btree.c 8.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350
  1. /*
  2. * linux/fs/hfsplus/btree.c
  3. *
  4. * Copyright (C) 2001
  5. * Brad Boyer (flar@allandria.com)
  6. * (C) 2003 Ardis Technologies <roman@ardistech.com>
  7. *
  8. * Handle opening/closing btree
  9. */
  10. #include <linux/slab.h>
  11. #include <linux/pagemap.h>
  12. #include <linux/log2.h>
  13. #include "hfsplus_fs.h"
  14. #include "hfsplus_raw.h"
  15. /* Get a reference to a B*Tree and do some initial checks */
  16. struct hfs_btree *hfs_btree_open(struct super_block *sb, u32 id)
  17. {
  18. struct hfs_btree *tree;
  19. struct hfs_btree_header_rec *head;
  20. struct address_space *mapping;
  21. struct inode *inode;
  22. struct page *page;
  23. unsigned int size;
  24. tree = kzalloc(sizeof(*tree), GFP_KERNEL);
  25. if (!tree)
  26. return NULL;
  27. mutex_init(&tree->tree_lock);
  28. spin_lock_init(&tree->hash_lock);
  29. tree->sb = sb;
  30. tree->cnid = id;
  31. inode = hfsplus_iget(sb, id);
  32. if (IS_ERR(inode))
  33. goto free_tree;
  34. tree->inode = inode;
  35. if (!HFSPLUS_I(tree->inode)->first_blocks) {
  36. printk(KERN_ERR
  37. "hfs: invalid btree extent records (0 size).\n");
  38. goto free_inode;
  39. }
  40. mapping = tree->inode->i_mapping;
  41. page = read_mapping_page(mapping, 0, NULL);
  42. if (IS_ERR(page))
  43. goto free_inode;
  44. /* Load the header */
  45. head = (struct hfs_btree_header_rec *)(kmap(page) + sizeof(struct hfs_bnode_desc));
  46. tree->root = be32_to_cpu(head->root);
  47. tree->leaf_count = be32_to_cpu(head->leaf_count);
  48. tree->leaf_head = be32_to_cpu(head->leaf_head);
  49. tree->leaf_tail = be32_to_cpu(head->leaf_tail);
  50. tree->node_count = be32_to_cpu(head->node_count);
  51. tree->free_nodes = be32_to_cpu(head->free_nodes);
  52. tree->attributes = be32_to_cpu(head->attributes);
  53. tree->node_size = be16_to_cpu(head->node_size);
  54. tree->max_key_len = be16_to_cpu(head->max_key_len);
  55. tree->depth = be16_to_cpu(head->depth);
  56. /* Verify the tree and set the correct compare function */
  57. switch (id) {
  58. case HFSPLUS_EXT_CNID:
  59. if (tree->max_key_len != HFSPLUS_EXT_KEYLEN - sizeof(u16)) {
  60. printk(KERN_ERR "hfs: invalid extent max_key_len %d\n",
  61. tree->max_key_len);
  62. goto fail_page;
  63. }
  64. tree->keycmp = hfsplus_ext_cmp_key;
  65. break;
  66. case HFSPLUS_CAT_CNID:
  67. if (tree->max_key_len != HFSPLUS_CAT_KEYLEN - sizeof(u16)) {
  68. printk(KERN_ERR "hfs: invalid catalog max_key_len %d\n",
  69. tree->max_key_len);
  70. goto fail_page;
  71. }
  72. if (test_bit(HFSPLUS_SB_HFSX, &HFSPLUS_SB(sb)->flags) &&
  73. (head->key_type == HFSPLUS_KEY_BINARY))
  74. tree->keycmp = hfsplus_cat_bin_cmp_key;
  75. else {
  76. tree->keycmp = hfsplus_cat_case_cmp_key;
  77. set_bit(HFSPLUS_SB_CASEFOLD, &HFSPLUS_SB(sb)->flags);
  78. }
  79. break;
  80. default:
  81. printk(KERN_ERR "hfs: unknown B*Tree requested\n");
  82. goto fail_page;
  83. }
  84. size = tree->node_size;
  85. if (!is_power_of_2(size))
  86. goto fail_page;
  87. if (!tree->node_count)
  88. goto fail_page;
  89. tree->node_size_shift = ffs(size) - 1;
  90. tree->pages_per_bnode = (tree->node_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
  91. kunmap(page);
  92. page_cache_release(page);
  93. return tree;
  94. fail_page:
  95. page_cache_release(page);
  96. free_inode:
  97. tree->inode->i_mapping->a_ops = &hfsplus_aops;
  98. iput(tree->inode);
  99. free_tree:
  100. kfree(tree);
  101. return NULL;
  102. }
  103. /* Release resources used by a btree */
  104. void hfs_btree_close(struct hfs_btree *tree)
  105. {
  106. struct hfs_bnode *node;
  107. int i;
  108. if (!tree)
  109. return;
  110. for (i = 0; i < NODE_HASH_SIZE; i++) {
  111. while ((node = tree->node_hash[i])) {
  112. tree->node_hash[i] = node->next_hash;
  113. if (atomic_read(&node->refcnt))
  114. printk(KERN_CRIT "hfs: node %d:%d still has %d user(s)!\n",
  115. node->tree->cnid, node->this, atomic_read(&node->refcnt));
  116. hfs_bnode_free(node);
  117. tree->node_hash_cnt--;
  118. }
  119. }
  120. iput(tree->inode);
  121. kfree(tree);
  122. }
  123. void hfs_btree_write(struct hfs_btree *tree)
  124. {
  125. struct hfs_btree_header_rec *head;
  126. struct hfs_bnode *node;
  127. struct page *page;
  128. node = hfs_bnode_find(tree, 0);
  129. if (IS_ERR(node))
  130. /* panic? */
  131. return;
  132. /* Load the header */
  133. page = node->page[0];
  134. head = (struct hfs_btree_header_rec *)(kmap(page) + sizeof(struct hfs_bnode_desc));
  135. head->root = cpu_to_be32(tree->root);
  136. head->leaf_count = cpu_to_be32(tree->leaf_count);
  137. head->leaf_head = cpu_to_be32(tree->leaf_head);
  138. head->leaf_tail = cpu_to_be32(tree->leaf_tail);
  139. head->node_count = cpu_to_be32(tree->node_count);
  140. head->free_nodes = cpu_to_be32(tree->free_nodes);
  141. head->attributes = cpu_to_be32(tree->attributes);
  142. head->depth = cpu_to_be16(tree->depth);
  143. kunmap(page);
  144. set_page_dirty(page);
  145. hfs_bnode_put(node);
  146. }
  147. static struct hfs_bnode *hfs_bmap_new_bmap(struct hfs_bnode *prev, u32 idx)
  148. {
  149. struct hfs_btree *tree = prev->tree;
  150. struct hfs_bnode *node;
  151. struct hfs_bnode_desc desc;
  152. __be32 cnid;
  153. node = hfs_bnode_create(tree, idx);
  154. if (IS_ERR(node))
  155. return node;
  156. tree->free_nodes--;
  157. prev->next = idx;
  158. cnid = cpu_to_be32(idx);
  159. hfs_bnode_write(prev, &cnid, offsetof(struct hfs_bnode_desc, next), 4);
  160. node->type = HFS_NODE_MAP;
  161. node->num_recs = 1;
  162. hfs_bnode_clear(node, 0, tree->node_size);
  163. desc.next = 0;
  164. desc.prev = 0;
  165. desc.type = HFS_NODE_MAP;
  166. desc.height = 0;
  167. desc.num_recs = cpu_to_be16(1);
  168. desc.reserved = 0;
  169. hfs_bnode_write(node, &desc, 0, sizeof(desc));
  170. hfs_bnode_write_u16(node, 14, 0x8000);
  171. hfs_bnode_write_u16(node, tree->node_size - 2, 14);
  172. hfs_bnode_write_u16(node, tree->node_size - 4, tree->node_size - 6);
  173. return node;
  174. }
  175. struct hfs_bnode *hfs_bmap_alloc(struct hfs_btree *tree)
  176. {
  177. struct hfs_bnode *node, *next_node;
  178. struct page **pagep;
  179. u32 nidx, idx;
  180. unsigned off;
  181. u16 off16;
  182. u16 len;
  183. u8 *data, byte, m;
  184. int i;
  185. while (!tree->free_nodes) {
  186. struct inode *inode = tree->inode;
  187. struct hfsplus_inode_info *hip = HFSPLUS_I(inode);
  188. u32 count;
  189. int res;
  190. res = hfsplus_file_extend(inode);
  191. if (res)
  192. return ERR_PTR(res);
  193. hip->phys_size = inode->i_size =
  194. (loff_t)hip->alloc_blocks <<
  195. HFSPLUS_SB(tree->sb)->alloc_blksz_shift;
  196. hip->fs_blocks =
  197. hip->alloc_blocks << HFSPLUS_SB(tree->sb)->fs_shift;
  198. inode_set_bytes(inode, inode->i_size);
  199. count = inode->i_size >> tree->node_size_shift;
  200. tree->free_nodes = count - tree->node_count;
  201. tree->node_count = count;
  202. }
  203. nidx = 0;
  204. node = hfs_bnode_find(tree, nidx);
  205. if (IS_ERR(node))
  206. return node;
  207. len = hfs_brec_lenoff(node, 2, &off16);
  208. off = off16;
  209. off += node->page_offset;
  210. pagep = node->page + (off >> PAGE_CACHE_SHIFT);
  211. data = kmap(*pagep);
  212. off &= ~PAGE_CACHE_MASK;
  213. idx = 0;
  214. for (;;) {
  215. while (len) {
  216. byte = data[off];
  217. if (byte != 0xff) {
  218. for (m = 0x80, i = 0; i < 8; m >>= 1, i++) {
  219. if (!(byte & m)) {
  220. idx += i;
  221. data[off] |= m;
  222. set_page_dirty(*pagep);
  223. kunmap(*pagep);
  224. tree->free_nodes--;
  225. mark_inode_dirty(tree->inode);
  226. hfs_bnode_put(node);
  227. return hfs_bnode_create(tree, idx);
  228. }
  229. }
  230. }
  231. if (++off >= PAGE_CACHE_SIZE) {
  232. kunmap(*pagep);
  233. data = kmap(*++pagep);
  234. off = 0;
  235. }
  236. idx += 8;
  237. len--;
  238. }
  239. kunmap(*pagep);
  240. nidx = node->next;
  241. if (!nidx) {
  242. printk(KERN_DEBUG "hfs: create new bmap node...\n");
  243. next_node = hfs_bmap_new_bmap(node, idx);
  244. } else
  245. next_node = hfs_bnode_find(tree, nidx);
  246. hfs_bnode_put(node);
  247. if (IS_ERR(next_node))
  248. return next_node;
  249. node = next_node;
  250. len = hfs_brec_lenoff(node, 0, &off16);
  251. off = off16;
  252. off += node->page_offset;
  253. pagep = node->page + (off >> PAGE_CACHE_SHIFT);
  254. data = kmap(*pagep);
  255. off &= ~PAGE_CACHE_MASK;
  256. }
  257. }
  258. void hfs_bmap_free(struct hfs_bnode *node)
  259. {
  260. struct hfs_btree *tree;
  261. struct page *page;
  262. u16 off, len;
  263. u32 nidx;
  264. u8 *data, byte, m;
  265. dprint(DBG_BNODE_MOD, "btree_free_node: %u\n", node->this);
  266. BUG_ON(!node->this);
  267. tree = node->tree;
  268. nidx = node->this;
  269. node = hfs_bnode_find(tree, 0);
  270. if (IS_ERR(node))
  271. return;
  272. len = hfs_brec_lenoff(node, 2, &off);
  273. while (nidx >= len * 8) {
  274. u32 i;
  275. nidx -= len * 8;
  276. i = node->next;
  277. hfs_bnode_put(node);
  278. if (!i) {
  279. /* panic */;
  280. printk(KERN_CRIT "hfs: unable to free bnode %u. bmap not found!\n", node->this);
  281. return;
  282. }
  283. node = hfs_bnode_find(tree, i);
  284. if (IS_ERR(node))
  285. return;
  286. if (node->type != HFS_NODE_MAP) {
  287. /* panic */;
  288. printk(KERN_CRIT "hfs: invalid bmap found! (%u,%d)\n", node->this, node->type);
  289. hfs_bnode_put(node);
  290. return;
  291. }
  292. len = hfs_brec_lenoff(node, 0, &off);
  293. }
  294. off += node->page_offset + nidx / 8;
  295. page = node->page[off >> PAGE_CACHE_SHIFT];
  296. data = kmap(page);
  297. off &= ~PAGE_CACHE_MASK;
  298. m = 1 << (~nidx & 7);
  299. byte = data[off];
  300. if (!(byte & m)) {
  301. printk(KERN_CRIT "hfs: trying to free free bnode %u(%d)\n", node->this, node->type);
  302. kunmap(page);
  303. hfs_bnode_put(node);
  304. return;
  305. }
  306. data[off] = byte & ~m;
  307. set_page_dirty(page);
  308. kunmap(page);
  309. hfs_bnode_put(node);
  310. tree->free_nodes++;
  311. mark_inode_dirty(tree->inode);
  312. }