brec.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514
  1. /*
  2. * linux/fs/hfsplus/brec.c
  3. *
  4. * Copyright (C) 2001
  5. * Brad Boyer (flar@allandria.com)
  6. * (C) 2003 Ardis Technologies <roman@ardistech.com>
  7. *
  8. * Handle individual btree records
  9. */
  10. #include "hfsplus_fs.h"
  11. #include "hfsplus_raw.h"
  12. static struct hfs_bnode *hfs_bnode_split(struct hfs_find_data *fd);
  13. static int hfs_brec_update_parent(struct hfs_find_data *fd);
  14. static int hfs_btree_inc_height(struct hfs_btree *);
  15. /* Get the length and offset of the given record in the given node */
  16. u16 hfs_brec_lenoff(struct hfs_bnode *node, u16 rec, u16 *off)
  17. {
  18. __be16 retval[2];
  19. u16 dataoff;
  20. dataoff = node->tree->node_size - (rec + 2) * 2;
  21. hfs_bnode_read(node, retval, dataoff, 4);
  22. *off = be16_to_cpu(retval[1]);
  23. return be16_to_cpu(retval[0]) - *off;
  24. }
  25. /* Get the length of the key from a keyed record */
  26. u16 hfs_brec_keylen(struct hfs_bnode *node, u16 rec)
  27. {
  28. u16 retval, recoff;
  29. if (node->type != HFS_NODE_INDEX && node->type != HFS_NODE_LEAF)
  30. return 0;
  31. if ((node->type == HFS_NODE_INDEX) &&
  32. !(node->tree->attributes & HFS_TREE_VARIDXKEYS)) {
  33. retval = node->tree->max_key_len + 2;
  34. } else {
  35. recoff = hfs_bnode_read_u16(node, node->tree->node_size - (rec + 1) * 2);
  36. if (!recoff)
  37. return 0;
  38. if (node->tree->attributes & HFS_TREE_BIGKEYS) {
  39. retval = hfs_bnode_read_u16(node, recoff) + 2;
  40. if (retval > node->tree->max_key_len + 2) {
  41. printk(KERN_ERR "hfs: keylen %d too large\n",
  42. retval);
  43. retval = 0;
  44. }
  45. } else {
  46. retval = (hfs_bnode_read_u8(node, recoff) | 1) + 1;
  47. if (retval > node->tree->max_key_len + 1) {
  48. printk(KERN_ERR "hfs: keylen %d too large\n",
  49. retval);
  50. retval = 0;
  51. }
  52. }
  53. }
  54. return retval;
  55. }
  56. int hfs_brec_insert(struct hfs_find_data *fd, void *entry, int entry_len)
  57. {
  58. struct hfs_btree *tree;
  59. struct hfs_bnode *node, *new_node;
  60. int size, key_len, rec;
  61. int data_off, end_off;
  62. int idx_rec_off, data_rec_off, end_rec_off;
  63. __be32 cnid;
  64. tree = fd->tree;
  65. if (!fd->bnode) {
  66. if (!tree->root)
  67. hfs_btree_inc_height(tree);
  68. fd->bnode = hfs_bnode_find(tree, tree->leaf_head);
  69. if (IS_ERR(fd->bnode))
  70. return PTR_ERR(fd->bnode);
  71. fd->record = -1;
  72. }
  73. new_node = NULL;
  74. key_len = be16_to_cpu(fd->search_key->key_len) + 2;
  75. again:
  76. /* new record idx and complete record size */
  77. rec = fd->record + 1;
  78. size = key_len + entry_len;
  79. node = fd->bnode;
  80. hfs_bnode_dump(node);
  81. /* get last offset */
  82. end_rec_off = tree->node_size - (node->num_recs + 1) * 2;
  83. end_off = hfs_bnode_read_u16(node, end_rec_off);
  84. end_rec_off -= 2;
  85. dprint(DBG_BNODE_MOD, "insert_rec: %d, %d, %d, %d\n", rec, size, end_off, end_rec_off);
  86. if (size > end_rec_off - end_off) {
  87. if (new_node)
  88. panic("not enough room!\n");
  89. new_node = hfs_bnode_split(fd);
  90. if (IS_ERR(new_node))
  91. return PTR_ERR(new_node);
  92. goto again;
  93. }
  94. if (node->type == HFS_NODE_LEAF) {
  95. tree->leaf_count++;
  96. mark_inode_dirty(tree->inode);
  97. }
  98. node->num_recs++;
  99. /* write new last offset */
  100. hfs_bnode_write_u16(node, offsetof(struct hfs_bnode_desc, num_recs), node->num_recs);
  101. hfs_bnode_write_u16(node, end_rec_off, end_off + size);
  102. data_off = end_off;
  103. data_rec_off = end_rec_off + 2;
  104. idx_rec_off = tree->node_size - (rec + 1) * 2;
  105. if (idx_rec_off == data_rec_off)
  106. goto skip;
  107. /* move all following entries */
  108. do {
  109. data_off = hfs_bnode_read_u16(node, data_rec_off + 2);
  110. hfs_bnode_write_u16(node, data_rec_off, data_off + size);
  111. data_rec_off += 2;
  112. } while (data_rec_off < idx_rec_off);
  113. /* move data away */
  114. hfs_bnode_move(node, data_off + size, data_off,
  115. end_off - data_off);
  116. skip:
  117. hfs_bnode_write(node, fd->search_key, data_off, key_len);
  118. hfs_bnode_write(node, entry, data_off + key_len, entry_len);
  119. hfs_bnode_dump(node);
  120. if (new_node) {
  121. /* update parent key if we inserted a key
  122. * at the start of the first node
  123. */
  124. if (!rec && new_node != node)
  125. hfs_brec_update_parent(fd);
  126. hfs_bnode_put(fd->bnode);
  127. if (!new_node->parent) {
  128. hfs_btree_inc_height(tree);
  129. new_node->parent = tree->root;
  130. }
  131. fd->bnode = hfs_bnode_find(tree, new_node->parent);
  132. /* create index data entry */
  133. cnid = cpu_to_be32(new_node->this);
  134. entry = &cnid;
  135. entry_len = sizeof(cnid);
  136. /* get index key */
  137. hfs_bnode_read_key(new_node, fd->search_key, 14);
  138. __hfs_brec_find(fd->bnode, fd);
  139. hfs_bnode_put(new_node);
  140. new_node = NULL;
  141. if (tree->attributes & HFS_TREE_VARIDXKEYS)
  142. key_len = be16_to_cpu(fd->search_key->key_len) + 2;
  143. else {
  144. fd->search_key->key_len = cpu_to_be16(tree->max_key_len);
  145. key_len = tree->max_key_len + 2;
  146. }
  147. goto again;
  148. }
  149. if (!rec)
  150. hfs_brec_update_parent(fd);
  151. return 0;
  152. }
  153. int hfs_brec_remove(struct hfs_find_data *fd)
  154. {
  155. struct hfs_btree *tree;
  156. struct hfs_bnode *node, *parent;
  157. int end_off, rec_off, data_off, size;
  158. tree = fd->tree;
  159. node = fd->bnode;
  160. again:
  161. rec_off = tree->node_size - (fd->record + 2) * 2;
  162. end_off = tree->node_size - (node->num_recs + 1) * 2;
  163. if (node->type == HFS_NODE_LEAF) {
  164. tree->leaf_count--;
  165. mark_inode_dirty(tree->inode);
  166. }
  167. hfs_bnode_dump(node);
  168. dprint(DBG_BNODE_MOD, "remove_rec: %d, %d\n", fd->record, fd->keylength + fd->entrylength);
  169. if (!--node->num_recs) {
  170. hfs_bnode_unlink(node);
  171. if (!node->parent)
  172. return 0;
  173. parent = hfs_bnode_find(tree, node->parent);
  174. if (IS_ERR(parent))
  175. return PTR_ERR(parent);
  176. hfs_bnode_put(node);
  177. node = fd->bnode = parent;
  178. __hfs_brec_find(node, fd);
  179. goto again;
  180. }
  181. hfs_bnode_write_u16(node, offsetof(struct hfs_bnode_desc, num_recs), node->num_recs);
  182. if (rec_off == end_off)
  183. goto skip;
  184. size = fd->keylength + fd->entrylength;
  185. do {
  186. data_off = hfs_bnode_read_u16(node, rec_off);
  187. hfs_bnode_write_u16(node, rec_off + 2, data_off - size);
  188. rec_off -= 2;
  189. } while (rec_off >= end_off);
  190. /* fill hole */
  191. hfs_bnode_move(node, fd->keyoffset, fd->keyoffset + size,
  192. data_off - fd->keyoffset - size);
  193. skip:
  194. hfs_bnode_dump(node);
  195. if (!fd->record)
  196. hfs_brec_update_parent(fd);
  197. return 0;
  198. }
  199. static struct hfs_bnode *hfs_bnode_split(struct hfs_find_data *fd)
  200. {
  201. struct hfs_btree *tree;
  202. struct hfs_bnode *node, *new_node, *next_node;
  203. struct hfs_bnode_desc node_desc;
  204. int num_recs, new_rec_off, new_off, old_rec_off;
  205. int data_start, data_end, size;
  206. tree = fd->tree;
  207. node = fd->bnode;
  208. new_node = hfs_bmap_alloc(tree);
  209. if (IS_ERR(new_node))
  210. return new_node;
  211. hfs_bnode_get(node);
  212. dprint(DBG_BNODE_MOD, "split_nodes: %d - %d - %d\n",
  213. node->this, new_node->this, node->next);
  214. new_node->next = node->next;
  215. new_node->prev = node->this;
  216. new_node->parent = node->parent;
  217. new_node->type = node->type;
  218. new_node->height = node->height;
  219. if (node->next)
  220. next_node = hfs_bnode_find(tree, node->next);
  221. else
  222. next_node = NULL;
  223. if (IS_ERR(next_node)) {
  224. hfs_bnode_put(node);
  225. hfs_bnode_put(new_node);
  226. return next_node;
  227. }
  228. size = tree->node_size / 2 - node->num_recs * 2 - 14;
  229. old_rec_off = tree->node_size - 4;
  230. num_recs = 1;
  231. for (;;) {
  232. data_start = hfs_bnode_read_u16(node, old_rec_off);
  233. if (data_start > size)
  234. break;
  235. old_rec_off -= 2;
  236. if (++num_recs < node->num_recs)
  237. continue;
  238. /* panic? */
  239. hfs_bnode_put(node);
  240. hfs_bnode_put(new_node);
  241. if (next_node)
  242. hfs_bnode_put(next_node);
  243. return ERR_PTR(-ENOSPC);
  244. }
  245. if (fd->record + 1 < num_recs) {
  246. /* new record is in the lower half,
  247. * so leave some more space there
  248. */
  249. old_rec_off += 2;
  250. num_recs--;
  251. data_start = hfs_bnode_read_u16(node, old_rec_off);
  252. } else {
  253. hfs_bnode_put(node);
  254. hfs_bnode_get(new_node);
  255. fd->bnode = new_node;
  256. fd->record -= num_recs;
  257. fd->keyoffset -= data_start - 14;
  258. fd->entryoffset -= data_start - 14;
  259. }
  260. new_node->num_recs = node->num_recs - num_recs;
  261. node->num_recs = num_recs;
  262. new_rec_off = tree->node_size - 2;
  263. new_off = 14;
  264. size = data_start - new_off;
  265. num_recs = new_node->num_recs;
  266. data_end = data_start;
  267. while (num_recs) {
  268. hfs_bnode_write_u16(new_node, new_rec_off, new_off);
  269. old_rec_off -= 2;
  270. new_rec_off -= 2;
  271. data_end = hfs_bnode_read_u16(node, old_rec_off);
  272. new_off = data_end - size;
  273. num_recs--;
  274. }
  275. hfs_bnode_write_u16(new_node, new_rec_off, new_off);
  276. hfs_bnode_copy(new_node, 14, node, data_start, data_end - data_start);
  277. /* update new bnode header */
  278. node_desc.next = cpu_to_be32(new_node->next);
  279. node_desc.prev = cpu_to_be32(new_node->prev);
  280. node_desc.type = new_node->type;
  281. node_desc.height = new_node->height;
  282. node_desc.num_recs = cpu_to_be16(new_node->num_recs);
  283. node_desc.reserved = 0;
  284. hfs_bnode_write(new_node, &node_desc, 0, sizeof(node_desc));
  285. /* update previous bnode header */
  286. node->next = new_node->this;
  287. hfs_bnode_read(node, &node_desc, 0, sizeof(node_desc));
  288. node_desc.next = cpu_to_be32(node->next);
  289. node_desc.num_recs = cpu_to_be16(node->num_recs);
  290. hfs_bnode_write(node, &node_desc, 0, sizeof(node_desc));
  291. /* update next bnode header */
  292. if (next_node) {
  293. next_node->prev = new_node->this;
  294. hfs_bnode_read(next_node, &node_desc, 0, sizeof(node_desc));
  295. node_desc.prev = cpu_to_be32(next_node->prev);
  296. hfs_bnode_write(next_node, &node_desc, 0, sizeof(node_desc));
  297. hfs_bnode_put(next_node);
  298. } else if (node->this == tree->leaf_tail) {
  299. /* if there is no next node, this might be the new tail */
  300. tree->leaf_tail = new_node->this;
  301. mark_inode_dirty(tree->inode);
  302. }
  303. hfs_bnode_dump(node);
  304. hfs_bnode_dump(new_node);
  305. hfs_bnode_put(node);
  306. return new_node;
  307. }
  308. static int hfs_brec_update_parent(struct hfs_find_data *fd)
  309. {
  310. struct hfs_btree *tree;
  311. struct hfs_bnode *node, *new_node, *parent;
  312. int newkeylen, diff;
  313. int rec, rec_off, end_rec_off;
  314. int start_off, end_off;
  315. tree = fd->tree;
  316. node = fd->bnode;
  317. new_node = NULL;
  318. if (!node->parent)
  319. return 0;
  320. again:
  321. parent = hfs_bnode_find(tree, node->parent);
  322. if (IS_ERR(parent))
  323. return PTR_ERR(parent);
  324. __hfs_brec_find(parent, fd);
  325. hfs_bnode_dump(parent);
  326. rec = fd->record;
  327. /* size difference between old and new key */
  328. if (tree->attributes & HFS_TREE_VARIDXKEYS)
  329. newkeylen = hfs_bnode_read_u16(node, 14) + 2;
  330. else
  331. fd->keylength = newkeylen = tree->max_key_len + 2;
  332. dprint(DBG_BNODE_MOD, "update_rec: %d, %d, %d\n", rec, fd->keylength, newkeylen);
  333. rec_off = tree->node_size - (rec + 2) * 2;
  334. end_rec_off = tree->node_size - (parent->num_recs + 1) * 2;
  335. diff = newkeylen - fd->keylength;
  336. if (!diff)
  337. goto skip;
  338. if (diff > 0) {
  339. end_off = hfs_bnode_read_u16(parent, end_rec_off);
  340. if (end_rec_off - end_off < diff) {
  341. printk(KERN_DEBUG "hfs: splitting index node...\n");
  342. fd->bnode = parent;
  343. new_node = hfs_bnode_split(fd);
  344. if (IS_ERR(new_node))
  345. return PTR_ERR(new_node);
  346. parent = fd->bnode;
  347. rec = fd->record;
  348. rec_off = tree->node_size - (rec + 2) * 2;
  349. end_rec_off = tree->node_size - (parent->num_recs + 1) * 2;
  350. }
  351. }
  352. end_off = start_off = hfs_bnode_read_u16(parent, rec_off);
  353. hfs_bnode_write_u16(parent, rec_off, start_off + diff);
  354. start_off -= 4; /* move previous cnid too */
  355. while (rec_off > end_rec_off) {
  356. rec_off -= 2;
  357. end_off = hfs_bnode_read_u16(parent, rec_off);
  358. hfs_bnode_write_u16(parent, rec_off, end_off + diff);
  359. }
  360. hfs_bnode_move(parent, start_off + diff, start_off,
  361. end_off - start_off);
  362. skip:
  363. hfs_bnode_copy(parent, fd->keyoffset, node, 14, newkeylen);
  364. hfs_bnode_dump(parent);
  365. hfs_bnode_put(node);
  366. node = parent;
  367. if (new_node) {
  368. __be32 cnid;
  369. fd->bnode = hfs_bnode_find(tree, new_node->parent);
  370. /* create index key and entry */
  371. hfs_bnode_read_key(new_node, fd->search_key, 14);
  372. cnid = cpu_to_be32(new_node->this);
  373. __hfs_brec_find(fd->bnode, fd);
  374. hfs_brec_insert(fd, &cnid, sizeof(cnid));
  375. hfs_bnode_put(fd->bnode);
  376. hfs_bnode_put(new_node);
  377. if (!rec) {
  378. if (new_node == node)
  379. goto out;
  380. /* restore search_key */
  381. hfs_bnode_read_key(node, fd->search_key, 14);
  382. }
  383. }
  384. if (!rec && node->parent)
  385. goto again;
  386. out:
  387. fd->bnode = node;
  388. return 0;
  389. }
  390. static int hfs_btree_inc_height(struct hfs_btree *tree)
  391. {
  392. struct hfs_bnode *node, *new_node;
  393. struct hfs_bnode_desc node_desc;
  394. int key_size, rec;
  395. __be32 cnid;
  396. node = NULL;
  397. if (tree->root) {
  398. node = hfs_bnode_find(tree, tree->root);
  399. if (IS_ERR(node))
  400. return PTR_ERR(node);
  401. }
  402. new_node = hfs_bmap_alloc(tree);
  403. if (IS_ERR(new_node)) {
  404. hfs_bnode_put(node);
  405. return PTR_ERR(new_node);
  406. }
  407. tree->root = new_node->this;
  408. if (!tree->depth) {
  409. tree->leaf_head = tree->leaf_tail = new_node->this;
  410. new_node->type = HFS_NODE_LEAF;
  411. new_node->num_recs = 0;
  412. } else {
  413. new_node->type = HFS_NODE_INDEX;
  414. new_node->num_recs = 1;
  415. }
  416. new_node->parent = 0;
  417. new_node->next = 0;
  418. new_node->prev = 0;
  419. new_node->height = ++tree->depth;
  420. node_desc.next = cpu_to_be32(new_node->next);
  421. node_desc.prev = cpu_to_be32(new_node->prev);
  422. node_desc.type = new_node->type;
  423. node_desc.height = new_node->height;
  424. node_desc.num_recs = cpu_to_be16(new_node->num_recs);
  425. node_desc.reserved = 0;
  426. hfs_bnode_write(new_node, &node_desc, 0, sizeof(node_desc));
  427. rec = tree->node_size - 2;
  428. hfs_bnode_write_u16(new_node, rec, 14);
  429. if (node) {
  430. /* insert old root idx into new root */
  431. node->parent = tree->root;
  432. if (node->type == HFS_NODE_LEAF ||
  433. tree->attributes & HFS_TREE_VARIDXKEYS)
  434. key_size = hfs_bnode_read_u16(node, 14) + 2;
  435. else
  436. key_size = tree->max_key_len + 2;
  437. hfs_bnode_copy(new_node, 14, node, 14, key_size);
  438. if (!(tree->attributes & HFS_TREE_VARIDXKEYS)) {
  439. key_size = tree->max_key_len + 2;
  440. hfs_bnode_write_u16(new_node, 14, tree->max_key_len);
  441. }
  442. cnid = cpu_to_be32(node->this);
  443. hfs_bnode_write(new_node, &cnid, 14 + key_size, 4);
  444. rec -= 2;
  445. hfs_bnode_write_u16(new_node, rec, 14 + key_size + 4);
  446. hfs_bnode_put(node);
  447. }
  448. hfs_bnode_put(new_node);
  449. mark_inode_dirty(tree->inode);
  450. return 0;
  451. }