i8254.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631
  1. /*
  2. * 8253/8254 interval timer emulation
  3. *
  4. * Copyright (c) 2003-2004 Fabrice Bellard
  5. * Copyright (c) 2006 Intel Corporation
  6. * Copyright (c) 2007 Keir Fraser, XenSource Inc
  7. * Copyright (c) 2008 Intel Corporation
  8. *
  9. * Permission is hereby granted, free of charge, to any person obtaining a copy
  10. * of this software and associated documentation files (the "Software"), to deal
  11. * in the Software without restriction, including without limitation the rights
  12. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  13. * copies of the Software, and to permit persons to whom the Software is
  14. * furnished to do so, subject to the following conditions:
  15. *
  16. * The above copyright notice and this permission notice shall be included in
  17. * all copies or substantial portions of the Software.
  18. *
  19. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  20. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  21. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  22. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  23. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  24. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  25. * THE SOFTWARE.
  26. *
  27. * Authors:
  28. * Sheng Yang <sheng.yang@intel.com>
  29. * Based on QEMU and Xen.
  30. */
  31. #include <linux/kvm_host.h>
  32. #include "irq.h"
  33. #include "i8254.h"
  34. #ifndef CONFIG_X86_64
  35. #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
  36. #else
  37. #define mod_64(x, y) ((x) % (y))
  38. #endif
  39. #define RW_STATE_LSB 1
  40. #define RW_STATE_MSB 2
  41. #define RW_STATE_WORD0 3
  42. #define RW_STATE_WORD1 4
  43. /* Compute with 96 bit intermediate result: (a*b)/c */
  44. static u64 muldiv64(u64 a, u32 b, u32 c)
  45. {
  46. union {
  47. u64 ll;
  48. struct {
  49. u32 low, high;
  50. } l;
  51. } u, res;
  52. u64 rl, rh;
  53. u.ll = a;
  54. rl = (u64)u.l.low * (u64)b;
  55. rh = (u64)u.l.high * (u64)b;
  56. rh += (rl >> 32);
  57. res.l.high = div64_u64(rh, c);
  58. res.l.low = div64_u64(((mod_64(rh, c) << 32) + (rl & 0xffffffff)), c);
  59. return res.ll;
  60. }
  61. static void pit_set_gate(struct kvm *kvm, int channel, u32 val)
  62. {
  63. struct kvm_kpit_channel_state *c =
  64. &kvm->arch.vpit->pit_state.channels[channel];
  65. WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
  66. switch (c->mode) {
  67. default:
  68. case 0:
  69. case 4:
  70. /* XXX: just disable/enable counting */
  71. break;
  72. case 1:
  73. case 2:
  74. case 3:
  75. case 5:
  76. /* Restart counting on rising edge. */
  77. if (c->gate < val)
  78. c->count_load_time = ktime_get();
  79. break;
  80. }
  81. c->gate = val;
  82. }
  83. static int pit_get_gate(struct kvm *kvm, int channel)
  84. {
  85. WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
  86. return kvm->arch.vpit->pit_state.channels[channel].gate;
  87. }
  88. static int pit_get_count(struct kvm *kvm, int channel)
  89. {
  90. struct kvm_kpit_channel_state *c =
  91. &kvm->arch.vpit->pit_state.channels[channel];
  92. s64 d, t;
  93. int counter;
  94. WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
  95. t = ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
  96. d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
  97. switch (c->mode) {
  98. case 0:
  99. case 1:
  100. case 4:
  101. case 5:
  102. counter = (c->count - d) & 0xffff;
  103. break;
  104. case 3:
  105. /* XXX: may be incorrect for odd counts */
  106. counter = c->count - (mod_64((2 * d), c->count));
  107. break;
  108. default:
  109. counter = c->count - mod_64(d, c->count);
  110. break;
  111. }
  112. return counter;
  113. }
  114. static int pit_get_out(struct kvm *kvm, int channel)
  115. {
  116. struct kvm_kpit_channel_state *c =
  117. &kvm->arch.vpit->pit_state.channels[channel];
  118. s64 d, t;
  119. int out;
  120. WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
  121. t = ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
  122. d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
  123. switch (c->mode) {
  124. default:
  125. case 0:
  126. out = (d >= c->count);
  127. break;
  128. case 1:
  129. out = (d < c->count);
  130. break;
  131. case 2:
  132. out = ((mod_64(d, c->count) == 0) && (d != 0));
  133. break;
  134. case 3:
  135. out = (mod_64(d, c->count) < ((c->count + 1) >> 1));
  136. break;
  137. case 4:
  138. case 5:
  139. out = (d == c->count);
  140. break;
  141. }
  142. return out;
  143. }
  144. static void pit_latch_count(struct kvm *kvm, int channel)
  145. {
  146. struct kvm_kpit_channel_state *c =
  147. &kvm->arch.vpit->pit_state.channels[channel];
  148. WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
  149. if (!c->count_latched) {
  150. c->latched_count = pit_get_count(kvm, channel);
  151. c->count_latched = c->rw_mode;
  152. }
  153. }
  154. static void pit_latch_status(struct kvm *kvm, int channel)
  155. {
  156. struct kvm_kpit_channel_state *c =
  157. &kvm->arch.vpit->pit_state.channels[channel];
  158. WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
  159. if (!c->status_latched) {
  160. /* TODO: Return NULL COUNT (bit 6). */
  161. c->status = ((pit_get_out(kvm, channel) << 7) |
  162. (c->rw_mode << 4) |
  163. (c->mode << 1) |
  164. c->bcd);
  165. c->status_latched = 1;
  166. }
  167. }
  168. static int __pit_timer_fn(struct kvm_kpit_state *ps)
  169. {
  170. struct kvm_vcpu *vcpu0 = ps->pit->kvm->vcpus[0];
  171. struct kvm_kpit_timer *pt = &ps->pit_timer;
  172. atomic_inc(&pt->pending);
  173. smp_mb__after_atomic_inc();
  174. if (vcpu0) {
  175. set_bit(KVM_REQ_PENDING_TIMER, &vcpu0->requests);
  176. if (waitqueue_active(&vcpu0->wq)) {
  177. vcpu0->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  178. wake_up_interruptible(&vcpu0->wq);
  179. }
  180. }
  181. pt->timer.expires = ktime_add_ns(pt->timer.expires, pt->period);
  182. pt->scheduled = ktime_to_ns(pt->timer.expires);
  183. return (pt->period == 0 ? 0 : 1);
  184. }
  185. int pit_has_pending_timer(struct kvm_vcpu *vcpu)
  186. {
  187. struct kvm_pit *pit = vcpu->kvm->arch.vpit;
  188. if (pit && vcpu->vcpu_id == 0 && pit->pit_state.inject_pending)
  189. return atomic_read(&pit->pit_state.pit_timer.pending);
  190. return 0;
  191. }
  192. static enum hrtimer_restart pit_timer_fn(struct hrtimer *data)
  193. {
  194. struct kvm_kpit_state *ps;
  195. int restart_timer = 0;
  196. ps = container_of(data, struct kvm_kpit_state, pit_timer.timer);
  197. restart_timer = __pit_timer_fn(ps);
  198. if (restart_timer)
  199. return HRTIMER_RESTART;
  200. else
  201. return HRTIMER_NORESTART;
  202. }
  203. void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu)
  204. {
  205. struct kvm_pit *pit = vcpu->kvm->arch.vpit;
  206. struct hrtimer *timer;
  207. if (vcpu->vcpu_id != 0 || !pit)
  208. return;
  209. timer = &pit->pit_state.pit_timer.timer;
  210. if (hrtimer_cancel(timer))
  211. hrtimer_start(timer, timer->expires, HRTIMER_MODE_ABS);
  212. }
  213. static void destroy_pit_timer(struct kvm_kpit_timer *pt)
  214. {
  215. pr_debug("pit: execute del timer!\n");
  216. hrtimer_cancel(&pt->timer);
  217. }
  218. static void create_pit_timer(struct kvm_kpit_timer *pt, u32 val, int is_period)
  219. {
  220. s64 interval;
  221. interval = muldiv64(val, NSEC_PER_SEC, KVM_PIT_FREQ);
  222. pr_debug("pit: create pit timer, interval is %llu nsec\n", interval);
  223. /* TODO The new value only affected after the retriggered */
  224. hrtimer_cancel(&pt->timer);
  225. pt->period = (is_period == 0) ? 0 : interval;
  226. pt->timer.function = pit_timer_fn;
  227. atomic_set(&pt->pending, 0);
  228. hrtimer_start(&pt->timer, ktime_add_ns(ktime_get(), interval),
  229. HRTIMER_MODE_ABS);
  230. }
  231. static void pit_load_count(struct kvm *kvm, int channel, u32 val)
  232. {
  233. struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
  234. WARN_ON(!mutex_is_locked(&ps->lock));
  235. pr_debug("pit: load_count val is %d, channel is %d\n", val, channel);
  236. /*
  237. * Though spec said the state of 8254 is undefined after power-up,
  238. * seems some tricky OS like Windows XP depends on IRQ0 interrupt
  239. * when booting up.
  240. * So here setting initialize rate for it, and not a specific number
  241. */
  242. if (val == 0)
  243. val = 0x10000;
  244. ps->channels[channel].count_load_time = ktime_get();
  245. ps->channels[channel].count = val;
  246. if (channel != 0)
  247. return;
  248. /* Two types of timer
  249. * mode 1 is one shot, mode 2 is period, otherwise del timer */
  250. switch (ps->channels[0].mode) {
  251. case 1:
  252. /* FIXME: enhance mode 4 precision */
  253. case 4:
  254. create_pit_timer(&ps->pit_timer, val, 0);
  255. break;
  256. case 2:
  257. case 3:
  258. create_pit_timer(&ps->pit_timer, val, 1);
  259. break;
  260. default:
  261. destroy_pit_timer(&ps->pit_timer);
  262. }
  263. }
  264. void kvm_pit_load_count(struct kvm *kvm, int channel, u32 val)
  265. {
  266. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  267. pit_load_count(kvm, channel, val);
  268. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  269. }
  270. static void pit_ioport_write(struct kvm_io_device *this,
  271. gpa_t addr, int len, const void *data)
  272. {
  273. struct kvm_pit *pit = (struct kvm_pit *)this->private;
  274. struct kvm_kpit_state *pit_state = &pit->pit_state;
  275. struct kvm *kvm = pit->kvm;
  276. int channel, access;
  277. struct kvm_kpit_channel_state *s;
  278. u32 val = *(u32 *) data;
  279. val &= 0xff;
  280. addr &= KVM_PIT_CHANNEL_MASK;
  281. mutex_lock(&pit_state->lock);
  282. if (val != 0)
  283. pr_debug("pit: write addr is 0x%x, len is %d, val is 0x%x\n",
  284. (unsigned int)addr, len, val);
  285. if (addr == 3) {
  286. channel = val >> 6;
  287. if (channel == 3) {
  288. /* Read-Back Command. */
  289. for (channel = 0; channel < 3; channel++) {
  290. s = &pit_state->channels[channel];
  291. if (val & (2 << channel)) {
  292. if (!(val & 0x20))
  293. pit_latch_count(kvm, channel);
  294. if (!(val & 0x10))
  295. pit_latch_status(kvm, channel);
  296. }
  297. }
  298. } else {
  299. /* Select Counter <channel>. */
  300. s = &pit_state->channels[channel];
  301. access = (val >> 4) & KVM_PIT_CHANNEL_MASK;
  302. if (access == 0) {
  303. pit_latch_count(kvm, channel);
  304. } else {
  305. s->rw_mode = access;
  306. s->read_state = access;
  307. s->write_state = access;
  308. s->mode = (val >> 1) & 7;
  309. if (s->mode > 5)
  310. s->mode -= 4;
  311. s->bcd = val & 1;
  312. }
  313. }
  314. } else {
  315. /* Write Count. */
  316. s = &pit_state->channels[addr];
  317. switch (s->write_state) {
  318. default:
  319. case RW_STATE_LSB:
  320. pit_load_count(kvm, addr, val);
  321. break;
  322. case RW_STATE_MSB:
  323. pit_load_count(kvm, addr, val << 8);
  324. break;
  325. case RW_STATE_WORD0:
  326. s->write_latch = val;
  327. s->write_state = RW_STATE_WORD1;
  328. break;
  329. case RW_STATE_WORD1:
  330. pit_load_count(kvm, addr, s->write_latch | (val << 8));
  331. s->write_state = RW_STATE_WORD0;
  332. break;
  333. }
  334. }
  335. mutex_unlock(&pit_state->lock);
  336. }
  337. static void pit_ioport_read(struct kvm_io_device *this,
  338. gpa_t addr, int len, void *data)
  339. {
  340. struct kvm_pit *pit = (struct kvm_pit *)this->private;
  341. struct kvm_kpit_state *pit_state = &pit->pit_state;
  342. struct kvm *kvm = pit->kvm;
  343. int ret, count;
  344. struct kvm_kpit_channel_state *s;
  345. addr &= KVM_PIT_CHANNEL_MASK;
  346. s = &pit_state->channels[addr];
  347. mutex_lock(&pit_state->lock);
  348. if (s->status_latched) {
  349. s->status_latched = 0;
  350. ret = s->status;
  351. } else if (s->count_latched) {
  352. switch (s->count_latched) {
  353. default:
  354. case RW_STATE_LSB:
  355. ret = s->latched_count & 0xff;
  356. s->count_latched = 0;
  357. break;
  358. case RW_STATE_MSB:
  359. ret = s->latched_count >> 8;
  360. s->count_latched = 0;
  361. break;
  362. case RW_STATE_WORD0:
  363. ret = s->latched_count & 0xff;
  364. s->count_latched = RW_STATE_MSB;
  365. break;
  366. }
  367. } else {
  368. switch (s->read_state) {
  369. default:
  370. case RW_STATE_LSB:
  371. count = pit_get_count(kvm, addr);
  372. ret = count & 0xff;
  373. break;
  374. case RW_STATE_MSB:
  375. count = pit_get_count(kvm, addr);
  376. ret = (count >> 8) & 0xff;
  377. break;
  378. case RW_STATE_WORD0:
  379. count = pit_get_count(kvm, addr);
  380. ret = count & 0xff;
  381. s->read_state = RW_STATE_WORD1;
  382. break;
  383. case RW_STATE_WORD1:
  384. count = pit_get_count(kvm, addr);
  385. ret = (count >> 8) & 0xff;
  386. s->read_state = RW_STATE_WORD0;
  387. break;
  388. }
  389. }
  390. if (len > sizeof(ret))
  391. len = sizeof(ret);
  392. memcpy(data, (char *)&ret, len);
  393. mutex_unlock(&pit_state->lock);
  394. }
  395. static int pit_in_range(struct kvm_io_device *this, gpa_t addr,
  396. int len, int is_write)
  397. {
  398. return ((addr >= KVM_PIT_BASE_ADDRESS) &&
  399. (addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH));
  400. }
  401. static void speaker_ioport_write(struct kvm_io_device *this,
  402. gpa_t addr, int len, const void *data)
  403. {
  404. struct kvm_pit *pit = (struct kvm_pit *)this->private;
  405. struct kvm_kpit_state *pit_state = &pit->pit_state;
  406. struct kvm *kvm = pit->kvm;
  407. u32 val = *(u32 *) data;
  408. mutex_lock(&pit_state->lock);
  409. pit_state->speaker_data_on = (val >> 1) & 1;
  410. pit_set_gate(kvm, 2, val & 1);
  411. mutex_unlock(&pit_state->lock);
  412. }
  413. static void speaker_ioport_read(struct kvm_io_device *this,
  414. gpa_t addr, int len, void *data)
  415. {
  416. struct kvm_pit *pit = (struct kvm_pit *)this->private;
  417. struct kvm_kpit_state *pit_state = &pit->pit_state;
  418. struct kvm *kvm = pit->kvm;
  419. unsigned int refresh_clock;
  420. int ret;
  421. /* Refresh clock toggles at about 15us. We approximate as 2^14ns. */
  422. refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1;
  423. mutex_lock(&pit_state->lock);
  424. ret = ((pit_state->speaker_data_on << 1) | pit_get_gate(kvm, 2) |
  425. (pit_get_out(kvm, 2) << 5) | (refresh_clock << 4));
  426. if (len > sizeof(ret))
  427. len = sizeof(ret);
  428. memcpy(data, (char *)&ret, len);
  429. mutex_unlock(&pit_state->lock);
  430. }
  431. static int speaker_in_range(struct kvm_io_device *this, gpa_t addr,
  432. int len, int is_write)
  433. {
  434. return (addr == KVM_SPEAKER_BASE_ADDRESS);
  435. }
  436. void kvm_pit_reset(struct kvm_pit *pit)
  437. {
  438. int i;
  439. struct kvm_kpit_channel_state *c;
  440. mutex_lock(&pit->pit_state.lock);
  441. for (i = 0; i < 3; i++) {
  442. c = &pit->pit_state.channels[i];
  443. c->mode = 0xff;
  444. c->gate = (i != 2);
  445. pit_load_count(pit->kvm, i, 0);
  446. }
  447. mutex_unlock(&pit->pit_state.lock);
  448. atomic_set(&pit->pit_state.pit_timer.pending, 0);
  449. pit->pit_state.inject_pending = 1;
  450. }
  451. struct kvm_pit *kvm_create_pit(struct kvm *kvm)
  452. {
  453. struct kvm_pit *pit;
  454. struct kvm_kpit_state *pit_state;
  455. pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL);
  456. if (!pit)
  457. return NULL;
  458. mutex_init(&pit->pit_state.lock);
  459. mutex_lock(&pit->pit_state.lock);
  460. /* Initialize PIO device */
  461. pit->dev.read = pit_ioport_read;
  462. pit->dev.write = pit_ioport_write;
  463. pit->dev.in_range = pit_in_range;
  464. pit->dev.private = pit;
  465. kvm_io_bus_register_dev(&kvm->pio_bus, &pit->dev);
  466. pit->speaker_dev.read = speaker_ioport_read;
  467. pit->speaker_dev.write = speaker_ioport_write;
  468. pit->speaker_dev.in_range = speaker_in_range;
  469. pit->speaker_dev.private = pit;
  470. kvm_io_bus_register_dev(&kvm->pio_bus, &pit->speaker_dev);
  471. kvm->arch.vpit = pit;
  472. pit->kvm = kvm;
  473. pit_state = &pit->pit_state;
  474. pit_state->pit = pit;
  475. hrtimer_init(&pit_state->pit_timer.timer,
  476. CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
  477. mutex_unlock(&pit->pit_state.lock);
  478. kvm_pit_reset(pit);
  479. return pit;
  480. }
  481. void kvm_free_pit(struct kvm *kvm)
  482. {
  483. struct hrtimer *timer;
  484. if (kvm->arch.vpit) {
  485. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  486. timer = &kvm->arch.vpit->pit_state.pit_timer.timer;
  487. hrtimer_cancel(timer);
  488. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  489. kfree(kvm->arch.vpit);
  490. }
  491. }
  492. static void __inject_pit_timer_intr(struct kvm *kvm)
  493. {
  494. mutex_lock(&kvm->lock);
  495. kvm_ioapic_set_irq(kvm->arch.vioapic, 0, 1);
  496. kvm_ioapic_set_irq(kvm->arch.vioapic, 0, 0);
  497. kvm_pic_set_irq(pic_irqchip(kvm), 0, 1);
  498. kvm_pic_set_irq(pic_irqchip(kvm), 0, 0);
  499. mutex_unlock(&kvm->lock);
  500. }
  501. void kvm_inject_pit_timer_irqs(struct kvm_vcpu *vcpu)
  502. {
  503. struct kvm_pit *pit = vcpu->kvm->arch.vpit;
  504. struct kvm *kvm = vcpu->kvm;
  505. struct kvm_kpit_state *ps;
  506. if (vcpu && pit) {
  507. ps = &pit->pit_state;
  508. /* Try to inject pending interrupts when:
  509. * 1. Pending exists
  510. * 2. Last interrupt was accepted or waited for too long time*/
  511. if (atomic_read(&ps->pit_timer.pending) &&
  512. (ps->inject_pending ||
  513. (jiffies - ps->last_injected_time
  514. >= KVM_MAX_PIT_INTR_INTERVAL))) {
  515. ps->inject_pending = 0;
  516. __inject_pit_timer_intr(kvm);
  517. ps->last_injected_time = jiffies;
  518. }
  519. }
  520. }
  521. void kvm_pit_timer_intr_post(struct kvm_vcpu *vcpu, int vec)
  522. {
  523. struct kvm_arch *arch = &vcpu->kvm->arch;
  524. struct kvm_kpit_state *ps;
  525. if (vcpu && arch->vpit) {
  526. ps = &arch->vpit->pit_state;
  527. if (atomic_read(&ps->pit_timer.pending) &&
  528. (((arch->vpic->pics[0].imr & 1) == 0 &&
  529. arch->vpic->pics[0].irq_base == vec) ||
  530. (arch->vioapic->redirtbl[0].fields.vector == vec &&
  531. arch->vioapic->redirtbl[0].fields.mask != 1))) {
  532. ps->inject_pending = 1;
  533. atomic_dec(&ps->pit_timer.pending);
  534. ps->channels[0].count_load_time = ktime_get();
  535. }
  536. }
  537. }