memory-failure.c 34 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285
  1. /*
  2. * Copyright (C) 2008, 2009 Intel Corporation
  3. * Authors: Andi Kleen, Fengguang Wu
  4. *
  5. * This software may be redistributed and/or modified under the terms of
  6. * the GNU General Public License ("GPL") version 2 only as published by the
  7. * Free Software Foundation.
  8. *
  9. * High level machine check handler. Handles pages reported by the
  10. * hardware as being corrupted usually due to a 2bit ECC memory or cache
  11. * failure.
  12. *
  13. * Handles page cache pages in various states. The tricky part
  14. * here is that we can access any page asynchronous to other VM
  15. * users, because memory failures could happen anytime and anywhere,
  16. * possibly violating some of their assumptions. This is why this code
  17. * has to be extremely careful. Generally it tries to use normal locking
  18. * rules, as in get the standard locks, even if that means the
  19. * error handling takes potentially a long time.
  20. *
  21. * The operation to map back from RMAP chains to processes has to walk
  22. * the complete process list and has non linear complexity with the number
  23. * mappings. In short it can be quite slow. But since memory corruptions
  24. * are rare we hope to get away with this.
  25. */
  26. /*
  27. * Notebook:
  28. * - hugetlb needs more code
  29. * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
  30. * - pass bad pages to kdump next kernel
  31. */
  32. #define DEBUG 1 /* remove me in 2.6.34 */
  33. #include <linux/kernel.h>
  34. #include <linux/mm.h>
  35. #include <linux/page-flags.h>
  36. #include <linux/kernel-page-flags.h>
  37. #include <linux/sched.h>
  38. #include <linux/ksm.h>
  39. #include <linux/rmap.h>
  40. #include <linux/pagemap.h>
  41. #include <linux/swap.h>
  42. #include <linux/backing-dev.h>
  43. #include <linux/migrate.h>
  44. #include <linux/page-isolation.h>
  45. #include <linux/suspend.h>
  46. #include "internal.h"
  47. int sysctl_memory_failure_early_kill __read_mostly = 0;
  48. int sysctl_memory_failure_recovery __read_mostly = 1;
  49. atomic_long_t mce_bad_pages __read_mostly = ATOMIC_LONG_INIT(0);
  50. u32 hwpoison_filter_enable = 0;
  51. u32 hwpoison_filter_dev_major = ~0U;
  52. u32 hwpoison_filter_dev_minor = ~0U;
  53. u64 hwpoison_filter_flags_mask;
  54. u64 hwpoison_filter_flags_value;
  55. EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
  56. EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
  57. EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
  58. EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
  59. EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
  60. static int hwpoison_filter_dev(struct page *p)
  61. {
  62. struct address_space *mapping;
  63. dev_t dev;
  64. if (hwpoison_filter_dev_major == ~0U &&
  65. hwpoison_filter_dev_minor == ~0U)
  66. return 0;
  67. /*
  68. * page_mapping() does not accept slab page
  69. */
  70. if (PageSlab(p))
  71. return -EINVAL;
  72. mapping = page_mapping(p);
  73. if (mapping == NULL || mapping->host == NULL)
  74. return -EINVAL;
  75. dev = mapping->host->i_sb->s_dev;
  76. if (hwpoison_filter_dev_major != ~0U &&
  77. hwpoison_filter_dev_major != MAJOR(dev))
  78. return -EINVAL;
  79. if (hwpoison_filter_dev_minor != ~0U &&
  80. hwpoison_filter_dev_minor != MINOR(dev))
  81. return -EINVAL;
  82. return 0;
  83. }
  84. static int hwpoison_filter_flags(struct page *p)
  85. {
  86. if (!hwpoison_filter_flags_mask)
  87. return 0;
  88. if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
  89. hwpoison_filter_flags_value)
  90. return 0;
  91. else
  92. return -EINVAL;
  93. }
  94. /*
  95. * This allows stress tests to limit test scope to a collection of tasks
  96. * by putting them under some memcg. This prevents killing unrelated/important
  97. * processes such as /sbin/init. Note that the target task may share clean
  98. * pages with init (eg. libc text), which is harmless. If the target task
  99. * share _dirty_ pages with another task B, the test scheme must make sure B
  100. * is also included in the memcg. At last, due to race conditions this filter
  101. * can only guarantee that the page either belongs to the memcg tasks, or is
  102. * a freed page.
  103. */
  104. #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
  105. u64 hwpoison_filter_memcg;
  106. EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
  107. static int hwpoison_filter_task(struct page *p)
  108. {
  109. struct mem_cgroup *mem;
  110. struct cgroup_subsys_state *css;
  111. unsigned long ino;
  112. if (!hwpoison_filter_memcg)
  113. return 0;
  114. mem = try_get_mem_cgroup_from_page(p);
  115. if (!mem)
  116. return -EINVAL;
  117. css = mem_cgroup_css(mem);
  118. /* root_mem_cgroup has NULL dentries */
  119. if (!css->cgroup->dentry)
  120. return -EINVAL;
  121. ino = css->cgroup->dentry->d_inode->i_ino;
  122. css_put(css);
  123. if (ino != hwpoison_filter_memcg)
  124. return -EINVAL;
  125. return 0;
  126. }
  127. #else
  128. static int hwpoison_filter_task(struct page *p) { return 0; }
  129. #endif
  130. int hwpoison_filter(struct page *p)
  131. {
  132. if (!hwpoison_filter_enable)
  133. return 0;
  134. if (hwpoison_filter_dev(p))
  135. return -EINVAL;
  136. if (hwpoison_filter_flags(p))
  137. return -EINVAL;
  138. if (hwpoison_filter_task(p))
  139. return -EINVAL;
  140. return 0;
  141. }
  142. EXPORT_SYMBOL_GPL(hwpoison_filter);
  143. /*
  144. * Send all the processes who have the page mapped an ``action optional''
  145. * signal.
  146. */
  147. static int kill_proc_ao(struct task_struct *t, unsigned long addr, int trapno,
  148. unsigned long pfn)
  149. {
  150. struct siginfo si;
  151. int ret;
  152. printk(KERN_ERR
  153. "MCE %#lx: Killing %s:%d early due to hardware memory corruption\n",
  154. pfn, t->comm, t->pid);
  155. si.si_signo = SIGBUS;
  156. si.si_errno = 0;
  157. si.si_code = BUS_MCEERR_AO;
  158. si.si_addr = (void *)addr;
  159. #ifdef __ARCH_SI_TRAPNO
  160. si.si_trapno = trapno;
  161. #endif
  162. si.si_addr_lsb = PAGE_SHIFT;
  163. /*
  164. * Don't use force here, it's convenient if the signal
  165. * can be temporarily blocked.
  166. * This could cause a loop when the user sets SIGBUS
  167. * to SIG_IGN, but hopefully noone will do that?
  168. */
  169. ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
  170. if (ret < 0)
  171. printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
  172. t->comm, t->pid, ret);
  173. return ret;
  174. }
  175. /*
  176. * When a unknown page type is encountered drain as many buffers as possible
  177. * in the hope to turn the page into a LRU or free page, which we can handle.
  178. */
  179. void shake_page(struct page *p, int access)
  180. {
  181. if (!PageSlab(p)) {
  182. lru_add_drain_all();
  183. if (PageLRU(p))
  184. return;
  185. drain_all_pages();
  186. if (PageLRU(p) || is_free_buddy_page(p))
  187. return;
  188. }
  189. /*
  190. * Only all shrink_slab here (which would also
  191. * shrink other caches) if access is not potentially fatal.
  192. */
  193. if (access) {
  194. int nr;
  195. do {
  196. nr = shrink_slab(1000, GFP_KERNEL, 1000);
  197. if (page_count(p) == 0)
  198. break;
  199. } while (nr > 10);
  200. }
  201. }
  202. EXPORT_SYMBOL_GPL(shake_page);
  203. /*
  204. * Kill all processes that have a poisoned page mapped and then isolate
  205. * the page.
  206. *
  207. * General strategy:
  208. * Find all processes having the page mapped and kill them.
  209. * But we keep a page reference around so that the page is not
  210. * actually freed yet.
  211. * Then stash the page away
  212. *
  213. * There's no convenient way to get back to mapped processes
  214. * from the VMAs. So do a brute-force search over all
  215. * running processes.
  216. *
  217. * Remember that machine checks are not common (or rather
  218. * if they are common you have other problems), so this shouldn't
  219. * be a performance issue.
  220. *
  221. * Also there are some races possible while we get from the
  222. * error detection to actually handle it.
  223. */
  224. struct to_kill {
  225. struct list_head nd;
  226. struct task_struct *tsk;
  227. unsigned long addr;
  228. unsigned addr_valid:1;
  229. };
  230. /*
  231. * Failure handling: if we can't find or can't kill a process there's
  232. * not much we can do. We just print a message and ignore otherwise.
  233. */
  234. /*
  235. * Schedule a process for later kill.
  236. * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
  237. * TBD would GFP_NOIO be enough?
  238. */
  239. static void add_to_kill(struct task_struct *tsk, struct page *p,
  240. struct vm_area_struct *vma,
  241. struct list_head *to_kill,
  242. struct to_kill **tkc)
  243. {
  244. struct to_kill *tk;
  245. if (*tkc) {
  246. tk = *tkc;
  247. *tkc = NULL;
  248. } else {
  249. tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
  250. if (!tk) {
  251. printk(KERN_ERR
  252. "MCE: Out of memory while machine check handling\n");
  253. return;
  254. }
  255. }
  256. tk->addr = page_address_in_vma(p, vma);
  257. tk->addr_valid = 1;
  258. /*
  259. * In theory we don't have to kill when the page was
  260. * munmaped. But it could be also a mremap. Since that's
  261. * likely very rare kill anyways just out of paranoia, but use
  262. * a SIGKILL because the error is not contained anymore.
  263. */
  264. if (tk->addr == -EFAULT) {
  265. pr_debug("MCE: Unable to find user space address %lx in %s\n",
  266. page_to_pfn(p), tsk->comm);
  267. tk->addr_valid = 0;
  268. }
  269. get_task_struct(tsk);
  270. tk->tsk = tsk;
  271. list_add_tail(&tk->nd, to_kill);
  272. }
  273. /*
  274. * Kill the processes that have been collected earlier.
  275. *
  276. * Only do anything when DOIT is set, otherwise just free the list
  277. * (this is used for clean pages which do not need killing)
  278. * Also when FAIL is set do a force kill because something went
  279. * wrong earlier.
  280. */
  281. static void kill_procs_ao(struct list_head *to_kill, int doit, int trapno,
  282. int fail, unsigned long pfn)
  283. {
  284. struct to_kill *tk, *next;
  285. list_for_each_entry_safe (tk, next, to_kill, nd) {
  286. if (doit) {
  287. /*
  288. * In case something went wrong with munmapping
  289. * make sure the process doesn't catch the
  290. * signal and then access the memory. Just kill it.
  291. */
  292. if (fail || tk->addr_valid == 0) {
  293. printk(KERN_ERR
  294. "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
  295. pfn, tk->tsk->comm, tk->tsk->pid);
  296. force_sig(SIGKILL, tk->tsk);
  297. }
  298. /*
  299. * In theory the process could have mapped
  300. * something else on the address in-between. We could
  301. * check for that, but we need to tell the
  302. * process anyways.
  303. */
  304. else if (kill_proc_ao(tk->tsk, tk->addr, trapno,
  305. pfn) < 0)
  306. printk(KERN_ERR
  307. "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
  308. pfn, tk->tsk->comm, tk->tsk->pid);
  309. }
  310. put_task_struct(tk->tsk);
  311. kfree(tk);
  312. }
  313. }
  314. static int task_early_kill(struct task_struct *tsk)
  315. {
  316. if (!tsk->mm)
  317. return 0;
  318. if (tsk->flags & PF_MCE_PROCESS)
  319. return !!(tsk->flags & PF_MCE_EARLY);
  320. return sysctl_memory_failure_early_kill;
  321. }
  322. /*
  323. * Collect processes when the error hit an anonymous page.
  324. */
  325. static void collect_procs_anon(struct page *page, struct list_head *to_kill,
  326. struct to_kill **tkc)
  327. {
  328. struct vm_area_struct *vma;
  329. struct task_struct *tsk;
  330. struct anon_vma *av;
  331. read_lock(&tasklist_lock);
  332. av = page_lock_anon_vma(page);
  333. if (av == NULL) /* Not actually mapped anymore */
  334. goto out;
  335. for_each_process (tsk) {
  336. if (!task_early_kill(tsk))
  337. continue;
  338. list_for_each_entry (vma, &av->head, anon_vma_node) {
  339. if (!page_mapped_in_vma(page, vma))
  340. continue;
  341. if (vma->vm_mm == tsk->mm)
  342. add_to_kill(tsk, page, vma, to_kill, tkc);
  343. }
  344. }
  345. page_unlock_anon_vma(av);
  346. out:
  347. read_unlock(&tasklist_lock);
  348. }
  349. /*
  350. * Collect processes when the error hit a file mapped page.
  351. */
  352. static void collect_procs_file(struct page *page, struct list_head *to_kill,
  353. struct to_kill **tkc)
  354. {
  355. struct vm_area_struct *vma;
  356. struct task_struct *tsk;
  357. struct prio_tree_iter iter;
  358. struct address_space *mapping = page->mapping;
  359. /*
  360. * A note on the locking order between the two locks.
  361. * We don't rely on this particular order.
  362. * If you have some other code that needs a different order
  363. * feel free to switch them around. Or add a reverse link
  364. * from mm_struct to task_struct, then this could be all
  365. * done without taking tasklist_lock and looping over all tasks.
  366. */
  367. read_lock(&tasklist_lock);
  368. spin_lock(&mapping->i_mmap_lock);
  369. for_each_process(tsk) {
  370. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  371. if (!task_early_kill(tsk))
  372. continue;
  373. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff,
  374. pgoff) {
  375. /*
  376. * Send early kill signal to tasks where a vma covers
  377. * the page but the corrupted page is not necessarily
  378. * mapped it in its pte.
  379. * Assume applications who requested early kill want
  380. * to be informed of all such data corruptions.
  381. */
  382. if (vma->vm_mm == tsk->mm)
  383. add_to_kill(tsk, page, vma, to_kill, tkc);
  384. }
  385. }
  386. spin_unlock(&mapping->i_mmap_lock);
  387. read_unlock(&tasklist_lock);
  388. }
  389. /*
  390. * Collect the processes who have the corrupted page mapped to kill.
  391. * This is done in two steps for locking reasons.
  392. * First preallocate one tokill structure outside the spin locks,
  393. * so that we can kill at least one process reasonably reliable.
  394. */
  395. static void collect_procs(struct page *page, struct list_head *tokill)
  396. {
  397. struct to_kill *tk;
  398. if (!page->mapping)
  399. return;
  400. tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
  401. if (!tk)
  402. return;
  403. if (PageAnon(page))
  404. collect_procs_anon(page, tokill, &tk);
  405. else
  406. collect_procs_file(page, tokill, &tk);
  407. kfree(tk);
  408. }
  409. /*
  410. * Error handlers for various types of pages.
  411. */
  412. enum outcome {
  413. IGNORED, /* Error: cannot be handled */
  414. FAILED, /* Error: handling failed */
  415. DELAYED, /* Will be handled later */
  416. RECOVERED, /* Successfully recovered */
  417. };
  418. static const char *action_name[] = {
  419. [IGNORED] = "Ignored",
  420. [FAILED] = "Failed",
  421. [DELAYED] = "Delayed",
  422. [RECOVERED] = "Recovered",
  423. };
  424. /*
  425. * XXX: It is possible that a page is isolated from LRU cache,
  426. * and then kept in swap cache or failed to remove from page cache.
  427. * The page count will stop it from being freed by unpoison.
  428. * Stress tests should be aware of this memory leak problem.
  429. */
  430. static int delete_from_lru_cache(struct page *p)
  431. {
  432. if (!isolate_lru_page(p)) {
  433. /*
  434. * Clear sensible page flags, so that the buddy system won't
  435. * complain when the page is unpoison-and-freed.
  436. */
  437. ClearPageActive(p);
  438. ClearPageUnevictable(p);
  439. /*
  440. * drop the page count elevated by isolate_lru_page()
  441. */
  442. page_cache_release(p);
  443. return 0;
  444. }
  445. return -EIO;
  446. }
  447. /*
  448. * Error hit kernel page.
  449. * Do nothing, try to be lucky and not touch this instead. For a few cases we
  450. * could be more sophisticated.
  451. */
  452. static int me_kernel(struct page *p, unsigned long pfn)
  453. {
  454. return IGNORED;
  455. }
  456. /*
  457. * Page in unknown state. Do nothing.
  458. */
  459. static int me_unknown(struct page *p, unsigned long pfn)
  460. {
  461. printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
  462. return FAILED;
  463. }
  464. /*
  465. * Clean (or cleaned) page cache page.
  466. */
  467. static int me_pagecache_clean(struct page *p, unsigned long pfn)
  468. {
  469. int err;
  470. int ret = FAILED;
  471. struct address_space *mapping;
  472. delete_from_lru_cache(p);
  473. /*
  474. * For anonymous pages we're done the only reference left
  475. * should be the one m_f() holds.
  476. */
  477. if (PageAnon(p))
  478. return RECOVERED;
  479. /*
  480. * Now truncate the page in the page cache. This is really
  481. * more like a "temporary hole punch"
  482. * Don't do this for block devices when someone else
  483. * has a reference, because it could be file system metadata
  484. * and that's not safe to truncate.
  485. */
  486. mapping = page_mapping(p);
  487. if (!mapping) {
  488. /*
  489. * Page has been teared down in the meanwhile
  490. */
  491. return FAILED;
  492. }
  493. /*
  494. * Truncation is a bit tricky. Enable it per file system for now.
  495. *
  496. * Open: to take i_mutex or not for this? Right now we don't.
  497. */
  498. if (mapping->a_ops->error_remove_page) {
  499. err = mapping->a_ops->error_remove_page(mapping, p);
  500. if (err != 0) {
  501. printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
  502. pfn, err);
  503. } else if (page_has_private(p) &&
  504. !try_to_release_page(p, GFP_NOIO)) {
  505. pr_debug("MCE %#lx: failed to release buffers\n", pfn);
  506. } else {
  507. ret = RECOVERED;
  508. }
  509. } else {
  510. /*
  511. * If the file system doesn't support it just invalidate
  512. * This fails on dirty or anything with private pages
  513. */
  514. if (invalidate_inode_page(p))
  515. ret = RECOVERED;
  516. else
  517. printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
  518. pfn);
  519. }
  520. return ret;
  521. }
  522. /*
  523. * Dirty cache page page
  524. * Issues: when the error hit a hole page the error is not properly
  525. * propagated.
  526. */
  527. static int me_pagecache_dirty(struct page *p, unsigned long pfn)
  528. {
  529. struct address_space *mapping = page_mapping(p);
  530. SetPageError(p);
  531. /* TBD: print more information about the file. */
  532. if (mapping) {
  533. /*
  534. * IO error will be reported by write(), fsync(), etc.
  535. * who check the mapping.
  536. * This way the application knows that something went
  537. * wrong with its dirty file data.
  538. *
  539. * There's one open issue:
  540. *
  541. * The EIO will be only reported on the next IO
  542. * operation and then cleared through the IO map.
  543. * Normally Linux has two mechanisms to pass IO error
  544. * first through the AS_EIO flag in the address space
  545. * and then through the PageError flag in the page.
  546. * Since we drop pages on memory failure handling the
  547. * only mechanism open to use is through AS_AIO.
  548. *
  549. * This has the disadvantage that it gets cleared on
  550. * the first operation that returns an error, while
  551. * the PageError bit is more sticky and only cleared
  552. * when the page is reread or dropped. If an
  553. * application assumes it will always get error on
  554. * fsync, but does other operations on the fd before
  555. * and the page is dropped inbetween then the error
  556. * will not be properly reported.
  557. *
  558. * This can already happen even without hwpoisoned
  559. * pages: first on metadata IO errors (which only
  560. * report through AS_EIO) or when the page is dropped
  561. * at the wrong time.
  562. *
  563. * So right now we assume that the application DTRT on
  564. * the first EIO, but we're not worse than other parts
  565. * of the kernel.
  566. */
  567. mapping_set_error(mapping, EIO);
  568. }
  569. return me_pagecache_clean(p, pfn);
  570. }
  571. /*
  572. * Clean and dirty swap cache.
  573. *
  574. * Dirty swap cache page is tricky to handle. The page could live both in page
  575. * cache and swap cache(ie. page is freshly swapped in). So it could be
  576. * referenced concurrently by 2 types of PTEs:
  577. * normal PTEs and swap PTEs. We try to handle them consistently by calling
  578. * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
  579. * and then
  580. * - clear dirty bit to prevent IO
  581. * - remove from LRU
  582. * - but keep in the swap cache, so that when we return to it on
  583. * a later page fault, we know the application is accessing
  584. * corrupted data and shall be killed (we installed simple
  585. * interception code in do_swap_page to catch it).
  586. *
  587. * Clean swap cache pages can be directly isolated. A later page fault will
  588. * bring in the known good data from disk.
  589. */
  590. static int me_swapcache_dirty(struct page *p, unsigned long pfn)
  591. {
  592. ClearPageDirty(p);
  593. /* Trigger EIO in shmem: */
  594. ClearPageUptodate(p);
  595. if (!delete_from_lru_cache(p))
  596. return DELAYED;
  597. else
  598. return FAILED;
  599. }
  600. static int me_swapcache_clean(struct page *p, unsigned long pfn)
  601. {
  602. delete_from_swap_cache(p);
  603. if (!delete_from_lru_cache(p))
  604. return RECOVERED;
  605. else
  606. return FAILED;
  607. }
  608. /*
  609. * Huge pages. Needs work.
  610. * Issues:
  611. * No rmap support so we cannot find the original mapper. In theory could walk
  612. * all MMs and look for the mappings, but that would be non atomic and racy.
  613. * Need rmap for hugepages for this. Alternatively we could employ a heuristic,
  614. * like just walking the current process and hoping it has it mapped (that
  615. * should be usually true for the common "shared database cache" case)
  616. * Should handle free huge pages and dequeue them too, but this needs to
  617. * handle huge page accounting correctly.
  618. */
  619. static int me_huge_page(struct page *p, unsigned long pfn)
  620. {
  621. return FAILED;
  622. }
  623. /*
  624. * Various page states we can handle.
  625. *
  626. * A page state is defined by its current page->flags bits.
  627. * The table matches them in order and calls the right handler.
  628. *
  629. * This is quite tricky because we can access page at any time
  630. * in its live cycle, so all accesses have to be extremly careful.
  631. *
  632. * This is not complete. More states could be added.
  633. * For any missing state don't attempt recovery.
  634. */
  635. #define dirty (1UL << PG_dirty)
  636. #define sc (1UL << PG_swapcache)
  637. #define unevict (1UL << PG_unevictable)
  638. #define mlock (1UL << PG_mlocked)
  639. #define writeback (1UL << PG_writeback)
  640. #define lru (1UL << PG_lru)
  641. #define swapbacked (1UL << PG_swapbacked)
  642. #define head (1UL << PG_head)
  643. #define tail (1UL << PG_tail)
  644. #define compound (1UL << PG_compound)
  645. #define slab (1UL << PG_slab)
  646. #define reserved (1UL << PG_reserved)
  647. static struct page_state {
  648. unsigned long mask;
  649. unsigned long res;
  650. char *msg;
  651. int (*action)(struct page *p, unsigned long pfn);
  652. } error_states[] = {
  653. { reserved, reserved, "reserved kernel", me_kernel },
  654. /*
  655. * free pages are specially detected outside this table:
  656. * PG_buddy pages only make a small fraction of all free pages.
  657. */
  658. /*
  659. * Could in theory check if slab page is free or if we can drop
  660. * currently unused objects without touching them. But just
  661. * treat it as standard kernel for now.
  662. */
  663. { slab, slab, "kernel slab", me_kernel },
  664. #ifdef CONFIG_PAGEFLAGS_EXTENDED
  665. { head, head, "huge", me_huge_page },
  666. { tail, tail, "huge", me_huge_page },
  667. #else
  668. { compound, compound, "huge", me_huge_page },
  669. #endif
  670. { sc|dirty, sc|dirty, "swapcache", me_swapcache_dirty },
  671. { sc|dirty, sc, "swapcache", me_swapcache_clean },
  672. { unevict|dirty, unevict|dirty, "unevictable LRU", me_pagecache_dirty},
  673. { unevict, unevict, "unevictable LRU", me_pagecache_clean},
  674. { mlock|dirty, mlock|dirty, "mlocked LRU", me_pagecache_dirty },
  675. { mlock, mlock, "mlocked LRU", me_pagecache_clean },
  676. { lru|dirty, lru|dirty, "LRU", me_pagecache_dirty },
  677. { lru|dirty, lru, "clean LRU", me_pagecache_clean },
  678. /*
  679. * Catchall entry: must be at end.
  680. */
  681. { 0, 0, "unknown page state", me_unknown },
  682. };
  683. #undef dirty
  684. #undef sc
  685. #undef unevict
  686. #undef mlock
  687. #undef writeback
  688. #undef lru
  689. #undef swapbacked
  690. #undef head
  691. #undef tail
  692. #undef compound
  693. #undef slab
  694. #undef reserved
  695. static void action_result(unsigned long pfn, char *msg, int result)
  696. {
  697. struct page *page = pfn_to_page(pfn);
  698. printk(KERN_ERR "MCE %#lx: %s%s page recovery: %s\n",
  699. pfn,
  700. PageDirty(page) ? "dirty " : "",
  701. msg, action_name[result]);
  702. }
  703. static int page_action(struct page_state *ps, struct page *p,
  704. unsigned long pfn)
  705. {
  706. int result;
  707. int count;
  708. result = ps->action(p, pfn);
  709. action_result(pfn, ps->msg, result);
  710. count = page_count(p) - 1;
  711. if (ps->action == me_swapcache_dirty && result == DELAYED)
  712. count--;
  713. if (count != 0) {
  714. printk(KERN_ERR
  715. "MCE %#lx: %s page still referenced by %d users\n",
  716. pfn, ps->msg, count);
  717. result = FAILED;
  718. }
  719. /* Could do more checks here if page looks ok */
  720. /*
  721. * Could adjust zone counters here to correct for the missing page.
  722. */
  723. return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
  724. }
  725. #define N_UNMAP_TRIES 5
  726. /*
  727. * Do all that is necessary to remove user space mappings. Unmap
  728. * the pages and send SIGBUS to the processes if the data was dirty.
  729. */
  730. static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
  731. int trapno)
  732. {
  733. enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
  734. struct address_space *mapping;
  735. LIST_HEAD(tokill);
  736. int ret;
  737. int i;
  738. int kill = 1;
  739. if (PageReserved(p) || PageSlab(p))
  740. return SWAP_SUCCESS;
  741. /*
  742. * This check implies we don't kill processes if their pages
  743. * are in the swap cache early. Those are always late kills.
  744. */
  745. if (!page_mapped(p))
  746. return SWAP_SUCCESS;
  747. if (PageCompound(p) || PageKsm(p))
  748. return SWAP_FAIL;
  749. if (PageSwapCache(p)) {
  750. printk(KERN_ERR
  751. "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
  752. ttu |= TTU_IGNORE_HWPOISON;
  753. }
  754. /*
  755. * Propagate the dirty bit from PTEs to struct page first, because we
  756. * need this to decide if we should kill or just drop the page.
  757. * XXX: the dirty test could be racy: set_page_dirty() may not always
  758. * be called inside page lock (it's recommended but not enforced).
  759. */
  760. mapping = page_mapping(p);
  761. if (!PageDirty(p) && mapping && mapping_cap_writeback_dirty(mapping)) {
  762. if (page_mkclean(p)) {
  763. SetPageDirty(p);
  764. } else {
  765. kill = 0;
  766. ttu |= TTU_IGNORE_HWPOISON;
  767. printk(KERN_INFO
  768. "MCE %#lx: corrupted page was clean: dropped without side effects\n",
  769. pfn);
  770. }
  771. }
  772. /*
  773. * First collect all the processes that have the page
  774. * mapped in dirty form. This has to be done before try_to_unmap,
  775. * because ttu takes the rmap data structures down.
  776. *
  777. * Error handling: We ignore errors here because
  778. * there's nothing that can be done.
  779. */
  780. if (kill)
  781. collect_procs(p, &tokill);
  782. /*
  783. * try_to_unmap can fail temporarily due to races.
  784. * Try a few times (RED-PEN better strategy?)
  785. */
  786. for (i = 0; i < N_UNMAP_TRIES; i++) {
  787. ret = try_to_unmap(p, ttu);
  788. if (ret == SWAP_SUCCESS)
  789. break;
  790. pr_debug("MCE %#lx: try_to_unmap retry needed %d\n", pfn, ret);
  791. }
  792. if (ret != SWAP_SUCCESS)
  793. printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
  794. pfn, page_mapcount(p));
  795. /*
  796. * Now that the dirty bit has been propagated to the
  797. * struct page and all unmaps done we can decide if
  798. * killing is needed or not. Only kill when the page
  799. * was dirty, otherwise the tokill list is merely
  800. * freed. When there was a problem unmapping earlier
  801. * use a more force-full uncatchable kill to prevent
  802. * any accesses to the poisoned memory.
  803. */
  804. kill_procs_ao(&tokill, !!PageDirty(p), trapno,
  805. ret != SWAP_SUCCESS, pfn);
  806. return ret;
  807. }
  808. int __memory_failure(unsigned long pfn, int trapno, int flags)
  809. {
  810. struct page_state *ps;
  811. struct page *p;
  812. int res;
  813. if (!sysctl_memory_failure_recovery)
  814. panic("Memory failure from trap %d on page %lx", trapno, pfn);
  815. if (!pfn_valid(pfn)) {
  816. printk(KERN_ERR
  817. "MCE %#lx: memory outside kernel control\n",
  818. pfn);
  819. return -ENXIO;
  820. }
  821. p = pfn_to_page(pfn);
  822. if (TestSetPageHWPoison(p)) {
  823. printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
  824. return 0;
  825. }
  826. atomic_long_add(1, &mce_bad_pages);
  827. /*
  828. * We need/can do nothing about count=0 pages.
  829. * 1) it's a free page, and therefore in safe hand:
  830. * prep_new_page() will be the gate keeper.
  831. * 2) it's part of a non-compound high order page.
  832. * Implies some kernel user: cannot stop them from
  833. * R/W the page; let's pray that the page has been
  834. * used and will be freed some time later.
  835. * In fact it's dangerous to directly bump up page count from 0,
  836. * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
  837. */
  838. if (!(flags & MF_COUNT_INCREASED) &&
  839. !get_page_unless_zero(compound_head(p))) {
  840. if (is_free_buddy_page(p)) {
  841. action_result(pfn, "free buddy", DELAYED);
  842. return 0;
  843. } else {
  844. action_result(pfn, "high order kernel", IGNORED);
  845. return -EBUSY;
  846. }
  847. }
  848. /*
  849. * We ignore non-LRU pages for good reasons.
  850. * - PG_locked is only well defined for LRU pages and a few others
  851. * - to avoid races with __set_page_locked()
  852. * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
  853. * The check (unnecessarily) ignores LRU pages being isolated and
  854. * walked by the page reclaim code, however that's not a big loss.
  855. */
  856. if (!PageLRU(p))
  857. shake_page(p, 0);
  858. if (!PageLRU(p)) {
  859. /*
  860. * shake_page could have turned it free.
  861. */
  862. if (is_free_buddy_page(p)) {
  863. action_result(pfn, "free buddy, 2nd try", DELAYED);
  864. return 0;
  865. }
  866. action_result(pfn, "non LRU", IGNORED);
  867. put_page(p);
  868. return -EBUSY;
  869. }
  870. /*
  871. * Lock the page and wait for writeback to finish.
  872. * It's very difficult to mess with pages currently under IO
  873. * and in many cases impossible, so we just avoid it here.
  874. */
  875. lock_page_nosync(p);
  876. /*
  877. * unpoison always clear PG_hwpoison inside page lock
  878. */
  879. if (!PageHWPoison(p)) {
  880. printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
  881. res = 0;
  882. goto out;
  883. }
  884. if (hwpoison_filter(p)) {
  885. if (TestClearPageHWPoison(p))
  886. atomic_long_dec(&mce_bad_pages);
  887. unlock_page(p);
  888. put_page(p);
  889. return 0;
  890. }
  891. wait_on_page_writeback(p);
  892. /*
  893. * Now take care of user space mappings.
  894. * Abort on fail: __remove_from_page_cache() assumes unmapped page.
  895. */
  896. if (hwpoison_user_mappings(p, pfn, trapno) != SWAP_SUCCESS) {
  897. printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn);
  898. res = -EBUSY;
  899. goto out;
  900. }
  901. /*
  902. * Torn down by someone else?
  903. */
  904. if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
  905. action_result(pfn, "already truncated LRU", IGNORED);
  906. res = -EBUSY;
  907. goto out;
  908. }
  909. res = -EBUSY;
  910. for (ps = error_states;; ps++) {
  911. if ((p->flags & ps->mask) == ps->res) {
  912. res = page_action(ps, p, pfn);
  913. break;
  914. }
  915. }
  916. out:
  917. unlock_page(p);
  918. return res;
  919. }
  920. EXPORT_SYMBOL_GPL(__memory_failure);
  921. /**
  922. * memory_failure - Handle memory failure of a page.
  923. * @pfn: Page Number of the corrupted page
  924. * @trapno: Trap number reported in the signal to user space.
  925. *
  926. * This function is called by the low level machine check code
  927. * of an architecture when it detects hardware memory corruption
  928. * of a page. It tries its best to recover, which includes
  929. * dropping pages, killing processes etc.
  930. *
  931. * The function is primarily of use for corruptions that
  932. * happen outside the current execution context (e.g. when
  933. * detected by a background scrubber)
  934. *
  935. * Must run in process context (e.g. a work queue) with interrupts
  936. * enabled and no spinlocks hold.
  937. */
  938. void memory_failure(unsigned long pfn, int trapno)
  939. {
  940. __memory_failure(pfn, trapno, 0);
  941. }
  942. /**
  943. * unpoison_memory - Unpoison a previously poisoned page
  944. * @pfn: Page number of the to be unpoisoned page
  945. *
  946. * Software-unpoison a page that has been poisoned by
  947. * memory_failure() earlier.
  948. *
  949. * This is only done on the software-level, so it only works
  950. * for linux injected failures, not real hardware failures
  951. *
  952. * Returns 0 for success, otherwise -errno.
  953. */
  954. int unpoison_memory(unsigned long pfn)
  955. {
  956. struct page *page;
  957. struct page *p;
  958. int freeit = 0;
  959. if (!pfn_valid(pfn))
  960. return -ENXIO;
  961. p = pfn_to_page(pfn);
  962. page = compound_head(p);
  963. if (!PageHWPoison(p)) {
  964. pr_debug("MCE: Page was already unpoisoned %#lx\n", pfn);
  965. return 0;
  966. }
  967. if (!get_page_unless_zero(page)) {
  968. if (TestClearPageHWPoison(p))
  969. atomic_long_dec(&mce_bad_pages);
  970. pr_debug("MCE: Software-unpoisoned free page %#lx\n", pfn);
  971. return 0;
  972. }
  973. lock_page_nosync(page);
  974. /*
  975. * This test is racy because PG_hwpoison is set outside of page lock.
  976. * That's acceptable because that won't trigger kernel panic. Instead,
  977. * the PG_hwpoison page will be caught and isolated on the entrance to
  978. * the free buddy page pool.
  979. */
  980. if (TestClearPageHWPoison(p)) {
  981. pr_debug("MCE: Software-unpoisoned page %#lx\n", pfn);
  982. atomic_long_dec(&mce_bad_pages);
  983. freeit = 1;
  984. }
  985. unlock_page(page);
  986. put_page(page);
  987. if (freeit)
  988. put_page(page);
  989. return 0;
  990. }
  991. EXPORT_SYMBOL(unpoison_memory);
  992. static struct page *new_page(struct page *p, unsigned long private, int **x)
  993. {
  994. int nid = page_to_nid(p);
  995. return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
  996. }
  997. /*
  998. * Safely get reference count of an arbitrary page.
  999. * Returns 0 for a free page, -EIO for a zero refcount page
  1000. * that is not free, and 1 for any other page type.
  1001. * For 1 the page is returned with increased page count, otherwise not.
  1002. */
  1003. static int get_any_page(struct page *p, unsigned long pfn, int flags)
  1004. {
  1005. int ret;
  1006. if (flags & MF_COUNT_INCREASED)
  1007. return 1;
  1008. /*
  1009. * The lock_system_sleep prevents a race with memory hotplug,
  1010. * because the isolation assumes there's only a single user.
  1011. * This is a big hammer, a better would be nicer.
  1012. */
  1013. lock_system_sleep();
  1014. /*
  1015. * Isolate the page, so that it doesn't get reallocated if it
  1016. * was free.
  1017. */
  1018. set_migratetype_isolate(p);
  1019. if (!get_page_unless_zero(compound_head(p))) {
  1020. if (is_free_buddy_page(p)) {
  1021. pr_debug("get_any_page: %#lx free buddy page\n", pfn);
  1022. /* Set hwpoison bit while page is still isolated */
  1023. SetPageHWPoison(p);
  1024. ret = 0;
  1025. } else {
  1026. pr_debug("get_any_page: %#lx: unknown zero refcount page type %lx\n",
  1027. pfn, p->flags);
  1028. ret = -EIO;
  1029. }
  1030. } else {
  1031. /* Not a free page */
  1032. ret = 1;
  1033. }
  1034. unset_migratetype_isolate(p);
  1035. unlock_system_sleep();
  1036. return ret;
  1037. }
  1038. /**
  1039. * soft_offline_page - Soft offline a page.
  1040. * @page: page to offline
  1041. * @flags: flags. Same as memory_failure().
  1042. *
  1043. * Returns 0 on success, otherwise negated errno.
  1044. *
  1045. * Soft offline a page, by migration or invalidation,
  1046. * without killing anything. This is for the case when
  1047. * a page is not corrupted yet (so it's still valid to access),
  1048. * but has had a number of corrected errors and is better taken
  1049. * out.
  1050. *
  1051. * The actual policy on when to do that is maintained by
  1052. * user space.
  1053. *
  1054. * This should never impact any application or cause data loss,
  1055. * however it might take some time.
  1056. *
  1057. * This is not a 100% solution for all memory, but tries to be
  1058. * ``good enough'' for the majority of memory.
  1059. */
  1060. int soft_offline_page(struct page *page, int flags)
  1061. {
  1062. int ret;
  1063. unsigned long pfn = page_to_pfn(page);
  1064. ret = get_any_page(page, pfn, flags);
  1065. if (ret < 0)
  1066. return ret;
  1067. if (ret == 0)
  1068. goto done;
  1069. /*
  1070. * Page cache page we can handle?
  1071. */
  1072. if (!PageLRU(page)) {
  1073. /*
  1074. * Try to free it.
  1075. */
  1076. put_page(page);
  1077. shake_page(page, 1);
  1078. /*
  1079. * Did it turn free?
  1080. */
  1081. ret = get_any_page(page, pfn, 0);
  1082. if (ret < 0)
  1083. return ret;
  1084. if (ret == 0)
  1085. goto done;
  1086. }
  1087. if (!PageLRU(page)) {
  1088. pr_debug("soft_offline: %#lx: unknown non LRU page type %lx\n",
  1089. pfn, page->flags);
  1090. return -EIO;
  1091. }
  1092. lock_page(page);
  1093. wait_on_page_writeback(page);
  1094. /*
  1095. * Synchronized using the page lock with memory_failure()
  1096. */
  1097. if (PageHWPoison(page)) {
  1098. unlock_page(page);
  1099. put_page(page);
  1100. pr_debug("soft offline: %#lx page already poisoned\n", pfn);
  1101. return -EBUSY;
  1102. }
  1103. /*
  1104. * Try to invalidate first. This should work for
  1105. * non dirty unmapped page cache pages.
  1106. */
  1107. ret = invalidate_inode_page(page);
  1108. unlock_page(page);
  1109. /*
  1110. * Drop count because page migration doesn't like raised
  1111. * counts. The page could get re-allocated, but if it becomes
  1112. * LRU the isolation will just fail.
  1113. * RED-PEN would be better to keep it isolated here, but we
  1114. * would need to fix isolation locking first.
  1115. */
  1116. put_page(page);
  1117. if (ret == 1) {
  1118. ret = 0;
  1119. pr_debug("soft_offline: %#lx: invalidated\n", pfn);
  1120. goto done;
  1121. }
  1122. /*
  1123. * Simple invalidation didn't work.
  1124. * Try to migrate to a new page instead. migrate.c
  1125. * handles a large number of cases for us.
  1126. */
  1127. ret = isolate_lru_page(page);
  1128. if (!ret) {
  1129. LIST_HEAD(pagelist);
  1130. list_add(&page->lru, &pagelist);
  1131. ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL, 0);
  1132. if (ret) {
  1133. pr_debug("soft offline: %#lx: migration failed %d, type %lx\n",
  1134. pfn, ret, page->flags);
  1135. if (ret > 0)
  1136. ret = -EIO;
  1137. }
  1138. } else {
  1139. pr_debug("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
  1140. pfn, ret, page_count(page), page->flags);
  1141. }
  1142. if (ret)
  1143. return ret;
  1144. done:
  1145. atomic_long_add(1, &mce_bad_pages);
  1146. SetPageHWPoison(page);
  1147. /* keep elevated page count for bad page */
  1148. return ret;
  1149. }