slab.c 117 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516
  1. /*
  2. * linux/mm/slab.c
  3. * Written by Mark Hemment, 1996/97.
  4. * (markhe@nextd.demon.co.uk)
  5. *
  6. * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
  7. *
  8. * Major cleanup, different bufctl logic, per-cpu arrays
  9. * (c) 2000 Manfred Spraul
  10. *
  11. * Cleanup, make the head arrays unconditional, preparation for NUMA
  12. * (c) 2002 Manfred Spraul
  13. *
  14. * An implementation of the Slab Allocator as described in outline in;
  15. * UNIX Internals: The New Frontiers by Uresh Vahalia
  16. * Pub: Prentice Hall ISBN 0-13-101908-2
  17. * or with a little more detail in;
  18. * The Slab Allocator: An Object-Caching Kernel Memory Allocator
  19. * Jeff Bonwick (Sun Microsystems).
  20. * Presented at: USENIX Summer 1994 Technical Conference
  21. *
  22. * The memory is organized in caches, one cache for each object type.
  23. * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
  24. * Each cache consists out of many slabs (they are small (usually one
  25. * page long) and always contiguous), and each slab contains multiple
  26. * initialized objects.
  27. *
  28. * This means, that your constructor is used only for newly allocated
  29. * slabs and you must pass objects with the same initializations to
  30. * kmem_cache_free.
  31. *
  32. * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
  33. * normal). If you need a special memory type, then must create a new
  34. * cache for that memory type.
  35. *
  36. * In order to reduce fragmentation, the slabs are sorted in 3 groups:
  37. * full slabs with 0 free objects
  38. * partial slabs
  39. * empty slabs with no allocated objects
  40. *
  41. * If partial slabs exist, then new allocations come from these slabs,
  42. * otherwise from empty slabs or new slabs are allocated.
  43. *
  44. * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
  45. * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
  46. *
  47. * Each cache has a short per-cpu head array, most allocs
  48. * and frees go into that array, and if that array overflows, then 1/2
  49. * of the entries in the array are given back into the global cache.
  50. * The head array is strictly LIFO and should improve the cache hit rates.
  51. * On SMP, it additionally reduces the spinlock operations.
  52. *
  53. * The c_cpuarray may not be read with enabled local interrupts -
  54. * it's changed with a smp_call_function().
  55. *
  56. * SMP synchronization:
  57. * constructors and destructors are called without any locking.
  58. * Several members in struct kmem_cache and struct slab never change, they
  59. * are accessed without any locking.
  60. * The per-cpu arrays are never accessed from the wrong cpu, no locking,
  61. * and local interrupts are disabled so slab code is preempt-safe.
  62. * The non-constant members are protected with a per-cache irq spinlock.
  63. *
  64. * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
  65. * in 2000 - many ideas in the current implementation are derived from
  66. * his patch.
  67. *
  68. * Further notes from the original documentation:
  69. *
  70. * 11 April '97. Started multi-threading - markhe
  71. * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
  72. * The sem is only needed when accessing/extending the cache-chain, which
  73. * can never happen inside an interrupt (kmem_cache_create(),
  74. * kmem_cache_shrink() and kmem_cache_reap()).
  75. *
  76. * At present, each engine can be growing a cache. This should be blocked.
  77. *
  78. * 15 March 2005. NUMA slab allocator.
  79. * Shai Fultheim <shai@scalex86.org>.
  80. * Shobhit Dayal <shobhit@calsoftinc.com>
  81. * Alok N Kataria <alokk@calsoftinc.com>
  82. * Christoph Lameter <christoph@lameter.com>
  83. *
  84. * Modified the slab allocator to be node aware on NUMA systems.
  85. * Each node has its own list of partial, free and full slabs.
  86. * All object allocations for a node occur from node specific slab lists.
  87. */
  88. #include <linux/slab.h>
  89. #include <linux/mm.h>
  90. #include <linux/poison.h>
  91. #include <linux/swap.h>
  92. #include <linux/cache.h>
  93. #include <linux/interrupt.h>
  94. #include <linux/init.h>
  95. #include <linux/compiler.h>
  96. #include <linux/cpuset.h>
  97. #include <linux/proc_fs.h>
  98. #include <linux/seq_file.h>
  99. #include <linux/notifier.h>
  100. #include <linux/kallsyms.h>
  101. #include <linux/cpu.h>
  102. #include <linux/sysctl.h>
  103. #include <linux/module.h>
  104. #include <linux/kmemtrace.h>
  105. #include <linux/rcupdate.h>
  106. #include <linux/string.h>
  107. #include <linux/uaccess.h>
  108. #include <linux/nodemask.h>
  109. #include <linux/kmemleak.h>
  110. #include <linux/mempolicy.h>
  111. #include <linux/mutex.h>
  112. #include <linux/fault-inject.h>
  113. #include <linux/rtmutex.h>
  114. #include <linux/reciprocal_div.h>
  115. #include <linux/debugobjects.h>
  116. #include <linux/kmemcheck.h>
  117. #include <asm/cacheflush.h>
  118. #include <asm/tlbflush.h>
  119. #include <asm/page.h>
  120. /*
  121. * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
  122. * 0 for faster, smaller code (especially in the critical paths).
  123. *
  124. * STATS - 1 to collect stats for /proc/slabinfo.
  125. * 0 for faster, smaller code (especially in the critical paths).
  126. *
  127. * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
  128. */
  129. #ifdef CONFIG_DEBUG_SLAB
  130. #define DEBUG 1
  131. #define STATS 1
  132. #define FORCED_DEBUG 1
  133. #else
  134. #define DEBUG 0
  135. #define STATS 0
  136. #define FORCED_DEBUG 0
  137. #endif
  138. /* Shouldn't this be in a header file somewhere? */
  139. #define BYTES_PER_WORD sizeof(void *)
  140. #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
  141. #ifndef ARCH_KMALLOC_MINALIGN
  142. /*
  143. * Enforce a minimum alignment for the kmalloc caches.
  144. * Usually, the kmalloc caches are cache_line_size() aligned, except when
  145. * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
  146. * Some archs want to perform DMA into kmalloc caches and need a guaranteed
  147. * alignment larger than the alignment of a 64-bit integer.
  148. * ARCH_KMALLOC_MINALIGN allows that.
  149. * Note that increasing this value may disable some debug features.
  150. */
  151. #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
  152. #endif
  153. #ifndef ARCH_SLAB_MINALIGN
  154. /*
  155. * Enforce a minimum alignment for all caches.
  156. * Intended for archs that get misalignment faults even for BYTES_PER_WORD
  157. * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
  158. * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
  159. * some debug features.
  160. */
  161. #define ARCH_SLAB_MINALIGN 0
  162. #endif
  163. #ifndef ARCH_KMALLOC_FLAGS
  164. #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
  165. #endif
  166. /* Legal flag mask for kmem_cache_create(). */
  167. #if DEBUG
  168. # define CREATE_MASK (SLAB_RED_ZONE | \
  169. SLAB_POISON | SLAB_HWCACHE_ALIGN | \
  170. SLAB_CACHE_DMA | \
  171. SLAB_STORE_USER | \
  172. SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
  173. SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
  174. SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
  175. #else
  176. # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
  177. SLAB_CACHE_DMA | \
  178. SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
  179. SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
  180. SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
  181. #endif
  182. /*
  183. * kmem_bufctl_t:
  184. *
  185. * Bufctl's are used for linking objs within a slab
  186. * linked offsets.
  187. *
  188. * This implementation relies on "struct page" for locating the cache &
  189. * slab an object belongs to.
  190. * This allows the bufctl structure to be small (one int), but limits
  191. * the number of objects a slab (not a cache) can contain when off-slab
  192. * bufctls are used. The limit is the size of the largest general cache
  193. * that does not use off-slab slabs.
  194. * For 32bit archs with 4 kB pages, is this 56.
  195. * This is not serious, as it is only for large objects, when it is unwise
  196. * to have too many per slab.
  197. * Note: This limit can be raised by introducing a general cache whose size
  198. * is less than 512 (PAGE_SIZE<<3), but greater than 256.
  199. */
  200. typedef unsigned int kmem_bufctl_t;
  201. #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
  202. #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
  203. #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
  204. #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
  205. /*
  206. * struct slab
  207. *
  208. * Manages the objs in a slab. Placed either at the beginning of mem allocated
  209. * for a slab, or allocated from an general cache.
  210. * Slabs are chained into three list: fully used, partial, fully free slabs.
  211. */
  212. struct slab {
  213. struct list_head list;
  214. unsigned long colouroff;
  215. void *s_mem; /* including colour offset */
  216. unsigned int inuse; /* num of objs active in slab */
  217. kmem_bufctl_t free;
  218. unsigned short nodeid;
  219. };
  220. /*
  221. * struct slab_rcu
  222. *
  223. * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
  224. * arrange for kmem_freepages to be called via RCU. This is useful if
  225. * we need to approach a kernel structure obliquely, from its address
  226. * obtained without the usual locking. We can lock the structure to
  227. * stabilize it and check it's still at the given address, only if we
  228. * can be sure that the memory has not been meanwhile reused for some
  229. * other kind of object (which our subsystem's lock might corrupt).
  230. *
  231. * rcu_read_lock before reading the address, then rcu_read_unlock after
  232. * taking the spinlock within the structure expected at that address.
  233. *
  234. * We assume struct slab_rcu can overlay struct slab when destroying.
  235. */
  236. struct slab_rcu {
  237. struct rcu_head head;
  238. struct kmem_cache *cachep;
  239. void *addr;
  240. };
  241. /*
  242. * struct array_cache
  243. *
  244. * Purpose:
  245. * - LIFO ordering, to hand out cache-warm objects from _alloc
  246. * - reduce the number of linked list operations
  247. * - reduce spinlock operations
  248. *
  249. * The limit is stored in the per-cpu structure to reduce the data cache
  250. * footprint.
  251. *
  252. */
  253. struct array_cache {
  254. unsigned int avail;
  255. unsigned int limit;
  256. unsigned int batchcount;
  257. unsigned int touched;
  258. spinlock_t lock;
  259. void *entry[]; /*
  260. * Must have this definition in here for the proper
  261. * alignment of array_cache. Also simplifies accessing
  262. * the entries.
  263. */
  264. };
  265. /*
  266. * bootstrap: The caches do not work without cpuarrays anymore, but the
  267. * cpuarrays are allocated from the generic caches...
  268. */
  269. #define BOOT_CPUCACHE_ENTRIES 1
  270. struct arraycache_init {
  271. struct array_cache cache;
  272. void *entries[BOOT_CPUCACHE_ENTRIES];
  273. };
  274. /*
  275. * The slab lists for all objects.
  276. */
  277. struct kmem_list3 {
  278. struct list_head slabs_partial; /* partial list first, better asm code */
  279. struct list_head slabs_full;
  280. struct list_head slabs_free;
  281. unsigned long free_objects;
  282. unsigned int free_limit;
  283. unsigned int colour_next; /* Per-node cache coloring */
  284. spinlock_t list_lock;
  285. struct array_cache *shared; /* shared per node */
  286. struct array_cache **alien; /* on other nodes */
  287. unsigned long next_reap; /* updated without locking */
  288. int free_touched; /* updated without locking */
  289. };
  290. /*
  291. * The slab allocator is initialized with interrupts disabled. Therefore, make
  292. * sure early boot allocations don't accidentally enable interrupts.
  293. */
  294. static gfp_t slab_gfp_mask __read_mostly = SLAB_GFP_BOOT_MASK;
  295. /*
  296. * Need this for bootstrapping a per node allocator.
  297. */
  298. #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
  299. struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
  300. #define CACHE_CACHE 0
  301. #define SIZE_AC MAX_NUMNODES
  302. #define SIZE_L3 (2 * MAX_NUMNODES)
  303. static int drain_freelist(struct kmem_cache *cache,
  304. struct kmem_list3 *l3, int tofree);
  305. static void free_block(struct kmem_cache *cachep, void **objpp, int len,
  306. int node);
  307. static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
  308. static void cache_reap(struct work_struct *unused);
  309. /*
  310. * This function must be completely optimized away if a constant is passed to
  311. * it. Mostly the same as what is in linux/slab.h except it returns an index.
  312. */
  313. static __always_inline int index_of(const size_t size)
  314. {
  315. extern void __bad_size(void);
  316. if (__builtin_constant_p(size)) {
  317. int i = 0;
  318. #define CACHE(x) \
  319. if (size <=x) \
  320. return i; \
  321. else \
  322. i++;
  323. #include <linux/kmalloc_sizes.h>
  324. #undef CACHE
  325. __bad_size();
  326. } else
  327. __bad_size();
  328. return 0;
  329. }
  330. static int slab_early_init = 1;
  331. #define INDEX_AC index_of(sizeof(struct arraycache_init))
  332. #define INDEX_L3 index_of(sizeof(struct kmem_list3))
  333. static void kmem_list3_init(struct kmem_list3 *parent)
  334. {
  335. INIT_LIST_HEAD(&parent->slabs_full);
  336. INIT_LIST_HEAD(&parent->slabs_partial);
  337. INIT_LIST_HEAD(&parent->slabs_free);
  338. parent->shared = NULL;
  339. parent->alien = NULL;
  340. parent->colour_next = 0;
  341. spin_lock_init(&parent->list_lock);
  342. parent->free_objects = 0;
  343. parent->free_touched = 0;
  344. }
  345. #define MAKE_LIST(cachep, listp, slab, nodeid) \
  346. do { \
  347. INIT_LIST_HEAD(listp); \
  348. list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
  349. } while (0)
  350. #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
  351. do { \
  352. MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
  353. MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
  354. MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
  355. } while (0)
  356. #define CFLGS_OFF_SLAB (0x80000000UL)
  357. #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
  358. #define BATCHREFILL_LIMIT 16
  359. /*
  360. * Optimization question: fewer reaps means less probability for unnessary
  361. * cpucache drain/refill cycles.
  362. *
  363. * OTOH the cpuarrays can contain lots of objects,
  364. * which could lock up otherwise freeable slabs.
  365. */
  366. #define REAPTIMEOUT_CPUC (2*HZ)
  367. #define REAPTIMEOUT_LIST3 (4*HZ)
  368. #if STATS
  369. #define STATS_INC_ACTIVE(x) ((x)->num_active++)
  370. #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
  371. #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
  372. #define STATS_INC_GROWN(x) ((x)->grown++)
  373. #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
  374. #define STATS_SET_HIGH(x) \
  375. do { \
  376. if ((x)->num_active > (x)->high_mark) \
  377. (x)->high_mark = (x)->num_active; \
  378. } while (0)
  379. #define STATS_INC_ERR(x) ((x)->errors++)
  380. #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
  381. #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
  382. #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
  383. #define STATS_SET_FREEABLE(x, i) \
  384. do { \
  385. if ((x)->max_freeable < i) \
  386. (x)->max_freeable = i; \
  387. } while (0)
  388. #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
  389. #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
  390. #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
  391. #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
  392. #else
  393. #define STATS_INC_ACTIVE(x) do { } while (0)
  394. #define STATS_DEC_ACTIVE(x) do { } while (0)
  395. #define STATS_INC_ALLOCED(x) do { } while (0)
  396. #define STATS_INC_GROWN(x) do { } while (0)
  397. #define STATS_ADD_REAPED(x,y) do { } while (0)
  398. #define STATS_SET_HIGH(x) do { } while (0)
  399. #define STATS_INC_ERR(x) do { } while (0)
  400. #define STATS_INC_NODEALLOCS(x) do { } while (0)
  401. #define STATS_INC_NODEFREES(x) do { } while (0)
  402. #define STATS_INC_ACOVERFLOW(x) do { } while (0)
  403. #define STATS_SET_FREEABLE(x, i) do { } while (0)
  404. #define STATS_INC_ALLOCHIT(x) do { } while (0)
  405. #define STATS_INC_ALLOCMISS(x) do { } while (0)
  406. #define STATS_INC_FREEHIT(x) do { } while (0)
  407. #define STATS_INC_FREEMISS(x) do { } while (0)
  408. #endif
  409. #if DEBUG
  410. /*
  411. * memory layout of objects:
  412. * 0 : objp
  413. * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
  414. * the end of an object is aligned with the end of the real
  415. * allocation. Catches writes behind the end of the allocation.
  416. * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
  417. * redzone word.
  418. * cachep->obj_offset: The real object.
  419. * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
  420. * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
  421. * [BYTES_PER_WORD long]
  422. */
  423. static int obj_offset(struct kmem_cache *cachep)
  424. {
  425. return cachep->obj_offset;
  426. }
  427. static int obj_size(struct kmem_cache *cachep)
  428. {
  429. return cachep->obj_size;
  430. }
  431. static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
  432. {
  433. BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
  434. return (unsigned long long*) (objp + obj_offset(cachep) -
  435. sizeof(unsigned long long));
  436. }
  437. static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
  438. {
  439. BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
  440. if (cachep->flags & SLAB_STORE_USER)
  441. return (unsigned long long *)(objp + cachep->buffer_size -
  442. sizeof(unsigned long long) -
  443. REDZONE_ALIGN);
  444. return (unsigned long long *) (objp + cachep->buffer_size -
  445. sizeof(unsigned long long));
  446. }
  447. static void **dbg_userword(struct kmem_cache *cachep, void *objp)
  448. {
  449. BUG_ON(!(cachep->flags & SLAB_STORE_USER));
  450. return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
  451. }
  452. #else
  453. #define obj_offset(x) 0
  454. #define obj_size(cachep) (cachep->buffer_size)
  455. #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
  456. #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
  457. #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
  458. #endif
  459. #ifdef CONFIG_KMEMTRACE
  460. size_t slab_buffer_size(struct kmem_cache *cachep)
  461. {
  462. return cachep->buffer_size;
  463. }
  464. EXPORT_SYMBOL(slab_buffer_size);
  465. #endif
  466. /*
  467. * Do not go above this order unless 0 objects fit into the slab.
  468. */
  469. #define BREAK_GFP_ORDER_HI 1
  470. #define BREAK_GFP_ORDER_LO 0
  471. static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
  472. /*
  473. * Functions for storing/retrieving the cachep and or slab from the page
  474. * allocator. These are used to find the slab an obj belongs to. With kfree(),
  475. * these are used to find the cache which an obj belongs to.
  476. */
  477. static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
  478. {
  479. page->lru.next = (struct list_head *)cache;
  480. }
  481. static inline struct kmem_cache *page_get_cache(struct page *page)
  482. {
  483. page = compound_head(page);
  484. BUG_ON(!PageSlab(page));
  485. return (struct kmem_cache *)page->lru.next;
  486. }
  487. static inline void page_set_slab(struct page *page, struct slab *slab)
  488. {
  489. page->lru.prev = (struct list_head *)slab;
  490. }
  491. static inline struct slab *page_get_slab(struct page *page)
  492. {
  493. BUG_ON(!PageSlab(page));
  494. return (struct slab *)page->lru.prev;
  495. }
  496. static inline struct kmem_cache *virt_to_cache(const void *obj)
  497. {
  498. struct page *page = virt_to_head_page(obj);
  499. return page_get_cache(page);
  500. }
  501. static inline struct slab *virt_to_slab(const void *obj)
  502. {
  503. struct page *page = virt_to_head_page(obj);
  504. return page_get_slab(page);
  505. }
  506. static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
  507. unsigned int idx)
  508. {
  509. return slab->s_mem + cache->buffer_size * idx;
  510. }
  511. /*
  512. * We want to avoid an expensive divide : (offset / cache->buffer_size)
  513. * Using the fact that buffer_size is a constant for a particular cache,
  514. * we can replace (offset / cache->buffer_size) by
  515. * reciprocal_divide(offset, cache->reciprocal_buffer_size)
  516. */
  517. static inline unsigned int obj_to_index(const struct kmem_cache *cache,
  518. const struct slab *slab, void *obj)
  519. {
  520. u32 offset = (obj - slab->s_mem);
  521. return reciprocal_divide(offset, cache->reciprocal_buffer_size);
  522. }
  523. /*
  524. * These are the default caches for kmalloc. Custom caches can have other sizes.
  525. */
  526. struct cache_sizes malloc_sizes[] = {
  527. #define CACHE(x) { .cs_size = (x) },
  528. #include <linux/kmalloc_sizes.h>
  529. CACHE(ULONG_MAX)
  530. #undef CACHE
  531. };
  532. EXPORT_SYMBOL(malloc_sizes);
  533. /* Must match cache_sizes above. Out of line to keep cache footprint low. */
  534. struct cache_names {
  535. char *name;
  536. char *name_dma;
  537. };
  538. static struct cache_names __initdata cache_names[] = {
  539. #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
  540. #include <linux/kmalloc_sizes.h>
  541. {NULL,}
  542. #undef CACHE
  543. };
  544. static struct arraycache_init initarray_cache __initdata =
  545. { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
  546. static struct arraycache_init initarray_generic =
  547. { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
  548. /* internal cache of cache description objs */
  549. static struct kmem_cache cache_cache = {
  550. .batchcount = 1,
  551. .limit = BOOT_CPUCACHE_ENTRIES,
  552. .shared = 1,
  553. .buffer_size = sizeof(struct kmem_cache),
  554. .name = "kmem_cache",
  555. };
  556. #define BAD_ALIEN_MAGIC 0x01020304ul
  557. #ifdef CONFIG_LOCKDEP
  558. /*
  559. * Slab sometimes uses the kmalloc slabs to store the slab headers
  560. * for other slabs "off slab".
  561. * The locking for this is tricky in that it nests within the locks
  562. * of all other slabs in a few places; to deal with this special
  563. * locking we put on-slab caches into a separate lock-class.
  564. *
  565. * We set lock class for alien array caches which are up during init.
  566. * The lock annotation will be lost if all cpus of a node goes down and
  567. * then comes back up during hotplug
  568. */
  569. static struct lock_class_key on_slab_l3_key;
  570. static struct lock_class_key on_slab_alc_key;
  571. static inline void init_lock_keys(void)
  572. {
  573. int q;
  574. struct cache_sizes *s = malloc_sizes;
  575. while (s->cs_size != ULONG_MAX) {
  576. for_each_node(q) {
  577. struct array_cache **alc;
  578. int r;
  579. struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
  580. if (!l3 || OFF_SLAB(s->cs_cachep))
  581. continue;
  582. lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
  583. alc = l3->alien;
  584. /*
  585. * FIXME: This check for BAD_ALIEN_MAGIC
  586. * should go away when common slab code is taught to
  587. * work even without alien caches.
  588. * Currently, non NUMA code returns BAD_ALIEN_MAGIC
  589. * for alloc_alien_cache,
  590. */
  591. if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
  592. continue;
  593. for_each_node(r) {
  594. if (alc[r])
  595. lockdep_set_class(&alc[r]->lock,
  596. &on_slab_alc_key);
  597. }
  598. }
  599. s++;
  600. }
  601. }
  602. #else
  603. static inline void init_lock_keys(void)
  604. {
  605. }
  606. #endif
  607. /*
  608. * Guard access to the cache-chain.
  609. */
  610. static DEFINE_MUTEX(cache_chain_mutex);
  611. static struct list_head cache_chain;
  612. /*
  613. * chicken and egg problem: delay the per-cpu array allocation
  614. * until the general caches are up.
  615. */
  616. static enum {
  617. NONE,
  618. PARTIAL_AC,
  619. PARTIAL_L3,
  620. EARLY,
  621. FULL
  622. } g_cpucache_up;
  623. /*
  624. * used by boot code to determine if it can use slab based allocator
  625. */
  626. int slab_is_available(void)
  627. {
  628. return g_cpucache_up >= EARLY;
  629. }
  630. static DEFINE_PER_CPU(struct delayed_work, reap_work);
  631. static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
  632. {
  633. return cachep->array[smp_processor_id()];
  634. }
  635. static inline struct kmem_cache *__find_general_cachep(size_t size,
  636. gfp_t gfpflags)
  637. {
  638. struct cache_sizes *csizep = malloc_sizes;
  639. #if DEBUG
  640. /* This happens if someone tries to call
  641. * kmem_cache_create(), or __kmalloc(), before
  642. * the generic caches are initialized.
  643. */
  644. BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
  645. #endif
  646. if (!size)
  647. return ZERO_SIZE_PTR;
  648. while (size > csizep->cs_size)
  649. csizep++;
  650. /*
  651. * Really subtle: The last entry with cs->cs_size==ULONG_MAX
  652. * has cs_{dma,}cachep==NULL. Thus no special case
  653. * for large kmalloc calls required.
  654. */
  655. #ifdef CONFIG_ZONE_DMA
  656. if (unlikely(gfpflags & GFP_DMA))
  657. return csizep->cs_dmacachep;
  658. #endif
  659. return csizep->cs_cachep;
  660. }
  661. static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
  662. {
  663. return __find_general_cachep(size, gfpflags);
  664. }
  665. static size_t slab_mgmt_size(size_t nr_objs, size_t align)
  666. {
  667. return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
  668. }
  669. /*
  670. * Calculate the number of objects and left-over bytes for a given buffer size.
  671. */
  672. static void cache_estimate(unsigned long gfporder, size_t buffer_size,
  673. size_t align, int flags, size_t *left_over,
  674. unsigned int *num)
  675. {
  676. int nr_objs;
  677. size_t mgmt_size;
  678. size_t slab_size = PAGE_SIZE << gfporder;
  679. /*
  680. * The slab management structure can be either off the slab or
  681. * on it. For the latter case, the memory allocated for a
  682. * slab is used for:
  683. *
  684. * - The struct slab
  685. * - One kmem_bufctl_t for each object
  686. * - Padding to respect alignment of @align
  687. * - @buffer_size bytes for each object
  688. *
  689. * If the slab management structure is off the slab, then the
  690. * alignment will already be calculated into the size. Because
  691. * the slabs are all pages aligned, the objects will be at the
  692. * correct alignment when allocated.
  693. */
  694. if (flags & CFLGS_OFF_SLAB) {
  695. mgmt_size = 0;
  696. nr_objs = slab_size / buffer_size;
  697. if (nr_objs > SLAB_LIMIT)
  698. nr_objs = SLAB_LIMIT;
  699. } else {
  700. /*
  701. * Ignore padding for the initial guess. The padding
  702. * is at most @align-1 bytes, and @buffer_size is at
  703. * least @align. In the worst case, this result will
  704. * be one greater than the number of objects that fit
  705. * into the memory allocation when taking the padding
  706. * into account.
  707. */
  708. nr_objs = (slab_size - sizeof(struct slab)) /
  709. (buffer_size + sizeof(kmem_bufctl_t));
  710. /*
  711. * This calculated number will be either the right
  712. * amount, or one greater than what we want.
  713. */
  714. if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
  715. > slab_size)
  716. nr_objs--;
  717. if (nr_objs > SLAB_LIMIT)
  718. nr_objs = SLAB_LIMIT;
  719. mgmt_size = slab_mgmt_size(nr_objs, align);
  720. }
  721. *num = nr_objs;
  722. *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
  723. }
  724. #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
  725. static void __slab_error(const char *function, struct kmem_cache *cachep,
  726. char *msg)
  727. {
  728. printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
  729. function, cachep->name, msg);
  730. dump_stack();
  731. }
  732. /*
  733. * By default on NUMA we use alien caches to stage the freeing of
  734. * objects allocated from other nodes. This causes massive memory
  735. * inefficiencies when using fake NUMA setup to split memory into a
  736. * large number of small nodes, so it can be disabled on the command
  737. * line
  738. */
  739. static int use_alien_caches __read_mostly = 1;
  740. static int __init noaliencache_setup(char *s)
  741. {
  742. use_alien_caches = 0;
  743. return 1;
  744. }
  745. __setup("noaliencache", noaliencache_setup);
  746. #ifdef CONFIG_NUMA
  747. /*
  748. * Special reaping functions for NUMA systems called from cache_reap().
  749. * These take care of doing round robin flushing of alien caches (containing
  750. * objects freed on different nodes from which they were allocated) and the
  751. * flushing of remote pcps by calling drain_node_pages.
  752. */
  753. static DEFINE_PER_CPU(unsigned long, reap_node);
  754. static void init_reap_node(int cpu)
  755. {
  756. int node;
  757. node = next_node(cpu_to_node(cpu), node_online_map);
  758. if (node == MAX_NUMNODES)
  759. node = first_node(node_online_map);
  760. per_cpu(reap_node, cpu) = node;
  761. }
  762. static void next_reap_node(void)
  763. {
  764. int node = __get_cpu_var(reap_node);
  765. node = next_node(node, node_online_map);
  766. if (unlikely(node >= MAX_NUMNODES))
  767. node = first_node(node_online_map);
  768. __get_cpu_var(reap_node) = node;
  769. }
  770. #else
  771. #define init_reap_node(cpu) do { } while (0)
  772. #define next_reap_node(void) do { } while (0)
  773. #endif
  774. /*
  775. * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
  776. * via the workqueue/eventd.
  777. * Add the CPU number into the expiration time to minimize the possibility of
  778. * the CPUs getting into lockstep and contending for the global cache chain
  779. * lock.
  780. */
  781. static void __cpuinit start_cpu_timer(int cpu)
  782. {
  783. struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
  784. /*
  785. * When this gets called from do_initcalls via cpucache_init(),
  786. * init_workqueues() has already run, so keventd will be setup
  787. * at that time.
  788. */
  789. if (keventd_up() && reap_work->work.func == NULL) {
  790. init_reap_node(cpu);
  791. INIT_DELAYED_WORK(reap_work, cache_reap);
  792. schedule_delayed_work_on(cpu, reap_work,
  793. __round_jiffies_relative(HZ, cpu));
  794. }
  795. }
  796. static struct array_cache *alloc_arraycache(int node, int entries,
  797. int batchcount, gfp_t gfp)
  798. {
  799. int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
  800. struct array_cache *nc = NULL;
  801. nc = kmalloc_node(memsize, gfp, node);
  802. /*
  803. * The array_cache structures contain pointers to free object.
  804. * However, when such objects are allocated or transfered to another
  805. * cache the pointers are not cleared and they could be counted as
  806. * valid references during a kmemleak scan. Therefore, kmemleak must
  807. * not scan such objects.
  808. */
  809. kmemleak_no_scan(nc);
  810. if (nc) {
  811. nc->avail = 0;
  812. nc->limit = entries;
  813. nc->batchcount = batchcount;
  814. nc->touched = 0;
  815. spin_lock_init(&nc->lock);
  816. }
  817. return nc;
  818. }
  819. /*
  820. * Transfer objects in one arraycache to another.
  821. * Locking must be handled by the caller.
  822. *
  823. * Return the number of entries transferred.
  824. */
  825. static int transfer_objects(struct array_cache *to,
  826. struct array_cache *from, unsigned int max)
  827. {
  828. /* Figure out how many entries to transfer */
  829. int nr = min(min(from->avail, max), to->limit - to->avail);
  830. if (!nr)
  831. return 0;
  832. memcpy(to->entry + to->avail, from->entry + from->avail -nr,
  833. sizeof(void *) *nr);
  834. from->avail -= nr;
  835. to->avail += nr;
  836. to->touched = 1;
  837. return nr;
  838. }
  839. #ifndef CONFIG_NUMA
  840. #define drain_alien_cache(cachep, alien) do { } while (0)
  841. #define reap_alien(cachep, l3) do { } while (0)
  842. static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
  843. {
  844. return (struct array_cache **)BAD_ALIEN_MAGIC;
  845. }
  846. static inline void free_alien_cache(struct array_cache **ac_ptr)
  847. {
  848. }
  849. static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
  850. {
  851. return 0;
  852. }
  853. static inline void *alternate_node_alloc(struct kmem_cache *cachep,
  854. gfp_t flags)
  855. {
  856. return NULL;
  857. }
  858. static inline void *____cache_alloc_node(struct kmem_cache *cachep,
  859. gfp_t flags, int nodeid)
  860. {
  861. return NULL;
  862. }
  863. #else /* CONFIG_NUMA */
  864. static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
  865. static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
  866. static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
  867. {
  868. struct array_cache **ac_ptr;
  869. int memsize = sizeof(void *) * nr_node_ids;
  870. int i;
  871. if (limit > 1)
  872. limit = 12;
  873. ac_ptr = kmalloc_node(memsize, gfp, node);
  874. if (ac_ptr) {
  875. for_each_node(i) {
  876. if (i == node || !node_online(i)) {
  877. ac_ptr[i] = NULL;
  878. continue;
  879. }
  880. ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
  881. if (!ac_ptr[i]) {
  882. for (i--; i >= 0; i--)
  883. kfree(ac_ptr[i]);
  884. kfree(ac_ptr);
  885. return NULL;
  886. }
  887. }
  888. }
  889. return ac_ptr;
  890. }
  891. static void free_alien_cache(struct array_cache **ac_ptr)
  892. {
  893. int i;
  894. if (!ac_ptr)
  895. return;
  896. for_each_node(i)
  897. kfree(ac_ptr[i]);
  898. kfree(ac_ptr);
  899. }
  900. static void __drain_alien_cache(struct kmem_cache *cachep,
  901. struct array_cache *ac, int node)
  902. {
  903. struct kmem_list3 *rl3 = cachep->nodelists[node];
  904. if (ac->avail) {
  905. spin_lock(&rl3->list_lock);
  906. /*
  907. * Stuff objects into the remote nodes shared array first.
  908. * That way we could avoid the overhead of putting the objects
  909. * into the free lists and getting them back later.
  910. */
  911. if (rl3->shared)
  912. transfer_objects(rl3->shared, ac, ac->limit);
  913. free_block(cachep, ac->entry, ac->avail, node);
  914. ac->avail = 0;
  915. spin_unlock(&rl3->list_lock);
  916. }
  917. }
  918. /*
  919. * Called from cache_reap() to regularly drain alien caches round robin.
  920. */
  921. static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
  922. {
  923. int node = __get_cpu_var(reap_node);
  924. if (l3->alien) {
  925. struct array_cache *ac = l3->alien[node];
  926. if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
  927. __drain_alien_cache(cachep, ac, node);
  928. spin_unlock_irq(&ac->lock);
  929. }
  930. }
  931. }
  932. static void drain_alien_cache(struct kmem_cache *cachep,
  933. struct array_cache **alien)
  934. {
  935. int i = 0;
  936. struct array_cache *ac;
  937. unsigned long flags;
  938. for_each_online_node(i) {
  939. ac = alien[i];
  940. if (ac) {
  941. spin_lock_irqsave(&ac->lock, flags);
  942. __drain_alien_cache(cachep, ac, i);
  943. spin_unlock_irqrestore(&ac->lock, flags);
  944. }
  945. }
  946. }
  947. static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
  948. {
  949. struct slab *slabp = virt_to_slab(objp);
  950. int nodeid = slabp->nodeid;
  951. struct kmem_list3 *l3;
  952. struct array_cache *alien = NULL;
  953. int node;
  954. node = numa_node_id();
  955. /*
  956. * Make sure we are not freeing a object from another node to the array
  957. * cache on this cpu.
  958. */
  959. if (likely(slabp->nodeid == node))
  960. return 0;
  961. l3 = cachep->nodelists[node];
  962. STATS_INC_NODEFREES(cachep);
  963. if (l3->alien && l3->alien[nodeid]) {
  964. alien = l3->alien[nodeid];
  965. spin_lock(&alien->lock);
  966. if (unlikely(alien->avail == alien->limit)) {
  967. STATS_INC_ACOVERFLOW(cachep);
  968. __drain_alien_cache(cachep, alien, nodeid);
  969. }
  970. alien->entry[alien->avail++] = objp;
  971. spin_unlock(&alien->lock);
  972. } else {
  973. spin_lock(&(cachep->nodelists[nodeid])->list_lock);
  974. free_block(cachep, &objp, 1, nodeid);
  975. spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
  976. }
  977. return 1;
  978. }
  979. #endif
  980. static void __cpuinit cpuup_canceled(long cpu)
  981. {
  982. struct kmem_cache *cachep;
  983. struct kmem_list3 *l3 = NULL;
  984. int node = cpu_to_node(cpu);
  985. const struct cpumask *mask = cpumask_of_node(node);
  986. list_for_each_entry(cachep, &cache_chain, next) {
  987. struct array_cache *nc;
  988. struct array_cache *shared;
  989. struct array_cache **alien;
  990. /* cpu is dead; no one can alloc from it. */
  991. nc = cachep->array[cpu];
  992. cachep->array[cpu] = NULL;
  993. l3 = cachep->nodelists[node];
  994. if (!l3)
  995. goto free_array_cache;
  996. spin_lock_irq(&l3->list_lock);
  997. /* Free limit for this kmem_list3 */
  998. l3->free_limit -= cachep->batchcount;
  999. if (nc)
  1000. free_block(cachep, nc->entry, nc->avail, node);
  1001. if (!cpus_empty(*mask)) {
  1002. spin_unlock_irq(&l3->list_lock);
  1003. goto free_array_cache;
  1004. }
  1005. shared = l3->shared;
  1006. if (shared) {
  1007. free_block(cachep, shared->entry,
  1008. shared->avail, node);
  1009. l3->shared = NULL;
  1010. }
  1011. alien = l3->alien;
  1012. l3->alien = NULL;
  1013. spin_unlock_irq(&l3->list_lock);
  1014. kfree(shared);
  1015. if (alien) {
  1016. drain_alien_cache(cachep, alien);
  1017. free_alien_cache(alien);
  1018. }
  1019. free_array_cache:
  1020. kfree(nc);
  1021. }
  1022. /*
  1023. * In the previous loop, all the objects were freed to
  1024. * the respective cache's slabs, now we can go ahead and
  1025. * shrink each nodelist to its limit.
  1026. */
  1027. list_for_each_entry(cachep, &cache_chain, next) {
  1028. l3 = cachep->nodelists[node];
  1029. if (!l3)
  1030. continue;
  1031. drain_freelist(cachep, l3, l3->free_objects);
  1032. }
  1033. }
  1034. static int __cpuinit cpuup_prepare(long cpu)
  1035. {
  1036. struct kmem_cache *cachep;
  1037. struct kmem_list3 *l3 = NULL;
  1038. int node = cpu_to_node(cpu);
  1039. const int memsize = sizeof(struct kmem_list3);
  1040. /*
  1041. * We need to do this right in the beginning since
  1042. * alloc_arraycache's are going to use this list.
  1043. * kmalloc_node allows us to add the slab to the right
  1044. * kmem_list3 and not this cpu's kmem_list3
  1045. */
  1046. list_for_each_entry(cachep, &cache_chain, next) {
  1047. /*
  1048. * Set up the size64 kmemlist for cpu before we can
  1049. * begin anything. Make sure some other cpu on this
  1050. * node has not already allocated this
  1051. */
  1052. if (!cachep->nodelists[node]) {
  1053. l3 = kmalloc_node(memsize, GFP_KERNEL, node);
  1054. if (!l3)
  1055. goto bad;
  1056. kmem_list3_init(l3);
  1057. l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
  1058. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1059. /*
  1060. * The l3s don't come and go as CPUs come and
  1061. * go. cache_chain_mutex is sufficient
  1062. * protection here.
  1063. */
  1064. cachep->nodelists[node] = l3;
  1065. }
  1066. spin_lock_irq(&cachep->nodelists[node]->list_lock);
  1067. cachep->nodelists[node]->free_limit =
  1068. (1 + nr_cpus_node(node)) *
  1069. cachep->batchcount + cachep->num;
  1070. spin_unlock_irq(&cachep->nodelists[node]->list_lock);
  1071. }
  1072. /*
  1073. * Now we can go ahead with allocating the shared arrays and
  1074. * array caches
  1075. */
  1076. list_for_each_entry(cachep, &cache_chain, next) {
  1077. struct array_cache *nc;
  1078. struct array_cache *shared = NULL;
  1079. struct array_cache **alien = NULL;
  1080. nc = alloc_arraycache(node, cachep->limit,
  1081. cachep->batchcount, GFP_KERNEL);
  1082. if (!nc)
  1083. goto bad;
  1084. if (cachep->shared) {
  1085. shared = alloc_arraycache(node,
  1086. cachep->shared * cachep->batchcount,
  1087. 0xbaadf00d, GFP_KERNEL);
  1088. if (!shared) {
  1089. kfree(nc);
  1090. goto bad;
  1091. }
  1092. }
  1093. if (use_alien_caches) {
  1094. alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
  1095. if (!alien) {
  1096. kfree(shared);
  1097. kfree(nc);
  1098. goto bad;
  1099. }
  1100. }
  1101. cachep->array[cpu] = nc;
  1102. l3 = cachep->nodelists[node];
  1103. BUG_ON(!l3);
  1104. spin_lock_irq(&l3->list_lock);
  1105. if (!l3->shared) {
  1106. /*
  1107. * We are serialised from CPU_DEAD or
  1108. * CPU_UP_CANCELLED by the cpucontrol lock
  1109. */
  1110. l3->shared = shared;
  1111. shared = NULL;
  1112. }
  1113. #ifdef CONFIG_NUMA
  1114. if (!l3->alien) {
  1115. l3->alien = alien;
  1116. alien = NULL;
  1117. }
  1118. #endif
  1119. spin_unlock_irq(&l3->list_lock);
  1120. kfree(shared);
  1121. free_alien_cache(alien);
  1122. }
  1123. return 0;
  1124. bad:
  1125. cpuup_canceled(cpu);
  1126. return -ENOMEM;
  1127. }
  1128. static int __cpuinit cpuup_callback(struct notifier_block *nfb,
  1129. unsigned long action, void *hcpu)
  1130. {
  1131. long cpu = (long)hcpu;
  1132. int err = 0;
  1133. switch (action) {
  1134. case CPU_UP_PREPARE:
  1135. case CPU_UP_PREPARE_FROZEN:
  1136. mutex_lock(&cache_chain_mutex);
  1137. err = cpuup_prepare(cpu);
  1138. mutex_unlock(&cache_chain_mutex);
  1139. break;
  1140. case CPU_ONLINE:
  1141. case CPU_ONLINE_FROZEN:
  1142. start_cpu_timer(cpu);
  1143. break;
  1144. #ifdef CONFIG_HOTPLUG_CPU
  1145. case CPU_DOWN_PREPARE:
  1146. case CPU_DOWN_PREPARE_FROZEN:
  1147. /*
  1148. * Shutdown cache reaper. Note that the cache_chain_mutex is
  1149. * held so that if cache_reap() is invoked it cannot do
  1150. * anything expensive but will only modify reap_work
  1151. * and reschedule the timer.
  1152. */
  1153. cancel_rearming_delayed_work(&per_cpu(reap_work, cpu));
  1154. /* Now the cache_reaper is guaranteed to be not running. */
  1155. per_cpu(reap_work, cpu).work.func = NULL;
  1156. break;
  1157. case CPU_DOWN_FAILED:
  1158. case CPU_DOWN_FAILED_FROZEN:
  1159. start_cpu_timer(cpu);
  1160. break;
  1161. case CPU_DEAD:
  1162. case CPU_DEAD_FROZEN:
  1163. /*
  1164. * Even if all the cpus of a node are down, we don't free the
  1165. * kmem_list3 of any cache. This to avoid a race between
  1166. * cpu_down, and a kmalloc allocation from another cpu for
  1167. * memory from the node of the cpu going down. The list3
  1168. * structure is usually allocated from kmem_cache_create() and
  1169. * gets destroyed at kmem_cache_destroy().
  1170. */
  1171. /* fall through */
  1172. #endif
  1173. case CPU_UP_CANCELED:
  1174. case CPU_UP_CANCELED_FROZEN:
  1175. mutex_lock(&cache_chain_mutex);
  1176. cpuup_canceled(cpu);
  1177. mutex_unlock(&cache_chain_mutex);
  1178. break;
  1179. }
  1180. return err ? NOTIFY_BAD : NOTIFY_OK;
  1181. }
  1182. static struct notifier_block __cpuinitdata cpucache_notifier = {
  1183. &cpuup_callback, NULL, 0
  1184. };
  1185. /*
  1186. * swap the static kmem_list3 with kmalloced memory
  1187. */
  1188. static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
  1189. int nodeid)
  1190. {
  1191. struct kmem_list3 *ptr;
  1192. ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
  1193. BUG_ON(!ptr);
  1194. memcpy(ptr, list, sizeof(struct kmem_list3));
  1195. /*
  1196. * Do not assume that spinlocks can be initialized via memcpy:
  1197. */
  1198. spin_lock_init(&ptr->list_lock);
  1199. MAKE_ALL_LISTS(cachep, ptr, nodeid);
  1200. cachep->nodelists[nodeid] = ptr;
  1201. }
  1202. /*
  1203. * For setting up all the kmem_list3s for cache whose buffer_size is same as
  1204. * size of kmem_list3.
  1205. */
  1206. static void __init set_up_list3s(struct kmem_cache *cachep, int index)
  1207. {
  1208. int node;
  1209. for_each_online_node(node) {
  1210. cachep->nodelists[node] = &initkmem_list3[index + node];
  1211. cachep->nodelists[node]->next_reap = jiffies +
  1212. REAPTIMEOUT_LIST3 +
  1213. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1214. }
  1215. }
  1216. /*
  1217. * Initialisation. Called after the page allocator have been initialised and
  1218. * before smp_init().
  1219. */
  1220. void __init kmem_cache_init(void)
  1221. {
  1222. size_t left_over;
  1223. struct cache_sizes *sizes;
  1224. struct cache_names *names;
  1225. int i;
  1226. int order;
  1227. int node;
  1228. if (num_possible_nodes() == 1)
  1229. use_alien_caches = 0;
  1230. for (i = 0; i < NUM_INIT_LISTS; i++) {
  1231. kmem_list3_init(&initkmem_list3[i]);
  1232. if (i < MAX_NUMNODES)
  1233. cache_cache.nodelists[i] = NULL;
  1234. }
  1235. set_up_list3s(&cache_cache, CACHE_CACHE);
  1236. /*
  1237. * Fragmentation resistance on low memory - only use bigger
  1238. * page orders on machines with more than 32MB of memory.
  1239. */
  1240. if (num_physpages > (32 << 20) >> PAGE_SHIFT)
  1241. slab_break_gfp_order = BREAK_GFP_ORDER_HI;
  1242. /* Bootstrap is tricky, because several objects are allocated
  1243. * from caches that do not exist yet:
  1244. * 1) initialize the cache_cache cache: it contains the struct
  1245. * kmem_cache structures of all caches, except cache_cache itself:
  1246. * cache_cache is statically allocated.
  1247. * Initially an __init data area is used for the head array and the
  1248. * kmem_list3 structures, it's replaced with a kmalloc allocated
  1249. * array at the end of the bootstrap.
  1250. * 2) Create the first kmalloc cache.
  1251. * The struct kmem_cache for the new cache is allocated normally.
  1252. * An __init data area is used for the head array.
  1253. * 3) Create the remaining kmalloc caches, with minimally sized
  1254. * head arrays.
  1255. * 4) Replace the __init data head arrays for cache_cache and the first
  1256. * kmalloc cache with kmalloc allocated arrays.
  1257. * 5) Replace the __init data for kmem_list3 for cache_cache and
  1258. * the other cache's with kmalloc allocated memory.
  1259. * 6) Resize the head arrays of the kmalloc caches to their final sizes.
  1260. */
  1261. node = numa_node_id();
  1262. /* 1) create the cache_cache */
  1263. INIT_LIST_HEAD(&cache_chain);
  1264. list_add(&cache_cache.next, &cache_chain);
  1265. cache_cache.colour_off = cache_line_size();
  1266. cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
  1267. cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
  1268. /*
  1269. * struct kmem_cache size depends on nr_node_ids, which
  1270. * can be less than MAX_NUMNODES.
  1271. */
  1272. cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
  1273. nr_node_ids * sizeof(struct kmem_list3 *);
  1274. #if DEBUG
  1275. cache_cache.obj_size = cache_cache.buffer_size;
  1276. #endif
  1277. cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
  1278. cache_line_size());
  1279. cache_cache.reciprocal_buffer_size =
  1280. reciprocal_value(cache_cache.buffer_size);
  1281. for (order = 0; order < MAX_ORDER; order++) {
  1282. cache_estimate(order, cache_cache.buffer_size,
  1283. cache_line_size(), 0, &left_over, &cache_cache.num);
  1284. if (cache_cache.num)
  1285. break;
  1286. }
  1287. BUG_ON(!cache_cache.num);
  1288. cache_cache.gfporder = order;
  1289. cache_cache.colour = left_over / cache_cache.colour_off;
  1290. cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
  1291. sizeof(struct slab), cache_line_size());
  1292. /* 2+3) create the kmalloc caches */
  1293. sizes = malloc_sizes;
  1294. names = cache_names;
  1295. /*
  1296. * Initialize the caches that provide memory for the array cache and the
  1297. * kmem_list3 structures first. Without this, further allocations will
  1298. * bug.
  1299. */
  1300. sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
  1301. sizes[INDEX_AC].cs_size,
  1302. ARCH_KMALLOC_MINALIGN,
  1303. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1304. NULL);
  1305. if (INDEX_AC != INDEX_L3) {
  1306. sizes[INDEX_L3].cs_cachep =
  1307. kmem_cache_create(names[INDEX_L3].name,
  1308. sizes[INDEX_L3].cs_size,
  1309. ARCH_KMALLOC_MINALIGN,
  1310. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1311. NULL);
  1312. }
  1313. slab_early_init = 0;
  1314. while (sizes->cs_size != ULONG_MAX) {
  1315. /*
  1316. * For performance, all the general caches are L1 aligned.
  1317. * This should be particularly beneficial on SMP boxes, as it
  1318. * eliminates "false sharing".
  1319. * Note for systems short on memory removing the alignment will
  1320. * allow tighter packing of the smaller caches.
  1321. */
  1322. if (!sizes->cs_cachep) {
  1323. sizes->cs_cachep = kmem_cache_create(names->name,
  1324. sizes->cs_size,
  1325. ARCH_KMALLOC_MINALIGN,
  1326. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1327. NULL);
  1328. }
  1329. #ifdef CONFIG_ZONE_DMA
  1330. sizes->cs_dmacachep = kmem_cache_create(
  1331. names->name_dma,
  1332. sizes->cs_size,
  1333. ARCH_KMALLOC_MINALIGN,
  1334. ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
  1335. SLAB_PANIC,
  1336. NULL);
  1337. #endif
  1338. sizes++;
  1339. names++;
  1340. }
  1341. /* 4) Replace the bootstrap head arrays */
  1342. {
  1343. struct array_cache *ptr;
  1344. ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
  1345. BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
  1346. memcpy(ptr, cpu_cache_get(&cache_cache),
  1347. sizeof(struct arraycache_init));
  1348. /*
  1349. * Do not assume that spinlocks can be initialized via memcpy:
  1350. */
  1351. spin_lock_init(&ptr->lock);
  1352. cache_cache.array[smp_processor_id()] = ptr;
  1353. ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
  1354. BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
  1355. != &initarray_generic.cache);
  1356. memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
  1357. sizeof(struct arraycache_init));
  1358. /*
  1359. * Do not assume that spinlocks can be initialized via memcpy:
  1360. */
  1361. spin_lock_init(&ptr->lock);
  1362. malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
  1363. ptr;
  1364. }
  1365. /* 5) Replace the bootstrap kmem_list3's */
  1366. {
  1367. int nid;
  1368. for_each_online_node(nid) {
  1369. init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
  1370. init_list(malloc_sizes[INDEX_AC].cs_cachep,
  1371. &initkmem_list3[SIZE_AC + nid], nid);
  1372. if (INDEX_AC != INDEX_L3) {
  1373. init_list(malloc_sizes[INDEX_L3].cs_cachep,
  1374. &initkmem_list3[SIZE_L3 + nid], nid);
  1375. }
  1376. }
  1377. }
  1378. g_cpucache_up = EARLY;
  1379. /* Annotate slab for lockdep -- annotate the malloc caches */
  1380. init_lock_keys();
  1381. }
  1382. void __init kmem_cache_init_late(void)
  1383. {
  1384. struct kmem_cache *cachep;
  1385. /*
  1386. * Interrupts are enabled now so all GFP allocations are safe.
  1387. */
  1388. slab_gfp_mask = __GFP_BITS_MASK;
  1389. /* 6) resize the head arrays to their final sizes */
  1390. mutex_lock(&cache_chain_mutex);
  1391. list_for_each_entry(cachep, &cache_chain, next)
  1392. if (enable_cpucache(cachep, GFP_NOWAIT))
  1393. BUG();
  1394. mutex_unlock(&cache_chain_mutex);
  1395. /* Done! */
  1396. g_cpucache_up = FULL;
  1397. /*
  1398. * Register a cpu startup notifier callback that initializes
  1399. * cpu_cache_get for all new cpus
  1400. */
  1401. register_cpu_notifier(&cpucache_notifier);
  1402. /*
  1403. * The reap timers are started later, with a module init call: That part
  1404. * of the kernel is not yet operational.
  1405. */
  1406. }
  1407. static int __init cpucache_init(void)
  1408. {
  1409. int cpu;
  1410. /*
  1411. * Register the timers that return unneeded pages to the page allocator
  1412. */
  1413. for_each_online_cpu(cpu)
  1414. start_cpu_timer(cpu);
  1415. return 0;
  1416. }
  1417. __initcall(cpucache_init);
  1418. /*
  1419. * Interface to system's page allocator. No need to hold the cache-lock.
  1420. *
  1421. * If we requested dmaable memory, we will get it. Even if we
  1422. * did not request dmaable memory, we might get it, but that
  1423. * would be relatively rare and ignorable.
  1424. */
  1425. static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  1426. {
  1427. struct page *page;
  1428. int nr_pages;
  1429. int i;
  1430. #ifndef CONFIG_MMU
  1431. /*
  1432. * Nommu uses slab's for process anonymous memory allocations, and thus
  1433. * requires __GFP_COMP to properly refcount higher order allocations
  1434. */
  1435. flags |= __GFP_COMP;
  1436. #endif
  1437. flags |= cachep->gfpflags;
  1438. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1439. flags |= __GFP_RECLAIMABLE;
  1440. page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
  1441. if (!page)
  1442. return NULL;
  1443. nr_pages = (1 << cachep->gfporder);
  1444. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1445. add_zone_page_state(page_zone(page),
  1446. NR_SLAB_RECLAIMABLE, nr_pages);
  1447. else
  1448. add_zone_page_state(page_zone(page),
  1449. NR_SLAB_UNRECLAIMABLE, nr_pages);
  1450. for (i = 0; i < nr_pages; i++)
  1451. __SetPageSlab(page + i);
  1452. if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
  1453. kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
  1454. if (cachep->ctor)
  1455. kmemcheck_mark_uninitialized_pages(page, nr_pages);
  1456. else
  1457. kmemcheck_mark_unallocated_pages(page, nr_pages);
  1458. }
  1459. return page_address(page);
  1460. }
  1461. /*
  1462. * Interface to system's page release.
  1463. */
  1464. static void kmem_freepages(struct kmem_cache *cachep, void *addr)
  1465. {
  1466. unsigned long i = (1 << cachep->gfporder);
  1467. struct page *page = virt_to_page(addr);
  1468. const unsigned long nr_freed = i;
  1469. kmemcheck_free_shadow(page, cachep->gfporder);
  1470. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1471. sub_zone_page_state(page_zone(page),
  1472. NR_SLAB_RECLAIMABLE, nr_freed);
  1473. else
  1474. sub_zone_page_state(page_zone(page),
  1475. NR_SLAB_UNRECLAIMABLE, nr_freed);
  1476. while (i--) {
  1477. BUG_ON(!PageSlab(page));
  1478. __ClearPageSlab(page);
  1479. page++;
  1480. }
  1481. if (current->reclaim_state)
  1482. current->reclaim_state->reclaimed_slab += nr_freed;
  1483. free_pages((unsigned long)addr, cachep->gfporder);
  1484. }
  1485. static void kmem_rcu_free(struct rcu_head *head)
  1486. {
  1487. struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
  1488. struct kmem_cache *cachep = slab_rcu->cachep;
  1489. kmem_freepages(cachep, slab_rcu->addr);
  1490. if (OFF_SLAB(cachep))
  1491. kmem_cache_free(cachep->slabp_cache, slab_rcu);
  1492. }
  1493. #if DEBUG
  1494. #ifdef CONFIG_DEBUG_PAGEALLOC
  1495. static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
  1496. unsigned long caller)
  1497. {
  1498. int size = obj_size(cachep);
  1499. addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
  1500. if (size < 5 * sizeof(unsigned long))
  1501. return;
  1502. *addr++ = 0x12345678;
  1503. *addr++ = caller;
  1504. *addr++ = smp_processor_id();
  1505. size -= 3 * sizeof(unsigned long);
  1506. {
  1507. unsigned long *sptr = &caller;
  1508. unsigned long svalue;
  1509. while (!kstack_end(sptr)) {
  1510. svalue = *sptr++;
  1511. if (kernel_text_address(svalue)) {
  1512. *addr++ = svalue;
  1513. size -= sizeof(unsigned long);
  1514. if (size <= sizeof(unsigned long))
  1515. break;
  1516. }
  1517. }
  1518. }
  1519. *addr++ = 0x87654321;
  1520. }
  1521. #endif
  1522. static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
  1523. {
  1524. int size = obj_size(cachep);
  1525. addr = &((char *)addr)[obj_offset(cachep)];
  1526. memset(addr, val, size);
  1527. *(unsigned char *)(addr + size - 1) = POISON_END;
  1528. }
  1529. static void dump_line(char *data, int offset, int limit)
  1530. {
  1531. int i;
  1532. unsigned char error = 0;
  1533. int bad_count = 0;
  1534. printk(KERN_ERR "%03x:", offset);
  1535. for (i = 0; i < limit; i++) {
  1536. if (data[offset + i] != POISON_FREE) {
  1537. error = data[offset + i];
  1538. bad_count++;
  1539. }
  1540. printk(" %02x", (unsigned char)data[offset + i]);
  1541. }
  1542. printk("\n");
  1543. if (bad_count == 1) {
  1544. error ^= POISON_FREE;
  1545. if (!(error & (error - 1))) {
  1546. printk(KERN_ERR "Single bit error detected. Probably "
  1547. "bad RAM.\n");
  1548. #ifdef CONFIG_X86
  1549. printk(KERN_ERR "Run memtest86+ or a similar memory "
  1550. "test tool.\n");
  1551. #else
  1552. printk(KERN_ERR "Run a memory test tool.\n");
  1553. #endif
  1554. }
  1555. }
  1556. }
  1557. #endif
  1558. #if DEBUG
  1559. static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
  1560. {
  1561. int i, size;
  1562. char *realobj;
  1563. if (cachep->flags & SLAB_RED_ZONE) {
  1564. printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
  1565. *dbg_redzone1(cachep, objp),
  1566. *dbg_redzone2(cachep, objp));
  1567. }
  1568. if (cachep->flags & SLAB_STORE_USER) {
  1569. printk(KERN_ERR "Last user: [<%p>]",
  1570. *dbg_userword(cachep, objp));
  1571. print_symbol("(%s)",
  1572. (unsigned long)*dbg_userword(cachep, objp));
  1573. printk("\n");
  1574. }
  1575. realobj = (char *)objp + obj_offset(cachep);
  1576. size = obj_size(cachep);
  1577. for (i = 0; i < size && lines; i += 16, lines--) {
  1578. int limit;
  1579. limit = 16;
  1580. if (i + limit > size)
  1581. limit = size - i;
  1582. dump_line(realobj, i, limit);
  1583. }
  1584. }
  1585. static void check_poison_obj(struct kmem_cache *cachep, void *objp)
  1586. {
  1587. char *realobj;
  1588. int size, i;
  1589. int lines = 0;
  1590. realobj = (char *)objp + obj_offset(cachep);
  1591. size = obj_size(cachep);
  1592. for (i = 0; i < size; i++) {
  1593. char exp = POISON_FREE;
  1594. if (i == size - 1)
  1595. exp = POISON_END;
  1596. if (realobj[i] != exp) {
  1597. int limit;
  1598. /* Mismatch ! */
  1599. /* Print header */
  1600. if (lines == 0) {
  1601. printk(KERN_ERR
  1602. "Slab corruption: %s start=%p, len=%d\n",
  1603. cachep->name, realobj, size);
  1604. print_objinfo(cachep, objp, 0);
  1605. }
  1606. /* Hexdump the affected line */
  1607. i = (i / 16) * 16;
  1608. limit = 16;
  1609. if (i + limit > size)
  1610. limit = size - i;
  1611. dump_line(realobj, i, limit);
  1612. i += 16;
  1613. lines++;
  1614. /* Limit to 5 lines */
  1615. if (lines > 5)
  1616. break;
  1617. }
  1618. }
  1619. if (lines != 0) {
  1620. /* Print some data about the neighboring objects, if they
  1621. * exist:
  1622. */
  1623. struct slab *slabp = virt_to_slab(objp);
  1624. unsigned int objnr;
  1625. objnr = obj_to_index(cachep, slabp, objp);
  1626. if (objnr) {
  1627. objp = index_to_obj(cachep, slabp, objnr - 1);
  1628. realobj = (char *)objp + obj_offset(cachep);
  1629. printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
  1630. realobj, size);
  1631. print_objinfo(cachep, objp, 2);
  1632. }
  1633. if (objnr + 1 < cachep->num) {
  1634. objp = index_to_obj(cachep, slabp, objnr + 1);
  1635. realobj = (char *)objp + obj_offset(cachep);
  1636. printk(KERN_ERR "Next obj: start=%p, len=%d\n",
  1637. realobj, size);
  1638. print_objinfo(cachep, objp, 2);
  1639. }
  1640. }
  1641. }
  1642. #endif
  1643. #if DEBUG
  1644. static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
  1645. {
  1646. int i;
  1647. for (i = 0; i < cachep->num; i++) {
  1648. void *objp = index_to_obj(cachep, slabp, i);
  1649. if (cachep->flags & SLAB_POISON) {
  1650. #ifdef CONFIG_DEBUG_PAGEALLOC
  1651. if (cachep->buffer_size % PAGE_SIZE == 0 &&
  1652. OFF_SLAB(cachep))
  1653. kernel_map_pages(virt_to_page(objp),
  1654. cachep->buffer_size / PAGE_SIZE, 1);
  1655. else
  1656. check_poison_obj(cachep, objp);
  1657. #else
  1658. check_poison_obj(cachep, objp);
  1659. #endif
  1660. }
  1661. if (cachep->flags & SLAB_RED_ZONE) {
  1662. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
  1663. slab_error(cachep, "start of a freed object "
  1664. "was overwritten");
  1665. if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
  1666. slab_error(cachep, "end of a freed object "
  1667. "was overwritten");
  1668. }
  1669. }
  1670. }
  1671. #else
  1672. static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
  1673. {
  1674. }
  1675. #endif
  1676. /**
  1677. * slab_destroy - destroy and release all objects in a slab
  1678. * @cachep: cache pointer being destroyed
  1679. * @slabp: slab pointer being destroyed
  1680. *
  1681. * Destroy all the objs in a slab, and release the mem back to the system.
  1682. * Before calling the slab must have been unlinked from the cache. The
  1683. * cache-lock is not held/needed.
  1684. */
  1685. static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
  1686. {
  1687. void *addr = slabp->s_mem - slabp->colouroff;
  1688. slab_destroy_debugcheck(cachep, slabp);
  1689. if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
  1690. struct slab_rcu *slab_rcu;
  1691. slab_rcu = (struct slab_rcu *)slabp;
  1692. slab_rcu->cachep = cachep;
  1693. slab_rcu->addr = addr;
  1694. call_rcu(&slab_rcu->head, kmem_rcu_free);
  1695. } else {
  1696. kmem_freepages(cachep, addr);
  1697. if (OFF_SLAB(cachep))
  1698. kmem_cache_free(cachep->slabp_cache, slabp);
  1699. }
  1700. }
  1701. static void __kmem_cache_destroy(struct kmem_cache *cachep)
  1702. {
  1703. int i;
  1704. struct kmem_list3 *l3;
  1705. for_each_online_cpu(i)
  1706. kfree(cachep->array[i]);
  1707. /* NUMA: free the list3 structures */
  1708. for_each_online_node(i) {
  1709. l3 = cachep->nodelists[i];
  1710. if (l3) {
  1711. kfree(l3->shared);
  1712. free_alien_cache(l3->alien);
  1713. kfree(l3);
  1714. }
  1715. }
  1716. kmem_cache_free(&cache_cache, cachep);
  1717. }
  1718. /**
  1719. * calculate_slab_order - calculate size (page order) of slabs
  1720. * @cachep: pointer to the cache that is being created
  1721. * @size: size of objects to be created in this cache.
  1722. * @align: required alignment for the objects.
  1723. * @flags: slab allocation flags
  1724. *
  1725. * Also calculates the number of objects per slab.
  1726. *
  1727. * This could be made much more intelligent. For now, try to avoid using
  1728. * high order pages for slabs. When the gfp() functions are more friendly
  1729. * towards high-order requests, this should be changed.
  1730. */
  1731. static size_t calculate_slab_order(struct kmem_cache *cachep,
  1732. size_t size, size_t align, unsigned long flags)
  1733. {
  1734. unsigned long offslab_limit;
  1735. size_t left_over = 0;
  1736. int gfporder;
  1737. for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
  1738. unsigned int num;
  1739. size_t remainder;
  1740. cache_estimate(gfporder, size, align, flags, &remainder, &num);
  1741. if (!num)
  1742. continue;
  1743. if (flags & CFLGS_OFF_SLAB) {
  1744. /*
  1745. * Max number of objs-per-slab for caches which
  1746. * use off-slab slabs. Needed to avoid a possible
  1747. * looping condition in cache_grow().
  1748. */
  1749. offslab_limit = size - sizeof(struct slab);
  1750. offslab_limit /= sizeof(kmem_bufctl_t);
  1751. if (num > offslab_limit)
  1752. break;
  1753. }
  1754. /* Found something acceptable - save it away */
  1755. cachep->num = num;
  1756. cachep->gfporder = gfporder;
  1757. left_over = remainder;
  1758. /*
  1759. * A VFS-reclaimable slab tends to have most allocations
  1760. * as GFP_NOFS and we really don't want to have to be allocating
  1761. * higher-order pages when we are unable to shrink dcache.
  1762. */
  1763. if (flags & SLAB_RECLAIM_ACCOUNT)
  1764. break;
  1765. /*
  1766. * Large number of objects is good, but very large slabs are
  1767. * currently bad for the gfp()s.
  1768. */
  1769. if (gfporder >= slab_break_gfp_order)
  1770. break;
  1771. /*
  1772. * Acceptable internal fragmentation?
  1773. */
  1774. if (left_over * 8 <= (PAGE_SIZE << gfporder))
  1775. break;
  1776. }
  1777. return left_over;
  1778. }
  1779. static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
  1780. {
  1781. if (g_cpucache_up == FULL)
  1782. return enable_cpucache(cachep, gfp);
  1783. if (g_cpucache_up == NONE) {
  1784. /*
  1785. * Note: the first kmem_cache_create must create the cache
  1786. * that's used by kmalloc(24), otherwise the creation of
  1787. * further caches will BUG().
  1788. */
  1789. cachep->array[smp_processor_id()] = &initarray_generic.cache;
  1790. /*
  1791. * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
  1792. * the first cache, then we need to set up all its list3s,
  1793. * otherwise the creation of further caches will BUG().
  1794. */
  1795. set_up_list3s(cachep, SIZE_AC);
  1796. if (INDEX_AC == INDEX_L3)
  1797. g_cpucache_up = PARTIAL_L3;
  1798. else
  1799. g_cpucache_up = PARTIAL_AC;
  1800. } else {
  1801. cachep->array[smp_processor_id()] =
  1802. kmalloc(sizeof(struct arraycache_init), gfp);
  1803. if (g_cpucache_up == PARTIAL_AC) {
  1804. set_up_list3s(cachep, SIZE_L3);
  1805. g_cpucache_up = PARTIAL_L3;
  1806. } else {
  1807. int node;
  1808. for_each_online_node(node) {
  1809. cachep->nodelists[node] =
  1810. kmalloc_node(sizeof(struct kmem_list3),
  1811. gfp, node);
  1812. BUG_ON(!cachep->nodelists[node]);
  1813. kmem_list3_init(cachep->nodelists[node]);
  1814. }
  1815. }
  1816. }
  1817. cachep->nodelists[numa_node_id()]->next_reap =
  1818. jiffies + REAPTIMEOUT_LIST3 +
  1819. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1820. cpu_cache_get(cachep)->avail = 0;
  1821. cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
  1822. cpu_cache_get(cachep)->batchcount = 1;
  1823. cpu_cache_get(cachep)->touched = 0;
  1824. cachep->batchcount = 1;
  1825. cachep->limit = BOOT_CPUCACHE_ENTRIES;
  1826. return 0;
  1827. }
  1828. /**
  1829. * kmem_cache_create - Create a cache.
  1830. * @name: A string which is used in /proc/slabinfo to identify this cache.
  1831. * @size: The size of objects to be created in this cache.
  1832. * @align: The required alignment for the objects.
  1833. * @flags: SLAB flags
  1834. * @ctor: A constructor for the objects.
  1835. *
  1836. * Returns a ptr to the cache on success, NULL on failure.
  1837. * Cannot be called within a int, but can be interrupted.
  1838. * The @ctor is run when new pages are allocated by the cache.
  1839. *
  1840. * @name must be valid until the cache is destroyed. This implies that
  1841. * the module calling this has to destroy the cache before getting unloaded.
  1842. * Note that kmem_cache_name() is not guaranteed to return the same pointer,
  1843. * therefore applications must manage it themselves.
  1844. *
  1845. * The flags are
  1846. *
  1847. * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
  1848. * to catch references to uninitialised memory.
  1849. *
  1850. * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
  1851. * for buffer overruns.
  1852. *
  1853. * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
  1854. * cacheline. This can be beneficial if you're counting cycles as closely
  1855. * as davem.
  1856. */
  1857. struct kmem_cache *
  1858. kmem_cache_create (const char *name, size_t size, size_t align,
  1859. unsigned long flags, void (*ctor)(void *))
  1860. {
  1861. size_t left_over, slab_size, ralign;
  1862. struct kmem_cache *cachep = NULL, *pc;
  1863. gfp_t gfp;
  1864. /*
  1865. * Sanity checks... these are all serious usage bugs.
  1866. */
  1867. if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
  1868. size > KMALLOC_MAX_SIZE) {
  1869. printk(KERN_ERR "%s: Early error in slab %s\n", __func__,
  1870. name);
  1871. BUG();
  1872. }
  1873. /*
  1874. * We use cache_chain_mutex to ensure a consistent view of
  1875. * cpu_online_mask as well. Please see cpuup_callback
  1876. */
  1877. if (slab_is_available()) {
  1878. get_online_cpus();
  1879. mutex_lock(&cache_chain_mutex);
  1880. }
  1881. list_for_each_entry(pc, &cache_chain, next) {
  1882. char tmp;
  1883. int res;
  1884. /*
  1885. * This happens when the module gets unloaded and doesn't
  1886. * destroy its slab cache and no-one else reuses the vmalloc
  1887. * area of the module. Print a warning.
  1888. */
  1889. res = probe_kernel_address(pc->name, tmp);
  1890. if (res) {
  1891. printk(KERN_ERR
  1892. "SLAB: cache with size %d has lost its name\n",
  1893. pc->buffer_size);
  1894. continue;
  1895. }
  1896. if (!strcmp(pc->name, name)) {
  1897. printk(KERN_ERR
  1898. "kmem_cache_create: duplicate cache %s\n", name);
  1899. dump_stack();
  1900. goto oops;
  1901. }
  1902. }
  1903. #if DEBUG
  1904. WARN_ON(strchr(name, ' ')); /* It confuses parsers */
  1905. #if FORCED_DEBUG
  1906. /*
  1907. * Enable redzoning and last user accounting, except for caches with
  1908. * large objects, if the increased size would increase the object size
  1909. * above the next power of two: caches with object sizes just above a
  1910. * power of two have a significant amount of internal fragmentation.
  1911. */
  1912. if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
  1913. 2 * sizeof(unsigned long long)))
  1914. flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
  1915. if (!(flags & SLAB_DESTROY_BY_RCU))
  1916. flags |= SLAB_POISON;
  1917. #endif
  1918. if (flags & SLAB_DESTROY_BY_RCU)
  1919. BUG_ON(flags & SLAB_POISON);
  1920. #endif
  1921. /*
  1922. * Always checks flags, a caller might be expecting debug support which
  1923. * isn't available.
  1924. */
  1925. BUG_ON(flags & ~CREATE_MASK);
  1926. /*
  1927. * Check that size is in terms of words. This is needed to avoid
  1928. * unaligned accesses for some archs when redzoning is used, and makes
  1929. * sure any on-slab bufctl's are also correctly aligned.
  1930. */
  1931. if (size & (BYTES_PER_WORD - 1)) {
  1932. size += (BYTES_PER_WORD - 1);
  1933. size &= ~(BYTES_PER_WORD - 1);
  1934. }
  1935. /* calculate the final buffer alignment: */
  1936. /* 1) arch recommendation: can be overridden for debug */
  1937. if (flags & SLAB_HWCACHE_ALIGN) {
  1938. /*
  1939. * Default alignment: as specified by the arch code. Except if
  1940. * an object is really small, then squeeze multiple objects into
  1941. * one cacheline.
  1942. */
  1943. ralign = cache_line_size();
  1944. while (size <= ralign / 2)
  1945. ralign /= 2;
  1946. } else {
  1947. ralign = BYTES_PER_WORD;
  1948. }
  1949. /*
  1950. * Redzoning and user store require word alignment or possibly larger.
  1951. * Note this will be overridden by architecture or caller mandated
  1952. * alignment if either is greater than BYTES_PER_WORD.
  1953. */
  1954. if (flags & SLAB_STORE_USER)
  1955. ralign = BYTES_PER_WORD;
  1956. if (flags & SLAB_RED_ZONE) {
  1957. ralign = REDZONE_ALIGN;
  1958. /* If redzoning, ensure that the second redzone is suitably
  1959. * aligned, by adjusting the object size accordingly. */
  1960. size += REDZONE_ALIGN - 1;
  1961. size &= ~(REDZONE_ALIGN - 1);
  1962. }
  1963. /* 2) arch mandated alignment */
  1964. if (ralign < ARCH_SLAB_MINALIGN) {
  1965. ralign = ARCH_SLAB_MINALIGN;
  1966. }
  1967. /* 3) caller mandated alignment */
  1968. if (ralign < align) {
  1969. ralign = align;
  1970. }
  1971. /* disable debug if necessary */
  1972. if (ralign > __alignof__(unsigned long long))
  1973. flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
  1974. /*
  1975. * 4) Store it.
  1976. */
  1977. align = ralign;
  1978. if (slab_is_available())
  1979. gfp = GFP_KERNEL;
  1980. else
  1981. gfp = GFP_NOWAIT;
  1982. /* Get cache's description obj. */
  1983. cachep = kmem_cache_zalloc(&cache_cache, gfp);
  1984. if (!cachep)
  1985. goto oops;
  1986. #if DEBUG
  1987. cachep->obj_size = size;
  1988. /*
  1989. * Both debugging options require word-alignment which is calculated
  1990. * into align above.
  1991. */
  1992. if (flags & SLAB_RED_ZONE) {
  1993. /* add space for red zone words */
  1994. cachep->obj_offset += sizeof(unsigned long long);
  1995. size += 2 * sizeof(unsigned long long);
  1996. }
  1997. if (flags & SLAB_STORE_USER) {
  1998. /* user store requires one word storage behind the end of
  1999. * the real object. But if the second red zone needs to be
  2000. * aligned to 64 bits, we must allow that much space.
  2001. */
  2002. if (flags & SLAB_RED_ZONE)
  2003. size += REDZONE_ALIGN;
  2004. else
  2005. size += BYTES_PER_WORD;
  2006. }
  2007. #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
  2008. if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
  2009. && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
  2010. cachep->obj_offset += PAGE_SIZE - size;
  2011. size = PAGE_SIZE;
  2012. }
  2013. #endif
  2014. #endif
  2015. /*
  2016. * Determine if the slab management is 'on' or 'off' slab.
  2017. * (bootstrapping cannot cope with offslab caches so don't do
  2018. * it too early on.)
  2019. */
  2020. if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
  2021. /*
  2022. * Size is large, assume best to place the slab management obj
  2023. * off-slab (should allow better packing of objs).
  2024. */
  2025. flags |= CFLGS_OFF_SLAB;
  2026. size = ALIGN(size, align);
  2027. left_over = calculate_slab_order(cachep, size, align, flags);
  2028. if (!cachep->num) {
  2029. printk(KERN_ERR
  2030. "kmem_cache_create: couldn't create cache %s.\n", name);
  2031. kmem_cache_free(&cache_cache, cachep);
  2032. cachep = NULL;
  2033. goto oops;
  2034. }
  2035. slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
  2036. + sizeof(struct slab), align);
  2037. /*
  2038. * If the slab has been placed off-slab, and we have enough space then
  2039. * move it on-slab. This is at the expense of any extra colouring.
  2040. */
  2041. if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
  2042. flags &= ~CFLGS_OFF_SLAB;
  2043. left_over -= slab_size;
  2044. }
  2045. if (flags & CFLGS_OFF_SLAB) {
  2046. /* really off slab. No need for manual alignment */
  2047. slab_size =
  2048. cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
  2049. #ifdef CONFIG_PAGE_POISONING
  2050. /* If we're going to use the generic kernel_map_pages()
  2051. * poisoning, then it's going to smash the contents of
  2052. * the redzone and userword anyhow, so switch them off.
  2053. */
  2054. if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
  2055. flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
  2056. #endif
  2057. }
  2058. cachep->colour_off = cache_line_size();
  2059. /* Offset must be a multiple of the alignment. */
  2060. if (cachep->colour_off < align)
  2061. cachep->colour_off = align;
  2062. cachep->colour = left_over / cachep->colour_off;
  2063. cachep->slab_size = slab_size;
  2064. cachep->flags = flags;
  2065. cachep->gfpflags = 0;
  2066. if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
  2067. cachep->gfpflags |= GFP_DMA;
  2068. cachep->buffer_size = size;
  2069. cachep->reciprocal_buffer_size = reciprocal_value(size);
  2070. if (flags & CFLGS_OFF_SLAB) {
  2071. cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
  2072. /*
  2073. * This is a possibility for one of the malloc_sizes caches.
  2074. * But since we go off slab only for object size greater than
  2075. * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
  2076. * this should not happen at all.
  2077. * But leave a BUG_ON for some lucky dude.
  2078. */
  2079. BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
  2080. }
  2081. cachep->ctor = ctor;
  2082. cachep->name = name;
  2083. if (setup_cpu_cache(cachep, gfp)) {
  2084. __kmem_cache_destroy(cachep);
  2085. cachep = NULL;
  2086. goto oops;
  2087. }
  2088. /* cache setup completed, link it into the list */
  2089. list_add(&cachep->next, &cache_chain);
  2090. oops:
  2091. if (!cachep && (flags & SLAB_PANIC))
  2092. panic("kmem_cache_create(): failed to create slab `%s'\n",
  2093. name);
  2094. if (slab_is_available()) {
  2095. mutex_unlock(&cache_chain_mutex);
  2096. put_online_cpus();
  2097. }
  2098. return cachep;
  2099. }
  2100. EXPORT_SYMBOL(kmem_cache_create);
  2101. #if DEBUG
  2102. static void check_irq_off(void)
  2103. {
  2104. BUG_ON(!irqs_disabled());
  2105. }
  2106. static void check_irq_on(void)
  2107. {
  2108. BUG_ON(irqs_disabled());
  2109. }
  2110. static void check_spinlock_acquired(struct kmem_cache *cachep)
  2111. {
  2112. #ifdef CONFIG_SMP
  2113. check_irq_off();
  2114. assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
  2115. #endif
  2116. }
  2117. static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
  2118. {
  2119. #ifdef CONFIG_SMP
  2120. check_irq_off();
  2121. assert_spin_locked(&cachep->nodelists[node]->list_lock);
  2122. #endif
  2123. }
  2124. #else
  2125. #define check_irq_off() do { } while(0)
  2126. #define check_irq_on() do { } while(0)
  2127. #define check_spinlock_acquired(x) do { } while(0)
  2128. #define check_spinlock_acquired_node(x, y) do { } while(0)
  2129. #endif
  2130. static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
  2131. struct array_cache *ac,
  2132. int force, int node);
  2133. static void do_drain(void *arg)
  2134. {
  2135. struct kmem_cache *cachep = arg;
  2136. struct array_cache *ac;
  2137. int node = numa_node_id();
  2138. check_irq_off();
  2139. ac = cpu_cache_get(cachep);
  2140. spin_lock(&cachep->nodelists[node]->list_lock);
  2141. free_block(cachep, ac->entry, ac->avail, node);
  2142. spin_unlock(&cachep->nodelists[node]->list_lock);
  2143. ac->avail = 0;
  2144. }
  2145. static void drain_cpu_caches(struct kmem_cache *cachep)
  2146. {
  2147. struct kmem_list3 *l3;
  2148. int node;
  2149. on_each_cpu(do_drain, cachep, 1);
  2150. check_irq_on();
  2151. for_each_online_node(node) {
  2152. l3 = cachep->nodelists[node];
  2153. if (l3 && l3->alien)
  2154. drain_alien_cache(cachep, l3->alien);
  2155. }
  2156. for_each_online_node(node) {
  2157. l3 = cachep->nodelists[node];
  2158. if (l3)
  2159. drain_array(cachep, l3, l3->shared, 1, node);
  2160. }
  2161. }
  2162. /*
  2163. * Remove slabs from the list of free slabs.
  2164. * Specify the number of slabs to drain in tofree.
  2165. *
  2166. * Returns the actual number of slabs released.
  2167. */
  2168. static int drain_freelist(struct kmem_cache *cache,
  2169. struct kmem_list3 *l3, int tofree)
  2170. {
  2171. struct list_head *p;
  2172. int nr_freed;
  2173. struct slab *slabp;
  2174. nr_freed = 0;
  2175. while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
  2176. spin_lock_irq(&l3->list_lock);
  2177. p = l3->slabs_free.prev;
  2178. if (p == &l3->slabs_free) {
  2179. spin_unlock_irq(&l3->list_lock);
  2180. goto out;
  2181. }
  2182. slabp = list_entry(p, struct slab, list);
  2183. #if DEBUG
  2184. BUG_ON(slabp->inuse);
  2185. #endif
  2186. list_del(&slabp->list);
  2187. /*
  2188. * Safe to drop the lock. The slab is no longer linked
  2189. * to the cache.
  2190. */
  2191. l3->free_objects -= cache->num;
  2192. spin_unlock_irq(&l3->list_lock);
  2193. slab_destroy(cache, slabp);
  2194. nr_freed++;
  2195. }
  2196. out:
  2197. return nr_freed;
  2198. }
  2199. /* Called with cache_chain_mutex held to protect against cpu hotplug */
  2200. static int __cache_shrink(struct kmem_cache *cachep)
  2201. {
  2202. int ret = 0, i = 0;
  2203. struct kmem_list3 *l3;
  2204. drain_cpu_caches(cachep);
  2205. check_irq_on();
  2206. for_each_online_node(i) {
  2207. l3 = cachep->nodelists[i];
  2208. if (!l3)
  2209. continue;
  2210. drain_freelist(cachep, l3, l3->free_objects);
  2211. ret += !list_empty(&l3->slabs_full) ||
  2212. !list_empty(&l3->slabs_partial);
  2213. }
  2214. return (ret ? 1 : 0);
  2215. }
  2216. /**
  2217. * kmem_cache_shrink - Shrink a cache.
  2218. * @cachep: The cache to shrink.
  2219. *
  2220. * Releases as many slabs as possible for a cache.
  2221. * To help debugging, a zero exit status indicates all slabs were released.
  2222. */
  2223. int kmem_cache_shrink(struct kmem_cache *cachep)
  2224. {
  2225. int ret;
  2226. BUG_ON(!cachep || in_interrupt());
  2227. get_online_cpus();
  2228. mutex_lock(&cache_chain_mutex);
  2229. ret = __cache_shrink(cachep);
  2230. mutex_unlock(&cache_chain_mutex);
  2231. put_online_cpus();
  2232. return ret;
  2233. }
  2234. EXPORT_SYMBOL(kmem_cache_shrink);
  2235. /**
  2236. * kmem_cache_destroy - delete a cache
  2237. * @cachep: the cache to destroy
  2238. *
  2239. * Remove a &struct kmem_cache object from the slab cache.
  2240. *
  2241. * It is expected this function will be called by a module when it is
  2242. * unloaded. This will remove the cache completely, and avoid a duplicate
  2243. * cache being allocated each time a module is loaded and unloaded, if the
  2244. * module doesn't have persistent in-kernel storage across loads and unloads.
  2245. *
  2246. * The cache must be empty before calling this function.
  2247. *
  2248. * The caller must guarantee that noone will allocate memory from the cache
  2249. * during the kmem_cache_destroy().
  2250. */
  2251. void kmem_cache_destroy(struct kmem_cache *cachep)
  2252. {
  2253. BUG_ON(!cachep || in_interrupt());
  2254. /* Find the cache in the chain of caches. */
  2255. get_online_cpus();
  2256. mutex_lock(&cache_chain_mutex);
  2257. /*
  2258. * the chain is never empty, cache_cache is never destroyed
  2259. */
  2260. list_del(&cachep->next);
  2261. if (__cache_shrink(cachep)) {
  2262. slab_error(cachep, "Can't free all objects");
  2263. list_add(&cachep->next, &cache_chain);
  2264. mutex_unlock(&cache_chain_mutex);
  2265. put_online_cpus();
  2266. return;
  2267. }
  2268. if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
  2269. synchronize_rcu();
  2270. __kmem_cache_destroy(cachep);
  2271. mutex_unlock(&cache_chain_mutex);
  2272. put_online_cpus();
  2273. }
  2274. EXPORT_SYMBOL(kmem_cache_destroy);
  2275. /*
  2276. * Get the memory for a slab management obj.
  2277. * For a slab cache when the slab descriptor is off-slab, slab descriptors
  2278. * always come from malloc_sizes caches. The slab descriptor cannot
  2279. * come from the same cache which is getting created because,
  2280. * when we are searching for an appropriate cache for these
  2281. * descriptors in kmem_cache_create, we search through the malloc_sizes array.
  2282. * If we are creating a malloc_sizes cache here it would not be visible to
  2283. * kmem_find_general_cachep till the initialization is complete.
  2284. * Hence we cannot have slabp_cache same as the original cache.
  2285. */
  2286. static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
  2287. int colour_off, gfp_t local_flags,
  2288. int nodeid)
  2289. {
  2290. struct slab *slabp;
  2291. if (OFF_SLAB(cachep)) {
  2292. /* Slab management obj is off-slab. */
  2293. slabp = kmem_cache_alloc_node(cachep->slabp_cache,
  2294. local_flags, nodeid);
  2295. /*
  2296. * If the first object in the slab is leaked (it's allocated
  2297. * but no one has a reference to it), we want to make sure
  2298. * kmemleak does not treat the ->s_mem pointer as a reference
  2299. * to the object. Otherwise we will not report the leak.
  2300. */
  2301. kmemleak_scan_area(slabp, offsetof(struct slab, list),
  2302. sizeof(struct list_head), local_flags);
  2303. if (!slabp)
  2304. return NULL;
  2305. } else {
  2306. slabp = objp + colour_off;
  2307. colour_off += cachep->slab_size;
  2308. }
  2309. slabp->inuse = 0;
  2310. slabp->colouroff = colour_off;
  2311. slabp->s_mem = objp + colour_off;
  2312. slabp->nodeid = nodeid;
  2313. slabp->free = 0;
  2314. return slabp;
  2315. }
  2316. static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
  2317. {
  2318. return (kmem_bufctl_t *) (slabp + 1);
  2319. }
  2320. static void cache_init_objs(struct kmem_cache *cachep,
  2321. struct slab *slabp)
  2322. {
  2323. int i;
  2324. for (i = 0; i < cachep->num; i++) {
  2325. void *objp = index_to_obj(cachep, slabp, i);
  2326. #if DEBUG
  2327. /* need to poison the objs? */
  2328. if (cachep->flags & SLAB_POISON)
  2329. poison_obj(cachep, objp, POISON_FREE);
  2330. if (cachep->flags & SLAB_STORE_USER)
  2331. *dbg_userword(cachep, objp) = NULL;
  2332. if (cachep->flags & SLAB_RED_ZONE) {
  2333. *dbg_redzone1(cachep, objp) = RED_INACTIVE;
  2334. *dbg_redzone2(cachep, objp) = RED_INACTIVE;
  2335. }
  2336. /*
  2337. * Constructors are not allowed to allocate memory from the same
  2338. * cache which they are a constructor for. Otherwise, deadlock.
  2339. * They must also be threaded.
  2340. */
  2341. if (cachep->ctor && !(cachep->flags & SLAB_POISON))
  2342. cachep->ctor(objp + obj_offset(cachep));
  2343. if (cachep->flags & SLAB_RED_ZONE) {
  2344. if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
  2345. slab_error(cachep, "constructor overwrote the"
  2346. " end of an object");
  2347. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
  2348. slab_error(cachep, "constructor overwrote the"
  2349. " start of an object");
  2350. }
  2351. if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
  2352. OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
  2353. kernel_map_pages(virt_to_page(objp),
  2354. cachep->buffer_size / PAGE_SIZE, 0);
  2355. #else
  2356. if (cachep->ctor)
  2357. cachep->ctor(objp);
  2358. #endif
  2359. slab_bufctl(slabp)[i] = i + 1;
  2360. }
  2361. slab_bufctl(slabp)[i - 1] = BUFCTL_END;
  2362. }
  2363. static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
  2364. {
  2365. if (CONFIG_ZONE_DMA_FLAG) {
  2366. if (flags & GFP_DMA)
  2367. BUG_ON(!(cachep->gfpflags & GFP_DMA));
  2368. else
  2369. BUG_ON(cachep->gfpflags & GFP_DMA);
  2370. }
  2371. }
  2372. static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
  2373. int nodeid)
  2374. {
  2375. void *objp = index_to_obj(cachep, slabp, slabp->free);
  2376. kmem_bufctl_t next;
  2377. slabp->inuse++;
  2378. next = slab_bufctl(slabp)[slabp->free];
  2379. #if DEBUG
  2380. slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
  2381. WARN_ON(slabp->nodeid != nodeid);
  2382. #endif
  2383. slabp->free = next;
  2384. return objp;
  2385. }
  2386. static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
  2387. void *objp, int nodeid)
  2388. {
  2389. unsigned int objnr = obj_to_index(cachep, slabp, objp);
  2390. #if DEBUG
  2391. /* Verify that the slab belongs to the intended node */
  2392. WARN_ON(slabp->nodeid != nodeid);
  2393. if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
  2394. printk(KERN_ERR "slab: double free detected in cache "
  2395. "'%s', objp %p\n", cachep->name, objp);
  2396. BUG();
  2397. }
  2398. #endif
  2399. slab_bufctl(slabp)[objnr] = slabp->free;
  2400. slabp->free = objnr;
  2401. slabp->inuse--;
  2402. }
  2403. /*
  2404. * Map pages beginning at addr to the given cache and slab. This is required
  2405. * for the slab allocator to be able to lookup the cache and slab of a
  2406. * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
  2407. */
  2408. static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
  2409. void *addr)
  2410. {
  2411. int nr_pages;
  2412. struct page *page;
  2413. page = virt_to_page(addr);
  2414. nr_pages = 1;
  2415. if (likely(!PageCompound(page)))
  2416. nr_pages <<= cache->gfporder;
  2417. do {
  2418. page_set_cache(page, cache);
  2419. page_set_slab(page, slab);
  2420. page++;
  2421. } while (--nr_pages);
  2422. }
  2423. /*
  2424. * Grow (by 1) the number of slabs within a cache. This is called by
  2425. * kmem_cache_alloc() when there are no active objs left in a cache.
  2426. */
  2427. static int cache_grow(struct kmem_cache *cachep,
  2428. gfp_t flags, int nodeid, void *objp)
  2429. {
  2430. struct slab *slabp;
  2431. size_t offset;
  2432. gfp_t local_flags;
  2433. struct kmem_list3 *l3;
  2434. /*
  2435. * Be lazy and only check for valid flags here, keeping it out of the
  2436. * critical path in kmem_cache_alloc().
  2437. */
  2438. BUG_ON(flags & GFP_SLAB_BUG_MASK);
  2439. local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
  2440. /* Take the l3 list lock to change the colour_next on this node */
  2441. check_irq_off();
  2442. l3 = cachep->nodelists[nodeid];
  2443. spin_lock(&l3->list_lock);
  2444. /* Get colour for the slab, and cal the next value. */
  2445. offset = l3->colour_next;
  2446. l3->colour_next++;
  2447. if (l3->colour_next >= cachep->colour)
  2448. l3->colour_next = 0;
  2449. spin_unlock(&l3->list_lock);
  2450. offset *= cachep->colour_off;
  2451. if (local_flags & __GFP_WAIT)
  2452. local_irq_enable();
  2453. /*
  2454. * The test for missing atomic flag is performed here, rather than
  2455. * the more obvious place, simply to reduce the critical path length
  2456. * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
  2457. * will eventually be caught here (where it matters).
  2458. */
  2459. kmem_flagcheck(cachep, flags);
  2460. /*
  2461. * Get mem for the objs. Attempt to allocate a physical page from
  2462. * 'nodeid'.
  2463. */
  2464. if (!objp)
  2465. objp = kmem_getpages(cachep, local_flags, nodeid);
  2466. if (!objp)
  2467. goto failed;
  2468. /* Get slab management. */
  2469. slabp = alloc_slabmgmt(cachep, objp, offset,
  2470. local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
  2471. if (!slabp)
  2472. goto opps1;
  2473. slab_map_pages(cachep, slabp, objp);
  2474. cache_init_objs(cachep, slabp);
  2475. if (local_flags & __GFP_WAIT)
  2476. local_irq_disable();
  2477. check_irq_off();
  2478. spin_lock(&l3->list_lock);
  2479. /* Make slab active. */
  2480. list_add_tail(&slabp->list, &(l3->slabs_free));
  2481. STATS_INC_GROWN(cachep);
  2482. l3->free_objects += cachep->num;
  2483. spin_unlock(&l3->list_lock);
  2484. return 1;
  2485. opps1:
  2486. kmem_freepages(cachep, objp);
  2487. failed:
  2488. if (local_flags & __GFP_WAIT)
  2489. local_irq_disable();
  2490. return 0;
  2491. }
  2492. #if DEBUG
  2493. /*
  2494. * Perform extra freeing checks:
  2495. * - detect bad pointers.
  2496. * - POISON/RED_ZONE checking
  2497. */
  2498. static void kfree_debugcheck(const void *objp)
  2499. {
  2500. if (!virt_addr_valid(objp)) {
  2501. printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
  2502. (unsigned long)objp);
  2503. BUG();
  2504. }
  2505. }
  2506. static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
  2507. {
  2508. unsigned long long redzone1, redzone2;
  2509. redzone1 = *dbg_redzone1(cache, obj);
  2510. redzone2 = *dbg_redzone2(cache, obj);
  2511. /*
  2512. * Redzone is ok.
  2513. */
  2514. if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
  2515. return;
  2516. if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
  2517. slab_error(cache, "double free detected");
  2518. else
  2519. slab_error(cache, "memory outside object was overwritten");
  2520. printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
  2521. obj, redzone1, redzone2);
  2522. }
  2523. static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
  2524. void *caller)
  2525. {
  2526. struct page *page;
  2527. unsigned int objnr;
  2528. struct slab *slabp;
  2529. BUG_ON(virt_to_cache(objp) != cachep);
  2530. objp -= obj_offset(cachep);
  2531. kfree_debugcheck(objp);
  2532. page = virt_to_head_page(objp);
  2533. slabp = page_get_slab(page);
  2534. if (cachep->flags & SLAB_RED_ZONE) {
  2535. verify_redzone_free(cachep, objp);
  2536. *dbg_redzone1(cachep, objp) = RED_INACTIVE;
  2537. *dbg_redzone2(cachep, objp) = RED_INACTIVE;
  2538. }
  2539. if (cachep->flags & SLAB_STORE_USER)
  2540. *dbg_userword(cachep, objp) = caller;
  2541. objnr = obj_to_index(cachep, slabp, objp);
  2542. BUG_ON(objnr >= cachep->num);
  2543. BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
  2544. #ifdef CONFIG_DEBUG_SLAB_LEAK
  2545. slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
  2546. #endif
  2547. if (cachep->flags & SLAB_POISON) {
  2548. #ifdef CONFIG_DEBUG_PAGEALLOC
  2549. if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
  2550. store_stackinfo(cachep, objp, (unsigned long)caller);
  2551. kernel_map_pages(virt_to_page(objp),
  2552. cachep->buffer_size / PAGE_SIZE, 0);
  2553. } else {
  2554. poison_obj(cachep, objp, POISON_FREE);
  2555. }
  2556. #else
  2557. poison_obj(cachep, objp, POISON_FREE);
  2558. #endif
  2559. }
  2560. return objp;
  2561. }
  2562. static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
  2563. {
  2564. kmem_bufctl_t i;
  2565. int entries = 0;
  2566. /* Check slab's freelist to see if this obj is there. */
  2567. for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
  2568. entries++;
  2569. if (entries > cachep->num || i >= cachep->num)
  2570. goto bad;
  2571. }
  2572. if (entries != cachep->num - slabp->inuse) {
  2573. bad:
  2574. printk(KERN_ERR "slab: Internal list corruption detected in "
  2575. "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
  2576. cachep->name, cachep->num, slabp, slabp->inuse);
  2577. for (i = 0;
  2578. i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
  2579. i++) {
  2580. if (i % 16 == 0)
  2581. printk("\n%03x:", i);
  2582. printk(" %02x", ((unsigned char *)slabp)[i]);
  2583. }
  2584. printk("\n");
  2585. BUG();
  2586. }
  2587. }
  2588. #else
  2589. #define kfree_debugcheck(x) do { } while(0)
  2590. #define cache_free_debugcheck(x,objp,z) (objp)
  2591. #define check_slabp(x,y) do { } while(0)
  2592. #endif
  2593. static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
  2594. {
  2595. int batchcount;
  2596. struct kmem_list3 *l3;
  2597. struct array_cache *ac;
  2598. int node;
  2599. retry:
  2600. check_irq_off();
  2601. node = numa_node_id();
  2602. ac = cpu_cache_get(cachep);
  2603. batchcount = ac->batchcount;
  2604. if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
  2605. /*
  2606. * If there was little recent activity on this cache, then
  2607. * perform only a partial refill. Otherwise we could generate
  2608. * refill bouncing.
  2609. */
  2610. batchcount = BATCHREFILL_LIMIT;
  2611. }
  2612. l3 = cachep->nodelists[node];
  2613. BUG_ON(ac->avail > 0 || !l3);
  2614. spin_lock(&l3->list_lock);
  2615. /* See if we can refill from the shared array */
  2616. if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
  2617. goto alloc_done;
  2618. while (batchcount > 0) {
  2619. struct list_head *entry;
  2620. struct slab *slabp;
  2621. /* Get slab alloc is to come from. */
  2622. entry = l3->slabs_partial.next;
  2623. if (entry == &l3->slabs_partial) {
  2624. l3->free_touched = 1;
  2625. entry = l3->slabs_free.next;
  2626. if (entry == &l3->slabs_free)
  2627. goto must_grow;
  2628. }
  2629. slabp = list_entry(entry, struct slab, list);
  2630. check_slabp(cachep, slabp);
  2631. check_spinlock_acquired(cachep);
  2632. /*
  2633. * The slab was either on partial or free list so
  2634. * there must be at least one object available for
  2635. * allocation.
  2636. */
  2637. BUG_ON(slabp->inuse >= cachep->num);
  2638. while (slabp->inuse < cachep->num && batchcount--) {
  2639. STATS_INC_ALLOCED(cachep);
  2640. STATS_INC_ACTIVE(cachep);
  2641. STATS_SET_HIGH(cachep);
  2642. ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
  2643. node);
  2644. }
  2645. check_slabp(cachep, slabp);
  2646. /* move slabp to correct slabp list: */
  2647. list_del(&slabp->list);
  2648. if (slabp->free == BUFCTL_END)
  2649. list_add(&slabp->list, &l3->slabs_full);
  2650. else
  2651. list_add(&slabp->list, &l3->slabs_partial);
  2652. }
  2653. must_grow:
  2654. l3->free_objects -= ac->avail;
  2655. alloc_done:
  2656. spin_unlock(&l3->list_lock);
  2657. if (unlikely(!ac->avail)) {
  2658. int x;
  2659. x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
  2660. /* cache_grow can reenable interrupts, then ac could change. */
  2661. ac = cpu_cache_get(cachep);
  2662. if (!x && ac->avail == 0) /* no objects in sight? abort */
  2663. return NULL;
  2664. if (!ac->avail) /* objects refilled by interrupt? */
  2665. goto retry;
  2666. }
  2667. ac->touched = 1;
  2668. return ac->entry[--ac->avail];
  2669. }
  2670. static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
  2671. gfp_t flags)
  2672. {
  2673. might_sleep_if(flags & __GFP_WAIT);
  2674. #if DEBUG
  2675. kmem_flagcheck(cachep, flags);
  2676. #endif
  2677. }
  2678. #if DEBUG
  2679. static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
  2680. gfp_t flags, void *objp, void *caller)
  2681. {
  2682. if (!objp)
  2683. return objp;
  2684. if (cachep->flags & SLAB_POISON) {
  2685. #ifdef CONFIG_DEBUG_PAGEALLOC
  2686. if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
  2687. kernel_map_pages(virt_to_page(objp),
  2688. cachep->buffer_size / PAGE_SIZE, 1);
  2689. else
  2690. check_poison_obj(cachep, objp);
  2691. #else
  2692. check_poison_obj(cachep, objp);
  2693. #endif
  2694. poison_obj(cachep, objp, POISON_INUSE);
  2695. }
  2696. if (cachep->flags & SLAB_STORE_USER)
  2697. *dbg_userword(cachep, objp) = caller;
  2698. if (cachep->flags & SLAB_RED_ZONE) {
  2699. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
  2700. *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
  2701. slab_error(cachep, "double free, or memory outside"
  2702. " object was overwritten");
  2703. printk(KERN_ERR
  2704. "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
  2705. objp, *dbg_redzone1(cachep, objp),
  2706. *dbg_redzone2(cachep, objp));
  2707. }
  2708. *dbg_redzone1(cachep, objp) = RED_ACTIVE;
  2709. *dbg_redzone2(cachep, objp) = RED_ACTIVE;
  2710. }
  2711. #ifdef CONFIG_DEBUG_SLAB_LEAK
  2712. {
  2713. struct slab *slabp;
  2714. unsigned objnr;
  2715. slabp = page_get_slab(virt_to_head_page(objp));
  2716. objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
  2717. slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
  2718. }
  2719. #endif
  2720. objp += obj_offset(cachep);
  2721. if (cachep->ctor && cachep->flags & SLAB_POISON)
  2722. cachep->ctor(objp);
  2723. #if ARCH_SLAB_MINALIGN
  2724. if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
  2725. printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
  2726. objp, ARCH_SLAB_MINALIGN);
  2727. }
  2728. #endif
  2729. return objp;
  2730. }
  2731. #else
  2732. #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
  2733. #endif
  2734. static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
  2735. {
  2736. if (cachep == &cache_cache)
  2737. return false;
  2738. return should_failslab(obj_size(cachep), flags);
  2739. }
  2740. static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  2741. {
  2742. void *objp;
  2743. struct array_cache *ac;
  2744. check_irq_off();
  2745. ac = cpu_cache_get(cachep);
  2746. if (likely(ac->avail)) {
  2747. STATS_INC_ALLOCHIT(cachep);
  2748. ac->touched = 1;
  2749. objp = ac->entry[--ac->avail];
  2750. } else {
  2751. STATS_INC_ALLOCMISS(cachep);
  2752. objp = cache_alloc_refill(cachep, flags);
  2753. }
  2754. /*
  2755. * To avoid a false negative, if an object that is in one of the
  2756. * per-CPU caches is leaked, we need to make sure kmemleak doesn't
  2757. * treat the array pointers as a reference to the object.
  2758. */
  2759. kmemleak_erase(&ac->entry[ac->avail]);
  2760. return objp;
  2761. }
  2762. #ifdef CONFIG_NUMA
  2763. /*
  2764. * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
  2765. *
  2766. * If we are in_interrupt, then process context, including cpusets and
  2767. * mempolicy, may not apply and should not be used for allocation policy.
  2768. */
  2769. static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
  2770. {
  2771. int nid_alloc, nid_here;
  2772. if (in_interrupt() || (flags & __GFP_THISNODE))
  2773. return NULL;
  2774. nid_alloc = nid_here = numa_node_id();
  2775. if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
  2776. nid_alloc = cpuset_mem_spread_node();
  2777. else if (current->mempolicy)
  2778. nid_alloc = slab_node(current->mempolicy);
  2779. if (nid_alloc != nid_here)
  2780. return ____cache_alloc_node(cachep, flags, nid_alloc);
  2781. return NULL;
  2782. }
  2783. /*
  2784. * Fallback function if there was no memory available and no objects on a
  2785. * certain node and fall back is permitted. First we scan all the
  2786. * available nodelists for available objects. If that fails then we
  2787. * perform an allocation without specifying a node. This allows the page
  2788. * allocator to do its reclaim / fallback magic. We then insert the
  2789. * slab into the proper nodelist and then allocate from it.
  2790. */
  2791. static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
  2792. {
  2793. struct zonelist *zonelist;
  2794. gfp_t local_flags;
  2795. struct zoneref *z;
  2796. struct zone *zone;
  2797. enum zone_type high_zoneidx = gfp_zone(flags);
  2798. void *obj = NULL;
  2799. int nid;
  2800. if (flags & __GFP_THISNODE)
  2801. return NULL;
  2802. zonelist = node_zonelist(slab_node(current->mempolicy), flags);
  2803. local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
  2804. retry:
  2805. /*
  2806. * Look through allowed nodes for objects available
  2807. * from existing per node queues.
  2808. */
  2809. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  2810. nid = zone_to_nid(zone);
  2811. if (cpuset_zone_allowed_hardwall(zone, flags) &&
  2812. cache->nodelists[nid] &&
  2813. cache->nodelists[nid]->free_objects) {
  2814. obj = ____cache_alloc_node(cache,
  2815. flags | GFP_THISNODE, nid);
  2816. if (obj)
  2817. break;
  2818. }
  2819. }
  2820. if (!obj) {
  2821. /*
  2822. * This allocation will be performed within the constraints
  2823. * of the current cpuset / memory policy requirements.
  2824. * We may trigger various forms of reclaim on the allowed
  2825. * set and go into memory reserves if necessary.
  2826. */
  2827. if (local_flags & __GFP_WAIT)
  2828. local_irq_enable();
  2829. kmem_flagcheck(cache, flags);
  2830. obj = kmem_getpages(cache, local_flags, numa_node_id());
  2831. if (local_flags & __GFP_WAIT)
  2832. local_irq_disable();
  2833. if (obj) {
  2834. /*
  2835. * Insert into the appropriate per node queues
  2836. */
  2837. nid = page_to_nid(virt_to_page(obj));
  2838. if (cache_grow(cache, flags, nid, obj)) {
  2839. obj = ____cache_alloc_node(cache,
  2840. flags | GFP_THISNODE, nid);
  2841. if (!obj)
  2842. /*
  2843. * Another processor may allocate the
  2844. * objects in the slab since we are
  2845. * not holding any locks.
  2846. */
  2847. goto retry;
  2848. } else {
  2849. /* cache_grow already freed obj */
  2850. obj = NULL;
  2851. }
  2852. }
  2853. }
  2854. return obj;
  2855. }
  2856. /*
  2857. * A interface to enable slab creation on nodeid
  2858. */
  2859. static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
  2860. int nodeid)
  2861. {
  2862. struct list_head *entry;
  2863. struct slab *slabp;
  2864. struct kmem_list3 *l3;
  2865. void *obj;
  2866. int x;
  2867. l3 = cachep->nodelists[nodeid];
  2868. BUG_ON(!l3);
  2869. retry:
  2870. check_irq_off();
  2871. spin_lock(&l3->list_lock);
  2872. entry = l3->slabs_partial.next;
  2873. if (entry == &l3->slabs_partial) {
  2874. l3->free_touched = 1;
  2875. entry = l3->slabs_free.next;
  2876. if (entry == &l3->slabs_free)
  2877. goto must_grow;
  2878. }
  2879. slabp = list_entry(entry, struct slab, list);
  2880. check_spinlock_acquired_node(cachep, nodeid);
  2881. check_slabp(cachep, slabp);
  2882. STATS_INC_NODEALLOCS(cachep);
  2883. STATS_INC_ACTIVE(cachep);
  2884. STATS_SET_HIGH(cachep);
  2885. BUG_ON(slabp->inuse == cachep->num);
  2886. obj = slab_get_obj(cachep, slabp, nodeid);
  2887. check_slabp(cachep, slabp);
  2888. l3->free_objects--;
  2889. /* move slabp to correct slabp list: */
  2890. list_del(&slabp->list);
  2891. if (slabp->free == BUFCTL_END)
  2892. list_add(&slabp->list, &l3->slabs_full);
  2893. else
  2894. list_add(&slabp->list, &l3->slabs_partial);
  2895. spin_unlock(&l3->list_lock);
  2896. goto done;
  2897. must_grow:
  2898. spin_unlock(&l3->list_lock);
  2899. x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
  2900. if (x)
  2901. goto retry;
  2902. return fallback_alloc(cachep, flags);
  2903. done:
  2904. return obj;
  2905. }
  2906. /**
  2907. * kmem_cache_alloc_node - Allocate an object on the specified node
  2908. * @cachep: The cache to allocate from.
  2909. * @flags: See kmalloc().
  2910. * @nodeid: node number of the target node.
  2911. * @caller: return address of caller, used for debug information
  2912. *
  2913. * Identical to kmem_cache_alloc but it will allocate memory on the given
  2914. * node, which can improve the performance for cpu bound structures.
  2915. *
  2916. * Fallback to other node is possible if __GFP_THISNODE is not set.
  2917. */
  2918. static __always_inline void *
  2919. __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
  2920. void *caller)
  2921. {
  2922. unsigned long save_flags;
  2923. void *ptr;
  2924. flags &= slab_gfp_mask;
  2925. lockdep_trace_alloc(flags);
  2926. if (slab_should_failslab(cachep, flags))
  2927. return NULL;
  2928. cache_alloc_debugcheck_before(cachep, flags);
  2929. local_irq_save(save_flags);
  2930. if (unlikely(nodeid == -1))
  2931. nodeid = numa_node_id();
  2932. if (unlikely(!cachep->nodelists[nodeid])) {
  2933. /* Node not bootstrapped yet */
  2934. ptr = fallback_alloc(cachep, flags);
  2935. goto out;
  2936. }
  2937. if (nodeid == numa_node_id()) {
  2938. /*
  2939. * Use the locally cached objects if possible.
  2940. * However ____cache_alloc does not allow fallback
  2941. * to other nodes. It may fail while we still have
  2942. * objects on other nodes available.
  2943. */
  2944. ptr = ____cache_alloc(cachep, flags);
  2945. if (ptr)
  2946. goto out;
  2947. }
  2948. /* ___cache_alloc_node can fall back to other nodes */
  2949. ptr = ____cache_alloc_node(cachep, flags, nodeid);
  2950. out:
  2951. local_irq_restore(save_flags);
  2952. ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
  2953. kmemleak_alloc_recursive(ptr, obj_size(cachep), 1, cachep->flags,
  2954. flags);
  2955. if (likely(ptr))
  2956. kmemcheck_slab_alloc(cachep, flags, ptr, obj_size(cachep));
  2957. if (unlikely((flags & __GFP_ZERO) && ptr))
  2958. memset(ptr, 0, obj_size(cachep));
  2959. return ptr;
  2960. }
  2961. static __always_inline void *
  2962. __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
  2963. {
  2964. void *objp;
  2965. if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
  2966. objp = alternate_node_alloc(cache, flags);
  2967. if (objp)
  2968. goto out;
  2969. }
  2970. objp = ____cache_alloc(cache, flags);
  2971. /*
  2972. * We may just have run out of memory on the local node.
  2973. * ____cache_alloc_node() knows how to locate memory on other nodes
  2974. */
  2975. if (!objp)
  2976. objp = ____cache_alloc_node(cache, flags, numa_node_id());
  2977. out:
  2978. return objp;
  2979. }
  2980. #else
  2981. static __always_inline void *
  2982. __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  2983. {
  2984. return ____cache_alloc(cachep, flags);
  2985. }
  2986. #endif /* CONFIG_NUMA */
  2987. static __always_inline void *
  2988. __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
  2989. {
  2990. unsigned long save_flags;
  2991. void *objp;
  2992. flags &= slab_gfp_mask;
  2993. lockdep_trace_alloc(flags);
  2994. if (slab_should_failslab(cachep, flags))
  2995. return NULL;
  2996. cache_alloc_debugcheck_before(cachep, flags);
  2997. local_irq_save(save_flags);
  2998. objp = __do_cache_alloc(cachep, flags);
  2999. local_irq_restore(save_flags);
  3000. objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
  3001. kmemleak_alloc_recursive(objp, obj_size(cachep), 1, cachep->flags,
  3002. flags);
  3003. prefetchw(objp);
  3004. if (likely(objp))
  3005. kmemcheck_slab_alloc(cachep, flags, objp, obj_size(cachep));
  3006. if (unlikely((flags & __GFP_ZERO) && objp))
  3007. memset(objp, 0, obj_size(cachep));
  3008. return objp;
  3009. }
  3010. /*
  3011. * Caller needs to acquire correct kmem_list's list_lock
  3012. */
  3013. static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
  3014. int node)
  3015. {
  3016. int i;
  3017. struct kmem_list3 *l3;
  3018. for (i = 0; i < nr_objects; i++) {
  3019. void *objp = objpp[i];
  3020. struct slab *slabp;
  3021. slabp = virt_to_slab(objp);
  3022. l3 = cachep->nodelists[node];
  3023. list_del(&slabp->list);
  3024. check_spinlock_acquired_node(cachep, node);
  3025. check_slabp(cachep, slabp);
  3026. slab_put_obj(cachep, slabp, objp, node);
  3027. STATS_DEC_ACTIVE(cachep);
  3028. l3->free_objects++;
  3029. check_slabp(cachep, slabp);
  3030. /* fixup slab chains */
  3031. if (slabp->inuse == 0) {
  3032. if (l3->free_objects > l3->free_limit) {
  3033. l3->free_objects -= cachep->num;
  3034. /* No need to drop any previously held
  3035. * lock here, even if we have a off-slab slab
  3036. * descriptor it is guaranteed to come from
  3037. * a different cache, refer to comments before
  3038. * alloc_slabmgmt.
  3039. */
  3040. slab_destroy(cachep, slabp);
  3041. } else {
  3042. list_add(&slabp->list, &l3->slabs_free);
  3043. }
  3044. } else {
  3045. /* Unconditionally move a slab to the end of the
  3046. * partial list on free - maximum time for the
  3047. * other objects to be freed, too.
  3048. */
  3049. list_add_tail(&slabp->list, &l3->slabs_partial);
  3050. }
  3051. }
  3052. }
  3053. static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
  3054. {
  3055. int batchcount;
  3056. struct kmem_list3 *l3;
  3057. int node = numa_node_id();
  3058. batchcount = ac->batchcount;
  3059. #if DEBUG
  3060. BUG_ON(!batchcount || batchcount > ac->avail);
  3061. #endif
  3062. check_irq_off();
  3063. l3 = cachep->nodelists[node];
  3064. spin_lock(&l3->list_lock);
  3065. if (l3->shared) {
  3066. struct array_cache *shared_array = l3->shared;
  3067. int max = shared_array->limit - shared_array->avail;
  3068. if (max) {
  3069. if (batchcount > max)
  3070. batchcount = max;
  3071. memcpy(&(shared_array->entry[shared_array->avail]),
  3072. ac->entry, sizeof(void *) * batchcount);
  3073. shared_array->avail += batchcount;
  3074. goto free_done;
  3075. }
  3076. }
  3077. free_block(cachep, ac->entry, batchcount, node);
  3078. free_done:
  3079. #if STATS
  3080. {
  3081. int i = 0;
  3082. struct list_head *p;
  3083. p = l3->slabs_free.next;
  3084. while (p != &(l3->slabs_free)) {
  3085. struct slab *slabp;
  3086. slabp = list_entry(p, struct slab, list);
  3087. BUG_ON(slabp->inuse);
  3088. i++;
  3089. p = p->next;
  3090. }
  3091. STATS_SET_FREEABLE(cachep, i);
  3092. }
  3093. #endif
  3094. spin_unlock(&l3->list_lock);
  3095. ac->avail -= batchcount;
  3096. memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
  3097. }
  3098. /*
  3099. * Release an obj back to its cache. If the obj has a constructed state, it must
  3100. * be in this state _before_ it is released. Called with disabled ints.
  3101. */
  3102. static inline void __cache_free(struct kmem_cache *cachep, void *objp)
  3103. {
  3104. struct array_cache *ac = cpu_cache_get(cachep);
  3105. check_irq_off();
  3106. kmemleak_free_recursive(objp, cachep->flags);
  3107. objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
  3108. kmemcheck_slab_free(cachep, objp, obj_size(cachep));
  3109. /*
  3110. * Skip calling cache_free_alien() when the platform is not numa.
  3111. * This will avoid cache misses that happen while accessing slabp (which
  3112. * is per page memory reference) to get nodeid. Instead use a global
  3113. * variable to skip the call, which is mostly likely to be present in
  3114. * the cache.
  3115. */
  3116. if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
  3117. return;
  3118. if (likely(ac->avail < ac->limit)) {
  3119. STATS_INC_FREEHIT(cachep);
  3120. ac->entry[ac->avail++] = objp;
  3121. return;
  3122. } else {
  3123. STATS_INC_FREEMISS(cachep);
  3124. cache_flusharray(cachep, ac);
  3125. ac->entry[ac->avail++] = objp;
  3126. }
  3127. }
  3128. /**
  3129. * kmem_cache_alloc - Allocate an object
  3130. * @cachep: The cache to allocate from.
  3131. * @flags: See kmalloc().
  3132. *
  3133. * Allocate an object from this cache. The flags are only relevant
  3134. * if the cache has no available objects.
  3135. */
  3136. void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  3137. {
  3138. void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
  3139. trace_kmem_cache_alloc(_RET_IP_, ret,
  3140. obj_size(cachep), cachep->buffer_size, flags);
  3141. return ret;
  3142. }
  3143. EXPORT_SYMBOL(kmem_cache_alloc);
  3144. #ifdef CONFIG_KMEMTRACE
  3145. void *kmem_cache_alloc_notrace(struct kmem_cache *cachep, gfp_t flags)
  3146. {
  3147. return __cache_alloc(cachep, flags, __builtin_return_address(0));
  3148. }
  3149. EXPORT_SYMBOL(kmem_cache_alloc_notrace);
  3150. #endif
  3151. /**
  3152. * kmem_ptr_validate - check if an untrusted pointer might be a slab entry.
  3153. * @cachep: the cache we're checking against
  3154. * @ptr: pointer to validate
  3155. *
  3156. * This verifies that the untrusted pointer looks sane;
  3157. * it is _not_ a guarantee that the pointer is actually
  3158. * part of the slab cache in question, but it at least
  3159. * validates that the pointer can be dereferenced and
  3160. * looks half-way sane.
  3161. *
  3162. * Currently only used for dentry validation.
  3163. */
  3164. int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
  3165. {
  3166. unsigned long addr = (unsigned long)ptr;
  3167. unsigned long min_addr = PAGE_OFFSET;
  3168. unsigned long align_mask = BYTES_PER_WORD - 1;
  3169. unsigned long size = cachep->buffer_size;
  3170. struct page *page;
  3171. if (unlikely(addr < min_addr))
  3172. goto out;
  3173. if (unlikely(addr > (unsigned long)high_memory - size))
  3174. goto out;
  3175. if (unlikely(addr & align_mask))
  3176. goto out;
  3177. if (unlikely(!kern_addr_valid(addr)))
  3178. goto out;
  3179. if (unlikely(!kern_addr_valid(addr + size - 1)))
  3180. goto out;
  3181. page = virt_to_page(ptr);
  3182. if (unlikely(!PageSlab(page)))
  3183. goto out;
  3184. if (unlikely(page_get_cache(page) != cachep))
  3185. goto out;
  3186. return 1;
  3187. out:
  3188. return 0;
  3189. }
  3190. #ifdef CONFIG_NUMA
  3191. void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  3192. {
  3193. void *ret = __cache_alloc_node(cachep, flags, nodeid,
  3194. __builtin_return_address(0));
  3195. trace_kmem_cache_alloc_node(_RET_IP_, ret,
  3196. obj_size(cachep), cachep->buffer_size,
  3197. flags, nodeid);
  3198. return ret;
  3199. }
  3200. EXPORT_SYMBOL(kmem_cache_alloc_node);
  3201. #ifdef CONFIG_KMEMTRACE
  3202. void *kmem_cache_alloc_node_notrace(struct kmem_cache *cachep,
  3203. gfp_t flags,
  3204. int nodeid)
  3205. {
  3206. return __cache_alloc_node(cachep, flags, nodeid,
  3207. __builtin_return_address(0));
  3208. }
  3209. EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
  3210. #endif
  3211. static __always_inline void *
  3212. __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
  3213. {
  3214. struct kmem_cache *cachep;
  3215. void *ret;
  3216. cachep = kmem_find_general_cachep(size, flags);
  3217. if (unlikely(ZERO_OR_NULL_PTR(cachep)))
  3218. return cachep;
  3219. ret = kmem_cache_alloc_node_notrace(cachep, flags, node);
  3220. trace_kmalloc_node((unsigned long) caller, ret,
  3221. size, cachep->buffer_size, flags, node);
  3222. return ret;
  3223. }
  3224. #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_KMEMTRACE)
  3225. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  3226. {
  3227. return __do_kmalloc_node(size, flags, node,
  3228. __builtin_return_address(0));
  3229. }
  3230. EXPORT_SYMBOL(__kmalloc_node);
  3231. void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
  3232. int node, unsigned long caller)
  3233. {
  3234. return __do_kmalloc_node(size, flags, node, (void *)caller);
  3235. }
  3236. EXPORT_SYMBOL(__kmalloc_node_track_caller);
  3237. #else
  3238. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  3239. {
  3240. return __do_kmalloc_node(size, flags, node, NULL);
  3241. }
  3242. EXPORT_SYMBOL(__kmalloc_node);
  3243. #endif /* CONFIG_DEBUG_SLAB */
  3244. #endif /* CONFIG_NUMA */
  3245. /**
  3246. * __do_kmalloc - allocate memory
  3247. * @size: how many bytes of memory are required.
  3248. * @flags: the type of memory to allocate (see kmalloc).
  3249. * @caller: function caller for debug tracking of the caller
  3250. */
  3251. static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
  3252. void *caller)
  3253. {
  3254. struct kmem_cache *cachep;
  3255. void *ret;
  3256. /* If you want to save a few bytes .text space: replace
  3257. * __ with kmem_.
  3258. * Then kmalloc uses the uninlined functions instead of the inline
  3259. * functions.
  3260. */
  3261. cachep = __find_general_cachep(size, flags);
  3262. if (unlikely(ZERO_OR_NULL_PTR(cachep)))
  3263. return cachep;
  3264. ret = __cache_alloc(cachep, flags, caller);
  3265. trace_kmalloc((unsigned long) caller, ret,
  3266. size, cachep->buffer_size, flags);
  3267. return ret;
  3268. }
  3269. #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_KMEMTRACE)
  3270. void *__kmalloc(size_t size, gfp_t flags)
  3271. {
  3272. return __do_kmalloc(size, flags, __builtin_return_address(0));
  3273. }
  3274. EXPORT_SYMBOL(__kmalloc);
  3275. void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
  3276. {
  3277. return __do_kmalloc(size, flags, (void *)caller);
  3278. }
  3279. EXPORT_SYMBOL(__kmalloc_track_caller);
  3280. #else
  3281. void *__kmalloc(size_t size, gfp_t flags)
  3282. {
  3283. return __do_kmalloc(size, flags, NULL);
  3284. }
  3285. EXPORT_SYMBOL(__kmalloc);
  3286. #endif
  3287. /**
  3288. * kmem_cache_free - Deallocate an object
  3289. * @cachep: The cache the allocation was from.
  3290. * @objp: The previously allocated object.
  3291. *
  3292. * Free an object which was previously allocated from this
  3293. * cache.
  3294. */
  3295. void kmem_cache_free(struct kmem_cache *cachep, void *objp)
  3296. {
  3297. unsigned long flags;
  3298. local_irq_save(flags);
  3299. debug_check_no_locks_freed(objp, obj_size(cachep));
  3300. if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
  3301. debug_check_no_obj_freed(objp, obj_size(cachep));
  3302. __cache_free(cachep, objp);
  3303. local_irq_restore(flags);
  3304. trace_kmem_cache_free(_RET_IP_, objp);
  3305. }
  3306. EXPORT_SYMBOL(kmem_cache_free);
  3307. /**
  3308. * kfree - free previously allocated memory
  3309. * @objp: pointer returned by kmalloc.
  3310. *
  3311. * If @objp is NULL, no operation is performed.
  3312. *
  3313. * Don't free memory not originally allocated by kmalloc()
  3314. * or you will run into trouble.
  3315. */
  3316. void kfree(const void *objp)
  3317. {
  3318. struct kmem_cache *c;
  3319. unsigned long flags;
  3320. trace_kfree(_RET_IP_, objp);
  3321. if (unlikely(ZERO_OR_NULL_PTR(objp)))
  3322. return;
  3323. local_irq_save(flags);
  3324. kfree_debugcheck(objp);
  3325. c = virt_to_cache(objp);
  3326. debug_check_no_locks_freed(objp, obj_size(c));
  3327. debug_check_no_obj_freed(objp, obj_size(c));
  3328. __cache_free(c, (void *)objp);
  3329. local_irq_restore(flags);
  3330. }
  3331. EXPORT_SYMBOL(kfree);
  3332. unsigned int kmem_cache_size(struct kmem_cache *cachep)
  3333. {
  3334. return obj_size(cachep);
  3335. }
  3336. EXPORT_SYMBOL(kmem_cache_size);
  3337. const char *kmem_cache_name(struct kmem_cache *cachep)
  3338. {
  3339. return cachep->name;
  3340. }
  3341. EXPORT_SYMBOL_GPL(kmem_cache_name);
  3342. /*
  3343. * This initializes kmem_list3 or resizes various caches for all nodes.
  3344. */
  3345. static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
  3346. {
  3347. int node;
  3348. struct kmem_list3 *l3;
  3349. struct array_cache *new_shared;
  3350. struct array_cache **new_alien = NULL;
  3351. for_each_online_node(node) {
  3352. if (use_alien_caches) {
  3353. new_alien = alloc_alien_cache(node, cachep->limit, gfp);
  3354. if (!new_alien)
  3355. goto fail;
  3356. }
  3357. new_shared = NULL;
  3358. if (cachep->shared) {
  3359. new_shared = alloc_arraycache(node,
  3360. cachep->shared*cachep->batchcount,
  3361. 0xbaadf00d, gfp);
  3362. if (!new_shared) {
  3363. free_alien_cache(new_alien);
  3364. goto fail;
  3365. }
  3366. }
  3367. l3 = cachep->nodelists[node];
  3368. if (l3) {
  3369. struct array_cache *shared = l3->shared;
  3370. spin_lock_irq(&l3->list_lock);
  3371. if (shared)
  3372. free_block(cachep, shared->entry,
  3373. shared->avail, node);
  3374. l3->shared = new_shared;
  3375. if (!l3->alien) {
  3376. l3->alien = new_alien;
  3377. new_alien = NULL;
  3378. }
  3379. l3->free_limit = (1 + nr_cpus_node(node)) *
  3380. cachep->batchcount + cachep->num;
  3381. spin_unlock_irq(&l3->list_lock);
  3382. kfree(shared);
  3383. free_alien_cache(new_alien);
  3384. continue;
  3385. }
  3386. l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
  3387. if (!l3) {
  3388. free_alien_cache(new_alien);
  3389. kfree(new_shared);
  3390. goto fail;
  3391. }
  3392. kmem_list3_init(l3);
  3393. l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
  3394. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  3395. l3->shared = new_shared;
  3396. l3->alien = new_alien;
  3397. l3->free_limit = (1 + nr_cpus_node(node)) *
  3398. cachep->batchcount + cachep->num;
  3399. cachep->nodelists[node] = l3;
  3400. }
  3401. return 0;
  3402. fail:
  3403. if (!cachep->next.next) {
  3404. /* Cache is not active yet. Roll back what we did */
  3405. node--;
  3406. while (node >= 0) {
  3407. if (cachep->nodelists[node]) {
  3408. l3 = cachep->nodelists[node];
  3409. kfree(l3->shared);
  3410. free_alien_cache(l3->alien);
  3411. kfree(l3);
  3412. cachep->nodelists[node] = NULL;
  3413. }
  3414. node--;
  3415. }
  3416. }
  3417. return -ENOMEM;
  3418. }
  3419. struct ccupdate_struct {
  3420. struct kmem_cache *cachep;
  3421. struct array_cache *new[NR_CPUS];
  3422. };
  3423. static void do_ccupdate_local(void *info)
  3424. {
  3425. struct ccupdate_struct *new = info;
  3426. struct array_cache *old;
  3427. check_irq_off();
  3428. old = cpu_cache_get(new->cachep);
  3429. new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
  3430. new->new[smp_processor_id()] = old;
  3431. }
  3432. /* Always called with the cache_chain_mutex held */
  3433. static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
  3434. int batchcount, int shared, gfp_t gfp)
  3435. {
  3436. struct ccupdate_struct *new;
  3437. int i;
  3438. new = kzalloc(sizeof(*new), gfp);
  3439. if (!new)
  3440. return -ENOMEM;
  3441. for_each_online_cpu(i) {
  3442. new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
  3443. batchcount, gfp);
  3444. if (!new->new[i]) {
  3445. for (i--; i >= 0; i--)
  3446. kfree(new->new[i]);
  3447. kfree(new);
  3448. return -ENOMEM;
  3449. }
  3450. }
  3451. new->cachep = cachep;
  3452. on_each_cpu(do_ccupdate_local, (void *)new, 1);
  3453. check_irq_on();
  3454. cachep->batchcount = batchcount;
  3455. cachep->limit = limit;
  3456. cachep->shared = shared;
  3457. for_each_online_cpu(i) {
  3458. struct array_cache *ccold = new->new[i];
  3459. if (!ccold)
  3460. continue;
  3461. spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
  3462. free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
  3463. spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
  3464. kfree(ccold);
  3465. }
  3466. kfree(new);
  3467. return alloc_kmemlist(cachep, gfp);
  3468. }
  3469. /* Called with cache_chain_mutex held always */
  3470. static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
  3471. {
  3472. int err;
  3473. int limit, shared;
  3474. /*
  3475. * The head array serves three purposes:
  3476. * - create a LIFO ordering, i.e. return objects that are cache-warm
  3477. * - reduce the number of spinlock operations.
  3478. * - reduce the number of linked list operations on the slab and
  3479. * bufctl chains: array operations are cheaper.
  3480. * The numbers are guessed, we should auto-tune as described by
  3481. * Bonwick.
  3482. */
  3483. if (cachep->buffer_size > 131072)
  3484. limit = 1;
  3485. else if (cachep->buffer_size > PAGE_SIZE)
  3486. limit = 8;
  3487. else if (cachep->buffer_size > 1024)
  3488. limit = 24;
  3489. else if (cachep->buffer_size > 256)
  3490. limit = 54;
  3491. else
  3492. limit = 120;
  3493. /*
  3494. * CPU bound tasks (e.g. network routing) can exhibit cpu bound
  3495. * allocation behaviour: Most allocs on one cpu, most free operations
  3496. * on another cpu. For these cases, an efficient object passing between
  3497. * cpus is necessary. This is provided by a shared array. The array
  3498. * replaces Bonwick's magazine layer.
  3499. * On uniprocessor, it's functionally equivalent (but less efficient)
  3500. * to a larger limit. Thus disabled by default.
  3501. */
  3502. shared = 0;
  3503. if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
  3504. shared = 8;
  3505. #if DEBUG
  3506. /*
  3507. * With debugging enabled, large batchcount lead to excessively long
  3508. * periods with disabled local interrupts. Limit the batchcount
  3509. */
  3510. if (limit > 32)
  3511. limit = 32;
  3512. #endif
  3513. err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
  3514. if (err)
  3515. printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
  3516. cachep->name, -err);
  3517. return err;
  3518. }
  3519. /*
  3520. * Drain an array if it contains any elements taking the l3 lock only if
  3521. * necessary. Note that the l3 listlock also protects the array_cache
  3522. * if drain_array() is used on the shared array.
  3523. */
  3524. void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
  3525. struct array_cache *ac, int force, int node)
  3526. {
  3527. int tofree;
  3528. if (!ac || !ac->avail)
  3529. return;
  3530. if (ac->touched && !force) {
  3531. ac->touched = 0;
  3532. } else {
  3533. spin_lock_irq(&l3->list_lock);
  3534. if (ac->avail) {
  3535. tofree = force ? ac->avail : (ac->limit + 4) / 5;
  3536. if (tofree > ac->avail)
  3537. tofree = (ac->avail + 1) / 2;
  3538. free_block(cachep, ac->entry, tofree, node);
  3539. ac->avail -= tofree;
  3540. memmove(ac->entry, &(ac->entry[tofree]),
  3541. sizeof(void *) * ac->avail);
  3542. }
  3543. spin_unlock_irq(&l3->list_lock);
  3544. }
  3545. }
  3546. /**
  3547. * cache_reap - Reclaim memory from caches.
  3548. * @w: work descriptor
  3549. *
  3550. * Called from workqueue/eventd every few seconds.
  3551. * Purpose:
  3552. * - clear the per-cpu caches for this CPU.
  3553. * - return freeable pages to the main free memory pool.
  3554. *
  3555. * If we cannot acquire the cache chain mutex then just give up - we'll try
  3556. * again on the next iteration.
  3557. */
  3558. static void cache_reap(struct work_struct *w)
  3559. {
  3560. struct kmem_cache *searchp;
  3561. struct kmem_list3 *l3;
  3562. int node = numa_node_id();
  3563. struct delayed_work *work = to_delayed_work(w);
  3564. if (!mutex_trylock(&cache_chain_mutex))
  3565. /* Give up. Setup the next iteration. */
  3566. goto out;
  3567. list_for_each_entry(searchp, &cache_chain, next) {
  3568. check_irq_on();
  3569. /*
  3570. * We only take the l3 lock if absolutely necessary and we
  3571. * have established with reasonable certainty that
  3572. * we can do some work if the lock was obtained.
  3573. */
  3574. l3 = searchp->nodelists[node];
  3575. reap_alien(searchp, l3);
  3576. drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
  3577. /*
  3578. * These are racy checks but it does not matter
  3579. * if we skip one check or scan twice.
  3580. */
  3581. if (time_after(l3->next_reap, jiffies))
  3582. goto next;
  3583. l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
  3584. drain_array(searchp, l3, l3->shared, 0, node);
  3585. if (l3->free_touched)
  3586. l3->free_touched = 0;
  3587. else {
  3588. int freed;
  3589. freed = drain_freelist(searchp, l3, (l3->free_limit +
  3590. 5 * searchp->num - 1) / (5 * searchp->num));
  3591. STATS_ADD_REAPED(searchp, freed);
  3592. }
  3593. next:
  3594. cond_resched();
  3595. }
  3596. check_irq_on();
  3597. mutex_unlock(&cache_chain_mutex);
  3598. next_reap_node();
  3599. out:
  3600. /* Set up the next iteration */
  3601. schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
  3602. }
  3603. #ifdef CONFIG_SLABINFO
  3604. static void print_slabinfo_header(struct seq_file *m)
  3605. {
  3606. /*
  3607. * Output format version, so at least we can change it
  3608. * without _too_ many complaints.
  3609. */
  3610. #if STATS
  3611. seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
  3612. #else
  3613. seq_puts(m, "slabinfo - version: 2.1\n");
  3614. #endif
  3615. seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
  3616. "<objperslab> <pagesperslab>");
  3617. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  3618. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  3619. #if STATS
  3620. seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
  3621. "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
  3622. seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
  3623. #endif
  3624. seq_putc(m, '\n');
  3625. }
  3626. static void *s_start(struct seq_file *m, loff_t *pos)
  3627. {
  3628. loff_t n = *pos;
  3629. mutex_lock(&cache_chain_mutex);
  3630. if (!n)
  3631. print_slabinfo_header(m);
  3632. return seq_list_start(&cache_chain, *pos);
  3633. }
  3634. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  3635. {
  3636. return seq_list_next(p, &cache_chain, pos);
  3637. }
  3638. static void s_stop(struct seq_file *m, void *p)
  3639. {
  3640. mutex_unlock(&cache_chain_mutex);
  3641. }
  3642. static int s_show(struct seq_file *m, void *p)
  3643. {
  3644. struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
  3645. struct slab *slabp;
  3646. unsigned long active_objs;
  3647. unsigned long num_objs;
  3648. unsigned long active_slabs = 0;
  3649. unsigned long num_slabs, free_objects = 0, shared_avail = 0;
  3650. const char *name;
  3651. char *error = NULL;
  3652. int node;
  3653. struct kmem_list3 *l3;
  3654. active_objs = 0;
  3655. num_slabs = 0;
  3656. for_each_online_node(node) {
  3657. l3 = cachep->nodelists[node];
  3658. if (!l3)
  3659. continue;
  3660. check_irq_on();
  3661. spin_lock_irq(&l3->list_lock);
  3662. list_for_each_entry(slabp, &l3->slabs_full, list) {
  3663. if (slabp->inuse != cachep->num && !error)
  3664. error = "slabs_full accounting error";
  3665. active_objs += cachep->num;
  3666. active_slabs++;
  3667. }
  3668. list_for_each_entry(slabp, &l3->slabs_partial, list) {
  3669. if (slabp->inuse == cachep->num && !error)
  3670. error = "slabs_partial inuse accounting error";
  3671. if (!slabp->inuse && !error)
  3672. error = "slabs_partial/inuse accounting error";
  3673. active_objs += slabp->inuse;
  3674. active_slabs++;
  3675. }
  3676. list_for_each_entry(slabp, &l3->slabs_free, list) {
  3677. if (slabp->inuse && !error)
  3678. error = "slabs_free/inuse accounting error";
  3679. num_slabs++;
  3680. }
  3681. free_objects += l3->free_objects;
  3682. if (l3->shared)
  3683. shared_avail += l3->shared->avail;
  3684. spin_unlock_irq(&l3->list_lock);
  3685. }
  3686. num_slabs += active_slabs;
  3687. num_objs = num_slabs * cachep->num;
  3688. if (num_objs - active_objs != free_objects && !error)
  3689. error = "free_objects accounting error";
  3690. name = cachep->name;
  3691. if (error)
  3692. printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
  3693. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
  3694. name, active_objs, num_objs, cachep->buffer_size,
  3695. cachep->num, (1 << cachep->gfporder));
  3696. seq_printf(m, " : tunables %4u %4u %4u",
  3697. cachep->limit, cachep->batchcount, cachep->shared);
  3698. seq_printf(m, " : slabdata %6lu %6lu %6lu",
  3699. active_slabs, num_slabs, shared_avail);
  3700. #if STATS
  3701. { /* list3 stats */
  3702. unsigned long high = cachep->high_mark;
  3703. unsigned long allocs = cachep->num_allocations;
  3704. unsigned long grown = cachep->grown;
  3705. unsigned long reaped = cachep->reaped;
  3706. unsigned long errors = cachep->errors;
  3707. unsigned long max_freeable = cachep->max_freeable;
  3708. unsigned long node_allocs = cachep->node_allocs;
  3709. unsigned long node_frees = cachep->node_frees;
  3710. unsigned long overflows = cachep->node_overflow;
  3711. seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
  3712. %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
  3713. reaped, errors, max_freeable, node_allocs,
  3714. node_frees, overflows);
  3715. }
  3716. /* cpu stats */
  3717. {
  3718. unsigned long allochit = atomic_read(&cachep->allochit);
  3719. unsigned long allocmiss = atomic_read(&cachep->allocmiss);
  3720. unsigned long freehit = atomic_read(&cachep->freehit);
  3721. unsigned long freemiss = atomic_read(&cachep->freemiss);
  3722. seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
  3723. allochit, allocmiss, freehit, freemiss);
  3724. }
  3725. #endif
  3726. seq_putc(m, '\n');
  3727. return 0;
  3728. }
  3729. /*
  3730. * slabinfo_op - iterator that generates /proc/slabinfo
  3731. *
  3732. * Output layout:
  3733. * cache-name
  3734. * num-active-objs
  3735. * total-objs
  3736. * object size
  3737. * num-active-slabs
  3738. * total-slabs
  3739. * num-pages-per-slab
  3740. * + further values on SMP and with statistics enabled
  3741. */
  3742. static const struct seq_operations slabinfo_op = {
  3743. .start = s_start,
  3744. .next = s_next,
  3745. .stop = s_stop,
  3746. .show = s_show,
  3747. };
  3748. #define MAX_SLABINFO_WRITE 128
  3749. /**
  3750. * slabinfo_write - Tuning for the slab allocator
  3751. * @file: unused
  3752. * @buffer: user buffer
  3753. * @count: data length
  3754. * @ppos: unused
  3755. */
  3756. ssize_t slabinfo_write(struct file *file, const char __user * buffer,
  3757. size_t count, loff_t *ppos)
  3758. {
  3759. char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
  3760. int limit, batchcount, shared, res;
  3761. struct kmem_cache *cachep;
  3762. if (count > MAX_SLABINFO_WRITE)
  3763. return -EINVAL;
  3764. if (copy_from_user(&kbuf, buffer, count))
  3765. return -EFAULT;
  3766. kbuf[MAX_SLABINFO_WRITE] = '\0';
  3767. tmp = strchr(kbuf, ' ');
  3768. if (!tmp)
  3769. return -EINVAL;
  3770. *tmp = '\0';
  3771. tmp++;
  3772. if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
  3773. return -EINVAL;
  3774. /* Find the cache in the chain of caches. */
  3775. mutex_lock(&cache_chain_mutex);
  3776. res = -EINVAL;
  3777. list_for_each_entry(cachep, &cache_chain, next) {
  3778. if (!strcmp(cachep->name, kbuf)) {
  3779. if (limit < 1 || batchcount < 1 ||
  3780. batchcount > limit || shared < 0) {
  3781. res = 0;
  3782. } else {
  3783. res = do_tune_cpucache(cachep, limit,
  3784. batchcount, shared,
  3785. GFP_KERNEL);
  3786. }
  3787. break;
  3788. }
  3789. }
  3790. mutex_unlock(&cache_chain_mutex);
  3791. if (res >= 0)
  3792. res = count;
  3793. return res;
  3794. }
  3795. static int slabinfo_open(struct inode *inode, struct file *file)
  3796. {
  3797. return seq_open(file, &slabinfo_op);
  3798. }
  3799. static const struct file_operations proc_slabinfo_operations = {
  3800. .open = slabinfo_open,
  3801. .read = seq_read,
  3802. .write = slabinfo_write,
  3803. .llseek = seq_lseek,
  3804. .release = seq_release,
  3805. };
  3806. #ifdef CONFIG_DEBUG_SLAB_LEAK
  3807. static void *leaks_start(struct seq_file *m, loff_t *pos)
  3808. {
  3809. mutex_lock(&cache_chain_mutex);
  3810. return seq_list_start(&cache_chain, *pos);
  3811. }
  3812. static inline int add_caller(unsigned long *n, unsigned long v)
  3813. {
  3814. unsigned long *p;
  3815. int l;
  3816. if (!v)
  3817. return 1;
  3818. l = n[1];
  3819. p = n + 2;
  3820. while (l) {
  3821. int i = l/2;
  3822. unsigned long *q = p + 2 * i;
  3823. if (*q == v) {
  3824. q[1]++;
  3825. return 1;
  3826. }
  3827. if (*q > v) {
  3828. l = i;
  3829. } else {
  3830. p = q + 2;
  3831. l -= i + 1;
  3832. }
  3833. }
  3834. if (++n[1] == n[0])
  3835. return 0;
  3836. memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
  3837. p[0] = v;
  3838. p[1] = 1;
  3839. return 1;
  3840. }
  3841. static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
  3842. {
  3843. void *p;
  3844. int i;
  3845. if (n[0] == n[1])
  3846. return;
  3847. for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
  3848. if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
  3849. continue;
  3850. if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
  3851. return;
  3852. }
  3853. }
  3854. static void show_symbol(struct seq_file *m, unsigned long address)
  3855. {
  3856. #ifdef CONFIG_KALLSYMS
  3857. unsigned long offset, size;
  3858. char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
  3859. if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
  3860. seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
  3861. if (modname[0])
  3862. seq_printf(m, " [%s]", modname);
  3863. return;
  3864. }
  3865. #endif
  3866. seq_printf(m, "%p", (void *)address);
  3867. }
  3868. static int leaks_show(struct seq_file *m, void *p)
  3869. {
  3870. struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
  3871. struct slab *slabp;
  3872. struct kmem_list3 *l3;
  3873. const char *name;
  3874. unsigned long *n = m->private;
  3875. int node;
  3876. int i;
  3877. if (!(cachep->flags & SLAB_STORE_USER))
  3878. return 0;
  3879. if (!(cachep->flags & SLAB_RED_ZONE))
  3880. return 0;
  3881. /* OK, we can do it */
  3882. n[1] = 0;
  3883. for_each_online_node(node) {
  3884. l3 = cachep->nodelists[node];
  3885. if (!l3)
  3886. continue;
  3887. check_irq_on();
  3888. spin_lock_irq(&l3->list_lock);
  3889. list_for_each_entry(slabp, &l3->slabs_full, list)
  3890. handle_slab(n, cachep, slabp);
  3891. list_for_each_entry(slabp, &l3->slabs_partial, list)
  3892. handle_slab(n, cachep, slabp);
  3893. spin_unlock_irq(&l3->list_lock);
  3894. }
  3895. name = cachep->name;
  3896. if (n[0] == n[1]) {
  3897. /* Increase the buffer size */
  3898. mutex_unlock(&cache_chain_mutex);
  3899. m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
  3900. if (!m->private) {
  3901. /* Too bad, we are really out */
  3902. m->private = n;
  3903. mutex_lock(&cache_chain_mutex);
  3904. return -ENOMEM;
  3905. }
  3906. *(unsigned long *)m->private = n[0] * 2;
  3907. kfree(n);
  3908. mutex_lock(&cache_chain_mutex);
  3909. /* Now make sure this entry will be retried */
  3910. m->count = m->size;
  3911. return 0;
  3912. }
  3913. for (i = 0; i < n[1]; i++) {
  3914. seq_printf(m, "%s: %lu ", name, n[2*i+3]);
  3915. show_symbol(m, n[2*i+2]);
  3916. seq_putc(m, '\n');
  3917. }
  3918. return 0;
  3919. }
  3920. static const struct seq_operations slabstats_op = {
  3921. .start = leaks_start,
  3922. .next = s_next,
  3923. .stop = s_stop,
  3924. .show = leaks_show,
  3925. };
  3926. static int slabstats_open(struct inode *inode, struct file *file)
  3927. {
  3928. unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
  3929. int ret = -ENOMEM;
  3930. if (n) {
  3931. ret = seq_open(file, &slabstats_op);
  3932. if (!ret) {
  3933. struct seq_file *m = file->private_data;
  3934. *n = PAGE_SIZE / (2 * sizeof(unsigned long));
  3935. m->private = n;
  3936. n = NULL;
  3937. }
  3938. kfree(n);
  3939. }
  3940. return ret;
  3941. }
  3942. static const struct file_operations proc_slabstats_operations = {
  3943. .open = slabstats_open,
  3944. .read = seq_read,
  3945. .llseek = seq_lseek,
  3946. .release = seq_release_private,
  3947. };
  3948. #endif
  3949. static int __init slab_proc_init(void)
  3950. {
  3951. proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
  3952. #ifdef CONFIG_DEBUG_SLAB_LEAK
  3953. proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
  3954. #endif
  3955. return 0;
  3956. }
  3957. module_init(slab_proc_init);
  3958. #endif
  3959. /**
  3960. * ksize - get the actual amount of memory allocated for a given object
  3961. * @objp: Pointer to the object
  3962. *
  3963. * kmalloc may internally round up allocations and return more memory
  3964. * than requested. ksize() can be used to determine the actual amount of
  3965. * memory allocated. The caller may use this additional memory, even though
  3966. * a smaller amount of memory was initially specified with the kmalloc call.
  3967. * The caller must guarantee that objp points to a valid object previously
  3968. * allocated with either kmalloc() or kmem_cache_alloc(). The object
  3969. * must not be freed during the duration of the call.
  3970. */
  3971. size_t ksize(const void *objp)
  3972. {
  3973. BUG_ON(!objp);
  3974. if (unlikely(objp == ZERO_SIZE_PTR))
  3975. return 0;
  3976. return obj_size(virt_to_cache(objp));
  3977. }
  3978. EXPORT_SYMBOL(ksize);