skbuff.c 74 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015
  1. /*
  2. * Routines having to do with the 'struct sk_buff' memory handlers.
  3. *
  4. * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
  5. * Florian La Roche <rzsfl@rz.uni-sb.de>
  6. *
  7. * Fixes:
  8. * Alan Cox : Fixed the worst of the load
  9. * balancer bugs.
  10. * Dave Platt : Interrupt stacking fix.
  11. * Richard Kooijman : Timestamp fixes.
  12. * Alan Cox : Changed buffer format.
  13. * Alan Cox : destructor hook for AF_UNIX etc.
  14. * Linus Torvalds : Better skb_clone.
  15. * Alan Cox : Added skb_copy.
  16. * Alan Cox : Added all the changed routines Linus
  17. * only put in the headers
  18. * Ray VanTassle : Fixed --skb->lock in free
  19. * Alan Cox : skb_copy copy arp field
  20. * Andi Kleen : slabified it.
  21. * Robert Olsson : Removed skb_head_pool
  22. *
  23. * NOTE:
  24. * The __skb_ routines should be called with interrupts
  25. * disabled, or you better be *real* sure that the operation is atomic
  26. * with respect to whatever list is being frobbed (e.g. via lock_sock()
  27. * or via disabling bottom half handlers, etc).
  28. *
  29. * This program is free software; you can redistribute it and/or
  30. * modify it under the terms of the GNU General Public License
  31. * as published by the Free Software Foundation; either version
  32. * 2 of the License, or (at your option) any later version.
  33. */
  34. /*
  35. * The functions in this file will not compile correctly with gcc 2.4.x
  36. */
  37. #include <linux/module.h>
  38. #include <linux/types.h>
  39. #include <linux/kernel.h>
  40. #include <linux/mm.h>
  41. #include <linux/interrupt.h>
  42. #include <linux/in.h>
  43. #include <linux/inet.h>
  44. #include <linux/slab.h>
  45. #include <linux/netdevice.h>
  46. #ifdef CONFIG_NET_CLS_ACT
  47. #include <net/pkt_sched.h>
  48. #endif
  49. #include <linux/string.h>
  50. #include <linux/skbuff.h>
  51. #include <linux/splice.h>
  52. #include <linux/cache.h>
  53. #include <linux/rtnetlink.h>
  54. #include <linux/init.h>
  55. #include <linux/scatterlist.h>
  56. #include <linux/errqueue.h>
  57. #include <net/protocol.h>
  58. #include <net/dst.h>
  59. #include <net/sock.h>
  60. #include <net/checksum.h>
  61. #include <net/xfrm.h>
  62. #include <asm/uaccess.h>
  63. #include <asm/system.h>
  64. #include "kmap_skb.h"
  65. static struct kmem_cache *skbuff_head_cache __read_mostly;
  66. static struct kmem_cache *skbuff_fclone_cache __read_mostly;
  67. static void sock_pipe_buf_release(struct pipe_inode_info *pipe,
  68. struct pipe_buffer *buf)
  69. {
  70. put_page(buf->page);
  71. }
  72. static void sock_pipe_buf_get(struct pipe_inode_info *pipe,
  73. struct pipe_buffer *buf)
  74. {
  75. get_page(buf->page);
  76. }
  77. static int sock_pipe_buf_steal(struct pipe_inode_info *pipe,
  78. struct pipe_buffer *buf)
  79. {
  80. return 1;
  81. }
  82. /* Pipe buffer operations for a socket. */
  83. static struct pipe_buf_operations sock_pipe_buf_ops = {
  84. .can_merge = 0,
  85. .map = generic_pipe_buf_map,
  86. .unmap = generic_pipe_buf_unmap,
  87. .confirm = generic_pipe_buf_confirm,
  88. .release = sock_pipe_buf_release,
  89. .steal = sock_pipe_buf_steal,
  90. .get = sock_pipe_buf_get,
  91. };
  92. /*
  93. * Keep out-of-line to prevent kernel bloat.
  94. * __builtin_return_address is not used because it is not always
  95. * reliable.
  96. */
  97. /**
  98. * skb_over_panic - private function
  99. * @skb: buffer
  100. * @sz: size
  101. * @here: address
  102. *
  103. * Out of line support code for skb_put(). Not user callable.
  104. */
  105. void skb_over_panic(struct sk_buff *skb, int sz, void *here)
  106. {
  107. printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
  108. "data:%p tail:%#lx end:%#lx dev:%s\n",
  109. here, skb->len, sz, skb->head, skb->data,
  110. (unsigned long)skb->tail, (unsigned long)skb->end,
  111. skb->dev ? skb->dev->name : "<NULL>");
  112. BUG();
  113. }
  114. EXPORT_SYMBOL(skb_over_panic);
  115. /**
  116. * skb_under_panic - private function
  117. * @skb: buffer
  118. * @sz: size
  119. * @here: address
  120. *
  121. * Out of line support code for skb_push(). Not user callable.
  122. */
  123. void skb_under_panic(struct sk_buff *skb, int sz, void *here)
  124. {
  125. printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
  126. "data:%p tail:%#lx end:%#lx dev:%s\n",
  127. here, skb->len, sz, skb->head, skb->data,
  128. (unsigned long)skb->tail, (unsigned long)skb->end,
  129. skb->dev ? skb->dev->name : "<NULL>");
  130. BUG();
  131. }
  132. EXPORT_SYMBOL(skb_under_panic);
  133. /* Allocate a new skbuff. We do this ourselves so we can fill in a few
  134. * 'private' fields and also do memory statistics to find all the
  135. * [BEEP] leaks.
  136. *
  137. */
  138. /**
  139. * __alloc_skb - allocate a network buffer
  140. * @size: size to allocate
  141. * @gfp_mask: allocation mask
  142. * @fclone: allocate from fclone cache instead of head cache
  143. * and allocate a cloned (child) skb
  144. * @node: numa node to allocate memory on
  145. *
  146. * Allocate a new &sk_buff. The returned buffer has no headroom and a
  147. * tail room of size bytes. The object has a reference count of one.
  148. * The return is the buffer. On a failure the return is %NULL.
  149. *
  150. * Buffers may only be allocated from interrupts using a @gfp_mask of
  151. * %GFP_ATOMIC.
  152. */
  153. struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
  154. int fclone, int node)
  155. {
  156. struct kmem_cache *cache;
  157. struct skb_shared_info *shinfo;
  158. struct sk_buff *skb;
  159. u8 *data;
  160. cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;
  161. /* Get the HEAD */
  162. skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
  163. if (!skb)
  164. goto out;
  165. size = SKB_DATA_ALIGN(size);
  166. data = kmalloc_node_track_caller(size + sizeof(struct skb_shared_info),
  167. gfp_mask, node);
  168. if (!data)
  169. goto nodata;
  170. /*
  171. * Only clear those fields we need to clear, not those that we will
  172. * actually initialise below. Hence, don't put any more fields after
  173. * the tail pointer in struct sk_buff!
  174. */
  175. memset(skb, 0, offsetof(struct sk_buff, tail));
  176. skb->truesize = size + sizeof(struct sk_buff);
  177. atomic_set(&skb->users, 1);
  178. skb->head = data;
  179. skb->data = data;
  180. skb_reset_tail_pointer(skb);
  181. skb->end = skb->tail + size;
  182. /* make sure we initialize shinfo sequentially */
  183. shinfo = skb_shinfo(skb);
  184. atomic_set(&shinfo->dataref, 1);
  185. shinfo->nr_frags = 0;
  186. shinfo->gso_size = 0;
  187. shinfo->gso_segs = 0;
  188. shinfo->gso_type = 0;
  189. shinfo->ip6_frag_id = 0;
  190. shinfo->tx_flags.flags = 0;
  191. shinfo->frag_list = NULL;
  192. memset(&shinfo->hwtstamps, 0, sizeof(shinfo->hwtstamps));
  193. if (fclone) {
  194. struct sk_buff *child = skb + 1;
  195. atomic_t *fclone_ref = (atomic_t *) (child + 1);
  196. skb->fclone = SKB_FCLONE_ORIG;
  197. atomic_set(fclone_ref, 1);
  198. child->fclone = SKB_FCLONE_UNAVAILABLE;
  199. }
  200. out:
  201. return skb;
  202. nodata:
  203. kmem_cache_free(cache, skb);
  204. skb = NULL;
  205. goto out;
  206. }
  207. EXPORT_SYMBOL(__alloc_skb);
  208. /**
  209. * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
  210. * @dev: network device to receive on
  211. * @length: length to allocate
  212. * @gfp_mask: get_free_pages mask, passed to alloc_skb
  213. *
  214. * Allocate a new &sk_buff and assign it a usage count of one. The
  215. * buffer has unspecified headroom built in. Users should allocate
  216. * the headroom they think they need without accounting for the
  217. * built in space. The built in space is used for optimisations.
  218. *
  219. * %NULL is returned if there is no free memory.
  220. */
  221. struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
  222. unsigned int length, gfp_t gfp_mask)
  223. {
  224. int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1;
  225. struct sk_buff *skb;
  226. skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, node);
  227. if (likely(skb)) {
  228. skb_reserve(skb, NET_SKB_PAD);
  229. skb->dev = dev;
  230. }
  231. return skb;
  232. }
  233. EXPORT_SYMBOL(__netdev_alloc_skb);
  234. struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask)
  235. {
  236. int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1;
  237. struct page *page;
  238. page = alloc_pages_node(node, gfp_mask, 0);
  239. return page;
  240. }
  241. EXPORT_SYMBOL(__netdev_alloc_page);
  242. void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
  243. int size)
  244. {
  245. skb_fill_page_desc(skb, i, page, off, size);
  246. skb->len += size;
  247. skb->data_len += size;
  248. skb->truesize += size;
  249. }
  250. EXPORT_SYMBOL(skb_add_rx_frag);
  251. /**
  252. * dev_alloc_skb - allocate an skbuff for receiving
  253. * @length: length to allocate
  254. *
  255. * Allocate a new &sk_buff and assign it a usage count of one. The
  256. * buffer has unspecified headroom built in. Users should allocate
  257. * the headroom they think they need without accounting for the
  258. * built in space. The built in space is used for optimisations.
  259. *
  260. * %NULL is returned if there is no free memory. Although this function
  261. * allocates memory it can be called from an interrupt.
  262. */
  263. struct sk_buff *dev_alloc_skb(unsigned int length)
  264. {
  265. /*
  266. * There is more code here than it seems:
  267. * __dev_alloc_skb is an inline
  268. */
  269. return __dev_alloc_skb(length, GFP_ATOMIC);
  270. }
  271. EXPORT_SYMBOL(dev_alloc_skb);
  272. static void skb_drop_list(struct sk_buff **listp)
  273. {
  274. struct sk_buff *list = *listp;
  275. *listp = NULL;
  276. do {
  277. struct sk_buff *this = list;
  278. list = list->next;
  279. kfree_skb(this);
  280. } while (list);
  281. }
  282. static inline void skb_drop_fraglist(struct sk_buff *skb)
  283. {
  284. skb_drop_list(&skb_shinfo(skb)->frag_list);
  285. }
  286. static void skb_clone_fraglist(struct sk_buff *skb)
  287. {
  288. struct sk_buff *list;
  289. for (list = skb_shinfo(skb)->frag_list; list; list = list->next)
  290. skb_get(list);
  291. }
  292. static void skb_release_data(struct sk_buff *skb)
  293. {
  294. if (!skb->cloned ||
  295. !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
  296. &skb_shinfo(skb)->dataref)) {
  297. if (skb_shinfo(skb)->nr_frags) {
  298. int i;
  299. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
  300. put_page(skb_shinfo(skb)->frags[i].page);
  301. }
  302. if (skb_shinfo(skb)->frag_list)
  303. skb_drop_fraglist(skb);
  304. kfree(skb->head);
  305. }
  306. }
  307. /*
  308. * Free an skbuff by memory without cleaning the state.
  309. */
  310. static void kfree_skbmem(struct sk_buff *skb)
  311. {
  312. struct sk_buff *other;
  313. atomic_t *fclone_ref;
  314. switch (skb->fclone) {
  315. case SKB_FCLONE_UNAVAILABLE:
  316. kmem_cache_free(skbuff_head_cache, skb);
  317. break;
  318. case SKB_FCLONE_ORIG:
  319. fclone_ref = (atomic_t *) (skb + 2);
  320. if (atomic_dec_and_test(fclone_ref))
  321. kmem_cache_free(skbuff_fclone_cache, skb);
  322. break;
  323. case SKB_FCLONE_CLONE:
  324. fclone_ref = (atomic_t *) (skb + 1);
  325. other = skb - 1;
  326. /* The clone portion is available for
  327. * fast-cloning again.
  328. */
  329. skb->fclone = SKB_FCLONE_UNAVAILABLE;
  330. if (atomic_dec_and_test(fclone_ref))
  331. kmem_cache_free(skbuff_fclone_cache, other);
  332. break;
  333. }
  334. }
  335. static void skb_release_head_state(struct sk_buff *skb)
  336. {
  337. dst_release(skb->dst);
  338. #ifdef CONFIG_XFRM
  339. secpath_put(skb->sp);
  340. #endif
  341. if (skb->destructor) {
  342. WARN_ON(in_irq());
  343. skb->destructor(skb);
  344. }
  345. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  346. nf_conntrack_put(skb->nfct);
  347. nf_conntrack_put_reasm(skb->nfct_reasm);
  348. #endif
  349. #ifdef CONFIG_BRIDGE_NETFILTER
  350. nf_bridge_put(skb->nf_bridge);
  351. #endif
  352. /* XXX: IS this still necessary? - JHS */
  353. #ifdef CONFIG_NET_SCHED
  354. skb->tc_index = 0;
  355. #ifdef CONFIG_NET_CLS_ACT
  356. skb->tc_verd = 0;
  357. #endif
  358. #endif
  359. }
  360. /* Free everything but the sk_buff shell. */
  361. static void skb_release_all(struct sk_buff *skb)
  362. {
  363. skb_release_head_state(skb);
  364. skb_release_data(skb);
  365. }
  366. /**
  367. * __kfree_skb - private function
  368. * @skb: buffer
  369. *
  370. * Free an sk_buff. Release anything attached to the buffer.
  371. * Clean the state. This is an internal helper function. Users should
  372. * always call kfree_skb
  373. */
  374. void __kfree_skb(struct sk_buff *skb)
  375. {
  376. skb_release_all(skb);
  377. kfree_skbmem(skb);
  378. }
  379. EXPORT_SYMBOL(__kfree_skb);
  380. /**
  381. * kfree_skb - free an sk_buff
  382. * @skb: buffer to free
  383. *
  384. * Drop a reference to the buffer and free it if the usage count has
  385. * hit zero.
  386. */
  387. void kfree_skb(struct sk_buff *skb)
  388. {
  389. if (unlikely(!skb))
  390. return;
  391. if (likely(atomic_read(&skb->users) == 1))
  392. smp_rmb();
  393. else if (likely(!atomic_dec_and_test(&skb->users)))
  394. return;
  395. __kfree_skb(skb);
  396. }
  397. EXPORT_SYMBOL(kfree_skb);
  398. /**
  399. * skb_recycle_check - check if skb can be reused for receive
  400. * @skb: buffer
  401. * @skb_size: minimum receive buffer size
  402. *
  403. * Checks that the skb passed in is not shared or cloned, and
  404. * that it is linear and its head portion at least as large as
  405. * skb_size so that it can be recycled as a receive buffer.
  406. * If these conditions are met, this function does any necessary
  407. * reference count dropping and cleans up the skbuff as if it
  408. * just came from __alloc_skb().
  409. */
  410. int skb_recycle_check(struct sk_buff *skb, int skb_size)
  411. {
  412. struct skb_shared_info *shinfo;
  413. if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE)
  414. return 0;
  415. skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD);
  416. if (skb_end_pointer(skb) - skb->head < skb_size)
  417. return 0;
  418. if (skb_shared(skb) || skb_cloned(skb))
  419. return 0;
  420. skb_release_head_state(skb);
  421. shinfo = skb_shinfo(skb);
  422. atomic_set(&shinfo->dataref, 1);
  423. shinfo->nr_frags = 0;
  424. shinfo->gso_size = 0;
  425. shinfo->gso_segs = 0;
  426. shinfo->gso_type = 0;
  427. shinfo->ip6_frag_id = 0;
  428. shinfo->frag_list = NULL;
  429. memset(skb, 0, offsetof(struct sk_buff, tail));
  430. skb->data = skb->head + NET_SKB_PAD;
  431. skb_reset_tail_pointer(skb);
  432. return 1;
  433. }
  434. EXPORT_SYMBOL(skb_recycle_check);
  435. static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
  436. {
  437. new->tstamp = old->tstamp;
  438. new->dev = old->dev;
  439. new->transport_header = old->transport_header;
  440. new->network_header = old->network_header;
  441. new->mac_header = old->mac_header;
  442. new->dst = dst_clone(old->dst);
  443. #ifdef CONFIG_XFRM
  444. new->sp = secpath_get(old->sp);
  445. #endif
  446. memcpy(new->cb, old->cb, sizeof(old->cb));
  447. new->csum_start = old->csum_start;
  448. new->csum_offset = old->csum_offset;
  449. new->local_df = old->local_df;
  450. new->pkt_type = old->pkt_type;
  451. new->ip_summed = old->ip_summed;
  452. skb_copy_queue_mapping(new, old);
  453. new->priority = old->priority;
  454. #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
  455. new->ipvs_property = old->ipvs_property;
  456. #endif
  457. new->protocol = old->protocol;
  458. new->mark = old->mark;
  459. __nf_copy(new, old);
  460. #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
  461. defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
  462. new->nf_trace = old->nf_trace;
  463. #endif
  464. #ifdef CONFIG_NET_SCHED
  465. new->tc_index = old->tc_index;
  466. #ifdef CONFIG_NET_CLS_ACT
  467. new->tc_verd = old->tc_verd;
  468. #endif
  469. #endif
  470. new->vlan_tci = old->vlan_tci;
  471. skb_copy_secmark(new, old);
  472. }
  473. static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
  474. {
  475. #define C(x) n->x = skb->x
  476. n->next = n->prev = NULL;
  477. n->sk = NULL;
  478. __copy_skb_header(n, skb);
  479. C(len);
  480. C(data_len);
  481. C(mac_len);
  482. n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
  483. n->cloned = 1;
  484. n->nohdr = 0;
  485. n->destructor = NULL;
  486. C(iif);
  487. C(tail);
  488. C(end);
  489. C(head);
  490. C(data);
  491. C(truesize);
  492. #if defined(CONFIG_MAC80211) || defined(CONFIG_MAC80211_MODULE)
  493. C(do_not_encrypt);
  494. C(requeue);
  495. #endif
  496. atomic_set(&n->users, 1);
  497. atomic_inc(&(skb_shinfo(skb)->dataref));
  498. skb->cloned = 1;
  499. return n;
  500. #undef C
  501. }
  502. /**
  503. * skb_morph - morph one skb into another
  504. * @dst: the skb to receive the contents
  505. * @src: the skb to supply the contents
  506. *
  507. * This is identical to skb_clone except that the target skb is
  508. * supplied by the user.
  509. *
  510. * The target skb is returned upon exit.
  511. */
  512. struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
  513. {
  514. skb_release_all(dst);
  515. return __skb_clone(dst, src);
  516. }
  517. EXPORT_SYMBOL_GPL(skb_morph);
  518. /**
  519. * skb_clone - duplicate an sk_buff
  520. * @skb: buffer to clone
  521. * @gfp_mask: allocation priority
  522. *
  523. * Duplicate an &sk_buff. The new one is not owned by a socket. Both
  524. * copies share the same packet data but not structure. The new
  525. * buffer has a reference count of 1. If the allocation fails the
  526. * function returns %NULL otherwise the new buffer is returned.
  527. *
  528. * If this function is called from an interrupt gfp_mask() must be
  529. * %GFP_ATOMIC.
  530. */
  531. struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
  532. {
  533. struct sk_buff *n;
  534. n = skb + 1;
  535. if (skb->fclone == SKB_FCLONE_ORIG &&
  536. n->fclone == SKB_FCLONE_UNAVAILABLE) {
  537. atomic_t *fclone_ref = (atomic_t *) (n + 1);
  538. n->fclone = SKB_FCLONE_CLONE;
  539. atomic_inc(fclone_ref);
  540. } else {
  541. n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
  542. if (!n)
  543. return NULL;
  544. n->fclone = SKB_FCLONE_UNAVAILABLE;
  545. }
  546. return __skb_clone(n, skb);
  547. }
  548. EXPORT_SYMBOL(skb_clone);
  549. static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
  550. {
  551. #ifndef NET_SKBUFF_DATA_USES_OFFSET
  552. /*
  553. * Shift between the two data areas in bytes
  554. */
  555. unsigned long offset = new->data - old->data;
  556. #endif
  557. __copy_skb_header(new, old);
  558. #ifndef NET_SKBUFF_DATA_USES_OFFSET
  559. /* {transport,network,mac}_header are relative to skb->head */
  560. new->transport_header += offset;
  561. new->network_header += offset;
  562. new->mac_header += offset;
  563. #endif
  564. skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
  565. skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
  566. skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
  567. }
  568. /**
  569. * skb_copy - create private copy of an sk_buff
  570. * @skb: buffer to copy
  571. * @gfp_mask: allocation priority
  572. *
  573. * Make a copy of both an &sk_buff and its data. This is used when the
  574. * caller wishes to modify the data and needs a private copy of the
  575. * data to alter. Returns %NULL on failure or the pointer to the buffer
  576. * on success. The returned buffer has a reference count of 1.
  577. *
  578. * As by-product this function converts non-linear &sk_buff to linear
  579. * one, so that &sk_buff becomes completely private and caller is allowed
  580. * to modify all the data of returned buffer. This means that this
  581. * function is not recommended for use in circumstances when only
  582. * header is going to be modified. Use pskb_copy() instead.
  583. */
  584. struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
  585. {
  586. int headerlen = skb->data - skb->head;
  587. /*
  588. * Allocate the copy buffer
  589. */
  590. struct sk_buff *n;
  591. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  592. n = alloc_skb(skb->end + skb->data_len, gfp_mask);
  593. #else
  594. n = alloc_skb(skb->end - skb->head + skb->data_len, gfp_mask);
  595. #endif
  596. if (!n)
  597. return NULL;
  598. /* Set the data pointer */
  599. skb_reserve(n, headerlen);
  600. /* Set the tail pointer and length */
  601. skb_put(n, skb->len);
  602. if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
  603. BUG();
  604. copy_skb_header(n, skb);
  605. return n;
  606. }
  607. EXPORT_SYMBOL(skb_copy);
  608. /**
  609. * pskb_copy - create copy of an sk_buff with private head.
  610. * @skb: buffer to copy
  611. * @gfp_mask: allocation priority
  612. *
  613. * Make a copy of both an &sk_buff and part of its data, located
  614. * in header. Fragmented data remain shared. This is used when
  615. * the caller wishes to modify only header of &sk_buff and needs
  616. * private copy of the header to alter. Returns %NULL on failure
  617. * or the pointer to the buffer on success.
  618. * The returned buffer has a reference count of 1.
  619. */
  620. struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask)
  621. {
  622. /*
  623. * Allocate the copy buffer
  624. */
  625. struct sk_buff *n;
  626. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  627. n = alloc_skb(skb->end, gfp_mask);
  628. #else
  629. n = alloc_skb(skb->end - skb->head, gfp_mask);
  630. #endif
  631. if (!n)
  632. goto out;
  633. /* Set the data pointer */
  634. skb_reserve(n, skb->data - skb->head);
  635. /* Set the tail pointer and length */
  636. skb_put(n, skb_headlen(skb));
  637. /* Copy the bytes */
  638. skb_copy_from_linear_data(skb, n->data, n->len);
  639. n->truesize += skb->data_len;
  640. n->data_len = skb->data_len;
  641. n->len = skb->len;
  642. if (skb_shinfo(skb)->nr_frags) {
  643. int i;
  644. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  645. skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
  646. get_page(skb_shinfo(n)->frags[i].page);
  647. }
  648. skb_shinfo(n)->nr_frags = i;
  649. }
  650. if (skb_shinfo(skb)->frag_list) {
  651. skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
  652. skb_clone_fraglist(n);
  653. }
  654. copy_skb_header(n, skb);
  655. out:
  656. return n;
  657. }
  658. EXPORT_SYMBOL(pskb_copy);
  659. /**
  660. * pskb_expand_head - reallocate header of &sk_buff
  661. * @skb: buffer to reallocate
  662. * @nhead: room to add at head
  663. * @ntail: room to add at tail
  664. * @gfp_mask: allocation priority
  665. *
  666. * Expands (or creates identical copy, if &nhead and &ntail are zero)
  667. * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
  668. * reference count of 1. Returns zero in the case of success or error,
  669. * if expansion failed. In the last case, &sk_buff is not changed.
  670. *
  671. * All the pointers pointing into skb header may change and must be
  672. * reloaded after call to this function.
  673. */
  674. int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
  675. gfp_t gfp_mask)
  676. {
  677. int i;
  678. u8 *data;
  679. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  680. int size = nhead + skb->end + ntail;
  681. #else
  682. int size = nhead + (skb->end - skb->head) + ntail;
  683. #endif
  684. long off;
  685. BUG_ON(nhead < 0);
  686. if (skb_shared(skb))
  687. BUG();
  688. size = SKB_DATA_ALIGN(size);
  689. data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
  690. if (!data)
  691. goto nodata;
  692. /* Copy only real data... and, alas, header. This should be
  693. * optimized for the cases when header is void. */
  694. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  695. memcpy(data + nhead, skb->head, skb->tail);
  696. #else
  697. memcpy(data + nhead, skb->head, skb->tail - skb->head);
  698. #endif
  699. memcpy(data + size, skb_end_pointer(skb),
  700. sizeof(struct skb_shared_info));
  701. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
  702. get_page(skb_shinfo(skb)->frags[i].page);
  703. if (skb_shinfo(skb)->frag_list)
  704. skb_clone_fraglist(skb);
  705. skb_release_data(skb);
  706. off = (data + nhead) - skb->head;
  707. skb->head = data;
  708. skb->data += off;
  709. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  710. skb->end = size;
  711. off = nhead;
  712. #else
  713. skb->end = skb->head + size;
  714. #endif
  715. /* {transport,network,mac}_header and tail are relative to skb->head */
  716. skb->tail += off;
  717. skb->transport_header += off;
  718. skb->network_header += off;
  719. skb->mac_header += off;
  720. skb->csum_start += nhead;
  721. skb->cloned = 0;
  722. skb->hdr_len = 0;
  723. skb->nohdr = 0;
  724. atomic_set(&skb_shinfo(skb)->dataref, 1);
  725. return 0;
  726. nodata:
  727. return -ENOMEM;
  728. }
  729. EXPORT_SYMBOL(pskb_expand_head);
  730. /* Make private copy of skb with writable head and some headroom */
  731. struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
  732. {
  733. struct sk_buff *skb2;
  734. int delta = headroom - skb_headroom(skb);
  735. if (delta <= 0)
  736. skb2 = pskb_copy(skb, GFP_ATOMIC);
  737. else {
  738. skb2 = skb_clone(skb, GFP_ATOMIC);
  739. if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
  740. GFP_ATOMIC)) {
  741. kfree_skb(skb2);
  742. skb2 = NULL;
  743. }
  744. }
  745. return skb2;
  746. }
  747. EXPORT_SYMBOL(skb_realloc_headroom);
  748. /**
  749. * skb_copy_expand - copy and expand sk_buff
  750. * @skb: buffer to copy
  751. * @newheadroom: new free bytes at head
  752. * @newtailroom: new free bytes at tail
  753. * @gfp_mask: allocation priority
  754. *
  755. * Make a copy of both an &sk_buff and its data and while doing so
  756. * allocate additional space.
  757. *
  758. * This is used when the caller wishes to modify the data and needs a
  759. * private copy of the data to alter as well as more space for new fields.
  760. * Returns %NULL on failure or the pointer to the buffer
  761. * on success. The returned buffer has a reference count of 1.
  762. *
  763. * You must pass %GFP_ATOMIC as the allocation priority if this function
  764. * is called from an interrupt.
  765. */
  766. struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
  767. int newheadroom, int newtailroom,
  768. gfp_t gfp_mask)
  769. {
  770. /*
  771. * Allocate the copy buffer
  772. */
  773. struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
  774. gfp_mask);
  775. int oldheadroom = skb_headroom(skb);
  776. int head_copy_len, head_copy_off;
  777. int off;
  778. if (!n)
  779. return NULL;
  780. skb_reserve(n, newheadroom);
  781. /* Set the tail pointer and length */
  782. skb_put(n, skb->len);
  783. head_copy_len = oldheadroom;
  784. head_copy_off = 0;
  785. if (newheadroom <= head_copy_len)
  786. head_copy_len = newheadroom;
  787. else
  788. head_copy_off = newheadroom - head_copy_len;
  789. /* Copy the linear header and data. */
  790. if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
  791. skb->len + head_copy_len))
  792. BUG();
  793. copy_skb_header(n, skb);
  794. off = newheadroom - oldheadroom;
  795. n->csum_start += off;
  796. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  797. n->transport_header += off;
  798. n->network_header += off;
  799. n->mac_header += off;
  800. #endif
  801. return n;
  802. }
  803. EXPORT_SYMBOL(skb_copy_expand);
  804. /**
  805. * skb_pad - zero pad the tail of an skb
  806. * @skb: buffer to pad
  807. * @pad: space to pad
  808. *
  809. * Ensure that a buffer is followed by a padding area that is zero
  810. * filled. Used by network drivers which may DMA or transfer data
  811. * beyond the buffer end onto the wire.
  812. *
  813. * May return error in out of memory cases. The skb is freed on error.
  814. */
  815. int skb_pad(struct sk_buff *skb, int pad)
  816. {
  817. int err;
  818. int ntail;
  819. /* If the skbuff is non linear tailroom is always zero.. */
  820. if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
  821. memset(skb->data+skb->len, 0, pad);
  822. return 0;
  823. }
  824. ntail = skb->data_len + pad - (skb->end - skb->tail);
  825. if (likely(skb_cloned(skb) || ntail > 0)) {
  826. err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
  827. if (unlikely(err))
  828. goto free_skb;
  829. }
  830. /* FIXME: The use of this function with non-linear skb's really needs
  831. * to be audited.
  832. */
  833. err = skb_linearize(skb);
  834. if (unlikely(err))
  835. goto free_skb;
  836. memset(skb->data + skb->len, 0, pad);
  837. return 0;
  838. free_skb:
  839. kfree_skb(skb);
  840. return err;
  841. }
  842. EXPORT_SYMBOL(skb_pad);
  843. /**
  844. * skb_put - add data to a buffer
  845. * @skb: buffer to use
  846. * @len: amount of data to add
  847. *
  848. * This function extends the used data area of the buffer. If this would
  849. * exceed the total buffer size the kernel will panic. A pointer to the
  850. * first byte of the extra data is returned.
  851. */
  852. unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
  853. {
  854. unsigned char *tmp = skb_tail_pointer(skb);
  855. SKB_LINEAR_ASSERT(skb);
  856. skb->tail += len;
  857. skb->len += len;
  858. if (unlikely(skb->tail > skb->end))
  859. skb_over_panic(skb, len, __builtin_return_address(0));
  860. return tmp;
  861. }
  862. EXPORT_SYMBOL(skb_put);
  863. /**
  864. * skb_push - add data to the start of a buffer
  865. * @skb: buffer to use
  866. * @len: amount of data to add
  867. *
  868. * This function extends the used data area of the buffer at the buffer
  869. * start. If this would exceed the total buffer headroom the kernel will
  870. * panic. A pointer to the first byte of the extra data is returned.
  871. */
  872. unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
  873. {
  874. skb->data -= len;
  875. skb->len += len;
  876. if (unlikely(skb->data<skb->head))
  877. skb_under_panic(skb, len, __builtin_return_address(0));
  878. return skb->data;
  879. }
  880. EXPORT_SYMBOL(skb_push);
  881. /**
  882. * skb_pull - remove data from the start of a buffer
  883. * @skb: buffer to use
  884. * @len: amount of data to remove
  885. *
  886. * This function removes data from the start of a buffer, returning
  887. * the memory to the headroom. A pointer to the next data in the buffer
  888. * is returned. Once the data has been pulled future pushes will overwrite
  889. * the old data.
  890. */
  891. unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
  892. {
  893. return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
  894. }
  895. EXPORT_SYMBOL(skb_pull);
  896. /**
  897. * skb_trim - remove end from a buffer
  898. * @skb: buffer to alter
  899. * @len: new length
  900. *
  901. * Cut the length of a buffer down by removing data from the tail. If
  902. * the buffer is already under the length specified it is not modified.
  903. * The skb must be linear.
  904. */
  905. void skb_trim(struct sk_buff *skb, unsigned int len)
  906. {
  907. if (skb->len > len)
  908. __skb_trim(skb, len);
  909. }
  910. EXPORT_SYMBOL(skb_trim);
  911. /* Trims skb to length len. It can change skb pointers.
  912. */
  913. int ___pskb_trim(struct sk_buff *skb, unsigned int len)
  914. {
  915. struct sk_buff **fragp;
  916. struct sk_buff *frag;
  917. int offset = skb_headlen(skb);
  918. int nfrags = skb_shinfo(skb)->nr_frags;
  919. int i;
  920. int err;
  921. if (skb_cloned(skb) &&
  922. unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
  923. return err;
  924. i = 0;
  925. if (offset >= len)
  926. goto drop_pages;
  927. for (; i < nfrags; i++) {
  928. int end = offset + skb_shinfo(skb)->frags[i].size;
  929. if (end < len) {
  930. offset = end;
  931. continue;
  932. }
  933. skb_shinfo(skb)->frags[i++].size = len - offset;
  934. drop_pages:
  935. skb_shinfo(skb)->nr_frags = i;
  936. for (; i < nfrags; i++)
  937. put_page(skb_shinfo(skb)->frags[i].page);
  938. if (skb_shinfo(skb)->frag_list)
  939. skb_drop_fraglist(skb);
  940. goto done;
  941. }
  942. for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
  943. fragp = &frag->next) {
  944. int end = offset + frag->len;
  945. if (skb_shared(frag)) {
  946. struct sk_buff *nfrag;
  947. nfrag = skb_clone(frag, GFP_ATOMIC);
  948. if (unlikely(!nfrag))
  949. return -ENOMEM;
  950. nfrag->next = frag->next;
  951. kfree_skb(frag);
  952. frag = nfrag;
  953. *fragp = frag;
  954. }
  955. if (end < len) {
  956. offset = end;
  957. continue;
  958. }
  959. if (end > len &&
  960. unlikely((err = pskb_trim(frag, len - offset))))
  961. return err;
  962. if (frag->next)
  963. skb_drop_list(&frag->next);
  964. break;
  965. }
  966. done:
  967. if (len > skb_headlen(skb)) {
  968. skb->data_len -= skb->len - len;
  969. skb->len = len;
  970. } else {
  971. skb->len = len;
  972. skb->data_len = 0;
  973. skb_set_tail_pointer(skb, len);
  974. }
  975. return 0;
  976. }
  977. EXPORT_SYMBOL(___pskb_trim);
  978. /**
  979. * __pskb_pull_tail - advance tail of skb header
  980. * @skb: buffer to reallocate
  981. * @delta: number of bytes to advance tail
  982. *
  983. * The function makes a sense only on a fragmented &sk_buff,
  984. * it expands header moving its tail forward and copying necessary
  985. * data from fragmented part.
  986. *
  987. * &sk_buff MUST have reference count of 1.
  988. *
  989. * Returns %NULL (and &sk_buff does not change) if pull failed
  990. * or value of new tail of skb in the case of success.
  991. *
  992. * All the pointers pointing into skb header may change and must be
  993. * reloaded after call to this function.
  994. */
  995. /* Moves tail of skb head forward, copying data from fragmented part,
  996. * when it is necessary.
  997. * 1. It may fail due to malloc failure.
  998. * 2. It may change skb pointers.
  999. *
  1000. * It is pretty complicated. Luckily, it is called only in exceptional cases.
  1001. */
  1002. unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
  1003. {
  1004. /* If skb has not enough free space at tail, get new one
  1005. * plus 128 bytes for future expansions. If we have enough
  1006. * room at tail, reallocate without expansion only if skb is cloned.
  1007. */
  1008. int i, k, eat = (skb->tail + delta) - skb->end;
  1009. if (eat > 0 || skb_cloned(skb)) {
  1010. if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
  1011. GFP_ATOMIC))
  1012. return NULL;
  1013. }
  1014. if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
  1015. BUG();
  1016. /* Optimization: no fragments, no reasons to preestimate
  1017. * size of pulled pages. Superb.
  1018. */
  1019. if (!skb_shinfo(skb)->frag_list)
  1020. goto pull_pages;
  1021. /* Estimate size of pulled pages. */
  1022. eat = delta;
  1023. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  1024. if (skb_shinfo(skb)->frags[i].size >= eat)
  1025. goto pull_pages;
  1026. eat -= skb_shinfo(skb)->frags[i].size;
  1027. }
  1028. /* If we need update frag list, we are in troubles.
  1029. * Certainly, it possible to add an offset to skb data,
  1030. * but taking into account that pulling is expected to
  1031. * be very rare operation, it is worth to fight against
  1032. * further bloating skb head and crucify ourselves here instead.
  1033. * Pure masohism, indeed. 8)8)
  1034. */
  1035. if (eat) {
  1036. struct sk_buff *list = skb_shinfo(skb)->frag_list;
  1037. struct sk_buff *clone = NULL;
  1038. struct sk_buff *insp = NULL;
  1039. do {
  1040. BUG_ON(!list);
  1041. if (list->len <= eat) {
  1042. /* Eaten as whole. */
  1043. eat -= list->len;
  1044. list = list->next;
  1045. insp = list;
  1046. } else {
  1047. /* Eaten partially. */
  1048. if (skb_shared(list)) {
  1049. /* Sucks! We need to fork list. :-( */
  1050. clone = skb_clone(list, GFP_ATOMIC);
  1051. if (!clone)
  1052. return NULL;
  1053. insp = list->next;
  1054. list = clone;
  1055. } else {
  1056. /* This may be pulled without
  1057. * problems. */
  1058. insp = list;
  1059. }
  1060. if (!pskb_pull(list, eat)) {
  1061. kfree_skb(clone);
  1062. return NULL;
  1063. }
  1064. break;
  1065. }
  1066. } while (eat);
  1067. /* Free pulled out fragments. */
  1068. while ((list = skb_shinfo(skb)->frag_list) != insp) {
  1069. skb_shinfo(skb)->frag_list = list->next;
  1070. kfree_skb(list);
  1071. }
  1072. /* And insert new clone at head. */
  1073. if (clone) {
  1074. clone->next = list;
  1075. skb_shinfo(skb)->frag_list = clone;
  1076. }
  1077. }
  1078. /* Success! Now we may commit changes to skb data. */
  1079. pull_pages:
  1080. eat = delta;
  1081. k = 0;
  1082. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  1083. if (skb_shinfo(skb)->frags[i].size <= eat) {
  1084. put_page(skb_shinfo(skb)->frags[i].page);
  1085. eat -= skb_shinfo(skb)->frags[i].size;
  1086. } else {
  1087. skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
  1088. if (eat) {
  1089. skb_shinfo(skb)->frags[k].page_offset += eat;
  1090. skb_shinfo(skb)->frags[k].size -= eat;
  1091. eat = 0;
  1092. }
  1093. k++;
  1094. }
  1095. }
  1096. skb_shinfo(skb)->nr_frags = k;
  1097. skb->tail += delta;
  1098. skb->data_len -= delta;
  1099. return skb_tail_pointer(skb);
  1100. }
  1101. EXPORT_SYMBOL(__pskb_pull_tail);
  1102. /* Copy some data bits from skb to kernel buffer. */
  1103. int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
  1104. {
  1105. int i, copy;
  1106. int start = skb_headlen(skb);
  1107. if (offset > (int)skb->len - len)
  1108. goto fault;
  1109. /* Copy header. */
  1110. if ((copy = start - offset) > 0) {
  1111. if (copy > len)
  1112. copy = len;
  1113. skb_copy_from_linear_data_offset(skb, offset, to, copy);
  1114. if ((len -= copy) == 0)
  1115. return 0;
  1116. offset += copy;
  1117. to += copy;
  1118. }
  1119. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  1120. int end;
  1121. WARN_ON(start > offset + len);
  1122. end = start + skb_shinfo(skb)->frags[i].size;
  1123. if ((copy = end - offset) > 0) {
  1124. u8 *vaddr;
  1125. if (copy > len)
  1126. copy = len;
  1127. vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
  1128. memcpy(to,
  1129. vaddr + skb_shinfo(skb)->frags[i].page_offset+
  1130. offset - start, copy);
  1131. kunmap_skb_frag(vaddr);
  1132. if ((len -= copy) == 0)
  1133. return 0;
  1134. offset += copy;
  1135. to += copy;
  1136. }
  1137. start = end;
  1138. }
  1139. if (skb_shinfo(skb)->frag_list) {
  1140. struct sk_buff *list = skb_shinfo(skb)->frag_list;
  1141. for (; list; list = list->next) {
  1142. int end;
  1143. WARN_ON(start > offset + len);
  1144. end = start + list->len;
  1145. if ((copy = end - offset) > 0) {
  1146. if (copy > len)
  1147. copy = len;
  1148. if (skb_copy_bits(list, offset - start,
  1149. to, copy))
  1150. goto fault;
  1151. if ((len -= copy) == 0)
  1152. return 0;
  1153. offset += copy;
  1154. to += copy;
  1155. }
  1156. start = end;
  1157. }
  1158. }
  1159. if (!len)
  1160. return 0;
  1161. fault:
  1162. return -EFAULT;
  1163. }
  1164. EXPORT_SYMBOL(skb_copy_bits);
  1165. /*
  1166. * Callback from splice_to_pipe(), if we need to release some pages
  1167. * at the end of the spd in case we error'ed out in filling the pipe.
  1168. */
  1169. static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
  1170. {
  1171. put_page(spd->pages[i]);
  1172. }
  1173. static inline struct page *linear_to_page(struct page *page, unsigned int *len,
  1174. unsigned int *offset,
  1175. struct sk_buff *skb)
  1176. {
  1177. struct sock *sk = skb->sk;
  1178. struct page *p = sk->sk_sndmsg_page;
  1179. unsigned int off;
  1180. if (!p) {
  1181. new_page:
  1182. p = sk->sk_sndmsg_page = alloc_pages(sk->sk_allocation, 0);
  1183. if (!p)
  1184. return NULL;
  1185. off = sk->sk_sndmsg_off = 0;
  1186. /* hold one ref to this page until it's full */
  1187. } else {
  1188. unsigned int mlen;
  1189. off = sk->sk_sndmsg_off;
  1190. mlen = PAGE_SIZE - off;
  1191. if (mlen < 64 && mlen < *len) {
  1192. put_page(p);
  1193. goto new_page;
  1194. }
  1195. *len = min_t(unsigned int, *len, mlen);
  1196. }
  1197. memcpy(page_address(p) + off, page_address(page) + *offset, *len);
  1198. sk->sk_sndmsg_off += *len;
  1199. *offset = off;
  1200. get_page(p);
  1201. return p;
  1202. }
  1203. /*
  1204. * Fill page/offset/length into spd, if it can hold more pages.
  1205. */
  1206. static inline int spd_fill_page(struct splice_pipe_desc *spd, struct page *page,
  1207. unsigned int *len, unsigned int offset,
  1208. struct sk_buff *skb, int linear)
  1209. {
  1210. if (unlikely(spd->nr_pages == PIPE_BUFFERS))
  1211. return 1;
  1212. if (linear) {
  1213. page = linear_to_page(page, len, &offset, skb);
  1214. if (!page)
  1215. return 1;
  1216. } else
  1217. get_page(page);
  1218. spd->pages[spd->nr_pages] = page;
  1219. spd->partial[spd->nr_pages].len = *len;
  1220. spd->partial[spd->nr_pages].offset = offset;
  1221. spd->nr_pages++;
  1222. return 0;
  1223. }
  1224. static inline void __segment_seek(struct page **page, unsigned int *poff,
  1225. unsigned int *plen, unsigned int off)
  1226. {
  1227. unsigned long n;
  1228. *poff += off;
  1229. n = *poff / PAGE_SIZE;
  1230. if (n)
  1231. *page = nth_page(*page, n);
  1232. *poff = *poff % PAGE_SIZE;
  1233. *plen -= off;
  1234. }
  1235. static inline int __splice_segment(struct page *page, unsigned int poff,
  1236. unsigned int plen, unsigned int *off,
  1237. unsigned int *len, struct sk_buff *skb,
  1238. struct splice_pipe_desc *spd, int linear)
  1239. {
  1240. if (!*len)
  1241. return 1;
  1242. /* skip this segment if already processed */
  1243. if (*off >= plen) {
  1244. *off -= plen;
  1245. return 0;
  1246. }
  1247. /* ignore any bits we already processed */
  1248. if (*off) {
  1249. __segment_seek(&page, &poff, &plen, *off);
  1250. *off = 0;
  1251. }
  1252. do {
  1253. unsigned int flen = min(*len, plen);
  1254. /* the linear region may spread across several pages */
  1255. flen = min_t(unsigned int, flen, PAGE_SIZE - poff);
  1256. if (spd_fill_page(spd, page, &flen, poff, skb, linear))
  1257. return 1;
  1258. __segment_seek(&page, &poff, &plen, flen);
  1259. *len -= flen;
  1260. } while (*len && plen);
  1261. return 0;
  1262. }
  1263. /*
  1264. * Map linear and fragment data from the skb to spd. It reports failure if the
  1265. * pipe is full or if we already spliced the requested length.
  1266. */
  1267. static int __skb_splice_bits(struct sk_buff *skb, unsigned int *offset,
  1268. unsigned int *len,
  1269. struct splice_pipe_desc *spd)
  1270. {
  1271. int seg;
  1272. /*
  1273. * map the linear part
  1274. */
  1275. if (__splice_segment(virt_to_page(skb->data),
  1276. (unsigned long) skb->data & (PAGE_SIZE - 1),
  1277. skb_headlen(skb),
  1278. offset, len, skb, spd, 1))
  1279. return 1;
  1280. /*
  1281. * then map the fragments
  1282. */
  1283. for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
  1284. const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
  1285. if (__splice_segment(f->page, f->page_offset, f->size,
  1286. offset, len, skb, spd, 0))
  1287. return 1;
  1288. }
  1289. return 0;
  1290. }
  1291. /*
  1292. * Map data from the skb to a pipe. Should handle both the linear part,
  1293. * the fragments, and the frag list. It does NOT handle frag lists within
  1294. * the frag list, if such a thing exists. We'd probably need to recurse to
  1295. * handle that cleanly.
  1296. */
  1297. int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
  1298. struct pipe_inode_info *pipe, unsigned int tlen,
  1299. unsigned int flags)
  1300. {
  1301. struct partial_page partial[PIPE_BUFFERS];
  1302. struct page *pages[PIPE_BUFFERS];
  1303. struct splice_pipe_desc spd = {
  1304. .pages = pages,
  1305. .partial = partial,
  1306. .flags = flags,
  1307. .ops = &sock_pipe_buf_ops,
  1308. .spd_release = sock_spd_release,
  1309. };
  1310. /*
  1311. * __skb_splice_bits() only fails if the output has no room left,
  1312. * so no point in going over the frag_list for the error case.
  1313. */
  1314. if (__skb_splice_bits(skb, &offset, &tlen, &spd))
  1315. goto done;
  1316. else if (!tlen)
  1317. goto done;
  1318. /*
  1319. * now see if we have a frag_list to map
  1320. */
  1321. if (skb_shinfo(skb)->frag_list) {
  1322. struct sk_buff *list = skb_shinfo(skb)->frag_list;
  1323. for (; list && tlen; list = list->next) {
  1324. if (__skb_splice_bits(list, &offset, &tlen, &spd))
  1325. break;
  1326. }
  1327. }
  1328. done:
  1329. if (spd.nr_pages) {
  1330. struct sock *sk = skb->sk;
  1331. int ret;
  1332. /*
  1333. * Drop the socket lock, otherwise we have reverse
  1334. * locking dependencies between sk_lock and i_mutex
  1335. * here as compared to sendfile(). We enter here
  1336. * with the socket lock held, and splice_to_pipe() will
  1337. * grab the pipe inode lock. For sendfile() emulation,
  1338. * we call into ->sendpage() with the i_mutex lock held
  1339. * and networking will grab the socket lock.
  1340. */
  1341. release_sock(sk);
  1342. ret = splice_to_pipe(pipe, &spd);
  1343. lock_sock(sk);
  1344. return ret;
  1345. }
  1346. return 0;
  1347. }
  1348. /**
  1349. * skb_store_bits - store bits from kernel buffer to skb
  1350. * @skb: destination buffer
  1351. * @offset: offset in destination
  1352. * @from: source buffer
  1353. * @len: number of bytes to copy
  1354. *
  1355. * Copy the specified number of bytes from the source buffer to the
  1356. * destination skb. This function handles all the messy bits of
  1357. * traversing fragment lists and such.
  1358. */
  1359. int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
  1360. {
  1361. int i, copy;
  1362. int start = skb_headlen(skb);
  1363. if (offset > (int)skb->len - len)
  1364. goto fault;
  1365. if ((copy = start - offset) > 0) {
  1366. if (copy > len)
  1367. copy = len;
  1368. skb_copy_to_linear_data_offset(skb, offset, from, copy);
  1369. if ((len -= copy) == 0)
  1370. return 0;
  1371. offset += copy;
  1372. from += copy;
  1373. }
  1374. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  1375. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1376. int end;
  1377. WARN_ON(start > offset + len);
  1378. end = start + frag->size;
  1379. if ((copy = end - offset) > 0) {
  1380. u8 *vaddr;
  1381. if (copy > len)
  1382. copy = len;
  1383. vaddr = kmap_skb_frag(frag);
  1384. memcpy(vaddr + frag->page_offset + offset - start,
  1385. from, copy);
  1386. kunmap_skb_frag(vaddr);
  1387. if ((len -= copy) == 0)
  1388. return 0;
  1389. offset += copy;
  1390. from += copy;
  1391. }
  1392. start = end;
  1393. }
  1394. if (skb_shinfo(skb)->frag_list) {
  1395. struct sk_buff *list = skb_shinfo(skb)->frag_list;
  1396. for (; list; list = list->next) {
  1397. int end;
  1398. WARN_ON(start > offset + len);
  1399. end = start + list->len;
  1400. if ((copy = end - offset) > 0) {
  1401. if (copy > len)
  1402. copy = len;
  1403. if (skb_store_bits(list, offset - start,
  1404. from, copy))
  1405. goto fault;
  1406. if ((len -= copy) == 0)
  1407. return 0;
  1408. offset += copy;
  1409. from += copy;
  1410. }
  1411. start = end;
  1412. }
  1413. }
  1414. if (!len)
  1415. return 0;
  1416. fault:
  1417. return -EFAULT;
  1418. }
  1419. EXPORT_SYMBOL(skb_store_bits);
  1420. /* Checksum skb data. */
  1421. __wsum skb_checksum(const struct sk_buff *skb, int offset,
  1422. int len, __wsum csum)
  1423. {
  1424. int start = skb_headlen(skb);
  1425. int i, copy = start - offset;
  1426. int pos = 0;
  1427. /* Checksum header. */
  1428. if (copy > 0) {
  1429. if (copy > len)
  1430. copy = len;
  1431. csum = csum_partial(skb->data + offset, copy, csum);
  1432. if ((len -= copy) == 0)
  1433. return csum;
  1434. offset += copy;
  1435. pos = copy;
  1436. }
  1437. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  1438. int end;
  1439. WARN_ON(start > offset + len);
  1440. end = start + skb_shinfo(skb)->frags[i].size;
  1441. if ((copy = end - offset) > 0) {
  1442. __wsum csum2;
  1443. u8 *vaddr;
  1444. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1445. if (copy > len)
  1446. copy = len;
  1447. vaddr = kmap_skb_frag(frag);
  1448. csum2 = csum_partial(vaddr + frag->page_offset +
  1449. offset - start, copy, 0);
  1450. kunmap_skb_frag(vaddr);
  1451. csum = csum_block_add(csum, csum2, pos);
  1452. if (!(len -= copy))
  1453. return csum;
  1454. offset += copy;
  1455. pos += copy;
  1456. }
  1457. start = end;
  1458. }
  1459. if (skb_shinfo(skb)->frag_list) {
  1460. struct sk_buff *list = skb_shinfo(skb)->frag_list;
  1461. for (; list; list = list->next) {
  1462. int end;
  1463. WARN_ON(start > offset + len);
  1464. end = start + list->len;
  1465. if ((copy = end - offset) > 0) {
  1466. __wsum csum2;
  1467. if (copy > len)
  1468. copy = len;
  1469. csum2 = skb_checksum(list, offset - start,
  1470. copy, 0);
  1471. csum = csum_block_add(csum, csum2, pos);
  1472. if ((len -= copy) == 0)
  1473. return csum;
  1474. offset += copy;
  1475. pos += copy;
  1476. }
  1477. start = end;
  1478. }
  1479. }
  1480. BUG_ON(len);
  1481. return csum;
  1482. }
  1483. EXPORT_SYMBOL(skb_checksum);
  1484. /* Both of above in one bottle. */
  1485. __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
  1486. u8 *to, int len, __wsum csum)
  1487. {
  1488. int start = skb_headlen(skb);
  1489. int i, copy = start - offset;
  1490. int pos = 0;
  1491. /* Copy header. */
  1492. if (copy > 0) {
  1493. if (copy > len)
  1494. copy = len;
  1495. csum = csum_partial_copy_nocheck(skb->data + offset, to,
  1496. copy, csum);
  1497. if ((len -= copy) == 0)
  1498. return csum;
  1499. offset += copy;
  1500. to += copy;
  1501. pos = copy;
  1502. }
  1503. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  1504. int end;
  1505. WARN_ON(start > offset + len);
  1506. end = start + skb_shinfo(skb)->frags[i].size;
  1507. if ((copy = end - offset) > 0) {
  1508. __wsum csum2;
  1509. u8 *vaddr;
  1510. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1511. if (copy > len)
  1512. copy = len;
  1513. vaddr = kmap_skb_frag(frag);
  1514. csum2 = csum_partial_copy_nocheck(vaddr +
  1515. frag->page_offset +
  1516. offset - start, to,
  1517. copy, 0);
  1518. kunmap_skb_frag(vaddr);
  1519. csum = csum_block_add(csum, csum2, pos);
  1520. if (!(len -= copy))
  1521. return csum;
  1522. offset += copy;
  1523. to += copy;
  1524. pos += copy;
  1525. }
  1526. start = end;
  1527. }
  1528. if (skb_shinfo(skb)->frag_list) {
  1529. struct sk_buff *list = skb_shinfo(skb)->frag_list;
  1530. for (; list; list = list->next) {
  1531. __wsum csum2;
  1532. int end;
  1533. WARN_ON(start > offset + len);
  1534. end = start + list->len;
  1535. if ((copy = end - offset) > 0) {
  1536. if (copy > len)
  1537. copy = len;
  1538. csum2 = skb_copy_and_csum_bits(list,
  1539. offset - start,
  1540. to, copy, 0);
  1541. csum = csum_block_add(csum, csum2, pos);
  1542. if ((len -= copy) == 0)
  1543. return csum;
  1544. offset += copy;
  1545. to += copy;
  1546. pos += copy;
  1547. }
  1548. start = end;
  1549. }
  1550. }
  1551. BUG_ON(len);
  1552. return csum;
  1553. }
  1554. EXPORT_SYMBOL(skb_copy_and_csum_bits);
  1555. void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
  1556. {
  1557. __wsum csum;
  1558. long csstart;
  1559. if (skb->ip_summed == CHECKSUM_PARTIAL)
  1560. csstart = skb->csum_start - skb_headroom(skb);
  1561. else
  1562. csstart = skb_headlen(skb);
  1563. BUG_ON(csstart > skb_headlen(skb));
  1564. skb_copy_from_linear_data(skb, to, csstart);
  1565. csum = 0;
  1566. if (csstart != skb->len)
  1567. csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
  1568. skb->len - csstart, 0);
  1569. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  1570. long csstuff = csstart + skb->csum_offset;
  1571. *((__sum16 *)(to + csstuff)) = csum_fold(csum);
  1572. }
  1573. }
  1574. EXPORT_SYMBOL(skb_copy_and_csum_dev);
  1575. /**
  1576. * skb_dequeue - remove from the head of the queue
  1577. * @list: list to dequeue from
  1578. *
  1579. * Remove the head of the list. The list lock is taken so the function
  1580. * may be used safely with other locking list functions. The head item is
  1581. * returned or %NULL if the list is empty.
  1582. */
  1583. struct sk_buff *skb_dequeue(struct sk_buff_head *list)
  1584. {
  1585. unsigned long flags;
  1586. struct sk_buff *result;
  1587. spin_lock_irqsave(&list->lock, flags);
  1588. result = __skb_dequeue(list);
  1589. spin_unlock_irqrestore(&list->lock, flags);
  1590. return result;
  1591. }
  1592. EXPORT_SYMBOL(skb_dequeue);
  1593. /**
  1594. * skb_dequeue_tail - remove from the tail of the queue
  1595. * @list: list to dequeue from
  1596. *
  1597. * Remove the tail of the list. The list lock is taken so the function
  1598. * may be used safely with other locking list functions. The tail item is
  1599. * returned or %NULL if the list is empty.
  1600. */
  1601. struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
  1602. {
  1603. unsigned long flags;
  1604. struct sk_buff *result;
  1605. spin_lock_irqsave(&list->lock, flags);
  1606. result = __skb_dequeue_tail(list);
  1607. spin_unlock_irqrestore(&list->lock, flags);
  1608. return result;
  1609. }
  1610. EXPORT_SYMBOL(skb_dequeue_tail);
  1611. /**
  1612. * skb_queue_purge - empty a list
  1613. * @list: list to empty
  1614. *
  1615. * Delete all buffers on an &sk_buff list. Each buffer is removed from
  1616. * the list and one reference dropped. This function takes the list
  1617. * lock and is atomic with respect to other list locking functions.
  1618. */
  1619. void skb_queue_purge(struct sk_buff_head *list)
  1620. {
  1621. struct sk_buff *skb;
  1622. while ((skb = skb_dequeue(list)) != NULL)
  1623. kfree_skb(skb);
  1624. }
  1625. EXPORT_SYMBOL(skb_queue_purge);
  1626. /**
  1627. * skb_queue_head - queue a buffer at the list head
  1628. * @list: list to use
  1629. * @newsk: buffer to queue
  1630. *
  1631. * Queue a buffer at the start of the list. This function takes the
  1632. * list lock and can be used safely with other locking &sk_buff functions
  1633. * safely.
  1634. *
  1635. * A buffer cannot be placed on two lists at the same time.
  1636. */
  1637. void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
  1638. {
  1639. unsigned long flags;
  1640. spin_lock_irqsave(&list->lock, flags);
  1641. __skb_queue_head(list, newsk);
  1642. spin_unlock_irqrestore(&list->lock, flags);
  1643. }
  1644. EXPORT_SYMBOL(skb_queue_head);
  1645. /**
  1646. * skb_queue_tail - queue a buffer at the list tail
  1647. * @list: list to use
  1648. * @newsk: buffer to queue
  1649. *
  1650. * Queue a buffer at the tail of the list. This function takes the
  1651. * list lock and can be used safely with other locking &sk_buff functions
  1652. * safely.
  1653. *
  1654. * A buffer cannot be placed on two lists at the same time.
  1655. */
  1656. void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
  1657. {
  1658. unsigned long flags;
  1659. spin_lock_irqsave(&list->lock, flags);
  1660. __skb_queue_tail(list, newsk);
  1661. spin_unlock_irqrestore(&list->lock, flags);
  1662. }
  1663. EXPORT_SYMBOL(skb_queue_tail);
  1664. /**
  1665. * skb_unlink - remove a buffer from a list
  1666. * @skb: buffer to remove
  1667. * @list: list to use
  1668. *
  1669. * Remove a packet from a list. The list locks are taken and this
  1670. * function is atomic with respect to other list locked calls
  1671. *
  1672. * You must know what list the SKB is on.
  1673. */
  1674. void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
  1675. {
  1676. unsigned long flags;
  1677. spin_lock_irqsave(&list->lock, flags);
  1678. __skb_unlink(skb, list);
  1679. spin_unlock_irqrestore(&list->lock, flags);
  1680. }
  1681. EXPORT_SYMBOL(skb_unlink);
  1682. /**
  1683. * skb_append - append a buffer
  1684. * @old: buffer to insert after
  1685. * @newsk: buffer to insert
  1686. * @list: list to use
  1687. *
  1688. * Place a packet after a given packet in a list. The list locks are taken
  1689. * and this function is atomic with respect to other list locked calls.
  1690. * A buffer cannot be placed on two lists at the same time.
  1691. */
  1692. void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
  1693. {
  1694. unsigned long flags;
  1695. spin_lock_irqsave(&list->lock, flags);
  1696. __skb_queue_after(list, old, newsk);
  1697. spin_unlock_irqrestore(&list->lock, flags);
  1698. }
  1699. EXPORT_SYMBOL(skb_append);
  1700. /**
  1701. * skb_insert - insert a buffer
  1702. * @old: buffer to insert before
  1703. * @newsk: buffer to insert
  1704. * @list: list to use
  1705. *
  1706. * Place a packet before a given packet in a list. The list locks are
  1707. * taken and this function is atomic with respect to other list locked
  1708. * calls.
  1709. *
  1710. * A buffer cannot be placed on two lists at the same time.
  1711. */
  1712. void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
  1713. {
  1714. unsigned long flags;
  1715. spin_lock_irqsave(&list->lock, flags);
  1716. __skb_insert(newsk, old->prev, old, list);
  1717. spin_unlock_irqrestore(&list->lock, flags);
  1718. }
  1719. EXPORT_SYMBOL(skb_insert);
  1720. static inline void skb_split_inside_header(struct sk_buff *skb,
  1721. struct sk_buff* skb1,
  1722. const u32 len, const int pos)
  1723. {
  1724. int i;
  1725. skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
  1726. pos - len);
  1727. /* And move data appendix as is. */
  1728. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
  1729. skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
  1730. skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
  1731. skb_shinfo(skb)->nr_frags = 0;
  1732. skb1->data_len = skb->data_len;
  1733. skb1->len += skb1->data_len;
  1734. skb->data_len = 0;
  1735. skb->len = len;
  1736. skb_set_tail_pointer(skb, len);
  1737. }
  1738. static inline void skb_split_no_header(struct sk_buff *skb,
  1739. struct sk_buff* skb1,
  1740. const u32 len, int pos)
  1741. {
  1742. int i, k = 0;
  1743. const int nfrags = skb_shinfo(skb)->nr_frags;
  1744. skb_shinfo(skb)->nr_frags = 0;
  1745. skb1->len = skb1->data_len = skb->len - len;
  1746. skb->len = len;
  1747. skb->data_len = len - pos;
  1748. for (i = 0; i < nfrags; i++) {
  1749. int size = skb_shinfo(skb)->frags[i].size;
  1750. if (pos + size > len) {
  1751. skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
  1752. if (pos < len) {
  1753. /* Split frag.
  1754. * We have two variants in this case:
  1755. * 1. Move all the frag to the second
  1756. * part, if it is possible. F.e.
  1757. * this approach is mandatory for TUX,
  1758. * where splitting is expensive.
  1759. * 2. Split is accurately. We make this.
  1760. */
  1761. get_page(skb_shinfo(skb)->frags[i].page);
  1762. skb_shinfo(skb1)->frags[0].page_offset += len - pos;
  1763. skb_shinfo(skb1)->frags[0].size -= len - pos;
  1764. skb_shinfo(skb)->frags[i].size = len - pos;
  1765. skb_shinfo(skb)->nr_frags++;
  1766. }
  1767. k++;
  1768. } else
  1769. skb_shinfo(skb)->nr_frags++;
  1770. pos += size;
  1771. }
  1772. skb_shinfo(skb1)->nr_frags = k;
  1773. }
  1774. /**
  1775. * skb_split - Split fragmented skb to two parts at length len.
  1776. * @skb: the buffer to split
  1777. * @skb1: the buffer to receive the second part
  1778. * @len: new length for skb
  1779. */
  1780. void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
  1781. {
  1782. int pos = skb_headlen(skb);
  1783. if (len < pos) /* Split line is inside header. */
  1784. skb_split_inside_header(skb, skb1, len, pos);
  1785. else /* Second chunk has no header, nothing to copy. */
  1786. skb_split_no_header(skb, skb1, len, pos);
  1787. }
  1788. EXPORT_SYMBOL(skb_split);
  1789. /* Shifting from/to a cloned skb is a no-go.
  1790. *
  1791. * Caller cannot keep skb_shinfo related pointers past calling here!
  1792. */
  1793. static int skb_prepare_for_shift(struct sk_buff *skb)
  1794. {
  1795. return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
  1796. }
  1797. /**
  1798. * skb_shift - Shifts paged data partially from skb to another
  1799. * @tgt: buffer into which tail data gets added
  1800. * @skb: buffer from which the paged data comes from
  1801. * @shiftlen: shift up to this many bytes
  1802. *
  1803. * Attempts to shift up to shiftlen worth of bytes, which may be less than
  1804. * the length of the skb, from tgt to skb. Returns number bytes shifted.
  1805. * It's up to caller to free skb if everything was shifted.
  1806. *
  1807. * If @tgt runs out of frags, the whole operation is aborted.
  1808. *
  1809. * Skb cannot include anything else but paged data while tgt is allowed
  1810. * to have non-paged data as well.
  1811. *
  1812. * TODO: full sized shift could be optimized but that would need
  1813. * specialized skb free'er to handle frags without up-to-date nr_frags.
  1814. */
  1815. int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
  1816. {
  1817. int from, to, merge, todo;
  1818. struct skb_frag_struct *fragfrom, *fragto;
  1819. BUG_ON(shiftlen > skb->len);
  1820. BUG_ON(skb_headlen(skb)); /* Would corrupt stream */
  1821. todo = shiftlen;
  1822. from = 0;
  1823. to = skb_shinfo(tgt)->nr_frags;
  1824. fragfrom = &skb_shinfo(skb)->frags[from];
  1825. /* Actual merge is delayed until the point when we know we can
  1826. * commit all, so that we don't have to undo partial changes
  1827. */
  1828. if (!to ||
  1829. !skb_can_coalesce(tgt, to, fragfrom->page, fragfrom->page_offset)) {
  1830. merge = -1;
  1831. } else {
  1832. merge = to - 1;
  1833. todo -= fragfrom->size;
  1834. if (todo < 0) {
  1835. if (skb_prepare_for_shift(skb) ||
  1836. skb_prepare_for_shift(tgt))
  1837. return 0;
  1838. /* All previous frag pointers might be stale! */
  1839. fragfrom = &skb_shinfo(skb)->frags[from];
  1840. fragto = &skb_shinfo(tgt)->frags[merge];
  1841. fragto->size += shiftlen;
  1842. fragfrom->size -= shiftlen;
  1843. fragfrom->page_offset += shiftlen;
  1844. goto onlymerged;
  1845. }
  1846. from++;
  1847. }
  1848. /* Skip full, not-fitting skb to avoid expensive operations */
  1849. if ((shiftlen == skb->len) &&
  1850. (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
  1851. return 0;
  1852. if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
  1853. return 0;
  1854. while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
  1855. if (to == MAX_SKB_FRAGS)
  1856. return 0;
  1857. fragfrom = &skb_shinfo(skb)->frags[from];
  1858. fragto = &skb_shinfo(tgt)->frags[to];
  1859. if (todo >= fragfrom->size) {
  1860. *fragto = *fragfrom;
  1861. todo -= fragfrom->size;
  1862. from++;
  1863. to++;
  1864. } else {
  1865. get_page(fragfrom->page);
  1866. fragto->page = fragfrom->page;
  1867. fragto->page_offset = fragfrom->page_offset;
  1868. fragto->size = todo;
  1869. fragfrom->page_offset += todo;
  1870. fragfrom->size -= todo;
  1871. todo = 0;
  1872. to++;
  1873. break;
  1874. }
  1875. }
  1876. /* Ready to "commit" this state change to tgt */
  1877. skb_shinfo(tgt)->nr_frags = to;
  1878. if (merge >= 0) {
  1879. fragfrom = &skb_shinfo(skb)->frags[0];
  1880. fragto = &skb_shinfo(tgt)->frags[merge];
  1881. fragto->size += fragfrom->size;
  1882. put_page(fragfrom->page);
  1883. }
  1884. /* Reposition in the original skb */
  1885. to = 0;
  1886. while (from < skb_shinfo(skb)->nr_frags)
  1887. skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
  1888. skb_shinfo(skb)->nr_frags = to;
  1889. BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
  1890. onlymerged:
  1891. /* Most likely the tgt won't ever need its checksum anymore, skb on
  1892. * the other hand might need it if it needs to be resent
  1893. */
  1894. tgt->ip_summed = CHECKSUM_PARTIAL;
  1895. skb->ip_summed = CHECKSUM_PARTIAL;
  1896. /* Yak, is it really working this way? Some helper please? */
  1897. skb->len -= shiftlen;
  1898. skb->data_len -= shiftlen;
  1899. skb->truesize -= shiftlen;
  1900. tgt->len += shiftlen;
  1901. tgt->data_len += shiftlen;
  1902. tgt->truesize += shiftlen;
  1903. return shiftlen;
  1904. }
  1905. /**
  1906. * skb_prepare_seq_read - Prepare a sequential read of skb data
  1907. * @skb: the buffer to read
  1908. * @from: lower offset of data to be read
  1909. * @to: upper offset of data to be read
  1910. * @st: state variable
  1911. *
  1912. * Initializes the specified state variable. Must be called before
  1913. * invoking skb_seq_read() for the first time.
  1914. */
  1915. void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
  1916. unsigned int to, struct skb_seq_state *st)
  1917. {
  1918. st->lower_offset = from;
  1919. st->upper_offset = to;
  1920. st->root_skb = st->cur_skb = skb;
  1921. st->frag_idx = st->stepped_offset = 0;
  1922. st->frag_data = NULL;
  1923. }
  1924. EXPORT_SYMBOL(skb_prepare_seq_read);
  1925. /**
  1926. * skb_seq_read - Sequentially read skb data
  1927. * @consumed: number of bytes consumed by the caller so far
  1928. * @data: destination pointer for data to be returned
  1929. * @st: state variable
  1930. *
  1931. * Reads a block of skb data at &consumed relative to the
  1932. * lower offset specified to skb_prepare_seq_read(). Assigns
  1933. * the head of the data block to &data and returns the length
  1934. * of the block or 0 if the end of the skb data or the upper
  1935. * offset has been reached.
  1936. *
  1937. * The caller is not required to consume all of the data
  1938. * returned, i.e. &consumed is typically set to the number
  1939. * of bytes already consumed and the next call to
  1940. * skb_seq_read() will return the remaining part of the block.
  1941. *
  1942. * Note 1: The size of each block of data returned can be arbitary,
  1943. * this limitation is the cost for zerocopy seqeuental
  1944. * reads of potentially non linear data.
  1945. *
  1946. * Note 2: Fragment lists within fragments are not implemented
  1947. * at the moment, state->root_skb could be replaced with
  1948. * a stack for this purpose.
  1949. */
  1950. unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
  1951. struct skb_seq_state *st)
  1952. {
  1953. unsigned int block_limit, abs_offset = consumed + st->lower_offset;
  1954. skb_frag_t *frag;
  1955. if (unlikely(abs_offset >= st->upper_offset))
  1956. return 0;
  1957. next_skb:
  1958. block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
  1959. if (abs_offset < block_limit) {
  1960. *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
  1961. return block_limit - abs_offset;
  1962. }
  1963. if (st->frag_idx == 0 && !st->frag_data)
  1964. st->stepped_offset += skb_headlen(st->cur_skb);
  1965. while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
  1966. frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
  1967. block_limit = frag->size + st->stepped_offset;
  1968. if (abs_offset < block_limit) {
  1969. if (!st->frag_data)
  1970. st->frag_data = kmap_skb_frag(frag);
  1971. *data = (u8 *) st->frag_data + frag->page_offset +
  1972. (abs_offset - st->stepped_offset);
  1973. return block_limit - abs_offset;
  1974. }
  1975. if (st->frag_data) {
  1976. kunmap_skb_frag(st->frag_data);
  1977. st->frag_data = NULL;
  1978. }
  1979. st->frag_idx++;
  1980. st->stepped_offset += frag->size;
  1981. }
  1982. if (st->frag_data) {
  1983. kunmap_skb_frag(st->frag_data);
  1984. st->frag_data = NULL;
  1985. }
  1986. if (st->root_skb == st->cur_skb &&
  1987. skb_shinfo(st->root_skb)->frag_list) {
  1988. st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
  1989. st->frag_idx = 0;
  1990. goto next_skb;
  1991. } else if (st->cur_skb->next) {
  1992. st->cur_skb = st->cur_skb->next;
  1993. st->frag_idx = 0;
  1994. goto next_skb;
  1995. }
  1996. return 0;
  1997. }
  1998. EXPORT_SYMBOL(skb_seq_read);
  1999. /**
  2000. * skb_abort_seq_read - Abort a sequential read of skb data
  2001. * @st: state variable
  2002. *
  2003. * Must be called if skb_seq_read() was not called until it
  2004. * returned 0.
  2005. */
  2006. void skb_abort_seq_read(struct skb_seq_state *st)
  2007. {
  2008. if (st->frag_data)
  2009. kunmap_skb_frag(st->frag_data);
  2010. }
  2011. EXPORT_SYMBOL(skb_abort_seq_read);
  2012. #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
  2013. static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
  2014. struct ts_config *conf,
  2015. struct ts_state *state)
  2016. {
  2017. return skb_seq_read(offset, text, TS_SKB_CB(state));
  2018. }
  2019. static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
  2020. {
  2021. skb_abort_seq_read(TS_SKB_CB(state));
  2022. }
  2023. /**
  2024. * skb_find_text - Find a text pattern in skb data
  2025. * @skb: the buffer to look in
  2026. * @from: search offset
  2027. * @to: search limit
  2028. * @config: textsearch configuration
  2029. * @state: uninitialized textsearch state variable
  2030. *
  2031. * Finds a pattern in the skb data according to the specified
  2032. * textsearch configuration. Use textsearch_next() to retrieve
  2033. * subsequent occurrences of the pattern. Returns the offset
  2034. * to the first occurrence or UINT_MAX if no match was found.
  2035. */
  2036. unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
  2037. unsigned int to, struct ts_config *config,
  2038. struct ts_state *state)
  2039. {
  2040. unsigned int ret;
  2041. config->get_next_block = skb_ts_get_next_block;
  2042. config->finish = skb_ts_finish;
  2043. skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
  2044. ret = textsearch_find(config, state);
  2045. return (ret <= to - from ? ret : UINT_MAX);
  2046. }
  2047. EXPORT_SYMBOL(skb_find_text);
  2048. /**
  2049. * skb_append_datato_frags: - append the user data to a skb
  2050. * @sk: sock structure
  2051. * @skb: skb structure to be appened with user data.
  2052. * @getfrag: call back function to be used for getting the user data
  2053. * @from: pointer to user message iov
  2054. * @length: length of the iov message
  2055. *
  2056. * Description: This procedure append the user data in the fragment part
  2057. * of the skb if any page alloc fails user this procedure returns -ENOMEM
  2058. */
  2059. int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
  2060. int (*getfrag)(void *from, char *to, int offset,
  2061. int len, int odd, struct sk_buff *skb),
  2062. void *from, int length)
  2063. {
  2064. int frg_cnt = 0;
  2065. skb_frag_t *frag = NULL;
  2066. struct page *page = NULL;
  2067. int copy, left;
  2068. int offset = 0;
  2069. int ret;
  2070. do {
  2071. /* Return error if we don't have space for new frag */
  2072. frg_cnt = skb_shinfo(skb)->nr_frags;
  2073. if (frg_cnt >= MAX_SKB_FRAGS)
  2074. return -EFAULT;
  2075. /* allocate a new page for next frag */
  2076. page = alloc_pages(sk->sk_allocation, 0);
  2077. /* If alloc_page fails just return failure and caller will
  2078. * free previous allocated pages by doing kfree_skb()
  2079. */
  2080. if (page == NULL)
  2081. return -ENOMEM;
  2082. /* initialize the next frag */
  2083. sk->sk_sndmsg_page = page;
  2084. sk->sk_sndmsg_off = 0;
  2085. skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
  2086. skb->truesize += PAGE_SIZE;
  2087. atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
  2088. /* get the new initialized frag */
  2089. frg_cnt = skb_shinfo(skb)->nr_frags;
  2090. frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
  2091. /* copy the user data to page */
  2092. left = PAGE_SIZE - frag->page_offset;
  2093. copy = (length > left)? left : length;
  2094. ret = getfrag(from, (page_address(frag->page) +
  2095. frag->page_offset + frag->size),
  2096. offset, copy, 0, skb);
  2097. if (ret < 0)
  2098. return -EFAULT;
  2099. /* copy was successful so update the size parameters */
  2100. sk->sk_sndmsg_off += copy;
  2101. frag->size += copy;
  2102. skb->len += copy;
  2103. skb->data_len += copy;
  2104. offset += copy;
  2105. length -= copy;
  2106. } while (length > 0);
  2107. return 0;
  2108. }
  2109. EXPORT_SYMBOL(skb_append_datato_frags);
  2110. /**
  2111. * skb_pull_rcsum - pull skb and update receive checksum
  2112. * @skb: buffer to update
  2113. * @len: length of data pulled
  2114. *
  2115. * This function performs an skb_pull on the packet and updates
  2116. * the CHECKSUM_COMPLETE checksum. It should be used on
  2117. * receive path processing instead of skb_pull unless you know
  2118. * that the checksum difference is zero (e.g., a valid IP header)
  2119. * or you are setting ip_summed to CHECKSUM_NONE.
  2120. */
  2121. unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
  2122. {
  2123. BUG_ON(len > skb->len);
  2124. skb->len -= len;
  2125. BUG_ON(skb->len < skb->data_len);
  2126. skb_postpull_rcsum(skb, skb->data, len);
  2127. return skb->data += len;
  2128. }
  2129. EXPORT_SYMBOL_GPL(skb_pull_rcsum);
  2130. /**
  2131. * skb_segment - Perform protocol segmentation on skb.
  2132. * @skb: buffer to segment
  2133. * @features: features for the output path (see dev->features)
  2134. *
  2135. * This function performs segmentation on the given skb. It returns
  2136. * a pointer to the first in a list of new skbs for the segments.
  2137. * In case of error it returns ERR_PTR(err).
  2138. */
  2139. struct sk_buff *skb_segment(struct sk_buff *skb, int features)
  2140. {
  2141. struct sk_buff *segs = NULL;
  2142. struct sk_buff *tail = NULL;
  2143. struct sk_buff *fskb = skb_shinfo(skb)->frag_list;
  2144. unsigned int mss = skb_shinfo(skb)->gso_size;
  2145. unsigned int doffset = skb->data - skb_mac_header(skb);
  2146. unsigned int offset = doffset;
  2147. unsigned int headroom;
  2148. unsigned int len;
  2149. int sg = features & NETIF_F_SG;
  2150. int nfrags = skb_shinfo(skb)->nr_frags;
  2151. int err = -ENOMEM;
  2152. int i = 0;
  2153. int pos;
  2154. __skb_push(skb, doffset);
  2155. headroom = skb_headroom(skb);
  2156. pos = skb_headlen(skb);
  2157. do {
  2158. struct sk_buff *nskb;
  2159. skb_frag_t *frag;
  2160. int hsize;
  2161. int size;
  2162. len = skb->len - offset;
  2163. if (len > mss)
  2164. len = mss;
  2165. hsize = skb_headlen(skb) - offset;
  2166. if (hsize < 0)
  2167. hsize = 0;
  2168. if (hsize > len || !sg)
  2169. hsize = len;
  2170. if (!hsize && i >= nfrags) {
  2171. BUG_ON(fskb->len != len);
  2172. pos += len;
  2173. nskb = skb_clone(fskb, GFP_ATOMIC);
  2174. fskb = fskb->next;
  2175. if (unlikely(!nskb))
  2176. goto err;
  2177. hsize = skb_end_pointer(nskb) - nskb->head;
  2178. if (skb_cow_head(nskb, doffset + headroom)) {
  2179. kfree_skb(nskb);
  2180. goto err;
  2181. }
  2182. nskb->truesize += skb_end_pointer(nskb) - nskb->head -
  2183. hsize;
  2184. skb_release_head_state(nskb);
  2185. __skb_push(nskb, doffset);
  2186. } else {
  2187. nskb = alloc_skb(hsize + doffset + headroom,
  2188. GFP_ATOMIC);
  2189. if (unlikely(!nskb))
  2190. goto err;
  2191. skb_reserve(nskb, headroom);
  2192. __skb_put(nskb, doffset);
  2193. }
  2194. if (segs)
  2195. tail->next = nskb;
  2196. else
  2197. segs = nskb;
  2198. tail = nskb;
  2199. __copy_skb_header(nskb, skb);
  2200. nskb->mac_len = skb->mac_len;
  2201. skb_reset_mac_header(nskb);
  2202. skb_set_network_header(nskb, skb->mac_len);
  2203. nskb->transport_header = (nskb->network_header +
  2204. skb_network_header_len(skb));
  2205. skb_copy_from_linear_data(skb, nskb->data, doffset);
  2206. if (pos >= offset + len)
  2207. continue;
  2208. if (!sg) {
  2209. nskb->ip_summed = CHECKSUM_NONE;
  2210. nskb->csum = skb_copy_and_csum_bits(skb, offset,
  2211. skb_put(nskb, len),
  2212. len, 0);
  2213. continue;
  2214. }
  2215. frag = skb_shinfo(nskb)->frags;
  2216. skb_copy_from_linear_data_offset(skb, offset,
  2217. skb_put(nskb, hsize), hsize);
  2218. while (pos < offset + len && i < nfrags) {
  2219. *frag = skb_shinfo(skb)->frags[i];
  2220. get_page(frag->page);
  2221. size = frag->size;
  2222. if (pos < offset) {
  2223. frag->page_offset += offset - pos;
  2224. frag->size -= offset - pos;
  2225. }
  2226. skb_shinfo(nskb)->nr_frags++;
  2227. if (pos + size <= offset + len) {
  2228. i++;
  2229. pos += size;
  2230. } else {
  2231. frag->size -= pos + size - (offset + len);
  2232. goto skip_fraglist;
  2233. }
  2234. frag++;
  2235. }
  2236. if (pos < offset + len) {
  2237. struct sk_buff *fskb2 = fskb;
  2238. BUG_ON(pos + fskb->len != offset + len);
  2239. pos += fskb->len;
  2240. fskb = fskb->next;
  2241. if (fskb2->next) {
  2242. fskb2 = skb_clone(fskb2, GFP_ATOMIC);
  2243. if (!fskb2)
  2244. goto err;
  2245. } else
  2246. skb_get(fskb2);
  2247. BUG_ON(skb_shinfo(nskb)->frag_list);
  2248. skb_shinfo(nskb)->frag_list = fskb2;
  2249. }
  2250. skip_fraglist:
  2251. nskb->data_len = len - hsize;
  2252. nskb->len += nskb->data_len;
  2253. nskb->truesize += nskb->data_len;
  2254. } while ((offset += len) < skb->len);
  2255. return segs;
  2256. err:
  2257. while ((skb = segs)) {
  2258. segs = skb->next;
  2259. kfree_skb(skb);
  2260. }
  2261. return ERR_PTR(err);
  2262. }
  2263. EXPORT_SYMBOL_GPL(skb_segment);
  2264. int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
  2265. {
  2266. struct sk_buff *p = *head;
  2267. struct sk_buff *nskb;
  2268. unsigned int headroom;
  2269. unsigned int len = skb_gro_len(skb);
  2270. if (p->len + len >= 65536)
  2271. return -E2BIG;
  2272. if (skb_shinfo(p)->frag_list)
  2273. goto merge;
  2274. else if (skb_headlen(skb) <= skb_gro_offset(skb)) {
  2275. if (skb_shinfo(p)->nr_frags + skb_shinfo(skb)->nr_frags >
  2276. MAX_SKB_FRAGS)
  2277. return -E2BIG;
  2278. skb_shinfo(skb)->frags[0].page_offset +=
  2279. skb_gro_offset(skb) - skb_headlen(skb);
  2280. skb_shinfo(skb)->frags[0].size -=
  2281. skb_gro_offset(skb) - skb_headlen(skb);
  2282. memcpy(skb_shinfo(p)->frags + skb_shinfo(p)->nr_frags,
  2283. skb_shinfo(skb)->frags,
  2284. skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
  2285. skb_shinfo(p)->nr_frags += skb_shinfo(skb)->nr_frags;
  2286. skb_shinfo(skb)->nr_frags = 0;
  2287. skb->truesize -= skb->data_len;
  2288. skb->len -= skb->data_len;
  2289. skb->data_len = 0;
  2290. NAPI_GRO_CB(skb)->free = 1;
  2291. goto done;
  2292. }
  2293. headroom = skb_headroom(p);
  2294. nskb = netdev_alloc_skb(p->dev, headroom + skb_gro_offset(p));
  2295. if (unlikely(!nskb))
  2296. return -ENOMEM;
  2297. __copy_skb_header(nskb, p);
  2298. nskb->mac_len = p->mac_len;
  2299. skb_reserve(nskb, headroom);
  2300. __skb_put(nskb, skb_gro_offset(p));
  2301. skb_set_mac_header(nskb, skb_mac_header(p) - p->data);
  2302. skb_set_network_header(nskb, skb_network_offset(p));
  2303. skb_set_transport_header(nskb, skb_transport_offset(p));
  2304. __skb_pull(p, skb_gro_offset(p));
  2305. memcpy(skb_mac_header(nskb), skb_mac_header(p),
  2306. p->data - skb_mac_header(p));
  2307. *NAPI_GRO_CB(nskb) = *NAPI_GRO_CB(p);
  2308. skb_shinfo(nskb)->frag_list = p;
  2309. skb_shinfo(nskb)->gso_size = skb_shinfo(p)->gso_size;
  2310. skb_header_release(p);
  2311. nskb->prev = p;
  2312. nskb->data_len += p->len;
  2313. nskb->truesize += p->len;
  2314. nskb->len += p->len;
  2315. *head = nskb;
  2316. nskb->next = p->next;
  2317. p->next = NULL;
  2318. p = nskb;
  2319. merge:
  2320. if (skb_gro_offset(skb) > skb_headlen(skb)) {
  2321. skb_shinfo(skb)->frags[0].page_offset +=
  2322. skb_gro_offset(skb) - skb_headlen(skb);
  2323. skb_shinfo(skb)->frags[0].size -=
  2324. skb_gro_offset(skb) - skb_headlen(skb);
  2325. skb_gro_reset_offset(skb);
  2326. skb_gro_pull(skb, skb_headlen(skb));
  2327. }
  2328. __skb_pull(skb, skb_gro_offset(skb));
  2329. p->prev->next = skb;
  2330. p->prev = skb;
  2331. skb_header_release(skb);
  2332. done:
  2333. NAPI_GRO_CB(p)->count++;
  2334. p->data_len += len;
  2335. p->truesize += len;
  2336. p->len += len;
  2337. NAPI_GRO_CB(skb)->same_flow = 1;
  2338. return 0;
  2339. }
  2340. EXPORT_SYMBOL_GPL(skb_gro_receive);
  2341. void __init skb_init(void)
  2342. {
  2343. skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
  2344. sizeof(struct sk_buff),
  2345. 0,
  2346. SLAB_HWCACHE_ALIGN|SLAB_PANIC,
  2347. NULL);
  2348. skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
  2349. (2*sizeof(struct sk_buff)) +
  2350. sizeof(atomic_t),
  2351. 0,
  2352. SLAB_HWCACHE_ALIGN|SLAB_PANIC,
  2353. NULL);
  2354. }
  2355. /**
  2356. * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
  2357. * @skb: Socket buffer containing the buffers to be mapped
  2358. * @sg: The scatter-gather list to map into
  2359. * @offset: The offset into the buffer's contents to start mapping
  2360. * @len: Length of buffer space to be mapped
  2361. *
  2362. * Fill the specified scatter-gather list with mappings/pointers into a
  2363. * region of the buffer space attached to a socket buffer.
  2364. */
  2365. static int
  2366. __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
  2367. {
  2368. int start = skb_headlen(skb);
  2369. int i, copy = start - offset;
  2370. int elt = 0;
  2371. if (copy > 0) {
  2372. if (copy > len)
  2373. copy = len;
  2374. sg_set_buf(sg, skb->data + offset, copy);
  2375. elt++;
  2376. if ((len -= copy) == 0)
  2377. return elt;
  2378. offset += copy;
  2379. }
  2380. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  2381. int end;
  2382. WARN_ON(start > offset + len);
  2383. end = start + skb_shinfo(skb)->frags[i].size;
  2384. if ((copy = end - offset) > 0) {
  2385. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  2386. if (copy > len)
  2387. copy = len;
  2388. sg_set_page(&sg[elt], frag->page, copy,
  2389. frag->page_offset+offset-start);
  2390. elt++;
  2391. if (!(len -= copy))
  2392. return elt;
  2393. offset += copy;
  2394. }
  2395. start = end;
  2396. }
  2397. if (skb_shinfo(skb)->frag_list) {
  2398. struct sk_buff *list = skb_shinfo(skb)->frag_list;
  2399. for (; list; list = list->next) {
  2400. int end;
  2401. WARN_ON(start > offset + len);
  2402. end = start + list->len;
  2403. if ((copy = end - offset) > 0) {
  2404. if (copy > len)
  2405. copy = len;
  2406. elt += __skb_to_sgvec(list, sg+elt, offset - start,
  2407. copy);
  2408. if ((len -= copy) == 0)
  2409. return elt;
  2410. offset += copy;
  2411. }
  2412. start = end;
  2413. }
  2414. }
  2415. BUG_ON(len);
  2416. return elt;
  2417. }
  2418. int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
  2419. {
  2420. int nsg = __skb_to_sgvec(skb, sg, offset, len);
  2421. sg_mark_end(&sg[nsg - 1]);
  2422. return nsg;
  2423. }
  2424. EXPORT_SYMBOL_GPL(skb_to_sgvec);
  2425. /**
  2426. * skb_cow_data - Check that a socket buffer's data buffers are writable
  2427. * @skb: The socket buffer to check.
  2428. * @tailbits: Amount of trailing space to be added
  2429. * @trailer: Returned pointer to the skb where the @tailbits space begins
  2430. *
  2431. * Make sure that the data buffers attached to a socket buffer are
  2432. * writable. If they are not, private copies are made of the data buffers
  2433. * and the socket buffer is set to use these instead.
  2434. *
  2435. * If @tailbits is given, make sure that there is space to write @tailbits
  2436. * bytes of data beyond current end of socket buffer. @trailer will be
  2437. * set to point to the skb in which this space begins.
  2438. *
  2439. * The number of scatterlist elements required to completely map the
  2440. * COW'd and extended socket buffer will be returned.
  2441. */
  2442. int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
  2443. {
  2444. int copyflag;
  2445. int elt;
  2446. struct sk_buff *skb1, **skb_p;
  2447. /* If skb is cloned or its head is paged, reallocate
  2448. * head pulling out all the pages (pages are considered not writable
  2449. * at the moment even if they are anonymous).
  2450. */
  2451. if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
  2452. __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
  2453. return -ENOMEM;
  2454. /* Easy case. Most of packets will go this way. */
  2455. if (!skb_shinfo(skb)->frag_list) {
  2456. /* A little of trouble, not enough of space for trailer.
  2457. * This should not happen, when stack is tuned to generate
  2458. * good frames. OK, on miss we reallocate and reserve even more
  2459. * space, 128 bytes is fair. */
  2460. if (skb_tailroom(skb) < tailbits &&
  2461. pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
  2462. return -ENOMEM;
  2463. /* Voila! */
  2464. *trailer = skb;
  2465. return 1;
  2466. }
  2467. /* Misery. We are in troubles, going to mincer fragments... */
  2468. elt = 1;
  2469. skb_p = &skb_shinfo(skb)->frag_list;
  2470. copyflag = 0;
  2471. while ((skb1 = *skb_p) != NULL) {
  2472. int ntail = 0;
  2473. /* The fragment is partially pulled by someone,
  2474. * this can happen on input. Copy it and everything
  2475. * after it. */
  2476. if (skb_shared(skb1))
  2477. copyflag = 1;
  2478. /* If the skb is the last, worry about trailer. */
  2479. if (skb1->next == NULL && tailbits) {
  2480. if (skb_shinfo(skb1)->nr_frags ||
  2481. skb_shinfo(skb1)->frag_list ||
  2482. skb_tailroom(skb1) < tailbits)
  2483. ntail = tailbits + 128;
  2484. }
  2485. if (copyflag ||
  2486. skb_cloned(skb1) ||
  2487. ntail ||
  2488. skb_shinfo(skb1)->nr_frags ||
  2489. skb_shinfo(skb1)->frag_list) {
  2490. struct sk_buff *skb2;
  2491. /* Fuck, we are miserable poor guys... */
  2492. if (ntail == 0)
  2493. skb2 = skb_copy(skb1, GFP_ATOMIC);
  2494. else
  2495. skb2 = skb_copy_expand(skb1,
  2496. skb_headroom(skb1),
  2497. ntail,
  2498. GFP_ATOMIC);
  2499. if (unlikely(skb2 == NULL))
  2500. return -ENOMEM;
  2501. if (skb1->sk)
  2502. skb_set_owner_w(skb2, skb1->sk);
  2503. /* Looking around. Are we still alive?
  2504. * OK, link new skb, drop old one */
  2505. skb2->next = skb1->next;
  2506. *skb_p = skb2;
  2507. kfree_skb(skb1);
  2508. skb1 = skb2;
  2509. }
  2510. elt++;
  2511. *trailer = skb1;
  2512. skb_p = &skb1->next;
  2513. }
  2514. return elt;
  2515. }
  2516. EXPORT_SYMBOL_GPL(skb_cow_data);
  2517. void skb_tstamp_tx(struct sk_buff *orig_skb,
  2518. struct skb_shared_hwtstamps *hwtstamps)
  2519. {
  2520. struct sock *sk = orig_skb->sk;
  2521. struct sock_exterr_skb *serr;
  2522. struct sk_buff *skb;
  2523. int err;
  2524. if (!sk)
  2525. return;
  2526. skb = skb_clone(orig_skb, GFP_ATOMIC);
  2527. if (!skb)
  2528. return;
  2529. if (hwtstamps) {
  2530. *skb_hwtstamps(skb) =
  2531. *hwtstamps;
  2532. } else {
  2533. /*
  2534. * no hardware time stamps available,
  2535. * so keep the skb_shared_tx and only
  2536. * store software time stamp
  2537. */
  2538. skb->tstamp = ktime_get_real();
  2539. }
  2540. serr = SKB_EXT_ERR(skb);
  2541. memset(serr, 0, sizeof(*serr));
  2542. serr->ee.ee_errno = ENOMSG;
  2543. serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
  2544. err = sock_queue_err_skb(sk, skb);
  2545. if (err)
  2546. kfree_skb(skb);
  2547. }
  2548. EXPORT_SYMBOL_GPL(skb_tstamp_tx);
  2549. /**
  2550. * skb_partial_csum_set - set up and verify partial csum values for packet
  2551. * @skb: the skb to set
  2552. * @start: the number of bytes after skb->data to start checksumming.
  2553. * @off: the offset from start to place the checksum.
  2554. *
  2555. * For untrusted partially-checksummed packets, we need to make sure the values
  2556. * for skb->csum_start and skb->csum_offset are valid so we don't oops.
  2557. *
  2558. * This function checks and sets those values and skb->ip_summed: if this
  2559. * returns false you should drop the packet.
  2560. */
  2561. bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
  2562. {
  2563. if (unlikely(start > skb->len - 2) ||
  2564. unlikely((int)start + off > skb->len - 2)) {
  2565. if (net_ratelimit())
  2566. printk(KERN_WARNING
  2567. "bad partial csum: csum=%u/%u len=%u\n",
  2568. start, off, skb->len);
  2569. return false;
  2570. }
  2571. skb->ip_summed = CHECKSUM_PARTIAL;
  2572. skb->csum_start = skb_headroom(skb) + start;
  2573. skb->csum_offset = off;
  2574. return true;
  2575. }
  2576. EXPORT_SYMBOL_GPL(skb_partial_csum_set);
  2577. void __skb_warn_lro_forwarding(const struct sk_buff *skb)
  2578. {
  2579. if (net_ratelimit())
  2580. pr_warning("%s: received packets cannot be forwarded"
  2581. " while LRO is enabled\n", skb->dev->name);
  2582. }
  2583. EXPORT_SYMBOL(__skb_warn_lro_forwarding);