process.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842
  1. /*
  2. * Architecture-specific setup.
  3. *
  4. * Copyright (C) 1998-2003 Hewlett-Packard Co
  5. * David Mosberger-Tang <davidm@hpl.hp.com>
  6. * 04/11/17 Ashok Raj <ashok.raj@intel.com> Added CPU Hotplug Support
  7. *
  8. * 2005-10-07 Keith Owens <kaos@sgi.com>
  9. * Add notify_die() hooks.
  10. */
  11. #include <linux/cpu.h>
  12. #include <linux/pm.h>
  13. #include <linux/elf.h>
  14. #include <linux/errno.h>
  15. #include <linux/kallsyms.h>
  16. #include <linux/kernel.h>
  17. #include <linux/mm.h>
  18. #include <linux/module.h>
  19. #include <linux/notifier.h>
  20. #include <linux/personality.h>
  21. #include <linux/sched.h>
  22. #include <linux/slab.h>
  23. #include <linux/stddef.h>
  24. #include <linux/thread_info.h>
  25. #include <linux/unistd.h>
  26. #include <linux/efi.h>
  27. #include <linux/interrupt.h>
  28. #include <linux/delay.h>
  29. #include <linux/kdebug.h>
  30. #include <linux/utsname.h>
  31. #include <linux/tracehook.h>
  32. #include <asm/cpu.h>
  33. #include <asm/delay.h>
  34. #include <asm/elf.h>
  35. #include <asm/ia32.h>
  36. #include <asm/irq.h>
  37. #include <asm/kexec.h>
  38. #include <asm/pgalloc.h>
  39. #include <asm/processor.h>
  40. #include <asm/sal.h>
  41. #include <asm/tlbflush.h>
  42. #include <asm/uaccess.h>
  43. #include <asm/unwind.h>
  44. #include <asm/user.h>
  45. #include "entry.h"
  46. #ifdef CONFIG_PERFMON
  47. # include <asm/perfmon.h>
  48. #endif
  49. #include "sigframe.h"
  50. void (*ia64_mark_idle)(int);
  51. unsigned long boot_option_idle_override = 0;
  52. EXPORT_SYMBOL(boot_option_idle_override);
  53. unsigned long idle_halt;
  54. EXPORT_SYMBOL(idle_halt);
  55. unsigned long idle_nomwait;
  56. EXPORT_SYMBOL(idle_nomwait);
  57. void
  58. ia64_do_show_stack (struct unw_frame_info *info, void *arg)
  59. {
  60. unsigned long ip, sp, bsp;
  61. char buf[128]; /* don't make it so big that it overflows the stack! */
  62. printk("\nCall Trace:\n");
  63. do {
  64. unw_get_ip(info, &ip);
  65. if (ip == 0)
  66. break;
  67. unw_get_sp(info, &sp);
  68. unw_get_bsp(info, &bsp);
  69. snprintf(buf, sizeof(buf),
  70. " [<%016lx>] %%s\n"
  71. " sp=%016lx bsp=%016lx\n",
  72. ip, sp, bsp);
  73. print_symbol(buf, ip);
  74. } while (unw_unwind(info) >= 0);
  75. }
  76. void
  77. show_stack (struct task_struct *task, unsigned long *sp)
  78. {
  79. if (!task)
  80. unw_init_running(ia64_do_show_stack, NULL);
  81. else {
  82. struct unw_frame_info info;
  83. unw_init_from_blocked_task(&info, task);
  84. ia64_do_show_stack(&info, NULL);
  85. }
  86. }
  87. void
  88. dump_stack (void)
  89. {
  90. show_stack(NULL, NULL);
  91. }
  92. EXPORT_SYMBOL(dump_stack);
  93. void
  94. show_regs (struct pt_regs *regs)
  95. {
  96. unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri;
  97. print_modules();
  98. printk("\nPid: %d, CPU %d, comm: %20s\n", task_pid_nr(current),
  99. smp_processor_id(), current->comm);
  100. printk("psr : %016lx ifs : %016lx ip : [<%016lx>] %s (%s)\n",
  101. regs->cr_ipsr, regs->cr_ifs, ip, print_tainted(),
  102. init_utsname()->release);
  103. print_symbol("ip is at %s\n", ip);
  104. printk("unat: %016lx pfs : %016lx rsc : %016lx\n",
  105. regs->ar_unat, regs->ar_pfs, regs->ar_rsc);
  106. printk("rnat: %016lx bsps: %016lx pr : %016lx\n",
  107. regs->ar_rnat, regs->ar_bspstore, regs->pr);
  108. printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n",
  109. regs->loadrs, regs->ar_ccv, regs->ar_fpsr);
  110. printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd);
  111. printk("b0 : %016lx b6 : %016lx b7 : %016lx\n", regs->b0, regs->b6, regs->b7);
  112. printk("f6 : %05lx%016lx f7 : %05lx%016lx\n",
  113. regs->f6.u.bits[1], regs->f6.u.bits[0],
  114. regs->f7.u.bits[1], regs->f7.u.bits[0]);
  115. printk("f8 : %05lx%016lx f9 : %05lx%016lx\n",
  116. regs->f8.u.bits[1], regs->f8.u.bits[0],
  117. regs->f9.u.bits[1], regs->f9.u.bits[0]);
  118. printk("f10 : %05lx%016lx f11 : %05lx%016lx\n",
  119. regs->f10.u.bits[1], regs->f10.u.bits[0],
  120. regs->f11.u.bits[1], regs->f11.u.bits[0]);
  121. printk("r1 : %016lx r2 : %016lx r3 : %016lx\n", regs->r1, regs->r2, regs->r3);
  122. printk("r8 : %016lx r9 : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10);
  123. printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13);
  124. printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16);
  125. printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19);
  126. printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22);
  127. printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25);
  128. printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28);
  129. printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31);
  130. if (user_mode(regs)) {
  131. /* print the stacked registers */
  132. unsigned long val, *bsp, ndirty;
  133. int i, sof, is_nat = 0;
  134. sof = regs->cr_ifs & 0x7f; /* size of frame */
  135. ndirty = (regs->loadrs >> 19);
  136. bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty);
  137. for (i = 0; i < sof; ++i) {
  138. get_user(val, (unsigned long __user *) ia64_rse_skip_regs(bsp, i));
  139. printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val,
  140. ((i == sof - 1) || (i % 3) == 2) ? "\n" : " ");
  141. }
  142. } else
  143. show_stack(NULL, NULL);
  144. }
  145. void
  146. do_notify_resume_user(sigset_t *unused, struct sigscratch *scr, long in_syscall)
  147. {
  148. if (fsys_mode(current, &scr->pt)) {
  149. /*
  150. * defer signal-handling etc. until we return to
  151. * privilege-level 0.
  152. */
  153. if (!ia64_psr(&scr->pt)->lp)
  154. ia64_psr(&scr->pt)->lp = 1;
  155. return;
  156. }
  157. #ifdef CONFIG_PERFMON
  158. if (current->thread.pfm_needs_checking)
  159. /*
  160. * Note: pfm_handle_work() allow us to call it with interrupts
  161. * disabled, and may enable interrupts within the function.
  162. */
  163. pfm_handle_work();
  164. #endif
  165. /* deal with pending signal delivery */
  166. if (test_thread_flag(TIF_SIGPENDING)) {
  167. local_irq_enable(); /* force interrupt enable */
  168. ia64_do_signal(scr, in_syscall);
  169. }
  170. if (test_thread_flag(TIF_NOTIFY_RESUME)) {
  171. clear_thread_flag(TIF_NOTIFY_RESUME);
  172. tracehook_notify_resume(&scr->pt);
  173. }
  174. /* copy user rbs to kernel rbs */
  175. if (unlikely(test_thread_flag(TIF_RESTORE_RSE))) {
  176. local_irq_enable(); /* force interrupt enable */
  177. ia64_sync_krbs();
  178. }
  179. local_irq_disable(); /* force interrupt disable */
  180. }
  181. static int pal_halt = 1;
  182. static int can_do_pal_halt = 1;
  183. static int __init nohalt_setup(char * str)
  184. {
  185. pal_halt = can_do_pal_halt = 0;
  186. return 1;
  187. }
  188. __setup("nohalt", nohalt_setup);
  189. void
  190. update_pal_halt_status(int status)
  191. {
  192. can_do_pal_halt = pal_halt && status;
  193. }
  194. /*
  195. * We use this if we don't have any better idle routine..
  196. */
  197. void
  198. default_idle (void)
  199. {
  200. local_irq_enable();
  201. while (!need_resched()) {
  202. if (can_do_pal_halt) {
  203. local_irq_disable();
  204. if (!need_resched()) {
  205. safe_halt();
  206. }
  207. local_irq_enable();
  208. } else
  209. cpu_relax();
  210. }
  211. }
  212. #ifdef CONFIG_HOTPLUG_CPU
  213. /* We don't actually take CPU down, just spin without interrupts. */
  214. static inline void play_dead(void)
  215. {
  216. extern void ia64_cpu_local_tick (void);
  217. unsigned int this_cpu = smp_processor_id();
  218. /* Ack it */
  219. __get_cpu_var(cpu_state) = CPU_DEAD;
  220. max_xtp();
  221. local_irq_disable();
  222. idle_task_exit();
  223. ia64_jump_to_sal(&sal_boot_rendez_state[this_cpu]);
  224. /*
  225. * The above is a point of no-return, the processor is
  226. * expected to be in SAL loop now.
  227. */
  228. BUG();
  229. }
  230. #else
  231. static inline void play_dead(void)
  232. {
  233. BUG();
  234. }
  235. #endif /* CONFIG_HOTPLUG_CPU */
  236. static void do_nothing(void *unused)
  237. {
  238. }
  239. /*
  240. * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
  241. * pm_idle and update to new pm_idle value. Required while changing pm_idle
  242. * handler on SMP systems.
  243. *
  244. * Caller must have changed pm_idle to the new value before the call. Old
  245. * pm_idle value will not be used by any CPU after the return of this function.
  246. */
  247. void cpu_idle_wait(void)
  248. {
  249. smp_mb();
  250. /* kick all the CPUs so that they exit out of pm_idle */
  251. smp_call_function(do_nothing, NULL, 1);
  252. }
  253. EXPORT_SYMBOL_GPL(cpu_idle_wait);
  254. void __attribute__((noreturn))
  255. cpu_idle (void)
  256. {
  257. void (*mark_idle)(int) = ia64_mark_idle;
  258. int cpu = smp_processor_id();
  259. /* endless idle loop with no priority at all */
  260. while (1) {
  261. if (can_do_pal_halt) {
  262. current_thread_info()->status &= ~TS_POLLING;
  263. /*
  264. * TS_POLLING-cleared state must be visible before we
  265. * test NEED_RESCHED:
  266. */
  267. smp_mb();
  268. } else {
  269. current_thread_info()->status |= TS_POLLING;
  270. }
  271. if (!need_resched()) {
  272. void (*idle)(void);
  273. #ifdef CONFIG_SMP
  274. min_xtp();
  275. #endif
  276. rmb();
  277. if (mark_idle)
  278. (*mark_idle)(1);
  279. idle = pm_idle;
  280. if (!idle)
  281. idle = default_idle;
  282. (*idle)();
  283. if (mark_idle)
  284. (*mark_idle)(0);
  285. #ifdef CONFIG_SMP
  286. normal_xtp();
  287. #endif
  288. }
  289. preempt_enable_no_resched();
  290. schedule();
  291. preempt_disable();
  292. check_pgt_cache();
  293. if (cpu_is_offline(cpu))
  294. play_dead();
  295. }
  296. }
  297. void
  298. ia64_save_extra (struct task_struct *task)
  299. {
  300. #ifdef CONFIG_PERFMON
  301. unsigned long info;
  302. #endif
  303. if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
  304. ia64_save_debug_regs(&task->thread.dbr[0]);
  305. #ifdef CONFIG_PERFMON
  306. if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
  307. pfm_save_regs(task);
  308. info = __get_cpu_var(pfm_syst_info);
  309. if (info & PFM_CPUINFO_SYST_WIDE)
  310. pfm_syst_wide_update_task(task, info, 0);
  311. #endif
  312. #ifdef CONFIG_IA32_SUPPORT
  313. if (IS_IA32_PROCESS(task_pt_regs(task)))
  314. ia32_save_state(task);
  315. #endif
  316. }
  317. void
  318. ia64_load_extra (struct task_struct *task)
  319. {
  320. #ifdef CONFIG_PERFMON
  321. unsigned long info;
  322. #endif
  323. if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
  324. ia64_load_debug_regs(&task->thread.dbr[0]);
  325. #ifdef CONFIG_PERFMON
  326. if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
  327. pfm_load_regs(task);
  328. info = __get_cpu_var(pfm_syst_info);
  329. if (info & PFM_CPUINFO_SYST_WIDE)
  330. pfm_syst_wide_update_task(task, info, 1);
  331. #endif
  332. #ifdef CONFIG_IA32_SUPPORT
  333. if (IS_IA32_PROCESS(task_pt_regs(task)))
  334. ia32_load_state(task);
  335. #endif
  336. }
  337. /*
  338. * Copy the state of an ia-64 thread.
  339. *
  340. * We get here through the following call chain:
  341. *
  342. * from user-level: from kernel:
  343. *
  344. * <clone syscall> <some kernel call frames>
  345. * sys_clone :
  346. * do_fork do_fork
  347. * copy_thread copy_thread
  348. *
  349. * This means that the stack layout is as follows:
  350. *
  351. * +---------------------+ (highest addr)
  352. * | struct pt_regs |
  353. * +---------------------+
  354. * | struct switch_stack |
  355. * +---------------------+
  356. * | |
  357. * | memory stack |
  358. * | | <-- sp (lowest addr)
  359. * +---------------------+
  360. *
  361. * Observe that we copy the unat values that are in pt_regs and switch_stack. Spilling an
  362. * integer to address X causes bit N in ar.unat to be set to the NaT bit of the register,
  363. * with N=(X & 0x1ff)/8. Thus, copying the unat value preserves the NaT bits ONLY if the
  364. * pt_regs structure in the parent is congruent to that of the child, modulo 512. Since
  365. * the stack is page aligned and the page size is at least 4KB, this is always the case,
  366. * so there is nothing to worry about.
  367. */
  368. int
  369. copy_thread (int nr, unsigned long clone_flags,
  370. unsigned long user_stack_base, unsigned long user_stack_size,
  371. struct task_struct *p, struct pt_regs *regs)
  372. {
  373. extern char ia64_ret_from_clone, ia32_ret_from_clone;
  374. struct switch_stack *child_stack, *stack;
  375. unsigned long rbs, child_rbs, rbs_size;
  376. struct pt_regs *child_ptregs;
  377. int retval = 0;
  378. #ifdef CONFIG_SMP
  379. /*
  380. * For SMP idle threads, fork_by_hand() calls do_fork with
  381. * NULL regs.
  382. */
  383. if (!regs)
  384. return 0;
  385. #endif
  386. stack = ((struct switch_stack *) regs) - 1;
  387. child_ptregs = (struct pt_regs *) ((unsigned long) p + IA64_STK_OFFSET) - 1;
  388. child_stack = (struct switch_stack *) child_ptregs - 1;
  389. /* copy parent's switch_stack & pt_regs to child: */
  390. memcpy(child_stack, stack, sizeof(*child_ptregs) + sizeof(*child_stack));
  391. rbs = (unsigned long) current + IA64_RBS_OFFSET;
  392. child_rbs = (unsigned long) p + IA64_RBS_OFFSET;
  393. rbs_size = stack->ar_bspstore - rbs;
  394. /* copy the parent's register backing store to the child: */
  395. memcpy((void *) child_rbs, (void *) rbs, rbs_size);
  396. if (likely(user_mode(child_ptregs))) {
  397. if ((clone_flags & CLONE_SETTLS) && !IS_IA32_PROCESS(regs))
  398. child_ptregs->r13 = regs->r16; /* see sys_clone2() in entry.S */
  399. if (user_stack_base) {
  400. child_ptregs->r12 = user_stack_base + user_stack_size - 16;
  401. child_ptregs->ar_bspstore = user_stack_base;
  402. child_ptregs->ar_rnat = 0;
  403. child_ptregs->loadrs = 0;
  404. }
  405. } else {
  406. /*
  407. * Note: we simply preserve the relative position of
  408. * the stack pointer here. There is no need to
  409. * allocate a scratch area here, since that will have
  410. * been taken care of by the caller of sys_clone()
  411. * already.
  412. */
  413. child_ptregs->r12 = (unsigned long) child_ptregs - 16; /* kernel sp */
  414. child_ptregs->r13 = (unsigned long) p; /* set `current' pointer */
  415. }
  416. child_stack->ar_bspstore = child_rbs + rbs_size;
  417. if (IS_IA32_PROCESS(regs))
  418. child_stack->b0 = (unsigned long) &ia32_ret_from_clone;
  419. else
  420. child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
  421. /* copy parts of thread_struct: */
  422. p->thread.ksp = (unsigned long) child_stack - 16;
  423. /* stop some PSR bits from being inherited.
  424. * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
  425. * therefore we must specify them explicitly here and not include them in
  426. * IA64_PSR_BITS_TO_CLEAR.
  427. */
  428. child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
  429. & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
  430. /*
  431. * NOTE: The calling convention considers all floating point
  432. * registers in the high partition (fph) to be scratch. Since
  433. * the only way to get to this point is through a system call,
  434. * we know that the values in fph are all dead. Hence, there
  435. * is no need to inherit the fph state from the parent to the
  436. * child and all we have to do is to make sure that
  437. * IA64_THREAD_FPH_VALID is cleared in the child.
  438. *
  439. * XXX We could push this optimization a bit further by
  440. * clearing IA64_THREAD_FPH_VALID on ANY system call.
  441. * However, it's not clear this is worth doing. Also, it
  442. * would be a slight deviation from the normal Linux system
  443. * call behavior where scratch registers are preserved across
  444. * system calls (unless used by the system call itself).
  445. */
  446. # define THREAD_FLAGS_TO_CLEAR (IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \
  447. | IA64_THREAD_PM_VALID)
  448. # define THREAD_FLAGS_TO_SET 0
  449. p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR)
  450. | THREAD_FLAGS_TO_SET);
  451. ia64_drop_fpu(p); /* don't pick up stale state from a CPU's fph */
  452. #ifdef CONFIG_IA32_SUPPORT
  453. /*
  454. * If we're cloning an IA32 task then save the IA32 extra
  455. * state from the current task to the new task
  456. */
  457. if (IS_IA32_PROCESS(task_pt_regs(current))) {
  458. ia32_save_state(p);
  459. if (clone_flags & CLONE_SETTLS)
  460. retval = ia32_clone_tls(p, child_ptregs);
  461. /* Copy partially mapped page list */
  462. if (!retval)
  463. retval = ia32_copy_ia64_partial_page_list(p,
  464. clone_flags);
  465. }
  466. #endif
  467. #ifdef CONFIG_PERFMON
  468. if (current->thread.pfm_context)
  469. pfm_inherit(p, child_ptregs);
  470. #endif
  471. return retval;
  472. }
  473. static void
  474. do_copy_task_regs (struct task_struct *task, struct unw_frame_info *info, void *arg)
  475. {
  476. unsigned long mask, sp, nat_bits = 0, ar_rnat, urbs_end, cfm;
  477. unsigned long uninitialized_var(ip); /* GCC be quiet */
  478. elf_greg_t *dst = arg;
  479. struct pt_regs *pt;
  480. char nat;
  481. int i;
  482. memset(dst, 0, sizeof(elf_gregset_t)); /* don't leak any kernel bits to user-level */
  483. if (unw_unwind_to_user(info) < 0)
  484. return;
  485. unw_get_sp(info, &sp);
  486. pt = (struct pt_regs *) (sp + 16);
  487. urbs_end = ia64_get_user_rbs_end(task, pt, &cfm);
  488. if (ia64_sync_user_rbs(task, info->sw, pt->ar_bspstore, urbs_end) < 0)
  489. return;
  490. ia64_peek(task, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end),
  491. &ar_rnat);
  492. /*
  493. * coredump format:
  494. * r0-r31
  495. * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
  496. * predicate registers (p0-p63)
  497. * b0-b7
  498. * ip cfm user-mask
  499. * ar.rsc ar.bsp ar.bspstore ar.rnat
  500. * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
  501. */
  502. /* r0 is zero */
  503. for (i = 1, mask = (1UL << i); i < 32; ++i) {
  504. unw_get_gr(info, i, &dst[i], &nat);
  505. if (nat)
  506. nat_bits |= mask;
  507. mask <<= 1;
  508. }
  509. dst[32] = nat_bits;
  510. unw_get_pr(info, &dst[33]);
  511. for (i = 0; i < 8; ++i)
  512. unw_get_br(info, i, &dst[34 + i]);
  513. unw_get_rp(info, &ip);
  514. dst[42] = ip + ia64_psr(pt)->ri;
  515. dst[43] = cfm;
  516. dst[44] = pt->cr_ipsr & IA64_PSR_UM;
  517. unw_get_ar(info, UNW_AR_RSC, &dst[45]);
  518. /*
  519. * For bsp and bspstore, unw_get_ar() would return the kernel
  520. * addresses, but we need the user-level addresses instead:
  521. */
  522. dst[46] = urbs_end; /* note: by convention PT_AR_BSP points to the end of the urbs! */
  523. dst[47] = pt->ar_bspstore;
  524. dst[48] = ar_rnat;
  525. unw_get_ar(info, UNW_AR_CCV, &dst[49]);
  526. unw_get_ar(info, UNW_AR_UNAT, &dst[50]);
  527. unw_get_ar(info, UNW_AR_FPSR, &dst[51]);
  528. dst[52] = pt->ar_pfs; /* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */
  529. unw_get_ar(info, UNW_AR_LC, &dst[53]);
  530. unw_get_ar(info, UNW_AR_EC, &dst[54]);
  531. unw_get_ar(info, UNW_AR_CSD, &dst[55]);
  532. unw_get_ar(info, UNW_AR_SSD, &dst[56]);
  533. }
  534. void
  535. do_dump_task_fpu (struct task_struct *task, struct unw_frame_info *info, void *arg)
  536. {
  537. elf_fpreg_t *dst = arg;
  538. int i;
  539. memset(dst, 0, sizeof(elf_fpregset_t)); /* don't leak any "random" bits */
  540. if (unw_unwind_to_user(info) < 0)
  541. return;
  542. /* f0 is 0.0, f1 is 1.0 */
  543. for (i = 2; i < 32; ++i)
  544. unw_get_fr(info, i, dst + i);
  545. ia64_flush_fph(task);
  546. if ((task->thread.flags & IA64_THREAD_FPH_VALID) != 0)
  547. memcpy(dst + 32, task->thread.fph, 96*16);
  548. }
  549. void
  550. do_copy_regs (struct unw_frame_info *info, void *arg)
  551. {
  552. do_copy_task_regs(current, info, arg);
  553. }
  554. void
  555. do_dump_fpu (struct unw_frame_info *info, void *arg)
  556. {
  557. do_dump_task_fpu(current, info, arg);
  558. }
  559. void
  560. ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst)
  561. {
  562. unw_init_running(do_copy_regs, dst);
  563. }
  564. int
  565. dump_fpu (struct pt_regs *pt, elf_fpregset_t dst)
  566. {
  567. unw_init_running(do_dump_fpu, dst);
  568. return 1; /* f0-f31 are always valid so we always return 1 */
  569. }
  570. long
  571. sys_execve (char __user *filename, char __user * __user *argv, char __user * __user *envp,
  572. struct pt_regs *regs)
  573. {
  574. char *fname;
  575. int error;
  576. fname = getname(filename);
  577. error = PTR_ERR(fname);
  578. if (IS_ERR(fname))
  579. goto out;
  580. error = do_execve(fname, argv, envp, regs);
  581. putname(fname);
  582. out:
  583. return error;
  584. }
  585. pid_t
  586. kernel_thread (int (*fn)(void *), void *arg, unsigned long flags)
  587. {
  588. extern void start_kernel_thread (void);
  589. unsigned long *helper_fptr = (unsigned long *) &start_kernel_thread;
  590. struct {
  591. struct switch_stack sw;
  592. struct pt_regs pt;
  593. } regs;
  594. memset(&regs, 0, sizeof(regs));
  595. regs.pt.cr_iip = helper_fptr[0]; /* set entry point (IP) */
  596. regs.pt.r1 = helper_fptr[1]; /* set GP */
  597. regs.pt.r9 = (unsigned long) fn; /* 1st argument */
  598. regs.pt.r11 = (unsigned long) arg; /* 2nd argument */
  599. /* Preserve PSR bits, except for bits 32-34 and 37-45, which we can't read. */
  600. regs.pt.cr_ipsr = ia64_getreg(_IA64_REG_PSR) | IA64_PSR_BN;
  601. regs.pt.cr_ifs = 1UL << 63; /* mark as valid, empty frame */
  602. regs.sw.ar_fpsr = regs.pt.ar_fpsr = ia64_getreg(_IA64_REG_AR_FPSR);
  603. regs.sw.ar_bspstore = (unsigned long) current + IA64_RBS_OFFSET;
  604. regs.sw.pr = (1 << PRED_KERNEL_STACK);
  605. return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs.pt, 0, NULL, NULL);
  606. }
  607. EXPORT_SYMBOL(kernel_thread);
  608. /* This gets called from kernel_thread() via ia64_invoke_thread_helper(). */
  609. int
  610. kernel_thread_helper (int (*fn)(void *), void *arg)
  611. {
  612. #ifdef CONFIG_IA32_SUPPORT
  613. if (IS_IA32_PROCESS(task_pt_regs(current))) {
  614. /* A kernel thread is always a 64-bit process. */
  615. current->thread.map_base = DEFAULT_MAP_BASE;
  616. current->thread.task_size = DEFAULT_TASK_SIZE;
  617. ia64_set_kr(IA64_KR_IO_BASE, current->thread.old_iob);
  618. ia64_set_kr(IA64_KR_TSSD, current->thread.old_k1);
  619. }
  620. #endif
  621. return (*fn)(arg);
  622. }
  623. /*
  624. * Flush thread state. This is called when a thread does an execve().
  625. */
  626. void
  627. flush_thread (void)
  628. {
  629. /* drop floating-point and debug-register state if it exists: */
  630. current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID);
  631. ia64_drop_fpu(current);
  632. #ifdef CONFIG_IA32_SUPPORT
  633. if (IS_IA32_PROCESS(task_pt_regs(current))) {
  634. ia32_drop_ia64_partial_page_list(current);
  635. current->thread.task_size = IA32_PAGE_OFFSET;
  636. set_fs(USER_DS);
  637. memset(current->thread.tls_array, 0, sizeof(current->thread.tls_array));
  638. }
  639. #endif
  640. }
  641. /*
  642. * Clean up state associated with current thread. This is called when
  643. * the thread calls exit().
  644. */
  645. void
  646. exit_thread (void)
  647. {
  648. ia64_drop_fpu(current);
  649. #ifdef CONFIG_PERFMON
  650. /* if needed, stop monitoring and flush state to perfmon context */
  651. if (current->thread.pfm_context)
  652. pfm_exit_thread(current);
  653. /* free debug register resources */
  654. if (current->thread.flags & IA64_THREAD_DBG_VALID)
  655. pfm_release_debug_registers(current);
  656. #endif
  657. if (IS_IA32_PROCESS(task_pt_regs(current)))
  658. ia32_drop_ia64_partial_page_list(current);
  659. }
  660. unsigned long
  661. get_wchan (struct task_struct *p)
  662. {
  663. struct unw_frame_info info;
  664. unsigned long ip;
  665. int count = 0;
  666. if (!p || p == current || p->state == TASK_RUNNING)
  667. return 0;
  668. /*
  669. * Note: p may not be a blocked task (it could be current or
  670. * another process running on some other CPU. Rather than
  671. * trying to determine if p is really blocked, we just assume
  672. * it's blocked and rely on the unwind routines to fail
  673. * gracefully if the process wasn't really blocked after all.
  674. * --davidm 99/12/15
  675. */
  676. unw_init_from_blocked_task(&info, p);
  677. do {
  678. if (p->state == TASK_RUNNING)
  679. return 0;
  680. if (unw_unwind(&info) < 0)
  681. return 0;
  682. unw_get_ip(&info, &ip);
  683. if (!in_sched_functions(ip))
  684. return ip;
  685. } while (count++ < 16);
  686. return 0;
  687. }
  688. void
  689. cpu_halt (void)
  690. {
  691. pal_power_mgmt_info_u_t power_info[8];
  692. unsigned long min_power;
  693. int i, min_power_state;
  694. if (ia64_pal_halt_info(power_info) != 0)
  695. return;
  696. min_power_state = 0;
  697. min_power = power_info[0].pal_power_mgmt_info_s.power_consumption;
  698. for (i = 1; i < 8; ++i)
  699. if (power_info[i].pal_power_mgmt_info_s.im
  700. && power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) {
  701. min_power = power_info[i].pal_power_mgmt_info_s.power_consumption;
  702. min_power_state = i;
  703. }
  704. while (1)
  705. ia64_pal_halt(min_power_state);
  706. }
  707. void machine_shutdown(void)
  708. {
  709. #ifdef CONFIG_HOTPLUG_CPU
  710. int cpu;
  711. for_each_online_cpu(cpu) {
  712. if (cpu != smp_processor_id())
  713. cpu_down(cpu);
  714. }
  715. #endif
  716. #ifdef CONFIG_KEXEC
  717. kexec_disable_iosapic();
  718. #endif
  719. }
  720. void
  721. machine_restart (char *restart_cmd)
  722. {
  723. (void) notify_die(DIE_MACHINE_RESTART, restart_cmd, NULL, 0, 0, 0);
  724. (*efi.reset_system)(EFI_RESET_WARM, 0, 0, NULL);
  725. }
  726. void
  727. machine_halt (void)
  728. {
  729. (void) notify_die(DIE_MACHINE_HALT, "", NULL, 0, 0, 0);
  730. cpu_halt();
  731. }
  732. void
  733. machine_power_off (void)
  734. {
  735. if (pm_power_off)
  736. pm_power_off();
  737. machine_halt();
  738. }