to nominate new idle
  3384. * load balancer.
  3385. */
  3386. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  3387. rq->in_nohz_recently = 0;
  3388. if (atomic_read(&nohz.load_balancer) == cpu) {
  3389. cpu_clear(cpu, nohz.cpu_mask);
  3390. atomic_set(&nohz.load_balancer, -1);
  3391. }
  3392. if (atomic_read(&nohz.load_balancer) == -1) {
  3393. /*
  3394. * simple selection for now: Nominate the
  3395. * first cpu in the nohz list to be the next
  3396. * ilb owner.
  3397. *
  3398. * TBD: Traverse the sched domains and nominate
  3399. * the nearest cpu in the nohz.cpu_mask.
  3400. */
  3401. int ilb = first_cpu(nohz.cpu_mask);
  3402. if (ilb < nr_cpu_ids)
  3403. resched_cpu(ilb);
  3404. }
  3405. }
  3406. /*
  3407. * If this cpu is idle and doing idle load balancing for all the
  3408. * cpus with ticks stopped, is it time for that to stop?
  3409. */
  3410. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  3411. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3412. resched_cpu(cpu);
  3413. return;
  3414. }
  3415. /*
  3416. * If this cpu is idle and the idle load balancing is done by
  3417. * someone else, then no need raise the SCHED_SOFTIRQ
  3418. */
  3419. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  3420. cpu_isset(cpu, nohz.cpu_mask))
  3421. return;
  3422. #endif
  3423. if (time_after_eq(jiffies, rq->next_balance))
  3424. raise_softirq(SCHED_SOFTIRQ);
  3425. }
  3426. #else /* CONFIG_SMP */
  3427. /*
  3428. * on UP we do not need to balance between CPUs:
  3429. */
  3430. static inline void idle_balance(int cpu, struct rq *rq)
  3431. {
  3432. }
  3433. #endif
  3434. DEFINE_PER_CPU(struct kernel_stat, kstat);
  3435. EXPORT_PER_CPU_SYMBOL(kstat);
  3436. /*
  3437. * Return any ns on the sched_clock that have not yet been banked in
  3438. * @p in case that task is currently running.
  3439. */
  3440. unsigned long long task_delta_exec(struct task_struct *p)
  3441. {
  3442. unsigned long flags;
  3443. struct rq *rq;
  3444. u64 ns = 0;
  3445. rq = task_rq_lock(p, &flags);
  3446. if (task_current(rq, p)) {
  3447. u64 delta_exec;
  3448. update_rq_clock(rq);
  3449. delta_exec = rq->clock - p->se.exec_start;
  3450. if ((s64)delta_exec > 0)
  3451. ns = delta_exec;
  3452. }
  3453. task_rq_unlock(rq, &flags);
  3454. return ns;
  3455. }
  3456. /*
  3457. * Account user cpu time to a process.
  3458. * @p: the process that the cpu time gets accounted to
  3459. * @cputime: the cpu time spent in user space since the last update
  3460. */
  3461. void account_user_time(struct task_struct *p, cputime_t cputime)
  3462. {
  3463. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3464. cputime64_t tmp;
  3465. p->utime = cputime_add(p->utime, cputime);
  3466. account_group_user_time(p, cputime);
  3467. /* Add user time to cpustat. */
  3468. tmp = cputime_to_cputime64(cputime);
  3469. if (TASK_NICE(p) > 0)
  3470. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3471. else
  3472. cpustat->user = cputime64_add(cpustat->user, tmp);
  3473. /* Account for user time used */
  3474. acct_update_integrals(p);
  3475. }
  3476. /*
  3477. * Account guest cpu time to a process.
  3478. * @p: the process that the cpu time gets accounted to
  3479. * @cputime: the cpu time spent in virtual machine since the last update
  3480. */
  3481. static void account_guest_time(struct task_struct *p, cputime_t cputime)
  3482. {
  3483. cputime64_t tmp;
  3484. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3485. tmp = cputime_to_cputime64(cputime);
  3486. p->utime = cputime_add(p->utime, cputime);
  3487. account_group_user_time(p, cputime);
  3488. p->gtime = cputime_add(p->gtime, cputime);
  3489. cpustat->user = cputime64_add(cpustat->user, tmp);
  3490. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3491. }
  3492. /*
  3493. * Account scaled user cpu time to a process.
  3494. * @p: the process that the cpu time gets accounted to
  3495. * @cputime: the cpu time spent in user space since the last update
  3496. */
  3497. void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
  3498. {
  3499. p->utimescaled = cputime_add(p->utimescaled, cputime);
  3500. }
  3501. /*
  3502. * Account system cpu time to a process.
  3503. * @p: the process that the cpu time gets accounted to
  3504. * @hardirq_offset: the offset to subtract from hardirq_count()
  3505. * @cputime: the cpu time spent in kernel space since the last update
  3506. */
  3507. void account_system_time(struct task_struct *p, int hardirq_offset,
  3508. cputime_t cputime)
  3509. {
  3510. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3511. struct rq *rq = this_rq();
  3512. cputime64_t tmp;
  3513. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  3514. account_guest_time(p, cputime);
  3515. return;
  3516. }
  3517. p->stime = cputime_add(p->stime, cputime);
  3518. account_group_system_time(p, cputime);
  3519. /* Add system time to cpustat. */
  3520. tmp = cputime_to_cputime64(cputime);
  3521. if (hardirq_count() - hardirq_offset)
  3522. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3523. else if (softirq_count())
  3524. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3525. else if (p != rq->idle)
  3526. cpustat->system = cputime64_add(cpustat->system, tmp);
  3527. else if (atomic_read(&rq->nr_iowait) > 0)
  3528. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3529. else
  3530. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3531. /* Account for system time used */
  3532. acct_update_integrals(p);
  3533. }
  3534. /*
  3535. * Account scaled system cpu time to a process.
  3536. * @p: the process that the cpu time gets accounted to
  3537. * @hardirq_offset: the offset to subtract from hardirq_count()
  3538. * @cputime: the cpu time spent in kernel space since the last update
  3539. */
  3540. void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
  3541. {
  3542. p->stimescaled = cputime_add(p->stimescaled, cputime);
  3543. }
  3544. /*
  3545. * Account for involuntary wait time.
  3546. * @p: the process from which the cpu time has been stolen
  3547. * @steal: the cpu time spent in involuntary wait
  3548. */
  3549. void account_steal_time(struct task_struct *p, cputime_t steal)
  3550. {
  3551. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3552. cputime64_t tmp = cputime_to_cputime64(steal);
  3553. struct rq *rq = this_rq();
  3554. if (p == rq->idle) {
  3555. p->stime = cputime_add(p->stime, steal);
  3556. account_group_system_time(p, steal);
  3557. if (atomic_read(&rq->nr_iowait) > 0)
  3558. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3559. else
  3560. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3561. } else
  3562. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  3563. }
  3564. /*
  3565. * Use precise platform statistics if available:
  3566. */
  3567. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  3568. cputime_t task_utime(struct task_struct *p)
  3569. {
  3570. return p->utime;
  3571. }
  3572. cputime_t task_stime(struct task_struct *p)
  3573. {
  3574. return p->stime;
  3575. }
  3576. #else
  3577. cputime_t task_utime(struct task_struct *p)
  3578. {
  3579. clock_t utime = cputime_to_clock_t(p->utime),
  3580. total = utime + cputime_to_clock_t(p->stime);
  3581. u64 temp;
  3582. /*
  3583. * Use CFS's precise accounting:
  3584. */
  3585. temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
  3586. if (total) {
  3587. temp *= utime;
  3588. do_div(temp, total);
  3589. }
  3590. utime = (clock_t)temp;
  3591. p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
  3592. return p->prev_utime;
  3593. }
  3594. cputime_t task_stime(struct task_struct *p)
  3595. {
  3596. clock_t stime;
  3597. /*
  3598. * Use CFS's precise accounting. (we subtract utime from
  3599. * the total, to make sure the total observed by userspace
  3600. * grows monotonically - apps rely on that):
  3601. */
  3602. stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
  3603. cputime_to_clock_t(task_utime(p));
  3604. if (stime >= 0)
  3605. p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
  3606. return p->prev_stime;
  3607. }
  3608. #endif
  3609. inline cputime_t task_gtime(struct task_struct *p)
  3610. {
  3611. return p->gtime;
  3612. }
  3613. /*
  3614. * This function gets called by the timer code, with HZ frequency.
  3615. * We call it with interrupts disabled.
  3616. *
  3617. * It also gets called by the fork code, when changing the parent's
  3618. * timeslices.
  3619. */
  3620. void scheduler_tick(void)
  3621. {
  3622. int cpu = smp_processor_id();
  3623. struct rq *rq = cpu_rq(cpu);
  3624. struct task_struct *curr = rq->curr;
  3625. sched_clock_tick();
  3626. spin_lock(&rq->lock);
  3627. update_rq_clock(rq);
  3628. update_cpu_load(rq);
  3629. curr->sched_class->task_tick(rq, curr, 0);
  3630. spin_unlock(&rq->lock);
  3631. #ifdef CONFIG_SMP
  3632. rq->idle_at_tick = idle_cpu(cpu);
  3633. trigger_load_balance(rq, cpu);
  3634. #endif
  3635. }
  3636. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  3637. defined(CONFIG_PREEMPT_TRACER))
  3638. static inline unsigned long get_parent_ip(unsigned long addr)
  3639. {
  3640. if (in_lock_functions(addr)) {
  3641. addr = CALLER_ADDR2;
  3642. if (in_lock_functions(addr))
  3643. addr = CALLER_ADDR3;
  3644. }
  3645. return addr;
  3646. }
  3647. void __kprobes add_preempt_count(int val)
  3648. {
  3649. #ifdef CONFIG_DEBUG_PREEMPT
  3650. /*
  3651. * Underflow?
  3652. */
  3653. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3654. return;
  3655. #endif
  3656. preempt_count() += val;
  3657. #ifdef CONFIG_DEBUG_PREEMPT
  3658. /*
  3659. * Spinlock count overflowing soon?
  3660. */
  3661. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3662. PREEMPT_MASK - 10);
  3663. #endif
  3664. if (preempt_count() == val)
  3665. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3666. }
  3667. EXPORT_SYMBOL(add_preempt_count);
  3668. void __kprobes sub_preempt_count(int val)
  3669. {
  3670. #ifdef CONFIG_DEBUG_PREEMPT
  3671. /*
  3672. * Underflow?
  3673. */
  3674. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3675. return;
  3676. /*
  3677. * Is the spinlock portion underflowing?
  3678. */
  3679. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3680. !(preempt_count() & PREEMPT_MASK)))
  3681. return;
  3682. #endif
  3683. if (preempt_count() == val)
  3684. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3685. preempt_count() -= val;
  3686. }
  3687. EXPORT_SYMBOL(sub_preempt_count);
  3688. #endif
  3689. /*
  3690. * Print scheduling while atomic bug:
  3691. */
  3692. static noinline void __schedule_bug(struct task_struct *prev)
  3693. {
  3694. struct pt_regs *regs = get_irq_regs();
  3695. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3696. prev->comm, prev->pid, preempt_count());
  3697. debug_show_held_locks(prev);
  3698. print_modules();
  3699. if (irqs_disabled())
  3700. print_irqtrace_events(prev);
  3701. if (regs)
  3702. show_regs(regs);
  3703. else
  3704. dump_stack();
  3705. }
  3706. /*
  3707. * Various schedule()-time debugging checks and statistics:
  3708. */
  3709. static inline void schedule_debug(struct task_struct *prev)
  3710. {
  3711. /*
  3712. * Test if we are atomic. Since do_exit() needs to call into
  3713. * schedule() atomically, we ignore that path for now.
  3714. * Otherwise, whine if we are scheduling when we should not be.
  3715. */
  3716. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3717. __schedule_bug(prev);
  3718. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3719. schedstat_inc(this_rq(), sched_count);
  3720. #ifdef CONFIG_SCHEDSTATS
  3721. if (unlikely(prev->lock_depth >= 0)) {
  3722. schedstat_inc(this_rq(), bkl_count);
  3723. schedstat_inc(prev, sched_info.bkl_count);
  3724. }
  3725. #endif
  3726. }
  3727. /*
  3728. * Pick up the highest-prio task:
  3729. */
  3730. static inline struct task_struct *
  3731. pick_next_task(struct rq *rq, struct task_struct *prev)
  3732. {
  3733. const struct sched_class *class;
  3734. struct task_struct *p;
  3735. /*
  3736. * Optimization: we know that if all tasks are in
  3737. * the fair class we can call that function directly:
  3738. */
  3739. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3740. p = fair_sched_class.pick_next_task(rq);
  3741. if (likely(p))
  3742. return p;
  3743. }
  3744. class = sched_class_highest;
  3745. for ( ; ; ) {
  3746. p = class->pick_next_task(rq);
  3747. if (p)
  3748. return p;
  3749. /*
  3750. * Will never be NULL as the idle class always
  3751. * returns a non-NULL p:
  3752. */
  3753. class = class->next;
  3754. }
  3755. }
  3756. /*
  3757. * schedule() is the main scheduler function.
  3758. */
  3759. asmlinkage void __sched schedule(void)
  3760. {
  3761. struct task_struct *prev, *next;
  3762. unsigned long *switch_count;
  3763. struct rq *rq;
  3764. int cpu;
  3765. need_resched:
  3766. preempt_disable();
  3767. cpu = smp_processor_id();
  3768. rq = cpu_rq(cpu);
  3769. rcu_qsctr_inc(cpu);
  3770. prev = rq->curr;
  3771. switch_count = &prev->nivcsw;
  3772. release_kernel_lock(prev);
  3773. need_resched_nonpreemptible:
  3774. schedule_debug(prev);
  3775. if (sched_feat(HRTICK))
  3776. hrtick_clear(rq);
  3777. /*
  3778. * Do the rq-clock update outside the rq lock:
  3779. */
  3780. local_irq_disable();
  3781. update_rq_clock(rq);
  3782. spin_lock(&rq->lock);
  3783. clear_tsk_need_resched(prev);
  3784. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3785. if (unlikely(signal_pending_state(prev->state, prev)))
  3786. prev->state = TASK_RUNNING;
  3787. else
  3788. deactivate_task(rq, prev, 1);
  3789. switch_count = &prev->nvcsw;
  3790. }
  3791. #ifdef CONFIG_SMP
  3792. if (prev->sched_class->pre_schedule)
  3793. prev->sched_class->pre_schedule(rq, prev);
  3794. #endif
  3795. if (unlikely(!rq->nr_running))
  3796. idle_balance(cpu, rq);
  3797. prev->sched_class->put_prev_task(rq, prev);
  3798. next = pick_next_task(rq, prev);
  3799. if (likely(prev != next)) {
  3800. sched_info_switch(prev, next);
  3801. rq->nr_switches++;
  3802. rq->curr = next;
  3803. ++*switch_count;
  3804. context_switch(rq, prev, next); /* unlocks the rq */
  3805. /*
  3806. * the context switch might have flipped the stack from under
  3807. * us, hence refresh the local variables.
  3808. */
  3809. cpu = smp_processor_id();
  3810. rq = cpu_rq(cpu);
  3811. } else
  3812. spin_unlock_irq(&rq->lock);
  3813. if (unlikely(reacquire_kernel_lock(current) < 0))
  3814. goto need_resched_nonpreemptible;
  3815. preempt_enable_no_resched();
  3816. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3817. goto need_resched;
  3818. }
  3819. EXPORT_SYMBOL(schedule);
  3820. #ifdef CONFIG_PREEMPT
  3821. /*
  3822. * this is the entry point to schedule() from in-kernel preemption
  3823. * off of preempt_enable. Kernel preemptions off return from interrupt
  3824. * occur there and call schedule directly.
  3825. */
  3826. asmlinkage void __sched preempt_schedule(void)
  3827. {
  3828. struct thread_info *ti = current_thread_info();
  3829. /*
  3830. * If there is a non-zero preempt_count or interrupts are disabled,
  3831. * we do not want to preempt the current task. Just return..
  3832. */
  3833. if (likely(ti->preempt_count || irqs_disabled()))
  3834. return;
  3835. do {
  3836. add_preempt_count(PREEMPT_ACTIVE);
  3837. schedule();
  3838. sub_preempt_count(PREEMPT_ACTIVE);
  3839. /*
  3840. * Check again in case we missed a preemption opportunity
  3841. * between schedule and now.
  3842. */
  3843. barrier();
  3844. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3845. }
  3846. EXPORT_SYMBOL(preempt_schedule);
  3847. /*
  3848. * this is the entry point to schedule() from kernel preemption
  3849. * off of irq context.
  3850. * Note, that this is called and return with irqs disabled. This will
  3851. * protect us against recursive calling from irq.
  3852. */
  3853. asmlinkage void __sched preempt_schedule_irq(void)
  3854. {
  3855. struct thread_info *ti = current_thread_info();
  3856. /* Catch callers which need to be fixed */
  3857. BUG_ON(ti->preempt_count || !irqs_disabled());
  3858. do {
  3859. add_preempt_count(PREEMPT_ACTIVE);
  3860. local_irq_enable();
  3861. schedule();
  3862. local_irq_disable();
  3863. sub_preempt_count(PREEMPT_ACTIVE);
  3864. /*
  3865. * Check again in case we missed a preemption opportunity
  3866. * between schedule and now.
  3867. */
  3868. barrier();
  3869. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3870. }
  3871. #endif /* CONFIG_PREEMPT */
  3872. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3873. void *key)
  3874. {
  3875. return try_to_wake_up(curr->private, mode, sync);
  3876. }
  3877. EXPORT_SYMBOL(default_wake_function);
  3878. /*
  3879. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3880. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3881. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3882. *
  3883. * There are circumstances in which we can try to wake a task which has already
  3884. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3885. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3886. */
  3887. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3888. int nr_exclusive, int sync, void *key)
  3889. {
  3890. wait_queue_t *curr, *next;
  3891. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3892. unsigned flags = curr->flags;
  3893. if (curr->func(curr, mode, sync, key) &&
  3894. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3895. break;
  3896. }
  3897. }
  3898. /**
  3899. * __wake_up - wake up threads blocked on a waitqueue.
  3900. * @q: the waitqueue
  3901. * @mode: which threads
  3902. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3903. * @key: is directly passed to the wakeup function
  3904. */
  3905. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3906. int nr_exclusive, void *key)
  3907. {
  3908. unsigned long flags;
  3909. spin_lock_irqsave(&q->lock, flags);
  3910. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3911. spin_unlock_irqrestore(&q->lock, flags);
  3912. }
  3913. EXPORT_SYMBOL(__wake_up);
  3914. /*
  3915. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3916. */
  3917. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3918. {
  3919. __wake_up_common(q, mode, 1, 0, NULL);
  3920. }
  3921. /**
  3922. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3923. * @q: the waitqueue
  3924. * @mode: which threads
  3925. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3926. *
  3927. * The sync wakeup differs that the waker knows that it will schedule
  3928. * away soon, so while the target thread will be woken up, it will not
  3929. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3930. * with each other. This can prevent needless bouncing between CPUs.
  3931. *
  3932. * On UP it can prevent extra preemption.
  3933. */
  3934. void
  3935. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3936. {
  3937. unsigned long flags;
  3938. int sync = 1;
  3939. if (unlikely(!q))
  3940. return;
  3941. if (unlikely(!nr_exclusive))
  3942. sync = 0;
  3943. spin_lock_irqsave(&q->lock, flags);
  3944. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3945. spin_unlock_irqrestore(&q->lock, flags);
  3946. }
  3947. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3948. /**
  3949. * complete: - signals a single thread waiting on this completion
  3950. * @x: holds the state of this particular completion
  3951. *
  3952. * This will wake up a single thread waiting on this completion. Threads will be
  3953. * awakened in the same order in which they were queued.
  3954. *
  3955. * See also complete_all(), wait_for_completion() and related routines.
  3956. */
  3957. void complete(struct completion *x)
  3958. {
  3959. unsigned long flags;
  3960. spin_lock_irqsave(&x->wait.lock, flags);
  3961. x->done++;
  3962. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3963. spin_unlock_irqrestore(&x->wait.lock, flags);
  3964. }
  3965. EXPORT_SYMBOL(complete);
  3966. /**
  3967. * complete_all: - signals all threads waiting on this completion
  3968. * @x: holds the state of this particular completion
  3969. *
  3970. * This will wake up all threads waiting on this particular completion event.
  3971. */
  3972. void complete_all(struct completion *x)
  3973. {
  3974. unsigned long flags;
  3975. spin_lock_irqsave(&x->wait.lock, flags);
  3976. x->done += UINT_MAX/2;
  3977. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3978. spin_unlock_irqrestore(&x->wait.lock, flags);
  3979. }
  3980. EXPORT_SYMBOL(complete_all);
  3981. static inline long __sched
  3982. do_wait_for_common(struct completion *x, long timeout, int state)
  3983. {
  3984. if (!x->done) {
  3985. DECLARE_WAITQUEUE(wait, current);
  3986. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3987. __add_wait_queue_tail(&x->wait, &wait);
  3988. do {
  3989. if (signal_pending_state(state, current)) {
  3990. timeout = -ERESTARTSYS;
  3991. break;
  3992. }
  3993. __set_current_state(state);
  3994. spin_unlock_irq(&x->wait.lock);
  3995. timeout = schedule_timeout(timeout);
  3996. spin_lock_irq(&x->wait.lock);
  3997. } while (!x->done && timeout);
  3998. __remove_wait_queue(&x->wait, &wait);
  3999. if (!x->done)
  4000. return timeout;
  4001. }
  4002. x->done--;
  4003. return timeout ?: 1;
  4004. }
  4005. static long __sched
  4006. wait_for_common(struct completion *x, long timeout, int state)
  4007. {
  4008. might_sleep();
  4009. spin_lock_irq(&x->wait.lock);
  4010. timeout = do_wait_for_common(x, timeout, state);
  4011. spin_unlock_irq(&x->wait.lock);
  4012. return timeout;
  4013. }
  4014. /**
  4015. * wait_for_completion: - waits for completion of a task
  4016. * @x: holds the state of this particular completion
  4017. *
  4018. * This waits to be signaled for completion of a specific task. It is NOT
  4019. * interruptible and there is no timeout.
  4020. *
  4021. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  4022. * and interrupt capability. Also see complete().
  4023. */
  4024. void __sched wait_for_completion(struct completion *x)
  4025. {
  4026. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  4027. }
  4028. EXPORT_SYMBOL(wait_for_completion);
  4029. /**
  4030. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  4031. * @x: holds the state of this particular completion
  4032. * @timeout: timeout value in jiffies
  4033. *
  4034. * This waits for either a completion of a specific task to be signaled or for a
  4035. * specified timeout to expire. The timeout is in jiffies. It is not
  4036. * interruptible.
  4037. */
  4038. unsigned long __sched
  4039. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  4040. {
  4041. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  4042. }
  4043. EXPORT_SYMBOL(wait_for_completion_timeout);
  4044. /**
  4045. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  4046. * @x: holds the state of this particular completion
  4047. *
  4048. * This waits for completion of a specific task to be signaled. It is
  4049. * interruptible.
  4050. */
  4051. int __sched wait_for_completion_interruptible(struct completion *x)
  4052. {
  4053. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  4054. if (t == -ERESTARTSYS)
  4055. return t;
  4056. return 0;
  4057. }
  4058. EXPORT_SYMBOL(wait_for_completion_interruptible);
  4059. /**
  4060. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  4061. * @x: holds the state of this particular completion
  4062. * @timeout: timeout value in jiffies
  4063. *
  4064. * This waits for either a completion of a specific task to be signaled or for a
  4065. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  4066. */
  4067. unsigned long __sched
  4068. wait_for_completion_interruptible_timeout(struct completion *x,
  4069. unsigned long timeout)
  4070. {
  4071. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  4072. }
  4073. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  4074. /**
  4075. * wait_for_completion_killable: - waits for completion of a task (killable)
  4076. * @x: holds the state of this particular completion
  4077. *
  4078. * This waits to be signaled for completion of a specific task. It can be
  4079. * interrupted by a kill signal.
  4080. */
  4081. int __sched wait_for_completion_killable(struct completion *x)
  4082. {
  4083. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  4084. if (t == -ERESTARTSYS)
  4085. return t;
  4086. return 0;
  4087. }
  4088. EXPORT_SYMBOL(wait_for_completion_killable);
  4089. /**
  4090. * try_wait_for_completion - try to decrement a completion without blocking
  4091. * @x: completion structure
  4092. *
  4093. * Returns: 0 if a decrement cannot be done without blocking
  4094. * 1 if a decrement succeeded.
  4095. *
  4096. * If a completion is being used as a counting completion,
  4097. * attempt to decrement the counter without blocking. This
  4098. * enables us to avoid waiting if the resource the completion
  4099. * is protecting is not available.
  4100. */
  4101. bool try_wait_for_completion(struct completion *x)
  4102. {
  4103. int ret = 1;
  4104. spin_lock_irq(&x->wait.lock);
  4105. if (!x->done)
  4106. ret = 0;
  4107. else
  4108. x->done--;
  4109. spin_unlock_irq(&x->wait.lock);
  4110. return ret;
  4111. }
  4112. EXPORT_SYMBOL(try_wait_for_completion);
  4113. /**
  4114. * completion_done - Test to see if a completion has any waiters
  4115. * @x: completion structure
  4116. *
  4117. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  4118. * 1 if there are no waiters.
  4119. *
  4120. */
  4121. bool completion_done(struct completion *x)
  4122. {
  4123. int ret = 1;
  4124. spin_lock_irq(&x->wait.lock);
  4125. if (!x->done)
  4126. ret = 0;
  4127. spin_unlock_irq(&x->wait.lock);
  4128. return ret;
  4129. }
  4130. EXPORT_SYMBOL(completion_done);
  4131. static long __sched
  4132. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  4133. {
  4134. unsigned long flags;
  4135. wait_queue_t wait;
  4136. init_waitqueue_entry(&wait, current);
  4137. __set_current_state(state);
  4138. spin_lock_irqsave(&q->lock, flags);
  4139. __add_wait_queue(q, &wait);
  4140. spin_unlock(&q->lock);
  4141. timeout = schedule_timeout(timeout);
  4142. spin_lock_irq(&q->lock);
  4143. __remove_wait_queue(q, &wait);
  4144. spin_unlock_irqrestore(&q->lock, flags);
  4145. return timeout;
  4146. }
  4147. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  4148. {
  4149. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4150. }
  4151. EXPORT_SYMBOL(interruptible_sleep_on);
  4152. long __sched
  4153. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4154. {
  4155. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  4156. }
  4157. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  4158. void __sched sleep_on(wait_queue_head_t *q)
  4159. {
  4160. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4161. }
  4162. EXPORT_SYMBOL(sleep_on);
  4163. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4164. {
  4165. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  4166. }
  4167. EXPORT_SYMBOL(sleep_on_timeout);
  4168. #ifdef CONFIG_RT_MUTEXES
  4169. /*
  4170. * rt_mutex_setprio - set the current priority of a task
  4171. * @p: task
  4172. * @prio: prio value (kernel-internal form)
  4173. *
  4174. * This function changes the 'effective' priority of a task. It does
  4175. * not touch ->normal_prio like __setscheduler().
  4176. *
  4177. * Used by the rt_mutex code to implement priority inheritance logic.
  4178. */
  4179. void rt_mutex_setprio(struct task_struct *p, int prio)
  4180. {
  4181. unsigned long flags;
  4182. int oldprio, on_rq, running;
  4183. struct rq *rq;
  4184. const struct sched_class *prev_class = p->sched_class;
  4185. BUG_ON(prio < 0 || prio > MAX_PRIO);
  4186. rq = task_rq_lock(p, &flags);
  4187. update_rq_clock(rq);
  4188. oldprio = p->prio;
  4189. on_rq = p->se.on_rq;
  4190. running = task_current(rq, p);
  4191. if (on_rq)
  4192. dequeue_task(rq, p, 0);
  4193. if (running)
  4194. p->sched_class->put_prev_task(rq, p);
  4195. if (rt_prio(prio))
  4196. p->sched_class = &rt_sched_class;
  4197. else
  4198. p->sched_class = &fair_sched_class;
  4199. p->prio = prio;
  4200. if (running)
  4201. p->sched_class->set_curr_task(rq);
  4202. if (on_rq) {
  4203. enqueue_task(rq, p, 0);
  4204. check_class_changed(rq, p, prev_class, oldprio, running);
  4205. }
  4206. task_rq_unlock(rq, &flags);
  4207. }
  4208. #endif
  4209. void set_user_nice(struct task_struct *p, long nice)
  4210. {
  4211. int old_prio, delta, on_rq;
  4212. unsigned long flags;
  4213. struct rq *rq;
  4214. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  4215. return;
  4216. /*
  4217. * We have to be careful, if called from sys_setpriority(),
  4218. * the task might be in the middle of scheduling on another CPU.
  4219. */
  4220. rq = task_rq_lock(p, &flags);
  4221. update_rq_clock(rq);
  4222. /*
  4223. * The RT priorities are set via sched_setscheduler(), but we still
  4224. * allow the 'normal' nice value to be set - but as expected
  4225. * it wont have any effect on scheduling until the task is
  4226. * SCHED_FIFO/SCHED_RR:
  4227. */
  4228. if (task_has_rt_policy(p)) {
  4229. p->static_prio = NICE_TO_PRIO(nice);
  4230. goto out_unlock;
  4231. }
  4232. on_rq = p->se.on_rq;
  4233. if (on_rq)
  4234. dequeue_task(rq, p, 0);
  4235. p->static_prio = NICE_TO_PRIO(nice);
  4236. set_load_weight(p);
  4237. old_prio = p->prio;
  4238. p->prio = effective_prio(p);
  4239. delta = p->prio - old_prio;
  4240. if (on_rq) {
  4241. enqueue_task(rq, p, 0);
  4242. /*
  4243. * If the task increased its priority or is running and
  4244. * lowered its priority, then reschedule its CPU:
  4245. */
  4246. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  4247. resched_task(rq->curr);
  4248. }
  4249. out_unlock:
  4250. task_rq_unlock(rq, &flags);
  4251. }
  4252. EXPORT_SYMBOL(set_user_nice);
  4253. /*
  4254. * can_nice - check if a task can reduce its nice value
  4255. * @p: task
  4256. * @nice: nice value
  4257. */
  4258. int can_nice(const struct task_struct *p, const int nice)
  4259. {
  4260. /* convert nice value [19,-20] to rlimit style value [1,40] */
  4261. int nice_rlim = 20 - nice;
  4262. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  4263. capable(CAP_SYS_NICE));
  4264. }
  4265. #ifdef __ARCH_WANT_SYS_NICE
  4266. /*
  4267. * sys_nice - change the priority of the current process.
  4268. * @increment: priority increment
  4269. *
  4270. * sys_setpriority is a more generic, but much slower function that
  4271. * does similar things.
  4272. */
  4273. asmlinkage long sys_nice(int increment)
  4274. {
  4275. long nice, retval;
  4276. /*
  4277. * Setpriority might change our priority at the same moment.
  4278. * We don't have to worry. Conceptually one call occurs first
  4279. * and we have a single winner.
  4280. */
  4281. if (increment < -40)
  4282. increment = -40;
  4283. if (increment > 40)
  4284. increment = 40;
  4285. nice = PRIO_TO_NICE(current->static_prio) + increment;
  4286. if (nice < -20)
  4287. nice = -20;
  4288. if (nice > 19)
  4289. nice = 19;
  4290. if (increment < 0 && !can_nice(current, nice))
  4291. return -EPERM;
  4292. retval = security_task_setnice(current, nice);
  4293. if (retval)
  4294. return retval;
  4295. set_user_nice(current, nice);
  4296. return 0;
  4297. }
  4298. #endif
  4299. /**
  4300. * task_prio - return the priority value of a given task.
  4301. * @p: the task in question.
  4302. *
  4303. * This is the priority value as seen by users in /proc.
  4304. * RT tasks are offset by -200. Normal tasks are centered
  4305. * around 0, value goes from -16 to +15.
  4306. */
  4307. int task_prio(const struct task_struct *p)
  4308. {
  4309. return p->prio - MAX_RT_PRIO;
  4310. }
  4311. /**
  4312. * task_nice - return the nice value of a given task.
  4313. * @p: the task in question.
  4314. */
  4315. int task_nice(const struct task_struct *p)
  4316. {
  4317. return TASK_NICE(p);
  4318. }
  4319. EXPORT_SYMBOL(task_nice);
  4320. /**
  4321. * idle_cpu - is a given cpu idle currently?
  4322. * @cpu: the processor in question.
  4323. */
  4324. int idle_cpu(int cpu)
  4325. {
  4326. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  4327. }
  4328. /**
  4329. * idle_task - return the idle task for a given cpu.
  4330. * @cpu: the processor in question.
  4331. */
  4332. struct task_struct *idle_task(int cpu)
  4333. {
  4334. return cpu_rq(cpu)->idle;
  4335. }
  4336. /**
  4337. * find_process_by_pid - find a process with a matching PID value.
  4338. * @pid: the pid in question.
  4339. */
  4340. static struct task_struct *find_process_by_pid(pid_t pid)
  4341. {
  4342. return pid ? find_task_by_vpid(pid) : current;
  4343. }
  4344. /* Actually do priority change: must hold rq lock. */
  4345. static void
  4346. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  4347. {
  4348. BUG_ON(p->se.on_rq);
  4349. p->policy = policy;
  4350. switch (p->policy) {
  4351. case SCHED_NORMAL:
  4352. case SCHED_BATCH:
  4353. case SCHED_IDLE:
  4354. p->sched_class = &fair_sched_class;
  4355. break;
  4356. case SCHED_FIFO:
  4357. case SCHED_RR:
  4358. p->sched_class = &rt_sched_class;
  4359. break;
  4360. }
  4361. p->rt_priority = prio;
  4362. p->normal_prio = normal_prio(p);
  4363. /* we are holding p->pi_lock already */
  4364. p->prio = rt_mutex_getprio(p);
  4365. set_load_weight(p);
  4366. }
  4367. static int __sched_setscheduler(struct task_struct *p, int policy,
  4368. struct sched_param *param, bool user)
  4369. {
  4370. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4371. unsigned long flags;
  4372. const struct sched_class *prev_class = p->sched_class;
  4373. struct rq *rq;
  4374. /* may grab non-irq protected spin_locks */
  4375. BUG_ON(in_interrupt());
  4376. recheck:
  4377. /* double check policy once rq lock held */
  4378. if (policy < 0)
  4379. policy = oldpolicy = p->policy;
  4380. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4381. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4382. policy != SCHED_IDLE)
  4383. return -EINVAL;
  4384. /*
  4385. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4386. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4387. * SCHED_BATCH and SCHED_IDLE is 0.
  4388. */
  4389. if (param->sched_priority < 0 ||
  4390. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4391. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4392. return -EINVAL;
  4393. if (rt_policy(policy) != (param->sched_priority != 0))
  4394. return -EINVAL;
  4395. /*
  4396. * Allow unprivileged RT tasks to decrease priority:
  4397. */
  4398. if (user && !capable(CAP_SYS_NICE)) {
  4399. if (rt_policy(policy)) {
  4400. unsigned long rlim_rtprio;
  4401. if (!lock_task_sighand(p, &flags))
  4402. return -ESRCH;
  4403. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  4404. unlock_task_sighand(p, &flags);
  4405. /* can't set/change the rt policy */
  4406. if (policy != p->policy && !rlim_rtprio)
  4407. return -EPERM;
  4408. /* can't increase priority */
  4409. if (param->sched_priority > p->rt_priority &&
  4410. param->sched_priority > rlim_rtprio)
  4411. return -EPERM;
  4412. }
  4413. /*
  4414. * Like positive nice levels, dont allow tasks to
  4415. * move out of SCHED_IDLE either:
  4416. */
  4417. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  4418. return -EPERM;
  4419. /* can't change other user's priorities */
  4420. if ((current->euid != p->euid) &&
  4421. (current->euid != p->uid))
  4422. return -EPERM;
  4423. }
  4424. if (user) {
  4425. #ifdef CONFIG_RT_GROUP_SCHED
  4426. /*
  4427. * Do not allow realtime tasks into groups that have no runtime
  4428. * assigned.
  4429. */
  4430. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  4431. task_group(p)->rt_bandwidth.rt_runtime == 0)
  4432. return -EPERM;
  4433. #endif
  4434. retval = security_task_setscheduler(p, policy, param);
  4435. if (retval)
  4436. return retval;
  4437. }
  4438. /*
  4439. * make sure no PI-waiters arrive (or leave) while we are
  4440. * changing the priority of the task:
  4441. */
  4442. spin_lock_irqsave(&p->pi_lock, flags);
  4443. /*
  4444. * To be able to change p->policy safely, the apropriate
  4445. * runqueue lock must be held.
  4446. */
  4447. rq = __task_rq_lock(p);
  4448. /* recheck policy now with rq lock held */
  4449. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  4450. policy = oldpolicy = -1;
  4451. __task_rq_unlock(rq);
  4452. spin_unlock_irqrestore(&p->pi_lock, flags);
  4453. goto recheck;
  4454. }
  4455. update_rq_clock(rq);
  4456. on_rq = p->se.on_rq;
  4457. running = task_current(rq, p);
  4458. if (on_rq)
  4459. deactivate_task(rq, p, 0);
  4460. if (running)
  4461. p->sched_class->put_prev_task(rq, p);
  4462. oldprio = p->prio;
  4463. __setscheduler(rq, p, policy, param->sched_priority);
  4464. if (running)
  4465. p->sched_class->set_curr_task(rq);
  4466. if (on_rq) {
  4467. activate_task(rq, p, 0);
  4468. check_class_changed(rq, p, prev_class, oldprio, running);
  4469. }
  4470. __task_rq_unlock(rq);
  4471. spin_unlock_irqrestore(&p->pi_lock, flags);
  4472. rt_mutex_adjust_pi(p);
  4473. return 0;
  4474. }
  4475. /**
  4476. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4477. * @p: the task in question.
  4478. * @policy: new policy.
  4479. * @param: structure containing the new RT priority.
  4480. *
  4481. * NOTE that the task may be already dead.
  4482. */
  4483. int sched_setscheduler(struct task_struct *p, int policy,
  4484. struct sched_param *param)
  4485. {
  4486. return __sched_setscheduler(p, policy, param, true);
  4487. }
  4488. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4489. /**
  4490. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  4491. * @p: the task in question.
  4492. * @policy: new policy.
  4493. * @param: structure containing the new RT priority.
  4494. *
  4495. * Just like sched_setscheduler, only don't bother checking if the
  4496. * current context has permission. For example, this is needed in
  4497. * stop_machine(): we create temporary high priority worker threads,
  4498. * but our caller might not have that capability.
  4499. */
  4500. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  4501. struct sched_param *param)
  4502. {
  4503. return __sched_setscheduler(p, policy, param, false);
  4504. }
  4505. static int
  4506. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4507. {
  4508. struct sched_param lparam;
  4509. struct task_struct *p;
  4510. int retval;
  4511. if (!param || pid < 0)
  4512. return -EINVAL;
  4513. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4514. return -EFAULT;
  4515. rcu_read_lock();
  4516. retval = -ESRCH;
  4517. p = find_process_by_pid(pid);
  4518. if (p != NULL)
  4519. retval = sched_setscheduler(p, policy, &lparam);
  4520. rcu_read_unlock();
  4521. return retval;
  4522. }
  4523. /**
  4524. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4525. * @pid: the pid in question.
  4526. * @policy: new policy.
  4527. * @param: structure containing the new RT priority.
  4528. */
  4529. asmlinkage long
  4530. sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4531. {
  4532. /* negative values for policy are not valid */
  4533. if (policy < 0)
  4534. return -EINVAL;
  4535. return do_sched_setscheduler(pid, policy, param);
  4536. }
  4537. /**
  4538. * sys_sched_setparam - set/change the RT priority of a thread
  4539. * @pid: the pid in question.
  4540. * @param: structure containing the new RT priority.
  4541. */
  4542. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  4543. {
  4544. return do_sched_setscheduler(pid, -1, param);
  4545. }
  4546. /**
  4547. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4548. * @pid: the pid in question.
  4549. */
  4550. asmlinkage long sys_sched_getscheduler(pid_t pid)
  4551. {
  4552. struct task_struct *p;
  4553. int retval;
  4554. if (pid < 0)
  4555. return -EINVAL;
  4556. retval = -ESRCH;
  4557. read_lock(&tasklist_lock);
  4558. p = find_process_by_pid(pid);
  4559. if (p) {
  4560. retval = security_task_getscheduler(p);
  4561. if (!retval)
  4562. retval = p->policy;
  4563. }
  4564. read_unlock(&tasklist_lock);
  4565. return retval;
  4566. }
  4567. /**
  4568. * sys_sched_getscheduler - get the RT priority of a thread
  4569. * @pid: the pid in question.
  4570. * @param: structure containing the RT priority.
  4571. */
  4572. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  4573. {
  4574. struct sched_param lp;
  4575. struct task_struct *p;
  4576. int retval;
  4577. if (!param || pid < 0)
  4578. return -EINVAL;
  4579. read_lock(&tasklist_lock);
  4580. p = find_process_by_pid(pid);
  4581. retval = -ESRCH;
  4582. if (!p)
  4583. goto out_unlock;
  4584. retval = security_task_getscheduler(p);
  4585. if (retval)
  4586. goto out_unlock;
  4587. lp.sched_priority = p->rt_priority;
  4588. read_unlock(&tasklist_lock);
  4589. /*
  4590. * This one might sleep, we cannot do it with a spinlock held ...
  4591. */
  4592. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4593. return retval;
  4594. out_unlock:
  4595. read_unlock(&tasklist_lock);
  4596. return retval;
  4597. }
  4598. long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
  4599. {
  4600. cpumask_t cpus_allowed;
  4601. cpumask_t new_mask = *in_mask;
  4602. struct task_struct *p;
  4603. int retval;
  4604. get_online_cpus();
  4605. read_lock(&tasklist_lock);
  4606. p = find_process_by_pid(pid);
  4607. if (!p) {
  4608. read_unlock(&tasklist_lock);
  4609. put_online_cpus();
  4610. return -ESRCH;
  4611. }
  4612. /*
  4613. * It is not safe to call set_cpus_allowed with the
  4614. * tasklist_lock held. We will bump the task_struct's
  4615. * usage count and then drop tasklist_lock.
  4616. */
  4617. get_task_struct(p);
  4618. read_unlock(&tasklist_lock);
  4619. retval = -EPERM;
  4620. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  4621. !capable(CAP_SYS_NICE))
  4622. goto out_unlock;
  4623. retval = security_task_setscheduler(p, 0, NULL);
  4624. if (retval)
  4625. goto out_unlock;
  4626. cpuset_cpus_allowed(p, &cpus_allowed);
  4627. cpus_and(new_mask, new_mask, cpus_allowed);
  4628. again:
  4629. retval = set_cpus_allowed_ptr(p, &new_mask);
  4630. if (!retval) {
  4631. cpuset_cpus_allowed(p, &cpus_allowed);
  4632. if (!cpus_subset(new_mask, cpus_allowed)) {
  4633. /*
  4634. * We must have raced with a concurrent cpuset
  4635. * update. Just reset the cpus_allowed to the
  4636. * cpuset's cpus_allowed
  4637. */
  4638. new_mask = cpus_allowed;
  4639. goto again;
  4640. }
  4641. }
  4642. out_unlock:
  4643. put_task_struct(p);
  4644. put_online_cpus();
  4645. return retval;
  4646. }
  4647. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4648. cpumask_t *new_mask)
  4649. {
  4650. if (len < sizeof(cpumask_t)) {
  4651. memset(new_mask, 0, sizeof(cpumask_t));
  4652. } else if (len > sizeof(cpumask_t)) {
  4653. len = sizeof(cpumask_t);
  4654. }
  4655. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4656. }
  4657. /**
  4658. * sys_sched_setaffinity - set the cpu affinity of a process
  4659. * @pid: pid of the process
  4660. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4661. * @user_mask_ptr: user-space pointer to the new cpu mask
  4662. */
  4663. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  4664. unsigned long __user *user_mask_ptr)
  4665. {
  4666. cpumask_t new_mask;
  4667. int retval;
  4668. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  4669. if (retval)
  4670. return retval;
  4671. return sched_setaffinity(pid, &new_mask);
  4672. }
  4673. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  4674. {
  4675. struct task_struct *p;
  4676. int retval;
  4677. get_online_cpus();
  4678. read_lock(&tasklist_lock);
  4679. retval = -ESRCH;
  4680. p = find_process_by_pid(pid);
  4681. if (!p)
  4682. goto out_unlock;
  4683. retval = security_task_getscheduler(p);
  4684. if (retval)
  4685. goto out_unlock;
  4686. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  4687. out_unlock:
  4688. read_unlock(&tasklist_lock);
  4689. put_online_cpus();
  4690. return retval;
  4691. }
  4692. /**
  4693. * sys_sched_getaffinity - get the cpu affinity of a process
  4694. * @pid: pid of the process
  4695. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4696. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4697. */
  4698. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  4699. unsigned long __user *user_mask_ptr)
  4700. {
  4701. int ret;
  4702. cpumask_t mask;
  4703. if (len < sizeof(cpumask_t))
  4704. return -EINVAL;
  4705. ret = sched_getaffinity(pid, &mask);
  4706. if (ret < 0)
  4707. return ret;
  4708. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  4709. return -EFAULT;
  4710. return sizeof(cpumask_t);
  4711. }
  4712. /**
  4713. * sys_sched_yield - yield the current processor to other threads.
  4714. *
  4715. * This function yields the current CPU to other tasks. If there are no
  4716. * other threads running on this CPU then this function will return.
  4717. */
  4718. asmlinkage long sys_sched_yield(void)
  4719. {
  4720. struct rq *rq = this_rq_lock();
  4721. schedstat_inc(rq, yld_count);
  4722. current->sched_class->yield_task(rq);
  4723. /*
  4724. * Since we are going to call schedule() anyway, there's
  4725. * no need to preempt or enable interrupts:
  4726. */
  4727. __release(rq->lock);
  4728. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4729. _raw_spin_unlock(&rq->lock);
  4730. preempt_enable_no_resched();
  4731. schedule();
  4732. return 0;
  4733. }
  4734. static void __cond_resched(void)
  4735. {
  4736. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  4737. __might_sleep(__FILE__, __LINE__);
  4738. #endif
  4739. /*
  4740. * The BKS might be reacquired before we have dropped
  4741. * PREEMPT_ACTIVE, which could trigger a second
  4742. * cond_resched() call.
  4743. */
  4744. do {
  4745. add_preempt_count(PREEMPT_ACTIVE);
  4746. schedule();
  4747. sub_preempt_count(PREEMPT_ACTIVE);
  4748. } while (need_resched());
  4749. }
  4750. int __sched _cond_resched(void)
  4751. {
  4752. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  4753. system_state == SYSTEM_RUNNING) {
  4754. __cond_resched();
  4755. return 1;
  4756. }
  4757. return 0;
  4758. }
  4759. EXPORT_SYMBOL(_cond_resched);
  4760. /*
  4761. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4762. * call schedule, and on return reacquire the lock.
  4763. *
  4764. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4765. * operations here to prevent schedule() from being called twice (once via
  4766. * spin_unlock(), once by hand).
  4767. */
  4768. int cond_resched_lock(spinlock_t *lock)
  4769. {
  4770. int resched = need_resched() && system_state == SYSTEM_RUNNING;
  4771. int ret = 0;
  4772. if (spin_needbreak(lock) || resched) {
  4773. spin_unlock(lock);
  4774. if (resched && need_resched())
  4775. __cond_resched();
  4776. else
  4777. cpu_relax();
  4778. ret = 1;
  4779. spin_lock(lock);
  4780. }
  4781. return ret;
  4782. }
  4783. EXPORT_SYMBOL(cond_resched_lock);
  4784. int __sched cond_resched_softirq(void)
  4785. {
  4786. BUG_ON(!in_softirq());
  4787. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4788. local_bh_enable();
  4789. __cond_resched();
  4790. local_bh_disable();
  4791. return 1;
  4792. }
  4793. return 0;
  4794. }
  4795. EXPORT_SYMBOL(cond_resched_softirq);
  4796. /**
  4797. * yield - yield the current processor to other threads.
  4798. *
  4799. * This is a shortcut for kernel-space yielding - it marks the
  4800. * thread runnable and calls sys_sched_yield().
  4801. */
  4802. void __sched yield(void)
  4803. {
  4804. set_current_state(TASK_RUNNING);
  4805. sys_sched_yield();
  4806. }
  4807. EXPORT_SYMBOL(yield);
  4808. /*
  4809. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4810. * that process accounting knows that this is a task in IO wait state.
  4811. *
  4812. * But don't do that if it is a deliberate, throttling IO wait (this task
  4813. * has set its backing_dev_info: the queue against which it should throttle)
  4814. */
  4815. void __sched io_schedule(void)
  4816. {
  4817. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4818. delayacct_blkio_start();
  4819. atomic_inc(&rq->nr_iowait);
  4820. schedule();
  4821. atomic_dec(&rq->nr_iowait);
  4822. delayacct_blkio_end();
  4823. }
  4824. EXPORT_SYMBOL(io_schedule);
  4825. long __sched io_schedule_timeout(long timeout)
  4826. {
  4827. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4828. long ret;
  4829. delayacct_blkio_start();
  4830. atomic_inc(&rq->nr_iowait);
  4831. ret = schedule_timeout(timeout);
  4832. atomic_dec(&rq->nr_iowait);
  4833. delayacct_blkio_end();
  4834. return ret;
  4835. }
  4836. /**
  4837. * sys_sched_get_priority_max - return maximum RT priority.
  4838. * @policy: scheduling class.
  4839. *
  4840. * this syscall returns the maximum rt_priority that can be used
  4841. * by a given scheduling class.
  4842. */
  4843. asmlinkage long sys_sched_get_priority_max(int policy)
  4844. {
  4845. int ret = -EINVAL;
  4846. switch (policy) {
  4847. case SCHED_FIFO:
  4848. case SCHED_RR:
  4849. ret = MAX_USER_RT_PRIO-1;
  4850. break;
  4851. case SCHED_NORMAL:
  4852. case SCHED_BATCH:
  4853. case SCHED_IDLE:
  4854. ret = 0;
  4855. break;
  4856. }
  4857. return ret;
  4858. }
  4859. /**
  4860. * sys_sched_get_priority_min - return minimum RT priority.
  4861. * @policy: scheduling class.
  4862. *
  4863. * this syscall returns the minimum rt_priority that can be used
  4864. * by a given scheduling class.
  4865. */
  4866. asmlinkage long sys_sched_get_priority_min(int policy)
  4867. {
  4868. int ret = -EINVAL;
  4869. switch (policy) {
  4870. case SCHED_FIFO:
  4871. case SCHED_RR:
  4872. ret = 1;
  4873. break;
  4874. case SCHED_NORMAL:
  4875. case SCHED_BATCH:
  4876. case SCHED_IDLE:
  4877. ret = 0;
  4878. }
  4879. return ret;
  4880. }
  4881. /**
  4882. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4883. * @pid: pid of the process.
  4884. * @interval: userspace pointer to the timeslice value.
  4885. *
  4886. * this syscall writes the default timeslice value of a given process
  4887. * into the user-space timespec buffer. A value of '0' means infinity.
  4888. */
  4889. asmlinkage
  4890. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4891. {
  4892. struct task_struct *p;
  4893. unsigned int time_slice;
  4894. int retval;
  4895. struct timespec t;
  4896. if (pid < 0)
  4897. return -EINVAL;
  4898. retval = -ESRCH;
  4899. read_lock(&tasklist_lock);
  4900. p = find_process_by_pid(pid);
  4901. if (!p)
  4902. goto out_unlock;
  4903. retval = security_task_getscheduler(p);
  4904. if (retval)
  4905. goto out_unlock;
  4906. /*
  4907. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  4908. * tasks that are on an otherwise idle runqueue:
  4909. */
  4910. time_slice = 0;
  4911. if (p->policy == SCHED_RR) {
  4912. time_slice = DEF_TIMESLICE;
  4913. } else if (p->policy != SCHED_FIFO) {
  4914. struct sched_entity *se = &p->se;
  4915. unsigned long flags;
  4916. struct rq *rq;
  4917. rq = task_rq_lock(p, &flags);
  4918. if (rq->cfs.load.weight)
  4919. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  4920. task_rq_unlock(rq, &flags);
  4921. }
  4922. read_unlock(&tasklist_lock);
  4923. jiffies_to_timespec(time_slice, &t);
  4924. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4925. return retval;
  4926. out_unlock:
  4927. read_unlock(&tasklist_lock);
  4928. return retval;
  4929. }
  4930. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4931. void sched_show_task(struct task_struct *p)
  4932. {
  4933. unsigned long free = 0;
  4934. unsigned state;
  4935. state = p->state ? __ffs(p->state) + 1 : 0;
  4936. printk(KERN_INFO "%-13.13s %c", p->comm,
  4937. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4938. #if BITS_PER_LONG == 32
  4939. if (state == TASK_RUNNING)
  4940. printk(KERN_CONT " running ");
  4941. else
  4942. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4943. #else
  4944. if (state == TASK_RUNNING)
  4945. printk(KERN_CONT " running task ");
  4946. else
  4947. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4948. #endif
  4949. #ifdef CONFIG_DEBUG_STACK_USAGE
  4950. {
  4951. unsigned long *n = end_of_stack(p);
  4952. while (!*n)
  4953. n++;
  4954. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4955. }
  4956. #endif
  4957. printk(KERN_CONT "%5lu %5d %6d\n", free,
  4958. task_pid_nr(p), task_pid_nr(p->real_parent));
  4959. show_stack(p, NULL);
  4960. }
  4961. void show_state_filter(unsigned long state_filter)
  4962. {
  4963. struct task_struct *g, *p;
  4964. #if BITS_PER_LONG == 32
  4965. printk(KERN_INFO
  4966. " task PC stack pid father\n");
  4967. #else
  4968. printk(KERN_INFO
  4969. " task PC stack pid father\n");
  4970. #endif
  4971. read_lock(&tasklist_lock);
  4972. do_each_thread(g, p) {
  4973. /*
  4974. * reset the NMI-timeout, listing all files on a slow
  4975. * console might take alot of time:
  4976. */
  4977. touch_nmi_watchdog();
  4978. if (!state_filter || (p->state & state_filter))
  4979. sched_show_task(p);
  4980. } while_each_thread(g, p);
  4981. touch_all_softlockup_watchdogs();
  4982. #ifdef CONFIG_SCHED_DEBUG
  4983. sysrq_sched_debug_show();
  4984. #endif
  4985. read_unlock(&tasklist_lock);
  4986. /*
  4987. * Only show locks if all tasks are dumped:
  4988. */
  4989. if (state_filter == -1)
  4990. debug_show_all_locks();
  4991. }
  4992. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4993. {
  4994. idle->sched_class = &idle_sched_class;
  4995. }
  4996. /**
  4997. * init_idle - set up an idle thread for a given CPU
  4998. * @idle: task in question
  4999. * @cpu: cpu the idle task belongs to
  5000. *
  5001. * NOTE: this function does not set the idle thread's NEED_RESCHED
  5002. * flag, to make booting more robust.
  5003. */
  5004. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  5005. {
  5006. struct rq *rq = cpu_rq(cpu);
  5007. unsigned long flags;
  5008. __sched_fork(idle);
  5009. idle->se.exec_start = sched_clock();
  5010. idle->prio = idle->normal_prio = MAX_PRIO;
  5011. idle->cpus_allowed = cpumask_of_cpu(cpu);
  5012. __set_task_cpu(idle, cpu);
  5013. spin_lock_irqsave(&rq->lock, flags);
  5014. rq->curr = rq->idle = idle;
  5015. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  5016. idle->oncpu = 1;
  5017. #endif
  5018. spin_unlock_irqrestore(&rq->lock, flags);
  5019. /* Set the preempt count _outside_ the spinlocks! */
  5020. #if defined(CONFIG_PREEMPT)
  5021. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  5022. #else
  5023. task_thread_info(idle)->preempt_count = 0;
  5024. #endif
  5025. /*
  5026. * The idle tasks have their own, simple scheduling class:
  5027. */
  5028. idle->sched_class = &idle_sched_class;
  5029. }
  5030. /*
  5031. * In a system that switches off the HZ timer nohz_cpu_mask
  5032. * indicates which cpus entered this state. This is used
  5033. * in the rcu update to wait only for active cpus. For system
  5034. * which do not switch off the HZ timer nohz_cpu_mask should
  5035. * always be CPU_MASK_NONE.
  5036. */
  5037. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  5038. /*
  5039. * Increase the granularity value when there are more CPUs,
  5040. * because with more CPUs the 'effective latency' as visible
  5041. * to users decreases. But the relationship is not linear,
  5042. * so pick a second-best guess by going with the log2 of the
  5043. * number of CPUs.
  5044. *
  5045. * This idea comes from the SD scheduler of Con Kolivas:
  5046. */
  5047. static inline void sched_init_granularity(void)
  5048. {
  5049. unsigned int factor = 1 + ilog2(num_online_cpus());
  5050. const unsigned long limit = 200000000;
  5051. sysctl_sched_min_granularity *= factor;
  5052. if (sysctl_sched_min_granularity > limit)
  5053. sysctl_sched_min_granularity = limit;
  5054. sysctl_sched_latency *= factor;
  5055. if (sysctl_sched_latency > limit)
  5056. sysctl_sched_latency = limit;
  5057. sysctl_sched_wakeup_granularity *= factor;
  5058. sysctl_sched_shares_ratelimit *= factor;
  5059. }
  5060. #ifdef CONFIG_SMP
  5061. /*
  5062. * This is how migration works:
  5063. *
  5064. * 1) we queue a struct migration_req structure in the source CPU's
  5065. * runqueue and wake up that CPU's migration thread.
  5066. * 2) we down() the locked semaphore => thread blocks.
  5067. * 3) migration thread wakes up (implicitly it forces the migrated
  5068. * thread off the CPU)
  5069. * 4) it gets the migration request and checks whether the migrated
  5070. * task is still in the wrong runqueue.
  5071. * 5) if it's in the wrong runqueue then the migration thread removes
  5072. * it and puts it into the right queue.
  5073. * 6) migration thread up()s the semaphore.
  5074. * 7) we wake up and the migration is done.
  5075. */
  5076. /*
  5077. * Change a given task's CPU affinity. Migrate the thread to a
  5078. * proper CPU and schedule it away if the CPU it's executing on
  5079. * is removed from the allowed bitmask.
  5080. *
  5081. * NOTE: the caller must have a valid reference to the task, the
  5082. * task must not exit() & deallocate itself prematurely. The
  5083. * call is not atomic; no spinlocks may be held.
  5084. */
  5085. int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
  5086. {
  5087. struct migration_req req;
  5088. unsigned long flags;
  5089. struct rq *rq;
  5090. int ret = 0;
  5091. rq = task_rq_lock(p, &flags);
  5092. if (!cpus_intersects(*new_mask, cpu_online_map)) {
  5093. ret = -EINVAL;
  5094. goto out;
  5095. }
  5096. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  5097. !cpus_equal(p->cpus_allowed, *new_mask))) {
  5098. ret = -EINVAL;
  5099. goto out;
  5100. }
  5101. if (p->sched_class->set_cpus_allowed)
  5102. p->sched_class->set_cpus_allowed(p, new_mask);
  5103. else {
  5104. p->cpus_allowed = *new_mask;
  5105. p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
  5106. }
  5107. /* Can the task run on the task's current CPU? If so, we're done */
  5108. if (cpu_isset(task_cpu(p), *new_mask))
  5109. goto out;
  5110. if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
  5111. /* Need help from migration thread: drop lock and wait. */
  5112. task_rq_unlock(rq, &flags);
  5113. wake_up_process(rq->migration_thread);
  5114. wait_for_completion(&req.done);
  5115. tlb_migrate_finish(p->mm);
  5116. return 0;
  5117. }
  5118. out:
  5119. task_rq_unlock(rq, &flags);
  5120. return ret;
  5121. }
  5122. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  5123. /*
  5124. * Move (not current) task off this cpu, onto dest cpu. We're doing
  5125. * this because either it can't run here any more (set_cpus_allowed()
  5126. * away from this CPU, or CPU going down), or because we're
  5127. * attempting to rebalance this task on exec (sched_exec).
  5128. *
  5129. * So we race with normal scheduler movements, but that's OK, as long
  5130. * as the task is no longer on this CPU.
  5131. *
  5132. * Returns non-zero if task was successfully migrated.
  5133. */
  5134. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  5135. {
  5136. struct rq *rq_dest, *rq_src;
  5137. int ret = 0, on_rq;
  5138. if (unlikely(!cpu_active(dest_cpu)))
  5139. return ret;
  5140. rq_src = cpu_rq(src_cpu);
  5141. rq_dest = cpu_rq(dest_cpu);
  5142. double_rq_lock(rq_src, rq_dest);
  5143. /* Already moved. */
  5144. if (task_cpu(p) != src_cpu)
  5145. goto done;
  5146. /* Affinity changed (again). */
  5147. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  5148. goto fail;
  5149. on_rq = p->se.on_rq;
  5150. if (on_rq)
  5151. deactivate_task(rq_src, p, 0);
  5152. set_task_cpu(p, dest_cpu);
  5153. if (on_rq) {
  5154. activate_task(rq_dest, p, 0);
  5155. check_preempt_curr(rq_dest, p, 0);
  5156. }
  5157. done:
  5158. ret = 1;
  5159. fail:
  5160. double_rq_unlock(rq_src, rq_dest);
  5161. return ret;
  5162. }
  5163. /*
  5164. * migration_thread - this is a highprio system thread that performs
  5165. * thread migration by bumping thread off CPU then 'pushing' onto
  5166. * another runqueue.
  5167. */
  5168. static int migration_thread(void *data)
  5169. {
  5170. int cpu = (long)data;
  5171. struct rq *rq;
  5172. rq = cpu_rq(cpu);
  5173. BUG_ON(rq->migration_thread != current);
  5174. set_current_state(TASK_INTERRUPTIBLE);
  5175. while (!kthread_should_stop()) {
  5176. struct migration_req *req;
  5177. struct list_head *head;
  5178. spin_lock_irq(&rq->lock);
  5179. if (cpu_is_offline(cpu)) {
  5180. spin_unlock_irq(&rq->lock);
  5181. goto wait_to_die;
  5182. }
  5183. if (rq->active_balance) {
  5184. active_load_balance(rq, cpu);
  5185. rq->active_balance = 0;
  5186. }
  5187. head = &rq->migration_queue;
  5188. if (list_empty(head)) {
  5189. spin_unlock_irq(&rq->lock);
  5190. schedule();
  5191. set_current_state(TASK_INTERRUPTIBLE);
  5192. continue;
  5193. }
  5194. req = list_entry(head->next, struct migration_req, list);
  5195. list_del_init(head->next);
  5196. spin_unlock(&rq->lock);
  5197. __migrate_task(req->task, cpu, req->dest_cpu);
  5198. local_irq_enable();
  5199. complete(&req->done);
  5200. }
  5201. __set_current_state(TASK_RUNNING);
  5202. return 0;
  5203. wait_to_die:
  5204. /* Wait for kthread_stop */
  5205. set_current_state(TASK_INTERRUPTIBLE);
  5206. while (!kthread_should_stop()) {
  5207. schedule();
  5208. set_current_state(TASK_INTERRUPTIBLE);
  5209. }
  5210. __set_current_state(TASK_RUNNING);
  5211. return 0;
  5212. }
  5213. #ifdef CONFIG_HOTPLUG_CPU
  5214. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  5215. {
  5216. int ret;
  5217. local_irq_disable();
  5218. ret = __migrate_task(p, src_cpu, dest_cpu);
  5219. local_irq_enable();
  5220. return ret;
  5221. }
  5222. /*
  5223. * Figure out where task on dead CPU should go, use force if necessary.
  5224. * NOTE: interrupts should be disabled by the caller
  5225. */
  5226. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  5227. {
  5228. unsigned long flags;
  5229. cpumask_t mask;
  5230. struct rq *rq;
  5231. int dest_cpu;
  5232. do {
  5233. /* On same node? */
  5234. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  5235. cpus_and(mask, mask, p->cpus_allowed);
  5236. dest_cpu = any_online_cpu(mask);
  5237. /* On any allowed CPU? */
  5238. if (dest_cpu >= nr_cpu_ids)
  5239. dest_cpu = any_online_cpu(p->cpus_allowed);
  5240. /* No more Mr. Nice Guy. */
  5241. if (dest_cpu >= nr_cpu_ids) {
  5242. cpumask_t cpus_allowed;
  5243. cpuset_cpus_allowed_locked(p, &cpus_allowed);
  5244. /*
  5245. * Try to stay on the same cpuset, where the
  5246. * current cpuset may be a subset of all cpus.
  5247. * The cpuset_cpus_allowed_locked() variant of
  5248. * cpuset_cpus_allowed() will not block. It must be
  5249. * called within calls to cpuset_lock/cpuset_unlock.
  5250. */
  5251. rq = task_rq_lock(p, &flags);
  5252. p->cpus_allowed = cpus_allowed;
  5253. dest_cpu = any_online_cpu(p->cpus_allowed);
  5254. task_rq_unlock(rq, &flags);
  5255. /*
  5256. * Don't tell them about moving exiting tasks or
  5257. * kernel threads (both mm NULL), since they never
  5258. * leave kernel.
  5259. */
  5260. if (p->mm && printk_ratelimit()) {
  5261. printk(KERN_INFO "process %d (%s) no "
  5262. "longer affine to cpu%d\n",
  5263. task_pid_nr(p), p->comm, dead_cpu);
  5264. }
  5265. }
  5266. } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
  5267. }
  5268. /*
  5269. * While a dead CPU has no uninterruptible tasks queued at this point,
  5270. * it might still have a nonzero ->nr_uninterruptible counter, because
  5271. * for performance reasons the counter is not stricly tracking tasks to
  5272. * their home CPUs. So we just add the counter to another CPU's counter,
  5273. * to keep the global sum constant after CPU-down:
  5274. */
  5275. static void migrate_nr_uninterruptible(struct rq *rq_src)
  5276. {
  5277. struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
  5278. unsigned long flags;
  5279. local_irq_save(flags);
  5280. double_rq_lock(rq_src, rq_dest);
  5281. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  5282. rq_src->nr_uninterruptible = 0;
  5283. double_rq_unlock(rq_src, rq_dest);
  5284. local_irq_restore(flags);
  5285. }
  5286. /* Run through task list and migrate tasks from the dead cpu. */
  5287. static void migrate_live_tasks(int src_cpu)
  5288. {
  5289. struct task_struct *p, *t;
  5290. read_lock(&tasklist_lock);
  5291. do_each_thread(t, p) {
  5292. if (p == current)
  5293. continue;
  5294. if (task_cpu(p) == src_cpu)
  5295. move_task_off_dead_cpu(src_cpu, p);
  5296. } while_each_thread(t, p);
  5297. read_unlock(&tasklist_lock);
  5298. }
  5299. /*
  5300. * Schedules idle task to be the next runnable task on current CPU.
  5301. * It does so by boosting its priority to highest possible.
  5302. * Used by CPU offline code.
  5303. */
  5304. void sched_idle_next(void)
  5305. {
  5306. int this_cpu = smp_processor_id();
  5307. struct rq *rq = cpu_rq(this_cpu);
  5308. struct task_struct *p = rq->idle;
  5309. unsigned long flags;
  5310. /* cpu has to be offline */
  5311. BUG_ON(cpu_online(this_cpu));
  5312. /*
  5313. * Strictly not necessary since rest of the CPUs are stopped by now
  5314. * and interrupts disabled on the current cpu.
  5315. */
  5316. spin_lock_irqsave(&rq->lock, flags);
  5317. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5318. update_rq_clock(rq);
  5319. activate_task(rq, p, 0);
  5320. spin_unlock_irqrestore(&rq->lock, flags);
  5321. }
  5322. /*
  5323. * Ensures that the idle task is using init_mm right before its cpu goes
  5324. * offline.
  5325. */
  5326. void idle_task_exit(void)
  5327. {
  5328. struct mm_struct *mm = current->active_mm;
  5329. BUG_ON(cpu_online(smp_processor_id()));
  5330. if (mm != &init_mm)
  5331. switch_mm(mm, &init_mm, current);
  5332. mmdrop(mm);
  5333. }
  5334. /* called under rq->lock with disabled interrupts */
  5335. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  5336. {
  5337. struct rq *rq = cpu_rq(dead_cpu);
  5338. /* Must be exiting, otherwise would be on tasklist. */
  5339. BUG_ON(!p->exit_state);
  5340. /* Cannot have done final schedule yet: would have vanished. */
  5341. BUG_ON(p->state == TASK_DEAD);
  5342. get_task_struct(p);
  5343. /*
  5344. * Drop lock around migration; if someone else moves it,
  5345. * that's OK. No task can be added to this CPU, so iteration is
  5346. * fine.
  5347. */
  5348. spin_unlock_irq(&rq->lock);
  5349. move_task_off_dead_cpu(dead_cpu, p);
  5350. spin_lock_irq(&rq->lock);
  5351. put_task_struct(p);
  5352. }
  5353. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  5354. static void migrate_dead_tasks(unsigned int dead_cpu)
  5355. {
  5356. struct rq *rq = cpu_rq(dead_cpu);
  5357. struct task_struct *next;
  5358. for ( ; ; ) {
  5359. if (!rq->nr_running)
  5360. break;
  5361. update_rq_clock(rq);
  5362. next = pick_next_task(rq, rq->curr);
  5363. if (!next)
  5364. break;
  5365. next->sched_class->put_prev_task(rq, next);
  5366. migrate_dead(dead_cpu, next);
  5367. }
  5368. }
  5369. #endif /* CONFIG_HOTPLUG_CPU */
  5370. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  5371. static struct ctl_table sd_ctl_dir[] = {
  5372. {
  5373. .procname = "sched_domain",
  5374. .mode = 0555,
  5375. },
  5376. {0, },
  5377. };
  5378. static struct ctl_table sd_ctl_root[] = {
  5379. {
  5380. .ctl_name = CTL_KERN,
  5381. .procname = "kernel",
  5382. .mode = 0555,
  5383. .child = sd_ctl_dir,
  5384. },
  5385. {0, },
  5386. };
  5387. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5388. {
  5389. struct ctl_table *entry =
  5390. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5391. return entry;
  5392. }
  5393. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5394. {
  5395. struct ctl_table *entry;
  5396. /*
  5397. * In the intermediate directories, both the child directory and
  5398. * procname are dynamically allocated and could fail but the mode
  5399. * will always be set. In the lowest directory the names are
  5400. * static strings and all have proc handlers.
  5401. */
  5402. for (entry = *tablep; entry->mode; entry++) {
  5403. if (entry->child)
  5404. sd_free_ctl_entry(&entry->child);
  5405. if (entry->proc_handler == NULL)
  5406. kfree(entry->procname);
  5407. }
  5408. kfree(*tablep);
  5409. *tablep = NULL;
  5410. }
  5411. static void
  5412. set_table_entry(struct ctl_table *entry,
  5413. const char *procname, void *data, int maxlen,
  5414. mode_t mode, proc_handler *proc_handler)
  5415. {
  5416. entry->procname = procname;
  5417. entry->data = data;
  5418. entry->maxlen = maxlen;
  5419. entry->mode = mode;
  5420. entry->proc_handler = proc_handler;
  5421. }
  5422. static struct ctl_table *
  5423. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  5424. {
  5425. struct ctl_table *table = sd_alloc_ctl_entry(13);
  5426. if (table == NULL)
  5427. return NULL;
  5428. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  5429. sizeof(long), 0644, proc_doulongvec_minmax);
  5430. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  5431. sizeof(long), 0644, proc_doulongvec_minmax);
  5432. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  5433. sizeof(int), 0644, proc_dointvec_minmax);
  5434. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  5435. sizeof(int), 0644, proc_dointvec_minmax);
  5436. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  5437. sizeof(int), 0644, proc_dointvec_minmax);
  5438. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  5439. sizeof(int), 0644, proc_dointvec_minmax);
  5440. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  5441. sizeof(int), 0644, proc_dointvec_minmax);
  5442. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  5443. sizeof(int), 0644, proc_dointvec_minmax);
  5444. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  5445. sizeof(int), 0644, proc_dointvec_minmax);
  5446. set_table_entry(&table[9], "cache_nice_tries",
  5447. &sd->cache_nice_tries,
  5448. sizeof(int), 0644, proc_dointvec_minmax);
  5449. set_table_entry(&table[10], "flags", &sd->flags,
  5450. sizeof(int), 0644, proc_dointvec_minmax);
  5451. set_table_entry(&table[11], "name", sd->name,
  5452. CORENAME_MAX_SIZE, 0444, proc_dostring);
  5453. /* &table[12] is terminator */
  5454. return table;
  5455. }
  5456. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  5457. {
  5458. struct ctl_table *entry, *table;
  5459. struct sched_domain *sd;
  5460. int domain_num = 0, i;
  5461. char buf[32];
  5462. for_each_domain(cpu, sd)
  5463. domain_num++;
  5464. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  5465. if (table == NULL)
  5466. return NULL;
  5467. i = 0;
  5468. for_each_domain(cpu, sd) {
  5469. snprintf(buf, 32, "domain%d", i);
  5470. entry->procname = kstrdup(buf, GFP_KERNEL);
  5471. entry->mode = 0555;
  5472. entry->child = sd_alloc_ctl_domain_table(sd);
  5473. entry++;
  5474. i++;
  5475. }
  5476. return table;
  5477. }
  5478. static struct ctl_table_header *sd_sysctl_header;
  5479. static void register_sched_domain_sysctl(void)
  5480. {
  5481. int i, cpu_num = num_online_cpus();
  5482. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  5483. char buf[32];
  5484. WARN_ON(sd_ctl_dir[0].child);
  5485. sd_ctl_dir[0].child = entry;
  5486. if (entry == NULL)
  5487. return;
  5488. for_each_online_cpu(i) {
  5489. snprintf(buf, 32, "cpu%d", i);
  5490. entry->procname = kstrdup(buf, GFP_KERNEL);
  5491. entry->mode = 0555;
  5492. entry->child = sd_alloc_ctl_cpu_table(i);
  5493. entry++;
  5494. }
  5495. WARN_ON(sd_sysctl_header);
  5496. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  5497. }
  5498. /* may be called multiple times per register */
  5499. static void unregister_sched_domain_sysctl(void)
  5500. {
  5501. if (sd_sysctl_header)
  5502. unregister_sysctl_table(sd_sysctl_header);
  5503. sd_sysctl_header = NULL;
  5504. if (sd_ctl_dir[0].child)
  5505. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5506. }
  5507. #else
  5508. static void register_sched_domain_sysctl(void)
  5509. {
  5510. }
  5511. static void unregister_sched_domain_sysctl(void)
  5512. {
  5513. }
  5514. #endif
  5515. static void set_rq_online(struct rq *rq)
  5516. {
  5517. if (!rq->online) {
  5518. const struct sched_class *class;
  5519. cpu_set(rq->cpu, rq->rd->online);
  5520. rq->online = 1;
  5521. for_each_class(class) {
  5522. if (class->rq_online)
  5523. class->rq_online(rq);
  5524. }
  5525. }
  5526. }
  5527. static void set_rq_offline(struct rq *rq)
  5528. {
  5529. if (rq->online) {
  5530. const struct sched_class *class;
  5531. for_each_class(class) {
  5532. if (class->rq_offline)
  5533. class->rq_offline(rq);
  5534. }
  5535. cpu_clear(rq->cpu, rq->rd->online);
  5536. rq->online = 0;
  5537. }
  5538. }
  5539. /*
  5540. * migration_call - callback that gets triggered when a CPU is added.
  5541. * Here we can start up the necessary migration thread for the new CPU.
  5542. */
  5543. static int __cpuinit
  5544. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5545. {
  5546. struct task_struct *p;
  5547. int cpu = (long)hcpu;
  5548. unsigned long flags;
  5549. struct rq *rq;
  5550. switch (action) {
  5551. case CPU_UP_PREPARE:
  5552. case CPU_UP_PREPARE_FROZEN:
  5553. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  5554. if (IS_ERR(p))
  5555. return NOTIFY_BAD;
  5556. kthread_bind(p, cpu);
  5557. /* Must be high prio: stop_machine expects to yield to it. */
  5558. rq = task_rq_lock(p, &flags);
  5559. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5560. task_rq_unlock(rq, &flags);
  5561. cpu_rq(cpu)->migration_thread = p;
  5562. break;
  5563. case CPU_ONLINE:
  5564. case CPU_ONLINE_FROZEN:
  5565. /* Strictly unnecessary, as first user will wake it. */
  5566. wake_up_process(cpu_rq(cpu)->migration_thread);
  5567. /* Update our root-domain */
  5568. rq = cpu_rq(cpu);
  5569. spin_lock_irqsave(&rq->lock, flags);
  5570. if (rq->rd) {
  5571. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5572. set_rq_online(rq);
  5573. }
  5574. spin_unlock_irqrestore(&rq->lock, flags);
  5575. break;
  5576. #ifdef CONFIG_HOTPLUG_CPU
  5577. case CPU_UP_CANCELED:
  5578. case CPU_UP_CANCELED_FROZEN:
  5579. if (!cpu_rq(cpu)->migration_thread)
  5580. break;
  5581. /* Unbind it from offline cpu so it can run. Fall thru. */
  5582. kthread_bind(cpu_rq(cpu)->migration_thread,
  5583. any_online_cpu(cpu_online_map));
  5584. kthread_stop(cpu_rq(cpu)->migration_thread);
  5585. cpu_rq(cpu)->migration_thread = NULL;
  5586. break;
  5587. case CPU_DEAD:
  5588. case CPU_DEAD_FROZEN:
  5589. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  5590. migrate_live_tasks(cpu);
  5591. rq = cpu_rq(cpu);
  5592. kthread_stop(rq->migration_thread);
  5593. rq->migration_thread = NULL;
  5594. /* Idle task back to normal (off runqueue, low prio) */
  5595. spin_lock_irq(&rq->lock);
  5596. update_rq_clock(rq);
  5597. deactivate_task(rq, rq->idle, 0);
  5598. rq->idle->static_prio = MAX_PRIO;
  5599. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  5600. rq->idle->sched_class = &idle_sched_class;
  5601. migrate_dead_tasks(cpu);
  5602. spin_unlock_irq(&rq->lock);
  5603. cpuset_unlock();
  5604. migrate_nr_uninterruptible(rq);
  5605. BUG_ON(rq->nr_running != 0);
  5606. /*
  5607. * No need to migrate the tasks: it was best-effort if
  5608. * they didn't take sched_hotcpu_mutex. Just wake up
  5609. * the requestors.
  5610. */
  5611. spin_lock_irq(&rq->lock);
  5612. while (!list_empty(&rq->migration_queue)) {
  5613. struct migration_req *req;
  5614. req = list_entry(rq->migration_queue.next,
  5615. struct migration_req, list);
  5616. list_del_init(&req->list);
  5617. complete(&req->done);
  5618. }
  5619. spin_unlock_irq(&rq->lock);
  5620. break;
  5621. case CPU_DYING:
  5622. case CPU_DYING_FROZEN:
  5623. /* Update our root-domain */
  5624. rq = cpu_rq(cpu);
  5625. spin_lock_irqsave(&rq->lock, flags);
  5626. if (rq->rd) {
  5627. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5628. set_rq_offline(rq);
  5629. }
  5630. spin_unlock_irqrestore(&rq->lock, flags);
  5631. break;
  5632. #endif
  5633. }
  5634. return NOTIFY_OK;
  5635. }
  5636. /* Register at highest priority so that task migration (migrate_all_tasks)
  5637. * happens before everything else.
  5638. */
  5639. static struct notifier_block __cpuinitdata migration_notifier = {
  5640. .notifier_call = migration_call,
  5641. .priority = 10
  5642. };
  5643. static int __init migration_init(void)
  5644. {
  5645. void *cpu = (void *)(long)smp_processor_id();
  5646. int err;
  5647. /* Start one for the boot CPU: */
  5648. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5649. BUG_ON(err == NOTIFY_BAD);
  5650. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5651. register_cpu_notifier(&migration_notifier);
  5652. return err;
  5653. }
  5654. early_initcall(migration_init);
  5655. #endif
  5656. #ifdef CONFIG_SMP
  5657. #ifdef CONFIG_SCHED_DEBUG
  5658. static inline const char *sd_level_to_string(enum sched_domain_level lvl)
  5659. {
  5660. switch (lvl) {
  5661. case SD_LV_NONE:
  5662. return "NONE";
  5663. case SD_LV_SIBLING:
  5664. return "SIBLING";
  5665. case SD_LV_MC:
  5666. return "MC";
  5667. case SD_LV_CPU:
  5668. return "CPU";
  5669. case SD_LV_NODE:
  5670. return "NODE";
  5671. case SD_LV_ALLNODES:
  5672. return "ALLNODES";
  5673. case SD_LV_MAX:
  5674. return "MAX";
  5675. }
  5676. return "MAX";
  5677. }
  5678. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5679. cpumask_t *groupmask)
  5680. {
  5681. struct sched_group *group = sd->groups;
  5682. char str[256];
  5683. cpulist_scnprintf(str, sizeof(str), sd->span);
  5684. cpus_clear(*groupmask);
  5685. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5686. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5687. printk("does not load-balance\n");
  5688. if (sd->parent)
  5689. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5690. " has parent");
  5691. return -1;
  5692. }
  5693. printk(KERN_CONT "span %s level %s\n",
  5694. str, sd_level_to_string(sd->level));
  5695. if (!cpu_isset(cpu, sd->span)) {
  5696. printk(KERN_ERR "ERROR: domain->span does not contain "
  5697. "CPU%d\n", cpu);
  5698. }
  5699. if (!cpu_isset(cpu, group->cpumask)) {
  5700. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5701. " CPU%d\n", cpu);
  5702. }
  5703. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5704. do {
  5705. if (!group) {
  5706. printk("\n");
  5707. printk(KERN_ERR "ERROR: group is NULL\n");
  5708. break;
  5709. }
  5710. if (!group->__cpu_power) {
  5711. printk(KERN_CONT "\n");
  5712. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5713. "set\n");
  5714. break;
  5715. }
  5716. if (!cpus_weight(group->cpumask)) {
  5717. printk(KERN_CONT "\n");
  5718. printk(KERN_ERR "ERROR: empty group\n");
  5719. break;
  5720. }
  5721. if (cpus_intersects(*groupmask, group->cpumask)) {
  5722. printk(KERN_CONT "\n");
  5723. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5724. break;
  5725. }
  5726. cpus_or(*groupmask, *groupmask, group->cpumask);
  5727. cpulist_scnprintf(str, sizeof(str), group->cpumask);
  5728. printk(KERN_CONT " %s", str);
  5729. group = group->next;
  5730. } while (group != sd->groups);
  5731. printk(KERN_CONT "\n");
  5732. if (!cpus_equal(sd->span, *groupmask))
  5733. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5734. if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
  5735. printk(KERN_ERR "ERROR: parent span is not a superset "
  5736. "of domain->span\n");
  5737. return 0;
  5738. }
  5739. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5740. {
  5741. cpumask_t *groupmask;
  5742. int level = 0;
  5743. if (!sd) {
  5744. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5745. return;
  5746. }
  5747. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5748. groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  5749. if (!groupmask) {
  5750. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5751. return;
  5752. }
  5753. for (;;) {
  5754. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5755. break;
  5756. level++;
  5757. sd = sd->parent;
  5758. if (!sd)
  5759. break;
  5760. }
  5761. kfree(groupmask);
  5762. }
  5763. #else /* !CONFIG_SCHED_DEBUG */
  5764. # define sched_domain_debug(sd, cpu) do { } while (0)
  5765. #endif /* CONFIG_SCHED_DEBUG */
  5766. static int sd_degenerate(struct sched_domain *sd)
  5767. {
  5768. if (cpus_weight(sd->span) == 1)
  5769. return 1;
  5770. /* Following flags need at least 2 groups */
  5771. if (sd->flags & (SD_LOAD_BALANCE |
  5772. SD_BALANCE_NEWIDLE |
  5773. SD_BALANCE_FORK |
  5774. SD_BALANCE_EXEC |
  5775. SD_SHARE_CPUPOWER |
  5776. SD_SHARE_PKG_RESOURCES)) {
  5777. if (sd->groups != sd->groups->next)
  5778. return 0;
  5779. }
  5780. /* Following flags don't use groups */
  5781. if (sd->flags & (SD_WAKE_IDLE |
  5782. SD_WAKE_AFFINE |
  5783. SD_WAKE_BALANCE))
  5784. return 0;
  5785. return 1;
  5786. }
  5787. static int
  5788. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5789. {
  5790. unsigned long cflags = sd->flags, pflags = parent->flags;
  5791. if (sd_degenerate(parent))
  5792. return 1;
  5793. if (!cpus_equal(sd->span, parent->span))
  5794. return 0;
  5795. /* Does parent contain flags not in child? */
  5796. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  5797. if (cflags & SD_WAKE_AFFINE)
  5798. pflags &= ~SD_WAKE_BALANCE;
  5799. /* Flags needing groups don't count if only 1 group in parent */
  5800. if (parent->groups == parent->groups->next) {
  5801. pflags &= ~(SD_LOAD_BALANCE |
  5802. SD_BALANCE_NEWIDLE |
  5803. SD_BALANCE_FORK |
  5804. SD_BALANCE_EXEC |
  5805. SD_SHARE_CPUPOWER |
  5806. SD_SHARE_PKG_RESOURCES);
  5807. }
  5808. if (~cflags & pflags)
  5809. return 0;
  5810. return 1;
  5811. }
  5812. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5813. {
  5814. unsigned long flags;
  5815. spin_lock_irqsave(&rq->lock, flags);
  5816. if (rq->rd) {
  5817. struct root_domain *old_rd = rq->rd;
  5818. if (cpu_isset(rq->cpu, old_rd->online))
  5819. set_rq_offline(rq);
  5820. cpu_clear(rq->cpu, old_rd->span);
  5821. if (atomic_dec_and_test(&old_rd->refcount))
  5822. kfree(old_rd);
  5823. }
  5824. atomic_inc(&rd->refcount);
  5825. rq->rd = rd;
  5826. cpu_set(rq->cpu, rd->span);
  5827. if (cpu_isset(rq->cpu, cpu_online_map))
  5828. set_rq_online(rq);
  5829. spin_unlock_irqrestore(&rq->lock, flags);
  5830. }
  5831. static void init_rootdomain(struct root_domain *rd)
  5832. {
  5833. memset(rd, 0, sizeof(*rd));
  5834. cpus_clear(rd->span);
  5835. cpus_clear(rd->online);
  5836. cpupri_init(&rd->cpupri);
  5837. }
  5838. static void init_defrootdomain(void)
  5839. {
  5840. init_rootdomain(&def_root_domain);
  5841. atomic_set(&def_root_domain.refcount, 1);
  5842. }
  5843. static struct root_domain *alloc_rootdomain(void)
  5844. {
  5845. struct root_domain *rd;
  5846. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5847. if (!rd)
  5848. return NULL;
  5849. init_rootdomain(rd);
  5850. return rd;
  5851. }
  5852. /*
  5853. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5854. * hold the hotplug lock.
  5855. */
  5856. static void
  5857. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5858. {
  5859. struct rq *rq = cpu_rq(cpu);
  5860. struct sched_domain *tmp;
  5861. /* Remove the sched domains which do not contribute to scheduling. */
  5862. for (tmp = sd; tmp; tmp = tmp->parent) {
  5863. struct sched_domain *parent = tmp->parent;
  5864. if (!parent)
  5865. break;
  5866. if (sd_parent_degenerate(tmp, parent)) {
  5867. tmp->parent = parent->parent;
  5868. if (parent->parent)
  5869. parent->parent->child = tmp;
  5870. }
  5871. }
  5872. if (sd && sd_degenerate(sd)) {
  5873. sd = sd->parent;
  5874. if (sd)
  5875. sd->child = NULL;
  5876. }
  5877. sched_domain_debug(sd, cpu);
  5878. rq_attach_root(rq, rd);
  5879. rcu_assign_pointer(rq->sd, sd);
  5880. }
  5881. /* cpus with isolated domains */
  5882. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  5883. /* Setup the mask of cpus configured for isolated domains */
  5884. static int __init isolated_cpu_setup(char *str)
  5885. {
  5886. static int __initdata ints[NR_CPUS];
  5887. int i;
  5888. str = get_options(str, ARRAY_SIZE(ints), ints);
  5889. cpus_clear(cpu_isolated_map);
  5890. for (i = 1; i <= ints[0]; i++)
  5891. if (ints[i] < NR_CPUS)
  5892. cpu_set(ints[i], cpu_isolated_map);
  5893. return 1;
  5894. }
  5895. __setup("isolcpus=", isolated_cpu_setup);
  5896. /*
  5897. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5898. * to a function which identifies what group(along with sched group) a CPU
  5899. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  5900. * (due to the fact that we keep track of groups covered with a cpumask_t).
  5901. *
  5902. * init_sched_build_groups will build a circular linked list of the groups
  5903. * covered by the given span, and will set each group's ->cpumask correctly,
  5904. * and ->cpu_power to 0.
  5905. */
  5906. static void
  5907. init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
  5908. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  5909. struct sched_group **sg,
  5910. cpumask_t *tmpmask),
  5911. cpumask_t *covered, cpumask_t *tmpmask)
  5912. {
  5913. struct sched_group *first = NULL, *last = NULL;
  5914. int i;
  5915. cpus_clear(*covered);
  5916. for_each_cpu_mask_nr(i, *span) {
  5917. struct sched_group *sg;
  5918. int group = group_fn(i, cpu_map, &sg, tmpmask);
  5919. int j;
  5920. if (cpu_isset(i, *covered))
  5921. continue;
  5922. cpus_clear(sg->cpumask);
  5923. sg->__cpu_power = 0;
  5924. for_each_cpu_mask_nr(j, *span) {
  5925. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  5926. continue;
  5927. cpu_set(j, *covered);
  5928. cpu_set(j, sg->cpumask);
  5929. }
  5930. if (!first)
  5931. first = sg;
  5932. if (last)
  5933. last->next = sg;
  5934. last = sg;
  5935. }
  5936. last->next = first;
  5937. }
  5938. #define SD_NODES_PER_DOMAIN 16
  5939. #ifdef CONFIG_NUMA
  5940. /**
  5941. * find_next_best_node - find the next node to include in a sched_domain
  5942. * @node: node whose sched_domain we're building
  5943. * @used_nodes: nodes already in the sched_domain
  5944. *
  5945. * Find the next node to include in a given scheduling domain. Simply
  5946. * finds the closest node not already in the @used_nodes map.
  5947. *
  5948. * Should use nodemask_t.
  5949. */
  5950. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5951. {
  5952. int i, n, val, min_val, best_node = 0;
  5953. min_val = INT_MAX;
  5954. for (i = 0; i < nr_node_ids; i++) {
  5955. /* Start at @node */
  5956. n = (node + i) % nr_node_ids;
  5957. if (!nr_cpus_node(n))
  5958. continue;
  5959. /* Skip already used nodes */
  5960. if (node_isset(n, *used_nodes))
  5961. continue;
  5962. /* Simple min distance search */
  5963. val = node_distance(node, n);
  5964. if (val < min_val) {
  5965. min_val = val;
  5966. best_node = n;
  5967. }
  5968. }
  5969. node_set(best_node, *used_nodes);
  5970. return best_node;
  5971. }
  5972. /**
  5973. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5974. * @node: node whose cpumask we're constructing
  5975. * @span: resulting cpumask
  5976. *
  5977. * Given a node, construct a good cpumask for its sched_domain to span. It
  5978. * should be one that prevents unnecessary balancing, but also spreads tasks
  5979. * out optimally.
  5980. */
  5981. static void sched_domain_node_span(int node, cpumask_t *span)
  5982. {
  5983. nodemask_t used_nodes;
  5984. node_to_cpumask_ptr(nodemask, node);
  5985. int i;
  5986. cpus_clear(*span);
  5987. nodes_clear(used_nodes);
  5988. cpus_or(*span, *span, *nodemask);
  5989. node_set(node, used_nodes);
  5990. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5991. int next_node = find_next_best_node(node, &used_nodes);
  5992. node_to_cpumask_ptr_next(nodemask, next_node);
  5993. cpus_or(*span, *span, *nodemask);
  5994. }
  5995. }
  5996. #endif /* CONFIG_NUMA */
  5997. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5998. /*
  5999. * SMT sched-domains:
  6000. */
  6001. #ifdef CONFIG_SCHED_SMT
  6002. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  6003. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  6004. static int
  6005. cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  6006. cpumask_t *unused)
  6007. {
  6008. if (sg)
  6009. *sg = &per_cpu(sched_group_cpus, cpu);
  6010. return cpu;
  6011. }
  6012. #endif /* CONFIG_SCHED_SMT */
  6013. /*
  6014. * multi-core sched-domains:
  6015. */
  6016. #ifdef CONFIG_SCHED_MC
  6017. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  6018. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  6019. #endif /* CONFIG_SCHED_MC */
  6020. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  6021. static int
  6022. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  6023. cpumask_t *mask)
  6024. {
  6025. int group;
  6026. *mask = per_cpu(cpu_sibling_map, cpu);
  6027. cpus_and(*mask, *mask, *cpu_map);
  6028. group = first_cpu(*mask);
  6029. if (sg)
  6030. *sg = &per_cpu(sched_group_core, group);
  6031. return group;
  6032. }
  6033. #elif defined(CONFIG_SCHED_MC)
  6034. static int
  6035. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  6036. cpumask_t *unused)
  6037. {
  6038. if (sg)
  6039. *sg = &per_cpu(sched_group_core, cpu);
  6040. return cpu;
  6041. }
  6042. #endif
  6043. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  6044. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  6045. static int
  6046. cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  6047. cpumask_t *mask)
  6048. {
  6049. int group;
  6050. #ifdef CONFIG_SCHED_MC
  6051. *mask = cpu_coregroup_map(cpu);
  6052. cpus_and(*mask, *mask, *cpu_map);
  6053. group = first_cpu(*mask);
  6054. #elif defined(CONFIG_SCHED_SMT)
  6055. *mask = per_cpu(cpu_sibling_map, cpu);
  6056. cpus_and(*mask, *mask, *cpu_map);
  6057. group = first_cpu(*mask);
  6058. #else
  6059. group = cpu;
  6060. #endif
  6061. if (sg)
  6062. *sg = &per_cpu(sched_group_phys, group);
  6063. return group;
  6064. }
  6065. #ifdef CONFIG_NUMA
  6066. /*
  6067. * The init_sched_build_groups can't handle what we want to do with node
  6068. * groups, so roll our own. Now each node has its own list of groups which
  6069. * gets dynamically allocated.
  6070. */
  6071. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  6072. static struct sched_group ***sched_group_nodes_bycpu;
  6073. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  6074. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  6075. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  6076. struct sched_group **sg, cpumask_t *nodemask)
  6077. {
  6078. int group;
  6079. *nodemask = node_to_cpumask(cpu_to_node(cpu));
  6080. cpus_and(*nodemask, *nodemask, *cpu_map);
  6081. group = first_cpu(*nodemask);
  6082. if (sg)
  6083. *sg = &per_cpu(sched_group_allnodes, group);
  6084. return group;
  6085. }
  6086. static void init_numa_sched_groups_power(struct sched_group *group_head)
  6087. {
  6088. struct sched_group *sg = group_head;
  6089. int j;
  6090. if (!sg)
  6091. return;
  6092. do {
  6093. for_each_cpu_mask_nr(j, sg->cpumask) {
  6094. struct sched_domain *sd;
  6095. sd = &per_cpu(phys_domains, j);
  6096. if (j != first_cpu(sd->groups->cpumask)) {
  6097. /*
  6098. * Only add "power" once for each
  6099. * physical package.
  6100. */
  6101. continue;
  6102. }
  6103. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  6104. }
  6105. sg = sg->next;
  6106. } while (sg != group_head);
  6107. }
  6108. #endif /* CONFIG_NUMA */
  6109. #ifdef CONFIG_NUMA
  6110. /* Free memory allocated for various sched_group structures */
  6111. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  6112. {
  6113. int cpu, i;
  6114. for_each_cpu_mask_nr(cpu, *cpu_map) {
  6115. struct sched_group **sched_group_nodes
  6116. = sched_group_nodes_bycpu[cpu];
  6117. if (!sched_group_nodes)
  6118. continue;
  6119. for (i = 0; i < nr_node_ids; i++) {
  6120. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  6121. *nodemask = node_to_cpumask(i);
  6122. cpus_and(*nodemask, *nodemask, *cpu_map);
  6123. if (cpus_empty(*nodemask))
  6124. continue;
  6125. if (sg == NULL)
  6126. continue;
  6127. sg = sg->next;
  6128. next_sg:
  6129. oldsg = sg;
  6130. sg = sg->next;
  6131. kfree(oldsg);
  6132. if (oldsg != sched_group_nodes[i])
  6133. goto next_sg;
  6134. }
  6135. kfree(sched_group_nodes);
  6136. sched_group_nodes_bycpu[cpu] = NULL;
  6137. }
  6138. }
  6139. #else /* !CONFIG_NUMA */
  6140. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  6141. {
  6142. }
  6143. #endif /* CONFIG_NUMA */
  6144. /*
  6145. * Initialize sched groups cpu_power.
  6146. *
  6147. * cpu_power indicates the capacity of sched group, which is used while
  6148. * distributing the load between different sched groups in a sched domain.
  6149. * Typically cpu_power for all the groups in a sched domain will be same unless
  6150. * there are asymmetries in the topology. If there are asymmetries, group
  6151. * having more cpu_power will pickup more load compared to the group having
  6152. * less cpu_power.
  6153. *
  6154. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  6155. * the maximum number of tasks a group can handle in the presence of other idle
  6156. * or lightly loaded groups in the same sched domain.
  6157. */
  6158. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  6159. {
  6160. struct sched_domain *child;
  6161. struct sched_group *group;
  6162. WARN_ON(!sd || !sd->groups);
  6163. if (cpu != first_cpu(sd->groups->cpumask))
  6164. return;
  6165. child = sd->child;
  6166. sd->groups->__cpu_power = 0;
  6167. /*
  6168. * For perf policy, if the groups in child domain share resources
  6169. * (for example cores sharing some portions of the cache hierarchy
  6170. * or SMT), then set this domain groups cpu_power such that each group
  6171. * can handle only one task, when there are other idle groups in the
  6172. * same sched domain.
  6173. */
  6174. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  6175. (child->flags &
  6176. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  6177. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  6178. return;
  6179. }
  6180. /*
  6181. * add cpu_power of each child group to this groups cpu_power
  6182. */
  6183. group = child->groups;
  6184. do {
  6185. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  6186. group = group->next;
  6187. } while (group != child->groups);
  6188. }
  6189. /*
  6190. * Initializers for schedule domains
  6191. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  6192. */
  6193. #ifdef CONFIG_SCHED_DEBUG
  6194. # define SD_INIT_NAME(sd, type) sd->name = #type
  6195. #else
  6196. # define SD_INIT_NAME(sd, type) do { } while (0)
  6197. #endif
  6198. #define SD_INIT(sd, type) sd_init_##type(sd)
  6199. #define SD_INIT_FUNC(type) \
  6200. static noinline void sd_init_##type(struct sched_domain *sd) \
  6201. { \
  6202. memset(sd, 0, sizeof(*sd)); \
  6203. *sd = SD_##type##_INIT; \
  6204. sd->level = SD_LV_##type; \
  6205. SD_INIT_NAME(sd, type); \
  6206. }
  6207. SD_INIT_FUNC(CPU)
  6208. #ifdef CONFIG_NUMA
  6209. SD_INIT_FUNC(ALLNODES)
  6210. SD_INIT_FUNC(NODE)
  6211. #endif
  6212. #ifdef CONFIG_SCHED_SMT
  6213. SD_INIT_FUNC(SIBLING)
  6214. #endif
  6215. #ifdef CONFIG_SCHED_MC
  6216. SD_INIT_FUNC(MC)
  6217. #endif
  6218. /*
  6219. * To minimize stack usage kmalloc room for cpumasks and share the
  6220. * space as the usage in build_sched_domains() dictates. Used only
  6221. * if the amount of space is significant.
  6222. */
  6223. struct allmasks {
  6224. cpumask_t tmpmask; /* make this one first */
  6225. union {
  6226. cpumask_t nodemask;
  6227. cpumask_t this_sibling_map;
  6228. cpumask_t this_core_map;
  6229. };
  6230. cpumask_t send_covered;
  6231. #ifdef CONFIG_NUMA
  6232. cpumask_t domainspan;
  6233. cpumask_t covered;
  6234. cpumask_t notcovered;
  6235. #endif
  6236. };
  6237. #if NR_CPUS > 128
  6238. #define SCHED_CPUMASK_ALLOC 1
  6239. #define SCHED_CPUMASK_FREE(v) kfree(v)
  6240. #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
  6241. #else
  6242. #define SCHED_CPUMASK_ALLOC 0
  6243. #define SCHED_CPUMASK_FREE(v)
  6244. #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
  6245. #endif
  6246. #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
  6247. ((unsigned long)(a) + offsetof(struct allmasks, v))
  6248. static int default_relax_domain_level = -1;
  6249. static int __init setup_relax_domain_level(char *str)
  6250. {
  6251. unsigned long val;
  6252. val = simple_strtoul(str, NULL, 0);
  6253. if (val < SD_LV_MAX)
  6254. default_relax_domain_level = val;
  6255. return 1;
  6256. }
  6257. __setup("relax_domain_level=", setup_relax_domain_level);
  6258. static void set_domain_attribute(struct sched_domain *sd,
  6259. struct sched_domain_attr *attr)
  6260. {
  6261. int request;
  6262. if (!attr || attr->relax_domain_level < 0) {
  6263. if (default_relax_domain_level < 0)
  6264. return;
  6265. else
  6266. request = default_relax_domain_level;
  6267. } else
  6268. request = attr->relax_domain_level;
  6269. if (request < sd->level) {
  6270. /* turn off idle balance on this domain */
  6271. sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
  6272. } else {
  6273. /* turn on idle balance on this domain */
  6274. sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
  6275. }
  6276. }
  6277. /*
  6278. * Build sched domains for a given set of cpus and attach the sched domains
  6279. * to the individual cpus
  6280. */
  6281. static int __build_sched_domains(const cpumask_t *cpu_map,
  6282. struct sched_domain_attr *attr)
  6283. {
  6284. int i;
  6285. struct root_domain *rd;
  6286. SCHED_CPUMASK_DECLARE(allmasks);
  6287. cpumask_t *tmpmask;
  6288. #ifdef CONFIG_NUMA
  6289. struct sched_group **sched_group_nodes = NULL;
  6290. int sd_allnodes = 0;
  6291. /*
  6292. * Allocate the per-node list of sched groups
  6293. */
  6294. sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
  6295. GFP_KERNEL);
  6296. if (!sched_group_nodes) {
  6297. printk(KERN_WARNING "Can not alloc sched group node list\n");
  6298. return -ENOMEM;
  6299. }
  6300. #endif
  6301. rd = alloc_rootdomain();
  6302. if (!rd) {
  6303. printk(KERN_WARNING "Cannot alloc root domain\n");
  6304. #ifdef CONFIG_NUMA
  6305. kfree(sched_group_nodes);
  6306. #endif
  6307. return -ENOMEM;
  6308. }
  6309. #if SCHED_CPUMASK_ALLOC
  6310. /* get space for all scratch cpumask variables */
  6311. allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
  6312. if (!allmasks) {
  6313. printk(KERN_WARNING "Cannot alloc cpumask array\n");
  6314. kfree(rd);
  6315. #ifdef CONFIG_NUMA
  6316. kfree(sched_group_nodes);
  6317. #endif
  6318. return -ENOMEM;
  6319. }
  6320. #endif
  6321. tmpmask = (cpumask_t *)allmasks;
  6322. #ifdef CONFIG_NUMA
  6323. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  6324. #endif
  6325. /*
  6326. * Set up domains for cpus specified by the cpu_map.
  6327. */
  6328. for_each_cpu_mask_nr(i, *cpu_map) {
  6329. struct sched_domain *sd = NULL, *p;
  6330. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6331. *nodemask = node_to_cpumask(cpu_to_node(i));
  6332. cpus_and(*nodemask, *nodemask, *cpu_map);
  6333. #ifdef CONFIG_NUMA
  6334. if (cpus_weight(*cpu_map) >
  6335. SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
  6336. sd = &per_cpu(allnodes_domains, i);
  6337. SD_INIT(sd, ALLNODES);
  6338. set_domain_attribute(sd, attr);
  6339. sd->span = *cpu_map;
  6340. cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
  6341. p = sd;
  6342. sd_allnodes = 1;
  6343. } else
  6344. p = NULL;
  6345. sd = &per_cpu(node_domains, i);
  6346. SD_INIT(sd, NODE);
  6347. set_domain_attribute(sd, attr);
  6348. sched_domain_node_span(cpu_to_node(i), &sd->span);
  6349. sd->parent = p;
  6350. if (p)
  6351. p->child = sd;
  6352. cpus_and(sd->span, sd->span, *cpu_map);
  6353. #endif
  6354. p = sd;
  6355. sd = &per_cpu(phys_domains, i);
  6356. SD_INIT(sd, CPU);
  6357. set_domain_attribute(sd, attr);
  6358. sd->span = *nodemask;
  6359. sd->parent = p;
  6360. if (p)
  6361. p->child = sd;
  6362. cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
  6363. #ifdef CONFIG_SCHED_MC
  6364. p = sd;
  6365. sd = &per_cpu(core_domains, i);
  6366. SD_INIT(sd, MC);
  6367. set_domain_attribute(sd, attr);
  6368. sd->span = cpu_coregroup_map(i);
  6369. cpus_and(sd->span, sd->span, *cpu_map);
  6370. sd->parent = p;
  6371. p->child = sd;
  6372. cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
  6373. #endif
  6374. #ifdef CONFIG_SCHED_SMT
  6375. p = sd;
  6376. sd = &per_cpu(cpu_domains, i);
  6377. SD_INIT(sd, SIBLING);
  6378. set_domain_attribute(sd, attr);
  6379. sd->span = per_cpu(cpu_sibling_map, i);
  6380. cpus_and(sd->span, sd->span, *cpu_map);
  6381. sd->parent = p;
  6382. p->child = sd;
  6383. cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
  6384. #endif
  6385. }
  6386. #ifdef CONFIG_SCHED_SMT
  6387. /* Set up CPU (sibling) groups */
  6388. for_each_cpu_mask_nr(i, *cpu_map) {
  6389. SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
  6390. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6391. *this_sibling_map = per_cpu(cpu_sibling_map, i);
  6392. cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
  6393. if (i != first_cpu(*this_sibling_map))
  6394. continue;
  6395. init_sched_build_groups(this_sibling_map, cpu_map,
  6396. &cpu_to_cpu_group,
  6397. send_covered, tmpmask);
  6398. }
  6399. #endif
  6400. #ifdef CONFIG_SCHED_MC
  6401. /* Set up multi-core groups */
  6402. for_each_cpu_mask_nr(i, *cpu_map) {
  6403. SCHED_CPUMASK_VAR(this_core_map, allmasks);
  6404. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6405. *this_core_map = cpu_coregroup_map(i);
  6406. cpus_and(*this_core_map, *this_core_map, *cpu_map);
  6407. if (i != first_cpu(*this_core_map))
  6408. continue;
  6409. init_sched_build_groups(this_core_map, cpu_map,
  6410. &cpu_to_core_group,
  6411. send_covered, tmpmask);
  6412. }
  6413. #endif
  6414. /* Set up physical groups */
  6415. for (i = 0; i < nr_node_ids; i++) {
  6416. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6417. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6418. *nodemask = node_to_cpumask(i);
  6419. cpus_and(*nodemask, *nodemask, *cpu_map);
  6420. if (cpus_empty(*nodemask))
  6421. continue;
  6422. init_sched_build_groups(nodemask, cpu_map,
  6423. &cpu_to_phys_group,
  6424. send_covered, tmpmask);
  6425. }
  6426. #ifdef CONFIG_NUMA
  6427. /* Set up node groups */
  6428. if (sd_allnodes) {
  6429. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6430. init_sched_build_groups(cpu_map, cpu_map,
  6431. &cpu_to_allnodes_group,
  6432. send_covered, tmpmask);
  6433. }
  6434. for (i = 0; i < nr_node_ids; i++) {
  6435. /* Set up node groups */
  6436. struct sched_group *sg, *prev;
  6437. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6438. SCHED_CPUMASK_VAR(domainspan, allmasks);
  6439. SCHED_CPUMASK_VAR(covered, allmasks);
  6440. int j;
  6441. *nodemask = node_to_cpumask(i);
  6442. cpus_clear(*covered);
  6443. cpus_and(*nodemask, *nodemask, *cpu_map);
  6444. if (cpus_empty(*nodemask)) {
  6445. sched_group_nodes[i] = NULL;
  6446. continue;
  6447. }
  6448. sched_domain_node_span(i, domainspan);
  6449. cpus_and(*domainspan, *domainspan, *cpu_map);
  6450. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  6451. if (!sg) {
  6452. printk(KERN_WARNING "Can not alloc domain group for "
  6453. "node %d\n", i);
  6454. goto error;
  6455. }
  6456. sched_group_nodes[i] = sg;
  6457. for_each_cpu_mask_nr(j, *nodemask) {
  6458. struct sched_domain *sd;
  6459. sd = &per_cpu(node_domains, j);
  6460. sd->groups = sg;
  6461. }
  6462. sg->__cpu_power = 0;
  6463. sg->cpumask = *nodemask;
  6464. sg->next = sg;
  6465. cpus_or(*covered, *covered, *nodemask);
  6466. prev = sg;
  6467. for (j = 0; j < nr_node_ids; j++) {
  6468. SCHED_CPUMASK_VAR(notcovered, allmasks);
  6469. int n = (i + j) % nr_node_ids;
  6470. node_to_cpumask_ptr(pnodemask, n);
  6471. cpus_complement(*notcovered, *covered);
  6472. cpus_and(*tmpmask, *notcovered, *cpu_map);
  6473. cpus_and(*tmpmask, *tmpmask, *domainspan);
  6474. if (cpus_empty(*tmpmask))
  6475. break;
  6476. cpus_and(*tmpmask, *tmpmask, *pnodemask);
  6477. if (cpus_empty(*tmpmask))
  6478. continue;
  6479. sg = kmalloc_node(sizeof(struct sched_group),
  6480. GFP_KERNEL, i);
  6481. if (!sg) {
  6482. printk(KERN_WARNING
  6483. "Can not alloc domain group for node %d\n", j);
  6484. goto error;
  6485. }
  6486. sg->__cpu_power = 0;
  6487. sg->cpumask = *tmpmask;
  6488. sg->next = prev->next;
  6489. cpus_or(*covered, *covered, *tmpmask);
  6490. prev->next = sg;
  6491. prev = sg;
  6492. }
  6493. }
  6494. #endif
  6495. /* Calculate CPU power for physical packages and nodes */
  6496. #ifdef CONFIG_SCHED_SMT
  6497. for_each_cpu_mask_nr(i, *cpu_map) {
  6498. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  6499. init_sched_groups_power(i, sd);
  6500. }
  6501. #endif
  6502. #ifdef CONFIG_SCHED_MC
  6503. for_each_cpu_mask_nr(i, *cpu_map) {
  6504. struct sched_domain *sd = &per_cpu(core_domains, i);
  6505. init_sched_groups_power(i, sd);
  6506. }
  6507. #endif
  6508. for_each_cpu_mask_nr(i, *cpu_map) {
  6509. struct sched_domain *sd = &per_cpu(phys_domains, i);
  6510. init_sched_groups_power(i, sd);
  6511. }
  6512. #ifdef CONFIG_NUMA
  6513. for (i = 0; i < nr_node_ids; i++)
  6514. init_numa_sched_groups_power(sched_group_nodes[i]);
  6515. if (sd_allnodes) {
  6516. struct sched_group *sg;
  6517. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
  6518. tmpmask);
  6519. init_numa_sched_groups_power(sg);
  6520. }
  6521. #endif
  6522. /* Attach the domains */
  6523. for_each_cpu_mask_nr(i, *cpu_map) {
  6524. struct sched_domain *sd;
  6525. #ifdef CONFIG_SCHED_SMT
  6526. sd = &per_cpu(cpu_domains, i);
  6527. #elif defined(CONFIG_SCHED_MC)
  6528. sd = &per_cpu(core_domains, i);
  6529. #else
  6530. sd = &per_cpu(phys_domains, i);
  6531. #endif
  6532. cpu_attach_domain(sd, rd, i);
  6533. }
  6534. SCHED_CPUMASK_FREE((void *)allmasks);
  6535. return 0;
  6536. #ifdef CONFIG_NUMA
  6537. error:
  6538. free_sched_groups(cpu_map, tmpmask);
  6539. SCHED_CPUMASK_FREE((void *)allmasks);
  6540. return -ENOMEM;
  6541. #endif
  6542. }
  6543. static int build_sched_domains(const cpumask_t *cpu_map)
  6544. {
  6545. return __build_sched_domains(cpu_map, NULL);
  6546. }
  6547. static cpumask_t *doms_cur; /* current sched domains */
  6548. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6549. static struct sched_domain_attr *dattr_cur;
  6550. /* attribues of custom domains in 'doms_cur' */
  6551. /*
  6552. * Special case: If a kmalloc of a doms_cur partition (array of
  6553. * cpumask_t) fails, then fallback to a single sched domain,
  6554. * as determined by the single cpumask_t fallback_doms.
  6555. */
  6556. static cpumask_t fallback_doms;
  6557. void __attribute__((weak)) arch_update_cpu_topology(void)
  6558. {
  6559. }
  6560. /*
  6561. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6562. * For now this just excludes isolated cpus, but could be used to
  6563. * exclude other special cases in the future.
  6564. */
  6565. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  6566. {
  6567. int err;
  6568. arch_update_cpu_topology();
  6569. ndoms_cur = 1;
  6570. doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  6571. if (!doms_cur)
  6572. doms_cur = &fallback_doms;
  6573. cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
  6574. dattr_cur = NULL;
  6575. err = build_sched_domains(doms_cur);
  6576. register_sched_domain_sysctl();
  6577. return err;
  6578. }
  6579. static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
  6580. cpumask_t *tmpmask)
  6581. {
  6582. free_sched_groups(cpu_map, tmpmask);
  6583. }
  6584. /*
  6585. * Detach sched domains from a group of cpus specified in cpu_map
  6586. * These cpus will now be attached to the NULL domain
  6587. */
  6588. static void detach_destroy_domains(const cpumask_t *cpu_map)
  6589. {
  6590. cpumask_t tmpmask;
  6591. int i;
  6592. unregister_sched_domain_sysctl();
  6593. for_each_cpu_mask_nr(i, *cpu_map)
  6594. cpu_attach_domain(NULL, &def_root_domain, i);
  6595. synchronize_sched();
  6596. arch_destroy_sched_domains(cpu_map, &tmpmask);
  6597. }
  6598. /* handle null as "default" */
  6599. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6600. struct sched_domain_attr *new, int idx_new)
  6601. {
  6602. struct sched_domain_attr tmp;
  6603. /* fast path */
  6604. if (!new && !cur)
  6605. return 1;
  6606. tmp = SD_ATTR_INIT;
  6607. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6608. new ? (new + idx_new) : &tmp,
  6609. sizeof(struct sched_domain_attr));
  6610. }
  6611. /*
  6612. * Partition sched domains as specified by the 'ndoms_new'
  6613. * cpumasks in the array doms_new[] of cpumasks. This compares
  6614. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6615. * It destroys each deleted domain and builds each new domain.
  6616. *
  6617. * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
  6618. * The masks don't intersect (don't overlap.) We should setup one
  6619. * sched domain for each mask. CPUs not in any of the cpumasks will
  6620. * not be load balanced. If the same cpumask appears both in the
  6621. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6622. * it as it is.
  6623. *
  6624. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  6625. * ownership of it and will kfree it when done with it. If the caller
  6626. * failed the kmalloc call, then it can pass in doms_new == NULL,
  6627. * and partition_sched_domains() will fallback to the single partition
  6628. * 'fallback_doms', it also forces the domains to be rebuilt.
  6629. *
  6630. * If doms_new==NULL it will be replaced with cpu_online_map.
  6631. * ndoms_new==0 is a special case for destroying existing domains.
  6632. * It will not create the default domain.
  6633. *
  6634. * Call with hotplug lock held
  6635. */
  6636. void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
  6637. struct sched_domain_attr *dattr_new)
  6638. {
  6639. int i, j, n;
  6640. mutex_lock(&sched_domains_mutex);
  6641. /* always unregister in case we don't destroy any domains */
  6642. unregister_sched_domain_sysctl();
  6643. n = doms_new ? ndoms_new : 0;
  6644. /* Destroy deleted domains */
  6645. for (i = 0; i < ndoms_cur; i++) {
  6646. for (j = 0; j < n; j++) {
  6647. if (cpus_equal(doms_cur[i], doms_new[j])
  6648. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6649. goto match1;
  6650. }
  6651. /* no match - a current sched domain not in new doms_new[] */
  6652. detach_destroy_domains(doms_cur + i);
  6653. match1:
  6654. ;
  6655. }
  6656. if (doms_new == NULL) {
  6657. ndoms_cur = 0;
  6658. doms_new = &fallback_doms;
  6659. cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
  6660. dattr_new = NULL;
  6661. }
  6662. /* Build new domains */
  6663. for (i = 0; i < ndoms_new; i++) {
  6664. for (j = 0; j < ndoms_cur; j++) {
  6665. if (cpus_equal(doms_new[i], doms_cur[j])
  6666. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6667. goto match2;
  6668. }
  6669. /* no match - add a new doms_new */
  6670. __build_sched_domains(doms_new + i,
  6671. dattr_new ? dattr_new + i : NULL);
  6672. match2:
  6673. ;
  6674. }
  6675. /* Remember the new sched domains */
  6676. if (doms_cur != &fallback_doms)
  6677. kfree(doms_cur);
  6678. kfree(dattr_cur); /* kfree(NULL) is safe */
  6679. doms_cur = doms_new;
  6680. dattr_cur = dattr_new;
  6681. ndoms_cur = ndoms_new;
  6682. register_sched_domain_sysctl();
  6683. mutex_unlock(&sched_domains_mutex);
  6684. }
  6685. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6686. int arch_reinit_sched_domains(void)
  6687. {
  6688. get_online_cpus();
  6689. /* Destroy domains first to force the rebuild */
  6690. partition_sched_domains(0, NULL, NULL);
  6691. rebuild_sched_domains();
  6692. put_online_cpus();
  6693. return 0;
  6694. }
  6695. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6696. {
  6697. int ret;
  6698. if (buf[0] != '0' && buf[0] != '1')
  6699. return -EINVAL;
  6700. if (smt)
  6701. sched_smt_power_savings = (buf[0] == '1');
  6702. else
  6703. sched_mc_power_savings = (buf[0] == '1');
  6704. ret = arch_reinit_sched_domains();
  6705. return ret ? ret : count;
  6706. }
  6707. #ifdef CONFIG_SCHED_MC
  6708. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  6709. char *page)
  6710. {
  6711. return sprintf(page, "%u\n", sched_mc_power_savings);
  6712. }
  6713. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  6714. const char *buf, size_t count)
  6715. {
  6716. return sched_power_savings_store(buf, count, 0);
  6717. }
  6718. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  6719. sched_mc_power_savings_show,
  6720. sched_mc_power_savings_store);
  6721. #endif
  6722. #ifdef CONFIG_SCHED_SMT
  6723. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  6724. char *page)
  6725. {
  6726. return sprintf(page, "%u\n", sched_smt_power_savings);
  6727. }
  6728. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  6729. const char *buf, size_t count)
  6730. {
  6731. return sched_power_savings_store(buf, count, 1);
  6732. }
  6733. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  6734. sched_smt_power_savings_show,
  6735. sched_smt_power_savings_store);
  6736. #endif
  6737. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6738. {
  6739. int err = 0;
  6740. #ifdef CONFIG_SCHED_SMT
  6741. if (smt_capable())
  6742. err = sysfs_create_file(&cls->kset.kobj,
  6743. &attr_sched_smt_power_savings.attr);
  6744. #endif
  6745. #ifdef CONFIG_SCHED_MC
  6746. if (!err && mc_capable())
  6747. err = sysfs_create_file(&cls->kset.kobj,
  6748. &attr_sched_mc_power_savings.attr);
  6749. #endif
  6750. return err;
  6751. }
  6752. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6753. #ifndef CONFIG_CPUSETS
  6754. /*
  6755. * Add online and remove offline CPUs from the scheduler domains.
  6756. * When cpusets are enabled they take over this function.
  6757. */
  6758. static int update_sched_domains(struct notifier_block *nfb,
  6759. unsigned long action, void *hcpu)
  6760. {
  6761. switch (action) {
  6762. case CPU_ONLINE:
  6763. case CPU_ONLINE_FROZEN:
  6764. case CPU_DEAD:
  6765. case CPU_DEAD_FROZEN:
  6766. partition_sched_domains(1, NULL, NULL);
  6767. return NOTIFY_OK;
  6768. default:
  6769. return NOTIFY_DONE;
  6770. }
  6771. }
  6772. #endif
  6773. static int update_runtime(struct notifier_block *nfb,
  6774. unsigned long action, void *hcpu)
  6775. {
  6776. int cpu = (int)(long)hcpu;
  6777. switch (action) {
  6778. case CPU_DOWN_PREPARE:
  6779. case CPU_DOWN_PREPARE_FROZEN:
  6780. disable_runtime(cpu_rq(cpu));
  6781. return NOTIFY_OK;
  6782. case CPU_DOWN_FAILED:
  6783. case CPU_DOWN_FAILED_FROZEN:
  6784. case CPU_ONLINE:
  6785. case CPU_ONLINE_FROZEN:
  6786. enable_runtime(cpu_rq(cpu));
  6787. return NOTIFY_OK;
  6788. default:
  6789. return NOTIFY_DONE;
  6790. }
  6791. }
  6792. void __init sched_init_smp(void)
  6793. {
  6794. cpumask_t non_isolated_cpus;
  6795. #if defined(CONFIG_NUMA)
  6796. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6797. GFP_KERNEL);
  6798. BUG_ON(sched_group_nodes_bycpu == NULL);
  6799. #endif
  6800. get_online_cpus();
  6801. mutex_lock(&sched_domains_mutex);
  6802. arch_init_sched_domains(&cpu_online_map);
  6803. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  6804. if (cpus_empty(non_isolated_cpus))
  6805. cpu_set(smp_processor_id(), non_isolated_cpus);
  6806. mutex_unlock(&sched_domains_mutex);
  6807. put_online_cpus();
  6808. #ifndef CONFIG_CPUSETS
  6809. /* XXX: Theoretical race here - CPU may be hotplugged now */
  6810. hotcpu_notifier(update_sched_domains, 0);
  6811. #endif
  6812. /* RT runtime code needs to handle some hotplug events */
  6813. hotcpu_notifier(update_runtime, 0);
  6814. init_hrtick();
  6815. /* Move init over to a non-isolated CPU */
  6816. if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
  6817. BUG();
  6818. sched_init_granularity();
  6819. }
  6820. #else
  6821. void __init sched_init_smp(void)
  6822. {
  6823. sched_init_granularity();
  6824. }
  6825. #endif /* CONFIG_SMP */
  6826. int in_sched_functions(unsigned long addr)
  6827. {
  6828. return in_lock_functions(addr) ||
  6829. (addr >= (unsigned long)__sched_text_start
  6830. && addr < (unsigned long)__sched_text_end);
  6831. }
  6832. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6833. {
  6834. cfs_rq->tasks_timeline = RB_ROOT;
  6835. INIT_LIST_HEAD(&cfs_rq->tasks);
  6836. #ifdef CONFIG_FAIR_GROUP_SCHED
  6837. cfs_rq->rq = rq;
  6838. #endif
  6839. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6840. }
  6841. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6842. {
  6843. struct rt_prio_array *array;
  6844. int i;
  6845. array = &rt_rq->active;
  6846. for (i = 0; i < MAX_RT_PRIO; i++) {
  6847. INIT_LIST_HEAD(array->queue + i);
  6848. __clear_bit(i, array->bitmap);
  6849. }
  6850. /* delimiter for bitsearch: */
  6851. __set_bit(MAX_RT_PRIO, array->bitmap);
  6852. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6853. rt_rq->highest_prio = MAX_RT_PRIO;
  6854. #endif
  6855. #ifdef CONFIG_SMP
  6856. rt_rq->rt_nr_migratory = 0;
  6857. rt_rq->overloaded = 0;
  6858. #endif
  6859. rt_rq->rt_time = 0;
  6860. rt_rq->rt_throttled = 0;
  6861. rt_rq->rt_runtime = 0;
  6862. spin_lock_init(&rt_rq->rt_runtime_lock);
  6863. #ifdef CONFIG_RT_GROUP_SCHED
  6864. rt_rq->rt_nr_boosted = 0;
  6865. rt_rq->rq = rq;
  6866. #endif
  6867. }
  6868. #ifdef CONFIG_FAIR_GROUP_SCHED
  6869. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6870. struct sched_entity *se, int cpu, int add,
  6871. struct sched_entity *parent)
  6872. {
  6873. struct rq *rq = cpu_rq(cpu);
  6874. tg->cfs_rq[cpu] = cfs_rq;
  6875. init_cfs_rq(cfs_rq, rq);
  6876. cfs_rq->tg = tg;
  6877. if (add)
  6878. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6879. tg->se[cpu] = se;
  6880. /* se could be NULL for init_task_group */
  6881. if (!se)
  6882. return;
  6883. if (!parent)
  6884. se->cfs_rq = &rq->cfs;
  6885. else
  6886. se->cfs_rq = parent->my_q;
  6887. se->my_q = cfs_rq;
  6888. se->load.weight = tg->shares;
  6889. se->load.inv_weight = 0;
  6890. se->parent = parent;
  6891. }
  6892. #endif
  6893. #ifdef CONFIG_RT_GROUP_SCHED
  6894. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6895. struct sched_rt_entity *rt_se, int cpu, int add,
  6896. struct sched_rt_entity *parent)
  6897. {
  6898. struct rq *rq = cpu_rq(cpu);
  6899. tg->rt_rq[cpu] = rt_rq;
  6900. init_rt_rq(rt_rq, rq);
  6901. rt_rq->tg = tg;
  6902. rt_rq->rt_se = rt_se;
  6903. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6904. if (add)
  6905. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  6906. tg->rt_se[cpu] = rt_se;
  6907. if (!rt_se)
  6908. return;
  6909. if (!parent)
  6910. rt_se->rt_rq = &rq->rt;
  6911. else
  6912. rt_se->rt_rq = parent->my_q;
  6913. rt_se->my_q = rt_rq;
  6914. rt_se->parent = parent;
  6915. INIT_LIST_HEAD(&rt_se->run_list);
  6916. }
  6917. #endif
  6918. void __init sched_init(void)
  6919. {
  6920. int i, j;
  6921. unsigned long alloc_size = 0, ptr;
  6922. #ifdef CONFIG_FAIR_GROUP_SCHED
  6923. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6924. #endif
  6925. #ifdef CONFIG_RT_GROUP_SCHED
  6926. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6927. #endif
  6928. #ifdef CONFIG_USER_SCHED
  6929. alloc_size *= 2;
  6930. #endif
  6931. /*
  6932. * As sched_init() is called before page_alloc is setup,
  6933. * we use alloc_bootmem().
  6934. */
  6935. if (alloc_size) {
  6936. ptr = (unsigned long)alloc_bootmem(alloc_size);
  6937. #ifdef CONFIG_FAIR_GROUP_SCHED
  6938. init_task_group.se = (struct sched_entity **)ptr;
  6939. ptr += nr_cpu_ids * sizeof(void **);
  6940. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6941. ptr += nr_cpu_ids * sizeof(void **);
  6942. #ifdef CONFIG_USER_SCHED
  6943. root_task_group.se = (struct sched_entity **)ptr;
  6944. ptr += nr_cpu_ids * sizeof(void **);
  6945. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6946. ptr += nr_cpu_ids * sizeof(void **);
  6947. #endif /* CONFIG_USER_SCHED */
  6948. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6949. #ifdef CONFIG_RT_GROUP_SCHED
  6950. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6951. ptr += nr_cpu_ids * sizeof(void **);
  6952. init_task_group.rt_rq = (struct rt_rq **)ptr;
  6953. ptr += nr_cpu_ids * sizeof(void **);
  6954. #ifdef CONFIG_USER_SCHED
  6955. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6956. ptr += nr_cpu_ids * sizeof(void **);
  6957. root_task_group.rt_rq = (struct rt_rq **)ptr;
  6958. ptr += nr_cpu_ids * sizeof(void **);
  6959. #endif /* CONFIG_USER_SCHED */
  6960. #endif /* CONFIG_RT_GROUP_SCHED */
  6961. }
  6962. #ifdef CONFIG_SMP
  6963. init_defrootdomain();
  6964. #endif
  6965. init_rt_bandwidth(&def_rt_bandwidth,
  6966. global_rt_period(), global_rt_runtime());
  6967. #ifdef CONFIG_RT_GROUP_SCHED
  6968. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  6969. global_rt_period(), global_rt_runtime());
  6970. #ifdef CONFIG_USER_SCHED
  6971. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  6972. global_rt_period(), RUNTIME_INF);
  6973. #endif /* CONFIG_USER_SCHED */
  6974. #endif /* CONFIG_RT_GROUP_SCHED */
  6975. #ifdef CONFIG_GROUP_SCHED
  6976. list_add(&init_task_group.list, &task_groups);
  6977. INIT_LIST_HEAD(&init_task_group.children);
  6978. #ifdef CONFIG_USER_SCHED
  6979. INIT_LIST_HEAD(&root_task_group.children);
  6980. init_task_group.parent = &root_task_group;
  6981. list_add(&init_task_group.siblings, &root_task_group.children);
  6982. #endif /* CONFIG_USER_SCHED */
  6983. #endif /* CONFIG_GROUP_SCHED */
  6984. for_each_possible_cpu(i) {
  6985. struct rq *rq;
  6986. rq = cpu_rq(i);
  6987. spin_lock_init(&rq->lock);
  6988. rq->nr_running = 0;
  6989. init_cfs_rq(&rq->cfs, rq);
  6990. init_rt_rq(&rq->rt, rq);
  6991. #ifdef CONFIG_FAIR_GROUP_SCHED
  6992. init_task_group.shares = init_task_group_load;
  6993. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6994. #ifdef CONFIG_CGROUP_SCHED
  6995. /*
  6996. * How much cpu bandwidth does init_task_group get?
  6997. *
  6998. * In case of task-groups formed thr' the cgroup filesystem, it
  6999. * gets 100% of the cpu resources in the system. This overall
  7000. * system cpu resource is divided among the tasks of
  7001. * init_task_group and its child task-groups in a fair manner,
  7002. * based on each entity's (task or task-group's) weight
  7003. * (se->load.weight).
  7004. *
  7005. * In other words, if init_task_group has 10 tasks of weight
  7006. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  7007. * then A0's share of the cpu resource is:
  7008. *
  7009. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  7010. *
  7011. * We achieve this by letting init_task_group's tasks sit
  7012. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  7013. */
  7014. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  7015. #elif defined CONFIG_USER_SCHED
  7016. root_task_group.shares = NICE_0_LOAD;
  7017. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
  7018. /*
  7019. * In case of task-groups formed thr' the user id of tasks,
  7020. * init_task_group represents tasks belonging to root user.
  7021. * Hence it forms a sibling of all subsequent groups formed.
  7022. * In this case, init_task_group gets only a fraction of overall
  7023. * system cpu resource, based on the weight assigned to root
  7024. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  7025. * by letting tasks of init_task_group sit in a separate cfs_rq
  7026. * (init_cfs_rq) and having one entity represent this group of
  7027. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  7028. */
  7029. init_tg_cfs_entry(&init_task_group,
  7030. &per_cpu(init_cfs_rq, i),
  7031. &per_cpu(init_sched_entity, i), i, 1,
  7032. root_task_group.se[i]);
  7033. #endif
  7034. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7035. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  7036. #ifdef CONFIG_RT_GROUP_SCHED
  7037. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  7038. #ifdef CONFIG_CGROUP_SCHED
  7039. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  7040. #elif defined CONFIG_USER_SCHED
  7041. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
  7042. init_tg_rt_entry(&init_task_group,
  7043. &per_cpu(init_rt_rq, i),
  7044. &per_cpu(init_sched_rt_entity, i), i, 1,
  7045. root_task_group.rt_se[i]);
  7046. #endif
  7047. #endif
  7048. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  7049. rq->cpu_load[j] = 0;
  7050. #ifdef CONFIG_SMP
  7051. rq->sd = NULL;
  7052. rq->rd = NULL;
  7053. rq->active_balance = 0;
  7054. rq->next_balance = jiffies;
  7055. rq->push_cpu = 0;
  7056. rq->cpu = i;
  7057. rq->online = 0;
  7058. rq->migration_thread = NULL;
  7059. INIT_LIST_HEAD(&rq->migration_queue);
  7060. rq_attach_root(rq, &def_root_domain);
  7061. #endif
  7062. init_rq_hrtick(rq);
  7063. atomic_set(&rq->nr_iowait, 0);
  7064. }
  7065. set_load_weight(&init_task);
  7066. #ifdef CONFIG_PREEMPT_NOTIFIERS
  7067. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  7068. #endif
  7069. #ifdef CONFIG_SMP
  7070. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  7071. #endif
  7072. #ifdef CONFIG_RT_MUTEXES
  7073. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  7074. #endif
  7075. /*
  7076. * The boot idle thread does lazy MMU switching as well:
  7077. */
  7078. atomic_inc(&init_mm.mm_count);
  7079. enter_lazy_tlb(&init_mm, current);
  7080. /*
  7081. * Make us the idle thread. Technically, schedule() should not be
  7082. * called from this thread, however somewhere below it might be,
  7083. * but because we are the idle thread, we just pick up running again
  7084. * when this runqueue becomes "idle".
  7085. */
  7086. init_idle(current, smp_processor_id());
  7087. /*
  7088. * During early bootup we pretend to be a normal task:
  7089. */
  7090. current->sched_class = &fair_sched_class;
  7091. scheduler_running = 1;
  7092. }
  7093. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  7094. void __might_sleep(char *file, int line)
  7095. {
  7096. #ifdef in_atomic
  7097. static unsigned long prev_jiffy; /* ratelimiting */
  7098. if ((!in_atomic() && !irqs_disabled()) ||
  7099. system_state != SYSTEM_RUNNING || oops_in_progress)
  7100. return;
  7101. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  7102. return;
  7103. prev_jiffy = jiffies;
  7104. printk(KERN_ERR
  7105. "BUG: sleeping function called from invalid context at %s:%d\n",
  7106. file, line);
  7107. printk(KERN_ERR
  7108. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  7109. in_atomic(), irqs_disabled(),
  7110. current->pid, current->comm);
  7111. debug_show_held_locks(current);
  7112. if (irqs_disabled())
  7113. print_irqtrace_events(current);
  7114. dump_stack();
  7115. #endif
  7116. }
  7117. EXPORT_SYMBOL(__might_sleep);
  7118. #endif
  7119. #ifdef CONFIG_MAGIC_SYSRQ
  7120. static void normalize_task(struct rq *rq, struct task_struct *p)
  7121. {
  7122. int on_rq;
  7123. update_rq_clock(rq);
  7124. on_rq = p->se.on_rq;
  7125. if (on_rq)
  7126. deactivate_task(rq, p, 0);
  7127. __setscheduler(rq, p, SCHED_NORMAL, 0);
  7128. if (on_rq) {
  7129. activate_task(rq, p, 0);
  7130. resched_task(rq->curr);
  7131. }
  7132. }
  7133. void normalize_rt_tasks(void)
  7134. {
  7135. struct task_struct *g, *p;
  7136. unsigned long flags;
  7137. struct rq *rq;
  7138. read_lock_irqsave(&tasklist_lock, flags);
  7139. do_each_thread(g, p) {
  7140. /*
  7141. * Only normalize user tasks:
  7142. */
  7143. if (!p->mm)
  7144. continue;
  7145. p->se.exec_start = 0;
  7146. #ifdef CONFIG_SCHEDSTATS
  7147. p->se.wait_start = 0;
  7148. p->se.sleep_start = 0;
  7149. p->se.block_start = 0;
  7150. #endif
  7151. if (!rt_task(p)) {
  7152. /*
  7153. * Renice negative nice level userspace
  7154. * tasks back to 0:
  7155. */
  7156. if (TASK_NICE(p) < 0 && p->mm)
  7157. set_user_nice(p, 0);
  7158. continue;
  7159. }
  7160. spin_lock(&p->pi_lock);
  7161. rq = __task_rq_lock(p);
  7162. normalize_task(rq, p);
  7163. __task_rq_unlock(rq);
  7164. spin_unlock(&p->pi_lock);
  7165. } while_each_thread(g, p);
  7166. read_unlock_irqrestore(&tasklist_lock, flags);
  7167. }
  7168. #endif /* CONFIG_MAGIC_SYSRQ */
  7169. #ifdef CONFIG_IA64
  7170. /*
  7171. * These functions are only useful for the IA64 MCA handling.
  7172. *
  7173. * They can only be called when the whole system has been
  7174. * stopped - every CPU needs to be quiescent, and no scheduling
  7175. * activity can take place. Using them for anything else would
  7176. * be a serious bug, and as a result, they aren't even visible
  7177. * under any other configuration.
  7178. */
  7179. /**
  7180. * curr_task - return the current task for a given cpu.
  7181. * @cpu: the processor in question.
  7182. *
  7183. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7184. */
  7185. struct task_struct *curr_task(int cpu)
  7186. {
  7187. return cpu_curr(cpu);
  7188. }
  7189. /**
  7190. * set_curr_task - set the current task for a given cpu.
  7191. * @cpu: the processor in question.
  7192. * @p: the task pointer to set.
  7193. *
  7194. * Description: This function must only be used when non-maskable interrupts
  7195. * are serviced on a separate stack. It allows the architecture to switch the
  7196. * notion of the current task on a cpu in a non-blocking manner. This function
  7197. * must be called with all CPU's synchronized, and interrupts disabled, the
  7198. * and caller must save the original value of the current task (see
  7199. * curr_task() above) and restore that value before reenabling interrupts and
  7200. * re-starting the system.
  7201. *
  7202. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7203. */
  7204. void set_curr_task(int cpu, struct task_struct *p)
  7205. {
  7206. cpu_curr(cpu) = p;
  7207. }
  7208. #endif
  7209. #ifdef CONFIG_FAIR_GROUP_SCHED
  7210. static void free_fair_sched_group(struct task_group *tg)
  7211. {
  7212. int i;
  7213. for_each_possible_cpu(i) {
  7214. if (tg->cfs_rq)
  7215. kfree(tg->cfs_rq[i]);
  7216. if (tg->se)
  7217. kfree(tg->se[i]);
  7218. }
  7219. kfree(tg->cfs_rq);
  7220. kfree(tg->se);
  7221. }
  7222. static
  7223. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7224. {
  7225. struct cfs_rq *cfs_rq;
  7226. struct sched_entity *se, *parent_se;
  7227. struct rq *rq;
  7228. int i;
  7229. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  7230. if (!tg->cfs_rq)
  7231. goto err;
  7232. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  7233. if (!tg->se)
  7234. goto err;
  7235. tg->shares = NICE_0_LOAD;
  7236. for_each_possible_cpu(i) {
  7237. rq = cpu_rq(i);
  7238. cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
  7239. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7240. if (!cfs_rq)
  7241. goto err;
  7242. se = kmalloc_node(sizeof(struct sched_entity),
  7243. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7244. if (!se)
  7245. goto err;
  7246. parent_se = parent ? parent->se[i] : NULL;
  7247. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
  7248. }
  7249. return 1;
  7250. err:
  7251. return 0;
  7252. }
  7253. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7254. {
  7255. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  7256. &cpu_rq(cpu)->leaf_cfs_rq_list);
  7257. }
  7258. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7259. {
  7260. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  7261. }
  7262. #else /* !CONFG_FAIR_GROUP_SCHED */
  7263. static inline void free_fair_sched_group(struct task_group *tg)
  7264. {
  7265. }
  7266. static inline
  7267. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7268. {
  7269. return 1;
  7270. }
  7271. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7272. {
  7273. }
  7274. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7275. {
  7276. }
  7277. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7278. #ifdef CONFIG_RT_GROUP_SCHED
  7279. static void free_rt_sched_group(struct task_group *tg)
  7280. {
  7281. int i;
  7282. destroy_rt_bandwidth(&tg->rt_bandwidth);
  7283. for_each_possible_cpu(i) {
  7284. if (tg->rt_rq)
  7285. kfree(tg->rt_rq[i]);
  7286. if (tg->rt_se)
  7287. kfree(tg->rt_se[i]);
  7288. }
  7289. kfree(tg->rt_rq);
  7290. kfree(tg->rt_se);
  7291. }
  7292. static
  7293. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7294. {
  7295. struct rt_rq *rt_rq;
  7296. struct sched_rt_entity *rt_se, *parent_se;
  7297. struct rq *rq;
  7298. int i;
  7299. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  7300. if (!tg->rt_rq)
  7301. goto err;
  7302. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  7303. if (!tg->rt_se)
  7304. goto err;
  7305. init_rt_bandwidth(&tg->rt_bandwidth,
  7306. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  7307. for_each_possible_cpu(i) {
  7308. rq = cpu_rq(i);
  7309. rt_rq = kmalloc_node(sizeof(struct rt_rq),
  7310. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7311. if (!rt_rq)
  7312. goto err;
  7313. rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
  7314. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7315. if (!rt_se)
  7316. goto err;
  7317. parent_se = parent ? parent->rt_se[i] : NULL;
  7318. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
  7319. }
  7320. return 1;
  7321. err:
  7322. return 0;
  7323. }
  7324. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7325. {
  7326. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  7327. &cpu_rq(cpu)->leaf_rt_rq_list);
  7328. }
  7329. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7330. {
  7331. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  7332. }
  7333. #else /* !CONFIG_RT_GROUP_SCHED */
  7334. static inline void free_rt_sched_group(struct task_group *tg)
  7335. {
  7336. }
  7337. static inline
  7338. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7339. {
  7340. return 1;
  7341. }
  7342. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7343. {
  7344. }
  7345. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7346. {
  7347. }
  7348. #endif /* CONFIG_RT_GROUP_SCHED */
  7349. #ifdef CONFIG_GROUP_SCHED
  7350. static void free_sched_group(struct task_group *tg)
  7351. {
  7352. free_fair_sched_group(tg);
  7353. free_rt_sched_group(tg);
  7354. kfree(tg);
  7355. }
  7356. /* allocate runqueue etc for a new task group */
  7357. struct task_group *sched_create_group(struct task_group *parent)
  7358. {
  7359. struct task_group *tg;
  7360. unsigned long flags;
  7361. int i;
  7362. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  7363. if (!tg)
  7364. return ERR_PTR(-ENOMEM);
  7365. if (!alloc_fair_sched_group(tg, parent))
  7366. goto err;
  7367. if (!alloc_rt_sched_group(tg, parent))
  7368. goto err;
  7369. spin_lock_irqsave(&task_group_lock, flags);
  7370. for_each_possible_cpu(i) {
  7371. register_fair_sched_group(tg, i);
  7372. register_rt_sched_group(tg, i);
  7373. }
  7374. list_add_rcu(&tg->list, &task_groups);
  7375. WARN_ON(!parent); /* root should already exist */
  7376. tg->parent = parent;
  7377. INIT_LIST_HEAD(&tg->children);
  7378. list_add_rcu(&tg->siblings, &parent->children);
  7379. spin_unlock_irqrestore(&task_group_lock, flags);
  7380. return tg;
  7381. err:
  7382. free_sched_group(tg);
  7383. return ERR_PTR(-ENOMEM);
  7384. }
  7385. /* rcu callback to free various structures associated with a task group */
  7386. static void free_sched_group_rcu(struct rcu_head *rhp)
  7387. {
  7388. /* now it should be safe to free those cfs_rqs */
  7389. free_sched_group(container_of(rhp, struct task_group, rcu));
  7390. }
  7391. /* Destroy runqueue etc associated with a task group */
  7392. void sched_destroy_group(struct task_group *tg)
  7393. {
  7394. unsigned long flags;
  7395. int i;
  7396. spin_lock_irqsave(&task_group_lock, flags);
  7397. for_each_possible_cpu(i) {
  7398. unregister_fair_sched_group(tg, i);
  7399. unregister_rt_sched_group(tg, i);
  7400. }
  7401. list_del_rcu(&tg->list);
  7402. list_del_rcu(&tg->siblings);
  7403. spin_unlock_irqrestore(&task_group_lock, flags);
  7404. /* wait for possible concurrent references to cfs_rqs complete */
  7405. call_rcu(&tg->rcu, free_sched_group_rcu);
  7406. }
  7407. /* change task's runqueue when it moves between groups.
  7408. * The caller of this function should have put the task in its new group
  7409. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7410. * reflect its new group.
  7411. */
  7412. void sched_move_task(struct task_struct *tsk)
  7413. {
  7414. int on_rq, running;
  7415. unsigned long flags;
  7416. struct rq *rq;
  7417. rq = task_rq_lock(tsk, &flags);
  7418. update_rq_clock(rq);
  7419. running = task_current(rq, tsk);
  7420. on_rq = tsk->se.on_rq;
  7421. if (on_rq)
  7422. dequeue_task(rq, tsk, 0);
  7423. if (unlikely(running))
  7424. tsk->sched_class->put_prev_task(rq, tsk);
  7425. set_task_rq(tsk, task_cpu(tsk));
  7426. #ifdef CONFIG_FAIR_GROUP_SCHED
  7427. if (tsk->sched_class->moved_group)
  7428. tsk->sched_class->moved_group(tsk);
  7429. #endif
  7430. if (unlikely(running))
  7431. tsk->sched_class->set_curr_task(rq);
  7432. if (on_rq)
  7433. enqueue_task(rq, tsk, 0);
  7434. task_rq_unlock(rq, &flags);
  7435. }
  7436. #endif /* CONFIG_GROUP_SCHED */
  7437. #ifdef CONFIG_FAIR_GROUP_SCHED
  7438. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  7439. {
  7440. struct cfs_rq *cfs_rq = se->cfs_rq;
  7441. int on_rq;
  7442. on_rq = se->on_rq;
  7443. if (on_rq)
  7444. dequeue_entity(cfs_rq, se, 0);
  7445. se->load.weight = shares;
  7446. se->load.inv_weight = 0;
  7447. if (on_rq)
  7448. enqueue_entity(cfs_rq, se, 0);
  7449. }
  7450. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  7451. {
  7452. struct cfs_rq *cfs_rq = se->cfs_rq;
  7453. struct rq *rq = cfs_rq->rq;
  7454. unsigned long flags;
  7455. spin_lock_irqsave(&rq->lock, flags);
  7456. __set_se_shares(se, shares);
  7457. spin_unlock_irqrestore(&rq->lock, flags);
  7458. }
  7459. static DEFINE_MUTEX(shares_mutex);
  7460. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7461. {
  7462. int i;
  7463. unsigned long flags;
  7464. /*
  7465. * We can't change the weight of the root cgroup.
  7466. */
  7467. if (!tg->se[0])
  7468. return -EINVAL;
  7469. if (shares < MIN_SHARES)
  7470. shares = MIN_SHARES;
  7471. else if (shares > MAX_SHARES)
  7472. shares = MAX_SHARES;
  7473. mutex_lock(&shares_mutex);
  7474. if (tg->shares == shares)
  7475. goto done;
  7476. spin_lock_irqsave(&task_group_lock, flags);
  7477. for_each_possible_cpu(i)
  7478. unregister_fair_sched_group(tg, i);
  7479. list_del_rcu(&tg->siblings);
  7480. spin_unlock_irqrestore(&task_group_lock, flags);
  7481. /* wait for any ongoing reference to this group to finish */
  7482. synchronize_sched();
  7483. /*
  7484. * Now we are free to modify the group's share on each cpu
  7485. * w/o tripping rebalance_share or load_balance_fair.
  7486. */
  7487. tg->shares = shares;
  7488. for_each_possible_cpu(i) {
  7489. /*
  7490. * force a rebalance
  7491. */
  7492. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  7493. set_se_shares(tg->se[i], shares);
  7494. }
  7495. /*
  7496. * Enable load balance activity on this group, by inserting it back on
  7497. * each cpu's rq->leaf_cfs_rq_list.
  7498. */
  7499. spin_lock_irqsave(&task_group_lock, flags);
  7500. for_each_possible_cpu(i)
  7501. register_fair_sched_group(tg, i);
  7502. list_add_rcu(&tg->siblings, &tg->parent->children);
  7503. spin_unlock_irqrestore(&task_group_lock, flags);
  7504. done:
  7505. mutex_unlock(&shares_mutex);
  7506. return 0;
  7507. }
  7508. unsigned long sched_group_shares(struct task_group *tg)
  7509. {
  7510. return tg->shares;
  7511. }
  7512. #endif
  7513. #ifdef CONFIG_RT_GROUP_SCHED
  7514. /*
  7515. * Ensure that the real time constraints are schedulable.
  7516. */
  7517. static DEFINE_MUTEX(rt_constraints_mutex);
  7518. static unsigned long to_ratio(u64 period, u64 runtime)
  7519. {
  7520. if (runtime == RUNTIME_INF)
  7521. return 1ULL << 20;
  7522. return div64_u64(runtime << 20, period);
  7523. }
  7524. /* Must be called with tasklist_lock held */
  7525. static inline int tg_has_rt_tasks(struct task_group *tg)
  7526. {
  7527. struct task_struct *g, *p;
  7528. do_each_thread(g, p) {
  7529. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7530. return 1;
  7531. } while_each_thread(g, p);
  7532. return 0;
  7533. }
  7534. struct rt_schedulable_data {
  7535. struct task_group *tg;
  7536. u64 rt_period;
  7537. u64 rt_runtime;
  7538. };
  7539. static int tg_schedulable(struct task_group *tg, void *data)
  7540. {
  7541. struct rt_schedulable_data *d = data;
  7542. struct task_group *child;
  7543. unsigned long total, sum = 0;
  7544. u64 period, runtime;
  7545. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7546. runtime = tg->rt_bandwidth.rt_runtime;
  7547. if (tg == d->tg) {
  7548. period = d->rt_period;
  7549. runtime = d->rt_runtime;
  7550. }
  7551. /*
  7552. * Cannot have more runtime than the period.
  7553. */
  7554. if (runtime > period && runtime != RUNTIME_INF)
  7555. return -EINVAL;
  7556. /*
  7557. * Ensure we don't starve existing RT tasks.
  7558. */
  7559. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  7560. return -EBUSY;
  7561. total = to_ratio(period, runtime);
  7562. /*
  7563. * Nobody can have more than the global setting allows.
  7564. */
  7565. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  7566. return -EINVAL;
  7567. /*
  7568. * The sum of our children's runtime should not exceed our own.
  7569. */
  7570. list_for_each_entry_rcu(child, &tg->children, siblings) {
  7571. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  7572. runtime = child->rt_bandwidth.rt_runtime;
  7573. if (child == d->tg) {
  7574. period = d->rt_period;
  7575. runtime = d->rt_runtime;
  7576. }
  7577. sum += to_ratio(period, runtime);
  7578. }
  7579. if (sum > total)
  7580. return -EINVAL;
  7581. return 0;
  7582. }
  7583. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7584. {
  7585. struct rt_schedulable_data data = {
  7586. .tg = tg,
  7587. .rt_period = period,
  7588. .rt_runtime = runtime,
  7589. };
  7590. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  7591. }
  7592. static int tg_set_bandwidth(struct task_group *tg,
  7593. u64 rt_period, u64 rt_runtime)
  7594. {
  7595. int i, err = 0;
  7596. mutex_lock(&rt_constraints_mutex);
  7597. read_lock(&tasklist_lock);
  7598. err = __rt_schedulable(tg, rt_period, rt_runtime);
  7599. if (err)
  7600. goto unlock;
  7601. spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7602. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7603. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7604. for_each_possible_cpu(i) {
  7605. struct rt_rq *rt_rq = tg->rt_rq[i];
  7606. spin_lock(&rt_rq->rt_runtime_lock);
  7607. rt_rq->rt_runtime = rt_runtime;
  7608. spin_unlock(&rt_rq->rt_runtime_lock);
  7609. }
  7610. spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7611. unlock:
  7612. read_unlock(&tasklist_lock);
  7613. mutex_unlock(&rt_constraints_mutex);
  7614. return err;
  7615. }
  7616. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7617. {
  7618. u64 rt_runtime, rt_period;
  7619. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7620. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7621. if (rt_runtime_us < 0)
  7622. rt_runtime = RUNTIME_INF;
  7623. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7624. }
  7625. long sched_group_rt_runtime(struct task_group *tg)
  7626. {
  7627. u64 rt_runtime_us;
  7628. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7629. return -1;
  7630. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7631. do_div(rt_runtime_us, NSEC_PER_USEC);
  7632. return rt_runtime_us;
  7633. }
  7634. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7635. {
  7636. u64 rt_runtime, rt_period;
  7637. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7638. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7639. if (rt_period == 0)
  7640. return -EINVAL;
  7641. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7642. }
  7643. long sched_group_rt_period(struct task_group *tg)
  7644. {
  7645. u64 rt_period_us;
  7646. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7647. do_div(rt_period_us, NSEC_PER_USEC);
  7648. return rt_period_us;
  7649. }
  7650. static int sched_rt_global_constraints(void)
  7651. {
  7652. u64 runtime, period;
  7653. int ret = 0;
  7654. if (sysctl_sched_rt_period <= 0)
  7655. return -EINVAL;
  7656. runtime = global_rt_runtime();
  7657. period = global_rt_period();
  7658. /*
  7659. * Sanity check on the sysctl variables.
  7660. */
  7661. if (runtime > period && runtime != RUNTIME_INF)
  7662. return -EINVAL;
  7663. mutex_lock(&rt_constraints_mutex);
  7664. read_lock(&tasklist_lock);
  7665. ret = __rt_schedulable(NULL, 0, 0);
  7666. read_unlock(&tasklist_lock);
  7667. mutex_unlock(&rt_constraints_mutex);
  7668. return ret;
  7669. }
  7670. #else /* !CONFIG_RT_GROUP_SCHED */
  7671. static int sched_rt_global_constraints(void)
  7672. {
  7673. unsigned long flags;
  7674. int i;
  7675. if (sysctl_sched_rt_period <= 0)
  7676. return -EINVAL;
  7677. spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7678. for_each_possible_cpu(i) {
  7679. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7680. spin_lock(&rt_rq->rt_runtime_lock);
  7681. rt_rq->rt_runtime = global_rt_runtime();
  7682. spin_unlock(&rt_rq->rt_runtime_lock);
  7683. }
  7684. spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7685. return 0;
  7686. }
  7687. #endif /* CONFIG_RT_GROUP_SCHED */
  7688. int sched_rt_handler(struct ctl_table *table, int write,
  7689. struct file *filp, void __user *buffer, size_t *lenp,
  7690. loff_t *ppos)
  7691. {
  7692. int ret;
  7693. int old_period, old_runtime;
  7694. static DEFINE_MUTEX(mutex);
  7695. mutex_lock(&mutex);
  7696. old_period = sysctl_sched_rt_period;
  7697. old_runtime = sysctl_sched_rt_runtime;
  7698. ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
  7699. if (!ret && write) {
  7700. ret = sched_rt_global_constraints();
  7701. if (ret) {
  7702. sysctl_sched_rt_period = old_period;
  7703. sysctl_sched_rt_runtime = old_runtime;
  7704. } else {
  7705. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7706. def_rt_bandwidth.rt_period =
  7707. ns_to_ktime(global_rt_period());
  7708. }
  7709. }
  7710. mutex_unlock(&mutex);
  7711. return ret;
  7712. }
  7713. #ifdef CONFIG_CGROUP_SCHED
  7714. /* return corresponding task_group object of a cgroup */
  7715. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7716. {
  7717. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7718. struct task_group, css);
  7719. }
  7720. static struct cgroup_subsys_state *
  7721. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7722. {
  7723. struct task_group *tg, *parent;
  7724. if (!cgrp->parent) {
  7725. /* This is early initialization for the top cgroup */
  7726. return &init_task_group.css;
  7727. }
  7728. parent = cgroup_tg(cgrp->parent);
  7729. tg = sched_create_group(parent);
  7730. if (IS_ERR(tg))
  7731. return ERR_PTR(-ENOMEM);
  7732. return &tg->css;
  7733. }
  7734. static void
  7735. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7736. {
  7737. struct task_group *tg = cgroup_tg(cgrp);
  7738. sched_destroy_group(tg);
  7739. }
  7740. static int
  7741. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7742. struct task_struct *tsk)
  7743. {
  7744. #ifdef CONFIG_RT_GROUP_SCHED
  7745. /* Don't accept realtime tasks when there is no way for them to run */
  7746. if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
  7747. return -EINVAL;
  7748. #else
  7749. /* We don't support RT-tasks being in separate groups */
  7750. if (tsk->sched_class != &fair_sched_class)
  7751. return -EINVAL;
  7752. #endif
  7753. return 0;
  7754. }
  7755. static void
  7756. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7757. struct cgroup *old_cont, struct task_struct *tsk)
  7758. {
  7759. sched_move_task(tsk);
  7760. }
  7761. #ifdef CONFIG_FAIR_GROUP_SCHED
  7762. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7763. u64 shareval)
  7764. {
  7765. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7766. }
  7767. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7768. {
  7769. struct task_group *tg = cgroup_tg(cgrp);
  7770. return (u64) tg->shares;
  7771. }
  7772. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7773. #ifdef CONFIG_RT_GROUP_SCHED
  7774. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7775. s64 val)
  7776. {
  7777. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7778. }
  7779. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7780. {
  7781. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7782. }
  7783. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7784. u64 rt_period_us)
  7785. {
  7786. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7787. }
  7788. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7789. {
  7790. return sched_group_rt_period(cgroup_tg(cgrp));
  7791. }
  7792. #endif /* CONFIG_RT_GROUP_SCHED */
  7793. static struct cftype cpu_files[] = {
  7794. #ifdef CONFIG_FAIR_GROUP_SCHED
  7795. {
  7796. .name = "shares",
  7797. .read_u64 = cpu_shares_read_u64,
  7798. .write_u64 = cpu_shares_write_u64,
  7799. },
  7800. #endif
  7801. #ifdef CONFIG_RT_GROUP_SCHED
  7802. {
  7803. .name = "rt_runtime_us",
  7804. .read_s64 = cpu_rt_runtime_read,
  7805. .write_s64 = cpu_rt_runtime_write,
  7806. },
  7807. {
  7808. .name = "rt_period_us",
  7809. .read_u64 = cpu_rt_period_read_uint,
  7810. .write_u64 = cpu_rt_period_write_uint,
  7811. },
  7812. #endif
  7813. };
  7814. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7815. {
  7816. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7817. }
  7818. struct cgroup_subsys cpu_cgroup_subsys = {
  7819. .name = "cpu",
  7820. .create = cpu_cgroup_create,
  7821. .destroy = cpu_cgroup_destroy,
  7822. .can_attach = cpu_cgroup_can_attach,
  7823. .attach = cpu_cgroup_attach,
  7824. .populate = cpu_cgroup_populate,
  7825. .subsys_id = cpu_cgroup_subsys_id,
  7826. .early_init = 1,
  7827. };
  7828. #endif /* CONFIG_CGROUP_SCHED */
  7829. #ifdef CONFIG_CGROUP_CPUACCT
  7830. /*
  7831. * CPU accounting code for task groups.
  7832. *
  7833. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7834. * (balbir@in.ibm.com).
  7835. */
  7836. /* track cpu usage of a group of tasks */
  7837. struct cpuacct {
  7838. struct cgroup_subsys_state css;
  7839. /* cpuusage holds pointer to a u64-type object on every cpu */
  7840. u64 *cpuusage;
  7841. };
  7842. struct cgroup_subsys cpuacct_subsys;
  7843. /* return cpu accounting group corresponding to this container */
  7844. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7845. {
  7846. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7847. struct cpuacct, css);
  7848. }
  7849. /* return cpu accounting group to which this task belongs */
  7850. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7851. {
  7852. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7853. struct cpuacct, css);
  7854. }
  7855. /* create a new cpu accounting group */
  7856. static struct cgroup_subsys_state *cpuacct_create(
  7857. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7858. {
  7859. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7860. if (!ca)
  7861. return ERR_PTR(-ENOMEM);
  7862. ca->cpuusage = alloc_percpu(u64);
  7863. if (!ca->cpuusage) {
  7864. kfree(ca);
  7865. return ERR_PTR(-ENOMEM);
  7866. }
  7867. return &ca->css;
  7868. }
  7869. /* destroy an existing cpu accounting group */
  7870. static void
  7871. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7872. {
  7873. struct cpuacct *ca = cgroup_ca(cgrp);
  7874. free_percpu(ca->cpuusage);
  7875. kfree(ca);
  7876. }
  7877. /* return total cpu usage (in nanoseconds) of a group */
  7878. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7879. {
  7880. struct cpuacct *ca = cgroup_ca(cgrp);
  7881. u64 totalcpuusage = 0;
  7882. int i;
  7883. for_each_possible_cpu(i) {
  7884. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7885. /*
  7886. * Take rq->lock to make 64-bit addition safe on 32-bit
  7887. * platforms.
  7888. */
  7889. spin_lock_irq(&cpu_rq(i)->lock);
  7890. totalcpuusage += *cpuusage;
  7891. spin_unlock_irq(&cpu_rq(i)->lock);
  7892. }
  7893. return totalcpuusage;
  7894. }
  7895. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7896. u64 reset)
  7897. {
  7898. struct cpuacct *ca = cgroup_ca(cgrp);
  7899. int err = 0;
  7900. int i;
  7901. if (reset) {
  7902. err = -EINVAL;
  7903. goto out;
  7904. }
  7905. for_each_possible_cpu(i) {
  7906. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7907. spin_lock_irq(&cpu_rq(i)->lock);
  7908. *cpuusage = 0;
  7909. spin_unlock_irq(&cpu_rq(i)->lock);
  7910. }
  7911. out:
  7912. return err;
  7913. }
  7914. static struct cftype files[] = {
  7915. {
  7916. .name = "usage",
  7917. .read_u64 = cpuusage_read,
  7918. .write_u64 = cpuusage_write,
  7919. },
  7920. };
  7921. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7922. {
  7923. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7924. }
  7925. /*
  7926. * charge this task's execution time to its accounting group.
  7927. *
  7928. * called with rq->lock held.
  7929. */
  7930. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7931. {
  7932. struct cpuacct *ca;
  7933. if (!cpuacct_subsys.active)
  7934. return;
  7935. ca = task_ca(tsk);
  7936. if (ca) {
  7937. u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
  7938. *cpuusage += cputime;
  7939. }
  7940. }
  7941. struct cgroup_subsys cpuacct_subsys = {
  7942. .name = "cpuacct",
  7943. .create = cpuacct_create,
  7944. .destroy = cpuacct_destroy,
  7945. .populate = cpuacct_populate,
  7946. .subsys_id = cpuacct_subsys_id,
  7947. };
  7948. #endif /* CONFIG_CGROUP_CPUACCT */