slub.c 111 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733
  1. /*
  2. * SLUB: A slab allocator that limits cache line use instead of queuing
  3. * objects in per cpu and per node lists.
  4. *
  5. * The allocator synchronizes using per slab locks and only
  6. * uses a centralized lock to manage a pool of partial slabs.
  7. *
  8. * (C) 2007 SGI, Christoph Lameter
  9. */
  10. #include <linux/mm.h>
  11. #include <linux/swap.h> /* struct reclaim_state */
  12. #include <linux/module.h>
  13. #include <linux/bit_spinlock.h>
  14. #include <linux/interrupt.h>
  15. #include <linux/bitops.h>
  16. #include <linux/slab.h>
  17. #include <linux/proc_fs.h>
  18. #include <linux/seq_file.h>
  19. #include <linux/kmemtrace.h>
  20. #include <linux/kmemcheck.h>
  21. #include <linux/cpu.h>
  22. #include <linux/cpuset.h>
  23. #include <linux/kmemleak.h>
  24. #include <linux/mempolicy.h>
  25. #include <linux/ctype.h>
  26. #include <linux/debugobjects.h>
  27. #include <linux/kallsyms.h>
  28. #include <linux/memory.h>
  29. #include <linux/math64.h>
  30. #include <linux/fault-inject.h>
  31. /*
  32. * Lock order:
  33. * 1. slab_lock(page)
  34. * 2. slab->list_lock
  35. *
  36. * The slab_lock protects operations on the object of a particular
  37. * slab and its metadata in the page struct. If the slab lock
  38. * has been taken then no allocations nor frees can be performed
  39. * on the objects in the slab nor can the slab be added or removed
  40. * from the partial or full lists since this would mean modifying
  41. * the page_struct of the slab.
  42. *
  43. * The list_lock protects the partial and full list on each node and
  44. * the partial slab counter. If taken then no new slabs may be added or
  45. * removed from the lists nor make the number of partial slabs be modified.
  46. * (Note that the total number of slabs is an atomic value that may be
  47. * modified without taking the list lock).
  48. *
  49. * The list_lock is a centralized lock and thus we avoid taking it as
  50. * much as possible. As long as SLUB does not have to handle partial
  51. * slabs, operations can continue without any centralized lock. F.e.
  52. * allocating a long series of objects that fill up slabs does not require
  53. * the list lock.
  54. *
  55. * The lock order is sometimes inverted when we are trying to get a slab
  56. * off a list. We take the list_lock and then look for a page on the list
  57. * to use. While we do that objects in the slabs may be freed. We can
  58. * only operate on the slab if we have also taken the slab_lock. So we use
  59. * a slab_trylock() on the slab. If trylock was successful then no frees
  60. * can occur anymore and we can use the slab for allocations etc. If the
  61. * slab_trylock() does not succeed then frees are in progress in the slab and
  62. * we must stay away from it for a while since we may cause a bouncing
  63. * cacheline if we try to acquire the lock. So go onto the next slab.
  64. * If all pages are busy then we may allocate a new slab instead of reusing
  65. * a partial slab. A new slab has noone operating on it and thus there is
  66. * no danger of cacheline contention.
  67. *
  68. * Interrupts are disabled during allocation and deallocation in order to
  69. * make the slab allocator safe to use in the context of an irq. In addition
  70. * interrupts are disabled to ensure that the processor does not change
  71. * while handling per_cpu slabs, due to kernel preemption.
  72. *
  73. * SLUB assigns one slab for allocation to each processor.
  74. * Allocations only occur from these slabs called cpu slabs.
  75. *
  76. * Slabs with free elements are kept on a partial list and during regular
  77. * operations no list for full slabs is used. If an object in a full slab is
  78. * freed then the slab will show up again on the partial lists.
  79. * We track full slabs for debugging purposes though because otherwise we
  80. * cannot scan all objects.
  81. *
  82. * Slabs are freed when they become empty. Teardown and setup is
  83. * minimal so we rely on the page allocators per cpu caches for
  84. * fast frees and allocs.
  85. *
  86. * Overloading of page flags that are otherwise used for LRU management.
  87. *
  88. * PageActive The slab is frozen and exempt from list processing.
  89. * This means that the slab is dedicated to a purpose
  90. * such as satisfying allocations for a specific
  91. * processor. Objects may be freed in the slab while
  92. * it is frozen but slab_free will then skip the usual
  93. * list operations. It is up to the processor holding
  94. * the slab to integrate the slab into the slab lists
  95. * when the slab is no longer needed.
  96. *
  97. * One use of this flag is to mark slabs that are
  98. * used for allocations. Then such a slab becomes a cpu
  99. * slab. The cpu slab may be equipped with an additional
  100. * freelist that allows lockless access to
  101. * free objects in addition to the regular freelist
  102. * that requires the slab lock.
  103. *
  104. * PageError Slab requires special handling due to debug
  105. * options set. This moves slab handling out of
  106. * the fast path and disables lockless freelists.
  107. */
  108. #ifdef CONFIG_SLUB_DEBUG
  109. #define SLABDEBUG 1
  110. #else
  111. #define SLABDEBUG 0
  112. #endif
  113. /*
  114. * Issues still to be resolved:
  115. *
  116. * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
  117. *
  118. * - Variable sizing of the per node arrays
  119. */
  120. /* Enable to test recovery from slab corruption on boot */
  121. #undef SLUB_RESILIENCY_TEST
  122. /*
  123. * Mininum number of partial slabs. These will be left on the partial
  124. * lists even if they are empty. kmem_cache_shrink may reclaim them.
  125. */
  126. #define MIN_PARTIAL 5
  127. /*
  128. * Maximum number of desirable partial slabs.
  129. * The existence of more partial slabs makes kmem_cache_shrink
  130. * sort the partial list by the number of objects in the.
  131. */
  132. #define MAX_PARTIAL 10
  133. #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
  134. SLAB_POISON | SLAB_STORE_USER)
  135. /*
  136. * Set of flags that will prevent slab merging
  137. */
  138. #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  139. SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE)
  140. #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
  141. SLAB_CACHE_DMA | SLAB_NOTRACK)
  142. #ifndef ARCH_KMALLOC_MINALIGN
  143. #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
  144. #endif
  145. #ifndef ARCH_SLAB_MINALIGN
  146. #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
  147. #endif
  148. #define OO_SHIFT 16
  149. #define OO_MASK ((1 << OO_SHIFT) - 1)
  150. #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
  151. /* Internal SLUB flags */
  152. #define __OBJECT_POISON 0x80000000 /* Poison object */
  153. #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
  154. static int kmem_size = sizeof(struct kmem_cache);
  155. #ifdef CONFIG_SMP
  156. static struct notifier_block slab_notifier;
  157. #endif
  158. static enum {
  159. DOWN, /* No slab functionality available */
  160. PARTIAL, /* kmem_cache_open() works but kmalloc does not */
  161. UP, /* Everything works but does not show up in sysfs */
  162. SYSFS /* Sysfs up */
  163. } slab_state = DOWN;
  164. /*
  165. * The slab allocator is initialized with interrupts disabled. Therefore, make
  166. * sure early boot allocations don't accidentally enable interrupts.
  167. */
  168. static gfp_t slab_gfp_mask __read_mostly = SLAB_GFP_BOOT_MASK;
  169. /* A list of all slab caches on the system */
  170. static DECLARE_RWSEM(slub_lock);
  171. static LIST_HEAD(slab_caches);
  172. /*
  173. * Tracking user of a slab.
  174. */
  175. struct track {
  176. unsigned long addr; /* Called from address */
  177. int cpu; /* Was running on cpu */
  178. int pid; /* Pid context */
  179. unsigned long when; /* When did the operation occur */
  180. };
  181. enum track_item { TRACK_ALLOC, TRACK_FREE };
  182. #ifdef CONFIG_SLUB_DEBUG
  183. static int sysfs_slab_add(struct kmem_cache *);
  184. static int sysfs_slab_alias(struct kmem_cache *, const char *);
  185. static void sysfs_slab_remove(struct kmem_cache *);
  186. #else
  187. static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
  188. static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
  189. { return 0; }
  190. static inline void sysfs_slab_remove(struct kmem_cache *s)
  191. {
  192. kfree(s);
  193. }
  194. #endif
  195. static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
  196. {
  197. #ifdef CONFIG_SLUB_STATS
  198. c->stat[si]++;
  199. #endif
  200. }
  201. /********************************************************************
  202. * Core slab cache functions
  203. *******************************************************************/
  204. int slab_is_available(void)
  205. {
  206. return slab_state >= UP;
  207. }
  208. static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
  209. {
  210. #ifdef CONFIG_NUMA
  211. return s->node[node];
  212. #else
  213. return &s->local_node;
  214. #endif
  215. }
  216. static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
  217. {
  218. #ifdef CONFIG_SMP
  219. return s->cpu_slab[cpu];
  220. #else
  221. return &s->cpu_slab;
  222. #endif
  223. }
  224. /* Verify that a pointer has an address that is valid within a slab page */
  225. static inline int check_valid_pointer(struct kmem_cache *s,
  226. struct page *page, const void *object)
  227. {
  228. void *base;
  229. if (!object)
  230. return 1;
  231. base = page_address(page);
  232. if (object < base || object >= base + page->objects * s->size ||
  233. (object - base) % s->size) {
  234. return 0;
  235. }
  236. return 1;
  237. }
  238. /*
  239. * Slow version of get and set free pointer.
  240. *
  241. * This version requires touching the cache lines of kmem_cache which
  242. * we avoid to do in the fast alloc free paths. There we obtain the offset
  243. * from the page struct.
  244. */
  245. static inline void *get_freepointer(struct kmem_cache *s, void *object)
  246. {
  247. return *(void **)(object + s->offset);
  248. }
  249. static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
  250. {
  251. *(void **)(object + s->offset) = fp;
  252. }
  253. /* Loop over all objects in a slab */
  254. #define for_each_object(__p, __s, __addr, __objects) \
  255. for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
  256. __p += (__s)->size)
  257. /* Scan freelist */
  258. #define for_each_free_object(__p, __s, __free) \
  259. for (__p = (__free); __p; __p = get_freepointer((__s), __p))
  260. /* Determine object index from a given position */
  261. static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
  262. {
  263. return (p - addr) / s->size;
  264. }
  265. static inline struct kmem_cache_order_objects oo_make(int order,
  266. unsigned long size)
  267. {
  268. struct kmem_cache_order_objects x = {
  269. (order << OO_SHIFT) + (PAGE_SIZE << order) / size
  270. };
  271. return x;
  272. }
  273. static inline int oo_order(struct kmem_cache_order_objects x)
  274. {
  275. return x.x >> OO_SHIFT;
  276. }
  277. static inline int oo_objects(struct kmem_cache_order_objects x)
  278. {
  279. return x.x & OO_MASK;
  280. }
  281. #ifdef CONFIG_SLUB_DEBUG
  282. /*
  283. * Debug settings:
  284. */
  285. #ifdef CONFIG_SLUB_DEBUG_ON
  286. static int slub_debug = DEBUG_DEFAULT_FLAGS;
  287. #else
  288. static int slub_debug;
  289. #endif
  290. static char *slub_debug_slabs;
  291. /*
  292. * Object debugging
  293. */
  294. static void print_section(char *text, u8 *addr, unsigned int length)
  295. {
  296. int i, offset;
  297. int newline = 1;
  298. char ascii[17];
  299. ascii[16] = 0;
  300. for (i = 0; i < length; i++) {
  301. if (newline) {
  302. printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
  303. newline = 0;
  304. }
  305. printk(KERN_CONT " %02x", addr[i]);
  306. offset = i % 16;
  307. ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
  308. if (offset == 15) {
  309. printk(KERN_CONT " %s\n", ascii);
  310. newline = 1;
  311. }
  312. }
  313. if (!newline) {
  314. i %= 16;
  315. while (i < 16) {
  316. printk(KERN_CONT " ");
  317. ascii[i] = ' ';
  318. i++;
  319. }
  320. printk(KERN_CONT " %s\n", ascii);
  321. }
  322. }
  323. static struct track *get_track(struct kmem_cache *s, void *object,
  324. enum track_item alloc)
  325. {
  326. struct track *p;
  327. if (s->offset)
  328. p = object + s->offset + sizeof(void *);
  329. else
  330. p = object + s->inuse;
  331. return p + alloc;
  332. }
  333. static void set_track(struct kmem_cache *s, void *object,
  334. enum track_item alloc, unsigned long addr)
  335. {
  336. struct track *p = get_track(s, object, alloc);
  337. if (addr) {
  338. p->addr = addr;
  339. p->cpu = smp_processor_id();
  340. p->pid = current->pid;
  341. p->when = jiffies;
  342. } else
  343. memset(p, 0, sizeof(struct track));
  344. }
  345. static void init_tracking(struct kmem_cache *s, void *object)
  346. {
  347. if (!(s->flags & SLAB_STORE_USER))
  348. return;
  349. set_track(s, object, TRACK_FREE, 0UL);
  350. set_track(s, object, TRACK_ALLOC, 0UL);
  351. }
  352. static void print_track(const char *s, struct track *t)
  353. {
  354. if (!t->addr)
  355. return;
  356. printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
  357. s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
  358. }
  359. static void print_tracking(struct kmem_cache *s, void *object)
  360. {
  361. if (!(s->flags & SLAB_STORE_USER))
  362. return;
  363. print_track("Allocated", get_track(s, object, TRACK_ALLOC));
  364. print_track("Freed", get_track(s, object, TRACK_FREE));
  365. }
  366. static void print_page_info(struct page *page)
  367. {
  368. printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
  369. page, page->objects, page->inuse, page->freelist, page->flags);
  370. }
  371. static void slab_bug(struct kmem_cache *s, char *fmt, ...)
  372. {
  373. va_list args;
  374. char buf[100];
  375. va_start(args, fmt);
  376. vsnprintf(buf, sizeof(buf), fmt, args);
  377. va_end(args);
  378. printk(KERN_ERR "========================================"
  379. "=====================================\n");
  380. printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
  381. printk(KERN_ERR "----------------------------------------"
  382. "-------------------------------------\n\n");
  383. }
  384. static void slab_fix(struct kmem_cache *s, char *fmt, ...)
  385. {
  386. va_list args;
  387. char buf[100];
  388. va_start(args, fmt);
  389. vsnprintf(buf, sizeof(buf), fmt, args);
  390. va_end(args);
  391. printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
  392. }
  393. static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
  394. {
  395. unsigned int off; /* Offset of last byte */
  396. u8 *addr = page_address(page);
  397. print_tracking(s, p);
  398. print_page_info(page);
  399. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
  400. p, p - addr, get_freepointer(s, p));
  401. if (p > addr + 16)
  402. print_section("Bytes b4", p - 16, 16);
  403. print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
  404. if (s->flags & SLAB_RED_ZONE)
  405. print_section("Redzone", p + s->objsize,
  406. s->inuse - s->objsize);
  407. if (s->offset)
  408. off = s->offset + sizeof(void *);
  409. else
  410. off = s->inuse;
  411. if (s->flags & SLAB_STORE_USER)
  412. off += 2 * sizeof(struct track);
  413. if (off != s->size)
  414. /* Beginning of the filler is the free pointer */
  415. print_section("Padding", p + off, s->size - off);
  416. dump_stack();
  417. }
  418. static void object_err(struct kmem_cache *s, struct page *page,
  419. u8 *object, char *reason)
  420. {
  421. slab_bug(s, "%s", reason);
  422. print_trailer(s, page, object);
  423. }
  424. static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
  425. {
  426. va_list args;
  427. char buf[100];
  428. va_start(args, fmt);
  429. vsnprintf(buf, sizeof(buf), fmt, args);
  430. va_end(args);
  431. slab_bug(s, "%s", buf);
  432. print_page_info(page);
  433. dump_stack();
  434. }
  435. static void init_object(struct kmem_cache *s, void *object, int active)
  436. {
  437. u8 *p = object;
  438. if (s->flags & __OBJECT_POISON) {
  439. memset(p, POISON_FREE, s->objsize - 1);
  440. p[s->objsize - 1] = POISON_END;
  441. }
  442. if (s->flags & SLAB_RED_ZONE)
  443. memset(p + s->objsize,
  444. active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
  445. s->inuse - s->objsize);
  446. }
  447. static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
  448. {
  449. while (bytes) {
  450. if (*start != (u8)value)
  451. return start;
  452. start++;
  453. bytes--;
  454. }
  455. return NULL;
  456. }
  457. static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
  458. void *from, void *to)
  459. {
  460. slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
  461. memset(from, data, to - from);
  462. }
  463. static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
  464. u8 *object, char *what,
  465. u8 *start, unsigned int value, unsigned int bytes)
  466. {
  467. u8 *fault;
  468. u8 *end;
  469. fault = check_bytes(start, value, bytes);
  470. if (!fault)
  471. return 1;
  472. end = start + bytes;
  473. while (end > fault && end[-1] == value)
  474. end--;
  475. slab_bug(s, "%s overwritten", what);
  476. printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
  477. fault, end - 1, fault[0], value);
  478. print_trailer(s, page, object);
  479. restore_bytes(s, what, value, fault, end);
  480. return 0;
  481. }
  482. /*
  483. * Object layout:
  484. *
  485. * object address
  486. * Bytes of the object to be managed.
  487. * If the freepointer may overlay the object then the free
  488. * pointer is the first word of the object.
  489. *
  490. * Poisoning uses 0x6b (POISON_FREE) and the last byte is
  491. * 0xa5 (POISON_END)
  492. *
  493. * object + s->objsize
  494. * Padding to reach word boundary. This is also used for Redzoning.
  495. * Padding is extended by another word if Redzoning is enabled and
  496. * objsize == inuse.
  497. *
  498. * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
  499. * 0xcc (RED_ACTIVE) for objects in use.
  500. *
  501. * object + s->inuse
  502. * Meta data starts here.
  503. *
  504. * A. Free pointer (if we cannot overwrite object on free)
  505. * B. Tracking data for SLAB_STORE_USER
  506. * C. Padding to reach required alignment boundary or at mininum
  507. * one word if debugging is on to be able to detect writes
  508. * before the word boundary.
  509. *
  510. * Padding is done using 0x5a (POISON_INUSE)
  511. *
  512. * object + s->size
  513. * Nothing is used beyond s->size.
  514. *
  515. * If slabcaches are merged then the objsize and inuse boundaries are mostly
  516. * ignored. And therefore no slab options that rely on these boundaries
  517. * may be used with merged slabcaches.
  518. */
  519. static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
  520. {
  521. unsigned long off = s->inuse; /* The end of info */
  522. if (s->offset)
  523. /* Freepointer is placed after the object. */
  524. off += sizeof(void *);
  525. if (s->flags & SLAB_STORE_USER)
  526. /* We also have user information there */
  527. off += 2 * sizeof(struct track);
  528. if (s->size == off)
  529. return 1;
  530. return check_bytes_and_report(s, page, p, "Object padding",
  531. p + off, POISON_INUSE, s->size - off);
  532. }
  533. /* Check the pad bytes at the end of a slab page */
  534. static int slab_pad_check(struct kmem_cache *s, struct page *page)
  535. {
  536. u8 *start;
  537. u8 *fault;
  538. u8 *end;
  539. int length;
  540. int remainder;
  541. if (!(s->flags & SLAB_POISON))
  542. return 1;
  543. start = page_address(page);
  544. length = (PAGE_SIZE << compound_order(page));
  545. end = start + length;
  546. remainder = length % s->size;
  547. if (!remainder)
  548. return 1;
  549. fault = check_bytes(end - remainder, POISON_INUSE, remainder);
  550. if (!fault)
  551. return 1;
  552. while (end > fault && end[-1] == POISON_INUSE)
  553. end--;
  554. slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
  555. print_section("Padding", end - remainder, remainder);
  556. restore_bytes(s, "slab padding", POISON_INUSE, start, end);
  557. return 0;
  558. }
  559. static int check_object(struct kmem_cache *s, struct page *page,
  560. void *object, int active)
  561. {
  562. u8 *p = object;
  563. u8 *endobject = object + s->objsize;
  564. if (s->flags & SLAB_RED_ZONE) {
  565. unsigned int red =
  566. active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
  567. if (!check_bytes_and_report(s, page, object, "Redzone",
  568. endobject, red, s->inuse - s->objsize))
  569. return 0;
  570. } else {
  571. if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
  572. check_bytes_and_report(s, page, p, "Alignment padding",
  573. endobject, POISON_INUSE, s->inuse - s->objsize);
  574. }
  575. }
  576. if (s->flags & SLAB_POISON) {
  577. if (!active && (s->flags & __OBJECT_POISON) &&
  578. (!check_bytes_and_report(s, page, p, "Poison", p,
  579. POISON_FREE, s->objsize - 1) ||
  580. !check_bytes_and_report(s, page, p, "Poison",
  581. p + s->objsize - 1, POISON_END, 1)))
  582. return 0;
  583. /*
  584. * check_pad_bytes cleans up on its own.
  585. */
  586. check_pad_bytes(s, page, p);
  587. }
  588. if (!s->offset && active)
  589. /*
  590. * Object and freepointer overlap. Cannot check
  591. * freepointer while object is allocated.
  592. */
  593. return 1;
  594. /* Check free pointer validity */
  595. if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
  596. object_err(s, page, p, "Freepointer corrupt");
  597. /*
  598. * No choice but to zap it and thus lose the remainder
  599. * of the free objects in this slab. May cause
  600. * another error because the object count is now wrong.
  601. */
  602. set_freepointer(s, p, NULL);
  603. return 0;
  604. }
  605. return 1;
  606. }
  607. static int check_slab(struct kmem_cache *s, struct page *page)
  608. {
  609. int maxobj;
  610. VM_BUG_ON(!irqs_disabled());
  611. if (!PageSlab(page)) {
  612. slab_err(s, page, "Not a valid slab page");
  613. return 0;
  614. }
  615. maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
  616. if (page->objects > maxobj) {
  617. slab_err(s, page, "objects %u > max %u",
  618. s->name, page->objects, maxobj);
  619. return 0;
  620. }
  621. if (page->inuse > page->objects) {
  622. slab_err(s, page, "inuse %u > max %u",
  623. s->name, page->inuse, page->objects);
  624. return 0;
  625. }
  626. /* Slab_pad_check fixes things up after itself */
  627. slab_pad_check(s, page);
  628. return 1;
  629. }
  630. /*
  631. * Determine if a certain object on a page is on the freelist. Must hold the
  632. * slab lock to guarantee that the chains are in a consistent state.
  633. */
  634. static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
  635. {
  636. int nr = 0;
  637. void *fp = page->freelist;
  638. void *object = NULL;
  639. unsigned long max_objects;
  640. while (fp && nr <= page->objects) {
  641. if (fp == search)
  642. return 1;
  643. if (!check_valid_pointer(s, page, fp)) {
  644. if (object) {
  645. object_err(s, page, object,
  646. "Freechain corrupt");
  647. set_freepointer(s, object, NULL);
  648. break;
  649. } else {
  650. slab_err(s, page, "Freepointer corrupt");
  651. page->freelist = NULL;
  652. page->inuse = page->objects;
  653. slab_fix(s, "Freelist cleared");
  654. return 0;
  655. }
  656. break;
  657. }
  658. object = fp;
  659. fp = get_freepointer(s, object);
  660. nr++;
  661. }
  662. max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
  663. if (max_objects > MAX_OBJS_PER_PAGE)
  664. max_objects = MAX_OBJS_PER_PAGE;
  665. if (page->objects != max_objects) {
  666. slab_err(s, page, "Wrong number of objects. Found %d but "
  667. "should be %d", page->objects, max_objects);
  668. page->objects = max_objects;
  669. slab_fix(s, "Number of objects adjusted.");
  670. }
  671. if (page->inuse != page->objects - nr) {
  672. slab_err(s, page, "Wrong object count. Counter is %d but "
  673. "counted were %d", page->inuse, page->objects - nr);
  674. page->inuse = page->objects - nr;
  675. slab_fix(s, "Object count adjusted.");
  676. }
  677. return search == NULL;
  678. }
  679. static void trace(struct kmem_cache *s, struct page *page, void *object,
  680. int alloc)
  681. {
  682. if (s->flags & SLAB_TRACE) {
  683. printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
  684. s->name,
  685. alloc ? "alloc" : "free",
  686. object, page->inuse,
  687. page->freelist);
  688. if (!alloc)
  689. print_section("Object", (void *)object, s->objsize);
  690. dump_stack();
  691. }
  692. }
  693. /*
  694. * Tracking of fully allocated slabs for debugging purposes.
  695. */
  696. static void add_full(struct kmem_cache_node *n, struct page *page)
  697. {
  698. spin_lock(&n->list_lock);
  699. list_add(&page->lru, &n->full);
  700. spin_unlock(&n->list_lock);
  701. }
  702. static void remove_full(struct kmem_cache *s, struct page *page)
  703. {
  704. struct kmem_cache_node *n;
  705. if (!(s->flags & SLAB_STORE_USER))
  706. return;
  707. n = get_node(s, page_to_nid(page));
  708. spin_lock(&n->list_lock);
  709. list_del(&page->lru);
  710. spin_unlock(&n->list_lock);
  711. }
  712. /* Tracking of the number of slabs for debugging purposes */
  713. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  714. {
  715. struct kmem_cache_node *n = get_node(s, node);
  716. return atomic_long_read(&n->nr_slabs);
  717. }
  718. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  719. {
  720. return atomic_long_read(&n->nr_slabs);
  721. }
  722. static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
  723. {
  724. struct kmem_cache_node *n = get_node(s, node);
  725. /*
  726. * May be called early in order to allocate a slab for the
  727. * kmem_cache_node structure. Solve the chicken-egg
  728. * dilemma by deferring the increment of the count during
  729. * bootstrap (see early_kmem_cache_node_alloc).
  730. */
  731. if (!NUMA_BUILD || n) {
  732. atomic_long_inc(&n->nr_slabs);
  733. atomic_long_add(objects, &n->total_objects);
  734. }
  735. }
  736. static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
  737. {
  738. struct kmem_cache_node *n = get_node(s, node);
  739. atomic_long_dec(&n->nr_slabs);
  740. atomic_long_sub(objects, &n->total_objects);
  741. }
  742. /* Object debug checks for alloc/free paths */
  743. static void setup_object_debug(struct kmem_cache *s, struct page *page,
  744. void *object)
  745. {
  746. if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
  747. return;
  748. init_object(s, object, 0);
  749. init_tracking(s, object);
  750. }
  751. static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
  752. void *object, unsigned long addr)
  753. {
  754. if (!check_slab(s, page))
  755. goto bad;
  756. if (!on_freelist(s, page, object)) {
  757. object_err(s, page, object, "Object already allocated");
  758. goto bad;
  759. }
  760. if (!check_valid_pointer(s, page, object)) {
  761. object_err(s, page, object, "Freelist Pointer check fails");
  762. goto bad;
  763. }
  764. if (!check_object(s, page, object, 0))
  765. goto bad;
  766. /* Success perform special debug activities for allocs */
  767. if (s->flags & SLAB_STORE_USER)
  768. set_track(s, object, TRACK_ALLOC, addr);
  769. trace(s, page, object, 1);
  770. init_object(s, object, 1);
  771. return 1;
  772. bad:
  773. if (PageSlab(page)) {
  774. /*
  775. * If this is a slab page then lets do the best we can
  776. * to avoid issues in the future. Marking all objects
  777. * as used avoids touching the remaining objects.
  778. */
  779. slab_fix(s, "Marking all objects used");
  780. page->inuse = page->objects;
  781. page->freelist = NULL;
  782. }
  783. return 0;
  784. }
  785. static int free_debug_processing(struct kmem_cache *s, struct page *page,
  786. void *object, unsigned long addr)
  787. {
  788. if (!check_slab(s, page))
  789. goto fail;
  790. if (!check_valid_pointer(s, page, object)) {
  791. slab_err(s, page, "Invalid object pointer 0x%p", object);
  792. goto fail;
  793. }
  794. if (on_freelist(s, page, object)) {
  795. object_err(s, page, object, "Object already free");
  796. goto fail;
  797. }
  798. if (!check_object(s, page, object, 1))
  799. return 0;
  800. if (unlikely(s != page->slab)) {
  801. if (!PageSlab(page)) {
  802. slab_err(s, page, "Attempt to free object(0x%p) "
  803. "outside of slab", object);
  804. } else if (!page->slab) {
  805. printk(KERN_ERR
  806. "SLUB <none>: no slab for object 0x%p.\n",
  807. object);
  808. dump_stack();
  809. } else
  810. object_err(s, page, object,
  811. "page slab pointer corrupt.");
  812. goto fail;
  813. }
  814. /* Special debug activities for freeing objects */
  815. if (!PageSlubFrozen(page) && !page->freelist)
  816. remove_full(s, page);
  817. if (s->flags & SLAB_STORE_USER)
  818. set_track(s, object, TRACK_FREE, addr);
  819. trace(s, page, object, 0);
  820. init_object(s, object, 0);
  821. return 1;
  822. fail:
  823. slab_fix(s, "Object at 0x%p not freed", object);
  824. return 0;
  825. }
  826. static int __init setup_slub_debug(char *str)
  827. {
  828. slub_debug = DEBUG_DEFAULT_FLAGS;
  829. if (*str++ != '=' || !*str)
  830. /*
  831. * No options specified. Switch on full debugging.
  832. */
  833. goto out;
  834. if (*str == ',')
  835. /*
  836. * No options but restriction on slabs. This means full
  837. * debugging for slabs matching a pattern.
  838. */
  839. goto check_slabs;
  840. slub_debug = 0;
  841. if (*str == '-')
  842. /*
  843. * Switch off all debugging measures.
  844. */
  845. goto out;
  846. /*
  847. * Determine which debug features should be switched on
  848. */
  849. for (; *str && *str != ','; str++) {
  850. switch (tolower(*str)) {
  851. case 'f':
  852. slub_debug |= SLAB_DEBUG_FREE;
  853. break;
  854. case 'z':
  855. slub_debug |= SLAB_RED_ZONE;
  856. break;
  857. case 'p':
  858. slub_debug |= SLAB_POISON;
  859. break;
  860. case 'u':
  861. slub_debug |= SLAB_STORE_USER;
  862. break;
  863. case 't':
  864. slub_debug |= SLAB_TRACE;
  865. break;
  866. default:
  867. printk(KERN_ERR "slub_debug option '%c' "
  868. "unknown. skipped\n", *str);
  869. }
  870. }
  871. check_slabs:
  872. if (*str == ',')
  873. slub_debug_slabs = str + 1;
  874. out:
  875. return 1;
  876. }
  877. __setup("slub_debug", setup_slub_debug);
  878. static unsigned long kmem_cache_flags(unsigned long objsize,
  879. unsigned long flags, const char *name,
  880. void (*ctor)(void *))
  881. {
  882. /*
  883. * Enable debugging if selected on the kernel commandline.
  884. */
  885. if (slub_debug && (!slub_debug_slabs ||
  886. strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
  887. flags |= slub_debug;
  888. return flags;
  889. }
  890. #else
  891. static inline void setup_object_debug(struct kmem_cache *s,
  892. struct page *page, void *object) {}
  893. static inline int alloc_debug_processing(struct kmem_cache *s,
  894. struct page *page, void *object, unsigned long addr) { return 0; }
  895. static inline int free_debug_processing(struct kmem_cache *s,
  896. struct page *page, void *object, unsigned long addr) { return 0; }
  897. static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
  898. { return 1; }
  899. static inline int check_object(struct kmem_cache *s, struct page *page,
  900. void *object, int active) { return 1; }
  901. static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
  902. static inline unsigned long kmem_cache_flags(unsigned long objsize,
  903. unsigned long flags, const char *name,
  904. void (*ctor)(void *))
  905. {
  906. return flags;
  907. }
  908. #define slub_debug 0
  909. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  910. { return 0; }
  911. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  912. { return 0; }
  913. static inline void inc_slabs_node(struct kmem_cache *s, int node,
  914. int objects) {}
  915. static inline void dec_slabs_node(struct kmem_cache *s, int node,
  916. int objects) {}
  917. #endif
  918. /*
  919. * Slab allocation and freeing
  920. */
  921. static inline struct page *alloc_slab_page(gfp_t flags, int node,
  922. struct kmem_cache_order_objects oo)
  923. {
  924. int order = oo_order(oo);
  925. flags |= __GFP_NOTRACK;
  926. if (node == -1)
  927. return alloc_pages(flags, order);
  928. else
  929. return alloc_pages_node(node, flags, order);
  930. }
  931. static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
  932. {
  933. struct page *page;
  934. struct kmem_cache_order_objects oo = s->oo;
  935. flags |= s->allocflags;
  936. page = alloc_slab_page(flags | __GFP_NOWARN | __GFP_NORETRY, node,
  937. oo);
  938. if (unlikely(!page)) {
  939. oo = s->min;
  940. /*
  941. * Allocation may have failed due to fragmentation.
  942. * Try a lower order alloc if possible
  943. */
  944. page = alloc_slab_page(flags, node, oo);
  945. if (!page)
  946. return NULL;
  947. stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
  948. }
  949. if (kmemcheck_enabled
  950. && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS)))
  951. {
  952. int pages = 1 << oo_order(oo);
  953. kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
  954. /*
  955. * Objects from caches that have a constructor don't get
  956. * cleared when they're allocated, so we need to do it here.
  957. */
  958. if (s->ctor)
  959. kmemcheck_mark_uninitialized_pages(page, pages);
  960. else
  961. kmemcheck_mark_unallocated_pages(page, pages);
  962. }
  963. page->objects = oo_objects(oo);
  964. mod_zone_page_state(page_zone(page),
  965. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  966. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  967. 1 << oo_order(oo));
  968. return page;
  969. }
  970. static void setup_object(struct kmem_cache *s, struct page *page,
  971. void *object)
  972. {
  973. setup_object_debug(s, page, object);
  974. if (unlikely(s->ctor))
  975. s->ctor(object);
  976. }
  977. static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
  978. {
  979. struct page *page;
  980. void *start;
  981. void *last;
  982. void *p;
  983. BUG_ON(flags & GFP_SLAB_BUG_MASK);
  984. page = allocate_slab(s,
  985. flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
  986. if (!page)
  987. goto out;
  988. inc_slabs_node(s, page_to_nid(page), page->objects);
  989. page->slab = s;
  990. page->flags |= 1 << PG_slab;
  991. if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
  992. SLAB_STORE_USER | SLAB_TRACE))
  993. __SetPageSlubDebug(page);
  994. start = page_address(page);
  995. if (unlikely(s->flags & SLAB_POISON))
  996. memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
  997. last = start;
  998. for_each_object(p, s, start, page->objects) {
  999. setup_object(s, page, last);
  1000. set_freepointer(s, last, p);
  1001. last = p;
  1002. }
  1003. setup_object(s, page, last);
  1004. set_freepointer(s, last, NULL);
  1005. page->freelist = start;
  1006. page->inuse = 0;
  1007. out:
  1008. return page;
  1009. }
  1010. static void __free_slab(struct kmem_cache *s, struct page *page)
  1011. {
  1012. int order = compound_order(page);
  1013. int pages = 1 << order;
  1014. if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
  1015. void *p;
  1016. slab_pad_check(s, page);
  1017. for_each_object(p, s, page_address(page),
  1018. page->objects)
  1019. check_object(s, page, p, 0);
  1020. __ClearPageSlubDebug(page);
  1021. }
  1022. kmemcheck_free_shadow(page, compound_order(page));
  1023. mod_zone_page_state(page_zone(page),
  1024. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1025. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1026. -pages);
  1027. __ClearPageSlab(page);
  1028. reset_page_mapcount(page);
  1029. if (current->reclaim_state)
  1030. current->reclaim_state->reclaimed_slab += pages;
  1031. __free_pages(page, order);
  1032. }
  1033. static void rcu_free_slab(struct rcu_head *h)
  1034. {
  1035. struct page *page;
  1036. page = container_of((struct list_head *)h, struct page, lru);
  1037. __free_slab(page->slab, page);
  1038. }
  1039. static void free_slab(struct kmem_cache *s, struct page *page)
  1040. {
  1041. if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
  1042. /*
  1043. * RCU free overloads the RCU head over the LRU
  1044. */
  1045. struct rcu_head *head = (void *)&page->lru;
  1046. call_rcu(head, rcu_free_slab);
  1047. } else
  1048. __free_slab(s, page);
  1049. }
  1050. static void discard_slab(struct kmem_cache *s, struct page *page)
  1051. {
  1052. dec_slabs_node(s, page_to_nid(page), page->objects);
  1053. free_slab(s, page);
  1054. }
  1055. /*
  1056. * Per slab locking using the pagelock
  1057. */
  1058. static __always_inline void slab_lock(struct page *page)
  1059. {
  1060. bit_spin_lock(PG_locked, &page->flags);
  1061. }
  1062. static __always_inline void slab_unlock(struct page *page)
  1063. {
  1064. __bit_spin_unlock(PG_locked, &page->flags);
  1065. }
  1066. static __always_inline int slab_trylock(struct page *page)
  1067. {
  1068. int rc = 1;
  1069. rc = bit_spin_trylock(PG_locked, &page->flags);
  1070. return rc;
  1071. }
  1072. /*
  1073. * Management of partially allocated slabs
  1074. */
  1075. static void add_partial(struct kmem_cache_node *n,
  1076. struct page *page, int tail)
  1077. {
  1078. spin_lock(&n->list_lock);
  1079. n->nr_partial++;
  1080. if (tail)
  1081. list_add_tail(&page->lru, &n->partial);
  1082. else
  1083. list_add(&page->lru, &n->partial);
  1084. spin_unlock(&n->list_lock);
  1085. }
  1086. static void remove_partial(struct kmem_cache *s, struct page *page)
  1087. {
  1088. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1089. spin_lock(&n->list_lock);
  1090. list_del(&page->lru);
  1091. n->nr_partial--;
  1092. spin_unlock(&n->list_lock);
  1093. }
  1094. /*
  1095. * Lock slab and remove from the partial list.
  1096. *
  1097. * Must hold list_lock.
  1098. */
  1099. static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
  1100. struct page *page)
  1101. {
  1102. if (slab_trylock(page)) {
  1103. list_del(&page->lru);
  1104. n->nr_partial--;
  1105. __SetPageSlubFrozen(page);
  1106. return 1;
  1107. }
  1108. return 0;
  1109. }
  1110. /*
  1111. * Try to allocate a partial slab from a specific node.
  1112. */
  1113. static struct page *get_partial_node(struct kmem_cache_node *n)
  1114. {
  1115. struct page *page;
  1116. /*
  1117. * Racy check. If we mistakenly see no partial slabs then we
  1118. * just allocate an empty slab. If we mistakenly try to get a
  1119. * partial slab and there is none available then get_partials()
  1120. * will return NULL.
  1121. */
  1122. if (!n || !n->nr_partial)
  1123. return NULL;
  1124. spin_lock(&n->list_lock);
  1125. list_for_each_entry(page, &n->partial, lru)
  1126. if (lock_and_freeze_slab(n, page))
  1127. goto out;
  1128. page = NULL;
  1129. out:
  1130. spin_unlock(&n->list_lock);
  1131. return page;
  1132. }
  1133. /*
  1134. * Get a page from somewhere. Search in increasing NUMA distances.
  1135. */
  1136. static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
  1137. {
  1138. #ifdef CONFIG_NUMA
  1139. struct zonelist *zonelist;
  1140. struct zoneref *z;
  1141. struct zone *zone;
  1142. enum zone_type high_zoneidx = gfp_zone(flags);
  1143. struct page *page;
  1144. /*
  1145. * The defrag ratio allows a configuration of the tradeoffs between
  1146. * inter node defragmentation and node local allocations. A lower
  1147. * defrag_ratio increases the tendency to do local allocations
  1148. * instead of attempting to obtain partial slabs from other nodes.
  1149. *
  1150. * If the defrag_ratio is set to 0 then kmalloc() always
  1151. * returns node local objects. If the ratio is higher then kmalloc()
  1152. * may return off node objects because partial slabs are obtained
  1153. * from other nodes and filled up.
  1154. *
  1155. * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
  1156. * defrag_ratio = 1000) then every (well almost) allocation will
  1157. * first attempt to defrag slab caches on other nodes. This means
  1158. * scanning over all nodes to look for partial slabs which may be
  1159. * expensive if we do it every time we are trying to find a slab
  1160. * with available objects.
  1161. */
  1162. if (!s->remote_node_defrag_ratio ||
  1163. get_cycles() % 1024 > s->remote_node_defrag_ratio)
  1164. return NULL;
  1165. zonelist = node_zonelist(slab_node(current->mempolicy), flags);
  1166. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  1167. struct kmem_cache_node *n;
  1168. n = get_node(s, zone_to_nid(zone));
  1169. if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
  1170. n->nr_partial > s->min_partial) {
  1171. page = get_partial_node(n);
  1172. if (page)
  1173. return page;
  1174. }
  1175. }
  1176. #endif
  1177. return NULL;
  1178. }
  1179. /*
  1180. * Get a partial page, lock it and return it.
  1181. */
  1182. static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
  1183. {
  1184. struct page *page;
  1185. int searchnode = (node == -1) ? numa_node_id() : node;
  1186. page = get_partial_node(get_node(s, searchnode));
  1187. if (page || (flags & __GFP_THISNODE))
  1188. return page;
  1189. return get_any_partial(s, flags);
  1190. }
  1191. /*
  1192. * Move a page back to the lists.
  1193. *
  1194. * Must be called with the slab lock held.
  1195. *
  1196. * On exit the slab lock will have been dropped.
  1197. */
  1198. static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
  1199. {
  1200. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1201. struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
  1202. __ClearPageSlubFrozen(page);
  1203. if (page->inuse) {
  1204. if (page->freelist) {
  1205. add_partial(n, page, tail);
  1206. stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
  1207. } else {
  1208. stat(c, DEACTIVATE_FULL);
  1209. if (SLABDEBUG && PageSlubDebug(page) &&
  1210. (s->flags & SLAB_STORE_USER))
  1211. add_full(n, page);
  1212. }
  1213. slab_unlock(page);
  1214. } else {
  1215. stat(c, DEACTIVATE_EMPTY);
  1216. if (n->nr_partial < s->min_partial) {
  1217. /*
  1218. * Adding an empty slab to the partial slabs in order
  1219. * to avoid page allocator overhead. This slab needs
  1220. * to come after the other slabs with objects in
  1221. * so that the others get filled first. That way the
  1222. * size of the partial list stays small.
  1223. *
  1224. * kmem_cache_shrink can reclaim any empty slabs from
  1225. * the partial list.
  1226. */
  1227. add_partial(n, page, 1);
  1228. slab_unlock(page);
  1229. } else {
  1230. slab_unlock(page);
  1231. stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
  1232. discard_slab(s, page);
  1233. }
  1234. }
  1235. }
  1236. /*
  1237. * Remove the cpu slab
  1238. */
  1239. static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1240. {
  1241. struct page *page = c->page;
  1242. int tail = 1;
  1243. if (page->freelist)
  1244. stat(c, DEACTIVATE_REMOTE_FREES);
  1245. /*
  1246. * Merge cpu freelist into slab freelist. Typically we get here
  1247. * because both freelists are empty. So this is unlikely
  1248. * to occur.
  1249. */
  1250. while (unlikely(c->freelist)) {
  1251. void **object;
  1252. tail = 0; /* Hot objects. Put the slab first */
  1253. /* Retrieve object from cpu_freelist */
  1254. object = c->freelist;
  1255. c->freelist = c->freelist[c->offset];
  1256. /* And put onto the regular freelist */
  1257. object[c->offset] = page->freelist;
  1258. page->freelist = object;
  1259. page->inuse--;
  1260. }
  1261. c->page = NULL;
  1262. unfreeze_slab(s, page, tail);
  1263. }
  1264. static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1265. {
  1266. stat(c, CPUSLAB_FLUSH);
  1267. slab_lock(c->page);
  1268. deactivate_slab(s, c);
  1269. }
  1270. /*
  1271. * Flush cpu slab.
  1272. *
  1273. * Called from IPI handler with interrupts disabled.
  1274. */
  1275. static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
  1276. {
  1277. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  1278. if (likely(c && c->page))
  1279. flush_slab(s, c);
  1280. }
  1281. static void flush_cpu_slab(void *d)
  1282. {
  1283. struct kmem_cache *s = d;
  1284. __flush_cpu_slab(s, smp_processor_id());
  1285. }
  1286. static void flush_all(struct kmem_cache *s)
  1287. {
  1288. on_each_cpu(flush_cpu_slab, s, 1);
  1289. }
  1290. /*
  1291. * Check if the objects in a per cpu structure fit numa
  1292. * locality expectations.
  1293. */
  1294. static inline int node_match(struct kmem_cache_cpu *c, int node)
  1295. {
  1296. #ifdef CONFIG_NUMA
  1297. if (node != -1 && c->node != node)
  1298. return 0;
  1299. #endif
  1300. return 1;
  1301. }
  1302. static int count_free(struct page *page)
  1303. {
  1304. return page->objects - page->inuse;
  1305. }
  1306. static unsigned long count_partial(struct kmem_cache_node *n,
  1307. int (*get_count)(struct page *))
  1308. {
  1309. unsigned long flags;
  1310. unsigned long x = 0;
  1311. struct page *page;
  1312. spin_lock_irqsave(&n->list_lock, flags);
  1313. list_for_each_entry(page, &n->partial, lru)
  1314. x += get_count(page);
  1315. spin_unlock_irqrestore(&n->list_lock, flags);
  1316. return x;
  1317. }
  1318. static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
  1319. {
  1320. #ifdef CONFIG_SLUB_DEBUG
  1321. return atomic_long_read(&n->total_objects);
  1322. #else
  1323. return 0;
  1324. #endif
  1325. }
  1326. static noinline void
  1327. slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
  1328. {
  1329. int node;
  1330. printk(KERN_WARNING
  1331. "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
  1332. nid, gfpflags);
  1333. printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
  1334. "default order: %d, min order: %d\n", s->name, s->objsize,
  1335. s->size, oo_order(s->oo), oo_order(s->min));
  1336. for_each_online_node(node) {
  1337. struct kmem_cache_node *n = get_node(s, node);
  1338. unsigned long nr_slabs;
  1339. unsigned long nr_objs;
  1340. unsigned long nr_free;
  1341. if (!n)
  1342. continue;
  1343. nr_free = count_partial(n, count_free);
  1344. nr_slabs = node_nr_slabs(n);
  1345. nr_objs = node_nr_objs(n);
  1346. printk(KERN_WARNING
  1347. " node %d: slabs: %ld, objs: %ld, free: %ld\n",
  1348. node, nr_slabs, nr_objs, nr_free);
  1349. }
  1350. }
  1351. /*
  1352. * Slow path. The lockless freelist is empty or we need to perform
  1353. * debugging duties.
  1354. *
  1355. * Interrupts are disabled.
  1356. *
  1357. * Processing is still very fast if new objects have been freed to the
  1358. * regular freelist. In that case we simply take over the regular freelist
  1359. * as the lockless freelist and zap the regular freelist.
  1360. *
  1361. * If that is not working then we fall back to the partial lists. We take the
  1362. * first element of the freelist as the object to allocate now and move the
  1363. * rest of the freelist to the lockless freelist.
  1364. *
  1365. * And if we were unable to get a new slab from the partial slab lists then
  1366. * we need to allocate a new slab. This is the slowest path since it involves
  1367. * a call to the page allocator and the setup of a new slab.
  1368. */
  1369. static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
  1370. unsigned long addr, struct kmem_cache_cpu *c)
  1371. {
  1372. void **object;
  1373. struct page *new;
  1374. /* We handle __GFP_ZERO in the caller */
  1375. gfpflags &= ~__GFP_ZERO;
  1376. if (!c->page)
  1377. goto new_slab;
  1378. slab_lock(c->page);
  1379. if (unlikely(!node_match(c, node)))
  1380. goto another_slab;
  1381. stat(c, ALLOC_REFILL);
  1382. load_freelist:
  1383. object = c->page->freelist;
  1384. if (unlikely(!object))
  1385. goto another_slab;
  1386. if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
  1387. goto debug;
  1388. c->freelist = object[c->offset];
  1389. c->page->inuse = c->page->objects;
  1390. c->page->freelist = NULL;
  1391. c->node = page_to_nid(c->page);
  1392. unlock_out:
  1393. slab_unlock(c->page);
  1394. stat(c, ALLOC_SLOWPATH);
  1395. return object;
  1396. another_slab:
  1397. deactivate_slab(s, c);
  1398. new_slab:
  1399. new = get_partial(s, gfpflags, node);
  1400. if (new) {
  1401. c->page = new;
  1402. stat(c, ALLOC_FROM_PARTIAL);
  1403. goto load_freelist;
  1404. }
  1405. if (gfpflags & __GFP_WAIT)
  1406. local_irq_enable();
  1407. new = new_slab(s, gfpflags, node);
  1408. if (gfpflags & __GFP_WAIT)
  1409. local_irq_disable();
  1410. if (new) {
  1411. c = get_cpu_slab(s, smp_processor_id());
  1412. stat(c, ALLOC_SLAB);
  1413. if (c->page)
  1414. flush_slab(s, c);
  1415. slab_lock(new);
  1416. __SetPageSlubFrozen(new);
  1417. c->page = new;
  1418. goto load_freelist;
  1419. }
  1420. if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
  1421. slab_out_of_memory(s, gfpflags, node);
  1422. return NULL;
  1423. debug:
  1424. if (!alloc_debug_processing(s, c->page, object, addr))
  1425. goto another_slab;
  1426. c->page->inuse++;
  1427. c->page->freelist = object[c->offset];
  1428. c->node = -1;
  1429. goto unlock_out;
  1430. }
  1431. /*
  1432. * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
  1433. * have the fastpath folded into their functions. So no function call
  1434. * overhead for requests that can be satisfied on the fastpath.
  1435. *
  1436. * The fastpath works by first checking if the lockless freelist can be used.
  1437. * If not then __slab_alloc is called for slow processing.
  1438. *
  1439. * Otherwise we can simply pick the next object from the lockless free list.
  1440. */
  1441. static __always_inline void *slab_alloc(struct kmem_cache *s,
  1442. gfp_t gfpflags, int node, unsigned long addr)
  1443. {
  1444. void **object;
  1445. struct kmem_cache_cpu *c;
  1446. unsigned long flags;
  1447. unsigned int objsize;
  1448. gfpflags &= slab_gfp_mask;
  1449. lockdep_trace_alloc(gfpflags);
  1450. might_sleep_if(gfpflags & __GFP_WAIT);
  1451. if (should_failslab(s->objsize, gfpflags))
  1452. return NULL;
  1453. local_irq_save(flags);
  1454. c = get_cpu_slab(s, smp_processor_id());
  1455. objsize = c->objsize;
  1456. if (unlikely(!c->freelist || !node_match(c, node)))
  1457. object = __slab_alloc(s, gfpflags, node, addr, c);
  1458. else {
  1459. object = c->freelist;
  1460. c->freelist = object[c->offset];
  1461. stat(c, ALLOC_FASTPATH);
  1462. }
  1463. local_irq_restore(flags);
  1464. if (unlikely((gfpflags & __GFP_ZERO) && object))
  1465. memset(object, 0, objsize);
  1466. kmemcheck_slab_alloc(s, gfpflags, object, c->objsize);
  1467. kmemleak_alloc_recursive(object, objsize, 1, s->flags, gfpflags);
  1468. return object;
  1469. }
  1470. void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
  1471. {
  1472. void *ret = slab_alloc(s, gfpflags, -1, _RET_IP_);
  1473. trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
  1474. return ret;
  1475. }
  1476. EXPORT_SYMBOL(kmem_cache_alloc);
  1477. #ifdef CONFIG_KMEMTRACE
  1478. void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
  1479. {
  1480. return slab_alloc(s, gfpflags, -1, _RET_IP_);
  1481. }
  1482. EXPORT_SYMBOL(kmem_cache_alloc_notrace);
  1483. #endif
  1484. #ifdef CONFIG_NUMA
  1485. void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
  1486. {
  1487. void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
  1488. trace_kmem_cache_alloc_node(_RET_IP_, ret,
  1489. s->objsize, s->size, gfpflags, node);
  1490. return ret;
  1491. }
  1492. EXPORT_SYMBOL(kmem_cache_alloc_node);
  1493. #endif
  1494. #ifdef CONFIG_KMEMTRACE
  1495. void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
  1496. gfp_t gfpflags,
  1497. int node)
  1498. {
  1499. return slab_alloc(s, gfpflags, node, _RET_IP_);
  1500. }
  1501. EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
  1502. #endif
  1503. /*
  1504. * Slow patch handling. This may still be called frequently since objects
  1505. * have a longer lifetime than the cpu slabs in most processing loads.
  1506. *
  1507. * So we still attempt to reduce cache line usage. Just take the slab
  1508. * lock and free the item. If there is no additional partial page
  1509. * handling required then we can return immediately.
  1510. */
  1511. static void __slab_free(struct kmem_cache *s, struct page *page,
  1512. void *x, unsigned long addr, unsigned int offset)
  1513. {
  1514. void *prior;
  1515. void **object = (void *)x;
  1516. struct kmem_cache_cpu *c;
  1517. c = get_cpu_slab(s, raw_smp_processor_id());
  1518. stat(c, FREE_SLOWPATH);
  1519. slab_lock(page);
  1520. if (unlikely(SLABDEBUG && PageSlubDebug(page)))
  1521. goto debug;
  1522. checks_ok:
  1523. prior = object[offset] = page->freelist;
  1524. page->freelist = object;
  1525. page->inuse--;
  1526. if (unlikely(PageSlubFrozen(page))) {
  1527. stat(c, FREE_FROZEN);
  1528. goto out_unlock;
  1529. }
  1530. if (unlikely(!page->inuse))
  1531. goto slab_empty;
  1532. /*
  1533. * Objects left in the slab. If it was not on the partial list before
  1534. * then add it.
  1535. */
  1536. if (unlikely(!prior)) {
  1537. add_partial(get_node(s, page_to_nid(page)), page, 1);
  1538. stat(c, FREE_ADD_PARTIAL);
  1539. }
  1540. out_unlock:
  1541. slab_unlock(page);
  1542. return;
  1543. slab_empty:
  1544. if (prior) {
  1545. /*
  1546. * Slab still on the partial list.
  1547. */
  1548. remove_partial(s, page);
  1549. stat(c, FREE_REMOVE_PARTIAL);
  1550. }
  1551. slab_unlock(page);
  1552. stat(c, FREE_SLAB);
  1553. discard_slab(s, page);
  1554. return;
  1555. debug:
  1556. if (!free_debug_processing(s, page, x, addr))
  1557. goto out_unlock;
  1558. goto checks_ok;
  1559. }
  1560. /*
  1561. * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
  1562. * can perform fastpath freeing without additional function calls.
  1563. *
  1564. * The fastpath is only possible if we are freeing to the current cpu slab
  1565. * of this processor. This typically the case if we have just allocated
  1566. * the item before.
  1567. *
  1568. * If fastpath is not possible then fall back to __slab_free where we deal
  1569. * with all sorts of special processing.
  1570. */
  1571. static __always_inline void slab_free(struct kmem_cache *s,
  1572. struct page *page, void *x, unsigned long addr)
  1573. {
  1574. void **object = (void *)x;
  1575. struct kmem_cache_cpu *c;
  1576. unsigned long flags;
  1577. kmemleak_free_recursive(x, s->flags);
  1578. local_irq_save(flags);
  1579. c = get_cpu_slab(s, smp_processor_id());
  1580. kmemcheck_slab_free(s, object, c->objsize);
  1581. debug_check_no_locks_freed(object, c->objsize);
  1582. if (!(s->flags & SLAB_DEBUG_OBJECTS))
  1583. debug_check_no_obj_freed(object, c->objsize);
  1584. if (likely(page == c->page && c->node >= 0)) {
  1585. object[c->offset] = c->freelist;
  1586. c->freelist = object;
  1587. stat(c, FREE_FASTPATH);
  1588. } else
  1589. __slab_free(s, page, x, addr, c->offset);
  1590. local_irq_restore(flags);
  1591. }
  1592. void kmem_cache_free(struct kmem_cache *s, void *x)
  1593. {
  1594. struct page *page;
  1595. page = virt_to_head_page(x);
  1596. slab_free(s, page, x, _RET_IP_);
  1597. trace_kmem_cache_free(_RET_IP_, x);
  1598. }
  1599. EXPORT_SYMBOL(kmem_cache_free);
  1600. /* Figure out on which slab page the object resides */
  1601. static struct page *get_object_page(const void *x)
  1602. {
  1603. struct page *page = virt_to_head_page(x);
  1604. if (!PageSlab(page))
  1605. return NULL;
  1606. return page;
  1607. }
  1608. /*
  1609. * Object placement in a slab is made very easy because we always start at
  1610. * offset 0. If we tune the size of the object to the alignment then we can
  1611. * get the required alignment by putting one properly sized object after
  1612. * another.
  1613. *
  1614. * Notice that the allocation order determines the sizes of the per cpu
  1615. * caches. Each processor has always one slab available for allocations.
  1616. * Increasing the allocation order reduces the number of times that slabs
  1617. * must be moved on and off the partial lists and is therefore a factor in
  1618. * locking overhead.
  1619. */
  1620. /*
  1621. * Mininum / Maximum order of slab pages. This influences locking overhead
  1622. * and slab fragmentation. A higher order reduces the number of partial slabs
  1623. * and increases the number of allocations possible without having to
  1624. * take the list_lock.
  1625. */
  1626. static int slub_min_order;
  1627. static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
  1628. static int slub_min_objects;
  1629. /*
  1630. * Merge control. If this is set then no merging of slab caches will occur.
  1631. * (Could be removed. This was introduced to pacify the merge skeptics.)
  1632. */
  1633. static int slub_nomerge;
  1634. /*
  1635. * Calculate the order of allocation given an slab object size.
  1636. *
  1637. * The order of allocation has significant impact on performance and other
  1638. * system components. Generally order 0 allocations should be preferred since
  1639. * order 0 does not cause fragmentation in the page allocator. Larger objects
  1640. * be problematic to put into order 0 slabs because there may be too much
  1641. * unused space left. We go to a higher order if more than 1/16th of the slab
  1642. * would be wasted.
  1643. *
  1644. * In order to reach satisfactory performance we must ensure that a minimum
  1645. * number of objects is in one slab. Otherwise we may generate too much
  1646. * activity on the partial lists which requires taking the list_lock. This is
  1647. * less a concern for large slabs though which are rarely used.
  1648. *
  1649. * slub_max_order specifies the order where we begin to stop considering the
  1650. * number of objects in a slab as critical. If we reach slub_max_order then
  1651. * we try to keep the page order as low as possible. So we accept more waste
  1652. * of space in favor of a small page order.
  1653. *
  1654. * Higher order allocations also allow the placement of more objects in a
  1655. * slab and thereby reduce object handling overhead. If the user has
  1656. * requested a higher mininum order then we start with that one instead of
  1657. * the smallest order which will fit the object.
  1658. */
  1659. static inline int slab_order(int size, int min_objects,
  1660. int max_order, int fract_leftover)
  1661. {
  1662. int order;
  1663. int rem;
  1664. int min_order = slub_min_order;
  1665. if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
  1666. return get_order(size * MAX_OBJS_PER_PAGE) - 1;
  1667. for (order = max(min_order,
  1668. fls(min_objects * size - 1) - PAGE_SHIFT);
  1669. order <= max_order; order++) {
  1670. unsigned long slab_size = PAGE_SIZE << order;
  1671. if (slab_size < min_objects * size)
  1672. continue;
  1673. rem = slab_size % size;
  1674. if (rem <= slab_size / fract_leftover)
  1675. break;
  1676. }
  1677. return order;
  1678. }
  1679. static inline int calculate_order(int size)
  1680. {
  1681. int order;
  1682. int min_objects;
  1683. int fraction;
  1684. int max_objects;
  1685. /*
  1686. * Attempt to find best configuration for a slab. This
  1687. * works by first attempting to generate a layout with
  1688. * the best configuration and backing off gradually.
  1689. *
  1690. * First we reduce the acceptable waste in a slab. Then
  1691. * we reduce the minimum objects required in a slab.
  1692. */
  1693. min_objects = slub_min_objects;
  1694. if (!min_objects)
  1695. min_objects = 4 * (fls(nr_cpu_ids) + 1);
  1696. max_objects = (PAGE_SIZE << slub_max_order)/size;
  1697. min_objects = min(min_objects, max_objects);
  1698. while (min_objects > 1) {
  1699. fraction = 16;
  1700. while (fraction >= 4) {
  1701. order = slab_order(size, min_objects,
  1702. slub_max_order, fraction);
  1703. if (order <= slub_max_order)
  1704. return order;
  1705. fraction /= 2;
  1706. }
  1707. min_objects --;
  1708. }
  1709. /*
  1710. * We were unable to place multiple objects in a slab. Now
  1711. * lets see if we can place a single object there.
  1712. */
  1713. order = slab_order(size, 1, slub_max_order, 1);
  1714. if (order <= slub_max_order)
  1715. return order;
  1716. /*
  1717. * Doh this slab cannot be placed using slub_max_order.
  1718. */
  1719. order = slab_order(size, 1, MAX_ORDER, 1);
  1720. if (order < MAX_ORDER)
  1721. return order;
  1722. return -ENOSYS;
  1723. }
  1724. /*
  1725. * Figure out what the alignment of the objects will be.
  1726. */
  1727. static unsigned long calculate_alignment(unsigned long flags,
  1728. unsigned long align, unsigned long size)
  1729. {
  1730. /*
  1731. * If the user wants hardware cache aligned objects then follow that
  1732. * suggestion if the object is sufficiently large.
  1733. *
  1734. * The hardware cache alignment cannot override the specified
  1735. * alignment though. If that is greater then use it.
  1736. */
  1737. if (flags & SLAB_HWCACHE_ALIGN) {
  1738. unsigned long ralign = cache_line_size();
  1739. while (size <= ralign / 2)
  1740. ralign /= 2;
  1741. align = max(align, ralign);
  1742. }
  1743. if (align < ARCH_SLAB_MINALIGN)
  1744. align = ARCH_SLAB_MINALIGN;
  1745. return ALIGN(align, sizeof(void *));
  1746. }
  1747. static void init_kmem_cache_cpu(struct kmem_cache *s,
  1748. struct kmem_cache_cpu *c)
  1749. {
  1750. c->page = NULL;
  1751. c->freelist = NULL;
  1752. c->node = 0;
  1753. c->offset = s->offset / sizeof(void *);
  1754. c->objsize = s->objsize;
  1755. #ifdef CONFIG_SLUB_STATS
  1756. memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
  1757. #endif
  1758. }
  1759. static void
  1760. init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
  1761. {
  1762. n->nr_partial = 0;
  1763. spin_lock_init(&n->list_lock);
  1764. INIT_LIST_HEAD(&n->partial);
  1765. #ifdef CONFIG_SLUB_DEBUG
  1766. atomic_long_set(&n->nr_slabs, 0);
  1767. atomic_long_set(&n->total_objects, 0);
  1768. INIT_LIST_HEAD(&n->full);
  1769. #endif
  1770. }
  1771. #ifdef CONFIG_SMP
  1772. /*
  1773. * Per cpu array for per cpu structures.
  1774. *
  1775. * The per cpu array places all kmem_cache_cpu structures from one processor
  1776. * close together meaning that it becomes possible that multiple per cpu
  1777. * structures are contained in one cacheline. This may be particularly
  1778. * beneficial for the kmalloc caches.
  1779. *
  1780. * A desktop system typically has around 60-80 slabs. With 100 here we are
  1781. * likely able to get per cpu structures for all caches from the array defined
  1782. * here. We must be able to cover all kmalloc caches during bootstrap.
  1783. *
  1784. * If the per cpu array is exhausted then fall back to kmalloc
  1785. * of individual cachelines. No sharing is possible then.
  1786. */
  1787. #define NR_KMEM_CACHE_CPU 100
  1788. static DEFINE_PER_CPU(struct kmem_cache_cpu,
  1789. kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
  1790. static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
  1791. static DECLARE_BITMAP(kmem_cach_cpu_free_init_once, CONFIG_NR_CPUS);
  1792. static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
  1793. int cpu, gfp_t flags)
  1794. {
  1795. struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
  1796. if (c)
  1797. per_cpu(kmem_cache_cpu_free, cpu) =
  1798. (void *)c->freelist;
  1799. else {
  1800. /* Table overflow: So allocate ourselves */
  1801. c = kmalloc_node(
  1802. ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
  1803. flags, cpu_to_node(cpu));
  1804. if (!c)
  1805. return NULL;
  1806. }
  1807. init_kmem_cache_cpu(s, c);
  1808. return c;
  1809. }
  1810. static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
  1811. {
  1812. if (c < per_cpu(kmem_cache_cpu, cpu) ||
  1813. c >= per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
  1814. kfree(c);
  1815. return;
  1816. }
  1817. c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
  1818. per_cpu(kmem_cache_cpu_free, cpu) = c;
  1819. }
  1820. static void free_kmem_cache_cpus(struct kmem_cache *s)
  1821. {
  1822. int cpu;
  1823. for_each_online_cpu(cpu) {
  1824. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  1825. if (c) {
  1826. s->cpu_slab[cpu] = NULL;
  1827. free_kmem_cache_cpu(c, cpu);
  1828. }
  1829. }
  1830. }
  1831. static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
  1832. {
  1833. int cpu;
  1834. for_each_online_cpu(cpu) {
  1835. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  1836. if (c)
  1837. continue;
  1838. c = alloc_kmem_cache_cpu(s, cpu, flags);
  1839. if (!c) {
  1840. free_kmem_cache_cpus(s);
  1841. return 0;
  1842. }
  1843. s->cpu_slab[cpu] = c;
  1844. }
  1845. return 1;
  1846. }
  1847. /*
  1848. * Initialize the per cpu array.
  1849. */
  1850. static void init_alloc_cpu_cpu(int cpu)
  1851. {
  1852. int i;
  1853. if (cpumask_test_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once)))
  1854. return;
  1855. for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
  1856. free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
  1857. cpumask_set_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once));
  1858. }
  1859. static void __init init_alloc_cpu(void)
  1860. {
  1861. int cpu;
  1862. for_each_online_cpu(cpu)
  1863. init_alloc_cpu_cpu(cpu);
  1864. }
  1865. #else
  1866. static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
  1867. static inline void init_alloc_cpu(void) {}
  1868. static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
  1869. {
  1870. init_kmem_cache_cpu(s, &s->cpu_slab);
  1871. return 1;
  1872. }
  1873. #endif
  1874. #ifdef CONFIG_NUMA
  1875. /*
  1876. * No kmalloc_node yet so do it by hand. We know that this is the first
  1877. * slab on the node for this slabcache. There are no concurrent accesses
  1878. * possible.
  1879. *
  1880. * Note that this function only works on the kmalloc_node_cache
  1881. * when allocating for the kmalloc_node_cache. This is used for bootstrapping
  1882. * memory on a fresh node that has no slab structures yet.
  1883. */
  1884. static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node)
  1885. {
  1886. struct page *page;
  1887. struct kmem_cache_node *n;
  1888. unsigned long flags;
  1889. BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
  1890. page = new_slab(kmalloc_caches, gfpflags, node);
  1891. BUG_ON(!page);
  1892. if (page_to_nid(page) != node) {
  1893. printk(KERN_ERR "SLUB: Unable to allocate memory from "
  1894. "node %d\n", node);
  1895. printk(KERN_ERR "SLUB: Allocating a useless per node structure "
  1896. "in order to be able to continue\n");
  1897. }
  1898. n = page->freelist;
  1899. BUG_ON(!n);
  1900. page->freelist = get_freepointer(kmalloc_caches, n);
  1901. page->inuse++;
  1902. kmalloc_caches->node[node] = n;
  1903. #ifdef CONFIG_SLUB_DEBUG
  1904. init_object(kmalloc_caches, n, 1);
  1905. init_tracking(kmalloc_caches, n);
  1906. #endif
  1907. init_kmem_cache_node(n, kmalloc_caches);
  1908. inc_slabs_node(kmalloc_caches, node, page->objects);
  1909. /*
  1910. * lockdep requires consistent irq usage for each lock
  1911. * so even though there cannot be a race this early in
  1912. * the boot sequence, we still disable irqs.
  1913. */
  1914. local_irq_save(flags);
  1915. add_partial(n, page, 0);
  1916. local_irq_restore(flags);
  1917. }
  1918. static void free_kmem_cache_nodes(struct kmem_cache *s)
  1919. {
  1920. int node;
  1921. for_each_node_state(node, N_NORMAL_MEMORY) {
  1922. struct kmem_cache_node *n = s->node[node];
  1923. if (n && n != &s->local_node)
  1924. kmem_cache_free(kmalloc_caches, n);
  1925. s->node[node] = NULL;
  1926. }
  1927. }
  1928. static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
  1929. {
  1930. int node;
  1931. int local_node;
  1932. if (slab_state >= UP)
  1933. local_node = page_to_nid(virt_to_page(s));
  1934. else
  1935. local_node = 0;
  1936. for_each_node_state(node, N_NORMAL_MEMORY) {
  1937. struct kmem_cache_node *n;
  1938. if (local_node == node)
  1939. n = &s->local_node;
  1940. else {
  1941. if (slab_state == DOWN) {
  1942. early_kmem_cache_node_alloc(gfpflags, node);
  1943. continue;
  1944. }
  1945. n = kmem_cache_alloc_node(kmalloc_caches,
  1946. gfpflags, node);
  1947. if (!n) {
  1948. free_kmem_cache_nodes(s);
  1949. return 0;
  1950. }
  1951. }
  1952. s->node[node] = n;
  1953. init_kmem_cache_node(n, s);
  1954. }
  1955. return 1;
  1956. }
  1957. #else
  1958. static void free_kmem_cache_nodes(struct kmem_cache *s)
  1959. {
  1960. }
  1961. static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
  1962. {
  1963. init_kmem_cache_node(&s->local_node, s);
  1964. return 1;
  1965. }
  1966. #endif
  1967. static void set_min_partial(struct kmem_cache *s, unsigned long min)
  1968. {
  1969. if (min < MIN_PARTIAL)
  1970. min = MIN_PARTIAL;
  1971. else if (min > MAX_PARTIAL)
  1972. min = MAX_PARTIAL;
  1973. s->min_partial = min;
  1974. }
  1975. /*
  1976. * calculate_sizes() determines the order and the distribution of data within
  1977. * a slab object.
  1978. */
  1979. static int calculate_sizes(struct kmem_cache *s, int forced_order)
  1980. {
  1981. unsigned long flags = s->flags;
  1982. unsigned long size = s->objsize;
  1983. unsigned long align = s->align;
  1984. int order;
  1985. /*
  1986. * Round up object size to the next word boundary. We can only
  1987. * place the free pointer at word boundaries and this determines
  1988. * the possible location of the free pointer.
  1989. */
  1990. size = ALIGN(size, sizeof(void *));
  1991. #ifdef CONFIG_SLUB_DEBUG
  1992. /*
  1993. * Determine if we can poison the object itself. If the user of
  1994. * the slab may touch the object after free or before allocation
  1995. * then we should never poison the object itself.
  1996. */
  1997. if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
  1998. !s->ctor)
  1999. s->flags |= __OBJECT_POISON;
  2000. else
  2001. s->flags &= ~__OBJECT_POISON;
  2002. /*
  2003. * If we are Redzoning then check if there is some space between the
  2004. * end of the object and the free pointer. If not then add an
  2005. * additional word to have some bytes to store Redzone information.
  2006. */
  2007. if ((flags & SLAB_RED_ZONE) && size == s->objsize)
  2008. size += sizeof(void *);
  2009. #endif
  2010. /*
  2011. * With that we have determined the number of bytes in actual use
  2012. * by the object. This is the potential offset to the free pointer.
  2013. */
  2014. s->inuse = size;
  2015. if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
  2016. s->ctor)) {
  2017. /*
  2018. * Relocate free pointer after the object if it is not
  2019. * permitted to overwrite the first word of the object on
  2020. * kmem_cache_free.
  2021. *
  2022. * This is the case if we do RCU, have a constructor or
  2023. * destructor or are poisoning the objects.
  2024. */
  2025. s->offset = size;
  2026. size += sizeof(void *);
  2027. }
  2028. #ifdef CONFIG_SLUB_DEBUG
  2029. if (flags & SLAB_STORE_USER)
  2030. /*
  2031. * Need to store information about allocs and frees after
  2032. * the object.
  2033. */
  2034. size += 2 * sizeof(struct track);
  2035. if (flags & SLAB_RED_ZONE)
  2036. /*
  2037. * Add some empty padding so that we can catch
  2038. * overwrites from earlier objects rather than let
  2039. * tracking information or the free pointer be
  2040. * corrupted if a user writes before the start
  2041. * of the object.
  2042. */
  2043. size += sizeof(void *);
  2044. #endif
  2045. /*
  2046. * Determine the alignment based on various parameters that the
  2047. * user specified and the dynamic determination of cache line size
  2048. * on bootup.
  2049. */
  2050. align = calculate_alignment(flags, align, s->objsize);
  2051. /*
  2052. * SLUB stores one object immediately after another beginning from
  2053. * offset 0. In order to align the objects we have to simply size
  2054. * each object to conform to the alignment.
  2055. */
  2056. size = ALIGN(size, align);
  2057. s->size = size;
  2058. if (forced_order >= 0)
  2059. order = forced_order;
  2060. else
  2061. order = calculate_order(size);
  2062. if (order < 0)
  2063. return 0;
  2064. s->allocflags = 0;
  2065. if (order)
  2066. s->allocflags |= __GFP_COMP;
  2067. if (s->flags & SLAB_CACHE_DMA)
  2068. s->allocflags |= SLUB_DMA;
  2069. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  2070. s->allocflags |= __GFP_RECLAIMABLE;
  2071. /*
  2072. * Determine the number of objects per slab
  2073. */
  2074. s->oo = oo_make(order, size);
  2075. s->min = oo_make(get_order(size), size);
  2076. if (oo_objects(s->oo) > oo_objects(s->max))
  2077. s->max = s->oo;
  2078. return !!oo_objects(s->oo);
  2079. }
  2080. static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
  2081. const char *name, size_t size,
  2082. size_t align, unsigned long flags,
  2083. void (*ctor)(void *))
  2084. {
  2085. memset(s, 0, kmem_size);
  2086. s->name = name;
  2087. s->ctor = ctor;
  2088. s->objsize = size;
  2089. s->align = align;
  2090. s->flags = kmem_cache_flags(size, flags, name, ctor);
  2091. if (!calculate_sizes(s, -1))
  2092. goto error;
  2093. /*
  2094. * The larger the object size is, the more pages we want on the partial
  2095. * list to avoid pounding the page allocator excessively.
  2096. */
  2097. set_min_partial(s, ilog2(s->size));
  2098. s->refcount = 1;
  2099. #ifdef CONFIG_NUMA
  2100. s->remote_node_defrag_ratio = 1000;
  2101. #endif
  2102. if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
  2103. goto error;
  2104. if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
  2105. return 1;
  2106. free_kmem_cache_nodes(s);
  2107. error:
  2108. if (flags & SLAB_PANIC)
  2109. panic("Cannot create slab %s size=%lu realsize=%u "
  2110. "order=%u offset=%u flags=%lx\n",
  2111. s->name, (unsigned long)size, s->size, oo_order(s->oo),
  2112. s->offset, flags);
  2113. return 0;
  2114. }
  2115. /*
  2116. * Check if a given pointer is valid
  2117. */
  2118. int kmem_ptr_validate(struct kmem_cache *s, const void *object)
  2119. {
  2120. struct page *page;
  2121. page = get_object_page(object);
  2122. if (!page || s != page->slab)
  2123. /* No slab or wrong slab */
  2124. return 0;
  2125. if (!check_valid_pointer(s, page, object))
  2126. return 0;
  2127. /*
  2128. * We could also check if the object is on the slabs freelist.
  2129. * But this would be too expensive and it seems that the main
  2130. * purpose of kmem_ptr_valid() is to check if the object belongs
  2131. * to a certain slab.
  2132. */
  2133. return 1;
  2134. }
  2135. EXPORT_SYMBOL(kmem_ptr_validate);
  2136. /*
  2137. * Determine the size of a slab object
  2138. */
  2139. unsigned int kmem_cache_size(struct kmem_cache *s)
  2140. {
  2141. return s->objsize;
  2142. }
  2143. EXPORT_SYMBOL(kmem_cache_size);
  2144. const char *kmem_cache_name(struct kmem_cache *s)
  2145. {
  2146. return s->name;
  2147. }
  2148. EXPORT_SYMBOL(kmem_cache_name);
  2149. static void list_slab_objects(struct kmem_cache *s, struct page *page,
  2150. const char *text)
  2151. {
  2152. #ifdef CONFIG_SLUB_DEBUG
  2153. void *addr = page_address(page);
  2154. void *p;
  2155. DECLARE_BITMAP(map, page->objects);
  2156. bitmap_zero(map, page->objects);
  2157. slab_err(s, page, "%s", text);
  2158. slab_lock(page);
  2159. for_each_free_object(p, s, page->freelist)
  2160. set_bit(slab_index(p, s, addr), map);
  2161. for_each_object(p, s, addr, page->objects) {
  2162. if (!test_bit(slab_index(p, s, addr), map)) {
  2163. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
  2164. p, p - addr);
  2165. print_tracking(s, p);
  2166. }
  2167. }
  2168. slab_unlock(page);
  2169. #endif
  2170. }
  2171. /*
  2172. * Attempt to free all partial slabs on a node.
  2173. */
  2174. static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
  2175. {
  2176. unsigned long flags;
  2177. struct page *page, *h;
  2178. spin_lock_irqsave(&n->list_lock, flags);
  2179. list_for_each_entry_safe(page, h, &n->partial, lru) {
  2180. if (!page->inuse) {
  2181. list_del(&page->lru);
  2182. discard_slab(s, page);
  2183. n->nr_partial--;
  2184. } else {
  2185. list_slab_objects(s, page,
  2186. "Objects remaining on kmem_cache_close()");
  2187. }
  2188. }
  2189. spin_unlock_irqrestore(&n->list_lock, flags);
  2190. }
  2191. /*
  2192. * Release all resources used by a slab cache.
  2193. */
  2194. static inline int kmem_cache_close(struct kmem_cache *s)
  2195. {
  2196. int node;
  2197. flush_all(s);
  2198. /* Attempt to free all objects */
  2199. free_kmem_cache_cpus(s);
  2200. for_each_node_state(node, N_NORMAL_MEMORY) {
  2201. struct kmem_cache_node *n = get_node(s, node);
  2202. free_partial(s, n);
  2203. if (n->nr_partial || slabs_node(s, node))
  2204. return 1;
  2205. }
  2206. free_kmem_cache_nodes(s);
  2207. return 0;
  2208. }
  2209. /*
  2210. * Close a cache and release the kmem_cache structure
  2211. * (must be used for caches created using kmem_cache_create)
  2212. */
  2213. void kmem_cache_destroy(struct kmem_cache *s)
  2214. {
  2215. down_write(&slub_lock);
  2216. s->refcount--;
  2217. if (!s->refcount) {
  2218. list_del(&s->list);
  2219. up_write(&slub_lock);
  2220. if (kmem_cache_close(s)) {
  2221. printk(KERN_ERR "SLUB %s: %s called for cache that "
  2222. "still has objects.\n", s->name, __func__);
  2223. dump_stack();
  2224. }
  2225. sysfs_slab_remove(s);
  2226. } else
  2227. up_write(&slub_lock);
  2228. }
  2229. EXPORT_SYMBOL(kmem_cache_destroy);
  2230. /********************************************************************
  2231. * Kmalloc subsystem
  2232. *******************************************************************/
  2233. struct kmem_cache kmalloc_caches[SLUB_PAGE_SHIFT] __cacheline_aligned;
  2234. EXPORT_SYMBOL(kmalloc_caches);
  2235. static int __init setup_slub_min_order(char *str)
  2236. {
  2237. get_option(&str, &slub_min_order);
  2238. return 1;
  2239. }
  2240. __setup("slub_min_order=", setup_slub_min_order);
  2241. static int __init setup_slub_max_order(char *str)
  2242. {
  2243. get_option(&str, &slub_max_order);
  2244. slub_max_order = min(slub_max_order, MAX_ORDER - 1);
  2245. return 1;
  2246. }
  2247. __setup("slub_max_order=", setup_slub_max_order);
  2248. static int __init setup_slub_min_objects(char *str)
  2249. {
  2250. get_option(&str, &slub_min_objects);
  2251. return 1;
  2252. }
  2253. __setup("slub_min_objects=", setup_slub_min_objects);
  2254. static int __init setup_slub_nomerge(char *str)
  2255. {
  2256. slub_nomerge = 1;
  2257. return 1;
  2258. }
  2259. __setup("slub_nomerge", setup_slub_nomerge);
  2260. static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
  2261. const char *name, int size, gfp_t gfp_flags)
  2262. {
  2263. unsigned int flags = 0;
  2264. if (gfp_flags & SLUB_DMA)
  2265. flags = SLAB_CACHE_DMA;
  2266. /*
  2267. * This function is called with IRQs disabled during early-boot on
  2268. * single CPU so there's no need to take slub_lock here.
  2269. */
  2270. if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
  2271. flags, NULL))
  2272. goto panic;
  2273. list_add(&s->list, &slab_caches);
  2274. if (sysfs_slab_add(s))
  2275. goto panic;
  2276. return s;
  2277. panic:
  2278. panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
  2279. }
  2280. #ifdef CONFIG_ZONE_DMA
  2281. static struct kmem_cache *kmalloc_caches_dma[SLUB_PAGE_SHIFT];
  2282. static void sysfs_add_func(struct work_struct *w)
  2283. {
  2284. struct kmem_cache *s;
  2285. down_write(&slub_lock);
  2286. list_for_each_entry(s, &slab_caches, list) {
  2287. if (s->flags & __SYSFS_ADD_DEFERRED) {
  2288. s->flags &= ~__SYSFS_ADD_DEFERRED;
  2289. sysfs_slab_add(s);
  2290. }
  2291. }
  2292. up_write(&slub_lock);
  2293. }
  2294. static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
  2295. static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
  2296. {
  2297. struct kmem_cache *s;
  2298. char *text;
  2299. size_t realsize;
  2300. unsigned long slabflags;
  2301. s = kmalloc_caches_dma[index];
  2302. if (s)
  2303. return s;
  2304. /* Dynamically create dma cache */
  2305. if (flags & __GFP_WAIT)
  2306. down_write(&slub_lock);
  2307. else {
  2308. if (!down_write_trylock(&slub_lock))
  2309. goto out;
  2310. }
  2311. if (kmalloc_caches_dma[index])
  2312. goto unlock_out;
  2313. realsize = kmalloc_caches[index].objsize;
  2314. text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
  2315. (unsigned int)realsize);
  2316. s = kmalloc(kmem_size, flags & ~SLUB_DMA);
  2317. /*
  2318. * Must defer sysfs creation to a workqueue because we don't know
  2319. * what context we are called from. Before sysfs comes up, we don't
  2320. * need to do anything because our sysfs initcall will start by
  2321. * adding all existing slabs to sysfs.
  2322. */
  2323. slabflags = SLAB_CACHE_DMA|SLAB_NOTRACK;
  2324. if (slab_state >= SYSFS)
  2325. slabflags |= __SYSFS_ADD_DEFERRED;
  2326. if (!s || !text || !kmem_cache_open(s, flags, text,
  2327. realsize, ARCH_KMALLOC_MINALIGN, slabflags, NULL)) {
  2328. kfree(s);
  2329. kfree(text);
  2330. goto unlock_out;
  2331. }
  2332. list_add(&s->list, &slab_caches);
  2333. kmalloc_caches_dma[index] = s;
  2334. if (slab_state >= SYSFS)
  2335. schedule_work(&sysfs_add_work);
  2336. unlock_out:
  2337. up_write(&slub_lock);
  2338. out:
  2339. return kmalloc_caches_dma[index];
  2340. }
  2341. #endif
  2342. /*
  2343. * Conversion table for small slabs sizes / 8 to the index in the
  2344. * kmalloc array. This is necessary for slabs < 192 since we have non power
  2345. * of two cache sizes there. The size of larger slabs can be determined using
  2346. * fls.
  2347. */
  2348. static s8 size_index[24] = {
  2349. 3, /* 8 */
  2350. 4, /* 16 */
  2351. 5, /* 24 */
  2352. 5, /* 32 */
  2353. 6, /* 40 */
  2354. 6, /* 48 */
  2355. 6, /* 56 */
  2356. 6, /* 64 */
  2357. 1, /* 72 */
  2358. 1, /* 80 */
  2359. 1, /* 88 */
  2360. 1, /* 96 */
  2361. 7, /* 104 */
  2362. 7, /* 112 */
  2363. 7, /* 120 */
  2364. 7, /* 128 */
  2365. 2, /* 136 */
  2366. 2, /* 144 */
  2367. 2, /* 152 */
  2368. 2, /* 160 */
  2369. 2, /* 168 */
  2370. 2, /* 176 */
  2371. 2, /* 184 */
  2372. 2 /* 192 */
  2373. };
  2374. static struct kmem_cache *get_slab(size_t size, gfp_t flags)
  2375. {
  2376. int index;
  2377. if (size <= 192) {
  2378. if (!size)
  2379. return ZERO_SIZE_PTR;
  2380. index = size_index[(size - 1) / 8];
  2381. } else
  2382. index = fls(size - 1);
  2383. #ifdef CONFIG_ZONE_DMA
  2384. if (unlikely((flags & SLUB_DMA)))
  2385. return dma_kmalloc_cache(index, flags);
  2386. #endif
  2387. return &kmalloc_caches[index];
  2388. }
  2389. void *__kmalloc(size_t size, gfp_t flags)
  2390. {
  2391. struct kmem_cache *s;
  2392. void *ret;
  2393. if (unlikely(size > SLUB_MAX_SIZE))
  2394. return kmalloc_large(size, flags);
  2395. s = get_slab(size, flags);
  2396. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2397. return s;
  2398. ret = slab_alloc(s, flags, -1, _RET_IP_);
  2399. trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
  2400. return ret;
  2401. }
  2402. EXPORT_SYMBOL(__kmalloc);
  2403. static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
  2404. {
  2405. struct page *page;
  2406. flags |= __GFP_COMP | __GFP_NOTRACK;
  2407. page = alloc_pages_node(node, flags, get_order(size));
  2408. if (page)
  2409. return page_address(page);
  2410. else
  2411. return NULL;
  2412. }
  2413. #ifdef CONFIG_NUMA
  2414. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  2415. {
  2416. struct kmem_cache *s;
  2417. void *ret;
  2418. if (unlikely(size > SLUB_MAX_SIZE)) {
  2419. ret = kmalloc_large_node(size, flags, node);
  2420. trace_kmalloc_node(_RET_IP_, ret,
  2421. size, PAGE_SIZE << get_order(size),
  2422. flags, node);
  2423. return ret;
  2424. }
  2425. s = get_slab(size, flags);
  2426. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2427. return s;
  2428. ret = slab_alloc(s, flags, node, _RET_IP_);
  2429. trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
  2430. return ret;
  2431. }
  2432. EXPORT_SYMBOL(__kmalloc_node);
  2433. #endif
  2434. size_t ksize(const void *object)
  2435. {
  2436. struct page *page;
  2437. struct kmem_cache *s;
  2438. if (unlikely(object == ZERO_SIZE_PTR))
  2439. return 0;
  2440. page = virt_to_head_page(object);
  2441. if (unlikely(!PageSlab(page))) {
  2442. WARN_ON(!PageCompound(page));
  2443. return PAGE_SIZE << compound_order(page);
  2444. }
  2445. s = page->slab;
  2446. #ifdef CONFIG_SLUB_DEBUG
  2447. /*
  2448. * Debugging requires use of the padding between object
  2449. * and whatever may come after it.
  2450. */
  2451. if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
  2452. return s->objsize;
  2453. #endif
  2454. /*
  2455. * If we have the need to store the freelist pointer
  2456. * back there or track user information then we can
  2457. * only use the space before that information.
  2458. */
  2459. if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
  2460. return s->inuse;
  2461. /*
  2462. * Else we can use all the padding etc for the allocation
  2463. */
  2464. return s->size;
  2465. }
  2466. EXPORT_SYMBOL(ksize);
  2467. void kfree(const void *x)
  2468. {
  2469. struct page *page;
  2470. void *object = (void *)x;
  2471. trace_kfree(_RET_IP_, x);
  2472. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2473. return;
  2474. page = virt_to_head_page(x);
  2475. if (unlikely(!PageSlab(page))) {
  2476. BUG_ON(!PageCompound(page));
  2477. put_page(page);
  2478. return;
  2479. }
  2480. slab_free(page->slab, page, object, _RET_IP_);
  2481. }
  2482. EXPORT_SYMBOL(kfree);
  2483. /*
  2484. * kmem_cache_shrink removes empty slabs from the partial lists and sorts
  2485. * the remaining slabs by the number of items in use. The slabs with the
  2486. * most items in use come first. New allocations will then fill those up
  2487. * and thus they can be removed from the partial lists.
  2488. *
  2489. * The slabs with the least items are placed last. This results in them
  2490. * being allocated from last increasing the chance that the last objects
  2491. * are freed in them.
  2492. */
  2493. int kmem_cache_shrink(struct kmem_cache *s)
  2494. {
  2495. int node;
  2496. int i;
  2497. struct kmem_cache_node *n;
  2498. struct page *page;
  2499. struct page *t;
  2500. int objects = oo_objects(s->max);
  2501. struct list_head *slabs_by_inuse =
  2502. kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
  2503. unsigned long flags;
  2504. if (!slabs_by_inuse)
  2505. return -ENOMEM;
  2506. flush_all(s);
  2507. for_each_node_state(node, N_NORMAL_MEMORY) {
  2508. n = get_node(s, node);
  2509. if (!n->nr_partial)
  2510. continue;
  2511. for (i = 0; i < objects; i++)
  2512. INIT_LIST_HEAD(slabs_by_inuse + i);
  2513. spin_lock_irqsave(&n->list_lock, flags);
  2514. /*
  2515. * Build lists indexed by the items in use in each slab.
  2516. *
  2517. * Note that concurrent frees may occur while we hold the
  2518. * list_lock. page->inuse here is the upper limit.
  2519. */
  2520. list_for_each_entry_safe(page, t, &n->partial, lru) {
  2521. if (!page->inuse && slab_trylock(page)) {
  2522. /*
  2523. * Must hold slab lock here because slab_free
  2524. * may have freed the last object and be
  2525. * waiting to release the slab.
  2526. */
  2527. list_del(&page->lru);
  2528. n->nr_partial--;
  2529. slab_unlock(page);
  2530. discard_slab(s, page);
  2531. } else {
  2532. list_move(&page->lru,
  2533. slabs_by_inuse + page->inuse);
  2534. }
  2535. }
  2536. /*
  2537. * Rebuild the partial list with the slabs filled up most
  2538. * first and the least used slabs at the end.
  2539. */
  2540. for (i = objects - 1; i >= 0; i--)
  2541. list_splice(slabs_by_inuse + i, n->partial.prev);
  2542. spin_unlock_irqrestore(&n->list_lock, flags);
  2543. }
  2544. kfree(slabs_by_inuse);
  2545. return 0;
  2546. }
  2547. EXPORT_SYMBOL(kmem_cache_shrink);
  2548. #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
  2549. static int slab_mem_going_offline_callback(void *arg)
  2550. {
  2551. struct kmem_cache *s;
  2552. down_read(&slub_lock);
  2553. list_for_each_entry(s, &slab_caches, list)
  2554. kmem_cache_shrink(s);
  2555. up_read(&slub_lock);
  2556. return 0;
  2557. }
  2558. static void slab_mem_offline_callback(void *arg)
  2559. {
  2560. struct kmem_cache_node *n;
  2561. struct kmem_cache *s;
  2562. struct memory_notify *marg = arg;
  2563. int offline_node;
  2564. offline_node = marg->status_change_nid;
  2565. /*
  2566. * If the node still has available memory. we need kmem_cache_node
  2567. * for it yet.
  2568. */
  2569. if (offline_node < 0)
  2570. return;
  2571. down_read(&slub_lock);
  2572. list_for_each_entry(s, &slab_caches, list) {
  2573. n = get_node(s, offline_node);
  2574. if (n) {
  2575. /*
  2576. * if n->nr_slabs > 0, slabs still exist on the node
  2577. * that is going down. We were unable to free them,
  2578. * and offline_pages() function shoudn't call this
  2579. * callback. So, we must fail.
  2580. */
  2581. BUG_ON(slabs_node(s, offline_node));
  2582. s->node[offline_node] = NULL;
  2583. kmem_cache_free(kmalloc_caches, n);
  2584. }
  2585. }
  2586. up_read(&slub_lock);
  2587. }
  2588. static int slab_mem_going_online_callback(void *arg)
  2589. {
  2590. struct kmem_cache_node *n;
  2591. struct kmem_cache *s;
  2592. struct memory_notify *marg = arg;
  2593. int nid = marg->status_change_nid;
  2594. int ret = 0;
  2595. /*
  2596. * If the node's memory is already available, then kmem_cache_node is
  2597. * already created. Nothing to do.
  2598. */
  2599. if (nid < 0)
  2600. return 0;
  2601. /*
  2602. * We are bringing a node online. No memory is available yet. We must
  2603. * allocate a kmem_cache_node structure in order to bring the node
  2604. * online.
  2605. */
  2606. down_read(&slub_lock);
  2607. list_for_each_entry(s, &slab_caches, list) {
  2608. /*
  2609. * XXX: kmem_cache_alloc_node will fallback to other nodes
  2610. * since memory is not yet available from the node that
  2611. * is brought up.
  2612. */
  2613. n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
  2614. if (!n) {
  2615. ret = -ENOMEM;
  2616. goto out;
  2617. }
  2618. init_kmem_cache_node(n, s);
  2619. s->node[nid] = n;
  2620. }
  2621. out:
  2622. up_read(&slub_lock);
  2623. return ret;
  2624. }
  2625. static int slab_memory_callback(struct notifier_block *self,
  2626. unsigned long action, void *arg)
  2627. {
  2628. int ret = 0;
  2629. switch (action) {
  2630. case MEM_GOING_ONLINE:
  2631. ret = slab_mem_going_online_callback(arg);
  2632. break;
  2633. case MEM_GOING_OFFLINE:
  2634. ret = slab_mem_going_offline_callback(arg);
  2635. break;
  2636. case MEM_OFFLINE:
  2637. case MEM_CANCEL_ONLINE:
  2638. slab_mem_offline_callback(arg);
  2639. break;
  2640. case MEM_ONLINE:
  2641. case MEM_CANCEL_OFFLINE:
  2642. break;
  2643. }
  2644. if (ret)
  2645. ret = notifier_from_errno(ret);
  2646. else
  2647. ret = NOTIFY_OK;
  2648. return ret;
  2649. }
  2650. #endif /* CONFIG_MEMORY_HOTPLUG */
  2651. /********************************************************************
  2652. * Basic setup of slabs
  2653. *******************************************************************/
  2654. void __init kmem_cache_init(void)
  2655. {
  2656. int i;
  2657. int caches = 0;
  2658. init_alloc_cpu();
  2659. #ifdef CONFIG_NUMA
  2660. /*
  2661. * Must first have the slab cache available for the allocations of the
  2662. * struct kmem_cache_node's. There is special bootstrap code in
  2663. * kmem_cache_open for slab_state == DOWN.
  2664. */
  2665. create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
  2666. sizeof(struct kmem_cache_node), GFP_NOWAIT);
  2667. kmalloc_caches[0].refcount = -1;
  2668. caches++;
  2669. hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
  2670. #endif
  2671. /* Able to allocate the per node structures */
  2672. slab_state = PARTIAL;
  2673. /* Caches that are not of the two-to-the-power-of size */
  2674. if (KMALLOC_MIN_SIZE <= 64) {
  2675. create_kmalloc_cache(&kmalloc_caches[1],
  2676. "kmalloc-96", 96, GFP_NOWAIT);
  2677. caches++;
  2678. create_kmalloc_cache(&kmalloc_caches[2],
  2679. "kmalloc-192", 192, GFP_NOWAIT);
  2680. caches++;
  2681. }
  2682. for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
  2683. create_kmalloc_cache(&kmalloc_caches[i],
  2684. "kmalloc", 1 << i, GFP_NOWAIT);
  2685. caches++;
  2686. }
  2687. /*
  2688. * Patch up the size_index table if we have strange large alignment
  2689. * requirements for the kmalloc array. This is only the case for
  2690. * MIPS it seems. The standard arches will not generate any code here.
  2691. *
  2692. * Largest permitted alignment is 256 bytes due to the way we
  2693. * handle the index determination for the smaller caches.
  2694. *
  2695. * Make sure that nothing crazy happens if someone starts tinkering
  2696. * around with ARCH_KMALLOC_MINALIGN
  2697. */
  2698. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
  2699. (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
  2700. for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
  2701. size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
  2702. if (KMALLOC_MIN_SIZE == 128) {
  2703. /*
  2704. * The 192 byte sized cache is not used if the alignment
  2705. * is 128 byte. Redirect kmalloc to use the 256 byte cache
  2706. * instead.
  2707. */
  2708. for (i = 128 + 8; i <= 192; i += 8)
  2709. size_index[(i - 1) / 8] = 8;
  2710. }
  2711. slab_state = UP;
  2712. /* Provide the correct kmalloc names now that the caches are up */
  2713. for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++)
  2714. kmalloc_caches[i]. name =
  2715. kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
  2716. #ifdef CONFIG_SMP
  2717. register_cpu_notifier(&slab_notifier);
  2718. kmem_size = offsetof(struct kmem_cache, cpu_slab) +
  2719. nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
  2720. #else
  2721. kmem_size = sizeof(struct kmem_cache);
  2722. #endif
  2723. printk(KERN_INFO
  2724. "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
  2725. " CPUs=%d, Nodes=%d\n",
  2726. caches, cache_line_size(),
  2727. slub_min_order, slub_max_order, slub_min_objects,
  2728. nr_cpu_ids, nr_node_ids);
  2729. }
  2730. void __init kmem_cache_init_late(void)
  2731. {
  2732. /*
  2733. * Interrupts are enabled now so all GFP allocations are safe.
  2734. */
  2735. slab_gfp_mask = __GFP_BITS_MASK;
  2736. }
  2737. /*
  2738. * Find a mergeable slab cache
  2739. */
  2740. static int slab_unmergeable(struct kmem_cache *s)
  2741. {
  2742. if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
  2743. return 1;
  2744. if (s->ctor)
  2745. return 1;
  2746. /*
  2747. * We may have set a slab to be unmergeable during bootstrap.
  2748. */
  2749. if (s->refcount < 0)
  2750. return 1;
  2751. return 0;
  2752. }
  2753. static struct kmem_cache *find_mergeable(size_t size,
  2754. size_t align, unsigned long flags, const char *name,
  2755. void (*ctor)(void *))
  2756. {
  2757. struct kmem_cache *s;
  2758. if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
  2759. return NULL;
  2760. if (ctor)
  2761. return NULL;
  2762. size = ALIGN(size, sizeof(void *));
  2763. align = calculate_alignment(flags, align, size);
  2764. size = ALIGN(size, align);
  2765. flags = kmem_cache_flags(size, flags, name, NULL);
  2766. list_for_each_entry(s, &slab_caches, list) {
  2767. if (slab_unmergeable(s))
  2768. continue;
  2769. if (size > s->size)
  2770. continue;
  2771. if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
  2772. continue;
  2773. /*
  2774. * Check if alignment is compatible.
  2775. * Courtesy of Adrian Drzewiecki
  2776. */
  2777. if ((s->size & ~(align - 1)) != s->size)
  2778. continue;
  2779. if (s->size - size >= sizeof(void *))
  2780. continue;
  2781. return s;
  2782. }
  2783. return NULL;
  2784. }
  2785. struct kmem_cache *kmem_cache_create(const char *name, size_t size,
  2786. size_t align, unsigned long flags, void (*ctor)(void *))
  2787. {
  2788. struct kmem_cache *s;
  2789. down_write(&slub_lock);
  2790. s = find_mergeable(size, align, flags, name, ctor);
  2791. if (s) {
  2792. int cpu;
  2793. s->refcount++;
  2794. /*
  2795. * Adjust the object sizes so that we clear
  2796. * the complete object on kzalloc.
  2797. */
  2798. s->objsize = max(s->objsize, (int)size);
  2799. /*
  2800. * And then we need to update the object size in the
  2801. * per cpu structures
  2802. */
  2803. for_each_online_cpu(cpu)
  2804. get_cpu_slab(s, cpu)->objsize = s->objsize;
  2805. s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
  2806. up_write(&slub_lock);
  2807. if (sysfs_slab_alias(s, name)) {
  2808. down_write(&slub_lock);
  2809. s->refcount--;
  2810. up_write(&slub_lock);
  2811. goto err;
  2812. }
  2813. return s;
  2814. }
  2815. s = kmalloc(kmem_size, GFP_KERNEL);
  2816. if (s) {
  2817. if (kmem_cache_open(s, GFP_KERNEL, name,
  2818. size, align, flags, ctor)) {
  2819. list_add(&s->list, &slab_caches);
  2820. up_write(&slub_lock);
  2821. if (sysfs_slab_add(s)) {
  2822. down_write(&slub_lock);
  2823. list_del(&s->list);
  2824. up_write(&slub_lock);
  2825. kfree(s);
  2826. goto err;
  2827. }
  2828. return s;
  2829. }
  2830. kfree(s);
  2831. }
  2832. up_write(&slub_lock);
  2833. err:
  2834. if (flags & SLAB_PANIC)
  2835. panic("Cannot create slabcache %s\n", name);
  2836. else
  2837. s = NULL;
  2838. return s;
  2839. }
  2840. EXPORT_SYMBOL(kmem_cache_create);
  2841. #ifdef CONFIG_SMP
  2842. /*
  2843. * Use the cpu notifier to insure that the cpu slabs are flushed when
  2844. * necessary.
  2845. */
  2846. static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
  2847. unsigned long action, void *hcpu)
  2848. {
  2849. long cpu = (long)hcpu;
  2850. struct kmem_cache *s;
  2851. unsigned long flags;
  2852. switch (action) {
  2853. case CPU_UP_PREPARE:
  2854. case CPU_UP_PREPARE_FROZEN:
  2855. init_alloc_cpu_cpu(cpu);
  2856. down_read(&slub_lock);
  2857. list_for_each_entry(s, &slab_caches, list)
  2858. s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
  2859. GFP_KERNEL);
  2860. up_read(&slub_lock);
  2861. break;
  2862. case CPU_UP_CANCELED:
  2863. case CPU_UP_CANCELED_FROZEN:
  2864. case CPU_DEAD:
  2865. case CPU_DEAD_FROZEN:
  2866. down_read(&slub_lock);
  2867. list_for_each_entry(s, &slab_caches, list) {
  2868. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  2869. local_irq_save(flags);
  2870. __flush_cpu_slab(s, cpu);
  2871. local_irq_restore(flags);
  2872. free_kmem_cache_cpu(c, cpu);
  2873. s->cpu_slab[cpu] = NULL;
  2874. }
  2875. up_read(&slub_lock);
  2876. break;
  2877. default:
  2878. break;
  2879. }
  2880. return NOTIFY_OK;
  2881. }
  2882. static struct notifier_block __cpuinitdata slab_notifier = {
  2883. .notifier_call = slab_cpuup_callback
  2884. };
  2885. #endif
  2886. void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
  2887. {
  2888. struct kmem_cache *s;
  2889. void *ret;
  2890. if (unlikely(size > SLUB_MAX_SIZE))
  2891. return kmalloc_large(size, gfpflags);
  2892. s = get_slab(size, gfpflags);
  2893. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2894. return s;
  2895. ret = slab_alloc(s, gfpflags, -1, caller);
  2896. /* Honor the call site pointer we recieved. */
  2897. trace_kmalloc(caller, ret, size, s->size, gfpflags);
  2898. return ret;
  2899. }
  2900. void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
  2901. int node, unsigned long caller)
  2902. {
  2903. struct kmem_cache *s;
  2904. void *ret;
  2905. if (unlikely(size > SLUB_MAX_SIZE))
  2906. return kmalloc_large_node(size, gfpflags, node);
  2907. s = get_slab(size, gfpflags);
  2908. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2909. return s;
  2910. ret = slab_alloc(s, gfpflags, node, caller);
  2911. /* Honor the call site pointer we recieved. */
  2912. trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
  2913. return ret;
  2914. }
  2915. #ifdef CONFIG_SLUB_DEBUG
  2916. static int count_inuse(struct page *page)
  2917. {
  2918. return page->inuse;
  2919. }
  2920. static int count_total(struct page *page)
  2921. {
  2922. return page->objects;
  2923. }
  2924. static int validate_slab(struct kmem_cache *s, struct page *page,
  2925. unsigned long *map)
  2926. {
  2927. void *p;
  2928. void *addr = page_address(page);
  2929. if (!check_slab(s, page) ||
  2930. !on_freelist(s, page, NULL))
  2931. return 0;
  2932. /* Now we know that a valid freelist exists */
  2933. bitmap_zero(map, page->objects);
  2934. for_each_free_object(p, s, page->freelist) {
  2935. set_bit(slab_index(p, s, addr), map);
  2936. if (!check_object(s, page, p, 0))
  2937. return 0;
  2938. }
  2939. for_each_object(p, s, addr, page->objects)
  2940. if (!test_bit(slab_index(p, s, addr), map))
  2941. if (!check_object(s, page, p, 1))
  2942. return 0;
  2943. return 1;
  2944. }
  2945. static void validate_slab_slab(struct kmem_cache *s, struct page *page,
  2946. unsigned long *map)
  2947. {
  2948. if (slab_trylock(page)) {
  2949. validate_slab(s, page, map);
  2950. slab_unlock(page);
  2951. } else
  2952. printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
  2953. s->name, page);
  2954. if (s->flags & DEBUG_DEFAULT_FLAGS) {
  2955. if (!PageSlubDebug(page))
  2956. printk(KERN_ERR "SLUB %s: SlubDebug not set "
  2957. "on slab 0x%p\n", s->name, page);
  2958. } else {
  2959. if (PageSlubDebug(page))
  2960. printk(KERN_ERR "SLUB %s: SlubDebug set on "
  2961. "slab 0x%p\n", s->name, page);
  2962. }
  2963. }
  2964. static int validate_slab_node(struct kmem_cache *s,
  2965. struct kmem_cache_node *n, unsigned long *map)
  2966. {
  2967. unsigned long count = 0;
  2968. struct page *page;
  2969. unsigned long flags;
  2970. spin_lock_irqsave(&n->list_lock, flags);
  2971. list_for_each_entry(page, &n->partial, lru) {
  2972. validate_slab_slab(s, page, map);
  2973. count++;
  2974. }
  2975. if (count != n->nr_partial)
  2976. printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
  2977. "counter=%ld\n", s->name, count, n->nr_partial);
  2978. if (!(s->flags & SLAB_STORE_USER))
  2979. goto out;
  2980. list_for_each_entry(page, &n->full, lru) {
  2981. validate_slab_slab(s, page, map);
  2982. count++;
  2983. }
  2984. if (count != atomic_long_read(&n->nr_slabs))
  2985. printk(KERN_ERR "SLUB: %s %ld slabs counted but "
  2986. "counter=%ld\n", s->name, count,
  2987. atomic_long_read(&n->nr_slabs));
  2988. out:
  2989. spin_unlock_irqrestore(&n->list_lock, flags);
  2990. return count;
  2991. }
  2992. static long validate_slab_cache(struct kmem_cache *s)
  2993. {
  2994. int node;
  2995. unsigned long count = 0;
  2996. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  2997. sizeof(unsigned long), GFP_KERNEL);
  2998. if (!map)
  2999. return -ENOMEM;
  3000. flush_all(s);
  3001. for_each_node_state(node, N_NORMAL_MEMORY) {
  3002. struct kmem_cache_node *n = get_node(s, node);
  3003. count += validate_slab_node(s, n, map);
  3004. }
  3005. kfree(map);
  3006. return count;
  3007. }
  3008. #ifdef SLUB_RESILIENCY_TEST
  3009. static void resiliency_test(void)
  3010. {
  3011. u8 *p;
  3012. printk(KERN_ERR "SLUB resiliency testing\n");
  3013. printk(KERN_ERR "-----------------------\n");
  3014. printk(KERN_ERR "A. Corruption after allocation\n");
  3015. p = kzalloc(16, GFP_KERNEL);
  3016. p[16] = 0x12;
  3017. printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
  3018. " 0x12->0x%p\n\n", p + 16);
  3019. validate_slab_cache(kmalloc_caches + 4);
  3020. /* Hmmm... The next two are dangerous */
  3021. p = kzalloc(32, GFP_KERNEL);
  3022. p[32 + sizeof(void *)] = 0x34;
  3023. printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
  3024. " 0x34 -> -0x%p\n", p);
  3025. printk(KERN_ERR
  3026. "If allocated object is overwritten then not detectable\n\n");
  3027. validate_slab_cache(kmalloc_caches + 5);
  3028. p = kzalloc(64, GFP_KERNEL);
  3029. p += 64 + (get_cycles() & 0xff) * sizeof(void *);
  3030. *p = 0x56;
  3031. printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
  3032. p);
  3033. printk(KERN_ERR
  3034. "If allocated object is overwritten then not detectable\n\n");
  3035. validate_slab_cache(kmalloc_caches + 6);
  3036. printk(KERN_ERR "\nB. Corruption after free\n");
  3037. p = kzalloc(128, GFP_KERNEL);
  3038. kfree(p);
  3039. *p = 0x78;
  3040. printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
  3041. validate_slab_cache(kmalloc_caches + 7);
  3042. p = kzalloc(256, GFP_KERNEL);
  3043. kfree(p);
  3044. p[50] = 0x9a;
  3045. printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
  3046. p);
  3047. validate_slab_cache(kmalloc_caches + 8);
  3048. p = kzalloc(512, GFP_KERNEL);
  3049. kfree(p);
  3050. p[512] = 0xab;
  3051. printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
  3052. validate_slab_cache(kmalloc_caches + 9);
  3053. }
  3054. #else
  3055. static void resiliency_test(void) {};
  3056. #endif
  3057. /*
  3058. * Generate lists of code addresses where slabcache objects are allocated
  3059. * and freed.
  3060. */
  3061. struct location {
  3062. unsigned long count;
  3063. unsigned long addr;
  3064. long long sum_time;
  3065. long min_time;
  3066. long max_time;
  3067. long min_pid;
  3068. long max_pid;
  3069. DECLARE_BITMAP(cpus, NR_CPUS);
  3070. nodemask_t nodes;
  3071. };
  3072. struct loc_track {
  3073. unsigned long max;
  3074. unsigned long count;
  3075. struct location *loc;
  3076. };
  3077. static void free_loc_track(struct loc_track *t)
  3078. {
  3079. if (t->max)
  3080. free_pages((unsigned long)t->loc,
  3081. get_order(sizeof(struct location) * t->max));
  3082. }
  3083. static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
  3084. {
  3085. struct location *l;
  3086. int order;
  3087. order = get_order(sizeof(struct location) * max);
  3088. l = (void *)__get_free_pages(flags, order);
  3089. if (!l)
  3090. return 0;
  3091. if (t->count) {
  3092. memcpy(l, t->loc, sizeof(struct location) * t->count);
  3093. free_loc_track(t);
  3094. }
  3095. t->max = max;
  3096. t->loc = l;
  3097. return 1;
  3098. }
  3099. static int add_location(struct loc_track *t, struct kmem_cache *s,
  3100. const struct track *track)
  3101. {
  3102. long start, end, pos;
  3103. struct location *l;
  3104. unsigned long caddr;
  3105. unsigned long age = jiffies - track->when;
  3106. start = -1;
  3107. end = t->count;
  3108. for ( ; ; ) {
  3109. pos = start + (end - start + 1) / 2;
  3110. /*
  3111. * There is nothing at "end". If we end up there
  3112. * we need to add something to before end.
  3113. */
  3114. if (pos == end)
  3115. break;
  3116. caddr = t->loc[pos].addr;
  3117. if (track->addr == caddr) {
  3118. l = &t->loc[pos];
  3119. l->count++;
  3120. if (track->when) {
  3121. l->sum_time += age;
  3122. if (age < l->min_time)
  3123. l->min_time = age;
  3124. if (age > l->max_time)
  3125. l->max_time = age;
  3126. if (track->pid < l->min_pid)
  3127. l->min_pid = track->pid;
  3128. if (track->pid > l->max_pid)
  3129. l->max_pid = track->pid;
  3130. cpumask_set_cpu(track->cpu,
  3131. to_cpumask(l->cpus));
  3132. }
  3133. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3134. return 1;
  3135. }
  3136. if (track->addr < caddr)
  3137. end = pos;
  3138. else
  3139. start = pos;
  3140. }
  3141. /*
  3142. * Not found. Insert new tracking element.
  3143. */
  3144. if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
  3145. return 0;
  3146. l = t->loc + pos;
  3147. if (pos < t->count)
  3148. memmove(l + 1, l,
  3149. (t->count - pos) * sizeof(struct location));
  3150. t->count++;
  3151. l->count = 1;
  3152. l->addr = track->addr;
  3153. l->sum_time = age;
  3154. l->min_time = age;
  3155. l->max_time = age;
  3156. l->min_pid = track->pid;
  3157. l->max_pid = track->pid;
  3158. cpumask_clear(to_cpumask(l->cpus));
  3159. cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
  3160. nodes_clear(l->nodes);
  3161. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3162. return 1;
  3163. }
  3164. static void process_slab(struct loc_track *t, struct kmem_cache *s,
  3165. struct page *page, enum track_item alloc)
  3166. {
  3167. void *addr = page_address(page);
  3168. DECLARE_BITMAP(map, page->objects);
  3169. void *p;
  3170. bitmap_zero(map, page->objects);
  3171. for_each_free_object(p, s, page->freelist)
  3172. set_bit(slab_index(p, s, addr), map);
  3173. for_each_object(p, s, addr, page->objects)
  3174. if (!test_bit(slab_index(p, s, addr), map))
  3175. add_location(t, s, get_track(s, p, alloc));
  3176. }
  3177. static int list_locations(struct kmem_cache *s, char *buf,
  3178. enum track_item alloc)
  3179. {
  3180. int len = 0;
  3181. unsigned long i;
  3182. struct loc_track t = { 0, 0, NULL };
  3183. int node;
  3184. if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
  3185. GFP_TEMPORARY))
  3186. return sprintf(buf, "Out of memory\n");
  3187. /* Push back cpu slabs */
  3188. flush_all(s);
  3189. for_each_node_state(node, N_NORMAL_MEMORY) {
  3190. struct kmem_cache_node *n = get_node(s, node);
  3191. unsigned long flags;
  3192. struct page *page;
  3193. if (!atomic_long_read(&n->nr_slabs))
  3194. continue;
  3195. spin_lock_irqsave(&n->list_lock, flags);
  3196. list_for_each_entry(page, &n->partial, lru)
  3197. process_slab(&t, s, page, alloc);
  3198. list_for_each_entry(page, &n->full, lru)
  3199. process_slab(&t, s, page, alloc);
  3200. spin_unlock_irqrestore(&n->list_lock, flags);
  3201. }
  3202. for (i = 0; i < t.count; i++) {
  3203. struct location *l = &t.loc[i];
  3204. if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
  3205. break;
  3206. len += sprintf(buf + len, "%7ld ", l->count);
  3207. if (l->addr)
  3208. len += sprint_symbol(buf + len, (unsigned long)l->addr);
  3209. else
  3210. len += sprintf(buf + len, "<not-available>");
  3211. if (l->sum_time != l->min_time) {
  3212. len += sprintf(buf + len, " age=%ld/%ld/%ld",
  3213. l->min_time,
  3214. (long)div_u64(l->sum_time, l->count),
  3215. l->max_time);
  3216. } else
  3217. len += sprintf(buf + len, " age=%ld",
  3218. l->min_time);
  3219. if (l->min_pid != l->max_pid)
  3220. len += sprintf(buf + len, " pid=%ld-%ld",
  3221. l->min_pid, l->max_pid);
  3222. else
  3223. len += sprintf(buf + len, " pid=%ld",
  3224. l->min_pid);
  3225. if (num_online_cpus() > 1 &&
  3226. !cpumask_empty(to_cpumask(l->cpus)) &&
  3227. len < PAGE_SIZE - 60) {
  3228. len += sprintf(buf + len, " cpus=");
  3229. len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3230. to_cpumask(l->cpus));
  3231. }
  3232. if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
  3233. len < PAGE_SIZE - 60) {
  3234. len += sprintf(buf + len, " nodes=");
  3235. len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3236. l->nodes);
  3237. }
  3238. len += sprintf(buf + len, "\n");
  3239. }
  3240. free_loc_track(&t);
  3241. if (!t.count)
  3242. len += sprintf(buf, "No data\n");
  3243. return len;
  3244. }
  3245. enum slab_stat_type {
  3246. SL_ALL, /* All slabs */
  3247. SL_PARTIAL, /* Only partially allocated slabs */
  3248. SL_CPU, /* Only slabs used for cpu caches */
  3249. SL_OBJECTS, /* Determine allocated objects not slabs */
  3250. SL_TOTAL /* Determine object capacity not slabs */
  3251. };
  3252. #define SO_ALL (1 << SL_ALL)
  3253. #define SO_PARTIAL (1 << SL_PARTIAL)
  3254. #define SO_CPU (1 << SL_CPU)
  3255. #define SO_OBJECTS (1 << SL_OBJECTS)
  3256. #define SO_TOTAL (1 << SL_TOTAL)
  3257. static ssize_t show_slab_objects(struct kmem_cache *s,
  3258. char *buf, unsigned long flags)
  3259. {
  3260. unsigned long total = 0;
  3261. int node;
  3262. int x;
  3263. unsigned long *nodes;
  3264. unsigned long *per_cpu;
  3265. nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
  3266. if (!nodes)
  3267. return -ENOMEM;
  3268. per_cpu = nodes + nr_node_ids;
  3269. if (flags & SO_CPU) {
  3270. int cpu;
  3271. for_each_possible_cpu(cpu) {
  3272. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  3273. if (!c || c->node < 0)
  3274. continue;
  3275. if (c->page) {
  3276. if (flags & SO_TOTAL)
  3277. x = c->page->objects;
  3278. else if (flags & SO_OBJECTS)
  3279. x = c->page->inuse;
  3280. else
  3281. x = 1;
  3282. total += x;
  3283. nodes[c->node] += x;
  3284. }
  3285. per_cpu[c->node]++;
  3286. }
  3287. }
  3288. if (flags & SO_ALL) {
  3289. for_each_node_state(node, N_NORMAL_MEMORY) {
  3290. struct kmem_cache_node *n = get_node(s, node);
  3291. if (flags & SO_TOTAL)
  3292. x = atomic_long_read(&n->total_objects);
  3293. else if (flags & SO_OBJECTS)
  3294. x = atomic_long_read(&n->total_objects) -
  3295. count_partial(n, count_free);
  3296. else
  3297. x = atomic_long_read(&n->nr_slabs);
  3298. total += x;
  3299. nodes[node] += x;
  3300. }
  3301. } else if (flags & SO_PARTIAL) {
  3302. for_each_node_state(node, N_NORMAL_MEMORY) {
  3303. struct kmem_cache_node *n = get_node(s, node);
  3304. if (flags & SO_TOTAL)
  3305. x = count_partial(n, count_total);
  3306. else if (flags & SO_OBJECTS)
  3307. x = count_partial(n, count_inuse);
  3308. else
  3309. x = n->nr_partial;
  3310. total += x;
  3311. nodes[node] += x;
  3312. }
  3313. }
  3314. x = sprintf(buf, "%lu", total);
  3315. #ifdef CONFIG_NUMA
  3316. for_each_node_state(node, N_NORMAL_MEMORY)
  3317. if (nodes[node])
  3318. x += sprintf(buf + x, " N%d=%lu",
  3319. node, nodes[node]);
  3320. #endif
  3321. kfree(nodes);
  3322. return x + sprintf(buf + x, "\n");
  3323. }
  3324. static int any_slab_objects(struct kmem_cache *s)
  3325. {
  3326. int node;
  3327. for_each_online_node(node) {
  3328. struct kmem_cache_node *n = get_node(s, node);
  3329. if (!n)
  3330. continue;
  3331. if (atomic_long_read(&n->total_objects))
  3332. return 1;
  3333. }
  3334. return 0;
  3335. }
  3336. #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
  3337. #define to_slab(n) container_of(n, struct kmem_cache, kobj);
  3338. struct slab_attribute {
  3339. struct attribute attr;
  3340. ssize_t (*show)(struct kmem_cache *s, char *buf);
  3341. ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
  3342. };
  3343. #define SLAB_ATTR_RO(_name) \
  3344. static struct slab_attribute _name##_attr = __ATTR_RO(_name)
  3345. #define SLAB_ATTR(_name) \
  3346. static struct slab_attribute _name##_attr = \
  3347. __ATTR(_name, 0644, _name##_show, _name##_store)
  3348. static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
  3349. {
  3350. return sprintf(buf, "%d\n", s->size);
  3351. }
  3352. SLAB_ATTR_RO(slab_size);
  3353. static ssize_t align_show(struct kmem_cache *s, char *buf)
  3354. {
  3355. return sprintf(buf, "%d\n", s->align);
  3356. }
  3357. SLAB_ATTR_RO(align);
  3358. static ssize_t object_size_show(struct kmem_cache *s, char *buf)
  3359. {
  3360. return sprintf(buf, "%d\n", s->objsize);
  3361. }
  3362. SLAB_ATTR_RO(object_size);
  3363. static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
  3364. {
  3365. return sprintf(buf, "%d\n", oo_objects(s->oo));
  3366. }
  3367. SLAB_ATTR_RO(objs_per_slab);
  3368. static ssize_t order_store(struct kmem_cache *s,
  3369. const char *buf, size_t length)
  3370. {
  3371. unsigned long order;
  3372. int err;
  3373. err = strict_strtoul(buf, 10, &order);
  3374. if (err)
  3375. return err;
  3376. if (order > slub_max_order || order < slub_min_order)
  3377. return -EINVAL;
  3378. calculate_sizes(s, order);
  3379. return length;
  3380. }
  3381. static ssize_t order_show(struct kmem_cache *s, char *buf)
  3382. {
  3383. return sprintf(buf, "%d\n", oo_order(s->oo));
  3384. }
  3385. SLAB_ATTR(order);
  3386. static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
  3387. {
  3388. return sprintf(buf, "%lu\n", s->min_partial);
  3389. }
  3390. static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
  3391. size_t length)
  3392. {
  3393. unsigned long min;
  3394. int err;
  3395. err = strict_strtoul(buf, 10, &min);
  3396. if (err)
  3397. return err;
  3398. set_min_partial(s, min);
  3399. return length;
  3400. }
  3401. SLAB_ATTR(min_partial);
  3402. static ssize_t ctor_show(struct kmem_cache *s, char *buf)
  3403. {
  3404. if (s->ctor) {
  3405. int n = sprint_symbol(buf, (unsigned long)s->ctor);
  3406. return n + sprintf(buf + n, "\n");
  3407. }
  3408. return 0;
  3409. }
  3410. SLAB_ATTR_RO(ctor);
  3411. static ssize_t aliases_show(struct kmem_cache *s, char *buf)
  3412. {
  3413. return sprintf(buf, "%d\n", s->refcount - 1);
  3414. }
  3415. SLAB_ATTR_RO(aliases);
  3416. static ssize_t slabs_show(struct kmem_cache *s, char *buf)
  3417. {
  3418. return show_slab_objects(s, buf, SO_ALL);
  3419. }
  3420. SLAB_ATTR_RO(slabs);
  3421. static ssize_t partial_show(struct kmem_cache *s, char *buf)
  3422. {
  3423. return show_slab_objects(s, buf, SO_PARTIAL);
  3424. }
  3425. SLAB_ATTR_RO(partial);
  3426. static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
  3427. {
  3428. return show_slab_objects(s, buf, SO_CPU);
  3429. }
  3430. SLAB_ATTR_RO(cpu_slabs);
  3431. static ssize_t objects_show(struct kmem_cache *s, char *buf)
  3432. {
  3433. return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
  3434. }
  3435. SLAB_ATTR_RO(objects);
  3436. static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
  3437. {
  3438. return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
  3439. }
  3440. SLAB_ATTR_RO(objects_partial);
  3441. static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
  3442. {
  3443. return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
  3444. }
  3445. SLAB_ATTR_RO(total_objects);
  3446. static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
  3447. {
  3448. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
  3449. }
  3450. static ssize_t sanity_checks_store(struct kmem_cache *s,
  3451. const char *buf, size_t length)
  3452. {
  3453. s->flags &= ~SLAB_DEBUG_FREE;
  3454. if (buf[0] == '1')
  3455. s->flags |= SLAB_DEBUG_FREE;
  3456. return length;
  3457. }
  3458. SLAB_ATTR(sanity_checks);
  3459. static ssize_t trace_show(struct kmem_cache *s, char *buf)
  3460. {
  3461. return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
  3462. }
  3463. static ssize_t trace_store(struct kmem_cache *s, const char *buf,
  3464. size_t length)
  3465. {
  3466. s->flags &= ~SLAB_TRACE;
  3467. if (buf[0] == '1')
  3468. s->flags |= SLAB_TRACE;
  3469. return length;
  3470. }
  3471. SLAB_ATTR(trace);
  3472. static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
  3473. {
  3474. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
  3475. }
  3476. static ssize_t reclaim_account_store(struct kmem_cache *s,
  3477. const char *buf, size_t length)
  3478. {
  3479. s->flags &= ~SLAB_RECLAIM_ACCOUNT;
  3480. if (buf[0] == '1')
  3481. s->flags |= SLAB_RECLAIM_ACCOUNT;
  3482. return length;
  3483. }
  3484. SLAB_ATTR(reclaim_account);
  3485. static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
  3486. {
  3487. return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
  3488. }
  3489. SLAB_ATTR_RO(hwcache_align);
  3490. #ifdef CONFIG_ZONE_DMA
  3491. static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
  3492. {
  3493. return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
  3494. }
  3495. SLAB_ATTR_RO(cache_dma);
  3496. #endif
  3497. static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
  3498. {
  3499. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
  3500. }
  3501. SLAB_ATTR_RO(destroy_by_rcu);
  3502. static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
  3503. {
  3504. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
  3505. }
  3506. static ssize_t red_zone_store(struct kmem_cache *s,
  3507. const char *buf, size_t length)
  3508. {
  3509. if (any_slab_objects(s))
  3510. return -EBUSY;
  3511. s->flags &= ~SLAB_RED_ZONE;
  3512. if (buf[0] == '1')
  3513. s->flags |= SLAB_RED_ZONE;
  3514. calculate_sizes(s, -1);
  3515. return length;
  3516. }
  3517. SLAB_ATTR(red_zone);
  3518. static ssize_t poison_show(struct kmem_cache *s, char *buf)
  3519. {
  3520. return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
  3521. }
  3522. static ssize_t poison_store(struct kmem_cache *s,
  3523. const char *buf, size_t length)
  3524. {
  3525. if (any_slab_objects(s))
  3526. return -EBUSY;
  3527. s->flags &= ~SLAB_POISON;
  3528. if (buf[0] == '1')
  3529. s->flags |= SLAB_POISON;
  3530. calculate_sizes(s, -1);
  3531. return length;
  3532. }
  3533. SLAB_ATTR(poison);
  3534. static ssize_t store_user_show(struct kmem_cache *s, char *buf)
  3535. {
  3536. return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
  3537. }
  3538. static ssize_t store_user_store(struct kmem_cache *s,
  3539. const char *buf, size_t length)
  3540. {
  3541. if (any_slab_objects(s))
  3542. return -EBUSY;
  3543. s->flags &= ~SLAB_STORE_USER;
  3544. if (buf[0] == '1')
  3545. s->flags |= SLAB_STORE_USER;
  3546. calculate_sizes(s, -1);
  3547. return length;
  3548. }
  3549. SLAB_ATTR(store_user);
  3550. static ssize_t validate_show(struct kmem_cache *s, char *buf)
  3551. {
  3552. return 0;
  3553. }
  3554. static ssize_t validate_store(struct kmem_cache *s,
  3555. const char *buf, size_t length)
  3556. {
  3557. int ret = -EINVAL;
  3558. if (buf[0] == '1') {
  3559. ret = validate_slab_cache(s);
  3560. if (ret >= 0)
  3561. ret = length;
  3562. }
  3563. return ret;
  3564. }
  3565. SLAB_ATTR(validate);
  3566. static ssize_t shrink_show(struct kmem_cache *s, char *buf)
  3567. {
  3568. return 0;
  3569. }
  3570. static ssize_t shrink_store(struct kmem_cache *s,
  3571. const char *buf, size_t length)
  3572. {
  3573. if (buf[0] == '1') {
  3574. int rc = kmem_cache_shrink(s);
  3575. if (rc)
  3576. return rc;
  3577. } else
  3578. return -EINVAL;
  3579. return length;
  3580. }
  3581. SLAB_ATTR(shrink);
  3582. static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
  3583. {
  3584. if (!(s->flags & SLAB_STORE_USER))
  3585. return -ENOSYS;
  3586. return list_locations(s, buf, TRACK_ALLOC);
  3587. }
  3588. SLAB_ATTR_RO(alloc_calls);
  3589. static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
  3590. {
  3591. if (!(s->flags & SLAB_STORE_USER))
  3592. return -ENOSYS;
  3593. return list_locations(s, buf, TRACK_FREE);
  3594. }
  3595. SLAB_ATTR_RO(free_calls);
  3596. #ifdef CONFIG_NUMA
  3597. static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
  3598. {
  3599. return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
  3600. }
  3601. static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
  3602. const char *buf, size_t length)
  3603. {
  3604. unsigned long ratio;
  3605. int err;
  3606. err = strict_strtoul(buf, 10, &ratio);
  3607. if (err)
  3608. return err;
  3609. if (ratio <= 100)
  3610. s->remote_node_defrag_ratio = ratio * 10;
  3611. return length;
  3612. }
  3613. SLAB_ATTR(remote_node_defrag_ratio);
  3614. #endif
  3615. #ifdef CONFIG_SLUB_STATS
  3616. static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
  3617. {
  3618. unsigned long sum = 0;
  3619. int cpu;
  3620. int len;
  3621. int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
  3622. if (!data)
  3623. return -ENOMEM;
  3624. for_each_online_cpu(cpu) {
  3625. unsigned x = get_cpu_slab(s, cpu)->stat[si];
  3626. data[cpu] = x;
  3627. sum += x;
  3628. }
  3629. len = sprintf(buf, "%lu", sum);
  3630. #ifdef CONFIG_SMP
  3631. for_each_online_cpu(cpu) {
  3632. if (data[cpu] && len < PAGE_SIZE - 20)
  3633. len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
  3634. }
  3635. #endif
  3636. kfree(data);
  3637. return len + sprintf(buf + len, "\n");
  3638. }
  3639. #define STAT_ATTR(si, text) \
  3640. static ssize_t text##_show(struct kmem_cache *s, char *buf) \
  3641. { \
  3642. return show_stat(s, buf, si); \
  3643. } \
  3644. SLAB_ATTR_RO(text); \
  3645. STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
  3646. STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
  3647. STAT_ATTR(FREE_FASTPATH, free_fastpath);
  3648. STAT_ATTR(FREE_SLOWPATH, free_slowpath);
  3649. STAT_ATTR(FREE_FROZEN, free_frozen);
  3650. STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
  3651. STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
  3652. STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
  3653. STAT_ATTR(ALLOC_SLAB, alloc_slab);
  3654. STAT_ATTR(ALLOC_REFILL, alloc_refill);
  3655. STAT_ATTR(FREE_SLAB, free_slab);
  3656. STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
  3657. STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
  3658. STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
  3659. STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
  3660. STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
  3661. STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
  3662. STAT_ATTR(ORDER_FALLBACK, order_fallback);
  3663. #endif
  3664. static struct attribute *slab_attrs[] = {
  3665. &slab_size_attr.attr,
  3666. &object_size_attr.attr,
  3667. &objs_per_slab_attr.attr,
  3668. &order_attr.attr,
  3669. &min_partial_attr.attr,
  3670. &objects_attr.attr,
  3671. &objects_partial_attr.attr,
  3672. &total_objects_attr.attr,
  3673. &slabs_attr.attr,
  3674. &partial_attr.attr,
  3675. &cpu_slabs_attr.attr,
  3676. &ctor_attr.attr,
  3677. &aliases_attr.attr,
  3678. &align_attr.attr,
  3679. &sanity_checks_attr.attr,
  3680. &trace_attr.attr,
  3681. &hwcache_align_attr.attr,
  3682. &reclaim_account_attr.attr,
  3683. &destroy_by_rcu_attr.attr,
  3684. &red_zone_attr.attr,
  3685. &poison_attr.attr,
  3686. &store_user_attr.attr,
  3687. &validate_attr.attr,
  3688. &shrink_attr.attr,
  3689. &alloc_calls_attr.attr,
  3690. &free_calls_attr.attr,
  3691. #ifdef CONFIG_ZONE_DMA
  3692. &cache_dma_attr.attr,
  3693. #endif
  3694. #ifdef CONFIG_NUMA
  3695. &remote_node_defrag_ratio_attr.attr,
  3696. #endif
  3697. #ifdef CONFIG_SLUB_STATS
  3698. &alloc_fastpath_attr.attr,
  3699. &alloc_slowpath_attr.attr,
  3700. &free_fastpath_attr.attr,
  3701. &free_slowpath_attr.attr,
  3702. &free_frozen_attr.attr,
  3703. &free_add_partial_attr.attr,
  3704. &free_remove_partial_attr.attr,
  3705. &alloc_from_partial_attr.attr,
  3706. &alloc_slab_attr.attr,
  3707. &alloc_refill_attr.attr,
  3708. &free_slab_attr.attr,
  3709. &cpuslab_flush_attr.attr,
  3710. &deactivate_full_attr.attr,
  3711. &deactivate_empty_attr.attr,
  3712. &deactivate_to_head_attr.attr,
  3713. &deactivate_to_tail_attr.attr,
  3714. &deactivate_remote_frees_attr.attr,
  3715. &order_fallback_attr.attr,
  3716. #endif
  3717. NULL
  3718. };
  3719. static struct attribute_group slab_attr_group = {
  3720. .attrs = slab_attrs,
  3721. };
  3722. static ssize_t slab_attr_show(struct kobject *kobj,
  3723. struct attribute *attr,
  3724. char *buf)
  3725. {
  3726. struct slab_attribute *attribute;
  3727. struct kmem_cache *s;
  3728. int err;
  3729. attribute = to_slab_attr(attr);
  3730. s = to_slab(kobj);
  3731. if (!attribute->show)
  3732. return -EIO;
  3733. err = attribute->show(s, buf);
  3734. return err;
  3735. }
  3736. static ssize_t slab_attr_store(struct kobject *kobj,
  3737. struct attribute *attr,
  3738. const char *buf, size_t len)
  3739. {
  3740. struct slab_attribute *attribute;
  3741. struct kmem_cache *s;
  3742. int err;
  3743. attribute = to_slab_attr(attr);
  3744. s = to_slab(kobj);
  3745. if (!attribute->store)
  3746. return -EIO;
  3747. err = attribute->store(s, buf, len);
  3748. return err;
  3749. }
  3750. static void kmem_cache_release(struct kobject *kobj)
  3751. {
  3752. struct kmem_cache *s = to_slab(kobj);
  3753. kfree(s);
  3754. }
  3755. static struct sysfs_ops slab_sysfs_ops = {
  3756. .show = slab_attr_show,
  3757. .store = slab_attr_store,
  3758. };
  3759. static struct kobj_type slab_ktype = {
  3760. .sysfs_ops = &slab_sysfs_ops,
  3761. .release = kmem_cache_release
  3762. };
  3763. static int uevent_filter(struct kset *kset, struct kobject *kobj)
  3764. {
  3765. struct kobj_type *ktype = get_ktype(kobj);
  3766. if (ktype == &slab_ktype)
  3767. return 1;
  3768. return 0;
  3769. }
  3770. static struct kset_uevent_ops slab_uevent_ops = {
  3771. .filter = uevent_filter,
  3772. };
  3773. static struct kset *slab_kset;
  3774. #define ID_STR_LENGTH 64
  3775. /* Create a unique string id for a slab cache:
  3776. *
  3777. * Format :[flags-]size
  3778. */
  3779. static char *create_unique_id(struct kmem_cache *s)
  3780. {
  3781. char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
  3782. char *p = name;
  3783. BUG_ON(!name);
  3784. *p++ = ':';
  3785. /*
  3786. * First flags affecting slabcache operations. We will only
  3787. * get here for aliasable slabs so we do not need to support
  3788. * too many flags. The flags here must cover all flags that
  3789. * are matched during merging to guarantee that the id is
  3790. * unique.
  3791. */
  3792. if (s->flags & SLAB_CACHE_DMA)
  3793. *p++ = 'd';
  3794. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  3795. *p++ = 'a';
  3796. if (s->flags & SLAB_DEBUG_FREE)
  3797. *p++ = 'F';
  3798. if (!(s->flags & SLAB_NOTRACK))
  3799. *p++ = 't';
  3800. if (p != name + 1)
  3801. *p++ = '-';
  3802. p += sprintf(p, "%07d", s->size);
  3803. BUG_ON(p > name + ID_STR_LENGTH - 1);
  3804. return name;
  3805. }
  3806. static int sysfs_slab_add(struct kmem_cache *s)
  3807. {
  3808. int err;
  3809. const char *name;
  3810. int unmergeable;
  3811. if (slab_state < SYSFS)
  3812. /* Defer until later */
  3813. return 0;
  3814. unmergeable = slab_unmergeable(s);
  3815. if (unmergeable) {
  3816. /*
  3817. * Slabcache can never be merged so we can use the name proper.
  3818. * This is typically the case for debug situations. In that
  3819. * case we can catch duplicate names easily.
  3820. */
  3821. sysfs_remove_link(&slab_kset->kobj, s->name);
  3822. name = s->name;
  3823. } else {
  3824. /*
  3825. * Create a unique name for the slab as a target
  3826. * for the symlinks.
  3827. */
  3828. name = create_unique_id(s);
  3829. }
  3830. s->kobj.kset = slab_kset;
  3831. err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
  3832. if (err) {
  3833. kobject_put(&s->kobj);
  3834. return err;
  3835. }
  3836. err = sysfs_create_group(&s->kobj, &slab_attr_group);
  3837. if (err)
  3838. return err;
  3839. kobject_uevent(&s->kobj, KOBJ_ADD);
  3840. if (!unmergeable) {
  3841. /* Setup first alias */
  3842. sysfs_slab_alias(s, s->name);
  3843. kfree(name);
  3844. }
  3845. return 0;
  3846. }
  3847. static void sysfs_slab_remove(struct kmem_cache *s)
  3848. {
  3849. kobject_uevent(&s->kobj, KOBJ_REMOVE);
  3850. kobject_del(&s->kobj);
  3851. kobject_put(&s->kobj);
  3852. }
  3853. /*
  3854. * Need to buffer aliases during bootup until sysfs becomes
  3855. * available lest we lose that information.
  3856. */
  3857. struct saved_alias {
  3858. struct kmem_cache *s;
  3859. const char *name;
  3860. struct saved_alias *next;
  3861. };
  3862. static struct saved_alias *alias_list;
  3863. static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
  3864. {
  3865. struct saved_alias *al;
  3866. if (slab_state == SYSFS) {
  3867. /*
  3868. * If we have a leftover link then remove it.
  3869. */
  3870. sysfs_remove_link(&slab_kset->kobj, name);
  3871. return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
  3872. }
  3873. al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
  3874. if (!al)
  3875. return -ENOMEM;
  3876. al->s = s;
  3877. al->name = name;
  3878. al->next = alias_list;
  3879. alias_list = al;
  3880. return 0;
  3881. }
  3882. static int __init slab_sysfs_init(void)
  3883. {
  3884. struct kmem_cache *s;
  3885. int err;
  3886. slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
  3887. if (!slab_kset) {
  3888. printk(KERN_ERR "Cannot register slab subsystem.\n");
  3889. return -ENOSYS;
  3890. }
  3891. slab_state = SYSFS;
  3892. list_for_each_entry(s, &slab_caches, list) {
  3893. err = sysfs_slab_add(s);
  3894. if (err)
  3895. printk(KERN_ERR "SLUB: Unable to add boot slab %s"
  3896. " to sysfs\n", s->name);
  3897. }
  3898. while (alias_list) {
  3899. struct saved_alias *al = alias_list;
  3900. alias_list = alias_list->next;
  3901. err = sysfs_slab_alias(al->s, al->name);
  3902. if (err)
  3903. printk(KERN_ERR "SLUB: Unable to add boot slab alias"
  3904. " %s to sysfs\n", s->name);
  3905. kfree(al);
  3906. }
  3907. resiliency_test();
  3908. return 0;
  3909. }
  3910. __initcall(slab_sysfs_init);
  3911. #endif
  3912. /*
  3913. * The /proc/slabinfo ABI
  3914. */
  3915. #ifdef CONFIG_SLABINFO
  3916. static void print_slabinfo_header(struct seq_file *m)
  3917. {
  3918. seq_puts(m, "slabinfo - version: 2.1\n");
  3919. seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
  3920. "<objperslab> <pagesperslab>");
  3921. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  3922. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  3923. seq_putc(m, '\n');
  3924. }
  3925. static void *s_start(struct seq_file *m, loff_t *pos)
  3926. {
  3927. loff_t n = *pos;
  3928. down_read(&slub_lock);
  3929. if (!n)
  3930. print_slabinfo_header(m);
  3931. return seq_list_start(&slab_caches, *pos);
  3932. }
  3933. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  3934. {
  3935. return seq_list_next(p, &slab_caches, pos);
  3936. }
  3937. static void s_stop(struct seq_file *m, void *p)
  3938. {
  3939. up_read(&slub_lock);
  3940. }
  3941. static int s_show(struct seq_file *m, void *p)
  3942. {
  3943. unsigned long nr_partials = 0;
  3944. unsigned long nr_slabs = 0;
  3945. unsigned long nr_inuse = 0;
  3946. unsigned long nr_objs = 0;
  3947. unsigned long nr_free = 0;
  3948. struct kmem_cache *s;
  3949. int node;
  3950. s = list_entry(p, struct kmem_cache, list);
  3951. for_each_online_node(node) {
  3952. struct kmem_cache_node *n = get_node(s, node);
  3953. if (!n)
  3954. continue;
  3955. nr_partials += n->nr_partial;
  3956. nr_slabs += atomic_long_read(&n->nr_slabs);
  3957. nr_objs += atomic_long_read(&n->total_objects);
  3958. nr_free += count_partial(n, count_free);
  3959. }
  3960. nr_inuse = nr_objs - nr_free;
  3961. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
  3962. nr_objs, s->size, oo_objects(s->oo),
  3963. (1 << oo_order(s->oo)));
  3964. seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
  3965. seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
  3966. 0UL);
  3967. seq_putc(m, '\n');
  3968. return 0;
  3969. }
  3970. static const struct seq_operations slabinfo_op = {
  3971. .start = s_start,
  3972. .next = s_next,
  3973. .stop = s_stop,
  3974. .show = s_show,
  3975. };
  3976. static int slabinfo_open(struct inode *inode, struct file *file)
  3977. {
  3978. return seq_open(file, &slabinfo_op);
  3979. }
  3980. static const struct file_operations proc_slabinfo_operations = {
  3981. .open = slabinfo_open,
  3982. .read = seq_read,
  3983. .llseek = seq_lseek,
  3984. .release = seq_release,
  3985. };
  3986. static int __init slab_proc_init(void)
  3987. {
  3988. proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
  3989. return 0;
  3990. }
  3991. module_init(slab_proc_init);
  3992. #endif /* CONFIG_SLABINFO */