kmemleak.c 42 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501
  1. /*
  2. * mm/kmemleak.c
  3. *
  4. * Copyright (C) 2008 ARM Limited
  5. * Written by Catalin Marinas <catalin.marinas@arm.com>
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the Free Software
  18. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  19. *
  20. *
  21. * For more information on the algorithm and kmemleak usage, please see
  22. * Documentation/kmemleak.txt.
  23. *
  24. * Notes on locking
  25. * ----------------
  26. *
  27. * The following locks and mutexes are used by kmemleak:
  28. *
  29. * - kmemleak_lock (rwlock): protects the object_list modifications and
  30. * accesses to the object_tree_root. The object_list is the main list
  31. * holding the metadata (struct kmemleak_object) for the allocated memory
  32. * blocks. The object_tree_root is a priority search tree used to look-up
  33. * metadata based on a pointer to the corresponding memory block. The
  34. * kmemleak_object structures are added to the object_list and
  35. * object_tree_root in the create_object() function called from the
  36. * kmemleak_alloc() callback and removed in delete_object() called from the
  37. * kmemleak_free() callback
  38. * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
  39. * the metadata (e.g. count) are protected by this lock. Note that some
  40. * members of this structure may be protected by other means (atomic or
  41. * kmemleak_lock). This lock is also held when scanning the corresponding
  42. * memory block to avoid the kernel freeing it via the kmemleak_free()
  43. * callback. This is less heavyweight than holding a global lock like
  44. * kmemleak_lock during scanning
  45. * - scan_mutex (mutex): ensures that only one thread may scan the memory for
  46. * unreferenced objects at a time. The gray_list contains the objects which
  47. * are already referenced or marked as false positives and need to be
  48. * scanned. This list is only modified during a scanning episode when the
  49. * scan_mutex is held. At the end of a scan, the gray_list is always empty.
  50. * Note that the kmemleak_object.use_count is incremented when an object is
  51. * added to the gray_list and therefore cannot be freed
  52. * - kmemleak_mutex (mutex): prevents multiple users of the "kmemleak" debugfs
  53. * file together with modifications to the memory scanning parameters
  54. * including the scan_thread pointer
  55. *
  56. * The kmemleak_object structures have a use_count incremented or decremented
  57. * using the get_object()/put_object() functions. When the use_count becomes
  58. * 0, this count can no longer be incremented and put_object() schedules the
  59. * kmemleak_object freeing via an RCU callback. All calls to the get_object()
  60. * function must be protected by rcu_read_lock() to avoid accessing a freed
  61. * structure.
  62. */
  63. #include <linux/init.h>
  64. #include <linux/kernel.h>
  65. #include <linux/list.h>
  66. #include <linux/sched.h>
  67. #include <linux/jiffies.h>
  68. #include <linux/delay.h>
  69. #include <linux/module.h>
  70. #include <linux/kthread.h>
  71. #include <linux/prio_tree.h>
  72. #include <linux/gfp.h>
  73. #include <linux/fs.h>
  74. #include <linux/debugfs.h>
  75. #include <linux/seq_file.h>
  76. #include <linux/cpumask.h>
  77. #include <linux/spinlock.h>
  78. #include <linux/mutex.h>
  79. #include <linux/rcupdate.h>
  80. #include <linux/stacktrace.h>
  81. #include <linux/cache.h>
  82. #include <linux/percpu.h>
  83. #include <linux/hardirq.h>
  84. #include <linux/mmzone.h>
  85. #include <linux/slab.h>
  86. #include <linux/thread_info.h>
  87. #include <linux/err.h>
  88. #include <linux/uaccess.h>
  89. #include <linux/string.h>
  90. #include <linux/nodemask.h>
  91. #include <linux/mm.h>
  92. #include <asm/sections.h>
  93. #include <asm/processor.h>
  94. #include <asm/atomic.h>
  95. #include <linux/kmemleak.h>
  96. /*
  97. * Kmemleak configuration and common defines.
  98. */
  99. #define MAX_TRACE 16 /* stack trace length */
  100. #define REPORTS_NR 50 /* maximum number of reported leaks */
  101. #define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
  102. #define MSECS_SCAN_YIELD 10 /* CPU yielding period */
  103. #define SECS_FIRST_SCAN 60 /* delay before the first scan */
  104. #define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
  105. #define BYTES_PER_POINTER sizeof(void *)
  106. /* GFP bitmask for kmemleak internal allocations */
  107. #define GFP_KMEMLEAK_MASK (GFP_KERNEL | GFP_ATOMIC)
  108. /* scanning area inside a memory block */
  109. struct kmemleak_scan_area {
  110. struct hlist_node node;
  111. unsigned long offset;
  112. size_t length;
  113. };
  114. /*
  115. * Structure holding the metadata for each allocated memory block.
  116. * Modifications to such objects should be made while holding the
  117. * object->lock. Insertions or deletions from object_list, gray_list or
  118. * tree_node are already protected by the corresponding locks or mutex (see
  119. * the notes on locking above). These objects are reference-counted
  120. * (use_count) and freed using the RCU mechanism.
  121. */
  122. struct kmemleak_object {
  123. spinlock_t lock;
  124. unsigned long flags; /* object status flags */
  125. struct list_head object_list;
  126. struct list_head gray_list;
  127. struct prio_tree_node tree_node;
  128. struct rcu_head rcu; /* object_list lockless traversal */
  129. /* object usage count; object freed when use_count == 0 */
  130. atomic_t use_count;
  131. unsigned long pointer;
  132. size_t size;
  133. /* minimum number of a pointers found before it is considered leak */
  134. int min_count;
  135. /* the total number of pointers found pointing to this object */
  136. int count;
  137. /* memory ranges to be scanned inside an object (empty for all) */
  138. struct hlist_head area_list;
  139. unsigned long trace[MAX_TRACE];
  140. unsigned int trace_len;
  141. unsigned long jiffies; /* creation timestamp */
  142. pid_t pid; /* pid of the current task */
  143. char comm[TASK_COMM_LEN]; /* executable name */
  144. };
  145. /* flag representing the memory block allocation status */
  146. #define OBJECT_ALLOCATED (1 << 0)
  147. /* flag set after the first reporting of an unreference object */
  148. #define OBJECT_REPORTED (1 << 1)
  149. /* flag set to not scan the object */
  150. #define OBJECT_NO_SCAN (1 << 2)
  151. /* the list of all allocated objects */
  152. static LIST_HEAD(object_list);
  153. /* the list of gray-colored objects (see color_gray comment below) */
  154. static LIST_HEAD(gray_list);
  155. /* prio search tree for object boundaries */
  156. static struct prio_tree_root object_tree_root;
  157. /* rw_lock protecting the access to object_list and prio_tree_root */
  158. static DEFINE_RWLOCK(kmemleak_lock);
  159. /* allocation caches for kmemleak internal data */
  160. static struct kmem_cache *object_cache;
  161. static struct kmem_cache *scan_area_cache;
  162. /* set if tracing memory operations is enabled */
  163. static atomic_t kmemleak_enabled = ATOMIC_INIT(0);
  164. /* set in the late_initcall if there were no errors */
  165. static atomic_t kmemleak_initialized = ATOMIC_INIT(0);
  166. /* enables or disables early logging of the memory operations */
  167. static atomic_t kmemleak_early_log = ATOMIC_INIT(1);
  168. /* set if a fata kmemleak error has occurred */
  169. static atomic_t kmemleak_error = ATOMIC_INIT(0);
  170. /* minimum and maximum address that may be valid pointers */
  171. static unsigned long min_addr = ULONG_MAX;
  172. static unsigned long max_addr;
  173. /* used for yielding the CPU to other tasks during scanning */
  174. static unsigned long next_scan_yield;
  175. static struct task_struct *scan_thread;
  176. static unsigned long jiffies_scan_yield;
  177. static unsigned long jiffies_min_age;
  178. /* delay between automatic memory scannings */
  179. static signed long jiffies_scan_wait;
  180. /* enables or disables the task stacks scanning */
  181. static int kmemleak_stack_scan;
  182. /* mutex protecting the memory scanning */
  183. static DEFINE_MUTEX(scan_mutex);
  184. /* mutex protecting the access to the /sys/kernel/debug/kmemleak file */
  185. static DEFINE_MUTEX(kmemleak_mutex);
  186. /* number of leaks reported (for limitation purposes) */
  187. static int reported_leaks;
  188. /*
  189. * Early object allocation/freeing logging. Kmemleak is initialized after the
  190. * kernel allocator. However, both the kernel allocator and kmemleak may
  191. * allocate memory blocks which need to be tracked. Kmemleak defines an
  192. * arbitrary buffer to hold the allocation/freeing information before it is
  193. * fully initialized.
  194. */
  195. /* kmemleak operation type for early logging */
  196. enum {
  197. KMEMLEAK_ALLOC,
  198. KMEMLEAK_FREE,
  199. KMEMLEAK_NOT_LEAK,
  200. KMEMLEAK_IGNORE,
  201. KMEMLEAK_SCAN_AREA,
  202. KMEMLEAK_NO_SCAN
  203. };
  204. /*
  205. * Structure holding the information passed to kmemleak callbacks during the
  206. * early logging.
  207. */
  208. struct early_log {
  209. int op_type; /* kmemleak operation type */
  210. const void *ptr; /* allocated/freed memory block */
  211. size_t size; /* memory block size */
  212. int min_count; /* minimum reference count */
  213. unsigned long offset; /* scan area offset */
  214. size_t length; /* scan area length */
  215. };
  216. /* early logging buffer and current position */
  217. static struct early_log early_log[200];
  218. static int crt_early_log;
  219. static void kmemleak_disable(void);
  220. /*
  221. * Print a warning and dump the stack trace.
  222. */
  223. #define kmemleak_warn(x...) do { \
  224. pr_warning(x); \
  225. dump_stack(); \
  226. } while (0)
  227. /*
  228. * Macro invoked when a serious kmemleak condition occured and cannot be
  229. * recovered from. Kmemleak will be disabled and further allocation/freeing
  230. * tracing no longer available.
  231. */
  232. #define kmemleak_stop(x...) do { \
  233. kmemleak_warn(x); \
  234. kmemleak_disable(); \
  235. } while (0)
  236. /*
  237. * Object colors, encoded with count and min_count:
  238. * - white - orphan object, not enough references to it (count < min_count)
  239. * - gray - not orphan, not marked as false positive (min_count == 0) or
  240. * sufficient references to it (count >= min_count)
  241. * - black - ignore, it doesn't contain references (e.g. text section)
  242. * (min_count == -1). No function defined for this color.
  243. * Newly created objects don't have any color assigned (object->count == -1)
  244. * before the next memory scan when they become white.
  245. */
  246. static int color_white(const struct kmemleak_object *object)
  247. {
  248. return object->count != -1 && object->count < object->min_count;
  249. }
  250. static int color_gray(const struct kmemleak_object *object)
  251. {
  252. return object->min_count != -1 && object->count >= object->min_count;
  253. }
  254. /*
  255. * Objects are considered referenced if their color is gray and they have not
  256. * been deleted.
  257. */
  258. static int referenced_object(struct kmemleak_object *object)
  259. {
  260. return (object->flags & OBJECT_ALLOCATED) && color_gray(object);
  261. }
  262. /*
  263. * Objects are considered unreferenced only if their color is white, they have
  264. * not be deleted and have a minimum age to avoid false positives caused by
  265. * pointers temporarily stored in CPU registers.
  266. */
  267. static int unreferenced_object(struct kmemleak_object *object)
  268. {
  269. return (object->flags & OBJECT_ALLOCATED) && color_white(object) &&
  270. time_is_before_eq_jiffies(object->jiffies + jiffies_min_age);
  271. }
  272. /*
  273. * Printing of the (un)referenced objects information, either to the seq file
  274. * or to the kernel log. The print_referenced/print_unreferenced functions
  275. * must be called with the object->lock held.
  276. */
  277. #define print_helper(seq, x...) do { \
  278. struct seq_file *s = (seq); \
  279. if (s) \
  280. seq_printf(s, x); \
  281. else \
  282. pr_info(x); \
  283. } while (0)
  284. static void print_referenced(struct kmemleak_object *object)
  285. {
  286. pr_info("kmemleak: referenced object 0x%08lx (size %zu)\n",
  287. object->pointer, object->size);
  288. }
  289. static void print_unreferenced(struct seq_file *seq,
  290. struct kmemleak_object *object)
  291. {
  292. int i;
  293. print_helper(seq, "kmemleak: unreferenced object 0x%08lx (size %zu):\n",
  294. object->pointer, object->size);
  295. print_helper(seq, " comm \"%s\", pid %d, jiffies %lu\n",
  296. object->comm, object->pid, object->jiffies);
  297. print_helper(seq, " backtrace:\n");
  298. for (i = 0; i < object->trace_len; i++) {
  299. void *ptr = (void *)object->trace[i];
  300. print_helper(seq, " [<%p>] %pS\n", ptr, ptr);
  301. }
  302. }
  303. /*
  304. * Print the kmemleak_object information. This function is used mainly for
  305. * debugging special cases when kmemleak operations. It must be called with
  306. * the object->lock held.
  307. */
  308. static void dump_object_info(struct kmemleak_object *object)
  309. {
  310. struct stack_trace trace;
  311. trace.nr_entries = object->trace_len;
  312. trace.entries = object->trace;
  313. pr_notice("kmemleak: Object 0x%08lx (size %zu):\n",
  314. object->tree_node.start, object->size);
  315. pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
  316. object->comm, object->pid, object->jiffies);
  317. pr_notice(" min_count = %d\n", object->min_count);
  318. pr_notice(" count = %d\n", object->count);
  319. pr_notice(" backtrace:\n");
  320. print_stack_trace(&trace, 4);
  321. }
  322. /*
  323. * Look-up a memory block metadata (kmemleak_object) in the priority search
  324. * tree based on a pointer value. If alias is 0, only values pointing to the
  325. * beginning of the memory block are allowed. The kmemleak_lock must be held
  326. * when calling this function.
  327. */
  328. static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
  329. {
  330. struct prio_tree_node *node;
  331. struct prio_tree_iter iter;
  332. struct kmemleak_object *object;
  333. prio_tree_iter_init(&iter, &object_tree_root, ptr, ptr);
  334. node = prio_tree_next(&iter);
  335. if (node) {
  336. object = prio_tree_entry(node, struct kmemleak_object,
  337. tree_node);
  338. if (!alias && object->pointer != ptr) {
  339. kmemleak_warn("kmemleak: Found object by alias");
  340. object = NULL;
  341. }
  342. } else
  343. object = NULL;
  344. return object;
  345. }
  346. /*
  347. * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
  348. * that once an object's use_count reached 0, the RCU freeing was already
  349. * registered and the object should no longer be used. This function must be
  350. * called under the protection of rcu_read_lock().
  351. */
  352. static int get_object(struct kmemleak_object *object)
  353. {
  354. return atomic_inc_not_zero(&object->use_count);
  355. }
  356. /*
  357. * RCU callback to free a kmemleak_object.
  358. */
  359. static void free_object_rcu(struct rcu_head *rcu)
  360. {
  361. struct hlist_node *elem, *tmp;
  362. struct kmemleak_scan_area *area;
  363. struct kmemleak_object *object =
  364. container_of(rcu, struct kmemleak_object, rcu);
  365. /*
  366. * Once use_count is 0 (guaranteed by put_object), there is no other
  367. * code accessing this object, hence no need for locking.
  368. */
  369. hlist_for_each_entry_safe(area, elem, tmp, &object->area_list, node) {
  370. hlist_del(elem);
  371. kmem_cache_free(scan_area_cache, area);
  372. }
  373. kmem_cache_free(object_cache, object);
  374. }
  375. /*
  376. * Decrement the object use_count. Once the count is 0, free the object using
  377. * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
  378. * delete_object() path, the delayed RCU freeing ensures that there is no
  379. * recursive call to the kernel allocator. Lock-less RCU object_list traversal
  380. * is also possible.
  381. */
  382. static void put_object(struct kmemleak_object *object)
  383. {
  384. if (!atomic_dec_and_test(&object->use_count))
  385. return;
  386. /* should only get here after delete_object was called */
  387. WARN_ON(object->flags & OBJECT_ALLOCATED);
  388. call_rcu(&object->rcu, free_object_rcu);
  389. }
  390. /*
  391. * Look up an object in the prio search tree and increase its use_count.
  392. */
  393. static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
  394. {
  395. unsigned long flags;
  396. struct kmemleak_object *object = NULL;
  397. rcu_read_lock();
  398. read_lock_irqsave(&kmemleak_lock, flags);
  399. if (ptr >= min_addr && ptr < max_addr)
  400. object = lookup_object(ptr, alias);
  401. read_unlock_irqrestore(&kmemleak_lock, flags);
  402. /* check whether the object is still available */
  403. if (object && !get_object(object))
  404. object = NULL;
  405. rcu_read_unlock();
  406. return object;
  407. }
  408. /*
  409. * Create the metadata (struct kmemleak_object) corresponding to an allocated
  410. * memory block and add it to the object_list and object_tree_root.
  411. */
  412. static void create_object(unsigned long ptr, size_t size, int min_count,
  413. gfp_t gfp)
  414. {
  415. unsigned long flags;
  416. struct kmemleak_object *object;
  417. struct prio_tree_node *node;
  418. struct stack_trace trace;
  419. object = kmem_cache_alloc(object_cache, gfp & GFP_KMEMLEAK_MASK);
  420. if (!object) {
  421. kmemleak_stop("kmemleak: Cannot allocate a kmemleak_object "
  422. "structure\n");
  423. return;
  424. }
  425. INIT_LIST_HEAD(&object->object_list);
  426. INIT_LIST_HEAD(&object->gray_list);
  427. INIT_HLIST_HEAD(&object->area_list);
  428. spin_lock_init(&object->lock);
  429. atomic_set(&object->use_count, 1);
  430. object->flags = OBJECT_ALLOCATED;
  431. object->pointer = ptr;
  432. object->size = size;
  433. object->min_count = min_count;
  434. object->count = -1; /* no color initially */
  435. object->jiffies = jiffies;
  436. /* task information */
  437. if (in_irq()) {
  438. object->pid = 0;
  439. strncpy(object->comm, "hardirq", sizeof(object->comm));
  440. } else if (in_softirq()) {
  441. object->pid = 0;
  442. strncpy(object->comm, "softirq", sizeof(object->comm));
  443. } else {
  444. object->pid = current->pid;
  445. /*
  446. * There is a small chance of a race with set_task_comm(),
  447. * however using get_task_comm() here may cause locking
  448. * dependency issues with current->alloc_lock. In the worst
  449. * case, the command line is not correct.
  450. */
  451. strncpy(object->comm, current->comm, sizeof(object->comm));
  452. }
  453. /* kernel backtrace */
  454. trace.max_entries = MAX_TRACE;
  455. trace.nr_entries = 0;
  456. trace.entries = object->trace;
  457. trace.skip = 1;
  458. save_stack_trace(&trace);
  459. object->trace_len = trace.nr_entries;
  460. INIT_PRIO_TREE_NODE(&object->tree_node);
  461. object->tree_node.start = ptr;
  462. object->tree_node.last = ptr + size - 1;
  463. write_lock_irqsave(&kmemleak_lock, flags);
  464. min_addr = min(min_addr, ptr);
  465. max_addr = max(max_addr, ptr + size);
  466. node = prio_tree_insert(&object_tree_root, &object->tree_node);
  467. /*
  468. * The code calling the kernel does not yet have the pointer to the
  469. * memory block to be able to free it. However, we still hold the
  470. * kmemleak_lock here in case parts of the kernel started freeing
  471. * random memory blocks.
  472. */
  473. if (node != &object->tree_node) {
  474. unsigned long flags;
  475. kmemleak_stop("kmemleak: Cannot insert 0x%lx into the object "
  476. "search tree (already existing)\n", ptr);
  477. object = lookup_object(ptr, 1);
  478. spin_lock_irqsave(&object->lock, flags);
  479. dump_object_info(object);
  480. spin_unlock_irqrestore(&object->lock, flags);
  481. goto out;
  482. }
  483. list_add_tail_rcu(&object->object_list, &object_list);
  484. out:
  485. write_unlock_irqrestore(&kmemleak_lock, flags);
  486. }
  487. /*
  488. * Remove the metadata (struct kmemleak_object) for a memory block from the
  489. * object_list and object_tree_root and decrement its use_count.
  490. */
  491. static void delete_object(unsigned long ptr)
  492. {
  493. unsigned long flags;
  494. struct kmemleak_object *object;
  495. write_lock_irqsave(&kmemleak_lock, flags);
  496. object = lookup_object(ptr, 0);
  497. if (!object) {
  498. kmemleak_warn("kmemleak: Freeing unknown object at 0x%08lx\n",
  499. ptr);
  500. write_unlock_irqrestore(&kmemleak_lock, flags);
  501. return;
  502. }
  503. prio_tree_remove(&object_tree_root, &object->tree_node);
  504. list_del_rcu(&object->object_list);
  505. write_unlock_irqrestore(&kmemleak_lock, flags);
  506. WARN_ON(!(object->flags & OBJECT_ALLOCATED));
  507. WARN_ON(atomic_read(&object->use_count) < 1);
  508. /*
  509. * Locking here also ensures that the corresponding memory block
  510. * cannot be freed when it is being scanned.
  511. */
  512. spin_lock_irqsave(&object->lock, flags);
  513. if (object->flags & OBJECT_REPORTED)
  514. print_referenced(object);
  515. object->flags &= ~OBJECT_ALLOCATED;
  516. spin_unlock_irqrestore(&object->lock, flags);
  517. put_object(object);
  518. }
  519. /*
  520. * Make a object permanently as gray-colored so that it can no longer be
  521. * reported as a leak. This is used in general to mark a false positive.
  522. */
  523. static void make_gray_object(unsigned long ptr)
  524. {
  525. unsigned long flags;
  526. struct kmemleak_object *object;
  527. object = find_and_get_object(ptr, 0);
  528. if (!object) {
  529. kmemleak_warn("kmemleak: Graying unknown object at 0x%08lx\n",
  530. ptr);
  531. return;
  532. }
  533. spin_lock_irqsave(&object->lock, flags);
  534. object->min_count = 0;
  535. spin_unlock_irqrestore(&object->lock, flags);
  536. put_object(object);
  537. }
  538. /*
  539. * Mark the object as black-colored so that it is ignored from scans and
  540. * reporting.
  541. */
  542. static void make_black_object(unsigned long ptr)
  543. {
  544. unsigned long flags;
  545. struct kmemleak_object *object;
  546. object = find_and_get_object(ptr, 0);
  547. if (!object) {
  548. kmemleak_warn("kmemleak: Blacking unknown object at 0x%08lx\n",
  549. ptr);
  550. return;
  551. }
  552. spin_lock_irqsave(&object->lock, flags);
  553. object->min_count = -1;
  554. spin_unlock_irqrestore(&object->lock, flags);
  555. put_object(object);
  556. }
  557. /*
  558. * Add a scanning area to the object. If at least one such area is added,
  559. * kmemleak will only scan these ranges rather than the whole memory block.
  560. */
  561. static void add_scan_area(unsigned long ptr, unsigned long offset,
  562. size_t length, gfp_t gfp)
  563. {
  564. unsigned long flags;
  565. struct kmemleak_object *object;
  566. struct kmemleak_scan_area *area;
  567. object = find_and_get_object(ptr, 0);
  568. if (!object) {
  569. kmemleak_warn("kmemleak: Adding scan area to unknown "
  570. "object at 0x%08lx\n", ptr);
  571. return;
  572. }
  573. area = kmem_cache_alloc(scan_area_cache, gfp & GFP_KMEMLEAK_MASK);
  574. if (!area) {
  575. kmemleak_warn("kmemleak: Cannot allocate a scan area\n");
  576. goto out;
  577. }
  578. spin_lock_irqsave(&object->lock, flags);
  579. if (offset + length > object->size) {
  580. kmemleak_warn("kmemleak: Scan area larger than object "
  581. "0x%08lx\n", ptr);
  582. dump_object_info(object);
  583. kmem_cache_free(scan_area_cache, area);
  584. goto out_unlock;
  585. }
  586. INIT_HLIST_NODE(&area->node);
  587. area->offset = offset;
  588. area->length = length;
  589. hlist_add_head(&area->node, &object->area_list);
  590. out_unlock:
  591. spin_unlock_irqrestore(&object->lock, flags);
  592. out:
  593. put_object(object);
  594. }
  595. /*
  596. * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
  597. * pointer. Such object will not be scanned by kmemleak but references to it
  598. * are searched.
  599. */
  600. static void object_no_scan(unsigned long ptr)
  601. {
  602. unsigned long flags;
  603. struct kmemleak_object *object;
  604. object = find_and_get_object(ptr, 0);
  605. if (!object) {
  606. kmemleak_warn("kmemleak: Not scanning unknown object at "
  607. "0x%08lx\n", ptr);
  608. return;
  609. }
  610. spin_lock_irqsave(&object->lock, flags);
  611. object->flags |= OBJECT_NO_SCAN;
  612. spin_unlock_irqrestore(&object->lock, flags);
  613. put_object(object);
  614. }
  615. /*
  616. * Log an early kmemleak_* call to the early_log buffer. These calls will be
  617. * processed later once kmemleak is fully initialized.
  618. */
  619. static void log_early(int op_type, const void *ptr, size_t size,
  620. int min_count, unsigned long offset, size_t length)
  621. {
  622. unsigned long flags;
  623. struct early_log *log;
  624. if (crt_early_log >= ARRAY_SIZE(early_log)) {
  625. kmemleak_stop("kmemleak: Early log buffer exceeded\n");
  626. return;
  627. }
  628. /*
  629. * There is no need for locking since the kernel is still in UP mode
  630. * at this stage. Disabling the IRQs is enough.
  631. */
  632. local_irq_save(flags);
  633. log = &early_log[crt_early_log];
  634. log->op_type = op_type;
  635. log->ptr = ptr;
  636. log->size = size;
  637. log->min_count = min_count;
  638. log->offset = offset;
  639. log->length = length;
  640. crt_early_log++;
  641. local_irq_restore(flags);
  642. }
  643. /*
  644. * Memory allocation function callback. This function is called from the
  645. * kernel allocators when a new block is allocated (kmem_cache_alloc, kmalloc,
  646. * vmalloc etc.).
  647. */
  648. void kmemleak_alloc(const void *ptr, size_t size, int min_count, gfp_t gfp)
  649. {
  650. pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
  651. if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
  652. create_object((unsigned long)ptr, size, min_count, gfp);
  653. else if (atomic_read(&kmemleak_early_log))
  654. log_early(KMEMLEAK_ALLOC, ptr, size, min_count, 0, 0);
  655. }
  656. EXPORT_SYMBOL_GPL(kmemleak_alloc);
  657. /*
  658. * Memory freeing function callback. This function is called from the kernel
  659. * allocators when a block is freed (kmem_cache_free, kfree, vfree etc.).
  660. */
  661. void kmemleak_free(const void *ptr)
  662. {
  663. pr_debug("%s(0x%p)\n", __func__, ptr);
  664. if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
  665. delete_object((unsigned long)ptr);
  666. else if (atomic_read(&kmemleak_early_log))
  667. log_early(KMEMLEAK_FREE, ptr, 0, 0, 0, 0);
  668. }
  669. EXPORT_SYMBOL_GPL(kmemleak_free);
  670. /*
  671. * Mark an already allocated memory block as a false positive. This will cause
  672. * the block to no longer be reported as leak and always be scanned.
  673. */
  674. void kmemleak_not_leak(const void *ptr)
  675. {
  676. pr_debug("%s(0x%p)\n", __func__, ptr);
  677. if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
  678. make_gray_object((unsigned long)ptr);
  679. else if (atomic_read(&kmemleak_early_log))
  680. log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0, 0, 0);
  681. }
  682. EXPORT_SYMBOL(kmemleak_not_leak);
  683. /*
  684. * Ignore a memory block. This is usually done when it is known that the
  685. * corresponding block is not a leak and does not contain any references to
  686. * other allocated memory blocks.
  687. */
  688. void kmemleak_ignore(const void *ptr)
  689. {
  690. pr_debug("%s(0x%p)\n", __func__, ptr);
  691. if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
  692. make_black_object((unsigned long)ptr);
  693. else if (atomic_read(&kmemleak_early_log))
  694. log_early(KMEMLEAK_IGNORE, ptr, 0, 0, 0, 0);
  695. }
  696. EXPORT_SYMBOL(kmemleak_ignore);
  697. /*
  698. * Limit the range to be scanned in an allocated memory block.
  699. */
  700. void kmemleak_scan_area(const void *ptr, unsigned long offset, size_t length,
  701. gfp_t gfp)
  702. {
  703. pr_debug("%s(0x%p)\n", __func__, ptr);
  704. if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
  705. add_scan_area((unsigned long)ptr, offset, length, gfp);
  706. else if (atomic_read(&kmemleak_early_log))
  707. log_early(KMEMLEAK_SCAN_AREA, ptr, 0, 0, offset, length);
  708. }
  709. EXPORT_SYMBOL(kmemleak_scan_area);
  710. /*
  711. * Inform kmemleak not to scan the given memory block.
  712. */
  713. void kmemleak_no_scan(const void *ptr)
  714. {
  715. pr_debug("%s(0x%p)\n", __func__, ptr);
  716. if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
  717. object_no_scan((unsigned long)ptr);
  718. else if (atomic_read(&kmemleak_early_log))
  719. log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0, 0, 0);
  720. }
  721. EXPORT_SYMBOL(kmemleak_no_scan);
  722. /*
  723. * Yield the CPU so that other tasks get a chance to run. The yielding is
  724. * rate-limited to avoid excessive number of calls to the schedule() function
  725. * during memory scanning.
  726. */
  727. static void scan_yield(void)
  728. {
  729. might_sleep();
  730. if (time_is_before_eq_jiffies(next_scan_yield)) {
  731. schedule();
  732. next_scan_yield = jiffies + jiffies_scan_yield;
  733. }
  734. }
  735. /*
  736. * Memory scanning is a long process and it needs to be interruptable. This
  737. * function checks whether such interrupt condition occured.
  738. */
  739. static int scan_should_stop(void)
  740. {
  741. if (!atomic_read(&kmemleak_enabled))
  742. return 1;
  743. /*
  744. * This function may be called from either process or kthread context,
  745. * hence the need to check for both stop conditions.
  746. */
  747. if (current->mm)
  748. return signal_pending(current);
  749. else
  750. return kthread_should_stop();
  751. return 0;
  752. }
  753. /*
  754. * Scan a memory block (exclusive range) for valid pointers and add those
  755. * found to the gray list.
  756. */
  757. static void scan_block(void *_start, void *_end,
  758. struct kmemleak_object *scanned)
  759. {
  760. unsigned long *ptr;
  761. unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
  762. unsigned long *end = _end - (BYTES_PER_POINTER - 1);
  763. for (ptr = start; ptr < end; ptr++) {
  764. unsigned long flags;
  765. unsigned long pointer = *ptr;
  766. struct kmemleak_object *object;
  767. if (scan_should_stop())
  768. break;
  769. /*
  770. * When scanning a memory block with a corresponding
  771. * kmemleak_object, the CPU yielding is handled in the calling
  772. * code since it holds the object->lock to avoid the block
  773. * freeing.
  774. */
  775. if (!scanned)
  776. scan_yield();
  777. object = find_and_get_object(pointer, 1);
  778. if (!object)
  779. continue;
  780. if (object == scanned) {
  781. /* self referenced, ignore */
  782. put_object(object);
  783. continue;
  784. }
  785. /*
  786. * Avoid the lockdep recursive warning on object->lock being
  787. * previously acquired in scan_object(). These locks are
  788. * enclosed by scan_mutex.
  789. */
  790. spin_lock_irqsave_nested(&object->lock, flags,
  791. SINGLE_DEPTH_NESTING);
  792. if (!color_white(object)) {
  793. /* non-orphan, ignored or new */
  794. spin_unlock_irqrestore(&object->lock, flags);
  795. put_object(object);
  796. continue;
  797. }
  798. /*
  799. * Increase the object's reference count (number of pointers
  800. * to the memory block). If this count reaches the required
  801. * minimum, the object's color will become gray and it will be
  802. * added to the gray_list.
  803. */
  804. object->count++;
  805. if (color_gray(object))
  806. list_add_tail(&object->gray_list, &gray_list);
  807. else
  808. put_object(object);
  809. spin_unlock_irqrestore(&object->lock, flags);
  810. }
  811. }
  812. /*
  813. * Scan a memory block corresponding to a kmemleak_object. A condition is
  814. * that object->use_count >= 1.
  815. */
  816. static void scan_object(struct kmemleak_object *object)
  817. {
  818. struct kmemleak_scan_area *area;
  819. struct hlist_node *elem;
  820. unsigned long flags;
  821. /*
  822. * Once the object->lock is aquired, the corresponding memory block
  823. * cannot be freed (the same lock is aquired in delete_object).
  824. */
  825. spin_lock_irqsave(&object->lock, flags);
  826. if (object->flags & OBJECT_NO_SCAN)
  827. goto out;
  828. if (!(object->flags & OBJECT_ALLOCATED))
  829. /* already freed object */
  830. goto out;
  831. if (hlist_empty(&object->area_list))
  832. scan_block((void *)object->pointer,
  833. (void *)(object->pointer + object->size), object);
  834. else
  835. hlist_for_each_entry(area, elem, &object->area_list, node)
  836. scan_block((void *)(object->pointer + area->offset),
  837. (void *)(object->pointer + area->offset
  838. + area->length), object);
  839. out:
  840. spin_unlock_irqrestore(&object->lock, flags);
  841. }
  842. /*
  843. * Scan data sections and all the referenced memory blocks allocated via the
  844. * kernel's standard allocators. This function must be called with the
  845. * scan_mutex held.
  846. */
  847. static void kmemleak_scan(void)
  848. {
  849. unsigned long flags;
  850. struct kmemleak_object *object, *tmp;
  851. struct task_struct *task;
  852. int i;
  853. /* prepare the kmemleak_object's */
  854. rcu_read_lock();
  855. list_for_each_entry_rcu(object, &object_list, object_list) {
  856. spin_lock_irqsave(&object->lock, flags);
  857. #ifdef DEBUG
  858. /*
  859. * With a few exceptions there should be a maximum of
  860. * 1 reference to any object at this point.
  861. */
  862. if (atomic_read(&object->use_count) > 1) {
  863. pr_debug("kmemleak: object->use_count = %d\n",
  864. atomic_read(&object->use_count));
  865. dump_object_info(object);
  866. }
  867. #endif
  868. /* reset the reference count (whiten the object) */
  869. object->count = 0;
  870. if (color_gray(object) && get_object(object))
  871. list_add_tail(&object->gray_list, &gray_list);
  872. spin_unlock_irqrestore(&object->lock, flags);
  873. }
  874. rcu_read_unlock();
  875. /* data/bss scanning */
  876. scan_block(_sdata, _edata, NULL);
  877. scan_block(__bss_start, __bss_stop, NULL);
  878. #ifdef CONFIG_SMP
  879. /* per-cpu sections scanning */
  880. for_each_possible_cpu(i)
  881. scan_block(__per_cpu_start + per_cpu_offset(i),
  882. __per_cpu_end + per_cpu_offset(i), NULL);
  883. #endif
  884. /*
  885. * Struct page scanning for each node. The code below is not yet safe
  886. * with MEMORY_HOTPLUG.
  887. */
  888. for_each_online_node(i) {
  889. pg_data_t *pgdat = NODE_DATA(i);
  890. unsigned long start_pfn = pgdat->node_start_pfn;
  891. unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
  892. unsigned long pfn;
  893. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  894. struct page *page;
  895. if (!pfn_valid(pfn))
  896. continue;
  897. page = pfn_to_page(pfn);
  898. /* only scan if page is in use */
  899. if (page_count(page) == 0)
  900. continue;
  901. scan_block(page, page + 1, NULL);
  902. }
  903. }
  904. /*
  905. * Scanning the task stacks may introduce false negatives and it is
  906. * not enabled by default.
  907. */
  908. if (kmemleak_stack_scan) {
  909. read_lock(&tasklist_lock);
  910. for_each_process(task)
  911. scan_block(task_stack_page(task),
  912. task_stack_page(task) + THREAD_SIZE, NULL);
  913. read_unlock(&tasklist_lock);
  914. }
  915. /*
  916. * Scan the objects already referenced from the sections scanned
  917. * above. More objects will be referenced and, if there are no memory
  918. * leaks, all the objects will be scanned. The list traversal is safe
  919. * for both tail additions and removals from inside the loop. The
  920. * kmemleak objects cannot be freed from outside the loop because their
  921. * use_count was increased.
  922. */
  923. object = list_entry(gray_list.next, typeof(*object), gray_list);
  924. while (&object->gray_list != &gray_list) {
  925. scan_yield();
  926. /* may add new objects to the list */
  927. if (!scan_should_stop())
  928. scan_object(object);
  929. tmp = list_entry(object->gray_list.next, typeof(*object),
  930. gray_list);
  931. /* remove the object from the list and release it */
  932. list_del(&object->gray_list);
  933. put_object(object);
  934. object = tmp;
  935. }
  936. WARN_ON(!list_empty(&gray_list));
  937. }
  938. /*
  939. * Thread function performing automatic memory scanning. Unreferenced objects
  940. * at the end of a memory scan are reported but only the first time.
  941. */
  942. static int kmemleak_scan_thread(void *arg)
  943. {
  944. static int first_run = 1;
  945. pr_info("kmemleak: Automatic memory scanning thread started\n");
  946. /*
  947. * Wait before the first scan to allow the system to fully initialize.
  948. */
  949. if (first_run) {
  950. first_run = 0;
  951. ssleep(SECS_FIRST_SCAN);
  952. }
  953. while (!kthread_should_stop()) {
  954. struct kmemleak_object *object;
  955. signed long timeout = jiffies_scan_wait;
  956. mutex_lock(&scan_mutex);
  957. kmemleak_scan();
  958. reported_leaks = 0;
  959. rcu_read_lock();
  960. list_for_each_entry_rcu(object, &object_list, object_list) {
  961. unsigned long flags;
  962. if (reported_leaks >= REPORTS_NR)
  963. break;
  964. spin_lock_irqsave(&object->lock, flags);
  965. if (!(object->flags & OBJECT_REPORTED) &&
  966. unreferenced_object(object)) {
  967. print_unreferenced(NULL, object);
  968. object->flags |= OBJECT_REPORTED;
  969. reported_leaks++;
  970. } else if ((object->flags & OBJECT_REPORTED) &&
  971. referenced_object(object)) {
  972. print_referenced(object);
  973. object->flags &= ~OBJECT_REPORTED;
  974. }
  975. spin_unlock_irqrestore(&object->lock, flags);
  976. }
  977. rcu_read_unlock();
  978. mutex_unlock(&scan_mutex);
  979. /* wait before the next scan */
  980. while (timeout && !kthread_should_stop())
  981. timeout = schedule_timeout_interruptible(timeout);
  982. }
  983. pr_info("kmemleak: Automatic memory scanning thread ended\n");
  984. return 0;
  985. }
  986. /*
  987. * Start the automatic memory scanning thread. This function must be called
  988. * with the kmemleak_mutex held.
  989. */
  990. void start_scan_thread(void)
  991. {
  992. if (scan_thread)
  993. return;
  994. scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
  995. if (IS_ERR(scan_thread)) {
  996. pr_warning("kmemleak: Failed to create the scan thread\n");
  997. scan_thread = NULL;
  998. }
  999. }
  1000. /*
  1001. * Stop the automatic memory scanning thread. This function must be called
  1002. * with the kmemleak_mutex held.
  1003. */
  1004. void stop_scan_thread(void)
  1005. {
  1006. if (scan_thread) {
  1007. kthread_stop(scan_thread);
  1008. scan_thread = NULL;
  1009. }
  1010. }
  1011. /*
  1012. * Iterate over the object_list and return the first valid object at or after
  1013. * the required position with its use_count incremented. The function triggers
  1014. * a memory scanning when the pos argument points to the first position.
  1015. */
  1016. static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
  1017. {
  1018. struct kmemleak_object *object;
  1019. loff_t n = *pos;
  1020. if (!n) {
  1021. kmemleak_scan();
  1022. reported_leaks = 0;
  1023. }
  1024. if (reported_leaks >= REPORTS_NR)
  1025. return NULL;
  1026. rcu_read_lock();
  1027. list_for_each_entry_rcu(object, &object_list, object_list) {
  1028. if (n-- > 0)
  1029. continue;
  1030. if (get_object(object))
  1031. goto out;
  1032. }
  1033. object = NULL;
  1034. out:
  1035. rcu_read_unlock();
  1036. return object;
  1037. }
  1038. /*
  1039. * Return the next object in the object_list. The function decrements the
  1040. * use_count of the previous object and increases that of the next one.
  1041. */
  1042. static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  1043. {
  1044. struct kmemleak_object *prev_obj = v;
  1045. struct kmemleak_object *next_obj = NULL;
  1046. struct list_head *n = &prev_obj->object_list;
  1047. ++(*pos);
  1048. if (reported_leaks >= REPORTS_NR)
  1049. goto out;
  1050. rcu_read_lock();
  1051. list_for_each_continue_rcu(n, &object_list) {
  1052. next_obj = list_entry(n, struct kmemleak_object, object_list);
  1053. if (get_object(next_obj))
  1054. break;
  1055. }
  1056. rcu_read_unlock();
  1057. out:
  1058. put_object(prev_obj);
  1059. return next_obj;
  1060. }
  1061. /*
  1062. * Decrement the use_count of the last object required, if any.
  1063. */
  1064. static void kmemleak_seq_stop(struct seq_file *seq, void *v)
  1065. {
  1066. if (v)
  1067. put_object(v);
  1068. }
  1069. /*
  1070. * Print the information for an unreferenced object to the seq file.
  1071. */
  1072. static int kmemleak_seq_show(struct seq_file *seq, void *v)
  1073. {
  1074. struct kmemleak_object *object = v;
  1075. unsigned long flags;
  1076. spin_lock_irqsave(&object->lock, flags);
  1077. if (!unreferenced_object(object))
  1078. goto out;
  1079. print_unreferenced(seq, object);
  1080. reported_leaks++;
  1081. out:
  1082. spin_unlock_irqrestore(&object->lock, flags);
  1083. return 0;
  1084. }
  1085. static const struct seq_operations kmemleak_seq_ops = {
  1086. .start = kmemleak_seq_start,
  1087. .next = kmemleak_seq_next,
  1088. .stop = kmemleak_seq_stop,
  1089. .show = kmemleak_seq_show,
  1090. };
  1091. static int kmemleak_open(struct inode *inode, struct file *file)
  1092. {
  1093. int ret = 0;
  1094. if (!atomic_read(&kmemleak_enabled))
  1095. return -EBUSY;
  1096. ret = mutex_lock_interruptible(&kmemleak_mutex);
  1097. if (ret < 0)
  1098. goto out;
  1099. if (file->f_mode & FMODE_READ) {
  1100. ret = mutex_lock_interruptible(&scan_mutex);
  1101. if (ret < 0)
  1102. goto kmemleak_unlock;
  1103. ret = seq_open(file, &kmemleak_seq_ops);
  1104. if (ret < 0)
  1105. goto scan_unlock;
  1106. }
  1107. return ret;
  1108. scan_unlock:
  1109. mutex_unlock(&scan_mutex);
  1110. kmemleak_unlock:
  1111. mutex_unlock(&kmemleak_mutex);
  1112. out:
  1113. return ret;
  1114. }
  1115. static int kmemleak_release(struct inode *inode, struct file *file)
  1116. {
  1117. int ret = 0;
  1118. if (file->f_mode & FMODE_READ) {
  1119. seq_release(inode, file);
  1120. mutex_unlock(&scan_mutex);
  1121. }
  1122. mutex_unlock(&kmemleak_mutex);
  1123. return ret;
  1124. }
  1125. /*
  1126. * File write operation to configure kmemleak at run-time. The following
  1127. * commands can be written to the /sys/kernel/debug/kmemleak file:
  1128. * off - disable kmemleak (irreversible)
  1129. * stack=on - enable the task stacks scanning
  1130. * stack=off - disable the tasks stacks scanning
  1131. * scan=on - start the automatic memory scanning thread
  1132. * scan=off - stop the automatic memory scanning thread
  1133. * scan=... - set the automatic memory scanning period in seconds (0 to
  1134. * disable it)
  1135. */
  1136. static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
  1137. size_t size, loff_t *ppos)
  1138. {
  1139. char buf[64];
  1140. int buf_size;
  1141. if (!atomic_read(&kmemleak_enabled))
  1142. return -EBUSY;
  1143. buf_size = min(size, (sizeof(buf) - 1));
  1144. if (strncpy_from_user(buf, user_buf, buf_size) < 0)
  1145. return -EFAULT;
  1146. buf[buf_size] = 0;
  1147. if (strncmp(buf, "off", 3) == 0)
  1148. kmemleak_disable();
  1149. else if (strncmp(buf, "stack=on", 8) == 0)
  1150. kmemleak_stack_scan = 1;
  1151. else if (strncmp(buf, "stack=off", 9) == 0)
  1152. kmemleak_stack_scan = 0;
  1153. else if (strncmp(buf, "scan=on", 7) == 0)
  1154. start_scan_thread();
  1155. else if (strncmp(buf, "scan=off", 8) == 0)
  1156. stop_scan_thread();
  1157. else if (strncmp(buf, "scan=", 5) == 0) {
  1158. unsigned long secs;
  1159. int err;
  1160. err = strict_strtoul(buf + 5, 0, &secs);
  1161. if (err < 0)
  1162. return err;
  1163. stop_scan_thread();
  1164. if (secs) {
  1165. jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
  1166. start_scan_thread();
  1167. }
  1168. } else
  1169. return -EINVAL;
  1170. /* ignore the rest of the buffer, only one command at a time */
  1171. *ppos += size;
  1172. return size;
  1173. }
  1174. static const struct file_operations kmemleak_fops = {
  1175. .owner = THIS_MODULE,
  1176. .open = kmemleak_open,
  1177. .read = seq_read,
  1178. .write = kmemleak_write,
  1179. .llseek = seq_lseek,
  1180. .release = kmemleak_release,
  1181. };
  1182. /*
  1183. * Perform the freeing of the kmemleak internal objects after waiting for any
  1184. * current memory scan to complete.
  1185. */
  1186. static int kmemleak_cleanup_thread(void *arg)
  1187. {
  1188. struct kmemleak_object *object;
  1189. mutex_lock(&kmemleak_mutex);
  1190. stop_scan_thread();
  1191. mutex_unlock(&kmemleak_mutex);
  1192. mutex_lock(&scan_mutex);
  1193. rcu_read_lock();
  1194. list_for_each_entry_rcu(object, &object_list, object_list)
  1195. delete_object(object->pointer);
  1196. rcu_read_unlock();
  1197. mutex_unlock(&scan_mutex);
  1198. return 0;
  1199. }
  1200. /*
  1201. * Start the clean-up thread.
  1202. */
  1203. static void kmemleak_cleanup(void)
  1204. {
  1205. struct task_struct *cleanup_thread;
  1206. cleanup_thread = kthread_run(kmemleak_cleanup_thread, NULL,
  1207. "kmemleak-clean");
  1208. if (IS_ERR(cleanup_thread))
  1209. pr_warning("kmemleak: Failed to create the clean-up thread\n");
  1210. }
  1211. /*
  1212. * Disable kmemleak. No memory allocation/freeing will be traced once this
  1213. * function is called. Disabling kmemleak is an irreversible operation.
  1214. */
  1215. static void kmemleak_disable(void)
  1216. {
  1217. /* atomically check whether it was already invoked */
  1218. if (atomic_cmpxchg(&kmemleak_error, 0, 1))
  1219. return;
  1220. /* stop any memory operation tracing */
  1221. atomic_set(&kmemleak_early_log, 0);
  1222. atomic_set(&kmemleak_enabled, 0);
  1223. /* check whether it is too early for a kernel thread */
  1224. if (atomic_read(&kmemleak_initialized))
  1225. kmemleak_cleanup();
  1226. pr_info("Kernel memory leak detector disabled\n");
  1227. }
  1228. /*
  1229. * Allow boot-time kmemleak disabling (enabled by default).
  1230. */
  1231. static int kmemleak_boot_config(char *str)
  1232. {
  1233. if (!str)
  1234. return -EINVAL;
  1235. if (strcmp(str, "off") == 0)
  1236. kmemleak_disable();
  1237. else if (strcmp(str, "on") != 0)
  1238. return -EINVAL;
  1239. return 0;
  1240. }
  1241. early_param("kmemleak", kmemleak_boot_config);
  1242. /*
  1243. * Kmemleak initialization.
  1244. */
  1245. void __init kmemleak_init(void)
  1246. {
  1247. int i;
  1248. unsigned long flags;
  1249. jiffies_scan_yield = msecs_to_jiffies(MSECS_SCAN_YIELD);
  1250. jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
  1251. jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
  1252. object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
  1253. scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
  1254. INIT_PRIO_TREE_ROOT(&object_tree_root);
  1255. /* the kernel is still in UP mode, so disabling the IRQs is enough */
  1256. local_irq_save(flags);
  1257. if (!atomic_read(&kmemleak_error)) {
  1258. atomic_set(&kmemleak_enabled, 1);
  1259. atomic_set(&kmemleak_early_log, 0);
  1260. }
  1261. local_irq_restore(flags);
  1262. /*
  1263. * This is the point where tracking allocations is safe. Automatic
  1264. * scanning is started during the late initcall. Add the early logged
  1265. * callbacks to the kmemleak infrastructure.
  1266. */
  1267. for (i = 0; i < crt_early_log; i++) {
  1268. struct early_log *log = &early_log[i];
  1269. switch (log->op_type) {
  1270. case KMEMLEAK_ALLOC:
  1271. kmemleak_alloc(log->ptr, log->size, log->min_count,
  1272. GFP_KERNEL);
  1273. break;
  1274. case KMEMLEAK_FREE:
  1275. kmemleak_free(log->ptr);
  1276. break;
  1277. case KMEMLEAK_NOT_LEAK:
  1278. kmemleak_not_leak(log->ptr);
  1279. break;
  1280. case KMEMLEAK_IGNORE:
  1281. kmemleak_ignore(log->ptr);
  1282. break;
  1283. case KMEMLEAK_SCAN_AREA:
  1284. kmemleak_scan_area(log->ptr, log->offset, log->length,
  1285. GFP_KERNEL);
  1286. break;
  1287. case KMEMLEAK_NO_SCAN:
  1288. kmemleak_no_scan(log->ptr);
  1289. break;
  1290. default:
  1291. WARN_ON(1);
  1292. }
  1293. }
  1294. }
  1295. /*
  1296. * Late initialization function.
  1297. */
  1298. static int __init kmemleak_late_init(void)
  1299. {
  1300. struct dentry *dentry;
  1301. atomic_set(&kmemleak_initialized, 1);
  1302. if (atomic_read(&kmemleak_error)) {
  1303. /*
  1304. * Some error occured and kmemleak was disabled. There is a
  1305. * small chance that kmemleak_disable() was called immediately
  1306. * after setting kmemleak_initialized and we may end up with
  1307. * two clean-up threads but serialized by scan_mutex.
  1308. */
  1309. kmemleak_cleanup();
  1310. return -ENOMEM;
  1311. }
  1312. dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL,
  1313. &kmemleak_fops);
  1314. if (!dentry)
  1315. pr_warning("kmemleak: Failed to create the debugfs kmemleak "
  1316. "file\n");
  1317. mutex_lock(&kmemleak_mutex);
  1318. start_scan_thread();
  1319. mutex_unlock(&kmemleak_mutex);
  1320. pr_info("Kernel memory leak detector initialized\n");
  1321. return 0;
  1322. }
  1323. late_initcall(kmemleak_late_init);