amd_iommu.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957
  1. /*
  2. * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
  3. * Author: Joerg Roedel <joerg.roedel@amd.com>
  4. * Leo Duran <leo.duran@amd.com>
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License version 2 as published
  8. * by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. */
  19. #include <linux/pci.h>
  20. #include <linux/gfp.h>
  21. #include <linux/bitops.h>
  22. #include <linux/scatterlist.h>
  23. #include <linux/iommu-helper.h>
  24. #include <asm/proto.h>
  25. #include <asm/gart.h>
  26. #include <asm/amd_iommu_types.h>
  27. #include <asm/amd_iommu.h>
  28. #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
  29. #define to_pages(addr, size) \
  30. (round_up(((addr) & ~PAGE_MASK) + (size), PAGE_SIZE) >> PAGE_SHIFT)
  31. static DEFINE_RWLOCK(amd_iommu_devtable_lock);
  32. struct command {
  33. u32 data[4];
  34. };
  35. static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
  36. struct unity_map_entry *e);
  37. static int iommu_has_npcache(struct amd_iommu *iommu)
  38. {
  39. return iommu->cap & IOMMU_CAP_NPCACHE;
  40. }
  41. static int __iommu_queue_command(struct amd_iommu *iommu, struct command *cmd)
  42. {
  43. u32 tail, head;
  44. u8 *target;
  45. tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
  46. target = (iommu->cmd_buf + tail);
  47. memcpy_toio(target, cmd, sizeof(*cmd));
  48. tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
  49. head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
  50. if (tail == head)
  51. return -ENOMEM;
  52. writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
  53. return 0;
  54. }
  55. static int iommu_queue_command(struct amd_iommu *iommu, struct command *cmd)
  56. {
  57. unsigned long flags;
  58. int ret;
  59. spin_lock_irqsave(&iommu->lock, flags);
  60. ret = __iommu_queue_command(iommu, cmd);
  61. spin_unlock_irqrestore(&iommu->lock, flags);
  62. return ret;
  63. }
  64. static int iommu_completion_wait(struct amd_iommu *iommu)
  65. {
  66. int ret;
  67. struct command cmd;
  68. volatile u64 ready = 0;
  69. unsigned long ready_phys = virt_to_phys(&ready);
  70. memset(&cmd, 0, sizeof(cmd));
  71. cmd.data[0] = LOW_U32(ready_phys) | CMD_COMPL_WAIT_STORE_MASK;
  72. cmd.data[1] = HIGH_U32(ready_phys);
  73. cmd.data[2] = 1; /* value written to 'ready' */
  74. CMD_SET_TYPE(&cmd, CMD_COMPL_WAIT);
  75. iommu->need_sync = 0;
  76. ret = iommu_queue_command(iommu, &cmd);
  77. if (ret)
  78. return ret;
  79. while (!ready)
  80. cpu_relax();
  81. return 0;
  82. }
  83. static int iommu_queue_inv_dev_entry(struct amd_iommu *iommu, u16 devid)
  84. {
  85. struct command cmd;
  86. BUG_ON(iommu == NULL);
  87. memset(&cmd, 0, sizeof(cmd));
  88. CMD_SET_TYPE(&cmd, CMD_INV_DEV_ENTRY);
  89. cmd.data[0] = devid;
  90. iommu->need_sync = 1;
  91. return iommu_queue_command(iommu, &cmd);
  92. }
  93. static int iommu_queue_inv_iommu_pages(struct amd_iommu *iommu,
  94. u64 address, u16 domid, int pde, int s)
  95. {
  96. struct command cmd;
  97. memset(&cmd, 0, sizeof(cmd));
  98. address &= PAGE_MASK;
  99. CMD_SET_TYPE(&cmd, CMD_INV_IOMMU_PAGES);
  100. cmd.data[1] |= domid;
  101. cmd.data[2] = LOW_U32(address);
  102. cmd.data[3] = HIGH_U32(address);
  103. if (s)
  104. cmd.data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
  105. if (pde)
  106. cmd.data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
  107. iommu->need_sync = 1;
  108. return iommu_queue_command(iommu, &cmd);
  109. }
  110. static int iommu_flush_pages(struct amd_iommu *iommu, u16 domid,
  111. u64 address, size_t size)
  112. {
  113. int i;
  114. unsigned pages = to_pages(address, size);
  115. address &= PAGE_MASK;
  116. for (i = 0; i < pages; ++i) {
  117. iommu_queue_inv_iommu_pages(iommu, address, domid, 0, 0);
  118. address += PAGE_SIZE;
  119. }
  120. return 0;
  121. }
  122. static int iommu_map(struct protection_domain *dom,
  123. unsigned long bus_addr,
  124. unsigned long phys_addr,
  125. int prot)
  126. {
  127. u64 __pte, *pte, *page;
  128. bus_addr = PAGE_ALIGN(bus_addr);
  129. phys_addr = PAGE_ALIGN(bus_addr);
  130. /* only support 512GB address spaces for now */
  131. if (bus_addr > IOMMU_MAP_SIZE_L3 || !(prot & IOMMU_PROT_MASK))
  132. return -EINVAL;
  133. pte = &dom->pt_root[IOMMU_PTE_L2_INDEX(bus_addr)];
  134. if (!IOMMU_PTE_PRESENT(*pte)) {
  135. page = (u64 *)get_zeroed_page(GFP_KERNEL);
  136. if (!page)
  137. return -ENOMEM;
  138. *pte = IOMMU_L2_PDE(virt_to_phys(page));
  139. }
  140. pte = IOMMU_PTE_PAGE(*pte);
  141. pte = &pte[IOMMU_PTE_L1_INDEX(bus_addr)];
  142. if (!IOMMU_PTE_PRESENT(*pte)) {
  143. page = (u64 *)get_zeroed_page(GFP_KERNEL);
  144. if (!page)
  145. return -ENOMEM;
  146. *pte = IOMMU_L1_PDE(virt_to_phys(page));
  147. }
  148. pte = IOMMU_PTE_PAGE(*pte);
  149. pte = &pte[IOMMU_PTE_L0_INDEX(bus_addr)];
  150. if (IOMMU_PTE_PRESENT(*pte))
  151. return -EBUSY;
  152. __pte = phys_addr | IOMMU_PTE_P;
  153. if (prot & IOMMU_PROT_IR)
  154. __pte |= IOMMU_PTE_IR;
  155. if (prot & IOMMU_PROT_IW)
  156. __pte |= IOMMU_PTE_IW;
  157. *pte = __pte;
  158. return 0;
  159. }
  160. static int iommu_for_unity_map(struct amd_iommu *iommu,
  161. struct unity_map_entry *entry)
  162. {
  163. u16 bdf, i;
  164. for (i = entry->devid_start; i <= entry->devid_end; ++i) {
  165. bdf = amd_iommu_alias_table[i];
  166. if (amd_iommu_rlookup_table[bdf] == iommu)
  167. return 1;
  168. }
  169. return 0;
  170. }
  171. static int iommu_init_unity_mappings(struct amd_iommu *iommu)
  172. {
  173. struct unity_map_entry *entry;
  174. int ret;
  175. list_for_each_entry(entry, &amd_iommu_unity_map, list) {
  176. if (!iommu_for_unity_map(iommu, entry))
  177. continue;
  178. ret = dma_ops_unity_map(iommu->default_dom, entry);
  179. if (ret)
  180. return ret;
  181. }
  182. return 0;
  183. }
  184. static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
  185. struct unity_map_entry *e)
  186. {
  187. u64 addr;
  188. int ret;
  189. for (addr = e->address_start; addr < e->address_end;
  190. addr += PAGE_SIZE) {
  191. ret = iommu_map(&dma_dom->domain, addr, addr, e->prot);
  192. if (ret)
  193. return ret;
  194. /*
  195. * if unity mapping is in aperture range mark the page
  196. * as allocated in the aperture
  197. */
  198. if (addr < dma_dom->aperture_size)
  199. __set_bit(addr >> PAGE_SHIFT, dma_dom->bitmap);
  200. }
  201. return 0;
  202. }
  203. static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
  204. u16 devid)
  205. {
  206. struct unity_map_entry *e;
  207. int ret;
  208. list_for_each_entry(e, &amd_iommu_unity_map, list) {
  209. if (!(devid >= e->devid_start && devid <= e->devid_end))
  210. continue;
  211. ret = dma_ops_unity_map(dma_dom, e);
  212. if (ret)
  213. return ret;
  214. }
  215. return 0;
  216. }
  217. static unsigned long dma_mask_to_pages(unsigned long mask)
  218. {
  219. return (mask >> PAGE_SHIFT) +
  220. (PAGE_ALIGN(mask & ~PAGE_MASK) >> PAGE_SHIFT);
  221. }
  222. static unsigned long dma_ops_alloc_addresses(struct device *dev,
  223. struct dma_ops_domain *dom,
  224. unsigned int pages)
  225. {
  226. unsigned long limit = dma_mask_to_pages(*dev->dma_mask);
  227. unsigned long address;
  228. unsigned long size = dom->aperture_size >> PAGE_SHIFT;
  229. unsigned long boundary_size;
  230. boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
  231. PAGE_SIZE) >> PAGE_SHIFT;
  232. limit = limit < size ? limit : size;
  233. if (dom->next_bit >= limit)
  234. dom->next_bit = 0;
  235. address = iommu_area_alloc(dom->bitmap, limit, dom->next_bit, pages,
  236. 0 , boundary_size, 0);
  237. if (address == -1)
  238. address = iommu_area_alloc(dom->bitmap, limit, 0, pages,
  239. 0, boundary_size, 0);
  240. if (likely(address != -1)) {
  241. set_bit_string(dom->bitmap, address, pages);
  242. dom->next_bit = address + pages;
  243. address <<= PAGE_SHIFT;
  244. } else
  245. address = bad_dma_address;
  246. WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
  247. return address;
  248. }
  249. static void dma_ops_free_addresses(struct dma_ops_domain *dom,
  250. unsigned long address,
  251. unsigned int pages)
  252. {
  253. address >>= PAGE_SHIFT;
  254. iommu_area_free(dom->bitmap, address, pages);
  255. }
  256. static u16 domain_id_alloc(void)
  257. {
  258. unsigned long flags;
  259. int id;
  260. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  261. id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
  262. BUG_ON(id == 0);
  263. if (id > 0 && id < MAX_DOMAIN_ID)
  264. __set_bit(id, amd_iommu_pd_alloc_bitmap);
  265. else
  266. id = 0;
  267. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  268. return id;
  269. }
  270. static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
  271. unsigned long start_page,
  272. unsigned int pages)
  273. {
  274. unsigned int last_page = dom->aperture_size >> PAGE_SHIFT;
  275. if (start_page + pages > last_page)
  276. pages = last_page - start_page;
  277. set_bit_string(dom->bitmap, start_page, pages);
  278. }
  279. static void dma_ops_free_pagetable(struct dma_ops_domain *dma_dom)
  280. {
  281. int i, j;
  282. u64 *p1, *p2, *p3;
  283. p1 = dma_dom->domain.pt_root;
  284. if (!p1)
  285. return;
  286. for (i = 0; i < 512; ++i) {
  287. if (!IOMMU_PTE_PRESENT(p1[i]))
  288. continue;
  289. p2 = IOMMU_PTE_PAGE(p1[i]);
  290. for (j = 0; j < 512; ++i) {
  291. if (!IOMMU_PTE_PRESENT(p2[j]))
  292. continue;
  293. p3 = IOMMU_PTE_PAGE(p2[j]);
  294. free_page((unsigned long)p3);
  295. }
  296. free_page((unsigned long)p2);
  297. }
  298. free_page((unsigned long)p1);
  299. }
  300. static void dma_ops_domain_free(struct dma_ops_domain *dom)
  301. {
  302. if (!dom)
  303. return;
  304. dma_ops_free_pagetable(dom);
  305. kfree(dom->pte_pages);
  306. kfree(dom->bitmap);
  307. kfree(dom);
  308. }
  309. static struct dma_ops_domain *dma_ops_domain_alloc(struct amd_iommu *iommu,
  310. unsigned order)
  311. {
  312. struct dma_ops_domain *dma_dom;
  313. unsigned i, num_pte_pages;
  314. u64 *l2_pde;
  315. u64 address;
  316. /*
  317. * Currently the DMA aperture must be between 32 MB and 1GB in size
  318. */
  319. if ((order < 25) || (order > 30))
  320. return NULL;
  321. dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
  322. if (!dma_dom)
  323. return NULL;
  324. spin_lock_init(&dma_dom->domain.lock);
  325. dma_dom->domain.id = domain_id_alloc();
  326. if (dma_dom->domain.id == 0)
  327. goto free_dma_dom;
  328. dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
  329. dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
  330. dma_dom->domain.priv = dma_dom;
  331. if (!dma_dom->domain.pt_root)
  332. goto free_dma_dom;
  333. dma_dom->aperture_size = (1ULL << order);
  334. dma_dom->bitmap = kzalloc(dma_dom->aperture_size / (PAGE_SIZE * 8),
  335. GFP_KERNEL);
  336. if (!dma_dom->bitmap)
  337. goto free_dma_dom;
  338. /*
  339. * mark the first page as allocated so we never return 0 as
  340. * a valid dma-address. So we can use 0 as error value
  341. */
  342. dma_dom->bitmap[0] = 1;
  343. dma_dom->next_bit = 0;
  344. if (iommu->exclusion_start &&
  345. iommu->exclusion_start < dma_dom->aperture_size) {
  346. unsigned long startpage = iommu->exclusion_start >> PAGE_SHIFT;
  347. int pages = to_pages(iommu->exclusion_start,
  348. iommu->exclusion_length);
  349. dma_ops_reserve_addresses(dma_dom, startpage, pages);
  350. }
  351. num_pte_pages = dma_dom->aperture_size / (PAGE_SIZE * 512);
  352. dma_dom->pte_pages = kzalloc(num_pte_pages * sizeof(void *),
  353. GFP_KERNEL);
  354. if (!dma_dom->pte_pages)
  355. goto free_dma_dom;
  356. l2_pde = (u64 *)get_zeroed_page(GFP_KERNEL);
  357. if (l2_pde == NULL)
  358. goto free_dma_dom;
  359. dma_dom->domain.pt_root[0] = IOMMU_L2_PDE(virt_to_phys(l2_pde));
  360. for (i = 0; i < num_pte_pages; ++i) {
  361. dma_dom->pte_pages[i] = (u64 *)get_zeroed_page(GFP_KERNEL);
  362. if (!dma_dom->pte_pages[i])
  363. goto free_dma_dom;
  364. address = virt_to_phys(dma_dom->pte_pages[i]);
  365. l2_pde[i] = IOMMU_L1_PDE(address);
  366. }
  367. return dma_dom;
  368. free_dma_dom:
  369. dma_ops_domain_free(dma_dom);
  370. return NULL;
  371. }
  372. static struct protection_domain *domain_for_device(u16 devid)
  373. {
  374. struct protection_domain *dom;
  375. unsigned long flags;
  376. read_lock_irqsave(&amd_iommu_devtable_lock, flags);
  377. dom = amd_iommu_pd_table[devid];
  378. read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  379. return dom;
  380. }
  381. static void set_device_domain(struct amd_iommu *iommu,
  382. struct protection_domain *domain,
  383. u16 devid)
  384. {
  385. unsigned long flags;
  386. u64 pte_root = virt_to_phys(domain->pt_root);
  387. pte_root |= (domain->mode & 0x07) << 9;
  388. pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | 2;
  389. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  390. amd_iommu_dev_table[devid].data[0] = pte_root;
  391. amd_iommu_dev_table[devid].data[1] = pte_root >> 32;
  392. amd_iommu_dev_table[devid].data[2] = domain->id;
  393. amd_iommu_pd_table[devid] = domain;
  394. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  395. iommu_queue_inv_dev_entry(iommu, devid);
  396. iommu->need_sync = 1;
  397. }
  398. static int get_device_resources(struct device *dev,
  399. struct amd_iommu **iommu,
  400. struct protection_domain **domain,
  401. u16 *bdf)
  402. {
  403. struct dma_ops_domain *dma_dom;
  404. struct pci_dev *pcidev;
  405. u16 _bdf;
  406. BUG_ON(!dev || dev->bus != &pci_bus_type || !dev->dma_mask);
  407. pcidev = to_pci_dev(dev);
  408. _bdf = (pcidev->bus->number << 8) | pcidev->devfn;
  409. if (_bdf >= amd_iommu_last_bdf) {
  410. *iommu = NULL;
  411. *domain = NULL;
  412. *bdf = 0xffff;
  413. return 0;
  414. }
  415. *bdf = amd_iommu_alias_table[_bdf];
  416. *iommu = amd_iommu_rlookup_table[*bdf];
  417. if (*iommu == NULL)
  418. return 0;
  419. dma_dom = (*iommu)->default_dom;
  420. *domain = domain_for_device(*bdf);
  421. if (*domain == NULL) {
  422. *domain = &dma_dom->domain;
  423. set_device_domain(*iommu, *domain, *bdf);
  424. printk(KERN_INFO "AMD IOMMU: Using protection domain %d for "
  425. "device ", (*domain)->id);
  426. print_devid(_bdf, 1);
  427. }
  428. return 1;
  429. }
  430. static dma_addr_t dma_ops_domain_map(struct amd_iommu *iommu,
  431. struct dma_ops_domain *dom,
  432. unsigned long address,
  433. phys_addr_t paddr,
  434. int direction)
  435. {
  436. u64 *pte, __pte;
  437. WARN_ON(address > dom->aperture_size);
  438. paddr &= PAGE_MASK;
  439. pte = dom->pte_pages[IOMMU_PTE_L1_INDEX(address)];
  440. pte += IOMMU_PTE_L0_INDEX(address);
  441. __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
  442. if (direction == DMA_TO_DEVICE)
  443. __pte |= IOMMU_PTE_IR;
  444. else if (direction == DMA_FROM_DEVICE)
  445. __pte |= IOMMU_PTE_IW;
  446. else if (direction == DMA_BIDIRECTIONAL)
  447. __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
  448. WARN_ON(*pte);
  449. *pte = __pte;
  450. return (dma_addr_t)address;
  451. }
  452. static void dma_ops_domain_unmap(struct amd_iommu *iommu,
  453. struct dma_ops_domain *dom,
  454. unsigned long address)
  455. {
  456. u64 *pte;
  457. if (address >= dom->aperture_size)
  458. return;
  459. WARN_ON(address & 0xfffULL || address > dom->aperture_size);
  460. pte = dom->pte_pages[IOMMU_PTE_L1_INDEX(address)];
  461. pte += IOMMU_PTE_L0_INDEX(address);
  462. WARN_ON(!*pte);
  463. *pte = 0ULL;
  464. }
  465. static dma_addr_t __map_single(struct device *dev,
  466. struct amd_iommu *iommu,
  467. struct dma_ops_domain *dma_dom,
  468. phys_addr_t paddr,
  469. size_t size,
  470. int dir)
  471. {
  472. dma_addr_t offset = paddr & ~PAGE_MASK;
  473. dma_addr_t address, start;
  474. unsigned int pages;
  475. int i;
  476. pages = to_pages(paddr, size);
  477. paddr &= PAGE_MASK;
  478. address = dma_ops_alloc_addresses(dev, dma_dom, pages);
  479. if (unlikely(address == bad_dma_address))
  480. goto out;
  481. start = address;
  482. for (i = 0; i < pages; ++i) {
  483. dma_ops_domain_map(iommu, dma_dom, start, paddr, dir);
  484. paddr += PAGE_SIZE;
  485. start += PAGE_SIZE;
  486. }
  487. address += offset;
  488. out:
  489. return address;
  490. }
  491. static void __unmap_single(struct amd_iommu *iommu,
  492. struct dma_ops_domain *dma_dom,
  493. dma_addr_t dma_addr,
  494. size_t size,
  495. int dir)
  496. {
  497. dma_addr_t i, start;
  498. unsigned int pages;
  499. if ((dma_addr == 0) || (dma_addr + size > dma_dom->aperture_size))
  500. return;
  501. pages = to_pages(dma_addr, size);
  502. dma_addr &= PAGE_MASK;
  503. start = dma_addr;
  504. for (i = 0; i < pages; ++i) {
  505. dma_ops_domain_unmap(iommu, dma_dom, start);
  506. start += PAGE_SIZE;
  507. }
  508. dma_ops_free_addresses(dma_dom, dma_addr, pages);
  509. }
  510. static dma_addr_t map_single(struct device *dev, phys_addr_t paddr,
  511. size_t size, int dir)
  512. {
  513. unsigned long flags;
  514. struct amd_iommu *iommu;
  515. struct protection_domain *domain;
  516. u16 devid;
  517. dma_addr_t addr;
  518. get_device_resources(dev, &iommu, &domain, &devid);
  519. if (iommu == NULL || domain == NULL)
  520. return (dma_addr_t)paddr;
  521. spin_lock_irqsave(&domain->lock, flags);
  522. addr = __map_single(dev, iommu, domain->priv, paddr, size, dir);
  523. if (addr == bad_dma_address)
  524. goto out;
  525. if (iommu_has_npcache(iommu))
  526. iommu_flush_pages(iommu, domain->id, addr, size);
  527. if (iommu->need_sync)
  528. iommu_completion_wait(iommu);
  529. out:
  530. spin_unlock_irqrestore(&domain->lock, flags);
  531. return addr;
  532. }
  533. static void unmap_single(struct device *dev, dma_addr_t dma_addr,
  534. size_t size, int dir)
  535. {
  536. unsigned long flags;
  537. struct amd_iommu *iommu;
  538. struct protection_domain *domain;
  539. u16 devid;
  540. if (!get_device_resources(dev, &iommu, &domain, &devid))
  541. return;
  542. spin_lock_irqsave(&domain->lock, flags);
  543. __unmap_single(iommu, domain->priv, dma_addr, size, dir);
  544. iommu_flush_pages(iommu, domain->id, dma_addr, size);
  545. if (iommu->need_sync)
  546. iommu_completion_wait(iommu);
  547. spin_unlock_irqrestore(&domain->lock, flags);
  548. }
  549. static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
  550. int nelems, int dir)
  551. {
  552. struct scatterlist *s;
  553. int i;
  554. for_each_sg(sglist, s, nelems, i) {
  555. s->dma_address = (dma_addr_t)sg_phys(s);
  556. s->dma_length = s->length;
  557. }
  558. return nelems;
  559. }
  560. static int map_sg(struct device *dev, struct scatterlist *sglist,
  561. int nelems, int dir)
  562. {
  563. unsigned long flags;
  564. struct amd_iommu *iommu;
  565. struct protection_domain *domain;
  566. u16 devid;
  567. int i;
  568. struct scatterlist *s;
  569. phys_addr_t paddr;
  570. int mapped_elems = 0;
  571. get_device_resources(dev, &iommu, &domain, &devid);
  572. if (!iommu || !domain)
  573. return map_sg_no_iommu(dev, sglist, nelems, dir);
  574. spin_lock_irqsave(&domain->lock, flags);
  575. for_each_sg(sglist, s, nelems, i) {
  576. paddr = sg_phys(s);
  577. s->dma_address = __map_single(dev, iommu, domain->priv,
  578. paddr, s->length, dir);
  579. if (s->dma_address) {
  580. s->dma_length = s->length;
  581. mapped_elems++;
  582. } else
  583. goto unmap;
  584. if (iommu_has_npcache(iommu))
  585. iommu_flush_pages(iommu, domain->id, s->dma_address,
  586. s->dma_length);
  587. }
  588. if (iommu->need_sync)
  589. iommu_completion_wait(iommu);
  590. out:
  591. spin_unlock_irqrestore(&domain->lock, flags);
  592. return mapped_elems;
  593. unmap:
  594. for_each_sg(sglist, s, mapped_elems, i) {
  595. if (s->dma_address)
  596. __unmap_single(iommu, domain->priv, s->dma_address,
  597. s->dma_length, dir);
  598. s->dma_address = s->dma_length = 0;
  599. }
  600. mapped_elems = 0;
  601. goto out;
  602. }
  603. static void unmap_sg(struct device *dev, struct scatterlist *sglist,
  604. int nelems, int dir)
  605. {
  606. unsigned long flags;
  607. struct amd_iommu *iommu;
  608. struct protection_domain *domain;
  609. struct scatterlist *s;
  610. u16 devid;
  611. int i;
  612. if (!get_device_resources(dev, &iommu, &domain, &devid))
  613. return;
  614. spin_lock_irqsave(&domain->lock, flags);
  615. for_each_sg(sglist, s, nelems, i) {
  616. __unmap_single(iommu, domain->priv, s->dma_address,
  617. s->dma_length, dir);
  618. iommu_flush_pages(iommu, domain->id, s->dma_address,
  619. s->dma_length);
  620. s->dma_address = s->dma_length = 0;
  621. }
  622. if (iommu->need_sync)
  623. iommu_completion_wait(iommu);
  624. spin_unlock_irqrestore(&domain->lock, flags);
  625. }
  626. static void *alloc_coherent(struct device *dev, size_t size,
  627. dma_addr_t *dma_addr, gfp_t flag)
  628. {
  629. unsigned long flags;
  630. void *virt_addr;
  631. struct amd_iommu *iommu;
  632. struct protection_domain *domain;
  633. u16 devid;
  634. phys_addr_t paddr;
  635. virt_addr = (void *)__get_free_pages(flag, get_order(size));
  636. if (!virt_addr)
  637. return 0;
  638. memset(virt_addr, 0, size);
  639. paddr = virt_to_phys(virt_addr);
  640. get_device_resources(dev, &iommu, &domain, &devid);
  641. if (!iommu || !domain) {
  642. *dma_addr = (dma_addr_t)paddr;
  643. return virt_addr;
  644. }
  645. spin_lock_irqsave(&domain->lock, flags);
  646. *dma_addr = __map_single(dev, iommu, domain->priv, paddr,
  647. size, DMA_BIDIRECTIONAL);
  648. if (*dma_addr == bad_dma_address) {
  649. free_pages((unsigned long)virt_addr, get_order(size));
  650. virt_addr = NULL;
  651. goto out;
  652. }
  653. if (iommu_has_npcache(iommu))
  654. iommu_flush_pages(iommu, domain->id, *dma_addr, size);
  655. if (iommu->need_sync)
  656. iommu_completion_wait(iommu);
  657. out:
  658. spin_unlock_irqrestore(&domain->lock, flags);
  659. return virt_addr;
  660. }
  661. static void free_coherent(struct device *dev, size_t size,
  662. void *virt_addr, dma_addr_t dma_addr)
  663. {
  664. unsigned long flags;
  665. struct amd_iommu *iommu;
  666. struct protection_domain *domain;
  667. u16 devid;
  668. get_device_resources(dev, &iommu, &domain, &devid);
  669. if (!iommu || !domain)
  670. goto free_mem;
  671. spin_lock_irqsave(&domain->lock, flags);
  672. __unmap_single(iommu, domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
  673. iommu_flush_pages(iommu, domain->id, dma_addr, size);
  674. if (iommu->need_sync)
  675. iommu_completion_wait(iommu);
  676. spin_unlock_irqrestore(&domain->lock, flags);
  677. free_mem:
  678. free_pages((unsigned long)virt_addr, get_order(size));
  679. }
  680. /*
  681. * If the driver core informs the DMA layer if a driver grabs a device
  682. * we don't need to preallocate the protection domains anymore.
  683. * For now we have to.
  684. */
  685. void prealloc_protection_domains(void)
  686. {
  687. struct pci_dev *dev = NULL;
  688. struct dma_ops_domain *dma_dom;
  689. struct amd_iommu *iommu;
  690. int order = amd_iommu_aperture_order;
  691. u16 devid;
  692. while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
  693. devid = (dev->bus->number << 8) | dev->devfn;
  694. if (devid >= amd_iommu_last_bdf)
  695. continue;
  696. devid = amd_iommu_alias_table[devid];
  697. if (domain_for_device(devid))
  698. continue;
  699. iommu = amd_iommu_rlookup_table[devid];
  700. if (!iommu)
  701. continue;
  702. dma_dom = dma_ops_domain_alloc(iommu, order);
  703. if (!dma_dom)
  704. continue;
  705. init_unity_mappings_for_device(dma_dom, devid);
  706. set_device_domain(iommu, &dma_dom->domain, devid);
  707. printk(KERN_INFO "AMD IOMMU: Allocated domain %d for device ",
  708. dma_dom->domain.id);
  709. print_devid(devid, 1);
  710. }
  711. }
  712. static struct dma_mapping_ops amd_iommu_dma_ops = {
  713. .alloc_coherent = alloc_coherent,
  714. .free_coherent = free_coherent,
  715. .map_single = map_single,
  716. .unmap_single = unmap_single,
  717. .map_sg = map_sg,
  718. .unmap_sg = unmap_sg,
  719. };
  720. int __init amd_iommu_init_dma_ops(void)
  721. {
  722. struct amd_iommu *iommu;
  723. int order = amd_iommu_aperture_order;
  724. int ret;
  725. list_for_each_entry(iommu, &amd_iommu_list, list) {
  726. iommu->default_dom = dma_ops_domain_alloc(iommu, order);
  727. if (iommu->default_dom == NULL)
  728. return -ENOMEM;
  729. ret = iommu_init_unity_mappings(iommu);
  730. if (ret)
  731. goto free_domains;
  732. }
  733. if (amd_iommu_isolate)
  734. prealloc_protection_domains();
  735. iommu_detected = 1;
  736. force_iommu = 1;
  737. bad_dma_address = 0;
  738. #ifdef CONFIG_GART_IOMMU
  739. gart_iommu_aperture_disabled = 1;
  740. gart_iommu_aperture = 0;
  741. #endif
  742. dma_ops = &amd_iommu_dma_ops;
  743. return 0;
  744. free_domains:
  745. list_for_each_entry(iommu, &amd_iommu_list, list) {
  746. if (iommu->default_dom)
  747. dma_ops_domain_free(iommu->default_dom);
  748. }
  749. return ret;
  750. }