niu.c 231 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320
  1. /* niu.c: Neptune ethernet driver.
  2. *
  3. * Copyright (C) 2007, 2008 David S. Miller (davem@davemloft.net)
  4. */
  5. #include <linux/module.h>
  6. #include <linux/init.h>
  7. #include <linux/pci.h>
  8. #include <linux/dma-mapping.h>
  9. #include <linux/netdevice.h>
  10. #include <linux/ethtool.h>
  11. #include <linux/etherdevice.h>
  12. #include <linux/platform_device.h>
  13. #include <linux/delay.h>
  14. #include <linux/bitops.h>
  15. #include <linux/mii.h>
  16. #include <linux/if_ether.h>
  17. #include <linux/if_vlan.h>
  18. #include <linux/ip.h>
  19. #include <linux/in.h>
  20. #include <linux/ipv6.h>
  21. #include <linux/log2.h>
  22. #include <linux/jiffies.h>
  23. #include <linux/crc32.h>
  24. #include <linux/io.h>
  25. #ifdef CONFIG_SPARC64
  26. #include <linux/of_device.h>
  27. #endif
  28. #include "niu.h"
  29. #define DRV_MODULE_NAME "niu"
  30. #define PFX DRV_MODULE_NAME ": "
  31. #define DRV_MODULE_VERSION "1.0"
  32. #define DRV_MODULE_RELDATE "Nov 14, 2008"
  33. static char version[] __devinitdata =
  34. DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
  35. MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
  36. MODULE_DESCRIPTION("NIU ethernet driver");
  37. MODULE_LICENSE("GPL");
  38. MODULE_VERSION(DRV_MODULE_VERSION);
  39. #ifndef DMA_44BIT_MASK
  40. #define DMA_44BIT_MASK 0x00000fffffffffffULL
  41. #endif
  42. #ifndef readq
  43. static u64 readq(void __iomem *reg)
  44. {
  45. return ((u64) readl(reg)) | (((u64) readl(reg + 4UL)) << 32);
  46. }
  47. static void writeq(u64 val, void __iomem *reg)
  48. {
  49. writel(val & 0xffffffff, reg);
  50. writel(val >> 32, reg + 0x4UL);
  51. }
  52. #endif
  53. static struct pci_device_id niu_pci_tbl[] = {
  54. {PCI_DEVICE(PCI_VENDOR_ID_SUN, 0xabcd)},
  55. {}
  56. };
  57. MODULE_DEVICE_TABLE(pci, niu_pci_tbl);
  58. #define NIU_TX_TIMEOUT (5 * HZ)
  59. #define nr64(reg) readq(np->regs + (reg))
  60. #define nw64(reg, val) writeq((val), np->regs + (reg))
  61. #define nr64_mac(reg) readq(np->mac_regs + (reg))
  62. #define nw64_mac(reg, val) writeq((val), np->mac_regs + (reg))
  63. #define nr64_ipp(reg) readq(np->regs + np->ipp_off + (reg))
  64. #define nw64_ipp(reg, val) writeq((val), np->regs + np->ipp_off + (reg))
  65. #define nr64_pcs(reg) readq(np->regs + np->pcs_off + (reg))
  66. #define nw64_pcs(reg, val) writeq((val), np->regs + np->pcs_off + (reg))
  67. #define nr64_xpcs(reg) readq(np->regs + np->xpcs_off + (reg))
  68. #define nw64_xpcs(reg, val) writeq((val), np->regs + np->xpcs_off + (reg))
  69. #define NIU_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
  70. static int niu_debug;
  71. static int debug = -1;
  72. module_param(debug, int, 0);
  73. MODULE_PARM_DESC(debug, "NIU debug level");
  74. #define niudbg(TYPE, f, a...) \
  75. do { if ((np)->msg_enable & NETIF_MSG_##TYPE) \
  76. printk(KERN_DEBUG PFX f, ## a); \
  77. } while (0)
  78. #define niuinfo(TYPE, f, a...) \
  79. do { if ((np)->msg_enable & NETIF_MSG_##TYPE) \
  80. printk(KERN_INFO PFX f, ## a); \
  81. } while (0)
  82. #define niuwarn(TYPE, f, a...) \
  83. do { if ((np)->msg_enable & NETIF_MSG_##TYPE) \
  84. printk(KERN_WARNING PFX f, ## a); \
  85. } while (0)
  86. #define niu_lock_parent(np, flags) \
  87. spin_lock_irqsave(&np->parent->lock, flags)
  88. #define niu_unlock_parent(np, flags) \
  89. spin_unlock_irqrestore(&np->parent->lock, flags)
  90. static int serdes_init_10g_serdes(struct niu *np);
  91. static int __niu_wait_bits_clear_mac(struct niu *np, unsigned long reg,
  92. u64 bits, int limit, int delay)
  93. {
  94. while (--limit >= 0) {
  95. u64 val = nr64_mac(reg);
  96. if (!(val & bits))
  97. break;
  98. udelay(delay);
  99. }
  100. if (limit < 0)
  101. return -ENODEV;
  102. return 0;
  103. }
  104. static int __niu_set_and_wait_clear_mac(struct niu *np, unsigned long reg,
  105. u64 bits, int limit, int delay,
  106. const char *reg_name)
  107. {
  108. int err;
  109. nw64_mac(reg, bits);
  110. err = __niu_wait_bits_clear_mac(np, reg, bits, limit, delay);
  111. if (err)
  112. dev_err(np->device, PFX "%s: bits (%llx) of register %s "
  113. "would not clear, val[%llx]\n",
  114. np->dev->name, (unsigned long long) bits, reg_name,
  115. (unsigned long long) nr64_mac(reg));
  116. return err;
  117. }
  118. #define niu_set_and_wait_clear_mac(NP, REG, BITS, LIMIT, DELAY, REG_NAME) \
  119. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  120. __niu_set_and_wait_clear_mac(NP, REG, BITS, LIMIT, DELAY, REG_NAME); \
  121. })
  122. static int __niu_wait_bits_clear_ipp(struct niu *np, unsigned long reg,
  123. u64 bits, int limit, int delay)
  124. {
  125. while (--limit >= 0) {
  126. u64 val = nr64_ipp(reg);
  127. if (!(val & bits))
  128. break;
  129. udelay(delay);
  130. }
  131. if (limit < 0)
  132. return -ENODEV;
  133. return 0;
  134. }
  135. static int __niu_set_and_wait_clear_ipp(struct niu *np, unsigned long reg,
  136. u64 bits, int limit, int delay,
  137. const char *reg_name)
  138. {
  139. int err;
  140. u64 val;
  141. val = nr64_ipp(reg);
  142. val |= bits;
  143. nw64_ipp(reg, val);
  144. err = __niu_wait_bits_clear_ipp(np, reg, bits, limit, delay);
  145. if (err)
  146. dev_err(np->device, PFX "%s: bits (%llx) of register %s "
  147. "would not clear, val[%llx]\n",
  148. np->dev->name, (unsigned long long) bits, reg_name,
  149. (unsigned long long) nr64_ipp(reg));
  150. return err;
  151. }
  152. #define niu_set_and_wait_clear_ipp(NP, REG, BITS, LIMIT, DELAY, REG_NAME) \
  153. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  154. __niu_set_and_wait_clear_ipp(NP, REG, BITS, LIMIT, DELAY, REG_NAME); \
  155. })
  156. static int __niu_wait_bits_clear(struct niu *np, unsigned long reg,
  157. u64 bits, int limit, int delay)
  158. {
  159. while (--limit >= 0) {
  160. u64 val = nr64(reg);
  161. if (!(val & bits))
  162. break;
  163. udelay(delay);
  164. }
  165. if (limit < 0)
  166. return -ENODEV;
  167. return 0;
  168. }
  169. #define niu_wait_bits_clear(NP, REG, BITS, LIMIT, DELAY) \
  170. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  171. __niu_wait_bits_clear(NP, REG, BITS, LIMIT, DELAY); \
  172. })
  173. static int __niu_set_and_wait_clear(struct niu *np, unsigned long reg,
  174. u64 bits, int limit, int delay,
  175. const char *reg_name)
  176. {
  177. int err;
  178. nw64(reg, bits);
  179. err = __niu_wait_bits_clear(np, reg, bits, limit, delay);
  180. if (err)
  181. dev_err(np->device, PFX "%s: bits (%llx) of register %s "
  182. "would not clear, val[%llx]\n",
  183. np->dev->name, (unsigned long long) bits, reg_name,
  184. (unsigned long long) nr64(reg));
  185. return err;
  186. }
  187. #define niu_set_and_wait_clear(NP, REG, BITS, LIMIT, DELAY, REG_NAME) \
  188. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  189. __niu_set_and_wait_clear(NP, REG, BITS, LIMIT, DELAY, REG_NAME); \
  190. })
  191. static void niu_ldg_rearm(struct niu *np, struct niu_ldg *lp, int on)
  192. {
  193. u64 val = (u64) lp->timer;
  194. if (on)
  195. val |= LDG_IMGMT_ARM;
  196. nw64(LDG_IMGMT(lp->ldg_num), val);
  197. }
  198. static int niu_ldn_irq_enable(struct niu *np, int ldn, int on)
  199. {
  200. unsigned long mask_reg, bits;
  201. u64 val;
  202. if (ldn < 0 || ldn > LDN_MAX)
  203. return -EINVAL;
  204. if (ldn < 64) {
  205. mask_reg = LD_IM0(ldn);
  206. bits = LD_IM0_MASK;
  207. } else {
  208. mask_reg = LD_IM1(ldn - 64);
  209. bits = LD_IM1_MASK;
  210. }
  211. val = nr64(mask_reg);
  212. if (on)
  213. val &= ~bits;
  214. else
  215. val |= bits;
  216. nw64(mask_reg, val);
  217. return 0;
  218. }
  219. static int niu_enable_ldn_in_ldg(struct niu *np, struct niu_ldg *lp, int on)
  220. {
  221. struct niu_parent *parent = np->parent;
  222. int i;
  223. for (i = 0; i <= LDN_MAX; i++) {
  224. int err;
  225. if (parent->ldg_map[i] != lp->ldg_num)
  226. continue;
  227. err = niu_ldn_irq_enable(np, i, on);
  228. if (err)
  229. return err;
  230. }
  231. return 0;
  232. }
  233. static int niu_enable_interrupts(struct niu *np, int on)
  234. {
  235. int i;
  236. for (i = 0; i < np->num_ldg; i++) {
  237. struct niu_ldg *lp = &np->ldg[i];
  238. int err;
  239. err = niu_enable_ldn_in_ldg(np, lp, on);
  240. if (err)
  241. return err;
  242. }
  243. for (i = 0; i < np->num_ldg; i++)
  244. niu_ldg_rearm(np, &np->ldg[i], on);
  245. return 0;
  246. }
  247. static u32 phy_encode(u32 type, int port)
  248. {
  249. return (type << (port * 2));
  250. }
  251. static u32 phy_decode(u32 val, int port)
  252. {
  253. return (val >> (port * 2)) & PORT_TYPE_MASK;
  254. }
  255. static int mdio_wait(struct niu *np)
  256. {
  257. int limit = 1000;
  258. u64 val;
  259. while (--limit > 0) {
  260. val = nr64(MIF_FRAME_OUTPUT);
  261. if ((val >> MIF_FRAME_OUTPUT_TA_SHIFT) & 0x1)
  262. return val & MIF_FRAME_OUTPUT_DATA;
  263. udelay(10);
  264. }
  265. return -ENODEV;
  266. }
  267. static int mdio_read(struct niu *np, int port, int dev, int reg)
  268. {
  269. int err;
  270. nw64(MIF_FRAME_OUTPUT, MDIO_ADDR_OP(port, dev, reg));
  271. err = mdio_wait(np);
  272. if (err < 0)
  273. return err;
  274. nw64(MIF_FRAME_OUTPUT, MDIO_READ_OP(port, dev));
  275. return mdio_wait(np);
  276. }
  277. static int mdio_write(struct niu *np, int port, int dev, int reg, int data)
  278. {
  279. int err;
  280. nw64(MIF_FRAME_OUTPUT, MDIO_ADDR_OP(port, dev, reg));
  281. err = mdio_wait(np);
  282. if (err < 0)
  283. return err;
  284. nw64(MIF_FRAME_OUTPUT, MDIO_WRITE_OP(port, dev, data));
  285. err = mdio_wait(np);
  286. if (err < 0)
  287. return err;
  288. return 0;
  289. }
  290. static int mii_read(struct niu *np, int port, int reg)
  291. {
  292. nw64(MIF_FRAME_OUTPUT, MII_READ_OP(port, reg));
  293. return mdio_wait(np);
  294. }
  295. static int mii_write(struct niu *np, int port, int reg, int data)
  296. {
  297. int err;
  298. nw64(MIF_FRAME_OUTPUT, MII_WRITE_OP(port, reg, data));
  299. err = mdio_wait(np);
  300. if (err < 0)
  301. return err;
  302. return 0;
  303. }
  304. static int esr2_set_tx_cfg(struct niu *np, unsigned long channel, u32 val)
  305. {
  306. int err;
  307. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  308. ESR2_TI_PLL_TX_CFG_L(channel),
  309. val & 0xffff);
  310. if (!err)
  311. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  312. ESR2_TI_PLL_TX_CFG_H(channel),
  313. val >> 16);
  314. return err;
  315. }
  316. static int esr2_set_rx_cfg(struct niu *np, unsigned long channel, u32 val)
  317. {
  318. int err;
  319. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  320. ESR2_TI_PLL_RX_CFG_L(channel),
  321. val & 0xffff);
  322. if (!err)
  323. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  324. ESR2_TI_PLL_RX_CFG_H(channel),
  325. val >> 16);
  326. return err;
  327. }
  328. /* Mode is always 10G fiber. */
  329. static int serdes_init_niu_10g_fiber(struct niu *np)
  330. {
  331. struct niu_link_config *lp = &np->link_config;
  332. u32 tx_cfg, rx_cfg;
  333. unsigned long i;
  334. tx_cfg = (PLL_TX_CFG_ENTX | PLL_TX_CFG_SWING_1375MV);
  335. rx_cfg = (PLL_RX_CFG_ENRX | PLL_RX_CFG_TERM_0P8VDDT |
  336. PLL_RX_CFG_ALIGN_ENA | PLL_RX_CFG_LOS_LTHRESH |
  337. PLL_RX_CFG_EQ_LP_ADAPTIVE);
  338. if (lp->loopback_mode == LOOPBACK_PHY) {
  339. u16 test_cfg = PLL_TEST_CFG_LOOPBACK_CML_DIS;
  340. mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  341. ESR2_TI_PLL_TEST_CFG_L, test_cfg);
  342. tx_cfg |= PLL_TX_CFG_ENTEST;
  343. rx_cfg |= PLL_RX_CFG_ENTEST;
  344. }
  345. /* Initialize all 4 lanes of the SERDES. */
  346. for (i = 0; i < 4; i++) {
  347. int err = esr2_set_tx_cfg(np, i, tx_cfg);
  348. if (err)
  349. return err;
  350. }
  351. for (i = 0; i < 4; i++) {
  352. int err = esr2_set_rx_cfg(np, i, rx_cfg);
  353. if (err)
  354. return err;
  355. }
  356. return 0;
  357. }
  358. static int serdes_init_niu_1g_serdes(struct niu *np)
  359. {
  360. struct niu_link_config *lp = &np->link_config;
  361. u16 pll_cfg, pll_sts;
  362. int max_retry = 100;
  363. u64 uninitialized_var(sig), mask, val;
  364. u32 tx_cfg, rx_cfg;
  365. unsigned long i;
  366. int err;
  367. tx_cfg = (PLL_TX_CFG_ENTX | PLL_TX_CFG_SWING_1375MV |
  368. PLL_TX_CFG_RATE_HALF);
  369. rx_cfg = (PLL_RX_CFG_ENRX | PLL_RX_CFG_TERM_0P8VDDT |
  370. PLL_RX_CFG_ALIGN_ENA | PLL_RX_CFG_LOS_LTHRESH |
  371. PLL_RX_CFG_RATE_HALF);
  372. if (np->port == 0)
  373. rx_cfg |= PLL_RX_CFG_EQ_LP_ADAPTIVE;
  374. if (lp->loopback_mode == LOOPBACK_PHY) {
  375. u16 test_cfg = PLL_TEST_CFG_LOOPBACK_CML_DIS;
  376. mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  377. ESR2_TI_PLL_TEST_CFG_L, test_cfg);
  378. tx_cfg |= PLL_TX_CFG_ENTEST;
  379. rx_cfg |= PLL_RX_CFG_ENTEST;
  380. }
  381. /* Initialize PLL for 1G */
  382. pll_cfg = (PLL_CFG_ENPLL | PLL_CFG_MPY_8X);
  383. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  384. ESR2_TI_PLL_CFG_L, pll_cfg);
  385. if (err) {
  386. dev_err(np->device, PFX "NIU Port %d "
  387. "serdes_init_niu_1g_serdes: "
  388. "mdio write to ESR2_TI_PLL_CFG_L failed", np->port);
  389. return err;
  390. }
  391. pll_sts = PLL_CFG_ENPLL;
  392. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  393. ESR2_TI_PLL_STS_L, pll_sts);
  394. if (err) {
  395. dev_err(np->device, PFX "NIU Port %d "
  396. "serdes_init_niu_1g_serdes: "
  397. "mdio write to ESR2_TI_PLL_STS_L failed", np->port);
  398. return err;
  399. }
  400. udelay(200);
  401. /* Initialize all 4 lanes of the SERDES. */
  402. for (i = 0; i < 4; i++) {
  403. err = esr2_set_tx_cfg(np, i, tx_cfg);
  404. if (err)
  405. return err;
  406. }
  407. for (i = 0; i < 4; i++) {
  408. err = esr2_set_rx_cfg(np, i, rx_cfg);
  409. if (err)
  410. return err;
  411. }
  412. switch (np->port) {
  413. case 0:
  414. val = (ESR_INT_SRDY0_P0 | ESR_INT_DET0_P0);
  415. mask = val;
  416. break;
  417. case 1:
  418. val = (ESR_INT_SRDY0_P1 | ESR_INT_DET0_P1);
  419. mask = val;
  420. break;
  421. default:
  422. return -EINVAL;
  423. }
  424. while (max_retry--) {
  425. sig = nr64(ESR_INT_SIGNALS);
  426. if ((sig & mask) == val)
  427. break;
  428. mdelay(500);
  429. }
  430. if ((sig & mask) != val) {
  431. dev_err(np->device, PFX "Port %u signal bits [%08x] are not "
  432. "[%08x]\n", np->port, (int) (sig & mask), (int) val);
  433. return -ENODEV;
  434. }
  435. return 0;
  436. }
  437. static int serdes_init_niu_10g_serdes(struct niu *np)
  438. {
  439. struct niu_link_config *lp = &np->link_config;
  440. u32 tx_cfg, rx_cfg, pll_cfg, pll_sts;
  441. int max_retry = 100;
  442. u64 uninitialized_var(sig), mask, val;
  443. unsigned long i;
  444. int err;
  445. tx_cfg = (PLL_TX_CFG_ENTX | PLL_TX_CFG_SWING_1375MV);
  446. rx_cfg = (PLL_RX_CFG_ENRX | PLL_RX_CFG_TERM_0P8VDDT |
  447. PLL_RX_CFG_ALIGN_ENA | PLL_RX_CFG_LOS_LTHRESH |
  448. PLL_RX_CFG_EQ_LP_ADAPTIVE);
  449. if (lp->loopback_mode == LOOPBACK_PHY) {
  450. u16 test_cfg = PLL_TEST_CFG_LOOPBACK_CML_DIS;
  451. mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  452. ESR2_TI_PLL_TEST_CFG_L, test_cfg);
  453. tx_cfg |= PLL_TX_CFG_ENTEST;
  454. rx_cfg |= PLL_RX_CFG_ENTEST;
  455. }
  456. /* Initialize PLL for 10G */
  457. pll_cfg = (PLL_CFG_ENPLL | PLL_CFG_MPY_10X);
  458. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  459. ESR2_TI_PLL_CFG_L, pll_cfg & 0xffff);
  460. if (err) {
  461. dev_err(np->device, PFX "NIU Port %d "
  462. "serdes_init_niu_10g_serdes: "
  463. "mdio write to ESR2_TI_PLL_CFG_L failed", np->port);
  464. return err;
  465. }
  466. pll_sts = PLL_CFG_ENPLL;
  467. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  468. ESR2_TI_PLL_STS_L, pll_sts & 0xffff);
  469. if (err) {
  470. dev_err(np->device, PFX "NIU Port %d "
  471. "serdes_init_niu_10g_serdes: "
  472. "mdio write to ESR2_TI_PLL_STS_L failed", np->port);
  473. return err;
  474. }
  475. udelay(200);
  476. /* Initialize all 4 lanes of the SERDES. */
  477. for (i = 0; i < 4; i++) {
  478. err = esr2_set_tx_cfg(np, i, tx_cfg);
  479. if (err)
  480. return err;
  481. }
  482. for (i = 0; i < 4; i++) {
  483. err = esr2_set_rx_cfg(np, i, rx_cfg);
  484. if (err)
  485. return err;
  486. }
  487. /* check if serdes is ready */
  488. switch (np->port) {
  489. case 0:
  490. mask = ESR_INT_SIGNALS_P0_BITS;
  491. val = (ESR_INT_SRDY0_P0 |
  492. ESR_INT_DET0_P0 |
  493. ESR_INT_XSRDY_P0 |
  494. ESR_INT_XDP_P0_CH3 |
  495. ESR_INT_XDP_P0_CH2 |
  496. ESR_INT_XDP_P0_CH1 |
  497. ESR_INT_XDP_P0_CH0);
  498. break;
  499. case 1:
  500. mask = ESR_INT_SIGNALS_P1_BITS;
  501. val = (ESR_INT_SRDY0_P1 |
  502. ESR_INT_DET0_P1 |
  503. ESR_INT_XSRDY_P1 |
  504. ESR_INT_XDP_P1_CH3 |
  505. ESR_INT_XDP_P1_CH2 |
  506. ESR_INT_XDP_P1_CH1 |
  507. ESR_INT_XDP_P1_CH0);
  508. break;
  509. default:
  510. return -EINVAL;
  511. }
  512. while (max_retry--) {
  513. sig = nr64(ESR_INT_SIGNALS);
  514. if ((sig & mask) == val)
  515. break;
  516. mdelay(500);
  517. }
  518. if ((sig & mask) != val) {
  519. pr_info(PFX "NIU Port %u signal bits [%08x] are not "
  520. "[%08x] for 10G...trying 1G\n",
  521. np->port, (int) (sig & mask), (int) val);
  522. /* 10G failed, try initializing at 1G */
  523. err = serdes_init_niu_1g_serdes(np);
  524. if (!err) {
  525. np->flags &= ~NIU_FLAGS_10G;
  526. np->mac_xcvr = MAC_XCVR_PCS;
  527. } else {
  528. dev_err(np->device, PFX "Port %u 10G/1G SERDES "
  529. "Link Failed \n", np->port);
  530. return -ENODEV;
  531. }
  532. }
  533. return 0;
  534. }
  535. static int esr_read_rxtx_ctrl(struct niu *np, unsigned long chan, u32 *val)
  536. {
  537. int err;
  538. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR, ESR_RXTX_CTRL_L(chan));
  539. if (err >= 0) {
  540. *val = (err & 0xffff);
  541. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  542. ESR_RXTX_CTRL_H(chan));
  543. if (err >= 0)
  544. *val |= ((err & 0xffff) << 16);
  545. err = 0;
  546. }
  547. return err;
  548. }
  549. static int esr_read_glue0(struct niu *np, unsigned long chan, u32 *val)
  550. {
  551. int err;
  552. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  553. ESR_GLUE_CTRL0_L(chan));
  554. if (err >= 0) {
  555. *val = (err & 0xffff);
  556. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  557. ESR_GLUE_CTRL0_H(chan));
  558. if (err >= 0) {
  559. *val |= ((err & 0xffff) << 16);
  560. err = 0;
  561. }
  562. }
  563. return err;
  564. }
  565. static int esr_read_reset(struct niu *np, u32 *val)
  566. {
  567. int err;
  568. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  569. ESR_RXTX_RESET_CTRL_L);
  570. if (err >= 0) {
  571. *val = (err & 0xffff);
  572. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  573. ESR_RXTX_RESET_CTRL_H);
  574. if (err >= 0) {
  575. *val |= ((err & 0xffff) << 16);
  576. err = 0;
  577. }
  578. }
  579. return err;
  580. }
  581. static int esr_write_rxtx_ctrl(struct niu *np, unsigned long chan, u32 val)
  582. {
  583. int err;
  584. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  585. ESR_RXTX_CTRL_L(chan), val & 0xffff);
  586. if (!err)
  587. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  588. ESR_RXTX_CTRL_H(chan), (val >> 16));
  589. return err;
  590. }
  591. static int esr_write_glue0(struct niu *np, unsigned long chan, u32 val)
  592. {
  593. int err;
  594. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  595. ESR_GLUE_CTRL0_L(chan), val & 0xffff);
  596. if (!err)
  597. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  598. ESR_GLUE_CTRL0_H(chan), (val >> 16));
  599. return err;
  600. }
  601. static int esr_reset(struct niu *np)
  602. {
  603. u32 uninitialized_var(reset);
  604. int err;
  605. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  606. ESR_RXTX_RESET_CTRL_L, 0x0000);
  607. if (err)
  608. return err;
  609. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  610. ESR_RXTX_RESET_CTRL_H, 0xffff);
  611. if (err)
  612. return err;
  613. udelay(200);
  614. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  615. ESR_RXTX_RESET_CTRL_L, 0xffff);
  616. if (err)
  617. return err;
  618. udelay(200);
  619. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  620. ESR_RXTX_RESET_CTRL_H, 0x0000);
  621. if (err)
  622. return err;
  623. udelay(200);
  624. err = esr_read_reset(np, &reset);
  625. if (err)
  626. return err;
  627. if (reset != 0) {
  628. dev_err(np->device, PFX "Port %u ESR_RESET "
  629. "did not clear [%08x]\n",
  630. np->port, reset);
  631. return -ENODEV;
  632. }
  633. return 0;
  634. }
  635. static int serdes_init_10g(struct niu *np)
  636. {
  637. struct niu_link_config *lp = &np->link_config;
  638. unsigned long ctrl_reg, test_cfg_reg, i;
  639. u64 ctrl_val, test_cfg_val, sig, mask, val;
  640. int err;
  641. switch (np->port) {
  642. case 0:
  643. ctrl_reg = ENET_SERDES_0_CTRL_CFG;
  644. test_cfg_reg = ENET_SERDES_0_TEST_CFG;
  645. break;
  646. case 1:
  647. ctrl_reg = ENET_SERDES_1_CTRL_CFG;
  648. test_cfg_reg = ENET_SERDES_1_TEST_CFG;
  649. break;
  650. default:
  651. return -EINVAL;
  652. }
  653. ctrl_val = (ENET_SERDES_CTRL_SDET_0 |
  654. ENET_SERDES_CTRL_SDET_1 |
  655. ENET_SERDES_CTRL_SDET_2 |
  656. ENET_SERDES_CTRL_SDET_3 |
  657. (0x5 << ENET_SERDES_CTRL_EMPH_0_SHIFT) |
  658. (0x5 << ENET_SERDES_CTRL_EMPH_1_SHIFT) |
  659. (0x5 << ENET_SERDES_CTRL_EMPH_2_SHIFT) |
  660. (0x5 << ENET_SERDES_CTRL_EMPH_3_SHIFT) |
  661. (0x1 << ENET_SERDES_CTRL_LADJ_0_SHIFT) |
  662. (0x1 << ENET_SERDES_CTRL_LADJ_1_SHIFT) |
  663. (0x1 << ENET_SERDES_CTRL_LADJ_2_SHIFT) |
  664. (0x1 << ENET_SERDES_CTRL_LADJ_3_SHIFT));
  665. test_cfg_val = 0;
  666. if (lp->loopback_mode == LOOPBACK_PHY) {
  667. test_cfg_val |= ((ENET_TEST_MD_PAD_LOOPBACK <<
  668. ENET_SERDES_TEST_MD_0_SHIFT) |
  669. (ENET_TEST_MD_PAD_LOOPBACK <<
  670. ENET_SERDES_TEST_MD_1_SHIFT) |
  671. (ENET_TEST_MD_PAD_LOOPBACK <<
  672. ENET_SERDES_TEST_MD_2_SHIFT) |
  673. (ENET_TEST_MD_PAD_LOOPBACK <<
  674. ENET_SERDES_TEST_MD_3_SHIFT));
  675. }
  676. nw64(ctrl_reg, ctrl_val);
  677. nw64(test_cfg_reg, test_cfg_val);
  678. /* Initialize all 4 lanes of the SERDES. */
  679. for (i = 0; i < 4; i++) {
  680. u32 rxtx_ctrl, glue0;
  681. err = esr_read_rxtx_ctrl(np, i, &rxtx_ctrl);
  682. if (err)
  683. return err;
  684. err = esr_read_glue0(np, i, &glue0);
  685. if (err)
  686. return err;
  687. rxtx_ctrl &= ~(ESR_RXTX_CTRL_VMUXLO);
  688. rxtx_ctrl |= (ESR_RXTX_CTRL_ENSTRETCH |
  689. (2 << ESR_RXTX_CTRL_VMUXLO_SHIFT));
  690. glue0 &= ~(ESR_GLUE_CTRL0_SRATE |
  691. ESR_GLUE_CTRL0_THCNT |
  692. ESR_GLUE_CTRL0_BLTIME);
  693. glue0 |= (ESR_GLUE_CTRL0_RXLOSENAB |
  694. (0xf << ESR_GLUE_CTRL0_SRATE_SHIFT) |
  695. (0xff << ESR_GLUE_CTRL0_THCNT_SHIFT) |
  696. (BLTIME_300_CYCLES <<
  697. ESR_GLUE_CTRL0_BLTIME_SHIFT));
  698. err = esr_write_rxtx_ctrl(np, i, rxtx_ctrl);
  699. if (err)
  700. return err;
  701. err = esr_write_glue0(np, i, glue0);
  702. if (err)
  703. return err;
  704. }
  705. err = esr_reset(np);
  706. if (err)
  707. return err;
  708. sig = nr64(ESR_INT_SIGNALS);
  709. switch (np->port) {
  710. case 0:
  711. mask = ESR_INT_SIGNALS_P0_BITS;
  712. val = (ESR_INT_SRDY0_P0 |
  713. ESR_INT_DET0_P0 |
  714. ESR_INT_XSRDY_P0 |
  715. ESR_INT_XDP_P0_CH3 |
  716. ESR_INT_XDP_P0_CH2 |
  717. ESR_INT_XDP_P0_CH1 |
  718. ESR_INT_XDP_P0_CH0);
  719. break;
  720. case 1:
  721. mask = ESR_INT_SIGNALS_P1_BITS;
  722. val = (ESR_INT_SRDY0_P1 |
  723. ESR_INT_DET0_P1 |
  724. ESR_INT_XSRDY_P1 |
  725. ESR_INT_XDP_P1_CH3 |
  726. ESR_INT_XDP_P1_CH2 |
  727. ESR_INT_XDP_P1_CH1 |
  728. ESR_INT_XDP_P1_CH0);
  729. break;
  730. default:
  731. return -EINVAL;
  732. }
  733. if ((sig & mask) != val) {
  734. if (np->flags & NIU_FLAGS_HOTPLUG_PHY) {
  735. np->flags &= ~NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  736. return 0;
  737. }
  738. dev_err(np->device, PFX "Port %u signal bits [%08x] are not "
  739. "[%08x]\n", np->port, (int) (sig & mask), (int) val);
  740. return -ENODEV;
  741. }
  742. if (np->flags & NIU_FLAGS_HOTPLUG_PHY)
  743. np->flags |= NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  744. return 0;
  745. }
  746. static int serdes_init_1g(struct niu *np)
  747. {
  748. u64 val;
  749. val = nr64(ENET_SERDES_1_PLL_CFG);
  750. val &= ~ENET_SERDES_PLL_FBDIV2;
  751. switch (np->port) {
  752. case 0:
  753. val |= ENET_SERDES_PLL_HRATE0;
  754. break;
  755. case 1:
  756. val |= ENET_SERDES_PLL_HRATE1;
  757. break;
  758. case 2:
  759. val |= ENET_SERDES_PLL_HRATE2;
  760. break;
  761. case 3:
  762. val |= ENET_SERDES_PLL_HRATE3;
  763. break;
  764. default:
  765. return -EINVAL;
  766. }
  767. nw64(ENET_SERDES_1_PLL_CFG, val);
  768. return 0;
  769. }
  770. static int serdes_init_1g_serdes(struct niu *np)
  771. {
  772. struct niu_link_config *lp = &np->link_config;
  773. unsigned long ctrl_reg, test_cfg_reg, pll_cfg, i;
  774. u64 ctrl_val, test_cfg_val, sig, mask, val;
  775. int err;
  776. u64 reset_val, val_rd;
  777. val = ENET_SERDES_PLL_HRATE0 | ENET_SERDES_PLL_HRATE1 |
  778. ENET_SERDES_PLL_HRATE2 | ENET_SERDES_PLL_HRATE3 |
  779. ENET_SERDES_PLL_FBDIV0;
  780. switch (np->port) {
  781. case 0:
  782. reset_val = ENET_SERDES_RESET_0;
  783. ctrl_reg = ENET_SERDES_0_CTRL_CFG;
  784. test_cfg_reg = ENET_SERDES_0_TEST_CFG;
  785. pll_cfg = ENET_SERDES_0_PLL_CFG;
  786. break;
  787. case 1:
  788. reset_val = ENET_SERDES_RESET_1;
  789. ctrl_reg = ENET_SERDES_1_CTRL_CFG;
  790. test_cfg_reg = ENET_SERDES_1_TEST_CFG;
  791. pll_cfg = ENET_SERDES_1_PLL_CFG;
  792. break;
  793. default:
  794. return -EINVAL;
  795. }
  796. ctrl_val = (ENET_SERDES_CTRL_SDET_0 |
  797. ENET_SERDES_CTRL_SDET_1 |
  798. ENET_SERDES_CTRL_SDET_2 |
  799. ENET_SERDES_CTRL_SDET_3 |
  800. (0x5 << ENET_SERDES_CTRL_EMPH_0_SHIFT) |
  801. (0x5 << ENET_SERDES_CTRL_EMPH_1_SHIFT) |
  802. (0x5 << ENET_SERDES_CTRL_EMPH_2_SHIFT) |
  803. (0x5 << ENET_SERDES_CTRL_EMPH_3_SHIFT) |
  804. (0x1 << ENET_SERDES_CTRL_LADJ_0_SHIFT) |
  805. (0x1 << ENET_SERDES_CTRL_LADJ_1_SHIFT) |
  806. (0x1 << ENET_SERDES_CTRL_LADJ_2_SHIFT) |
  807. (0x1 << ENET_SERDES_CTRL_LADJ_3_SHIFT));
  808. test_cfg_val = 0;
  809. if (lp->loopback_mode == LOOPBACK_PHY) {
  810. test_cfg_val |= ((ENET_TEST_MD_PAD_LOOPBACK <<
  811. ENET_SERDES_TEST_MD_0_SHIFT) |
  812. (ENET_TEST_MD_PAD_LOOPBACK <<
  813. ENET_SERDES_TEST_MD_1_SHIFT) |
  814. (ENET_TEST_MD_PAD_LOOPBACK <<
  815. ENET_SERDES_TEST_MD_2_SHIFT) |
  816. (ENET_TEST_MD_PAD_LOOPBACK <<
  817. ENET_SERDES_TEST_MD_3_SHIFT));
  818. }
  819. nw64(ENET_SERDES_RESET, reset_val);
  820. mdelay(20);
  821. val_rd = nr64(ENET_SERDES_RESET);
  822. val_rd &= ~reset_val;
  823. nw64(pll_cfg, val);
  824. nw64(ctrl_reg, ctrl_val);
  825. nw64(test_cfg_reg, test_cfg_val);
  826. nw64(ENET_SERDES_RESET, val_rd);
  827. mdelay(2000);
  828. /* Initialize all 4 lanes of the SERDES. */
  829. for (i = 0; i < 4; i++) {
  830. u32 rxtx_ctrl, glue0;
  831. err = esr_read_rxtx_ctrl(np, i, &rxtx_ctrl);
  832. if (err)
  833. return err;
  834. err = esr_read_glue0(np, i, &glue0);
  835. if (err)
  836. return err;
  837. rxtx_ctrl &= ~(ESR_RXTX_CTRL_VMUXLO);
  838. rxtx_ctrl |= (ESR_RXTX_CTRL_ENSTRETCH |
  839. (2 << ESR_RXTX_CTRL_VMUXLO_SHIFT));
  840. glue0 &= ~(ESR_GLUE_CTRL0_SRATE |
  841. ESR_GLUE_CTRL0_THCNT |
  842. ESR_GLUE_CTRL0_BLTIME);
  843. glue0 |= (ESR_GLUE_CTRL0_RXLOSENAB |
  844. (0xf << ESR_GLUE_CTRL0_SRATE_SHIFT) |
  845. (0xff << ESR_GLUE_CTRL0_THCNT_SHIFT) |
  846. (BLTIME_300_CYCLES <<
  847. ESR_GLUE_CTRL0_BLTIME_SHIFT));
  848. err = esr_write_rxtx_ctrl(np, i, rxtx_ctrl);
  849. if (err)
  850. return err;
  851. err = esr_write_glue0(np, i, glue0);
  852. if (err)
  853. return err;
  854. }
  855. sig = nr64(ESR_INT_SIGNALS);
  856. switch (np->port) {
  857. case 0:
  858. val = (ESR_INT_SRDY0_P0 | ESR_INT_DET0_P0);
  859. mask = val;
  860. break;
  861. case 1:
  862. val = (ESR_INT_SRDY0_P1 | ESR_INT_DET0_P1);
  863. mask = val;
  864. break;
  865. default:
  866. return -EINVAL;
  867. }
  868. if ((sig & mask) != val) {
  869. dev_err(np->device, PFX "Port %u signal bits [%08x] are not "
  870. "[%08x]\n", np->port, (int) (sig & mask), (int) val);
  871. return -ENODEV;
  872. }
  873. return 0;
  874. }
  875. static int link_status_1g_serdes(struct niu *np, int *link_up_p)
  876. {
  877. struct niu_link_config *lp = &np->link_config;
  878. int link_up;
  879. u64 val;
  880. u16 current_speed;
  881. unsigned long flags;
  882. u8 current_duplex;
  883. link_up = 0;
  884. current_speed = SPEED_INVALID;
  885. current_duplex = DUPLEX_INVALID;
  886. spin_lock_irqsave(&np->lock, flags);
  887. val = nr64_pcs(PCS_MII_STAT);
  888. if (val & PCS_MII_STAT_LINK_STATUS) {
  889. link_up = 1;
  890. current_speed = SPEED_1000;
  891. current_duplex = DUPLEX_FULL;
  892. }
  893. lp->active_speed = current_speed;
  894. lp->active_duplex = current_duplex;
  895. spin_unlock_irqrestore(&np->lock, flags);
  896. *link_up_p = link_up;
  897. return 0;
  898. }
  899. static int link_status_10g_serdes(struct niu *np, int *link_up_p)
  900. {
  901. unsigned long flags;
  902. struct niu_link_config *lp = &np->link_config;
  903. int link_up = 0;
  904. int link_ok = 1;
  905. u64 val, val2;
  906. u16 current_speed;
  907. u8 current_duplex;
  908. if (!(np->flags & NIU_FLAGS_10G))
  909. return link_status_1g_serdes(np, link_up_p);
  910. current_speed = SPEED_INVALID;
  911. current_duplex = DUPLEX_INVALID;
  912. spin_lock_irqsave(&np->lock, flags);
  913. val = nr64_xpcs(XPCS_STATUS(0));
  914. val2 = nr64_mac(XMAC_INTER2);
  915. if (val2 & 0x01000000)
  916. link_ok = 0;
  917. if ((val & 0x1000ULL) && link_ok) {
  918. link_up = 1;
  919. current_speed = SPEED_10000;
  920. current_duplex = DUPLEX_FULL;
  921. }
  922. lp->active_speed = current_speed;
  923. lp->active_duplex = current_duplex;
  924. spin_unlock_irqrestore(&np->lock, flags);
  925. *link_up_p = link_up;
  926. return 0;
  927. }
  928. static int link_status_mii(struct niu *np, int *link_up_p)
  929. {
  930. struct niu_link_config *lp = &np->link_config;
  931. int err;
  932. int bmsr, advert, ctrl1000, stat1000, lpa, bmcr, estatus;
  933. int supported, advertising, active_speed, active_duplex;
  934. err = mii_read(np, np->phy_addr, MII_BMCR);
  935. if (unlikely(err < 0))
  936. return err;
  937. bmcr = err;
  938. err = mii_read(np, np->phy_addr, MII_BMSR);
  939. if (unlikely(err < 0))
  940. return err;
  941. bmsr = err;
  942. err = mii_read(np, np->phy_addr, MII_ADVERTISE);
  943. if (unlikely(err < 0))
  944. return err;
  945. advert = err;
  946. err = mii_read(np, np->phy_addr, MII_LPA);
  947. if (unlikely(err < 0))
  948. return err;
  949. lpa = err;
  950. if (likely(bmsr & BMSR_ESTATEN)) {
  951. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  952. if (unlikely(err < 0))
  953. return err;
  954. estatus = err;
  955. err = mii_read(np, np->phy_addr, MII_CTRL1000);
  956. if (unlikely(err < 0))
  957. return err;
  958. ctrl1000 = err;
  959. err = mii_read(np, np->phy_addr, MII_STAT1000);
  960. if (unlikely(err < 0))
  961. return err;
  962. stat1000 = err;
  963. } else
  964. estatus = ctrl1000 = stat1000 = 0;
  965. supported = 0;
  966. if (bmsr & BMSR_ANEGCAPABLE)
  967. supported |= SUPPORTED_Autoneg;
  968. if (bmsr & BMSR_10HALF)
  969. supported |= SUPPORTED_10baseT_Half;
  970. if (bmsr & BMSR_10FULL)
  971. supported |= SUPPORTED_10baseT_Full;
  972. if (bmsr & BMSR_100HALF)
  973. supported |= SUPPORTED_100baseT_Half;
  974. if (bmsr & BMSR_100FULL)
  975. supported |= SUPPORTED_100baseT_Full;
  976. if (estatus & ESTATUS_1000_THALF)
  977. supported |= SUPPORTED_1000baseT_Half;
  978. if (estatus & ESTATUS_1000_TFULL)
  979. supported |= SUPPORTED_1000baseT_Full;
  980. lp->supported = supported;
  981. advertising = 0;
  982. if (advert & ADVERTISE_10HALF)
  983. advertising |= ADVERTISED_10baseT_Half;
  984. if (advert & ADVERTISE_10FULL)
  985. advertising |= ADVERTISED_10baseT_Full;
  986. if (advert & ADVERTISE_100HALF)
  987. advertising |= ADVERTISED_100baseT_Half;
  988. if (advert & ADVERTISE_100FULL)
  989. advertising |= ADVERTISED_100baseT_Full;
  990. if (ctrl1000 & ADVERTISE_1000HALF)
  991. advertising |= ADVERTISED_1000baseT_Half;
  992. if (ctrl1000 & ADVERTISE_1000FULL)
  993. advertising |= ADVERTISED_1000baseT_Full;
  994. if (bmcr & BMCR_ANENABLE) {
  995. int neg, neg1000;
  996. lp->active_autoneg = 1;
  997. advertising |= ADVERTISED_Autoneg;
  998. neg = advert & lpa;
  999. neg1000 = (ctrl1000 << 2) & stat1000;
  1000. if (neg1000 & (LPA_1000FULL | LPA_1000HALF))
  1001. active_speed = SPEED_1000;
  1002. else if (neg & LPA_100)
  1003. active_speed = SPEED_100;
  1004. else if (neg & (LPA_10HALF | LPA_10FULL))
  1005. active_speed = SPEED_10;
  1006. else
  1007. active_speed = SPEED_INVALID;
  1008. if ((neg1000 & LPA_1000FULL) || (neg & LPA_DUPLEX))
  1009. active_duplex = DUPLEX_FULL;
  1010. else if (active_speed != SPEED_INVALID)
  1011. active_duplex = DUPLEX_HALF;
  1012. else
  1013. active_duplex = DUPLEX_INVALID;
  1014. } else {
  1015. lp->active_autoneg = 0;
  1016. if ((bmcr & BMCR_SPEED1000) && !(bmcr & BMCR_SPEED100))
  1017. active_speed = SPEED_1000;
  1018. else if (bmcr & BMCR_SPEED100)
  1019. active_speed = SPEED_100;
  1020. else
  1021. active_speed = SPEED_10;
  1022. if (bmcr & BMCR_FULLDPLX)
  1023. active_duplex = DUPLEX_FULL;
  1024. else
  1025. active_duplex = DUPLEX_HALF;
  1026. }
  1027. lp->active_advertising = advertising;
  1028. lp->active_speed = active_speed;
  1029. lp->active_duplex = active_duplex;
  1030. *link_up_p = !!(bmsr & BMSR_LSTATUS);
  1031. return 0;
  1032. }
  1033. static int link_status_1g_rgmii(struct niu *np, int *link_up_p)
  1034. {
  1035. struct niu_link_config *lp = &np->link_config;
  1036. u16 current_speed, bmsr;
  1037. unsigned long flags;
  1038. u8 current_duplex;
  1039. int err, link_up;
  1040. link_up = 0;
  1041. current_speed = SPEED_INVALID;
  1042. current_duplex = DUPLEX_INVALID;
  1043. spin_lock_irqsave(&np->lock, flags);
  1044. err = -EINVAL;
  1045. err = mii_read(np, np->phy_addr, MII_BMSR);
  1046. if (err < 0)
  1047. goto out;
  1048. bmsr = err;
  1049. if (bmsr & BMSR_LSTATUS) {
  1050. u16 adv, lpa, common, estat;
  1051. err = mii_read(np, np->phy_addr, MII_ADVERTISE);
  1052. if (err < 0)
  1053. goto out;
  1054. adv = err;
  1055. err = mii_read(np, np->phy_addr, MII_LPA);
  1056. if (err < 0)
  1057. goto out;
  1058. lpa = err;
  1059. common = adv & lpa;
  1060. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  1061. if (err < 0)
  1062. goto out;
  1063. estat = err;
  1064. link_up = 1;
  1065. current_speed = SPEED_1000;
  1066. current_duplex = DUPLEX_FULL;
  1067. }
  1068. lp->active_speed = current_speed;
  1069. lp->active_duplex = current_duplex;
  1070. err = 0;
  1071. out:
  1072. spin_unlock_irqrestore(&np->lock, flags);
  1073. *link_up_p = link_up;
  1074. return err;
  1075. }
  1076. static int link_status_1g(struct niu *np, int *link_up_p)
  1077. {
  1078. struct niu_link_config *lp = &np->link_config;
  1079. unsigned long flags;
  1080. int err;
  1081. spin_lock_irqsave(&np->lock, flags);
  1082. err = link_status_mii(np, link_up_p);
  1083. lp->supported |= SUPPORTED_TP;
  1084. lp->active_advertising |= ADVERTISED_TP;
  1085. spin_unlock_irqrestore(&np->lock, flags);
  1086. return err;
  1087. }
  1088. static int bcm8704_reset(struct niu *np)
  1089. {
  1090. int err, limit;
  1091. err = mdio_read(np, np->phy_addr,
  1092. BCM8704_PHYXS_DEV_ADDR, MII_BMCR);
  1093. if (err < 0)
  1094. return err;
  1095. err |= BMCR_RESET;
  1096. err = mdio_write(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  1097. MII_BMCR, err);
  1098. if (err)
  1099. return err;
  1100. limit = 1000;
  1101. while (--limit >= 0) {
  1102. err = mdio_read(np, np->phy_addr,
  1103. BCM8704_PHYXS_DEV_ADDR, MII_BMCR);
  1104. if (err < 0)
  1105. return err;
  1106. if (!(err & BMCR_RESET))
  1107. break;
  1108. }
  1109. if (limit < 0) {
  1110. dev_err(np->device, PFX "Port %u PHY will not reset "
  1111. "(bmcr=%04x)\n", np->port, (err & 0xffff));
  1112. return -ENODEV;
  1113. }
  1114. return 0;
  1115. }
  1116. /* When written, certain PHY registers need to be read back twice
  1117. * in order for the bits to settle properly.
  1118. */
  1119. static int bcm8704_user_dev3_readback(struct niu *np, int reg)
  1120. {
  1121. int err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, reg);
  1122. if (err < 0)
  1123. return err;
  1124. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, reg);
  1125. if (err < 0)
  1126. return err;
  1127. return 0;
  1128. }
  1129. static int bcm8706_init_user_dev3(struct niu *np)
  1130. {
  1131. int err;
  1132. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1133. BCM8704_USER_OPT_DIGITAL_CTRL);
  1134. if (err < 0)
  1135. return err;
  1136. err &= ~USER_ODIG_CTRL_GPIOS;
  1137. err |= (0x3 << USER_ODIG_CTRL_GPIOS_SHIFT);
  1138. err |= USER_ODIG_CTRL_RESV2;
  1139. err = mdio_write(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1140. BCM8704_USER_OPT_DIGITAL_CTRL, err);
  1141. if (err)
  1142. return err;
  1143. mdelay(1000);
  1144. return 0;
  1145. }
  1146. static int bcm8704_init_user_dev3(struct niu *np)
  1147. {
  1148. int err;
  1149. err = mdio_write(np, np->phy_addr,
  1150. BCM8704_USER_DEV3_ADDR, BCM8704_USER_CONTROL,
  1151. (USER_CONTROL_OPTXRST_LVL |
  1152. USER_CONTROL_OPBIASFLT_LVL |
  1153. USER_CONTROL_OBTMPFLT_LVL |
  1154. USER_CONTROL_OPPRFLT_LVL |
  1155. USER_CONTROL_OPTXFLT_LVL |
  1156. USER_CONTROL_OPRXLOS_LVL |
  1157. USER_CONTROL_OPRXFLT_LVL |
  1158. USER_CONTROL_OPTXON_LVL |
  1159. (0x3f << USER_CONTROL_RES1_SHIFT)));
  1160. if (err)
  1161. return err;
  1162. err = mdio_write(np, np->phy_addr,
  1163. BCM8704_USER_DEV3_ADDR, BCM8704_USER_PMD_TX_CONTROL,
  1164. (USER_PMD_TX_CTL_XFP_CLKEN |
  1165. (1 << USER_PMD_TX_CTL_TX_DAC_TXD_SH) |
  1166. (2 << USER_PMD_TX_CTL_TX_DAC_TXCK_SH) |
  1167. USER_PMD_TX_CTL_TSCK_LPWREN));
  1168. if (err)
  1169. return err;
  1170. err = bcm8704_user_dev3_readback(np, BCM8704_USER_CONTROL);
  1171. if (err)
  1172. return err;
  1173. err = bcm8704_user_dev3_readback(np, BCM8704_USER_PMD_TX_CONTROL);
  1174. if (err)
  1175. return err;
  1176. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1177. BCM8704_USER_OPT_DIGITAL_CTRL);
  1178. if (err < 0)
  1179. return err;
  1180. err &= ~USER_ODIG_CTRL_GPIOS;
  1181. err |= (0x3 << USER_ODIG_CTRL_GPIOS_SHIFT);
  1182. err = mdio_write(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1183. BCM8704_USER_OPT_DIGITAL_CTRL, err);
  1184. if (err)
  1185. return err;
  1186. mdelay(1000);
  1187. return 0;
  1188. }
  1189. static int mrvl88x2011_act_led(struct niu *np, int val)
  1190. {
  1191. int err;
  1192. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
  1193. MRVL88X2011_LED_8_TO_11_CTL);
  1194. if (err < 0)
  1195. return err;
  1196. err &= ~MRVL88X2011_LED(MRVL88X2011_LED_ACT,MRVL88X2011_LED_CTL_MASK);
  1197. err |= MRVL88X2011_LED(MRVL88X2011_LED_ACT,val);
  1198. return mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
  1199. MRVL88X2011_LED_8_TO_11_CTL, err);
  1200. }
  1201. static int mrvl88x2011_led_blink_rate(struct niu *np, int rate)
  1202. {
  1203. int err;
  1204. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
  1205. MRVL88X2011_LED_BLINK_CTL);
  1206. if (err >= 0) {
  1207. err &= ~MRVL88X2011_LED_BLKRATE_MASK;
  1208. err |= (rate << 4);
  1209. err = mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
  1210. MRVL88X2011_LED_BLINK_CTL, err);
  1211. }
  1212. return err;
  1213. }
  1214. static int xcvr_init_10g_mrvl88x2011(struct niu *np)
  1215. {
  1216. int err;
  1217. /* Set LED functions */
  1218. err = mrvl88x2011_led_blink_rate(np, MRVL88X2011_LED_BLKRATE_134MS);
  1219. if (err)
  1220. return err;
  1221. /* led activity */
  1222. err = mrvl88x2011_act_led(np, MRVL88X2011_LED_CTL_OFF);
  1223. if (err)
  1224. return err;
  1225. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
  1226. MRVL88X2011_GENERAL_CTL);
  1227. if (err < 0)
  1228. return err;
  1229. err |= MRVL88X2011_ENA_XFPREFCLK;
  1230. err = mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
  1231. MRVL88X2011_GENERAL_CTL, err);
  1232. if (err < 0)
  1233. return err;
  1234. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1235. MRVL88X2011_PMA_PMD_CTL_1);
  1236. if (err < 0)
  1237. return err;
  1238. if (np->link_config.loopback_mode == LOOPBACK_MAC)
  1239. err |= MRVL88X2011_LOOPBACK;
  1240. else
  1241. err &= ~MRVL88X2011_LOOPBACK;
  1242. err = mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1243. MRVL88X2011_PMA_PMD_CTL_1, err);
  1244. if (err < 0)
  1245. return err;
  1246. /* Enable PMD */
  1247. return mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1248. MRVL88X2011_10G_PMD_TX_DIS, MRVL88X2011_ENA_PMDTX);
  1249. }
  1250. static int xcvr_diag_bcm870x(struct niu *np)
  1251. {
  1252. u16 analog_stat0, tx_alarm_status;
  1253. int err = 0;
  1254. #if 1
  1255. err = mdio_read(np, np->phy_addr, BCM8704_PMA_PMD_DEV_ADDR,
  1256. MII_STAT1000);
  1257. if (err < 0)
  1258. return err;
  1259. pr_info(PFX "Port %u PMA_PMD(MII_STAT1000) [%04x]\n",
  1260. np->port, err);
  1261. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, 0x20);
  1262. if (err < 0)
  1263. return err;
  1264. pr_info(PFX "Port %u USER_DEV3(0x20) [%04x]\n",
  1265. np->port, err);
  1266. err = mdio_read(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  1267. MII_NWAYTEST);
  1268. if (err < 0)
  1269. return err;
  1270. pr_info(PFX "Port %u PHYXS(MII_NWAYTEST) [%04x]\n",
  1271. np->port, err);
  1272. #endif
  1273. /* XXX dig this out it might not be so useful XXX */
  1274. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1275. BCM8704_USER_ANALOG_STATUS0);
  1276. if (err < 0)
  1277. return err;
  1278. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1279. BCM8704_USER_ANALOG_STATUS0);
  1280. if (err < 0)
  1281. return err;
  1282. analog_stat0 = err;
  1283. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1284. BCM8704_USER_TX_ALARM_STATUS);
  1285. if (err < 0)
  1286. return err;
  1287. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1288. BCM8704_USER_TX_ALARM_STATUS);
  1289. if (err < 0)
  1290. return err;
  1291. tx_alarm_status = err;
  1292. if (analog_stat0 != 0x03fc) {
  1293. if ((analog_stat0 == 0x43bc) && (tx_alarm_status != 0)) {
  1294. pr_info(PFX "Port %u cable not connected "
  1295. "or bad cable.\n", np->port);
  1296. } else if (analog_stat0 == 0x639c) {
  1297. pr_info(PFX "Port %u optical module is bad "
  1298. "or missing.\n", np->port);
  1299. }
  1300. }
  1301. return 0;
  1302. }
  1303. static int xcvr_10g_set_lb_bcm870x(struct niu *np)
  1304. {
  1305. struct niu_link_config *lp = &np->link_config;
  1306. int err;
  1307. err = mdio_read(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  1308. MII_BMCR);
  1309. if (err < 0)
  1310. return err;
  1311. err &= ~BMCR_LOOPBACK;
  1312. if (lp->loopback_mode == LOOPBACK_MAC)
  1313. err |= BMCR_LOOPBACK;
  1314. err = mdio_write(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  1315. MII_BMCR, err);
  1316. if (err)
  1317. return err;
  1318. return 0;
  1319. }
  1320. static int xcvr_init_10g_bcm8706(struct niu *np)
  1321. {
  1322. int err = 0;
  1323. u64 val;
  1324. if ((np->flags & NIU_FLAGS_HOTPLUG_PHY) &&
  1325. (np->flags & NIU_FLAGS_HOTPLUG_PHY_PRESENT) == 0)
  1326. return err;
  1327. val = nr64_mac(XMAC_CONFIG);
  1328. val &= ~XMAC_CONFIG_LED_POLARITY;
  1329. val |= XMAC_CONFIG_FORCE_LED_ON;
  1330. nw64_mac(XMAC_CONFIG, val);
  1331. val = nr64(MIF_CONFIG);
  1332. val |= MIF_CONFIG_INDIRECT_MODE;
  1333. nw64(MIF_CONFIG, val);
  1334. err = bcm8704_reset(np);
  1335. if (err)
  1336. return err;
  1337. err = xcvr_10g_set_lb_bcm870x(np);
  1338. if (err)
  1339. return err;
  1340. err = bcm8706_init_user_dev3(np);
  1341. if (err)
  1342. return err;
  1343. err = xcvr_diag_bcm870x(np);
  1344. if (err)
  1345. return err;
  1346. return 0;
  1347. }
  1348. static int xcvr_init_10g_bcm8704(struct niu *np)
  1349. {
  1350. int err;
  1351. err = bcm8704_reset(np);
  1352. if (err)
  1353. return err;
  1354. err = bcm8704_init_user_dev3(np);
  1355. if (err)
  1356. return err;
  1357. err = xcvr_10g_set_lb_bcm870x(np);
  1358. if (err)
  1359. return err;
  1360. err = xcvr_diag_bcm870x(np);
  1361. if (err)
  1362. return err;
  1363. return 0;
  1364. }
  1365. static int xcvr_init_10g(struct niu *np)
  1366. {
  1367. int phy_id, err;
  1368. u64 val;
  1369. val = nr64_mac(XMAC_CONFIG);
  1370. val &= ~XMAC_CONFIG_LED_POLARITY;
  1371. val |= XMAC_CONFIG_FORCE_LED_ON;
  1372. nw64_mac(XMAC_CONFIG, val);
  1373. /* XXX shared resource, lock parent XXX */
  1374. val = nr64(MIF_CONFIG);
  1375. val |= MIF_CONFIG_INDIRECT_MODE;
  1376. nw64(MIF_CONFIG, val);
  1377. phy_id = phy_decode(np->parent->port_phy, np->port);
  1378. phy_id = np->parent->phy_probe_info.phy_id[phy_id][np->port];
  1379. /* handle different phy types */
  1380. switch (phy_id & NIU_PHY_ID_MASK) {
  1381. case NIU_PHY_ID_MRVL88X2011:
  1382. err = xcvr_init_10g_mrvl88x2011(np);
  1383. break;
  1384. default: /* bcom 8704 */
  1385. err = xcvr_init_10g_bcm8704(np);
  1386. break;
  1387. }
  1388. return 0;
  1389. }
  1390. static int mii_reset(struct niu *np)
  1391. {
  1392. int limit, err;
  1393. err = mii_write(np, np->phy_addr, MII_BMCR, BMCR_RESET);
  1394. if (err)
  1395. return err;
  1396. limit = 1000;
  1397. while (--limit >= 0) {
  1398. udelay(500);
  1399. err = mii_read(np, np->phy_addr, MII_BMCR);
  1400. if (err < 0)
  1401. return err;
  1402. if (!(err & BMCR_RESET))
  1403. break;
  1404. }
  1405. if (limit < 0) {
  1406. dev_err(np->device, PFX "Port %u MII would not reset, "
  1407. "bmcr[%04x]\n", np->port, err);
  1408. return -ENODEV;
  1409. }
  1410. return 0;
  1411. }
  1412. static int xcvr_init_1g_rgmii(struct niu *np)
  1413. {
  1414. int err;
  1415. u64 val;
  1416. u16 bmcr, bmsr, estat;
  1417. val = nr64(MIF_CONFIG);
  1418. val &= ~MIF_CONFIG_INDIRECT_MODE;
  1419. nw64(MIF_CONFIG, val);
  1420. err = mii_reset(np);
  1421. if (err)
  1422. return err;
  1423. err = mii_read(np, np->phy_addr, MII_BMSR);
  1424. if (err < 0)
  1425. return err;
  1426. bmsr = err;
  1427. estat = 0;
  1428. if (bmsr & BMSR_ESTATEN) {
  1429. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  1430. if (err < 0)
  1431. return err;
  1432. estat = err;
  1433. }
  1434. bmcr = 0;
  1435. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  1436. if (err)
  1437. return err;
  1438. if (bmsr & BMSR_ESTATEN) {
  1439. u16 ctrl1000 = 0;
  1440. if (estat & ESTATUS_1000_TFULL)
  1441. ctrl1000 |= ADVERTISE_1000FULL;
  1442. err = mii_write(np, np->phy_addr, MII_CTRL1000, ctrl1000);
  1443. if (err)
  1444. return err;
  1445. }
  1446. bmcr = (BMCR_SPEED1000 | BMCR_FULLDPLX);
  1447. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  1448. if (err)
  1449. return err;
  1450. err = mii_read(np, np->phy_addr, MII_BMCR);
  1451. if (err < 0)
  1452. return err;
  1453. bmcr = mii_read(np, np->phy_addr, MII_BMCR);
  1454. err = mii_read(np, np->phy_addr, MII_BMSR);
  1455. if (err < 0)
  1456. return err;
  1457. return 0;
  1458. }
  1459. static int mii_init_common(struct niu *np)
  1460. {
  1461. struct niu_link_config *lp = &np->link_config;
  1462. u16 bmcr, bmsr, adv, estat;
  1463. int err;
  1464. err = mii_reset(np);
  1465. if (err)
  1466. return err;
  1467. err = mii_read(np, np->phy_addr, MII_BMSR);
  1468. if (err < 0)
  1469. return err;
  1470. bmsr = err;
  1471. estat = 0;
  1472. if (bmsr & BMSR_ESTATEN) {
  1473. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  1474. if (err < 0)
  1475. return err;
  1476. estat = err;
  1477. }
  1478. bmcr = 0;
  1479. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  1480. if (err)
  1481. return err;
  1482. if (lp->loopback_mode == LOOPBACK_MAC) {
  1483. bmcr |= BMCR_LOOPBACK;
  1484. if (lp->active_speed == SPEED_1000)
  1485. bmcr |= BMCR_SPEED1000;
  1486. if (lp->active_duplex == DUPLEX_FULL)
  1487. bmcr |= BMCR_FULLDPLX;
  1488. }
  1489. if (lp->loopback_mode == LOOPBACK_PHY) {
  1490. u16 aux;
  1491. aux = (BCM5464R_AUX_CTL_EXT_LB |
  1492. BCM5464R_AUX_CTL_WRITE_1);
  1493. err = mii_write(np, np->phy_addr, BCM5464R_AUX_CTL, aux);
  1494. if (err)
  1495. return err;
  1496. }
  1497. if (lp->autoneg) {
  1498. u16 ctrl1000;
  1499. adv = ADVERTISE_CSMA | ADVERTISE_PAUSE_CAP;
  1500. if ((bmsr & BMSR_10HALF) &&
  1501. (lp->advertising & ADVERTISED_10baseT_Half))
  1502. adv |= ADVERTISE_10HALF;
  1503. if ((bmsr & BMSR_10FULL) &&
  1504. (lp->advertising & ADVERTISED_10baseT_Full))
  1505. adv |= ADVERTISE_10FULL;
  1506. if ((bmsr & BMSR_100HALF) &&
  1507. (lp->advertising & ADVERTISED_100baseT_Half))
  1508. adv |= ADVERTISE_100HALF;
  1509. if ((bmsr & BMSR_100FULL) &&
  1510. (lp->advertising & ADVERTISED_100baseT_Full))
  1511. adv |= ADVERTISE_100FULL;
  1512. err = mii_write(np, np->phy_addr, MII_ADVERTISE, adv);
  1513. if (err)
  1514. return err;
  1515. if (likely(bmsr & BMSR_ESTATEN)) {
  1516. ctrl1000 = 0;
  1517. if ((estat & ESTATUS_1000_THALF) &&
  1518. (lp->advertising & ADVERTISED_1000baseT_Half))
  1519. ctrl1000 |= ADVERTISE_1000HALF;
  1520. if ((estat & ESTATUS_1000_TFULL) &&
  1521. (lp->advertising & ADVERTISED_1000baseT_Full))
  1522. ctrl1000 |= ADVERTISE_1000FULL;
  1523. err = mii_write(np, np->phy_addr,
  1524. MII_CTRL1000, ctrl1000);
  1525. if (err)
  1526. return err;
  1527. }
  1528. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  1529. } else {
  1530. /* !lp->autoneg */
  1531. int fulldpx;
  1532. if (lp->duplex == DUPLEX_FULL) {
  1533. bmcr |= BMCR_FULLDPLX;
  1534. fulldpx = 1;
  1535. } else if (lp->duplex == DUPLEX_HALF)
  1536. fulldpx = 0;
  1537. else
  1538. return -EINVAL;
  1539. if (lp->speed == SPEED_1000) {
  1540. /* if X-full requested while not supported, or
  1541. X-half requested while not supported... */
  1542. if ((fulldpx && !(estat & ESTATUS_1000_TFULL)) ||
  1543. (!fulldpx && !(estat & ESTATUS_1000_THALF)))
  1544. return -EINVAL;
  1545. bmcr |= BMCR_SPEED1000;
  1546. } else if (lp->speed == SPEED_100) {
  1547. if ((fulldpx && !(bmsr & BMSR_100FULL)) ||
  1548. (!fulldpx && !(bmsr & BMSR_100HALF)))
  1549. return -EINVAL;
  1550. bmcr |= BMCR_SPEED100;
  1551. } else if (lp->speed == SPEED_10) {
  1552. if ((fulldpx && !(bmsr & BMSR_10FULL)) ||
  1553. (!fulldpx && !(bmsr & BMSR_10HALF)))
  1554. return -EINVAL;
  1555. } else
  1556. return -EINVAL;
  1557. }
  1558. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  1559. if (err)
  1560. return err;
  1561. #if 0
  1562. err = mii_read(np, np->phy_addr, MII_BMCR);
  1563. if (err < 0)
  1564. return err;
  1565. bmcr = err;
  1566. err = mii_read(np, np->phy_addr, MII_BMSR);
  1567. if (err < 0)
  1568. return err;
  1569. bmsr = err;
  1570. pr_info(PFX "Port %u after MII init bmcr[%04x] bmsr[%04x]\n",
  1571. np->port, bmcr, bmsr);
  1572. #endif
  1573. return 0;
  1574. }
  1575. static int xcvr_init_1g(struct niu *np)
  1576. {
  1577. u64 val;
  1578. /* XXX shared resource, lock parent XXX */
  1579. val = nr64(MIF_CONFIG);
  1580. val &= ~MIF_CONFIG_INDIRECT_MODE;
  1581. nw64(MIF_CONFIG, val);
  1582. return mii_init_common(np);
  1583. }
  1584. static int niu_xcvr_init(struct niu *np)
  1585. {
  1586. const struct niu_phy_ops *ops = np->phy_ops;
  1587. int err;
  1588. err = 0;
  1589. if (ops->xcvr_init)
  1590. err = ops->xcvr_init(np);
  1591. return err;
  1592. }
  1593. static int niu_serdes_init(struct niu *np)
  1594. {
  1595. const struct niu_phy_ops *ops = np->phy_ops;
  1596. int err;
  1597. err = 0;
  1598. if (ops->serdes_init)
  1599. err = ops->serdes_init(np);
  1600. return err;
  1601. }
  1602. static void niu_init_xif(struct niu *);
  1603. static void niu_handle_led(struct niu *, int status);
  1604. static int niu_link_status_common(struct niu *np, int link_up)
  1605. {
  1606. struct niu_link_config *lp = &np->link_config;
  1607. struct net_device *dev = np->dev;
  1608. unsigned long flags;
  1609. if (!netif_carrier_ok(dev) && link_up) {
  1610. niuinfo(LINK, "%s: Link is up at %s, %s duplex\n",
  1611. dev->name,
  1612. (lp->active_speed == SPEED_10000 ?
  1613. "10Gb/sec" :
  1614. (lp->active_speed == SPEED_1000 ?
  1615. "1Gb/sec" :
  1616. (lp->active_speed == SPEED_100 ?
  1617. "100Mbit/sec" : "10Mbit/sec"))),
  1618. (lp->active_duplex == DUPLEX_FULL ?
  1619. "full" : "half"));
  1620. spin_lock_irqsave(&np->lock, flags);
  1621. niu_init_xif(np);
  1622. niu_handle_led(np, 1);
  1623. spin_unlock_irqrestore(&np->lock, flags);
  1624. netif_carrier_on(dev);
  1625. } else if (netif_carrier_ok(dev) && !link_up) {
  1626. niuwarn(LINK, "%s: Link is down\n", dev->name);
  1627. spin_lock_irqsave(&np->lock, flags);
  1628. niu_handle_led(np, 0);
  1629. spin_unlock_irqrestore(&np->lock, flags);
  1630. netif_carrier_off(dev);
  1631. }
  1632. return 0;
  1633. }
  1634. static int link_status_10g_mrvl(struct niu *np, int *link_up_p)
  1635. {
  1636. int err, link_up, pma_status, pcs_status;
  1637. link_up = 0;
  1638. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1639. MRVL88X2011_10G_PMD_STATUS_2);
  1640. if (err < 0)
  1641. goto out;
  1642. /* Check PMA/PMD Register: 1.0001.2 == 1 */
  1643. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1644. MRVL88X2011_PMA_PMD_STATUS_1);
  1645. if (err < 0)
  1646. goto out;
  1647. pma_status = ((err & MRVL88X2011_LNK_STATUS_OK) ? 1 : 0);
  1648. /* Check PMC Register : 3.0001.2 == 1: read twice */
  1649. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
  1650. MRVL88X2011_PMA_PMD_STATUS_1);
  1651. if (err < 0)
  1652. goto out;
  1653. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
  1654. MRVL88X2011_PMA_PMD_STATUS_1);
  1655. if (err < 0)
  1656. goto out;
  1657. pcs_status = ((err & MRVL88X2011_LNK_STATUS_OK) ? 1 : 0);
  1658. /* Check XGXS Register : 4.0018.[0-3,12] */
  1659. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV4_ADDR,
  1660. MRVL88X2011_10G_XGXS_LANE_STAT);
  1661. if (err < 0)
  1662. goto out;
  1663. if (err == (PHYXS_XGXS_LANE_STAT_ALINGED | PHYXS_XGXS_LANE_STAT_LANE3 |
  1664. PHYXS_XGXS_LANE_STAT_LANE2 | PHYXS_XGXS_LANE_STAT_LANE1 |
  1665. PHYXS_XGXS_LANE_STAT_LANE0 | PHYXS_XGXS_LANE_STAT_MAGIC |
  1666. 0x800))
  1667. link_up = (pma_status && pcs_status) ? 1 : 0;
  1668. np->link_config.active_speed = SPEED_10000;
  1669. np->link_config.active_duplex = DUPLEX_FULL;
  1670. err = 0;
  1671. out:
  1672. mrvl88x2011_act_led(np, (link_up ?
  1673. MRVL88X2011_LED_CTL_PCS_ACT :
  1674. MRVL88X2011_LED_CTL_OFF));
  1675. *link_up_p = link_up;
  1676. return err;
  1677. }
  1678. static int link_status_10g_bcm8706(struct niu *np, int *link_up_p)
  1679. {
  1680. int err, link_up;
  1681. link_up = 0;
  1682. err = mdio_read(np, np->phy_addr, BCM8704_PMA_PMD_DEV_ADDR,
  1683. BCM8704_PMD_RCV_SIGDET);
  1684. if (err < 0)
  1685. goto out;
  1686. if (!(err & PMD_RCV_SIGDET_GLOBAL)) {
  1687. err = 0;
  1688. goto out;
  1689. }
  1690. err = mdio_read(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  1691. BCM8704_PCS_10G_R_STATUS);
  1692. if (err < 0)
  1693. goto out;
  1694. if (!(err & PCS_10G_R_STATUS_BLK_LOCK)) {
  1695. err = 0;
  1696. goto out;
  1697. }
  1698. err = mdio_read(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  1699. BCM8704_PHYXS_XGXS_LANE_STAT);
  1700. if (err < 0)
  1701. goto out;
  1702. if (err != (PHYXS_XGXS_LANE_STAT_ALINGED |
  1703. PHYXS_XGXS_LANE_STAT_MAGIC |
  1704. PHYXS_XGXS_LANE_STAT_PATTEST |
  1705. PHYXS_XGXS_LANE_STAT_LANE3 |
  1706. PHYXS_XGXS_LANE_STAT_LANE2 |
  1707. PHYXS_XGXS_LANE_STAT_LANE1 |
  1708. PHYXS_XGXS_LANE_STAT_LANE0)) {
  1709. err = 0;
  1710. np->link_config.active_speed = SPEED_INVALID;
  1711. np->link_config.active_duplex = DUPLEX_INVALID;
  1712. goto out;
  1713. }
  1714. link_up = 1;
  1715. np->link_config.active_speed = SPEED_10000;
  1716. np->link_config.active_duplex = DUPLEX_FULL;
  1717. err = 0;
  1718. out:
  1719. *link_up_p = link_up;
  1720. if (np->flags & NIU_FLAGS_HOTPLUG_PHY)
  1721. err = 0;
  1722. return err;
  1723. }
  1724. static int link_status_10g_bcom(struct niu *np, int *link_up_p)
  1725. {
  1726. int err, link_up;
  1727. link_up = 0;
  1728. err = mdio_read(np, np->phy_addr, BCM8704_PMA_PMD_DEV_ADDR,
  1729. BCM8704_PMD_RCV_SIGDET);
  1730. if (err < 0)
  1731. goto out;
  1732. if (!(err & PMD_RCV_SIGDET_GLOBAL)) {
  1733. err = 0;
  1734. goto out;
  1735. }
  1736. err = mdio_read(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  1737. BCM8704_PCS_10G_R_STATUS);
  1738. if (err < 0)
  1739. goto out;
  1740. if (!(err & PCS_10G_R_STATUS_BLK_LOCK)) {
  1741. err = 0;
  1742. goto out;
  1743. }
  1744. err = mdio_read(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  1745. BCM8704_PHYXS_XGXS_LANE_STAT);
  1746. if (err < 0)
  1747. goto out;
  1748. if (err != (PHYXS_XGXS_LANE_STAT_ALINGED |
  1749. PHYXS_XGXS_LANE_STAT_MAGIC |
  1750. PHYXS_XGXS_LANE_STAT_LANE3 |
  1751. PHYXS_XGXS_LANE_STAT_LANE2 |
  1752. PHYXS_XGXS_LANE_STAT_LANE1 |
  1753. PHYXS_XGXS_LANE_STAT_LANE0)) {
  1754. err = 0;
  1755. goto out;
  1756. }
  1757. link_up = 1;
  1758. np->link_config.active_speed = SPEED_10000;
  1759. np->link_config.active_duplex = DUPLEX_FULL;
  1760. err = 0;
  1761. out:
  1762. *link_up_p = link_up;
  1763. return err;
  1764. }
  1765. static int link_status_10g(struct niu *np, int *link_up_p)
  1766. {
  1767. unsigned long flags;
  1768. int err = -EINVAL;
  1769. spin_lock_irqsave(&np->lock, flags);
  1770. if (np->link_config.loopback_mode == LOOPBACK_DISABLED) {
  1771. int phy_id;
  1772. phy_id = phy_decode(np->parent->port_phy, np->port);
  1773. phy_id = np->parent->phy_probe_info.phy_id[phy_id][np->port];
  1774. /* handle different phy types */
  1775. switch (phy_id & NIU_PHY_ID_MASK) {
  1776. case NIU_PHY_ID_MRVL88X2011:
  1777. err = link_status_10g_mrvl(np, link_up_p);
  1778. break;
  1779. default: /* bcom 8704 */
  1780. err = link_status_10g_bcom(np, link_up_p);
  1781. break;
  1782. }
  1783. }
  1784. spin_unlock_irqrestore(&np->lock, flags);
  1785. return err;
  1786. }
  1787. static int niu_10g_phy_present(struct niu *np)
  1788. {
  1789. u64 sig, mask, val;
  1790. sig = nr64(ESR_INT_SIGNALS);
  1791. switch (np->port) {
  1792. case 0:
  1793. mask = ESR_INT_SIGNALS_P0_BITS;
  1794. val = (ESR_INT_SRDY0_P0 |
  1795. ESR_INT_DET0_P0 |
  1796. ESR_INT_XSRDY_P0 |
  1797. ESR_INT_XDP_P0_CH3 |
  1798. ESR_INT_XDP_P0_CH2 |
  1799. ESR_INT_XDP_P0_CH1 |
  1800. ESR_INT_XDP_P0_CH0);
  1801. break;
  1802. case 1:
  1803. mask = ESR_INT_SIGNALS_P1_BITS;
  1804. val = (ESR_INT_SRDY0_P1 |
  1805. ESR_INT_DET0_P1 |
  1806. ESR_INT_XSRDY_P1 |
  1807. ESR_INT_XDP_P1_CH3 |
  1808. ESR_INT_XDP_P1_CH2 |
  1809. ESR_INT_XDP_P1_CH1 |
  1810. ESR_INT_XDP_P1_CH0);
  1811. break;
  1812. default:
  1813. return 0;
  1814. }
  1815. if ((sig & mask) != val)
  1816. return 0;
  1817. return 1;
  1818. }
  1819. static int link_status_10g_hotplug(struct niu *np, int *link_up_p)
  1820. {
  1821. unsigned long flags;
  1822. int err = 0;
  1823. int phy_present;
  1824. int phy_present_prev;
  1825. spin_lock_irqsave(&np->lock, flags);
  1826. if (np->link_config.loopback_mode == LOOPBACK_DISABLED) {
  1827. phy_present_prev = (np->flags & NIU_FLAGS_HOTPLUG_PHY_PRESENT) ?
  1828. 1 : 0;
  1829. phy_present = niu_10g_phy_present(np);
  1830. if (phy_present != phy_present_prev) {
  1831. /* state change */
  1832. if (phy_present) {
  1833. np->flags |= NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  1834. if (np->phy_ops->xcvr_init)
  1835. err = np->phy_ops->xcvr_init(np);
  1836. if (err) {
  1837. /* debounce */
  1838. np->flags &= ~NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  1839. }
  1840. } else {
  1841. np->flags &= ~NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  1842. *link_up_p = 0;
  1843. niuwarn(LINK, "%s: Hotplug PHY Removed\n",
  1844. np->dev->name);
  1845. }
  1846. }
  1847. if (np->flags & NIU_FLAGS_HOTPLUG_PHY_PRESENT)
  1848. err = link_status_10g_bcm8706(np, link_up_p);
  1849. }
  1850. spin_unlock_irqrestore(&np->lock, flags);
  1851. return err;
  1852. }
  1853. static int niu_link_status(struct niu *np, int *link_up_p)
  1854. {
  1855. const struct niu_phy_ops *ops = np->phy_ops;
  1856. int err;
  1857. err = 0;
  1858. if (ops->link_status)
  1859. err = ops->link_status(np, link_up_p);
  1860. return err;
  1861. }
  1862. static void niu_timer(unsigned long __opaque)
  1863. {
  1864. struct niu *np = (struct niu *) __opaque;
  1865. unsigned long off;
  1866. int err, link_up;
  1867. err = niu_link_status(np, &link_up);
  1868. if (!err)
  1869. niu_link_status_common(np, link_up);
  1870. if (netif_carrier_ok(np->dev))
  1871. off = 5 * HZ;
  1872. else
  1873. off = 1 * HZ;
  1874. np->timer.expires = jiffies + off;
  1875. add_timer(&np->timer);
  1876. }
  1877. static const struct niu_phy_ops phy_ops_10g_serdes = {
  1878. .serdes_init = serdes_init_10g_serdes,
  1879. .link_status = link_status_10g_serdes,
  1880. };
  1881. static const struct niu_phy_ops phy_ops_10g_serdes_niu = {
  1882. .serdes_init = serdes_init_niu_10g_serdes,
  1883. .link_status = link_status_10g_serdes,
  1884. };
  1885. static const struct niu_phy_ops phy_ops_1g_serdes_niu = {
  1886. .serdes_init = serdes_init_niu_1g_serdes,
  1887. .link_status = link_status_1g_serdes,
  1888. };
  1889. static const struct niu_phy_ops phy_ops_1g_rgmii = {
  1890. .xcvr_init = xcvr_init_1g_rgmii,
  1891. .link_status = link_status_1g_rgmii,
  1892. };
  1893. static const struct niu_phy_ops phy_ops_10g_fiber_niu = {
  1894. .serdes_init = serdes_init_niu_10g_fiber,
  1895. .xcvr_init = xcvr_init_10g,
  1896. .link_status = link_status_10g,
  1897. };
  1898. static const struct niu_phy_ops phy_ops_10g_fiber = {
  1899. .serdes_init = serdes_init_10g,
  1900. .xcvr_init = xcvr_init_10g,
  1901. .link_status = link_status_10g,
  1902. };
  1903. static const struct niu_phy_ops phy_ops_10g_fiber_hotplug = {
  1904. .serdes_init = serdes_init_10g,
  1905. .xcvr_init = xcvr_init_10g_bcm8706,
  1906. .link_status = link_status_10g_hotplug,
  1907. };
  1908. static const struct niu_phy_ops phy_ops_10g_copper = {
  1909. .serdes_init = serdes_init_10g,
  1910. .link_status = link_status_10g, /* XXX */
  1911. };
  1912. static const struct niu_phy_ops phy_ops_1g_fiber = {
  1913. .serdes_init = serdes_init_1g,
  1914. .xcvr_init = xcvr_init_1g,
  1915. .link_status = link_status_1g,
  1916. };
  1917. static const struct niu_phy_ops phy_ops_1g_copper = {
  1918. .xcvr_init = xcvr_init_1g,
  1919. .link_status = link_status_1g,
  1920. };
  1921. struct niu_phy_template {
  1922. const struct niu_phy_ops *ops;
  1923. u32 phy_addr_base;
  1924. };
  1925. static const struct niu_phy_template phy_template_niu_10g_fiber = {
  1926. .ops = &phy_ops_10g_fiber_niu,
  1927. .phy_addr_base = 16,
  1928. };
  1929. static const struct niu_phy_template phy_template_niu_10g_serdes = {
  1930. .ops = &phy_ops_10g_serdes_niu,
  1931. .phy_addr_base = 0,
  1932. };
  1933. static const struct niu_phy_template phy_template_niu_1g_serdes = {
  1934. .ops = &phy_ops_1g_serdes_niu,
  1935. .phy_addr_base = 0,
  1936. };
  1937. static const struct niu_phy_template phy_template_10g_fiber = {
  1938. .ops = &phy_ops_10g_fiber,
  1939. .phy_addr_base = 8,
  1940. };
  1941. static const struct niu_phy_template phy_template_10g_fiber_hotplug = {
  1942. .ops = &phy_ops_10g_fiber_hotplug,
  1943. .phy_addr_base = 8,
  1944. };
  1945. static const struct niu_phy_template phy_template_10g_copper = {
  1946. .ops = &phy_ops_10g_copper,
  1947. .phy_addr_base = 10,
  1948. };
  1949. static const struct niu_phy_template phy_template_1g_fiber = {
  1950. .ops = &phy_ops_1g_fiber,
  1951. .phy_addr_base = 0,
  1952. };
  1953. static const struct niu_phy_template phy_template_1g_copper = {
  1954. .ops = &phy_ops_1g_copper,
  1955. .phy_addr_base = 0,
  1956. };
  1957. static const struct niu_phy_template phy_template_1g_rgmii = {
  1958. .ops = &phy_ops_1g_rgmii,
  1959. .phy_addr_base = 0,
  1960. };
  1961. static const struct niu_phy_template phy_template_10g_serdes = {
  1962. .ops = &phy_ops_10g_serdes,
  1963. .phy_addr_base = 0,
  1964. };
  1965. static int niu_atca_port_num[4] = {
  1966. 0, 0, 11, 10
  1967. };
  1968. static int serdes_init_10g_serdes(struct niu *np)
  1969. {
  1970. struct niu_link_config *lp = &np->link_config;
  1971. unsigned long ctrl_reg, test_cfg_reg, pll_cfg, i;
  1972. u64 ctrl_val, test_cfg_val, sig, mask, val;
  1973. u64 reset_val;
  1974. switch (np->port) {
  1975. case 0:
  1976. reset_val = ENET_SERDES_RESET_0;
  1977. ctrl_reg = ENET_SERDES_0_CTRL_CFG;
  1978. test_cfg_reg = ENET_SERDES_0_TEST_CFG;
  1979. pll_cfg = ENET_SERDES_0_PLL_CFG;
  1980. break;
  1981. case 1:
  1982. reset_val = ENET_SERDES_RESET_1;
  1983. ctrl_reg = ENET_SERDES_1_CTRL_CFG;
  1984. test_cfg_reg = ENET_SERDES_1_TEST_CFG;
  1985. pll_cfg = ENET_SERDES_1_PLL_CFG;
  1986. break;
  1987. default:
  1988. return -EINVAL;
  1989. }
  1990. ctrl_val = (ENET_SERDES_CTRL_SDET_0 |
  1991. ENET_SERDES_CTRL_SDET_1 |
  1992. ENET_SERDES_CTRL_SDET_2 |
  1993. ENET_SERDES_CTRL_SDET_3 |
  1994. (0x5 << ENET_SERDES_CTRL_EMPH_0_SHIFT) |
  1995. (0x5 << ENET_SERDES_CTRL_EMPH_1_SHIFT) |
  1996. (0x5 << ENET_SERDES_CTRL_EMPH_2_SHIFT) |
  1997. (0x5 << ENET_SERDES_CTRL_EMPH_3_SHIFT) |
  1998. (0x1 << ENET_SERDES_CTRL_LADJ_0_SHIFT) |
  1999. (0x1 << ENET_SERDES_CTRL_LADJ_1_SHIFT) |
  2000. (0x1 << ENET_SERDES_CTRL_LADJ_2_SHIFT) |
  2001. (0x1 << ENET_SERDES_CTRL_LADJ_3_SHIFT));
  2002. test_cfg_val = 0;
  2003. if (lp->loopback_mode == LOOPBACK_PHY) {
  2004. test_cfg_val |= ((ENET_TEST_MD_PAD_LOOPBACK <<
  2005. ENET_SERDES_TEST_MD_0_SHIFT) |
  2006. (ENET_TEST_MD_PAD_LOOPBACK <<
  2007. ENET_SERDES_TEST_MD_1_SHIFT) |
  2008. (ENET_TEST_MD_PAD_LOOPBACK <<
  2009. ENET_SERDES_TEST_MD_2_SHIFT) |
  2010. (ENET_TEST_MD_PAD_LOOPBACK <<
  2011. ENET_SERDES_TEST_MD_3_SHIFT));
  2012. }
  2013. esr_reset(np);
  2014. nw64(pll_cfg, ENET_SERDES_PLL_FBDIV2);
  2015. nw64(ctrl_reg, ctrl_val);
  2016. nw64(test_cfg_reg, test_cfg_val);
  2017. /* Initialize all 4 lanes of the SERDES. */
  2018. for (i = 0; i < 4; i++) {
  2019. u32 rxtx_ctrl, glue0;
  2020. int err;
  2021. err = esr_read_rxtx_ctrl(np, i, &rxtx_ctrl);
  2022. if (err)
  2023. return err;
  2024. err = esr_read_glue0(np, i, &glue0);
  2025. if (err)
  2026. return err;
  2027. rxtx_ctrl &= ~(ESR_RXTX_CTRL_VMUXLO);
  2028. rxtx_ctrl |= (ESR_RXTX_CTRL_ENSTRETCH |
  2029. (2 << ESR_RXTX_CTRL_VMUXLO_SHIFT));
  2030. glue0 &= ~(ESR_GLUE_CTRL0_SRATE |
  2031. ESR_GLUE_CTRL0_THCNT |
  2032. ESR_GLUE_CTRL0_BLTIME);
  2033. glue0 |= (ESR_GLUE_CTRL0_RXLOSENAB |
  2034. (0xf << ESR_GLUE_CTRL0_SRATE_SHIFT) |
  2035. (0xff << ESR_GLUE_CTRL0_THCNT_SHIFT) |
  2036. (BLTIME_300_CYCLES <<
  2037. ESR_GLUE_CTRL0_BLTIME_SHIFT));
  2038. err = esr_write_rxtx_ctrl(np, i, rxtx_ctrl);
  2039. if (err)
  2040. return err;
  2041. err = esr_write_glue0(np, i, glue0);
  2042. if (err)
  2043. return err;
  2044. }
  2045. sig = nr64(ESR_INT_SIGNALS);
  2046. switch (np->port) {
  2047. case 0:
  2048. mask = ESR_INT_SIGNALS_P0_BITS;
  2049. val = (ESR_INT_SRDY0_P0 |
  2050. ESR_INT_DET0_P0 |
  2051. ESR_INT_XSRDY_P0 |
  2052. ESR_INT_XDP_P0_CH3 |
  2053. ESR_INT_XDP_P0_CH2 |
  2054. ESR_INT_XDP_P0_CH1 |
  2055. ESR_INT_XDP_P0_CH0);
  2056. break;
  2057. case 1:
  2058. mask = ESR_INT_SIGNALS_P1_BITS;
  2059. val = (ESR_INT_SRDY0_P1 |
  2060. ESR_INT_DET0_P1 |
  2061. ESR_INT_XSRDY_P1 |
  2062. ESR_INT_XDP_P1_CH3 |
  2063. ESR_INT_XDP_P1_CH2 |
  2064. ESR_INT_XDP_P1_CH1 |
  2065. ESR_INT_XDP_P1_CH0);
  2066. break;
  2067. default:
  2068. return -EINVAL;
  2069. }
  2070. if ((sig & mask) != val) {
  2071. int err;
  2072. err = serdes_init_1g_serdes(np);
  2073. if (!err) {
  2074. np->flags &= ~NIU_FLAGS_10G;
  2075. np->mac_xcvr = MAC_XCVR_PCS;
  2076. } else {
  2077. dev_err(np->device, PFX "Port %u 10G/1G SERDES Link Failed \n",
  2078. np->port);
  2079. return -ENODEV;
  2080. }
  2081. }
  2082. return 0;
  2083. }
  2084. static int niu_determine_phy_disposition(struct niu *np)
  2085. {
  2086. struct niu_parent *parent = np->parent;
  2087. u8 plat_type = parent->plat_type;
  2088. const struct niu_phy_template *tp;
  2089. u32 phy_addr_off = 0;
  2090. if (plat_type == PLAT_TYPE_NIU) {
  2091. switch (np->flags &
  2092. (NIU_FLAGS_10G |
  2093. NIU_FLAGS_FIBER |
  2094. NIU_FLAGS_XCVR_SERDES)) {
  2095. case NIU_FLAGS_10G | NIU_FLAGS_XCVR_SERDES:
  2096. /* 10G Serdes */
  2097. tp = &phy_template_niu_10g_serdes;
  2098. break;
  2099. case NIU_FLAGS_XCVR_SERDES:
  2100. /* 1G Serdes */
  2101. tp = &phy_template_niu_1g_serdes;
  2102. break;
  2103. case NIU_FLAGS_10G | NIU_FLAGS_FIBER:
  2104. /* 10G Fiber */
  2105. default:
  2106. tp = &phy_template_niu_10g_fiber;
  2107. phy_addr_off += np->port;
  2108. break;
  2109. }
  2110. } else {
  2111. switch (np->flags &
  2112. (NIU_FLAGS_10G |
  2113. NIU_FLAGS_FIBER |
  2114. NIU_FLAGS_XCVR_SERDES)) {
  2115. case 0:
  2116. /* 1G copper */
  2117. tp = &phy_template_1g_copper;
  2118. if (plat_type == PLAT_TYPE_VF_P0)
  2119. phy_addr_off = 10;
  2120. else if (plat_type == PLAT_TYPE_VF_P1)
  2121. phy_addr_off = 26;
  2122. phy_addr_off += (np->port ^ 0x3);
  2123. break;
  2124. case NIU_FLAGS_10G:
  2125. /* 10G copper */
  2126. tp = &phy_template_10g_copper;
  2127. break;
  2128. case NIU_FLAGS_FIBER:
  2129. /* 1G fiber */
  2130. tp = &phy_template_1g_fiber;
  2131. break;
  2132. case NIU_FLAGS_10G | NIU_FLAGS_FIBER:
  2133. /* 10G fiber */
  2134. tp = &phy_template_10g_fiber;
  2135. if (plat_type == PLAT_TYPE_VF_P0 ||
  2136. plat_type == PLAT_TYPE_VF_P1)
  2137. phy_addr_off = 8;
  2138. phy_addr_off += np->port;
  2139. if (np->flags & NIU_FLAGS_HOTPLUG_PHY) {
  2140. tp = &phy_template_10g_fiber_hotplug;
  2141. if (np->port == 0)
  2142. phy_addr_off = 8;
  2143. if (np->port == 1)
  2144. phy_addr_off = 12;
  2145. }
  2146. break;
  2147. case NIU_FLAGS_10G | NIU_FLAGS_XCVR_SERDES:
  2148. case NIU_FLAGS_XCVR_SERDES | NIU_FLAGS_FIBER:
  2149. case NIU_FLAGS_XCVR_SERDES:
  2150. switch(np->port) {
  2151. case 0:
  2152. case 1:
  2153. tp = &phy_template_10g_serdes;
  2154. break;
  2155. case 2:
  2156. case 3:
  2157. tp = &phy_template_1g_rgmii;
  2158. break;
  2159. default:
  2160. return -EINVAL;
  2161. break;
  2162. }
  2163. phy_addr_off = niu_atca_port_num[np->port];
  2164. break;
  2165. default:
  2166. return -EINVAL;
  2167. }
  2168. }
  2169. np->phy_ops = tp->ops;
  2170. np->phy_addr = tp->phy_addr_base + phy_addr_off;
  2171. return 0;
  2172. }
  2173. static int niu_init_link(struct niu *np)
  2174. {
  2175. struct niu_parent *parent = np->parent;
  2176. int err, ignore;
  2177. if (parent->plat_type == PLAT_TYPE_NIU) {
  2178. err = niu_xcvr_init(np);
  2179. if (err)
  2180. return err;
  2181. msleep(200);
  2182. }
  2183. err = niu_serdes_init(np);
  2184. if (err)
  2185. return err;
  2186. msleep(200);
  2187. err = niu_xcvr_init(np);
  2188. if (!err)
  2189. niu_link_status(np, &ignore);
  2190. return 0;
  2191. }
  2192. static void niu_set_primary_mac(struct niu *np, unsigned char *addr)
  2193. {
  2194. u16 reg0 = addr[4] << 8 | addr[5];
  2195. u16 reg1 = addr[2] << 8 | addr[3];
  2196. u16 reg2 = addr[0] << 8 | addr[1];
  2197. if (np->flags & NIU_FLAGS_XMAC) {
  2198. nw64_mac(XMAC_ADDR0, reg0);
  2199. nw64_mac(XMAC_ADDR1, reg1);
  2200. nw64_mac(XMAC_ADDR2, reg2);
  2201. } else {
  2202. nw64_mac(BMAC_ADDR0, reg0);
  2203. nw64_mac(BMAC_ADDR1, reg1);
  2204. nw64_mac(BMAC_ADDR2, reg2);
  2205. }
  2206. }
  2207. static int niu_num_alt_addr(struct niu *np)
  2208. {
  2209. if (np->flags & NIU_FLAGS_XMAC)
  2210. return XMAC_NUM_ALT_ADDR;
  2211. else
  2212. return BMAC_NUM_ALT_ADDR;
  2213. }
  2214. static int niu_set_alt_mac(struct niu *np, int index, unsigned char *addr)
  2215. {
  2216. u16 reg0 = addr[4] << 8 | addr[5];
  2217. u16 reg1 = addr[2] << 8 | addr[3];
  2218. u16 reg2 = addr[0] << 8 | addr[1];
  2219. if (index >= niu_num_alt_addr(np))
  2220. return -EINVAL;
  2221. if (np->flags & NIU_FLAGS_XMAC) {
  2222. nw64_mac(XMAC_ALT_ADDR0(index), reg0);
  2223. nw64_mac(XMAC_ALT_ADDR1(index), reg1);
  2224. nw64_mac(XMAC_ALT_ADDR2(index), reg2);
  2225. } else {
  2226. nw64_mac(BMAC_ALT_ADDR0(index), reg0);
  2227. nw64_mac(BMAC_ALT_ADDR1(index), reg1);
  2228. nw64_mac(BMAC_ALT_ADDR2(index), reg2);
  2229. }
  2230. return 0;
  2231. }
  2232. static int niu_enable_alt_mac(struct niu *np, int index, int on)
  2233. {
  2234. unsigned long reg;
  2235. u64 val, mask;
  2236. if (index >= niu_num_alt_addr(np))
  2237. return -EINVAL;
  2238. if (np->flags & NIU_FLAGS_XMAC) {
  2239. reg = XMAC_ADDR_CMPEN;
  2240. mask = 1 << index;
  2241. } else {
  2242. reg = BMAC_ADDR_CMPEN;
  2243. mask = 1 << (index + 1);
  2244. }
  2245. val = nr64_mac(reg);
  2246. if (on)
  2247. val |= mask;
  2248. else
  2249. val &= ~mask;
  2250. nw64_mac(reg, val);
  2251. return 0;
  2252. }
  2253. static void __set_rdc_table_num_hw(struct niu *np, unsigned long reg,
  2254. int num, int mac_pref)
  2255. {
  2256. u64 val = nr64_mac(reg);
  2257. val &= ~(HOST_INFO_MACRDCTBLN | HOST_INFO_MPR);
  2258. val |= num;
  2259. if (mac_pref)
  2260. val |= HOST_INFO_MPR;
  2261. nw64_mac(reg, val);
  2262. }
  2263. static int __set_rdc_table_num(struct niu *np,
  2264. int xmac_index, int bmac_index,
  2265. int rdc_table_num, int mac_pref)
  2266. {
  2267. unsigned long reg;
  2268. if (rdc_table_num & ~HOST_INFO_MACRDCTBLN)
  2269. return -EINVAL;
  2270. if (np->flags & NIU_FLAGS_XMAC)
  2271. reg = XMAC_HOST_INFO(xmac_index);
  2272. else
  2273. reg = BMAC_HOST_INFO(bmac_index);
  2274. __set_rdc_table_num_hw(np, reg, rdc_table_num, mac_pref);
  2275. return 0;
  2276. }
  2277. static int niu_set_primary_mac_rdc_table(struct niu *np, int table_num,
  2278. int mac_pref)
  2279. {
  2280. return __set_rdc_table_num(np, 17, 0, table_num, mac_pref);
  2281. }
  2282. static int niu_set_multicast_mac_rdc_table(struct niu *np, int table_num,
  2283. int mac_pref)
  2284. {
  2285. return __set_rdc_table_num(np, 16, 8, table_num, mac_pref);
  2286. }
  2287. static int niu_set_alt_mac_rdc_table(struct niu *np, int idx,
  2288. int table_num, int mac_pref)
  2289. {
  2290. if (idx >= niu_num_alt_addr(np))
  2291. return -EINVAL;
  2292. return __set_rdc_table_num(np, idx, idx + 1, table_num, mac_pref);
  2293. }
  2294. static u64 vlan_entry_set_parity(u64 reg_val)
  2295. {
  2296. u64 port01_mask;
  2297. u64 port23_mask;
  2298. port01_mask = 0x00ff;
  2299. port23_mask = 0xff00;
  2300. if (hweight64(reg_val & port01_mask) & 1)
  2301. reg_val |= ENET_VLAN_TBL_PARITY0;
  2302. else
  2303. reg_val &= ~ENET_VLAN_TBL_PARITY0;
  2304. if (hweight64(reg_val & port23_mask) & 1)
  2305. reg_val |= ENET_VLAN_TBL_PARITY1;
  2306. else
  2307. reg_val &= ~ENET_VLAN_TBL_PARITY1;
  2308. return reg_val;
  2309. }
  2310. static void vlan_tbl_write(struct niu *np, unsigned long index,
  2311. int port, int vpr, int rdc_table)
  2312. {
  2313. u64 reg_val = nr64(ENET_VLAN_TBL(index));
  2314. reg_val &= ~((ENET_VLAN_TBL_VPR |
  2315. ENET_VLAN_TBL_VLANRDCTBLN) <<
  2316. ENET_VLAN_TBL_SHIFT(port));
  2317. if (vpr)
  2318. reg_val |= (ENET_VLAN_TBL_VPR <<
  2319. ENET_VLAN_TBL_SHIFT(port));
  2320. reg_val |= (rdc_table << ENET_VLAN_TBL_SHIFT(port));
  2321. reg_val = vlan_entry_set_parity(reg_val);
  2322. nw64(ENET_VLAN_TBL(index), reg_val);
  2323. }
  2324. static void vlan_tbl_clear(struct niu *np)
  2325. {
  2326. int i;
  2327. for (i = 0; i < ENET_VLAN_TBL_NUM_ENTRIES; i++)
  2328. nw64(ENET_VLAN_TBL(i), 0);
  2329. }
  2330. static int tcam_wait_bit(struct niu *np, u64 bit)
  2331. {
  2332. int limit = 1000;
  2333. while (--limit > 0) {
  2334. if (nr64(TCAM_CTL) & bit)
  2335. break;
  2336. udelay(1);
  2337. }
  2338. if (limit < 0)
  2339. return -ENODEV;
  2340. return 0;
  2341. }
  2342. static int tcam_flush(struct niu *np, int index)
  2343. {
  2344. nw64(TCAM_KEY_0, 0x00);
  2345. nw64(TCAM_KEY_MASK_0, 0xff);
  2346. nw64(TCAM_CTL, (TCAM_CTL_RWC_TCAM_WRITE | index));
  2347. return tcam_wait_bit(np, TCAM_CTL_STAT);
  2348. }
  2349. #if 0
  2350. static int tcam_read(struct niu *np, int index,
  2351. u64 *key, u64 *mask)
  2352. {
  2353. int err;
  2354. nw64(TCAM_CTL, (TCAM_CTL_RWC_TCAM_READ | index));
  2355. err = tcam_wait_bit(np, TCAM_CTL_STAT);
  2356. if (!err) {
  2357. key[0] = nr64(TCAM_KEY_0);
  2358. key[1] = nr64(TCAM_KEY_1);
  2359. key[2] = nr64(TCAM_KEY_2);
  2360. key[3] = nr64(TCAM_KEY_3);
  2361. mask[0] = nr64(TCAM_KEY_MASK_0);
  2362. mask[1] = nr64(TCAM_KEY_MASK_1);
  2363. mask[2] = nr64(TCAM_KEY_MASK_2);
  2364. mask[3] = nr64(TCAM_KEY_MASK_3);
  2365. }
  2366. return err;
  2367. }
  2368. #endif
  2369. static int tcam_write(struct niu *np, int index,
  2370. u64 *key, u64 *mask)
  2371. {
  2372. nw64(TCAM_KEY_0, key[0]);
  2373. nw64(TCAM_KEY_1, key[1]);
  2374. nw64(TCAM_KEY_2, key[2]);
  2375. nw64(TCAM_KEY_3, key[3]);
  2376. nw64(TCAM_KEY_MASK_0, mask[0]);
  2377. nw64(TCAM_KEY_MASK_1, mask[1]);
  2378. nw64(TCAM_KEY_MASK_2, mask[2]);
  2379. nw64(TCAM_KEY_MASK_3, mask[3]);
  2380. nw64(TCAM_CTL, (TCAM_CTL_RWC_TCAM_WRITE | index));
  2381. return tcam_wait_bit(np, TCAM_CTL_STAT);
  2382. }
  2383. #if 0
  2384. static int tcam_assoc_read(struct niu *np, int index, u64 *data)
  2385. {
  2386. int err;
  2387. nw64(TCAM_CTL, (TCAM_CTL_RWC_RAM_READ | index));
  2388. err = tcam_wait_bit(np, TCAM_CTL_STAT);
  2389. if (!err)
  2390. *data = nr64(TCAM_KEY_1);
  2391. return err;
  2392. }
  2393. #endif
  2394. static int tcam_assoc_write(struct niu *np, int index, u64 assoc_data)
  2395. {
  2396. nw64(TCAM_KEY_1, assoc_data);
  2397. nw64(TCAM_CTL, (TCAM_CTL_RWC_RAM_WRITE | index));
  2398. return tcam_wait_bit(np, TCAM_CTL_STAT);
  2399. }
  2400. static void tcam_enable(struct niu *np, int on)
  2401. {
  2402. u64 val = nr64(FFLP_CFG_1);
  2403. if (on)
  2404. val &= ~FFLP_CFG_1_TCAM_DIS;
  2405. else
  2406. val |= FFLP_CFG_1_TCAM_DIS;
  2407. nw64(FFLP_CFG_1, val);
  2408. }
  2409. static void tcam_set_lat_and_ratio(struct niu *np, u64 latency, u64 ratio)
  2410. {
  2411. u64 val = nr64(FFLP_CFG_1);
  2412. val &= ~(FFLP_CFG_1_FFLPINITDONE |
  2413. FFLP_CFG_1_CAMLAT |
  2414. FFLP_CFG_1_CAMRATIO);
  2415. val |= (latency << FFLP_CFG_1_CAMLAT_SHIFT);
  2416. val |= (ratio << FFLP_CFG_1_CAMRATIO_SHIFT);
  2417. nw64(FFLP_CFG_1, val);
  2418. val = nr64(FFLP_CFG_1);
  2419. val |= FFLP_CFG_1_FFLPINITDONE;
  2420. nw64(FFLP_CFG_1, val);
  2421. }
  2422. static int tcam_user_eth_class_enable(struct niu *np, unsigned long class,
  2423. int on)
  2424. {
  2425. unsigned long reg;
  2426. u64 val;
  2427. if (class < CLASS_CODE_ETHERTYPE1 ||
  2428. class > CLASS_CODE_ETHERTYPE2)
  2429. return -EINVAL;
  2430. reg = L2_CLS(class - CLASS_CODE_ETHERTYPE1);
  2431. val = nr64(reg);
  2432. if (on)
  2433. val |= L2_CLS_VLD;
  2434. else
  2435. val &= ~L2_CLS_VLD;
  2436. nw64(reg, val);
  2437. return 0;
  2438. }
  2439. #if 0
  2440. static int tcam_user_eth_class_set(struct niu *np, unsigned long class,
  2441. u64 ether_type)
  2442. {
  2443. unsigned long reg;
  2444. u64 val;
  2445. if (class < CLASS_CODE_ETHERTYPE1 ||
  2446. class > CLASS_CODE_ETHERTYPE2 ||
  2447. (ether_type & ~(u64)0xffff) != 0)
  2448. return -EINVAL;
  2449. reg = L2_CLS(class - CLASS_CODE_ETHERTYPE1);
  2450. val = nr64(reg);
  2451. val &= ~L2_CLS_ETYPE;
  2452. val |= (ether_type << L2_CLS_ETYPE_SHIFT);
  2453. nw64(reg, val);
  2454. return 0;
  2455. }
  2456. #endif
  2457. static int tcam_user_ip_class_enable(struct niu *np, unsigned long class,
  2458. int on)
  2459. {
  2460. unsigned long reg;
  2461. u64 val;
  2462. if (class < CLASS_CODE_USER_PROG1 ||
  2463. class > CLASS_CODE_USER_PROG4)
  2464. return -EINVAL;
  2465. reg = L3_CLS(class - CLASS_CODE_USER_PROG1);
  2466. val = nr64(reg);
  2467. if (on)
  2468. val |= L3_CLS_VALID;
  2469. else
  2470. val &= ~L3_CLS_VALID;
  2471. nw64(reg, val);
  2472. return 0;
  2473. }
  2474. static int tcam_user_ip_class_set(struct niu *np, unsigned long class,
  2475. int ipv6, u64 protocol_id,
  2476. u64 tos_mask, u64 tos_val)
  2477. {
  2478. unsigned long reg;
  2479. u64 val;
  2480. if (class < CLASS_CODE_USER_PROG1 ||
  2481. class > CLASS_CODE_USER_PROG4 ||
  2482. (protocol_id & ~(u64)0xff) != 0 ||
  2483. (tos_mask & ~(u64)0xff) != 0 ||
  2484. (tos_val & ~(u64)0xff) != 0)
  2485. return -EINVAL;
  2486. reg = L3_CLS(class - CLASS_CODE_USER_PROG1);
  2487. val = nr64(reg);
  2488. val &= ~(L3_CLS_IPVER | L3_CLS_PID |
  2489. L3_CLS_TOSMASK | L3_CLS_TOS);
  2490. if (ipv6)
  2491. val |= L3_CLS_IPVER;
  2492. val |= (protocol_id << L3_CLS_PID_SHIFT);
  2493. val |= (tos_mask << L3_CLS_TOSMASK_SHIFT);
  2494. val |= (tos_val << L3_CLS_TOS_SHIFT);
  2495. nw64(reg, val);
  2496. return 0;
  2497. }
  2498. static int tcam_early_init(struct niu *np)
  2499. {
  2500. unsigned long i;
  2501. int err;
  2502. tcam_enable(np, 0);
  2503. tcam_set_lat_and_ratio(np,
  2504. DEFAULT_TCAM_LATENCY,
  2505. DEFAULT_TCAM_ACCESS_RATIO);
  2506. for (i = CLASS_CODE_ETHERTYPE1; i <= CLASS_CODE_ETHERTYPE2; i++) {
  2507. err = tcam_user_eth_class_enable(np, i, 0);
  2508. if (err)
  2509. return err;
  2510. }
  2511. for (i = CLASS_CODE_USER_PROG1; i <= CLASS_CODE_USER_PROG4; i++) {
  2512. err = tcam_user_ip_class_enable(np, i, 0);
  2513. if (err)
  2514. return err;
  2515. }
  2516. return 0;
  2517. }
  2518. static int tcam_flush_all(struct niu *np)
  2519. {
  2520. unsigned long i;
  2521. for (i = 0; i < np->parent->tcam_num_entries; i++) {
  2522. int err = tcam_flush(np, i);
  2523. if (err)
  2524. return err;
  2525. }
  2526. return 0;
  2527. }
  2528. static u64 hash_addr_regval(unsigned long index, unsigned long num_entries)
  2529. {
  2530. return ((u64)index | (num_entries == 1 ?
  2531. HASH_TBL_ADDR_AUTOINC : 0));
  2532. }
  2533. #if 0
  2534. static int hash_read(struct niu *np, unsigned long partition,
  2535. unsigned long index, unsigned long num_entries,
  2536. u64 *data)
  2537. {
  2538. u64 val = hash_addr_regval(index, num_entries);
  2539. unsigned long i;
  2540. if (partition >= FCRAM_NUM_PARTITIONS ||
  2541. index + num_entries > FCRAM_SIZE)
  2542. return -EINVAL;
  2543. nw64(HASH_TBL_ADDR(partition), val);
  2544. for (i = 0; i < num_entries; i++)
  2545. data[i] = nr64(HASH_TBL_DATA(partition));
  2546. return 0;
  2547. }
  2548. #endif
  2549. static int hash_write(struct niu *np, unsigned long partition,
  2550. unsigned long index, unsigned long num_entries,
  2551. u64 *data)
  2552. {
  2553. u64 val = hash_addr_regval(index, num_entries);
  2554. unsigned long i;
  2555. if (partition >= FCRAM_NUM_PARTITIONS ||
  2556. index + (num_entries * 8) > FCRAM_SIZE)
  2557. return -EINVAL;
  2558. nw64(HASH_TBL_ADDR(partition), val);
  2559. for (i = 0; i < num_entries; i++)
  2560. nw64(HASH_TBL_DATA(partition), data[i]);
  2561. return 0;
  2562. }
  2563. static void fflp_reset(struct niu *np)
  2564. {
  2565. u64 val;
  2566. nw64(FFLP_CFG_1, FFLP_CFG_1_PIO_FIO_RST);
  2567. udelay(10);
  2568. nw64(FFLP_CFG_1, 0);
  2569. val = FFLP_CFG_1_FCRAMOUTDR_NORMAL | FFLP_CFG_1_FFLPINITDONE;
  2570. nw64(FFLP_CFG_1, val);
  2571. }
  2572. static void fflp_set_timings(struct niu *np)
  2573. {
  2574. u64 val = nr64(FFLP_CFG_1);
  2575. val &= ~FFLP_CFG_1_FFLPINITDONE;
  2576. val |= (DEFAULT_FCRAMRATIO << FFLP_CFG_1_FCRAMRATIO_SHIFT);
  2577. nw64(FFLP_CFG_1, val);
  2578. val = nr64(FFLP_CFG_1);
  2579. val |= FFLP_CFG_1_FFLPINITDONE;
  2580. nw64(FFLP_CFG_1, val);
  2581. val = nr64(FCRAM_REF_TMR);
  2582. val &= ~(FCRAM_REF_TMR_MAX | FCRAM_REF_TMR_MIN);
  2583. val |= (DEFAULT_FCRAM_REFRESH_MAX << FCRAM_REF_TMR_MAX_SHIFT);
  2584. val |= (DEFAULT_FCRAM_REFRESH_MIN << FCRAM_REF_TMR_MIN_SHIFT);
  2585. nw64(FCRAM_REF_TMR, val);
  2586. }
  2587. static int fflp_set_partition(struct niu *np, u64 partition,
  2588. u64 mask, u64 base, int enable)
  2589. {
  2590. unsigned long reg;
  2591. u64 val;
  2592. if (partition >= FCRAM_NUM_PARTITIONS ||
  2593. (mask & ~(u64)0x1f) != 0 ||
  2594. (base & ~(u64)0x1f) != 0)
  2595. return -EINVAL;
  2596. reg = FLW_PRT_SEL(partition);
  2597. val = nr64(reg);
  2598. val &= ~(FLW_PRT_SEL_EXT | FLW_PRT_SEL_MASK | FLW_PRT_SEL_BASE);
  2599. val |= (mask << FLW_PRT_SEL_MASK_SHIFT);
  2600. val |= (base << FLW_PRT_SEL_BASE_SHIFT);
  2601. if (enable)
  2602. val |= FLW_PRT_SEL_EXT;
  2603. nw64(reg, val);
  2604. return 0;
  2605. }
  2606. static int fflp_disable_all_partitions(struct niu *np)
  2607. {
  2608. unsigned long i;
  2609. for (i = 0; i < FCRAM_NUM_PARTITIONS; i++) {
  2610. int err = fflp_set_partition(np, 0, 0, 0, 0);
  2611. if (err)
  2612. return err;
  2613. }
  2614. return 0;
  2615. }
  2616. static void fflp_llcsnap_enable(struct niu *np, int on)
  2617. {
  2618. u64 val = nr64(FFLP_CFG_1);
  2619. if (on)
  2620. val |= FFLP_CFG_1_LLCSNAP;
  2621. else
  2622. val &= ~FFLP_CFG_1_LLCSNAP;
  2623. nw64(FFLP_CFG_1, val);
  2624. }
  2625. static void fflp_errors_enable(struct niu *np, int on)
  2626. {
  2627. u64 val = nr64(FFLP_CFG_1);
  2628. if (on)
  2629. val &= ~FFLP_CFG_1_ERRORDIS;
  2630. else
  2631. val |= FFLP_CFG_1_ERRORDIS;
  2632. nw64(FFLP_CFG_1, val);
  2633. }
  2634. static int fflp_hash_clear(struct niu *np)
  2635. {
  2636. struct fcram_hash_ipv4 ent;
  2637. unsigned long i;
  2638. /* IPV4 hash entry with valid bit clear, rest is don't care. */
  2639. memset(&ent, 0, sizeof(ent));
  2640. ent.header = HASH_HEADER_EXT;
  2641. for (i = 0; i < FCRAM_SIZE; i += sizeof(ent)) {
  2642. int err = hash_write(np, 0, i, 1, (u64 *) &ent);
  2643. if (err)
  2644. return err;
  2645. }
  2646. return 0;
  2647. }
  2648. static int fflp_early_init(struct niu *np)
  2649. {
  2650. struct niu_parent *parent;
  2651. unsigned long flags;
  2652. int err;
  2653. niu_lock_parent(np, flags);
  2654. parent = np->parent;
  2655. err = 0;
  2656. if (!(parent->flags & PARENT_FLGS_CLS_HWINIT)) {
  2657. niudbg(PROBE, "fflp_early_init: Initting hw on port %u\n",
  2658. np->port);
  2659. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  2660. fflp_reset(np);
  2661. fflp_set_timings(np);
  2662. err = fflp_disable_all_partitions(np);
  2663. if (err) {
  2664. niudbg(PROBE, "fflp_disable_all_partitions "
  2665. "failed, err=%d\n", err);
  2666. goto out;
  2667. }
  2668. }
  2669. err = tcam_early_init(np);
  2670. if (err) {
  2671. niudbg(PROBE, "tcam_early_init failed, err=%d\n",
  2672. err);
  2673. goto out;
  2674. }
  2675. fflp_llcsnap_enable(np, 1);
  2676. fflp_errors_enable(np, 0);
  2677. nw64(H1POLY, 0);
  2678. nw64(H2POLY, 0);
  2679. err = tcam_flush_all(np);
  2680. if (err) {
  2681. niudbg(PROBE, "tcam_flush_all failed, err=%d\n",
  2682. err);
  2683. goto out;
  2684. }
  2685. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  2686. err = fflp_hash_clear(np);
  2687. if (err) {
  2688. niudbg(PROBE, "fflp_hash_clear failed, "
  2689. "err=%d\n", err);
  2690. goto out;
  2691. }
  2692. }
  2693. vlan_tbl_clear(np);
  2694. niudbg(PROBE, "fflp_early_init: Success\n");
  2695. parent->flags |= PARENT_FLGS_CLS_HWINIT;
  2696. }
  2697. out:
  2698. niu_unlock_parent(np, flags);
  2699. return err;
  2700. }
  2701. static int niu_set_flow_key(struct niu *np, unsigned long class_code, u64 key)
  2702. {
  2703. if (class_code < CLASS_CODE_USER_PROG1 ||
  2704. class_code > CLASS_CODE_SCTP_IPV6)
  2705. return -EINVAL;
  2706. nw64(FLOW_KEY(class_code - CLASS_CODE_USER_PROG1), key);
  2707. return 0;
  2708. }
  2709. static int niu_set_tcam_key(struct niu *np, unsigned long class_code, u64 key)
  2710. {
  2711. if (class_code < CLASS_CODE_USER_PROG1 ||
  2712. class_code > CLASS_CODE_SCTP_IPV6)
  2713. return -EINVAL;
  2714. nw64(TCAM_KEY(class_code - CLASS_CODE_USER_PROG1), key);
  2715. return 0;
  2716. }
  2717. /* Entries for the ports are interleaved in the TCAM */
  2718. static u16 tcam_get_index(struct niu *np, u16 idx)
  2719. {
  2720. /* One entry reserved for IP fragment rule */
  2721. if (idx >= (np->clas.tcam_sz - 1))
  2722. idx = 0;
  2723. return (np->clas.tcam_top + ((idx+1) * np->parent->num_ports));
  2724. }
  2725. static u16 tcam_get_size(struct niu *np)
  2726. {
  2727. /* One entry reserved for IP fragment rule */
  2728. return np->clas.tcam_sz - 1;
  2729. }
  2730. static u16 tcam_get_valid_entry_cnt(struct niu *np)
  2731. {
  2732. /* One entry reserved for IP fragment rule */
  2733. return np->clas.tcam_valid_entries - 1;
  2734. }
  2735. static void niu_rx_skb_append(struct sk_buff *skb, struct page *page,
  2736. u32 offset, u32 size)
  2737. {
  2738. int i = skb_shinfo(skb)->nr_frags;
  2739. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  2740. frag->page = page;
  2741. frag->page_offset = offset;
  2742. frag->size = size;
  2743. skb->len += size;
  2744. skb->data_len += size;
  2745. skb->truesize += size;
  2746. skb_shinfo(skb)->nr_frags = i + 1;
  2747. }
  2748. static unsigned int niu_hash_rxaddr(struct rx_ring_info *rp, u64 a)
  2749. {
  2750. a >>= PAGE_SHIFT;
  2751. a ^= (a >> ilog2(MAX_RBR_RING_SIZE));
  2752. return (a & (MAX_RBR_RING_SIZE - 1));
  2753. }
  2754. static struct page *niu_find_rxpage(struct rx_ring_info *rp, u64 addr,
  2755. struct page ***link)
  2756. {
  2757. unsigned int h = niu_hash_rxaddr(rp, addr);
  2758. struct page *p, **pp;
  2759. addr &= PAGE_MASK;
  2760. pp = &rp->rxhash[h];
  2761. for (; (p = *pp) != NULL; pp = (struct page **) &p->mapping) {
  2762. if (p->index == addr) {
  2763. *link = pp;
  2764. break;
  2765. }
  2766. }
  2767. return p;
  2768. }
  2769. static void niu_hash_page(struct rx_ring_info *rp, struct page *page, u64 base)
  2770. {
  2771. unsigned int h = niu_hash_rxaddr(rp, base);
  2772. page->index = base;
  2773. page->mapping = (struct address_space *) rp->rxhash[h];
  2774. rp->rxhash[h] = page;
  2775. }
  2776. static int niu_rbr_add_page(struct niu *np, struct rx_ring_info *rp,
  2777. gfp_t mask, int start_index)
  2778. {
  2779. struct page *page;
  2780. u64 addr;
  2781. int i;
  2782. page = alloc_page(mask);
  2783. if (!page)
  2784. return -ENOMEM;
  2785. addr = np->ops->map_page(np->device, page, 0,
  2786. PAGE_SIZE, DMA_FROM_DEVICE);
  2787. niu_hash_page(rp, page, addr);
  2788. if (rp->rbr_blocks_per_page > 1)
  2789. atomic_add(rp->rbr_blocks_per_page - 1,
  2790. &compound_head(page)->_count);
  2791. for (i = 0; i < rp->rbr_blocks_per_page; i++) {
  2792. __le32 *rbr = &rp->rbr[start_index + i];
  2793. *rbr = cpu_to_le32(addr >> RBR_DESCR_ADDR_SHIFT);
  2794. addr += rp->rbr_block_size;
  2795. }
  2796. return 0;
  2797. }
  2798. static void niu_rbr_refill(struct niu *np, struct rx_ring_info *rp, gfp_t mask)
  2799. {
  2800. int index = rp->rbr_index;
  2801. rp->rbr_pending++;
  2802. if ((rp->rbr_pending % rp->rbr_blocks_per_page) == 0) {
  2803. int err = niu_rbr_add_page(np, rp, mask, index);
  2804. if (unlikely(err)) {
  2805. rp->rbr_pending--;
  2806. return;
  2807. }
  2808. rp->rbr_index += rp->rbr_blocks_per_page;
  2809. BUG_ON(rp->rbr_index > rp->rbr_table_size);
  2810. if (rp->rbr_index == rp->rbr_table_size)
  2811. rp->rbr_index = 0;
  2812. if (rp->rbr_pending >= rp->rbr_kick_thresh) {
  2813. nw64(RBR_KICK(rp->rx_channel), rp->rbr_pending);
  2814. rp->rbr_pending = 0;
  2815. }
  2816. }
  2817. }
  2818. static int niu_rx_pkt_ignore(struct niu *np, struct rx_ring_info *rp)
  2819. {
  2820. unsigned int index = rp->rcr_index;
  2821. int num_rcr = 0;
  2822. rp->rx_dropped++;
  2823. while (1) {
  2824. struct page *page, **link;
  2825. u64 addr, val;
  2826. u32 rcr_size;
  2827. num_rcr++;
  2828. val = le64_to_cpup(&rp->rcr[index]);
  2829. addr = (val & RCR_ENTRY_PKT_BUF_ADDR) <<
  2830. RCR_ENTRY_PKT_BUF_ADDR_SHIFT;
  2831. page = niu_find_rxpage(rp, addr, &link);
  2832. rcr_size = rp->rbr_sizes[(val & RCR_ENTRY_PKTBUFSZ) >>
  2833. RCR_ENTRY_PKTBUFSZ_SHIFT];
  2834. if ((page->index + PAGE_SIZE) - rcr_size == addr) {
  2835. *link = (struct page *) page->mapping;
  2836. np->ops->unmap_page(np->device, page->index,
  2837. PAGE_SIZE, DMA_FROM_DEVICE);
  2838. page->index = 0;
  2839. page->mapping = NULL;
  2840. __free_page(page);
  2841. rp->rbr_refill_pending++;
  2842. }
  2843. index = NEXT_RCR(rp, index);
  2844. if (!(val & RCR_ENTRY_MULTI))
  2845. break;
  2846. }
  2847. rp->rcr_index = index;
  2848. return num_rcr;
  2849. }
  2850. static int niu_process_rx_pkt(struct niu *np, struct rx_ring_info *rp)
  2851. {
  2852. unsigned int index = rp->rcr_index;
  2853. struct sk_buff *skb;
  2854. int len, num_rcr;
  2855. skb = netdev_alloc_skb(np->dev, RX_SKB_ALLOC_SIZE);
  2856. if (unlikely(!skb))
  2857. return niu_rx_pkt_ignore(np, rp);
  2858. num_rcr = 0;
  2859. while (1) {
  2860. struct page *page, **link;
  2861. u32 rcr_size, append_size;
  2862. u64 addr, val, off;
  2863. num_rcr++;
  2864. val = le64_to_cpup(&rp->rcr[index]);
  2865. len = (val & RCR_ENTRY_L2_LEN) >>
  2866. RCR_ENTRY_L2_LEN_SHIFT;
  2867. len -= ETH_FCS_LEN;
  2868. addr = (val & RCR_ENTRY_PKT_BUF_ADDR) <<
  2869. RCR_ENTRY_PKT_BUF_ADDR_SHIFT;
  2870. page = niu_find_rxpage(rp, addr, &link);
  2871. rcr_size = rp->rbr_sizes[(val & RCR_ENTRY_PKTBUFSZ) >>
  2872. RCR_ENTRY_PKTBUFSZ_SHIFT];
  2873. off = addr & ~PAGE_MASK;
  2874. append_size = rcr_size;
  2875. if (num_rcr == 1) {
  2876. int ptype;
  2877. off += 2;
  2878. append_size -= 2;
  2879. ptype = (val >> RCR_ENTRY_PKT_TYPE_SHIFT);
  2880. if ((ptype == RCR_PKT_TYPE_TCP ||
  2881. ptype == RCR_PKT_TYPE_UDP) &&
  2882. !(val & (RCR_ENTRY_NOPORT |
  2883. RCR_ENTRY_ERROR)))
  2884. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2885. else
  2886. skb->ip_summed = CHECKSUM_NONE;
  2887. }
  2888. if (!(val & RCR_ENTRY_MULTI))
  2889. append_size = len - skb->len;
  2890. niu_rx_skb_append(skb, page, off, append_size);
  2891. if ((page->index + rp->rbr_block_size) - rcr_size == addr) {
  2892. *link = (struct page *) page->mapping;
  2893. np->ops->unmap_page(np->device, page->index,
  2894. PAGE_SIZE, DMA_FROM_DEVICE);
  2895. page->index = 0;
  2896. page->mapping = NULL;
  2897. rp->rbr_refill_pending++;
  2898. } else
  2899. get_page(page);
  2900. index = NEXT_RCR(rp, index);
  2901. if (!(val & RCR_ENTRY_MULTI))
  2902. break;
  2903. }
  2904. rp->rcr_index = index;
  2905. skb_reserve(skb, NET_IP_ALIGN);
  2906. __pskb_pull_tail(skb, min(len, NIU_RXPULL_MAX));
  2907. rp->rx_packets++;
  2908. rp->rx_bytes += skb->len;
  2909. skb->protocol = eth_type_trans(skb, np->dev);
  2910. skb_record_rx_queue(skb, rp->rx_channel);
  2911. netif_receive_skb(skb);
  2912. return num_rcr;
  2913. }
  2914. static int niu_rbr_fill(struct niu *np, struct rx_ring_info *rp, gfp_t mask)
  2915. {
  2916. int blocks_per_page = rp->rbr_blocks_per_page;
  2917. int err, index = rp->rbr_index;
  2918. err = 0;
  2919. while (index < (rp->rbr_table_size - blocks_per_page)) {
  2920. err = niu_rbr_add_page(np, rp, mask, index);
  2921. if (err)
  2922. break;
  2923. index += blocks_per_page;
  2924. }
  2925. rp->rbr_index = index;
  2926. return err;
  2927. }
  2928. static void niu_rbr_free(struct niu *np, struct rx_ring_info *rp)
  2929. {
  2930. int i;
  2931. for (i = 0; i < MAX_RBR_RING_SIZE; i++) {
  2932. struct page *page;
  2933. page = rp->rxhash[i];
  2934. while (page) {
  2935. struct page *next = (struct page *) page->mapping;
  2936. u64 base = page->index;
  2937. np->ops->unmap_page(np->device, base, PAGE_SIZE,
  2938. DMA_FROM_DEVICE);
  2939. page->index = 0;
  2940. page->mapping = NULL;
  2941. __free_page(page);
  2942. page = next;
  2943. }
  2944. }
  2945. for (i = 0; i < rp->rbr_table_size; i++)
  2946. rp->rbr[i] = cpu_to_le32(0);
  2947. rp->rbr_index = 0;
  2948. }
  2949. static int release_tx_packet(struct niu *np, struct tx_ring_info *rp, int idx)
  2950. {
  2951. struct tx_buff_info *tb = &rp->tx_buffs[idx];
  2952. struct sk_buff *skb = tb->skb;
  2953. struct tx_pkt_hdr *tp;
  2954. u64 tx_flags;
  2955. int i, len;
  2956. tp = (struct tx_pkt_hdr *) skb->data;
  2957. tx_flags = le64_to_cpup(&tp->flags);
  2958. rp->tx_packets++;
  2959. rp->tx_bytes += (((tx_flags & TXHDR_LEN) >> TXHDR_LEN_SHIFT) -
  2960. ((tx_flags & TXHDR_PAD) / 2));
  2961. len = skb_headlen(skb);
  2962. np->ops->unmap_single(np->device, tb->mapping,
  2963. len, DMA_TO_DEVICE);
  2964. if (le64_to_cpu(rp->descr[idx]) & TX_DESC_MARK)
  2965. rp->mark_pending--;
  2966. tb->skb = NULL;
  2967. do {
  2968. idx = NEXT_TX(rp, idx);
  2969. len -= MAX_TX_DESC_LEN;
  2970. } while (len > 0);
  2971. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  2972. tb = &rp->tx_buffs[idx];
  2973. BUG_ON(tb->skb != NULL);
  2974. np->ops->unmap_page(np->device, tb->mapping,
  2975. skb_shinfo(skb)->frags[i].size,
  2976. DMA_TO_DEVICE);
  2977. idx = NEXT_TX(rp, idx);
  2978. }
  2979. dev_kfree_skb(skb);
  2980. return idx;
  2981. }
  2982. #define NIU_TX_WAKEUP_THRESH(rp) ((rp)->pending / 4)
  2983. static void niu_tx_work(struct niu *np, struct tx_ring_info *rp)
  2984. {
  2985. struct netdev_queue *txq;
  2986. u16 pkt_cnt, tmp;
  2987. int cons, index;
  2988. u64 cs;
  2989. index = (rp - np->tx_rings);
  2990. txq = netdev_get_tx_queue(np->dev, index);
  2991. cs = rp->tx_cs;
  2992. if (unlikely(!(cs & (TX_CS_MK | TX_CS_MMK))))
  2993. goto out;
  2994. tmp = pkt_cnt = (cs & TX_CS_PKT_CNT) >> TX_CS_PKT_CNT_SHIFT;
  2995. pkt_cnt = (pkt_cnt - rp->last_pkt_cnt) &
  2996. (TX_CS_PKT_CNT >> TX_CS_PKT_CNT_SHIFT);
  2997. rp->last_pkt_cnt = tmp;
  2998. cons = rp->cons;
  2999. niudbg(TX_DONE, "%s: niu_tx_work() pkt_cnt[%u] cons[%d]\n",
  3000. np->dev->name, pkt_cnt, cons);
  3001. while (pkt_cnt--)
  3002. cons = release_tx_packet(np, rp, cons);
  3003. rp->cons = cons;
  3004. smp_mb();
  3005. out:
  3006. if (unlikely(netif_tx_queue_stopped(txq) &&
  3007. (niu_tx_avail(rp) > NIU_TX_WAKEUP_THRESH(rp)))) {
  3008. __netif_tx_lock(txq, smp_processor_id());
  3009. if (netif_tx_queue_stopped(txq) &&
  3010. (niu_tx_avail(rp) > NIU_TX_WAKEUP_THRESH(rp)))
  3011. netif_tx_wake_queue(txq);
  3012. __netif_tx_unlock(txq);
  3013. }
  3014. }
  3015. static inline void niu_sync_rx_discard_stats(struct niu *np,
  3016. struct rx_ring_info *rp,
  3017. const int limit)
  3018. {
  3019. /* This elaborate scheme is needed for reading the RX discard
  3020. * counters, as they are only 16-bit and can overflow quickly,
  3021. * and because the overflow indication bit is not usable as
  3022. * the counter value does not wrap, but remains at max value
  3023. * 0xFFFF.
  3024. *
  3025. * In theory and in practice counters can be lost in between
  3026. * reading nr64() and clearing the counter nw64(). For this
  3027. * reason, the number of counter clearings nw64() is
  3028. * limited/reduced though the limit parameter.
  3029. */
  3030. int rx_channel = rp->rx_channel;
  3031. u32 misc, wred;
  3032. /* RXMISC (Receive Miscellaneous Discard Count), covers the
  3033. * following discard events: IPP (Input Port Process),
  3034. * FFLP/TCAM, Full RCR (Receive Completion Ring) RBR (Receive
  3035. * Block Ring) prefetch buffer is empty.
  3036. */
  3037. misc = nr64(RXMISC(rx_channel));
  3038. if (unlikely((misc & RXMISC_COUNT) > limit)) {
  3039. nw64(RXMISC(rx_channel), 0);
  3040. rp->rx_errors += misc & RXMISC_COUNT;
  3041. if (unlikely(misc & RXMISC_OFLOW))
  3042. dev_err(np->device, "rx-%d: Counter overflow "
  3043. "RXMISC discard\n", rx_channel);
  3044. niudbg(RX_ERR, "%s-rx-%d: MISC drop=%u over=%u\n",
  3045. np->dev->name, rx_channel, misc, misc-limit);
  3046. }
  3047. /* WRED (Weighted Random Early Discard) by hardware */
  3048. wred = nr64(RED_DIS_CNT(rx_channel));
  3049. if (unlikely((wred & RED_DIS_CNT_COUNT) > limit)) {
  3050. nw64(RED_DIS_CNT(rx_channel), 0);
  3051. rp->rx_dropped += wred & RED_DIS_CNT_COUNT;
  3052. if (unlikely(wred & RED_DIS_CNT_OFLOW))
  3053. dev_err(np->device, "rx-%d: Counter overflow "
  3054. "WRED discard\n", rx_channel);
  3055. niudbg(RX_ERR, "%s-rx-%d: WRED drop=%u over=%u\n",
  3056. np->dev->name, rx_channel, wred, wred-limit);
  3057. }
  3058. }
  3059. static int niu_rx_work(struct niu *np, struct rx_ring_info *rp, int budget)
  3060. {
  3061. int qlen, rcr_done = 0, work_done = 0;
  3062. struct rxdma_mailbox *mbox = rp->mbox;
  3063. u64 stat;
  3064. #if 1
  3065. stat = nr64(RX_DMA_CTL_STAT(rp->rx_channel));
  3066. qlen = nr64(RCRSTAT_A(rp->rx_channel)) & RCRSTAT_A_QLEN;
  3067. #else
  3068. stat = le64_to_cpup(&mbox->rx_dma_ctl_stat);
  3069. qlen = (le64_to_cpup(&mbox->rcrstat_a) & RCRSTAT_A_QLEN);
  3070. #endif
  3071. mbox->rx_dma_ctl_stat = 0;
  3072. mbox->rcrstat_a = 0;
  3073. niudbg(RX_STATUS, "%s: niu_rx_work(chan[%d]), stat[%llx] qlen=%d\n",
  3074. np->dev->name, rp->rx_channel, (unsigned long long) stat, qlen);
  3075. rcr_done = work_done = 0;
  3076. qlen = min(qlen, budget);
  3077. while (work_done < qlen) {
  3078. rcr_done += niu_process_rx_pkt(np, rp);
  3079. work_done++;
  3080. }
  3081. if (rp->rbr_refill_pending >= rp->rbr_kick_thresh) {
  3082. unsigned int i;
  3083. for (i = 0; i < rp->rbr_refill_pending; i++)
  3084. niu_rbr_refill(np, rp, GFP_ATOMIC);
  3085. rp->rbr_refill_pending = 0;
  3086. }
  3087. stat = (RX_DMA_CTL_STAT_MEX |
  3088. ((u64)work_done << RX_DMA_CTL_STAT_PKTREAD_SHIFT) |
  3089. ((u64)rcr_done << RX_DMA_CTL_STAT_PTRREAD_SHIFT));
  3090. nw64(RX_DMA_CTL_STAT(rp->rx_channel), stat);
  3091. /* Only sync discards stats when qlen indicate potential for drops */
  3092. if (qlen > 10)
  3093. niu_sync_rx_discard_stats(np, rp, 0x7FFF);
  3094. return work_done;
  3095. }
  3096. static int niu_poll_core(struct niu *np, struct niu_ldg *lp, int budget)
  3097. {
  3098. u64 v0 = lp->v0;
  3099. u32 tx_vec = (v0 >> 32);
  3100. u32 rx_vec = (v0 & 0xffffffff);
  3101. int i, work_done = 0;
  3102. niudbg(INTR, "%s: niu_poll_core() v0[%016llx]\n",
  3103. np->dev->name, (unsigned long long) v0);
  3104. for (i = 0; i < np->num_tx_rings; i++) {
  3105. struct tx_ring_info *rp = &np->tx_rings[i];
  3106. if (tx_vec & (1 << rp->tx_channel))
  3107. niu_tx_work(np, rp);
  3108. nw64(LD_IM0(LDN_TXDMA(rp->tx_channel)), 0);
  3109. }
  3110. for (i = 0; i < np->num_rx_rings; i++) {
  3111. struct rx_ring_info *rp = &np->rx_rings[i];
  3112. if (rx_vec & (1 << rp->rx_channel)) {
  3113. int this_work_done;
  3114. this_work_done = niu_rx_work(np, rp,
  3115. budget);
  3116. budget -= this_work_done;
  3117. work_done += this_work_done;
  3118. }
  3119. nw64(LD_IM0(LDN_RXDMA(rp->rx_channel)), 0);
  3120. }
  3121. return work_done;
  3122. }
  3123. static int niu_poll(struct napi_struct *napi, int budget)
  3124. {
  3125. struct niu_ldg *lp = container_of(napi, struct niu_ldg, napi);
  3126. struct niu *np = lp->np;
  3127. int work_done;
  3128. work_done = niu_poll_core(np, lp, budget);
  3129. if (work_done < budget) {
  3130. napi_complete(napi);
  3131. niu_ldg_rearm(np, lp, 1);
  3132. }
  3133. return work_done;
  3134. }
  3135. static void niu_log_rxchan_errors(struct niu *np, struct rx_ring_info *rp,
  3136. u64 stat)
  3137. {
  3138. dev_err(np->device, PFX "%s: RX channel %u errors ( ",
  3139. np->dev->name, rp->rx_channel);
  3140. if (stat & RX_DMA_CTL_STAT_RBR_TMOUT)
  3141. printk("RBR_TMOUT ");
  3142. if (stat & RX_DMA_CTL_STAT_RSP_CNT_ERR)
  3143. printk("RSP_CNT ");
  3144. if (stat & RX_DMA_CTL_STAT_BYTE_EN_BUS)
  3145. printk("BYTE_EN_BUS ");
  3146. if (stat & RX_DMA_CTL_STAT_RSP_DAT_ERR)
  3147. printk("RSP_DAT ");
  3148. if (stat & RX_DMA_CTL_STAT_RCR_ACK_ERR)
  3149. printk("RCR_ACK ");
  3150. if (stat & RX_DMA_CTL_STAT_RCR_SHA_PAR)
  3151. printk("RCR_SHA_PAR ");
  3152. if (stat & RX_DMA_CTL_STAT_RBR_PRE_PAR)
  3153. printk("RBR_PRE_PAR ");
  3154. if (stat & RX_DMA_CTL_STAT_CONFIG_ERR)
  3155. printk("CONFIG ");
  3156. if (stat & RX_DMA_CTL_STAT_RCRINCON)
  3157. printk("RCRINCON ");
  3158. if (stat & RX_DMA_CTL_STAT_RCRFULL)
  3159. printk("RCRFULL ");
  3160. if (stat & RX_DMA_CTL_STAT_RBRFULL)
  3161. printk("RBRFULL ");
  3162. if (stat & RX_DMA_CTL_STAT_RBRLOGPAGE)
  3163. printk("RBRLOGPAGE ");
  3164. if (stat & RX_DMA_CTL_STAT_CFIGLOGPAGE)
  3165. printk("CFIGLOGPAGE ");
  3166. if (stat & RX_DMA_CTL_STAT_DC_FIFO_ERR)
  3167. printk("DC_FIDO ");
  3168. printk(")\n");
  3169. }
  3170. static int niu_rx_error(struct niu *np, struct rx_ring_info *rp)
  3171. {
  3172. u64 stat = nr64(RX_DMA_CTL_STAT(rp->rx_channel));
  3173. int err = 0;
  3174. if (stat & (RX_DMA_CTL_STAT_CHAN_FATAL |
  3175. RX_DMA_CTL_STAT_PORT_FATAL))
  3176. err = -EINVAL;
  3177. if (err) {
  3178. dev_err(np->device, PFX "%s: RX channel %u error, stat[%llx]\n",
  3179. np->dev->name, rp->rx_channel,
  3180. (unsigned long long) stat);
  3181. niu_log_rxchan_errors(np, rp, stat);
  3182. }
  3183. nw64(RX_DMA_CTL_STAT(rp->rx_channel),
  3184. stat & RX_DMA_CTL_WRITE_CLEAR_ERRS);
  3185. return err;
  3186. }
  3187. static void niu_log_txchan_errors(struct niu *np, struct tx_ring_info *rp,
  3188. u64 cs)
  3189. {
  3190. dev_err(np->device, PFX "%s: TX channel %u errors ( ",
  3191. np->dev->name, rp->tx_channel);
  3192. if (cs & TX_CS_MBOX_ERR)
  3193. printk("MBOX ");
  3194. if (cs & TX_CS_PKT_SIZE_ERR)
  3195. printk("PKT_SIZE ");
  3196. if (cs & TX_CS_TX_RING_OFLOW)
  3197. printk("TX_RING_OFLOW ");
  3198. if (cs & TX_CS_PREF_BUF_PAR_ERR)
  3199. printk("PREF_BUF_PAR ");
  3200. if (cs & TX_CS_NACK_PREF)
  3201. printk("NACK_PREF ");
  3202. if (cs & TX_CS_NACK_PKT_RD)
  3203. printk("NACK_PKT_RD ");
  3204. if (cs & TX_CS_CONF_PART_ERR)
  3205. printk("CONF_PART ");
  3206. if (cs & TX_CS_PKT_PRT_ERR)
  3207. printk("PKT_PTR ");
  3208. printk(")\n");
  3209. }
  3210. static int niu_tx_error(struct niu *np, struct tx_ring_info *rp)
  3211. {
  3212. u64 cs, logh, logl;
  3213. cs = nr64(TX_CS(rp->tx_channel));
  3214. logh = nr64(TX_RNG_ERR_LOGH(rp->tx_channel));
  3215. logl = nr64(TX_RNG_ERR_LOGL(rp->tx_channel));
  3216. dev_err(np->device, PFX "%s: TX channel %u error, "
  3217. "cs[%llx] logh[%llx] logl[%llx]\n",
  3218. np->dev->name, rp->tx_channel,
  3219. (unsigned long long) cs,
  3220. (unsigned long long) logh,
  3221. (unsigned long long) logl);
  3222. niu_log_txchan_errors(np, rp, cs);
  3223. return -ENODEV;
  3224. }
  3225. static int niu_mif_interrupt(struct niu *np)
  3226. {
  3227. u64 mif_status = nr64(MIF_STATUS);
  3228. int phy_mdint = 0;
  3229. if (np->flags & NIU_FLAGS_XMAC) {
  3230. u64 xrxmac_stat = nr64_mac(XRXMAC_STATUS);
  3231. if (xrxmac_stat & XRXMAC_STATUS_PHY_MDINT)
  3232. phy_mdint = 1;
  3233. }
  3234. dev_err(np->device, PFX "%s: MIF interrupt, "
  3235. "stat[%llx] phy_mdint(%d)\n",
  3236. np->dev->name, (unsigned long long) mif_status, phy_mdint);
  3237. return -ENODEV;
  3238. }
  3239. static void niu_xmac_interrupt(struct niu *np)
  3240. {
  3241. struct niu_xmac_stats *mp = &np->mac_stats.xmac;
  3242. u64 val;
  3243. val = nr64_mac(XTXMAC_STATUS);
  3244. if (val & XTXMAC_STATUS_FRAME_CNT_EXP)
  3245. mp->tx_frames += TXMAC_FRM_CNT_COUNT;
  3246. if (val & XTXMAC_STATUS_BYTE_CNT_EXP)
  3247. mp->tx_bytes += TXMAC_BYTE_CNT_COUNT;
  3248. if (val & XTXMAC_STATUS_TXFIFO_XFR_ERR)
  3249. mp->tx_fifo_errors++;
  3250. if (val & XTXMAC_STATUS_TXMAC_OFLOW)
  3251. mp->tx_overflow_errors++;
  3252. if (val & XTXMAC_STATUS_MAX_PSIZE_ERR)
  3253. mp->tx_max_pkt_size_errors++;
  3254. if (val & XTXMAC_STATUS_TXMAC_UFLOW)
  3255. mp->tx_underflow_errors++;
  3256. val = nr64_mac(XRXMAC_STATUS);
  3257. if (val & XRXMAC_STATUS_LCL_FLT_STATUS)
  3258. mp->rx_local_faults++;
  3259. if (val & XRXMAC_STATUS_RFLT_DET)
  3260. mp->rx_remote_faults++;
  3261. if (val & XRXMAC_STATUS_LFLT_CNT_EXP)
  3262. mp->rx_link_faults += LINK_FAULT_CNT_COUNT;
  3263. if (val & XRXMAC_STATUS_ALIGNERR_CNT_EXP)
  3264. mp->rx_align_errors += RXMAC_ALIGN_ERR_CNT_COUNT;
  3265. if (val & XRXMAC_STATUS_RXFRAG_CNT_EXP)
  3266. mp->rx_frags += RXMAC_FRAG_CNT_COUNT;
  3267. if (val & XRXMAC_STATUS_RXMULTF_CNT_EXP)
  3268. mp->rx_mcasts += RXMAC_MC_FRM_CNT_COUNT;
  3269. if (val & XRXMAC_STATUS_RXBCAST_CNT_EXP)
  3270. mp->rx_bcasts += RXMAC_BC_FRM_CNT_COUNT;
  3271. if (val & XRXMAC_STATUS_RXBCAST_CNT_EXP)
  3272. mp->rx_bcasts += RXMAC_BC_FRM_CNT_COUNT;
  3273. if (val & XRXMAC_STATUS_RXHIST1_CNT_EXP)
  3274. mp->rx_hist_cnt1 += RXMAC_HIST_CNT1_COUNT;
  3275. if (val & XRXMAC_STATUS_RXHIST2_CNT_EXP)
  3276. mp->rx_hist_cnt2 += RXMAC_HIST_CNT2_COUNT;
  3277. if (val & XRXMAC_STATUS_RXHIST3_CNT_EXP)
  3278. mp->rx_hist_cnt3 += RXMAC_HIST_CNT3_COUNT;
  3279. if (val & XRXMAC_STATUS_RXHIST4_CNT_EXP)
  3280. mp->rx_hist_cnt4 += RXMAC_HIST_CNT4_COUNT;
  3281. if (val & XRXMAC_STATUS_RXHIST5_CNT_EXP)
  3282. mp->rx_hist_cnt5 += RXMAC_HIST_CNT5_COUNT;
  3283. if (val & XRXMAC_STATUS_RXHIST6_CNT_EXP)
  3284. mp->rx_hist_cnt6 += RXMAC_HIST_CNT6_COUNT;
  3285. if (val & XRXMAC_STATUS_RXHIST7_CNT_EXP)
  3286. mp->rx_hist_cnt7 += RXMAC_HIST_CNT7_COUNT;
  3287. if (val & XRXMAC_STAT_MSK_RXOCTET_CNT_EXP)
  3288. mp->rx_octets += RXMAC_BT_CNT_COUNT;
  3289. if (val & XRXMAC_STATUS_CVIOLERR_CNT_EXP)
  3290. mp->rx_code_violations += RXMAC_CD_VIO_CNT_COUNT;
  3291. if (val & XRXMAC_STATUS_LENERR_CNT_EXP)
  3292. mp->rx_len_errors += RXMAC_MPSZER_CNT_COUNT;
  3293. if (val & XRXMAC_STATUS_CRCERR_CNT_EXP)
  3294. mp->rx_crc_errors += RXMAC_CRC_ER_CNT_COUNT;
  3295. if (val & XRXMAC_STATUS_RXUFLOW)
  3296. mp->rx_underflows++;
  3297. if (val & XRXMAC_STATUS_RXOFLOW)
  3298. mp->rx_overflows++;
  3299. val = nr64_mac(XMAC_FC_STAT);
  3300. if (val & XMAC_FC_STAT_TX_MAC_NPAUSE)
  3301. mp->pause_off_state++;
  3302. if (val & XMAC_FC_STAT_TX_MAC_PAUSE)
  3303. mp->pause_on_state++;
  3304. if (val & XMAC_FC_STAT_RX_MAC_RPAUSE)
  3305. mp->pause_received++;
  3306. }
  3307. static void niu_bmac_interrupt(struct niu *np)
  3308. {
  3309. struct niu_bmac_stats *mp = &np->mac_stats.bmac;
  3310. u64 val;
  3311. val = nr64_mac(BTXMAC_STATUS);
  3312. if (val & BTXMAC_STATUS_UNDERRUN)
  3313. mp->tx_underflow_errors++;
  3314. if (val & BTXMAC_STATUS_MAX_PKT_ERR)
  3315. mp->tx_max_pkt_size_errors++;
  3316. if (val & BTXMAC_STATUS_BYTE_CNT_EXP)
  3317. mp->tx_bytes += BTXMAC_BYTE_CNT_COUNT;
  3318. if (val & BTXMAC_STATUS_FRAME_CNT_EXP)
  3319. mp->tx_frames += BTXMAC_FRM_CNT_COUNT;
  3320. val = nr64_mac(BRXMAC_STATUS);
  3321. if (val & BRXMAC_STATUS_OVERFLOW)
  3322. mp->rx_overflows++;
  3323. if (val & BRXMAC_STATUS_FRAME_CNT_EXP)
  3324. mp->rx_frames += BRXMAC_FRAME_CNT_COUNT;
  3325. if (val & BRXMAC_STATUS_ALIGN_ERR_EXP)
  3326. mp->rx_align_errors += BRXMAC_ALIGN_ERR_CNT_COUNT;
  3327. if (val & BRXMAC_STATUS_CRC_ERR_EXP)
  3328. mp->rx_crc_errors += BRXMAC_ALIGN_ERR_CNT_COUNT;
  3329. if (val & BRXMAC_STATUS_LEN_ERR_EXP)
  3330. mp->rx_len_errors += BRXMAC_CODE_VIOL_ERR_CNT_COUNT;
  3331. val = nr64_mac(BMAC_CTRL_STATUS);
  3332. if (val & BMAC_CTRL_STATUS_NOPAUSE)
  3333. mp->pause_off_state++;
  3334. if (val & BMAC_CTRL_STATUS_PAUSE)
  3335. mp->pause_on_state++;
  3336. if (val & BMAC_CTRL_STATUS_PAUSE_RECV)
  3337. mp->pause_received++;
  3338. }
  3339. static int niu_mac_interrupt(struct niu *np)
  3340. {
  3341. if (np->flags & NIU_FLAGS_XMAC)
  3342. niu_xmac_interrupt(np);
  3343. else
  3344. niu_bmac_interrupt(np);
  3345. return 0;
  3346. }
  3347. static void niu_log_device_error(struct niu *np, u64 stat)
  3348. {
  3349. dev_err(np->device, PFX "%s: Core device errors ( ",
  3350. np->dev->name);
  3351. if (stat & SYS_ERR_MASK_META2)
  3352. printk("META2 ");
  3353. if (stat & SYS_ERR_MASK_META1)
  3354. printk("META1 ");
  3355. if (stat & SYS_ERR_MASK_PEU)
  3356. printk("PEU ");
  3357. if (stat & SYS_ERR_MASK_TXC)
  3358. printk("TXC ");
  3359. if (stat & SYS_ERR_MASK_RDMC)
  3360. printk("RDMC ");
  3361. if (stat & SYS_ERR_MASK_TDMC)
  3362. printk("TDMC ");
  3363. if (stat & SYS_ERR_MASK_ZCP)
  3364. printk("ZCP ");
  3365. if (stat & SYS_ERR_MASK_FFLP)
  3366. printk("FFLP ");
  3367. if (stat & SYS_ERR_MASK_IPP)
  3368. printk("IPP ");
  3369. if (stat & SYS_ERR_MASK_MAC)
  3370. printk("MAC ");
  3371. if (stat & SYS_ERR_MASK_SMX)
  3372. printk("SMX ");
  3373. printk(")\n");
  3374. }
  3375. static int niu_device_error(struct niu *np)
  3376. {
  3377. u64 stat = nr64(SYS_ERR_STAT);
  3378. dev_err(np->device, PFX "%s: Core device error, stat[%llx]\n",
  3379. np->dev->name, (unsigned long long) stat);
  3380. niu_log_device_error(np, stat);
  3381. return -ENODEV;
  3382. }
  3383. static int niu_slowpath_interrupt(struct niu *np, struct niu_ldg *lp,
  3384. u64 v0, u64 v1, u64 v2)
  3385. {
  3386. int i, err = 0;
  3387. lp->v0 = v0;
  3388. lp->v1 = v1;
  3389. lp->v2 = v2;
  3390. if (v1 & 0x00000000ffffffffULL) {
  3391. u32 rx_vec = (v1 & 0xffffffff);
  3392. for (i = 0; i < np->num_rx_rings; i++) {
  3393. struct rx_ring_info *rp = &np->rx_rings[i];
  3394. if (rx_vec & (1 << rp->rx_channel)) {
  3395. int r = niu_rx_error(np, rp);
  3396. if (r) {
  3397. err = r;
  3398. } else {
  3399. if (!v0)
  3400. nw64(RX_DMA_CTL_STAT(rp->rx_channel),
  3401. RX_DMA_CTL_STAT_MEX);
  3402. }
  3403. }
  3404. }
  3405. }
  3406. if (v1 & 0x7fffffff00000000ULL) {
  3407. u32 tx_vec = (v1 >> 32) & 0x7fffffff;
  3408. for (i = 0; i < np->num_tx_rings; i++) {
  3409. struct tx_ring_info *rp = &np->tx_rings[i];
  3410. if (tx_vec & (1 << rp->tx_channel)) {
  3411. int r = niu_tx_error(np, rp);
  3412. if (r)
  3413. err = r;
  3414. }
  3415. }
  3416. }
  3417. if ((v0 | v1) & 0x8000000000000000ULL) {
  3418. int r = niu_mif_interrupt(np);
  3419. if (r)
  3420. err = r;
  3421. }
  3422. if (v2) {
  3423. if (v2 & 0x01ef) {
  3424. int r = niu_mac_interrupt(np);
  3425. if (r)
  3426. err = r;
  3427. }
  3428. if (v2 & 0x0210) {
  3429. int r = niu_device_error(np);
  3430. if (r)
  3431. err = r;
  3432. }
  3433. }
  3434. if (err)
  3435. niu_enable_interrupts(np, 0);
  3436. return err;
  3437. }
  3438. static void niu_rxchan_intr(struct niu *np, struct rx_ring_info *rp,
  3439. int ldn)
  3440. {
  3441. struct rxdma_mailbox *mbox = rp->mbox;
  3442. u64 stat_write, stat = le64_to_cpup(&mbox->rx_dma_ctl_stat);
  3443. stat_write = (RX_DMA_CTL_STAT_RCRTHRES |
  3444. RX_DMA_CTL_STAT_RCRTO);
  3445. nw64(RX_DMA_CTL_STAT(rp->rx_channel), stat_write);
  3446. niudbg(INTR, "%s: rxchan_intr stat[%llx]\n",
  3447. np->dev->name, (unsigned long long) stat);
  3448. }
  3449. static void niu_txchan_intr(struct niu *np, struct tx_ring_info *rp,
  3450. int ldn)
  3451. {
  3452. rp->tx_cs = nr64(TX_CS(rp->tx_channel));
  3453. niudbg(INTR, "%s: txchan_intr cs[%llx]\n",
  3454. np->dev->name, (unsigned long long) rp->tx_cs);
  3455. }
  3456. static void __niu_fastpath_interrupt(struct niu *np, int ldg, u64 v0)
  3457. {
  3458. struct niu_parent *parent = np->parent;
  3459. u32 rx_vec, tx_vec;
  3460. int i;
  3461. tx_vec = (v0 >> 32);
  3462. rx_vec = (v0 & 0xffffffff);
  3463. for (i = 0; i < np->num_rx_rings; i++) {
  3464. struct rx_ring_info *rp = &np->rx_rings[i];
  3465. int ldn = LDN_RXDMA(rp->rx_channel);
  3466. if (parent->ldg_map[ldn] != ldg)
  3467. continue;
  3468. nw64(LD_IM0(ldn), LD_IM0_MASK);
  3469. if (rx_vec & (1 << rp->rx_channel))
  3470. niu_rxchan_intr(np, rp, ldn);
  3471. }
  3472. for (i = 0; i < np->num_tx_rings; i++) {
  3473. struct tx_ring_info *rp = &np->tx_rings[i];
  3474. int ldn = LDN_TXDMA(rp->tx_channel);
  3475. if (parent->ldg_map[ldn] != ldg)
  3476. continue;
  3477. nw64(LD_IM0(ldn), LD_IM0_MASK);
  3478. if (tx_vec & (1 << rp->tx_channel))
  3479. niu_txchan_intr(np, rp, ldn);
  3480. }
  3481. }
  3482. static void niu_schedule_napi(struct niu *np, struct niu_ldg *lp,
  3483. u64 v0, u64 v1, u64 v2)
  3484. {
  3485. if (likely(napi_schedule_prep(&lp->napi))) {
  3486. lp->v0 = v0;
  3487. lp->v1 = v1;
  3488. lp->v2 = v2;
  3489. __niu_fastpath_interrupt(np, lp->ldg_num, v0);
  3490. __napi_schedule(&lp->napi);
  3491. }
  3492. }
  3493. static irqreturn_t niu_interrupt(int irq, void *dev_id)
  3494. {
  3495. struct niu_ldg *lp = dev_id;
  3496. struct niu *np = lp->np;
  3497. int ldg = lp->ldg_num;
  3498. unsigned long flags;
  3499. u64 v0, v1, v2;
  3500. if (netif_msg_intr(np))
  3501. printk(KERN_DEBUG PFX "niu_interrupt() ldg[%p](%d) ",
  3502. lp, ldg);
  3503. spin_lock_irqsave(&np->lock, flags);
  3504. v0 = nr64(LDSV0(ldg));
  3505. v1 = nr64(LDSV1(ldg));
  3506. v2 = nr64(LDSV2(ldg));
  3507. if (netif_msg_intr(np))
  3508. printk("v0[%llx] v1[%llx] v2[%llx]\n",
  3509. (unsigned long long) v0,
  3510. (unsigned long long) v1,
  3511. (unsigned long long) v2);
  3512. if (unlikely(!v0 && !v1 && !v2)) {
  3513. spin_unlock_irqrestore(&np->lock, flags);
  3514. return IRQ_NONE;
  3515. }
  3516. if (unlikely((v0 & ((u64)1 << LDN_MIF)) || v1 || v2)) {
  3517. int err = niu_slowpath_interrupt(np, lp, v0, v1, v2);
  3518. if (err)
  3519. goto out;
  3520. }
  3521. if (likely(v0 & ~((u64)1 << LDN_MIF)))
  3522. niu_schedule_napi(np, lp, v0, v1, v2);
  3523. else
  3524. niu_ldg_rearm(np, lp, 1);
  3525. out:
  3526. spin_unlock_irqrestore(&np->lock, flags);
  3527. return IRQ_HANDLED;
  3528. }
  3529. static void niu_free_rx_ring_info(struct niu *np, struct rx_ring_info *rp)
  3530. {
  3531. if (rp->mbox) {
  3532. np->ops->free_coherent(np->device,
  3533. sizeof(struct rxdma_mailbox),
  3534. rp->mbox, rp->mbox_dma);
  3535. rp->mbox = NULL;
  3536. }
  3537. if (rp->rcr) {
  3538. np->ops->free_coherent(np->device,
  3539. MAX_RCR_RING_SIZE * sizeof(__le64),
  3540. rp->rcr, rp->rcr_dma);
  3541. rp->rcr = NULL;
  3542. rp->rcr_table_size = 0;
  3543. rp->rcr_index = 0;
  3544. }
  3545. if (rp->rbr) {
  3546. niu_rbr_free(np, rp);
  3547. np->ops->free_coherent(np->device,
  3548. MAX_RBR_RING_SIZE * sizeof(__le32),
  3549. rp->rbr, rp->rbr_dma);
  3550. rp->rbr = NULL;
  3551. rp->rbr_table_size = 0;
  3552. rp->rbr_index = 0;
  3553. }
  3554. kfree(rp->rxhash);
  3555. rp->rxhash = NULL;
  3556. }
  3557. static void niu_free_tx_ring_info(struct niu *np, struct tx_ring_info *rp)
  3558. {
  3559. if (rp->mbox) {
  3560. np->ops->free_coherent(np->device,
  3561. sizeof(struct txdma_mailbox),
  3562. rp->mbox, rp->mbox_dma);
  3563. rp->mbox = NULL;
  3564. }
  3565. if (rp->descr) {
  3566. int i;
  3567. for (i = 0; i < MAX_TX_RING_SIZE; i++) {
  3568. if (rp->tx_buffs[i].skb)
  3569. (void) release_tx_packet(np, rp, i);
  3570. }
  3571. np->ops->free_coherent(np->device,
  3572. MAX_TX_RING_SIZE * sizeof(__le64),
  3573. rp->descr, rp->descr_dma);
  3574. rp->descr = NULL;
  3575. rp->pending = 0;
  3576. rp->prod = 0;
  3577. rp->cons = 0;
  3578. rp->wrap_bit = 0;
  3579. }
  3580. }
  3581. static void niu_free_channels(struct niu *np)
  3582. {
  3583. int i;
  3584. if (np->rx_rings) {
  3585. for (i = 0; i < np->num_rx_rings; i++) {
  3586. struct rx_ring_info *rp = &np->rx_rings[i];
  3587. niu_free_rx_ring_info(np, rp);
  3588. }
  3589. kfree(np->rx_rings);
  3590. np->rx_rings = NULL;
  3591. np->num_rx_rings = 0;
  3592. }
  3593. if (np->tx_rings) {
  3594. for (i = 0; i < np->num_tx_rings; i++) {
  3595. struct tx_ring_info *rp = &np->tx_rings[i];
  3596. niu_free_tx_ring_info(np, rp);
  3597. }
  3598. kfree(np->tx_rings);
  3599. np->tx_rings = NULL;
  3600. np->num_tx_rings = 0;
  3601. }
  3602. }
  3603. static int niu_alloc_rx_ring_info(struct niu *np,
  3604. struct rx_ring_info *rp)
  3605. {
  3606. BUILD_BUG_ON(sizeof(struct rxdma_mailbox) != 64);
  3607. rp->rxhash = kzalloc(MAX_RBR_RING_SIZE * sizeof(struct page *),
  3608. GFP_KERNEL);
  3609. if (!rp->rxhash)
  3610. return -ENOMEM;
  3611. rp->mbox = np->ops->alloc_coherent(np->device,
  3612. sizeof(struct rxdma_mailbox),
  3613. &rp->mbox_dma, GFP_KERNEL);
  3614. if (!rp->mbox)
  3615. return -ENOMEM;
  3616. if ((unsigned long)rp->mbox & (64UL - 1)) {
  3617. dev_err(np->device, PFX "%s: Coherent alloc gives misaligned "
  3618. "RXDMA mailbox %p\n", np->dev->name, rp->mbox);
  3619. return -EINVAL;
  3620. }
  3621. rp->rcr = np->ops->alloc_coherent(np->device,
  3622. MAX_RCR_RING_SIZE * sizeof(__le64),
  3623. &rp->rcr_dma, GFP_KERNEL);
  3624. if (!rp->rcr)
  3625. return -ENOMEM;
  3626. if ((unsigned long)rp->rcr & (64UL - 1)) {
  3627. dev_err(np->device, PFX "%s: Coherent alloc gives misaligned "
  3628. "RXDMA RCR table %p\n", np->dev->name, rp->rcr);
  3629. return -EINVAL;
  3630. }
  3631. rp->rcr_table_size = MAX_RCR_RING_SIZE;
  3632. rp->rcr_index = 0;
  3633. rp->rbr = np->ops->alloc_coherent(np->device,
  3634. MAX_RBR_RING_SIZE * sizeof(__le32),
  3635. &rp->rbr_dma, GFP_KERNEL);
  3636. if (!rp->rbr)
  3637. return -ENOMEM;
  3638. if ((unsigned long)rp->rbr & (64UL - 1)) {
  3639. dev_err(np->device, PFX "%s: Coherent alloc gives misaligned "
  3640. "RXDMA RBR table %p\n", np->dev->name, rp->rbr);
  3641. return -EINVAL;
  3642. }
  3643. rp->rbr_table_size = MAX_RBR_RING_SIZE;
  3644. rp->rbr_index = 0;
  3645. rp->rbr_pending = 0;
  3646. return 0;
  3647. }
  3648. static void niu_set_max_burst(struct niu *np, struct tx_ring_info *rp)
  3649. {
  3650. int mtu = np->dev->mtu;
  3651. /* These values are recommended by the HW designers for fair
  3652. * utilization of DRR amongst the rings.
  3653. */
  3654. rp->max_burst = mtu + 32;
  3655. if (rp->max_burst > 4096)
  3656. rp->max_burst = 4096;
  3657. }
  3658. static int niu_alloc_tx_ring_info(struct niu *np,
  3659. struct tx_ring_info *rp)
  3660. {
  3661. BUILD_BUG_ON(sizeof(struct txdma_mailbox) != 64);
  3662. rp->mbox = np->ops->alloc_coherent(np->device,
  3663. sizeof(struct txdma_mailbox),
  3664. &rp->mbox_dma, GFP_KERNEL);
  3665. if (!rp->mbox)
  3666. return -ENOMEM;
  3667. if ((unsigned long)rp->mbox & (64UL - 1)) {
  3668. dev_err(np->device, PFX "%s: Coherent alloc gives misaligned "
  3669. "TXDMA mailbox %p\n", np->dev->name, rp->mbox);
  3670. return -EINVAL;
  3671. }
  3672. rp->descr = np->ops->alloc_coherent(np->device,
  3673. MAX_TX_RING_SIZE * sizeof(__le64),
  3674. &rp->descr_dma, GFP_KERNEL);
  3675. if (!rp->descr)
  3676. return -ENOMEM;
  3677. if ((unsigned long)rp->descr & (64UL - 1)) {
  3678. dev_err(np->device, PFX "%s: Coherent alloc gives misaligned "
  3679. "TXDMA descr table %p\n", np->dev->name, rp->descr);
  3680. return -EINVAL;
  3681. }
  3682. rp->pending = MAX_TX_RING_SIZE;
  3683. rp->prod = 0;
  3684. rp->cons = 0;
  3685. rp->wrap_bit = 0;
  3686. /* XXX make these configurable... XXX */
  3687. rp->mark_freq = rp->pending / 4;
  3688. niu_set_max_burst(np, rp);
  3689. return 0;
  3690. }
  3691. static void niu_size_rbr(struct niu *np, struct rx_ring_info *rp)
  3692. {
  3693. u16 bss;
  3694. bss = min(PAGE_SHIFT, 15);
  3695. rp->rbr_block_size = 1 << bss;
  3696. rp->rbr_blocks_per_page = 1 << (PAGE_SHIFT-bss);
  3697. rp->rbr_sizes[0] = 256;
  3698. rp->rbr_sizes[1] = 1024;
  3699. if (np->dev->mtu > ETH_DATA_LEN) {
  3700. switch (PAGE_SIZE) {
  3701. case 4 * 1024:
  3702. rp->rbr_sizes[2] = 4096;
  3703. break;
  3704. default:
  3705. rp->rbr_sizes[2] = 8192;
  3706. break;
  3707. }
  3708. } else {
  3709. rp->rbr_sizes[2] = 2048;
  3710. }
  3711. rp->rbr_sizes[3] = rp->rbr_block_size;
  3712. }
  3713. static int niu_alloc_channels(struct niu *np)
  3714. {
  3715. struct niu_parent *parent = np->parent;
  3716. int first_rx_channel, first_tx_channel;
  3717. int i, port, err;
  3718. port = np->port;
  3719. first_rx_channel = first_tx_channel = 0;
  3720. for (i = 0; i < port; i++) {
  3721. first_rx_channel += parent->rxchan_per_port[i];
  3722. first_tx_channel += parent->txchan_per_port[i];
  3723. }
  3724. np->num_rx_rings = parent->rxchan_per_port[port];
  3725. np->num_tx_rings = parent->txchan_per_port[port];
  3726. np->dev->real_num_tx_queues = np->num_tx_rings;
  3727. np->rx_rings = kzalloc(np->num_rx_rings * sizeof(struct rx_ring_info),
  3728. GFP_KERNEL);
  3729. err = -ENOMEM;
  3730. if (!np->rx_rings)
  3731. goto out_err;
  3732. for (i = 0; i < np->num_rx_rings; i++) {
  3733. struct rx_ring_info *rp = &np->rx_rings[i];
  3734. rp->np = np;
  3735. rp->rx_channel = first_rx_channel + i;
  3736. err = niu_alloc_rx_ring_info(np, rp);
  3737. if (err)
  3738. goto out_err;
  3739. niu_size_rbr(np, rp);
  3740. /* XXX better defaults, configurable, etc... XXX */
  3741. rp->nonsyn_window = 64;
  3742. rp->nonsyn_threshold = rp->rcr_table_size - 64;
  3743. rp->syn_window = 64;
  3744. rp->syn_threshold = rp->rcr_table_size - 64;
  3745. rp->rcr_pkt_threshold = 16;
  3746. rp->rcr_timeout = 8;
  3747. rp->rbr_kick_thresh = RBR_REFILL_MIN;
  3748. if (rp->rbr_kick_thresh < rp->rbr_blocks_per_page)
  3749. rp->rbr_kick_thresh = rp->rbr_blocks_per_page;
  3750. err = niu_rbr_fill(np, rp, GFP_KERNEL);
  3751. if (err)
  3752. return err;
  3753. }
  3754. np->tx_rings = kzalloc(np->num_tx_rings * sizeof(struct tx_ring_info),
  3755. GFP_KERNEL);
  3756. err = -ENOMEM;
  3757. if (!np->tx_rings)
  3758. goto out_err;
  3759. for (i = 0; i < np->num_tx_rings; i++) {
  3760. struct tx_ring_info *rp = &np->tx_rings[i];
  3761. rp->np = np;
  3762. rp->tx_channel = first_tx_channel + i;
  3763. err = niu_alloc_tx_ring_info(np, rp);
  3764. if (err)
  3765. goto out_err;
  3766. }
  3767. return 0;
  3768. out_err:
  3769. niu_free_channels(np);
  3770. return err;
  3771. }
  3772. static int niu_tx_cs_sng_poll(struct niu *np, int channel)
  3773. {
  3774. int limit = 1000;
  3775. while (--limit > 0) {
  3776. u64 val = nr64(TX_CS(channel));
  3777. if (val & TX_CS_SNG_STATE)
  3778. return 0;
  3779. }
  3780. return -ENODEV;
  3781. }
  3782. static int niu_tx_channel_stop(struct niu *np, int channel)
  3783. {
  3784. u64 val = nr64(TX_CS(channel));
  3785. val |= TX_CS_STOP_N_GO;
  3786. nw64(TX_CS(channel), val);
  3787. return niu_tx_cs_sng_poll(np, channel);
  3788. }
  3789. static int niu_tx_cs_reset_poll(struct niu *np, int channel)
  3790. {
  3791. int limit = 1000;
  3792. while (--limit > 0) {
  3793. u64 val = nr64(TX_CS(channel));
  3794. if (!(val & TX_CS_RST))
  3795. return 0;
  3796. }
  3797. return -ENODEV;
  3798. }
  3799. static int niu_tx_channel_reset(struct niu *np, int channel)
  3800. {
  3801. u64 val = nr64(TX_CS(channel));
  3802. int err;
  3803. val |= TX_CS_RST;
  3804. nw64(TX_CS(channel), val);
  3805. err = niu_tx_cs_reset_poll(np, channel);
  3806. if (!err)
  3807. nw64(TX_RING_KICK(channel), 0);
  3808. return err;
  3809. }
  3810. static int niu_tx_channel_lpage_init(struct niu *np, int channel)
  3811. {
  3812. u64 val;
  3813. nw64(TX_LOG_MASK1(channel), 0);
  3814. nw64(TX_LOG_VAL1(channel), 0);
  3815. nw64(TX_LOG_MASK2(channel), 0);
  3816. nw64(TX_LOG_VAL2(channel), 0);
  3817. nw64(TX_LOG_PAGE_RELO1(channel), 0);
  3818. nw64(TX_LOG_PAGE_RELO2(channel), 0);
  3819. nw64(TX_LOG_PAGE_HDL(channel), 0);
  3820. val = (u64)np->port << TX_LOG_PAGE_VLD_FUNC_SHIFT;
  3821. val |= (TX_LOG_PAGE_VLD_PAGE0 | TX_LOG_PAGE_VLD_PAGE1);
  3822. nw64(TX_LOG_PAGE_VLD(channel), val);
  3823. /* XXX TXDMA 32bit mode? XXX */
  3824. return 0;
  3825. }
  3826. static void niu_txc_enable_port(struct niu *np, int on)
  3827. {
  3828. unsigned long flags;
  3829. u64 val, mask;
  3830. niu_lock_parent(np, flags);
  3831. val = nr64(TXC_CONTROL);
  3832. mask = (u64)1 << np->port;
  3833. if (on) {
  3834. val |= TXC_CONTROL_ENABLE | mask;
  3835. } else {
  3836. val &= ~mask;
  3837. if ((val & ~TXC_CONTROL_ENABLE) == 0)
  3838. val &= ~TXC_CONTROL_ENABLE;
  3839. }
  3840. nw64(TXC_CONTROL, val);
  3841. niu_unlock_parent(np, flags);
  3842. }
  3843. static void niu_txc_set_imask(struct niu *np, u64 imask)
  3844. {
  3845. unsigned long flags;
  3846. u64 val;
  3847. niu_lock_parent(np, flags);
  3848. val = nr64(TXC_INT_MASK);
  3849. val &= ~TXC_INT_MASK_VAL(np->port);
  3850. val |= (imask << TXC_INT_MASK_VAL_SHIFT(np->port));
  3851. niu_unlock_parent(np, flags);
  3852. }
  3853. static void niu_txc_port_dma_enable(struct niu *np, int on)
  3854. {
  3855. u64 val = 0;
  3856. if (on) {
  3857. int i;
  3858. for (i = 0; i < np->num_tx_rings; i++)
  3859. val |= (1 << np->tx_rings[i].tx_channel);
  3860. }
  3861. nw64(TXC_PORT_DMA(np->port), val);
  3862. }
  3863. static int niu_init_one_tx_channel(struct niu *np, struct tx_ring_info *rp)
  3864. {
  3865. int err, channel = rp->tx_channel;
  3866. u64 val, ring_len;
  3867. err = niu_tx_channel_stop(np, channel);
  3868. if (err)
  3869. return err;
  3870. err = niu_tx_channel_reset(np, channel);
  3871. if (err)
  3872. return err;
  3873. err = niu_tx_channel_lpage_init(np, channel);
  3874. if (err)
  3875. return err;
  3876. nw64(TXC_DMA_MAX(channel), rp->max_burst);
  3877. nw64(TX_ENT_MSK(channel), 0);
  3878. if (rp->descr_dma & ~(TX_RNG_CFIG_STADDR_BASE |
  3879. TX_RNG_CFIG_STADDR)) {
  3880. dev_err(np->device, PFX "%s: TX ring channel %d "
  3881. "DMA addr (%llx) is not aligned.\n",
  3882. np->dev->name, channel,
  3883. (unsigned long long) rp->descr_dma);
  3884. return -EINVAL;
  3885. }
  3886. /* The length field in TX_RNG_CFIG is measured in 64-byte
  3887. * blocks. rp->pending is the number of TX descriptors in
  3888. * our ring, 8 bytes each, thus we divide by 8 bytes more
  3889. * to get the proper value the chip wants.
  3890. */
  3891. ring_len = (rp->pending / 8);
  3892. val = ((ring_len << TX_RNG_CFIG_LEN_SHIFT) |
  3893. rp->descr_dma);
  3894. nw64(TX_RNG_CFIG(channel), val);
  3895. if (((rp->mbox_dma >> 32) & ~TXDMA_MBH_MBADDR) ||
  3896. ((u32)rp->mbox_dma & ~TXDMA_MBL_MBADDR)) {
  3897. dev_err(np->device, PFX "%s: TX ring channel %d "
  3898. "MBOX addr (%llx) is has illegal bits.\n",
  3899. np->dev->name, channel,
  3900. (unsigned long long) rp->mbox_dma);
  3901. return -EINVAL;
  3902. }
  3903. nw64(TXDMA_MBH(channel), rp->mbox_dma >> 32);
  3904. nw64(TXDMA_MBL(channel), rp->mbox_dma & TXDMA_MBL_MBADDR);
  3905. nw64(TX_CS(channel), 0);
  3906. rp->last_pkt_cnt = 0;
  3907. return 0;
  3908. }
  3909. static void niu_init_rdc_groups(struct niu *np)
  3910. {
  3911. struct niu_rdc_tables *tp = &np->parent->rdc_group_cfg[np->port];
  3912. int i, first_table_num = tp->first_table_num;
  3913. for (i = 0; i < tp->num_tables; i++) {
  3914. struct rdc_table *tbl = &tp->tables[i];
  3915. int this_table = first_table_num + i;
  3916. int slot;
  3917. for (slot = 0; slot < NIU_RDC_TABLE_SLOTS; slot++)
  3918. nw64(RDC_TBL(this_table, slot),
  3919. tbl->rxdma_channel[slot]);
  3920. }
  3921. nw64(DEF_RDC(np->port), np->parent->rdc_default[np->port]);
  3922. }
  3923. static void niu_init_drr_weight(struct niu *np)
  3924. {
  3925. int type = phy_decode(np->parent->port_phy, np->port);
  3926. u64 val;
  3927. switch (type) {
  3928. case PORT_TYPE_10G:
  3929. val = PT_DRR_WEIGHT_DEFAULT_10G;
  3930. break;
  3931. case PORT_TYPE_1G:
  3932. default:
  3933. val = PT_DRR_WEIGHT_DEFAULT_1G;
  3934. break;
  3935. }
  3936. nw64(PT_DRR_WT(np->port), val);
  3937. }
  3938. static int niu_init_hostinfo(struct niu *np)
  3939. {
  3940. struct niu_parent *parent = np->parent;
  3941. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[np->port];
  3942. int i, err, num_alt = niu_num_alt_addr(np);
  3943. int first_rdc_table = tp->first_table_num;
  3944. err = niu_set_primary_mac_rdc_table(np, first_rdc_table, 1);
  3945. if (err)
  3946. return err;
  3947. err = niu_set_multicast_mac_rdc_table(np, first_rdc_table, 1);
  3948. if (err)
  3949. return err;
  3950. for (i = 0; i < num_alt; i++) {
  3951. err = niu_set_alt_mac_rdc_table(np, i, first_rdc_table, 1);
  3952. if (err)
  3953. return err;
  3954. }
  3955. return 0;
  3956. }
  3957. static int niu_rx_channel_reset(struct niu *np, int channel)
  3958. {
  3959. return niu_set_and_wait_clear(np, RXDMA_CFIG1(channel),
  3960. RXDMA_CFIG1_RST, 1000, 10,
  3961. "RXDMA_CFIG1");
  3962. }
  3963. static int niu_rx_channel_lpage_init(struct niu *np, int channel)
  3964. {
  3965. u64 val;
  3966. nw64(RX_LOG_MASK1(channel), 0);
  3967. nw64(RX_LOG_VAL1(channel), 0);
  3968. nw64(RX_LOG_MASK2(channel), 0);
  3969. nw64(RX_LOG_VAL2(channel), 0);
  3970. nw64(RX_LOG_PAGE_RELO1(channel), 0);
  3971. nw64(RX_LOG_PAGE_RELO2(channel), 0);
  3972. nw64(RX_LOG_PAGE_HDL(channel), 0);
  3973. val = (u64)np->port << RX_LOG_PAGE_VLD_FUNC_SHIFT;
  3974. val |= (RX_LOG_PAGE_VLD_PAGE0 | RX_LOG_PAGE_VLD_PAGE1);
  3975. nw64(RX_LOG_PAGE_VLD(channel), val);
  3976. return 0;
  3977. }
  3978. static void niu_rx_channel_wred_init(struct niu *np, struct rx_ring_info *rp)
  3979. {
  3980. u64 val;
  3981. val = (((u64)rp->nonsyn_window << RDC_RED_PARA_WIN_SHIFT) |
  3982. ((u64)rp->nonsyn_threshold << RDC_RED_PARA_THRE_SHIFT) |
  3983. ((u64)rp->syn_window << RDC_RED_PARA_WIN_SYN_SHIFT) |
  3984. ((u64)rp->syn_threshold << RDC_RED_PARA_THRE_SYN_SHIFT));
  3985. nw64(RDC_RED_PARA(rp->rx_channel), val);
  3986. }
  3987. static int niu_compute_rbr_cfig_b(struct rx_ring_info *rp, u64 *ret)
  3988. {
  3989. u64 val = 0;
  3990. switch (rp->rbr_block_size) {
  3991. case 4 * 1024:
  3992. val |= (RBR_BLKSIZE_4K << RBR_CFIG_B_BLKSIZE_SHIFT);
  3993. break;
  3994. case 8 * 1024:
  3995. val |= (RBR_BLKSIZE_8K << RBR_CFIG_B_BLKSIZE_SHIFT);
  3996. break;
  3997. case 16 * 1024:
  3998. val |= (RBR_BLKSIZE_16K << RBR_CFIG_B_BLKSIZE_SHIFT);
  3999. break;
  4000. case 32 * 1024:
  4001. val |= (RBR_BLKSIZE_32K << RBR_CFIG_B_BLKSIZE_SHIFT);
  4002. break;
  4003. default:
  4004. return -EINVAL;
  4005. }
  4006. val |= RBR_CFIG_B_VLD2;
  4007. switch (rp->rbr_sizes[2]) {
  4008. case 2 * 1024:
  4009. val |= (RBR_BUFSZ2_2K << RBR_CFIG_B_BUFSZ2_SHIFT);
  4010. break;
  4011. case 4 * 1024:
  4012. val |= (RBR_BUFSZ2_4K << RBR_CFIG_B_BUFSZ2_SHIFT);
  4013. break;
  4014. case 8 * 1024:
  4015. val |= (RBR_BUFSZ2_8K << RBR_CFIG_B_BUFSZ2_SHIFT);
  4016. break;
  4017. case 16 * 1024:
  4018. val |= (RBR_BUFSZ2_16K << RBR_CFIG_B_BUFSZ2_SHIFT);
  4019. break;
  4020. default:
  4021. return -EINVAL;
  4022. }
  4023. val |= RBR_CFIG_B_VLD1;
  4024. switch (rp->rbr_sizes[1]) {
  4025. case 1 * 1024:
  4026. val |= (RBR_BUFSZ1_1K << RBR_CFIG_B_BUFSZ1_SHIFT);
  4027. break;
  4028. case 2 * 1024:
  4029. val |= (RBR_BUFSZ1_2K << RBR_CFIG_B_BUFSZ1_SHIFT);
  4030. break;
  4031. case 4 * 1024:
  4032. val |= (RBR_BUFSZ1_4K << RBR_CFIG_B_BUFSZ1_SHIFT);
  4033. break;
  4034. case 8 * 1024:
  4035. val |= (RBR_BUFSZ1_8K << RBR_CFIG_B_BUFSZ1_SHIFT);
  4036. break;
  4037. default:
  4038. return -EINVAL;
  4039. }
  4040. val |= RBR_CFIG_B_VLD0;
  4041. switch (rp->rbr_sizes[0]) {
  4042. case 256:
  4043. val |= (RBR_BUFSZ0_256 << RBR_CFIG_B_BUFSZ0_SHIFT);
  4044. break;
  4045. case 512:
  4046. val |= (RBR_BUFSZ0_512 << RBR_CFIG_B_BUFSZ0_SHIFT);
  4047. break;
  4048. case 1 * 1024:
  4049. val |= (RBR_BUFSZ0_1K << RBR_CFIG_B_BUFSZ0_SHIFT);
  4050. break;
  4051. case 2 * 1024:
  4052. val |= (RBR_BUFSZ0_2K << RBR_CFIG_B_BUFSZ0_SHIFT);
  4053. break;
  4054. default:
  4055. return -EINVAL;
  4056. }
  4057. *ret = val;
  4058. return 0;
  4059. }
  4060. static int niu_enable_rx_channel(struct niu *np, int channel, int on)
  4061. {
  4062. u64 val = nr64(RXDMA_CFIG1(channel));
  4063. int limit;
  4064. if (on)
  4065. val |= RXDMA_CFIG1_EN;
  4066. else
  4067. val &= ~RXDMA_CFIG1_EN;
  4068. nw64(RXDMA_CFIG1(channel), val);
  4069. limit = 1000;
  4070. while (--limit > 0) {
  4071. if (nr64(RXDMA_CFIG1(channel)) & RXDMA_CFIG1_QST)
  4072. break;
  4073. udelay(10);
  4074. }
  4075. if (limit <= 0)
  4076. return -ENODEV;
  4077. return 0;
  4078. }
  4079. static int niu_init_one_rx_channel(struct niu *np, struct rx_ring_info *rp)
  4080. {
  4081. int err, channel = rp->rx_channel;
  4082. u64 val;
  4083. err = niu_rx_channel_reset(np, channel);
  4084. if (err)
  4085. return err;
  4086. err = niu_rx_channel_lpage_init(np, channel);
  4087. if (err)
  4088. return err;
  4089. niu_rx_channel_wred_init(np, rp);
  4090. nw64(RX_DMA_ENT_MSK(channel), RX_DMA_ENT_MSK_RBR_EMPTY);
  4091. nw64(RX_DMA_CTL_STAT(channel),
  4092. (RX_DMA_CTL_STAT_MEX |
  4093. RX_DMA_CTL_STAT_RCRTHRES |
  4094. RX_DMA_CTL_STAT_RCRTO |
  4095. RX_DMA_CTL_STAT_RBR_EMPTY));
  4096. nw64(RXDMA_CFIG1(channel), rp->mbox_dma >> 32);
  4097. nw64(RXDMA_CFIG2(channel), (rp->mbox_dma & 0x00000000ffffffc0));
  4098. nw64(RBR_CFIG_A(channel),
  4099. ((u64)rp->rbr_table_size << RBR_CFIG_A_LEN_SHIFT) |
  4100. (rp->rbr_dma & (RBR_CFIG_A_STADDR_BASE | RBR_CFIG_A_STADDR)));
  4101. err = niu_compute_rbr_cfig_b(rp, &val);
  4102. if (err)
  4103. return err;
  4104. nw64(RBR_CFIG_B(channel), val);
  4105. nw64(RCRCFIG_A(channel),
  4106. ((u64)rp->rcr_table_size << RCRCFIG_A_LEN_SHIFT) |
  4107. (rp->rcr_dma & (RCRCFIG_A_STADDR_BASE | RCRCFIG_A_STADDR)));
  4108. nw64(RCRCFIG_B(channel),
  4109. ((u64)rp->rcr_pkt_threshold << RCRCFIG_B_PTHRES_SHIFT) |
  4110. RCRCFIG_B_ENTOUT |
  4111. ((u64)rp->rcr_timeout << RCRCFIG_B_TIMEOUT_SHIFT));
  4112. err = niu_enable_rx_channel(np, channel, 1);
  4113. if (err)
  4114. return err;
  4115. nw64(RBR_KICK(channel), rp->rbr_index);
  4116. val = nr64(RX_DMA_CTL_STAT(channel));
  4117. val |= RX_DMA_CTL_STAT_RBR_EMPTY;
  4118. nw64(RX_DMA_CTL_STAT(channel), val);
  4119. return 0;
  4120. }
  4121. static int niu_init_rx_channels(struct niu *np)
  4122. {
  4123. unsigned long flags;
  4124. u64 seed = jiffies_64;
  4125. int err, i;
  4126. niu_lock_parent(np, flags);
  4127. nw64(RX_DMA_CK_DIV, np->parent->rxdma_clock_divider);
  4128. nw64(RED_RAN_INIT, RED_RAN_INIT_OPMODE | (seed & RED_RAN_INIT_VAL));
  4129. niu_unlock_parent(np, flags);
  4130. /* XXX RXDMA 32bit mode? XXX */
  4131. niu_init_rdc_groups(np);
  4132. niu_init_drr_weight(np);
  4133. err = niu_init_hostinfo(np);
  4134. if (err)
  4135. return err;
  4136. for (i = 0; i < np->num_rx_rings; i++) {
  4137. struct rx_ring_info *rp = &np->rx_rings[i];
  4138. err = niu_init_one_rx_channel(np, rp);
  4139. if (err)
  4140. return err;
  4141. }
  4142. return 0;
  4143. }
  4144. static int niu_set_ip_frag_rule(struct niu *np)
  4145. {
  4146. struct niu_parent *parent = np->parent;
  4147. struct niu_classifier *cp = &np->clas;
  4148. struct niu_tcam_entry *tp;
  4149. int index, err;
  4150. index = cp->tcam_top;
  4151. tp = &parent->tcam[index];
  4152. /* Note that the noport bit is the same in both ipv4 and
  4153. * ipv6 format TCAM entries.
  4154. */
  4155. memset(tp, 0, sizeof(*tp));
  4156. tp->key[1] = TCAM_V4KEY1_NOPORT;
  4157. tp->key_mask[1] = TCAM_V4KEY1_NOPORT;
  4158. tp->assoc_data = (TCAM_ASSOCDATA_TRES_USE_OFFSET |
  4159. ((u64)0 << TCAM_ASSOCDATA_OFFSET_SHIFT));
  4160. err = tcam_write(np, index, tp->key, tp->key_mask);
  4161. if (err)
  4162. return err;
  4163. err = tcam_assoc_write(np, index, tp->assoc_data);
  4164. if (err)
  4165. return err;
  4166. tp->valid = 1;
  4167. cp->tcam_valid_entries++;
  4168. return 0;
  4169. }
  4170. static int niu_init_classifier_hw(struct niu *np)
  4171. {
  4172. struct niu_parent *parent = np->parent;
  4173. struct niu_classifier *cp = &np->clas;
  4174. int i, err;
  4175. nw64(H1POLY, cp->h1_init);
  4176. nw64(H2POLY, cp->h2_init);
  4177. err = niu_init_hostinfo(np);
  4178. if (err)
  4179. return err;
  4180. for (i = 0; i < ENET_VLAN_TBL_NUM_ENTRIES; i++) {
  4181. struct niu_vlan_rdc *vp = &cp->vlan_mappings[i];
  4182. vlan_tbl_write(np, i, np->port,
  4183. vp->vlan_pref, vp->rdc_num);
  4184. }
  4185. for (i = 0; i < cp->num_alt_mac_mappings; i++) {
  4186. struct niu_altmac_rdc *ap = &cp->alt_mac_mappings[i];
  4187. err = niu_set_alt_mac_rdc_table(np, ap->alt_mac_num,
  4188. ap->rdc_num, ap->mac_pref);
  4189. if (err)
  4190. return err;
  4191. }
  4192. for (i = CLASS_CODE_USER_PROG1; i <= CLASS_CODE_SCTP_IPV6; i++) {
  4193. int index = i - CLASS_CODE_USER_PROG1;
  4194. err = niu_set_tcam_key(np, i, parent->tcam_key[index]);
  4195. if (err)
  4196. return err;
  4197. err = niu_set_flow_key(np, i, parent->flow_key[index]);
  4198. if (err)
  4199. return err;
  4200. }
  4201. err = niu_set_ip_frag_rule(np);
  4202. if (err)
  4203. return err;
  4204. tcam_enable(np, 1);
  4205. return 0;
  4206. }
  4207. static int niu_zcp_write(struct niu *np, int index, u64 *data)
  4208. {
  4209. nw64(ZCP_RAM_DATA0, data[0]);
  4210. nw64(ZCP_RAM_DATA1, data[1]);
  4211. nw64(ZCP_RAM_DATA2, data[2]);
  4212. nw64(ZCP_RAM_DATA3, data[3]);
  4213. nw64(ZCP_RAM_DATA4, data[4]);
  4214. nw64(ZCP_RAM_BE, ZCP_RAM_BE_VAL);
  4215. nw64(ZCP_RAM_ACC,
  4216. (ZCP_RAM_ACC_WRITE |
  4217. (0 << ZCP_RAM_ACC_ZFCID_SHIFT) |
  4218. (ZCP_RAM_SEL_CFIFO(np->port) << ZCP_RAM_ACC_RAM_SEL_SHIFT)));
  4219. return niu_wait_bits_clear(np, ZCP_RAM_ACC, ZCP_RAM_ACC_BUSY,
  4220. 1000, 100);
  4221. }
  4222. static int niu_zcp_read(struct niu *np, int index, u64 *data)
  4223. {
  4224. int err;
  4225. err = niu_wait_bits_clear(np, ZCP_RAM_ACC, ZCP_RAM_ACC_BUSY,
  4226. 1000, 100);
  4227. if (err) {
  4228. dev_err(np->device, PFX "%s: ZCP read busy won't clear, "
  4229. "ZCP_RAM_ACC[%llx]\n", np->dev->name,
  4230. (unsigned long long) nr64(ZCP_RAM_ACC));
  4231. return err;
  4232. }
  4233. nw64(ZCP_RAM_ACC,
  4234. (ZCP_RAM_ACC_READ |
  4235. (0 << ZCP_RAM_ACC_ZFCID_SHIFT) |
  4236. (ZCP_RAM_SEL_CFIFO(np->port) << ZCP_RAM_ACC_RAM_SEL_SHIFT)));
  4237. err = niu_wait_bits_clear(np, ZCP_RAM_ACC, ZCP_RAM_ACC_BUSY,
  4238. 1000, 100);
  4239. if (err) {
  4240. dev_err(np->device, PFX "%s: ZCP read busy2 won't clear, "
  4241. "ZCP_RAM_ACC[%llx]\n", np->dev->name,
  4242. (unsigned long long) nr64(ZCP_RAM_ACC));
  4243. return err;
  4244. }
  4245. data[0] = nr64(ZCP_RAM_DATA0);
  4246. data[1] = nr64(ZCP_RAM_DATA1);
  4247. data[2] = nr64(ZCP_RAM_DATA2);
  4248. data[3] = nr64(ZCP_RAM_DATA3);
  4249. data[4] = nr64(ZCP_RAM_DATA4);
  4250. return 0;
  4251. }
  4252. static void niu_zcp_cfifo_reset(struct niu *np)
  4253. {
  4254. u64 val = nr64(RESET_CFIFO);
  4255. val |= RESET_CFIFO_RST(np->port);
  4256. nw64(RESET_CFIFO, val);
  4257. udelay(10);
  4258. val &= ~RESET_CFIFO_RST(np->port);
  4259. nw64(RESET_CFIFO, val);
  4260. }
  4261. static int niu_init_zcp(struct niu *np)
  4262. {
  4263. u64 data[5], rbuf[5];
  4264. int i, max, err;
  4265. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  4266. if (np->port == 0 || np->port == 1)
  4267. max = ATLAS_P0_P1_CFIFO_ENTRIES;
  4268. else
  4269. max = ATLAS_P2_P3_CFIFO_ENTRIES;
  4270. } else
  4271. max = NIU_CFIFO_ENTRIES;
  4272. data[0] = 0;
  4273. data[1] = 0;
  4274. data[2] = 0;
  4275. data[3] = 0;
  4276. data[4] = 0;
  4277. for (i = 0; i < max; i++) {
  4278. err = niu_zcp_write(np, i, data);
  4279. if (err)
  4280. return err;
  4281. err = niu_zcp_read(np, i, rbuf);
  4282. if (err)
  4283. return err;
  4284. }
  4285. niu_zcp_cfifo_reset(np);
  4286. nw64(CFIFO_ECC(np->port), 0);
  4287. nw64(ZCP_INT_STAT, ZCP_INT_STAT_ALL);
  4288. (void) nr64(ZCP_INT_STAT);
  4289. nw64(ZCP_INT_MASK, ZCP_INT_MASK_ALL);
  4290. return 0;
  4291. }
  4292. static void niu_ipp_write(struct niu *np, int index, u64 *data)
  4293. {
  4294. u64 val = nr64_ipp(IPP_CFIG);
  4295. nw64_ipp(IPP_CFIG, val | IPP_CFIG_DFIFO_PIO_W);
  4296. nw64_ipp(IPP_DFIFO_WR_PTR, index);
  4297. nw64_ipp(IPP_DFIFO_WR0, data[0]);
  4298. nw64_ipp(IPP_DFIFO_WR1, data[1]);
  4299. nw64_ipp(IPP_DFIFO_WR2, data[2]);
  4300. nw64_ipp(IPP_DFIFO_WR3, data[3]);
  4301. nw64_ipp(IPP_DFIFO_WR4, data[4]);
  4302. nw64_ipp(IPP_CFIG, val & ~IPP_CFIG_DFIFO_PIO_W);
  4303. }
  4304. static void niu_ipp_read(struct niu *np, int index, u64 *data)
  4305. {
  4306. nw64_ipp(IPP_DFIFO_RD_PTR, index);
  4307. data[0] = nr64_ipp(IPP_DFIFO_RD0);
  4308. data[1] = nr64_ipp(IPP_DFIFO_RD1);
  4309. data[2] = nr64_ipp(IPP_DFIFO_RD2);
  4310. data[3] = nr64_ipp(IPP_DFIFO_RD3);
  4311. data[4] = nr64_ipp(IPP_DFIFO_RD4);
  4312. }
  4313. static int niu_ipp_reset(struct niu *np)
  4314. {
  4315. return niu_set_and_wait_clear_ipp(np, IPP_CFIG, IPP_CFIG_SOFT_RST,
  4316. 1000, 100, "IPP_CFIG");
  4317. }
  4318. static int niu_init_ipp(struct niu *np)
  4319. {
  4320. u64 data[5], rbuf[5], val;
  4321. int i, max, err;
  4322. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  4323. if (np->port == 0 || np->port == 1)
  4324. max = ATLAS_P0_P1_DFIFO_ENTRIES;
  4325. else
  4326. max = ATLAS_P2_P3_DFIFO_ENTRIES;
  4327. } else
  4328. max = NIU_DFIFO_ENTRIES;
  4329. data[0] = 0;
  4330. data[1] = 0;
  4331. data[2] = 0;
  4332. data[3] = 0;
  4333. data[4] = 0;
  4334. for (i = 0; i < max; i++) {
  4335. niu_ipp_write(np, i, data);
  4336. niu_ipp_read(np, i, rbuf);
  4337. }
  4338. (void) nr64_ipp(IPP_INT_STAT);
  4339. (void) nr64_ipp(IPP_INT_STAT);
  4340. err = niu_ipp_reset(np);
  4341. if (err)
  4342. return err;
  4343. (void) nr64_ipp(IPP_PKT_DIS);
  4344. (void) nr64_ipp(IPP_BAD_CS_CNT);
  4345. (void) nr64_ipp(IPP_ECC);
  4346. (void) nr64_ipp(IPP_INT_STAT);
  4347. nw64_ipp(IPP_MSK, ~IPP_MSK_ALL);
  4348. val = nr64_ipp(IPP_CFIG);
  4349. val &= ~IPP_CFIG_IP_MAX_PKT;
  4350. val |= (IPP_CFIG_IPP_ENABLE |
  4351. IPP_CFIG_DFIFO_ECC_EN |
  4352. IPP_CFIG_DROP_BAD_CRC |
  4353. IPP_CFIG_CKSUM_EN |
  4354. (0x1ffff << IPP_CFIG_IP_MAX_PKT_SHIFT));
  4355. nw64_ipp(IPP_CFIG, val);
  4356. return 0;
  4357. }
  4358. static void niu_handle_led(struct niu *np, int status)
  4359. {
  4360. u64 val;
  4361. val = nr64_mac(XMAC_CONFIG);
  4362. if ((np->flags & NIU_FLAGS_10G) != 0 &&
  4363. (np->flags & NIU_FLAGS_FIBER) != 0) {
  4364. if (status) {
  4365. val |= XMAC_CONFIG_LED_POLARITY;
  4366. val &= ~XMAC_CONFIG_FORCE_LED_ON;
  4367. } else {
  4368. val |= XMAC_CONFIG_FORCE_LED_ON;
  4369. val &= ~XMAC_CONFIG_LED_POLARITY;
  4370. }
  4371. }
  4372. nw64_mac(XMAC_CONFIG, val);
  4373. }
  4374. static void niu_init_xif_xmac(struct niu *np)
  4375. {
  4376. struct niu_link_config *lp = &np->link_config;
  4377. u64 val;
  4378. if (np->flags & NIU_FLAGS_XCVR_SERDES) {
  4379. val = nr64(MIF_CONFIG);
  4380. val |= MIF_CONFIG_ATCA_GE;
  4381. nw64(MIF_CONFIG, val);
  4382. }
  4383. val = nr64_mac(XMAC_CONFIG);
  4384. val &= ~XMAC_CONFIG_SEL_POR_CLK_SRC;
  4385. val |= XMAC_CONFIG_TX_OUTPUT_EN;
  4386. if (lp->loopback_mode == LOOPBACK_MAC) {
  4387. val &= ~XMAC_CONFIG_SEL_POR_CLK_SRC;
  4388. val |= XMAC_CONFIG_LOOPBACK;
  4389. } else {
  4390. val &= ~XMAC_CONFIG_LOOPBACK;
  4391. }
  4392. if (np->flags & NIU_FLAGS_10G) {
  4393. val &= ~XMAC_CONFIG_LFS_DISABLE;
  4394. } else {
  4395. val |= XMAC_CONFIG_LFS_DISABLE;
  4396. if (!(np->flags & NIU_FLAGS_FIBER) &&
  4397. !(np->flags & NIU_FLAGS_XCVR_SERDES))
  4398. val |= XMAC_CONFIG_1G_PCS_BYPASS;
  4399. else
  4400. val &= ~XMAC_CONFIG_1G_PCS_BYPASS;
  4401. }
  4402. val &= ~XMAC_CONFIG_10G_XPCS_BYPASS;
  4403. if (lp->active_speed == SPEED_100)
  4404. val |= XMAC_CONFIG_SEL_CLK_25MHZ;
  4405. else
  4406. val &= ~XMAC_CONFIG_SEL_CLK_25MHZ;
  4407. nw64_mac(XMAC_CONFIG, val);
  4408. val = nr64_mac(XMAC_CONFIG);
  4409. val &= ~XMAC_CONFIG_MODE_MASK;
  4410. if (np->flags & NIU_FLAGS_10G) {
  4411. val |= XMAC_CONFIG_MODE_XGMII;
  4412. } else {
  4413. if (lp->active_speed == SPEED_1000)
  4414. val |= XMAC_CONFIG_MODE_GMII;
  4415. else
  4416. val |= XMAC_CONFIG_MODE_MII;
  4417. }
  4418. nw64_mac(XMAC_CONFIG, val);
  4419. }
  4420. static void niu_init_xif_bmac(struct niu *np)
  4421. {
  4422. struct niu_link_config *lp = &np->link_config;
  4423. u64 val;
  4424. val = BMAC_XIF_CONFIG_TX_OUTPUT_EN;
  4425. if (lp->loopback_mode == LOOPBACK_MAC)
  4426. val |= BMAC_XIF_CONFIG_MII_LOOPBACK;
  4427. else
  4428. val &= ~BMAC_XIF_CONFIG_MII_LOOPBACK;
  4429. if (lp->active_speed == SPEED_1000)
  4430. val |= BMAC_XIF_CONFIG_GMII_MODE;
  4431. else
  4432. val &= ~BMAC_XIF_CONFIG_GMII_MODE;
  4433. val &= ~(BMAC_XIF_CONFIG_LINK_LED |
  4434. BMAC_XIF_CONFIG_LED_POLARITY);
  4435. if (!(np->flags & NIU_FLAGS_10G) &&
  4436. !(np->flags & NIU_FLAGS_FIBER) &&
  4437. lp->active_speed == SPEED_100)
  4438. val |= BMAC_XIF_CONFIG_25MHZ_CLOCK;
  4439. else
  4440. val &= ~BMAC_XIF_CONFIG_25MHZ_CLOCK;
  4441. nw64_mac(BMAC_XIF_CONFIG, val);
  4442. }
  4443. static void niu_init_xif(struct niu *np)
  4444. {
  4445. if (np->flags & NIU_FLAGS_XMAC)
  4446. niu_init_xif_xmac(np);
  4447. else
  4448. niu_init_xif_bmac(np);
  4449. }
  4450. static void niu_pcs_mii_reset(struct niu *np)
  4451. {
  4452. int limit = 1000;
  4453. u64 val = nr64_pcs(PCS_MII_CTL);
  4454. val |= PCS_MII_CTL_RST;
  4455. nw64_pcs(PCS_MII_CTL, val);
  4456. while ((--limit >= 0) && (val & PCS_MII_CTL_RST)) {
  4457. udelay(100);
  4458. val = nr64_pcs(PCS_MII_CTL);
  4459. }
  4460. }
  4461. static void niu_xpcs_reset(struct niu *np)
  4462. {
  4463. int limit = 1000;
  4464. u64 val = nr64_xpcs(XPCS_CONTROL1);
  4465. val |= XPCS_CONTROL1_RESET;
  4466. nw64_xpcs(XPCS_CONTROL1, val);
  4467. while ((--limit >= 0) && (val & XPCS_CONTROL1_RESET)) {
  4468. udelay(100);
  4469. val = nr64_xpcs(XPCS_CONTROL1);
  4470. }
  4471. }
  4472. static int niu_init_pcs(struct niu *np)
  4473. {
  4474. struct niu_link_config *lp = &np->link_config;
  4475. u64 val;
  4476. switch (np->flags & (NIU_FLAGS_10G |
  4477. NIU_FLAGS_FIBER |
  4478. NIU_FLAGS_XCVR_SERDES)) {
  4479. case NIU_FLAGS_FIBER:
  4480. /* 1G fiber */
  4481. nw64_pcs(PCS_CONF, PCS_CONF_MASK | PCS_CONF_ENABLE);
  4482. nw64_pcs(PCS_DPATH_MODE, 0);
  4483. niu_pcs_mii_reset(np);
  4484. break;
  4485. case NIU_FLAGS_10G:
  4486. case NIU_FLAGS_10G | NIU_FLAGS_FIBER:
  4487. case NIU_FLAGS_10G | NIU_FLAGS_XCVR_SERDES:
  4488. /* 10G SERDES */
  4489. if (!(np->flags & NIU_FLAGS_XMAC))
  4490. return -EINVAL;
  4491. /* 10G copper or fiber */
  4492. val = nr64_mac(XMAC_CONFIG);
  4493. val &= ~XMAC_CONFIG_10G_XPCS_BYPASS;
  4494. nw64_mac(XMAC_CONFIG, val);
  4495. niu_xpcs_reset(np);
  4496. val = nr64_xpcs(XPCS_CONTROL1);
  4497. if (lp->loopback_mode == LOOPBACK_PHY)
  4498. val |= XPCS_CONTROL1_LOOPBACK;
  4499. else
  4500. val &= ~XPCS_CONTROL1_LOOPBACK;
  4501. nw64_xpcs(XPCS_CONTROL1, val);
  4502. nw64_xpcs(XPCS_DESKEW_ERR_CNT, 0);
  4503. (void) nr64_xpcs(XPCS_SYMERR_CNT01);
  4504. (void) nr64_xpcs(XPCS_SYMERR_CNT23);
  4505. break;
  4506. case NIU_FLAGS_XCVR_SERDES:
  4507. /* 1G SERDES */
  4508. niu_pcs_mii_reset(np);
  4509. nw64_pcs(PCS_CONF, PCS_CONF_MASK | PCS_CONF_ENABLE);
  4510. nw64_pcs(PCS_DPATH_MODE, 0);
  4511. break;
  4512. case 0:
  4513. /* 1G copper */
  4514. case NIU_FLAGS_XCVR_SERDES | NIU_FLAGS_FIBER:
  4515. /* 1G RGMII FIBER */
  4516. nw64_pcs(PCS_DPATH_MODE, PCS_DPATH_MODE_MII);
  4517. niu_pcs_mii_reset(np);
  4518. break;
  4519. default:
  4520. return -EINVAL;
  4521. }
  4522. return 0;
  4523. }
  4524. static int niu_reset_tx_xmac(struct niu *np)
  4525. {
  4526. return niu_set_and_wait_clear_mac(np, XTXMAC_SW_RST,
  4527. (XTXMAC_SW_RST_REG_RS |
  4528. XTXMAC_SW_RST_SOFT_RST),
  4529. 1000, 100, "XTXMAC_SW_RST");
  4530. }
  4531. static int niu_reset_tx_bmac(struct niu *np)
  4532. {
  4533. int limit;
  4534. nw64_mac(BTXMAC_SW_RST, BTXMAC_SW_RST_RESET);
  4535. limit = 1000;
  4536. while (--limit >= 0) {
  4537. if (!(nr64_mac(BTXMAC_SW_RST) & BTXMAC_SW_RST_RESET))
  4538. break;
  4539. udelay(100);
  4540. }
  4541. if (limit < 0) {
  4542. dev_err(np->device, PFX "Port %u TX BMAC would not reset, "
  4543. "BTXMAC_SW_RST[%llx]\n",
  4544. np->port,
  4545. (unsigned long long) nr64_mac(BTXMAC_SW_RST));
  4546. return -ENODEV;
  4547. }
  4548. return 0;
  4549. }
  4550. static int niu_reset_tx_mac(struct niu *np)
  4551. {
  4552. if (np->flags & NIU_FLAGS_XMAC)
  4553. return niu_reset_tx_xmac(np);
  4554. else
  4555. return niu_reset_tx_bmac(np);
  4556. }
  4557. static void niu_init_tx_xmac(struct niu *np, u64 min, u64 max)
  4558. {
  4559. u64 val;
  4560. val = nr64_mac(XMAC_MIN);
  4561. val &= ~(XMAC_MIN_TX_MIN_PKT_SIZE |
  4562. XMAC_MIN_RX_MIN_PKT_SIZE);
  4563. val |= (min << XMAC_MIN_RX_MIN_PKT_SIZE_SHFT);
  4564. val |= (min << XMAC_MIN_TX_MIN_PKT_SIZE_SHFT);
  4565. nw64_mac(XMAC_MIN, val);
  4566. nw64_mac(XMAC_MAX, max);
  4567. nw64_mac(XTXMAC_STAT_MSK, ~(u64)0);
  4568. val = nr64_mac(XMAC_IPG);
  4569. if (np->flags & NIU_FLAGS_10G) {
  4570. val &= ~XMAC_IPG_IPG_XGMII;
  4571. val |= (IPG_12_15_XGMII << XMAC_IPG_IPG_XGMII_SHIFT);
  4572. } else {
  4573. val &= ~XMAC_IPG_IPG_MII_GMII;
  4574. val |= (IPG_12_MII_GMII << XMAC_IPG_IPG_MII_GMII_SHIFT);
  4575. }
  4576. nw64_mac(XMAC_IPG, val);
  4577. val = nr64_mac(XMAC_CONFIG);
  4578. val &= ~(XMAC_CONFIG_ALWAYS_NO_CRC |
  4579. XMAC_CONFIG_STRETCH_MODE |
  4580. XMAC_CONFIG_VAR_MIN_IPG_EN |
  4581. XMAC_CONFIG_TX_ENABLE);
  4582. nw64_mac(XMAC_CONFIG, val);
  4583. nw64_mac(TXMAC_FRM_CNT, 0);
  4584. nw64_mac(TXMAC_BYTE_CNT, 0);
  4585. }
  4586. static void niu_init_tx_bmac(struct niu *np, u64 min, u64 max)
  4587. {
  4588. u64 val;
  4589. nw64_mac(BMAC_MIN_FRAME, min);
  4590. nw64_mac(BMAC_MAX_FRAME, max);
  4591. nw64_mac(BTXMAC_STATUS_MASK, ~(u64)0);
  4592. nw64_mac(BMAC_CTRL_TYPE, 0x8808);
  4593. nw64_mac(BMAC_PREAMBLE_SIZE, 7);
  4594. val = nr64_mac(BTXMAC_CONFIG);
  4595. val &= ~(BTXMAC_CONFIG_FCS_DISABLE |
  4596. BTXMAC_CONFIG_ENABLE);
  4597. nw64_mac(BTXMAC_CONFIG, val);
  4598. }
  4599. static void niu_init_tx_mac(struct niu *np)
  4600. {
  4601. u64 min, max;
  4602. min = 64;
  4603. if (np->dev->mtu > ETH_DATA_LEN)
  4604. max = 9216;
  4605. else
  4606. max = 1522;
  4607. /* The XMAC_MIN register only accepts values for TX min which
  4608. * have the low 3 bits cleared.
  4609. */
  4610. BUILD_BUG_ON(min & 0x7);
  4611. if (np->flags & NIU_FLAGS_XMAC)
  4612. niu_init_tx_xmac(np, min, max);
  4613. else
  4614. niu_init_tx_bmac(np, min, max);
  4615. }
  4616. static int niu_reset_rx_xmac(struct niu *np)
  4617. {
  4618. int limit;
  4619. nw64_mac(XRXMAC_SW_RST,
  4620. XRXMAC_SW_RST_REG_RS | XRXMAC_SW_RST_SOFT_RST);
  4621. limit = 1000;
  4622. while (--limit >= 0) {
  4623. if (!(nr64_mac(XRXMAC_SW_RST) & (XRXMAC_SW_RST_REG_RS |
  4624. XRXMAC_SW_RST_SOFT_RST)))
  4625. break;
  4626. udelay(100);
  4627. }
  4628. if (limit < 0) {
  4629. dev_err(np->device, PFX "Port %u RX XMAC would not reset, "
  4630. "XRXMAC_SW_RST[%llx]\n",
  4631. np->port,
  4632. (unsigned long long) nr64_mac(XRXMAC_SW_RST));
  4633. return -ENODEV;
  4634. }
  4635. return 0;
  4636. }
  4637. static int niu_reset_rx_bmac(struct niu *np)
  4638. {
  4639. int limit;
  4640. nw64_mac(BRXMAC_SW_RST, BRXMAC_SW_RST_RESET);
  4641. limit = 1000;
  4642. while (--limit >= 0) {
  4643. if (!(nr64_mac(BRXMAC_SW_RST) & BRXMAC_SW_RST_RESET))
  4644. break;
  4645. udelay(100);
  4646. }
  4647. if (limit < 0) {
  4648. dev_err(np->device, PFX "Port %u RX BMAC would not reset, "
  4649. "BRXMAC_SW_RST[%llx]\n",
  4650. np->port,
  4651. (unsigned long long) nr64_mac(BRXMAC_SW_RST));
  4652. return -ENODEV;
  4653. }
  4654. return 0;
  4655. }
  4656. static int niu_reset_rx_mac(struct niu *np)
  4657. {
  4658. if (np->flags & NIU_FLAGS_XMAC)
  4659. return niu_reset_rx_xmac(np);
  4660. else
  4661. return niu_reset_rx_bmac(np);
  4662. }
  4663. static void niu_init_rx_xmac(struct niu *np)
  4664. {
  4665. struct niu_parent *parent = np->parent;
  4666. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[np->port];
  4667. int first_rdc_table = tp->first_table_num;
  4668. unsigned long i;
  4669. u64 val;
  4670. nw64_mac(XMAC_ADD_FILT0, 0);
  4671. nw64_mac(XMAC_ADD_FILT1, 0);
  4672. nw64_mac(XMAC_ADD_FILT2, 0);
  4673. nw64_mac(XMAC_ADD_FILT12_MASK, 0);
  4674. nw64_mac(XMAC_ADD_FILT00_MASK, 0);
  4675. for (i = 0; i < MAC_NUM_HASH; i++)
  4676. nw64_mac(XMAC_HASH_TBL(i), 0);
  4677. nw64_mac(XRXMAC_STAT_MSK, ~(u64)0);
  4678. niu_set_primary_mac_rdc_table(np, first_rdc_table, 1);
  4679. niu_set_multicast_mac_rdc_table(np, first_rdc_table, 1);
  4680. val = nr64_mac(XMAC_CONFIG);
  4681. val &= ~(XMAC_CONFIG_RX_MAC_ENABLE |
  4682. XMAC_CONFIG_PROMISCUOUS |
  4683. XMAC_CONFIG_PROMISC_GROUP |
  4684. XMAC_CONFIG_ERR_CHK_DIS |
  4685. XMAC_CONFIG_RX_CRC_CHK_DIS |
  4686. XMAC_CONFIG_RESERVED_MULTICAST |
  4687. XMAC_CONFIG_RX_CODEV_CHK_DIS |
  4688. XMAC_CONFIG_ADDR_FILTER_EN |
  4689. XMAC_CONFIG_RCV_PAUSE_ENABLE |
  4690. XMAC_CONFIG_STRIP_CRC |
  4691. XMAC_CONFIG_PASS_FLOW_CTRL |
  4692. XMAC_CONFIG_MAC2IPP_PKT_CNT_EN);
  4693. val |= (XMAC_CONFIG_HASH_FILTER_EN);
  4694. nw64_mac(XMAC_CONFIG, val);
  4695. nw64_mac(RXMAC_BT_CNT, 0);
  4696. nw64_mac(RXMAC_BC_FRM_CNT, 0);
  4697. nw64_mac(RXMAC_MC_FRM_CNT, 0);
  4698. nw64_mac(RXMAC_FRAG_CNT, 0);
  4699. nw64_mac(RXMAC_HIST_CNT1, 0);
  4700. nw64_mac(RXMAC_HIST_CNT2, 0);
  4701. nw64_mac(RXMAC_HIST_CNT3, 0);
  4702. nw64_mac(RXMAC_HIST_CNT4, 0);
  4703. nw64_mac(RXMAC_HIST_CNT5, 0);
  4704. nw64_mac(RXMAC_HIST_CNT6, 0);
  4705. nw64_mac(RXMAC_HIST_CNT7, 0);
  4706. nw64_mac(RXMAC_MPSZER_CNT, 0);
  4707. nw64_mac(RXMAC_CRC_ER_CNT, 0);
  4708. nw64_mac(RXMAC_CD_VIO_CNT, 0);
  4709. nw64_mac(LINK_FAULT_CNT, 0);
  4710. }
  4711. static void niu_init_rx_bmac(struct niu *np)
  4712. {
  4713. struct niu_parent *parent = np->parent;
  4714. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[np->port];
  4715. int first_rdc_table = tp->first_table_num;
  4716. unsigned long i;
  4717. u64 val;
  4718. nw64_mac(BMAC_ADD_FILT0, 0);
  4719. nw64_mac(BMAC_ADD_FILT1, 0);
  4720. nw64_mac(BMAC_ADD_FILT2, 0);
  4721. nw64_mac(BMAC_ADD_FILT12_MASK, 0);
  4722. nw64_mac(BMAC_ADD_FILT00_MASK, 0);
  4723. for (i = 0; i < MAC_NUM_HASH; i++)
  4724. nw64_mac(BMAC_HASH_TBL(i), 0);
  4725. niu_set_primary_mac_rdc_table(np, first_rdc_table, 1);
  4726. niu_set_multicast_mac_rdc_table(np, first_rdc_table, 1);
  4727. nw64_mac(BRXMAC_STATUS_MASK, ~(u64)0);
  4728. val = nr64_mac(BRXMAC_CONFIG);
  4729. val &= ~(BRXMAC_CONFIG_ENABLE |
  4730. BRXMAC_CONFIG_STRIP_PAD |
  4731. BRXMAC_CONFIG_STRIP_FCS |
  4732. BRXMAC_CONFIG_PROMISC |
  4733. BRXMAC_CONFIG_PROMISC_GRP |
  4734. BRXMAC_CONFIG_ADDR_FILT_EN |
  4735. BRXMAC_CONFIG_DISCARD_DIS);
  4736. val |= (BRXMAC_CONFIG_HASH_FILT_EN);
  4737. nw64_mac(BRXMAC_CONFIG, val);
  4738. val = nr64_mac(BMAC_ADDR_CMPEN);
  4739. val |= BMAC_ADDR_CMPEN_EN0;
  4740. nw64_mac(BMAC_ADDR_CMPEN, val);
  4741. }
  4742. static void niu_init_rx_mac(struct niu *np)
  4743. {
  4744. niu_set_primary_mac(np, np->dev->dev_addr);
  4745. if (np->flags & NIU_FLAGS_XMAC)
  4746. niu_init_rx_xmac(np);
  4747. else
  4748. niu_init_rx_bmac(np);
  4749. }
  4750. static void niu_enable_tx_xmac(struct niu *np, int on)
  4751. {
  4752. u64 val = nr64_mac(XMAC_CONFIG);
  4753. if (on)
  4754. val |= XMAC_CONFIG_TX_ENABLE;
  4755. else
  4756. val &= ~XMAC_CONFIG_TX_ENABLE;
  4757. nw64_mac(XMAC_CONFIG, val);
  4758. }
  4759. static void niu_enable_tx_bmac(struct niu *np, int on)
  4760. {
  4761. u64 val = nr64_mac(BTXMAC_CONFIG);
  4762. if (on)
  4763. val |= BTXMAC_CONFIG_ENABLE;
  4764. else
  4765. val &= ~BTXMAC_CONFIG_ENABLE;
  4766. nw64_mac(BTXMAC_CONFIG, val);
  4767. }
  4768. static void niu_enable_tx_mac(struct niu *np, int on)
  4769. {
  4770. if (np->flags & NIU_FLAGS_XMAC)
  4771. niu_enable_tx_xmac(np, on);
  4772. else
  4773. niu_enable_tx_bmac(np, on);
  4774. }
  4775. static void niu_enable_rx_xmac(struct niu *np, int on)
  4776. {
  4777. u64 val = nr64_mac(XMAC_CONFIG);
  4778. val &= ~(XMAC_CONFIG_HASH_FILTER_EN |
  4779. XMAC_CONFIG_PROMISCUOUS);
  4780. if (np->flags & NIU_FLAGS_MCAST)
  4781. val |= XMAC_CONFIG_HASH_FILTER_EN;
  4782. if (np->flags & NIU_FLAGS_PROMISC)
  4783. val |= XMAC_CONFIG_PROMISCUOUS;
  4784. if (on)
  4785. val |= XMAC_CONFIG_RX_MAC_ENABLE;
  4786. else
  4787. val &= ~XMAC_CONFIG_RX_MAC_ENABLE;
  4788. nw64_mac(XMAC_CONFIG, val);
  4789. }
  4790. static void niu_enable_rx_bmac(struct niu *np, int on)
  4791. {
  4792. u64 val = nr64_mac(BRXMAC_CONFIG);
  4793. val &= ~(BRXMAC_CONFIG_HASH_FILT_EN |
  4794. BRXMAC_CONFIG_PROMISC);
  4795. if (np->flags & NIU_FLAGS_MCAST)
  4796. val |= BRXMAC_CONFIG_HASH_FILT_EN;
  4797. if (np->flags & NIU_FLAGS_PROMISC)
  4798. val |= BRXMAC_CONFIG_PROMISC;
  4799. if (on)
  4800. val |= BRXMAC_CONFIG_ENABLE;
  4801. else
  4802. val &= ~BRXMAC_CONFIG_ENABLE;
  4803. nw64_mac(BRXMAC_CONFIG, val);
  4804. }
  4805. static void niu_enable_rx_mac(struct niu *np, int on)
  4806. {
  4807. if (np->flags & NIU_FLAGS_XMAC)
  4808. niu_enable_rx_xmac(np, on);
  4809. else
  4810. niu_enable_rx_bmac(np, on);
  4811. }
  4812. static int niu_init_mac(struct niu *np)
  4813. {
  4814. int err;
  4815. niu_init_xif(np);
  4816. err = niu_init_pcs(np);
  4817. if (err)
  4818. return err;
  4819. err = niu_reset_tx_mac(np);
  4820. if (err)
  4821. return err;
  4822. niu_init_tx_mac(np);
  4823. err = niu_reset_rx_mac(np);
  4824. if (err)
  4825. return err;
  4826. niu_init_rx_mac(np);
  4827. /* This looks hookey but the RX MAC reset we just did will
  4828. * undo some of the state we setup in niu_init_tx_mac() so we
  4829. * have to call it again. In particular, the RX MAC reset will
  4830. * set the XMAC_MAX register back to it's default value.
  4831. */
  4832. niu_init_tx_mac(np);
  4833. niu_enable_tx_mac(np, 1);
  4834. niu_enable_rx_mac(np, 1);
  4835. return 0;
  4836. }
  4837. static void niu_stop_one_tx_channel(struct niu *np, struct tx_ring_info *rp)
  4838. {
  4839. (void) niu_tx_channel_stop(np, rp->tx_channel);
  4840. }
  4841. static void niu_stop_tx_channels(struct niu *np)
  4842. {
  4843. int i;
  4844. for (i = 0; i < np->num_tx_rings; i++) {
  4845. struct tx_ring_info *rp = &np->tx_rings[i];
  4846. niu_stop_one_tx_channel(np, rp);
  4847. }
  4848. }
  4849. static void niu_reset_one_tx_channel(struct niu *np, struct tx_ring_info *rp)
  4850. {
  4851. (void) niu_tx_channel_reset(np, rp->tx_channel);
  4852. }
  4853. static void niu_reset_tx_channels(struct niu *np)
  4854. {
  4855. int i;
  4856. for (i = 0; i < np->num_tx_rings; i++) {
  4857. struct tx_ring_info *rp = &np->tx_rings[i];
  4858. niu_reset_one_tx_channel(np, rp);
  4859. }
  4860. }
  4861. static void niu_stop_one_rx_channel(struct niu *np, struct rx_ring_info *rp)
  4862. {
  4863. (void) niu_enable_rx_channel(np, rp->rx_channel, 0);
  4864. }
  4865. static void niu_stop_rx_channels(struct niu *np)
  4866. {
  4867. int i;
  4868. for (i = 0; i < np->num_rx_rings; i++) {
  4869. struct rx_ring_info *rp = &np->rx_rings[i];
  4870. niu_stop_one_rx_channel(np, rp);
  4871. }
  4872. }
  4873. static void niu_reset_one_rx_channel(struct niu *np, struct rx_ring_info *rp)
  4874. {
  4875. int channel = rp->rx_channel;
  4876. (void) niu_rx_channel_reset(np, channel);
  4877. nw64(RX_DMA_ENT_MSK(channel), RX_DMA_ENT_MSK_ALL);
  4878. nw64(RX_DMA_CTL_STAT(channel), 0);
  4879. (void) niu_enable_rx_channel(np, channel, 0);
  4880. }
  4881. static void niu_reset_rx_channels(struct niu *np)
  4882. {
  4883. int i;
  4884. for (i = 0; i < np->num_rx_rings; i++) {
  4885. struct rx_ring_info *rp = &np->rx_rings[i];
  4886. niu_reset_one_rx_channel(np, rp);
  4887. }
  4888. }
  4889. static void niu_disable_ipp(struct niu *np)
  4890. {
  4891. u64 rd, wr, val;
  4892. int limit;
  4893. rd = nr64_ipp(IPP_DFIFO_RD_PTR);
  4894. wr = nr64_ipp(IPP_DFIFO_WR_PTR);
  4895. limit = 100;
  4896. while (--limit >= 0 && (rd != wr)) {
  4897. rd = nr64_ipp(IPP_DFIFO_RD_PTR);
  4898. wr = nr64_ipp(IPP_DFIFO_WR_PTR);
  4899. }
  4900. if (limit < 0 &&
  4901. (rd != 0 && wr != 1)) {
  4902. dev_err(np->device, PFX "%s: IPP would not quiesce, "
  4903. "rd_ptr[%llx] wr_ptr[%llx]\n",
  4904. np->dev->name,
  4905. (unsigned long long) nr64_ipp(IPP_DFIFO_RD_PTR),
  4906. (unsigned long long) nr64_ipp(IPP_DFIFO_WR_PTR));
  4907. }
  4908. val = nr64_ipp(IPP_CFIG);
  4909. val &= ~(IPP_CFIG_IPP_ENABLE |
  4910. IPP_CFIG_DFIFO_ECC_EN |
  4911. IPP_CFIG_DROP_BAD_CRC |
  4912. IPP_CFIG_CKSUM_EN);
  4913. nw64_ipp(IPP_CFIG, val);
  4914. (void) niu_ipp_reset(np);
  4915. }
  4916. static int niu_init_hw(struct niu *np)
  4917. {
  4918. int i, err;
  4919. niudbg(IFUP, "%s: Initialize TXC\n", np->dev->name);
  4920. niu_txc_enable_port(np, 1);
  4921. niu_txc_port_dma_enable(np, 1);
  4922. niu_txc_set_imask(np, 0);
  4923. niudbg(IFUP, "%s: Initialize TX channels\n", np->dev->name);
  4924. for (i = 0; i < np->num_tx_rings; i++) {
  4925. struct tx_ring_info *rp = &np->tx_rings[i];
  4926. err = niu_init_one_tx_channel(np, rp);
  4927. if (err)
  4928. return err;
  4929. }
  4930. niudbg(IFUP, "%s: Initialize RX channels\n", np->dev->name);
  4931. err = niu_init_rx_channels(np);
  4932. if (err)
  4933. goto out_uninit_tx_channels;
  4934. niudbg(IFUP, "%s: Initialize classifier\n", np->dev->name);
  4935. err = niu_init_classifier_hw(np);
  4936. if (err)
  4937. goto out_uninit_rx_channels;
  4938. niudbg(IFUP, "%s: Initialize ZCP\n", np->dev->name);
  4939. err = niu_init_zcp(np);
  4940. if (err)
  4941. goto out_uninit_rx_channels;
  4942. niudbg(IFUP, "%s: Initialize IPP\n", np->dev->name);
  4943. err = niu_init_ipp(np);
  4944. if (err)
  4945. goto out_uninit_rx_channels;
  4946. niudbg(IFUP, "%s: Initialize MAC\n", np->dev->name);
  4947. err = niu_init_mac(np);
  4948. if (err)
  4949. goto out_uninit_ipp;
  4950. return 0;
  4951. out_uninit_ipp:
  4952. niudbg(IFUP, "%s: Uninit IPP\n", np->dev->name);
  4953. niu_disable_ipp(np);
  4954. out_uninit_rx_channels:
  4955. niudbg(IFUP, "%s: Uninit RX channels\n", np->dev->name);
  4956. niu_stop_rx_channels(np);
  4957. niu_reset_rx_channels(np);
  4958. out_uninit_tx_channels:
  4959. niudbg(IFUP, "%s: Uninit TX channels\n", np->dev->name);
  4960. niu_stop_tx_channels(np);
  4961. niu_reset_tx_channels(np);
  4962. return err;
  4963. }
  4964. static void niu_stop_hw(struct niu *np)
  4965. {
  4966. niudbg(IFDOWN, "%s: Disable interrupts\n", np->dev->name);
  4967. niu_enable_interrupts(np, 0);
  4968. niudbg(IFDOWN, "%s: Disable RX MAC\n", np->dev->name);
  4969. niu_enable_rx_mac(np, 0);
  4970. niudbg(IFDOWN, "%s: Disable IPP\n", np->dev->name);
  4971. niu_disable_ipp(np);
  4972. niudbg(IFDOWN, "%s: Stop TX channels\n", np->dev->name);
  4973. niu_stop_tx_channels(np);
  4974. niudbg(IFDOWN, "%s: Stop RX channels\n", np->dev->name);
  4975. niu_stop_rx_channels(np);
  4976. niudbg(IFDOWN, "%s: Reset TX channels\n", np->dev->name);
  4977. niu_reset_tx_channels(np);
  4978. niudbg(IFDOWN, "%s: Reset RX channels\n", np->dev->name);
  4979. niu_reset_rx_channels(np);
  4980. }
  4981. static void niu_set_irq_name(struct niu *np)
  4982. {
  4983. int port = np->port;
  4984. int i, j = 1;
  4985. sprintf(np->irq_name[0], "%s:MAC", np->dev->name);
  4986. if (port == 0) {
  4987. sprintf(np->irq_name[1], "%s:MIF", np->dev->name);
  4988. sprintf(np->irq_name[2], "%s:SYSERR", np->dev->name);
  4989. j = 3;
  4990. }
  4991. for (i = 0; i < np->num_ldg - j; i++) {
  4992. if (i < np->num_rx_rings)
  4993. sprintf(np->irq_name[i+j], "%s-rx-%d",
  4994. np->dev->name, i);
  4995. else if (i < np->num_tx_rings + np->num_rx_rings)
  4996. sprintf(np->irq_name[i+j], "%s-tx-%d", np->dev->name,
  4997. i - np->num_rx_rings);
  4998. }
  4999. }
  5000. static int niu_request_irq(struct niu *np)
  5001. {
  5002. int i, j, err;
  5003. niu_set_irq_name(np);
  5004. err = 0;
  5005. for (i = 0; i < np->num_ldg; i++) {
  5006. struct niu_ldg *lp = &np->ldg[i];
  5007. err = request_irq(lp->irq, niu_interrupt,
  5008. IRQF_SHARED | IRQF_SAMPLE_RANDOM,
  5009. np->irq_name[i], lp);
  5010. if (err)
  5011. goto out_free_irqs;
  5012. }
  5013. return 0;
  5014. out_free_irqs:
  5015. for (j = 0; j < i; j++) {
  5016. struct niu_ldg *lp = &np->ldg[j];
  5017. free_irq(lp->irq, lp);
  5018. }
  5019. return err;
  5020. }
  5021. static void niu_free_irq(struct niu *np)
  5022. {
  5023. int i;
  5024. for (i = 0; i < np->num_ldg; i++) {
  5025. struct niu_ldg *lp = &np->ldg[i];
  5026. free_irq(lp->irq, lp);
  5027. }
  5028. }
  5029. static void niu_enable_napi(struct niu *np)
  5030. {
  5031. int i;
  5032. for (i = 0; i < np->num_ldg; i++)
  5033. napi_enable(&np->ldg[i].napi);
  5034. }
  5035. static void niu_disable_napi(struct niu *np)
  5036. {
  5037. int i;
  5038. for (i = 0; i < np->num_ldg; i++)
  5039. napi_disable(&np->ldg[i].napi);
  5040. }
  5041. static int niu_open(struct net_device *dev)
  5042. {
  5043. struct niu *np = netdev_priv(dev);
  5044. int err;
  5045. netif_carrier_off(dev);
  5046. err = niu_alloc_channels(np);
  5047. if (err)
  5048. goto out_err;
  5049. err = niu_enable_interrupts(np, 0);
  5050. if (err)
  5051. goto out_free_channels;
  5052. err = niu_request_irq(np);
  5053. if (err)
  5054. goto out_free_channels;
  5055. niu_enable_napi(np);
  5056. spin_lock_irq(&np->lock);
  5057. err = niu_init_hw(np);
  5058. if (!err) {
  5059. init_timer(&np->timer);
  5060. np->timer.expires = jiffies + HZ;
  5061. np->timer.data = (unsigned long) np;
  5062. np->timer.function = niu_timer;
  5063. err = niu_enable_interrupts(np, 1);
  5064. if (err)
  5065. niu_stop_hw(np);
  5066. }
  5067. spin_unlock_irq(&np->lock);
  5068. if (err) {
  5069. niu_disable_napi(np);
  5070. goto out_free_irq;
  5071. }
  5072. netif_tx_start_all_queues(dev);
  5073. if (np->link_config.loopback_mode != LOOPBACK_DISABLED)
  5074. netif_carrier_on(dev);
  5075. add_timer(&np->timer);
  5076. return 0;
  5077. out_free_irq:
  5078. niu_free_irq(np);
  5079. out_free_channels:
  5080. niu_free_channels(np);
  5081. out_err:
  5082. return err;
  5083. }
  5084. static void niu_full_shutdown(struct niu *np, struct net_device *dev)
  5085. {
  5086. cancel_work_sync(&np->reset_task);
  5087. niu_disable_napi(np);
  5088. netif_tx_stop_all_queues(dev);
  5089. del_timer_sync(&np->timer);
  5090. spin_lock_irq(&np->lock);
  5091. niu_stop_hw(np);
  5092. spin_unlock_irq(&np->lock);
  5093. }
  5094. static int niu_close(struct net_device *dev)
  5095. {
  5096. struct niu *np = netdev_priv(dev);
  5097. niu_full_shutdown(np, dev);
  5098. niu_free_irq(np);
  5099. niu_free_channels(np);
  5100. niu_handle_led(np, 0);
  5101. return 0;
  5102. }
  5103. static void niu_sync_xmac_stats(struct niu *np)
  5104. {
  5105. struct niu_xmac_stats *mp = &np->mac_stats.xmac;
  5106. mp->tx_frames += nr64_mac(TXMAC_FRM_CNT);
  5107. mp->tx_bytes += nr64_mac(TXMAC_BYTE_CNT);
  5108. mp->rx_link_faults += nr64_mac(LINK_FAULT_CNT);
  5109. mp->rx_align_errors += nr64_mac(RXMAC_ALIGN_ERR_CNT);
  5110. mp->rx_frags += nr64_mac(RXMAC_FRAG_CNT);
  5111. mp->rx_mcasts += nr64_mac(RXMAC_MC_FRM_CNT);
  5112. mp->rx_bcasts += nr64_mac(RXMAC_BC_FRM_CNT);
  5113. mp->rx_hist_cnt1 += nr64_mac(RXMAC_HIST_CNT1);
  5114. mp->rx_hist_cnt2 += nr64_mac(RXMAC_HIST_CNT2);
  5115. mp->rx_hist_cnt3 += nr64_mac(RXMAC_HIST_CNT3);
  5116. mp->rx_hist_cnt4 += nr64_mac(RXMAC_HIST_CNT4);
  5117. mp->rx_hist_cnt5 += nr64_mac(RXMAC_HIST_CNT5);
  5118. mp->rx_hist_cnt6 += nr64_mac(RXMAC_HIST_CNT6);
  5119. mp->rx_hist_cnt7 += nr64_mac(RXMAC_HIST_CNT7);
  5120. mp->rx_octets += nr64_mac(RXMAC_BT_CNT);
  5121. mp->rx_code_violations += nr64_mac(RXMAC_CD_VIO_CNT);
  5122. mp->rx_len_errors += nr64_mac(RXMAC_MPSZER_CNT);
  5123. mp->rx_crc_errors += nr64_mac(RXMAC_CRC_ER_CNT);
  5124. }
  5125. static void niu_sync_bmac_stats(struct niu *np)
  5126. {
  5127. struct niu_bmac_stats *mp = &np->mac_stats.bmac;
  5128. mp->tx_bytes += nr64_mac(BTXMAC_BYTE_CNT);
  5129. mp->tx_frames += nr64_mac(BTXMAC_FRM_CNT);
  5130. mp->rx_frames += nr64_mac(BRXMAC_FRAME_CNT);
  5131. mp->rx_align_errors += nr64_mac(BRXMAC_ALIGN_ERR_CNT);
  5132. mp->rx_crc_errors += nr64_mac(BRXMAC_ALIGN_ERR_CNT);
  5133. mp->rx_len_errors += nr64_mac(BRXMAC_CODE_VIOL_ERR_CNT);
  5134. }
  5135. static void niu_sync_mac_stats(struct niu *np)
  5136. {
  5137. if (np->flags & NIU_FLAGS_XMAC)
  5138. niu_sync_xmac_stats(np);
  5139. else
  5140. niu_sync_bmac_stats(np);
  5141. }
  5142. static void niu_get_rx_stats(struct niu *np)
  5143. {
  5144. unsigned long pkts, dropped, errors, bytes;
  5145. int i;
  5146. pkts = dropped = errors = bytes = 0;
  5147. for (i = 0; i < np->num_rx_rings; i++) {
  5148. struct rx_ring_info *rp = &np->rx_rings[i];
  5149. niu_sync_rx_discard_stats(np, rp, 0);
  5150. pkts += rp->rx_packets;
  5151. bytes += rp->rx_bytes;
  5152. dropped += rp->rx_dropped;
  5153. errors += rp->rx_errors;
  5154. }
  5155. np->dev->stats.rx_packets = pkts;
  5156. np->dev->stats.rx_bytes = bytes;
  5157. np->dev->stats.rx_dropped = dropped;
  5158. np->dev->stats.rx_errors = errors;
  5159. }
  5160. static void niu_get_tx_stats(struct niu *np)
  5161. {
  5162. unsigned long pkts, errors, bytes;
  5163. int i;
  5164. pkts = errors = bytes = 0;
  5165. for (i = 0; i < np->num_tx_rings; i++) {
  5166. struct tx_ring_info *rp = &np->tx_rings[i];
  5167. pkts += rp->tx_packets;
  5168. bytes += rp->tx_bytes;
  5169. errors += rp->tx_errors;
  5170. }
  5171. np->dev->stats.tx_packets = pkts;
  5172. np->dev->stats.tx_bytes = bytes;
  5173. np->dev->stats.tx_errors = errors;
  5174. }
  5175. static struct net_device_stats *niu_get_stats(struct net_device *dev)
  5176. {
  5177. struct niu *np = netdev_priv(dev);
  5178. niu_get_rx_stats(np);
  5179. niu_get_tx_stats(np);
  5180. return &dev->stats;
  5181. }
  5182. static void niu_load_hash_xmac(struct niu *np, u16 *hash)
  5183. {
  5184. int i;
  5185. for (i = 0; i < 16; i++)
  5186. nw64_mac(XMAC_HASH_TBL(i), hash[i]);
  5187. }
  5188. static void niu_load_hash_bmac(struct niu *np, u16 *hash)
  5189. {
  5190. int i;
  5191. for (i = 0; i < 16; i++)
  5192. nw64_mac(BMAC_HASH_TBL(i), hash[i]);
  5193. }
  5194. static void niu_load_hash(struct niu *np, u16 *hash)
  5195. {
  5196. if (np->flags & NIU_FLAGS_XMAC)
  5197. niu_load_hash_xmac(np, hash);
  5198. else
  5199. niu_load_hash_bmac(np, hash);
  5200. }
  5201. static void niu_set_rx_mode(struct net_device *dev)
  5202. {
  5203. struct niu *np = netdev_priv(dev);
  5204. int i, alt_cnt, err;
  5205. struct dev_addr_list *addr;
  5206. unsigned long flags;
  5207. u16 hash[16] = { 0, };
  5208. spin_lock_irqsave(&np->lock, flags);
  5209. niu_enable_rx_mac(np, 0);
  5210. np->flags &= ~(NIU_FLAGS_MCAST | NIU_FLAGS_PROMISC);
  5211. if (dev->flags & IFF_PROMISC)
  5212. np->flags |= NIU_FLAGS_PROMISC;
  5213. if ((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 0))
  5214. np->flags |= NIU_FLAGS_MCAST;
  5215. alt_cnt = dev->uc_count;
  5216. if (alt_cnt > niu_num_alt_addr(np)) {
  5217. alt_cnt = 0;
  5218. np->flags |= NIU_FLAGS_PROMISC;
  5219. }
  5220. if (alt_cnt) {
  5221. int index = 0;
  5222. for (addr = dev->uc_list; addr; addr = addr->next) {
  5223. err = niu_set_alt_mac(np, index,
  5224. addr->da_addr);
  5225. if (err)
  5226. printk(KERN_WARNING PFX "%s: Error %d "
  5227. "adding alt mac %d\n",
  5228. dev->name, err, index);
  5229. err = niu_enable_alt_mac(np, index, 1);
  5230. if (err)
  5231. printk(KERN_WARNING PFX "%s: Error %d "
  5232. "enabling alt mac %d\n",
  5233. dev->name, err, index);
  5234. index++;
  5235. }
  5236. } else {
  5237. int alt_start;
  5238. if (np->flags & NIU_FLAGS_XMAC)
  5239. alt_start = 0;
  5240. else
  5241. alt_start = 1;
  5242. for (i = alt_start; i < niu_num_alt_addr(np); i++) {
  5243. err = niu_enable_alt_mac(np, i, 0);
  5244. if (err)
  5245. printk(KERN_WARNING PFX "%s: Error %d "
  5246. "disabling alt mac %d\n",
  5247. dev->name, err, i);
  5248. }
  5249. }
  5250. if (dev->flags & IFF_ALLMULTI) {
  5251. for (i = 0; i < 16; i++)
  5252. hash[i] = 0xffff;
  5253. } else if (dev->mc_count > 0) {
  5254. for (addr = dev->mc_list; addr; addr = addr->next) {
  5255. u32 crc = ether_crc_le(ETH_ALEN, addr->da_addr);
  5256. crc >>= 24;
  5257. hash[crc >> 4] |= (1 << (15 - (crc & 0xf)));
  5258. }
  5259. }
  5260. if (np->flags & NIU_FLAGS_MCAST)
  5261. niu_load_hash(np, hash);
  5262. niu_enable_rx_mac(np, 1);
  5263. spin_unlock_irqrestore(&np->lock, flags);
  5264. }
  5265. static int niu_set_mac_addr(struct net_device *dev, void *p)
  5266. {
  5267. struct niu *np = netdev_priv(dev);
  5268. struct sockaddr *addr = p;
  5269. unsigned long flags;
  5270. if (!is_valid_ether_addr(addr->sa_data))
  5271. return -EINVAL;
  5272. memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
  5273. if (!netif_running(dev))
  5274. return 0;
  5275. spin_lock_irqsave(&np->lock, flags);
  5276. niu_enable_rx_mac(np, 0);
  5277. niu_set_primary_mac(np, dev->dev_addr);
  5278. niu_enable_rx_mac(np, 1);
  5279. spin_unlock_irqrestore(&np->lock, flags);
  5280. return 0;
  5281. }
  5282. static int niu_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  5283. {
  5284. return -EOPNOTSUPP;
  5285. }
  5286. static void niu_netif_stop(struct niu *np)
  5287. {
  5288. np->dev->trans_start = jiffies; /* prevent tx timeout */
  5289. niu_disable_napi(np);
  5290. netif_tx_disable(np->dev);
  5291. }
  5292. static void niu_netif_start(struct niu *np)
  5293. {
  5294. /* NOTE: unconditional netif_wake_queue is only appropriate
  5295. * so long as all callers are assured to have free tx slots
  5296. * (such as after niu_init_hw).
  5297. */
  5298. netif_tx_wake_all_queues(np->dev);
  5299. niu_enable_napi(np);
  5300. niu_enable_interrupts(np, 1);
  5301. }
  5302. static void niu_reset_buffers(struct niu *np)
  5303. {
  5304. int i, j, k, err;
  5305. if (np->rx_rings) {
  5306. for (i = 0; i < np->num_rx_rings; i++) {
  5307. struct rx_ring_info *rp = &np->rx_rings[i];
  5308. for (j = 0, k = 0; j < MAX_RBR_RING_SIZE; j++) {
  5309. struct page *page;
  5310. page = rp->rxhash[j];
  5311. while (page) {
  5312. struct page *next =
  5313. (struct page *) page->mapping;
  5314. u64 base = page->index;
  5315. base = base >> RBR_DESCR_ADDR_SHIFT;
  5316. rp->rbr[k++] = cpu_to_le32(base);
  5317. page = next;
  5318. }
  5319. }
  5320. for (; k < MAX_RBR_RING_SIZE; k++) {
  5321. err = niu_rbr_add_page(np, rp, GFP_ATOMIC, k);
  5322. if (unlikely(err))
  5323. break;
  5324. }
  5325. rp->rbr_index = rp->rbr_table_size - 1;
  5326. rp->rcr_index = 0;
  5327. rp->rbr_pending = 0;
  5328. rp->rbr_refill_pending = 0;
  5329. }
  5330. }
  5331. if (np->tx_rings) {
  5332. for (i = 0; i < np->num_tx_rings; i++) {
  5333. struct tx_ring_info *rp = &np->tx_rings[i];
  5334. for (j = 0; j < MAX_TX_RING_SIZE; j++) {
  5335. if (rp->tx_buffs[j].skb)
  5336. (void) release_tx_packet(np, rp, j);
  5337. }
  5338. rp->pending = MAX_TX_RING_SIZE;
  5339. rp->prod = 0;
  5340. rp->cons = 0;
  5341. rp->wrap_bit = 0;
  5342. }
  5343. }
  5344. }
  5345. static void niu_reset_task(struct work_struct *work)
  5346. {
  5347. struct niu *np = container_of(work, struct niu, reset_task);
  5348. unsigned long flags;
  5349. int err;
  5350. spin_lock_irqsave(&np->lock, flags);
  5351. if (!netif_running(np->dev)) {
  5352. spin_unlock_irqrestore(&np->lock, flags);
  5353. return;
  5354. }
  5355. spin_unlock_irqrestore(&np->lock, flags);
  5356. del_timer_sync(&np->timer);
  5357. niu_netif_stop(np);
  5358. spin_lock_irqsave(&np->lock, flags);
  5359. niu_stop_hw(np);
  5360. spin_unlock_irqrestore(&np->lock, flags);
  5361. niu_reset_buffers(np);
  5362. spin_lock_irqsave(&np->lock, flags);
  5363. err = niu_init_hw(np);
  5364. if (!err) {
  5365. np->timer.expires = jiffies + HZ;
  5366. add_timer(&np->timer);
  5367. niu_netif_start(np);
  5368. }
  5369. spin_unlock_irqrestore(&np->lock, flags);
  5370. }
  5371. static void niu_tx_timeout(struct net_device *dev)
  5372. {
  5373. struct niu *np = netdev_priv(dev);
  5374. dev_err(np->device, PFX "%s: Transmit timed out, resetting\n",
  5375. dev->name);
  5376. schedule_work(&np->reset_task);
  5377. }
  5378. static void niu_set_txd(struct tx_ring_info *rp, int index,
  5379. u64 mapping, u64 len, u64 mark,
  5380. u64 n_frags)
  5381. {
  5382. __le64 *desc = &rp->descr[index];
  5383. *desc = cpu_to_le64(mark |
  5384. (n_frags << TX_DESC_NUM_PTR_SHIFT) |
  5385. (len << TX_DESC_TR_LEN_SHIFT) |
  5386. (mapping & TX_DESC_SAD));
  5387. }
  5388. static u64 niu_compute_tx_flags(struct sk_buff *skb, struct ethhdr *ehdr,
  5389. u64 pad_bytes, u64 len)
  5390. {
  5391. u16 eth_proto, eth_proto_inner;
  5392. u64 csum_bits, l3off, ihl, ret;
  5393. u8 ip_proto;
  5394. int ipv6;
  5395. eth_proto = be16_to_cpu(ehdr->h_proto);
  5396. eth_proto_inner = eth_proto;
  5397. if (eth_proto == ETH_P_8021Q) {
  5398. struct vlan_ethhdr *vp = (struct vlan_ethhdr *) ehdr;
  5399. __be16 val = vp->h_vlan_encapsulated_proto;
  5400. eth_proto_inner = be16_to_cpu(val);
  5401. }
  5402. ipv6 = ihl = 0;
  5403. switch (skb->protocol) {
  5404. case cpu_to_be16(ETH_P_IP):
  5405. ip_proto = ip_hdr(skb)->protocol;
  5406. ihl = ip_hdr(skb)->ihl;
  5407. break;
  5408. case cpu_to_be16(ETH_P_IPV6):
  5409. ip_proto = ipv6_hdr(skb)->nexthdr;
  5410. ihl = (40 >> 2);
  5411. ipv6 = 1;
  5412. break;
  5413. default:
  5414. ip_proto = ihl = 0;
  5415. break;
  5416. }
  5417. csum_bits = TXHDR_CSUM_NONE;
  5418. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  5419. u64 start, stuff;
  5420. csum_bits = (ip_proto == IPPROTO_TCP ?
  5421. TXHDR_CSUM_TCP :
  5422. (ip_proto == IPPROTO_UDP ?
  5423. TXHDR_CSUM_UDP : TXHDR_CSUM_SCTP));
  5424. start = skb_transport_offset(skb) -
  5425. (pad_bytes + sizeof(struct tx_pkt_hdr));
  5426. stuff = start + skb->csum_offset;
  5427. csum_bits |= (start / 2) << TXHDR_L4START_SHIFT;
  5428. csum_bits |= (stuff / 2) << TXHDR_L4STUFF_SHIFT;
  5429. }
  5430. l3off = skb_network_offset(skb) -
  5431. (pad_bytes + sizeof(struct tx_pkt_hdr));
  5432. ret = (((pad_bytes / 2) << TXHDR_PAD_SHIFT) |
  5433. (len << TXHDR_LEN_SHIFT) |
  5434. ((l3off / 2) << TXHDR_L3START_SHIFT) |
  5435. (ihl << TXHDR_IHL_SHIFT) |
  5436. ((eth_proto_inner < 1536) ? TXHDR_LLC : 0) |
  5437. ((eth_proto == ETH_P_8021Q) ? TXHDR_VLAN : 0) |
  5438. (ipv6 ? TXHDR_IP_VER : 0) |
  5439. csum_bits);
  5440. return ret;
  5441. }
  5442. static int niu_start_xmit(struct sk_buff *skb, struct net_device *dev)
  5443. {
  5444. struct niu *np = netdev_priv(dev);
  5445. unsigned long align, headroom;
  5446. struct netdev_queue *txq;
  5447. struct tx_ring_info *rp;
  5448. struct tx_pkt_hdr *tp;
  5449. unsigned int len, nfg;
  5450. struct ethhdr *ehdr;
  5451. int prod, i, tlen;
  5452. u64 mapping, mrk;
  5453. i = skb_get_queue_mapping(skb);
  5454. rp = &np->tx_rings[i];
  5455. txq = netdev_get_tx_queue(dev, i);
  5456. if (niu_tx_avail(rp) <= (skb_shinfo(skb)->nr_frags + 1)) {
  5457. netif_tx_stop_queue(txq);
  5458. dev_err(np->device, PFX "%s: BUG! Tx ring full when "
  5459. "queue awake!\n", dev->name);
  5460. rp->tx_errors++;
  5461. return NETDEV_TX_BUSY;
  5462. }
  5463. if (skb->len < ETH_ZLEN) {
  5464. unsigned int pad_bytes = ETH_ZLEN - skb->len;
  5465. if (skb_pad(skb, pad_bytes))
  5466. goto out;
  5467. skb_put(skb, pad_bytes);
  5468. }
  5469. len = sizeof(struct tx_pkt_hdr) + 15;
  5470. if (skb_headroom(skb) < len) {
  5471. struct sk_buff *skb_new;
  5472. skb_new = skb_realloc_headroom(skb, len);
  5473. if (!skb_new) {
  5474. rp->tx_errors++;
  5475. goto out_drop;
  5476. }
  5477. kfree_skb(skb);
  5478. skb = skb_new;
  5479. } else
  5480. skb_orphan(skb);
  5481. align = ((unsigned long) skb->data & (16 - 1));
  5482. headroom = align + sizeof(struct tx_pkt_hdr);
  5483. ehdr = (struct ethhdr *) skb->data;
  5484. tp = (struct tx_pkt_hdr *) skb_push(skb, headroom);
  5485. len = skb->len - sizeof(struct tx_pkt_hdr);
  5486. tp->flags = cpu_to_le64(niu_compute_tx_flags(skb, ehdr, align, len));
  5487. tp->resv = 0;
  5488. len = skb_headlen(skb);
  5489. mapping = np->ops->map_single(np->device, skb->data,
  5490. len, DMA_TO_DEVICE);
  5491. prod = rp->prod;
  5492. rp->tx_buffs[prod].skb = skb;
  5493. rp->tx_buffs[prod].mapping = mapping;
  5494. mrk = TX_DESC_SOP;
  5495. if (++rp->mark_counter == rp->mark_freq) {
  5496. rp->mark_counter = 0;
  5497. mrk |= TX_DESC_MARK;
  5498. rp->mark_pending++;
  5499. }
  5500. tlen = len;
  5501. nfg = skb_shinfo(skb)->nr_frags;
  5502. while (tlen > 0) {
  5503. tlen -= MAX_TX_DESC_LEN;
  5504. nfg++;
  5505. }
  5506. while (len > 0) {
  5507. unsigned int this_len = len;
  5508. if (this_len > MAX_TX_DESC_LEN)
  5509. this_len = MAX_TX_DESC_LEN;
  5510. niu_set_txd(rp, prod, mapping, this_len, mrk, nfg);
  5511. mrk = nfg = 0;
  5512. prod = NEXT_TX(rp, prod);
  5513. mapping += this_len;
  5514. len -= this_len;
  5515. }
  5516. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  5517. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  5518. len = frag->size;
  5519. mapping = np->ops->map_page(np->device, frag->page,
  5520. frag->page_offset, len,
  5521. DMA_TO_DEVICE);
  5522. rp->tx_buffs[prod].skb = NULL;
  5523. rp->tx_buffs[prod].mapping = mapping;
  5524. niu_set_txd(rp, prod, mapping, len, 0, 0);
  5525. prod = NEXT_TX(rp, prod);
  5526. }
  5527. if (prod < rp->prod)
  5528. rp->wrap_bit ^= TX_RING_KICK_WRAP;
  5529. rp->prod = prod;
  5530. nw64(TX_RING_KICK(rp->tx_channel), rp->wrap_bit | (prod << 3));
  5531. if (unlikely(niu_tx_avail(rp) <= (MAX_SKB_FRAGS + 1))) {
  5532. netif_tx_stop_queue(txq);
  5533. if (niu_tx_avail(rp) > NIU_TX_WAKEUP_THRESH(rp))
  5534. netif_tx_wake_queue(txq);
  5535. }
  5536. dev->trans_start = jiffies;
  5537. out:
  5538. return NETDEV_TX_OK;
  5539. out_drop:
  5540. rp->tx_errors++;
  5541. kfree_skb(skb);
  5542. goto out;
  5543. }
  5544. static int niu_change_mtu(struct net_device *dev, int new_mtu)
  5545. {
  5546. struct niu *np = netdev_priv(dev);
  5547. int err, orig_jumbo, new_jumbo;
  5548. if (new_mtu < 68 || new_mtu > NIU_MAX_MTU)
  5549. return -EINVAL;
  5550. orig_jumbo = (dev->mtu > ETH_DATA_LEN);
  5551. new_jumbo = (new_mtu > ETH_DATA_LEN);
  5552. dev->mtu = new_mtu;
  5553. if (!netif_running(dev) ||
  5554. (orig_jumbo == new_jumbo))
  5555. return 0;
  5556. niu_full_shutdown(np, dev);
  5557. niu_free_channels(np);
  5558. niu_enable_napi(np);
  5559. err = niu_alloc_channels(np);
  5560. if (err)
  5561. return err;
  5562. spin_lock_irq(&np->lock);
  5563. err = niu_init_hw(np);
  5564. if (!err) {
  5565. init_timer(&np->timer);
  5566. np->timer.expires = jiffies + HZ;
  5567. np->timer.data = (unsigned long) np;
  5568. np->timer.function = niu_timer;
  5569. err = niu_enable_interrupts(np, 1);
  5570. if (err)
  5571. niu_stop_hw(np);
  5572. }
  5573. spin_unlock_irq(&np->lock);
  5574. if (!err) {
  5575. netif_tx_start_all_queues(dev);
  5576. if (np->link_config.loopback_mode != LOOPBACK_DISABLED)
  5577. netif_carrier_on(dev);
  5578. add_timer(&np->timer);
  5579. }
  5580. return err;
  5581. }
  5582. static void niu_get_drvinfo(struct net_device *dev,
  5583. struct ethtool_drvinfo *info)
  5584. {
  5585. struct niu *np = netdev_priv(dev);
  5586. struct niu_vpd *vpd = &np->vpd;
  5587. strcpy(info->driver, DRV_MODULE_NAME);
  5588. strcpy(info->version, DRV_MODULE_VERSION);
  5589. sprintf(info->fw_version, "%d.%d",
  5590. vpd->fcode_major, vpd->fcode_minor);
  5591. if (np->parent->plat_type != PLAT_TYPE_NIU)
  5592. strcpy(info->bus_info, pci_name(np->pdev));
  5593. }
  5594. static int niu_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  5595. {
  5596. struct niu *np = netdev_priv(dev);
  5597. struct niu_link_config *lp;
  5598. lp = &np->link_config;
  5599. memset(cmd, 0, sizeof(*cmd));
  5600. cmd->phy_address = np->phy_addr;
  5601. cmd->supported = lp->supported;
  5602. cmd->advertising = lp->active_advertising;
  5603. cmd->autoneg = lp->active_autoneg;
  5604. cmd->speed = lp->active_speed;
  5605. cmd->duplex = lp->active_duplex;
  5606. cmd->port = (np->flags & NIU_FLAGS_FIBER) ? PORT_FIBRE : PORT_TP;
  5607. cmd->transceiver = (np->flags & NIU_FLAGS_XCVR_SERDES) ?
  5608. XCVR_EXTERNAL : XCVR_INTERNAL;
  5609. return 0;
  5610. }
  5611. static int niu_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  5612. {
  5613. struct niu *np = netdev_priv(dev);
  5614. struct niu_link_config *lp = &np->link_config;
  5615. lp->advertising = cmd->advertising;
  5616. lp->speed = cmd->speed;
  5617. lp->duplex = cmd->duplex;
  5618. lp->autoneg = cmd->autoneg;
  5619. return niu_init_link(np);
  5620. }
  5621. static u32 niu_get_msglevel(struct net_device *dev)
  5622. {
  5623. struct niu *np = netdev_priv(dev);
  5624. return np->msg_enable;
  5625. }
  5626. static void niu_set_msglevel(struct net_device *dev, u32 value)
  5627. {
  5628. struct niu *np = netdev_priv(dev);
  5629. np->msg_enable = value;
  5630. }
  5631. static int niu_nway_reset(struct net_device *dev)
  5632. {
  5633. struct niu *np = netdev_priv(dev);
  5634. if (np->link_config.autoneg)
  5635. return niu_init_link(np);
  5636. return 0;
  5637. }
  5638. static int niu_get_eeprom_len(struct net_device *dev)
  5639. {
  5640. struct niu *np = netdev_priv(dev);
  5641. return np->eeprom_len;
  5642. }
  5643. static int niu_get_eeprom(struct net_device *dev,
  5644. struct ethtool_eeprom *eeprom, u8 *data)
  5645. {
  5646. struct niu *np = netdev_priv(dev);
  5647. u32 offset, len, val;
  5648. offset = eeprom->offset;
  5649. len = eeprom->len;
  5650. if (offset + len < offset)
  5651. return -EINVAL;
  5652. if (offset >= np->eeprom_len)
  5653. return -EINVAL;
  5654. if (offset + len > np->eeprom_len)
  5655. len = eeprom->len = np->eeprom_len - offset;
  5656. if (offset & 3) {
  5657. u32 b_offset, b_count;
  5658. b_offset = offset & 3;
  5659. b_count = 4 - b_offset;
  5660. if (b_count > len)
  5661. b_count = len;
  5662. val = nr64(ESPC_NCR((offset - b_offset) / 4));
  5663. memcpy(data, ((char *)&val) + b_offset, b_count);
  5664. data += b_count;
  5665. len -= b_count;
  5666. offset += b_count;
  5667. }
  5668. while (len >= 4) {
  5669. val = nr64(ESPC_NCR(offset / 4));
  5670. memcpy(data, &val, 4);
  5671. data += 4;
  5672. len -= 4;
  5673. offset += 4;
  5674. }
  5675. if (len) {
  5676. val = nr64(ESPC_NCR(offset / 4));
  5677. memcpy(data, &val, len);
  5678. }
  5679. return 0;
  5680. }
  5681. static void niu_ethflow_to_l3proto(int flow_type, u8 *pid)
  5682. {
  5683. switch (flow_type) {
  5684. case TCP_V4_FLOW:
  5685. case TCP_V6_FLOW:
  5686. *pid = IPPROTO_TCP;
  5687. break;
  5688. case UDP_V4_FLOW:
  5689. case UDP_V6_FLOW:
  5690. *pid = IPPROTO_UDP;
  5691. break;
  5692. case SCTP_V4_FLOW:
  5693. case SCTP_V6_FLOW:
  5694. *pid = IPPROTO_SCTP;
  5695. break;
  5696. case AH_V4_FLOW:
  5697. case AH_V6_FLOW:
  5698. *pid = IPPROTO_AH;
  5699. break;
  5700. case ESP_V4_FLOW:
  5701. case ESP_V6_FLOW:
  5702. *pid = IPPROTO_ESP;
  5703. break;
  5704. default:
  5705. *pid = 0;
  5706. break;
  5707. }
  5708. }
  5709. static int niu_class_to_ethflow(u64 class, int *flow_type)
  5710. {
  5711. switch (class) {
  5712. case CLASS_CODE_TCP_IPV4:
  5713. *flow_type = TCP_V4_FLOW;
  5714. break;
  5715. case CLASS_CODE_UDP_IPV4:
  5716. *flow_type = UDP_V4_FLOW;
  5717. break;
  5718. case CLASS_CODE_AH_ESP_IPV4:
  5719. *flow_type = AH_V4_FLOW;
  5720. break;
  5721. case CLASS_CODE_SCTP_IPV4:
  5722. *flow_type = SCTP_V4_FLOW;
  5723. break;
  5724. case CLASS_CODE_TCP_IPV6:
  5725. *flow_type = TCP_V6_FLOW;
  5726. break;
  5727. case CLASS_CODE_UDP_IPV6:
  5728. *flow_type = UDP_V6_FLOW;
  5729. break;
  5730. case CLASS_CODE_AH_ESP_IPV6:
  5731. *flow_type = AH_V6_FLOW;
  5732. break;
  5733. case CLASS_CODE_SCTP_IPV6:
  5734. *flow_type = SCTP_V6_FLOW;
  5735. break;
  5736. case CLASS_CODE_USER_PROG1:
  5737. case CLASS_CODE_USER_PROG2:
  5738. case CLASS_CODE_USER_PROG3:
  5739. case CLASS_CODE_USER_PROG4:
  5740. *flow_type = IP_USER_FLOW;
  5741. break;
  5742. default:
  5743. return 0;
  5744. }
  5745. return 1;
  5746. }
  5747. static int niu_ethflow_to_class(int flow_type, u64 *class)
  5748. {
  5749. switch (flow_type) {
  5750. case TCP_V4_FLOW:
  5751. *class = CLASS_CODE_TCP_IPV4;
  5752. break;
  5753. case UDP_V4_FLOW:
  5754. *class = CLASS_CODE_UDP_IPV4;
  5755. break;
  5756. case AH_V4_FLOW:
  5757. case ESP_V4_FLOW:
  5758. *class = CLASS_CODE_AH_ESP_IPV4;
  5759. break;
  5760. case SCTP_V4_FLOW:
  5761. *class = CLASS_CODE_SCTP_IPV4;
  5762. break;
  5763. case TCP_V6_FLOW:
  5764. *class = CLASS_CODE_TCP_IPV6;
  5765. break;
  5766. case UDP_V6_FLOW:
  5767. *class = CLASS_CODE_UDP_IPV6;
  5768. break;
  5769. case AH_V6_FLOW:
  5770. case ESP_V6_FLOW:
  5771. *class = CLASS_CODE_AH_ESP_IPV6;
  5772. break;
  5773. case SCTP_V6_FLOW:
  5774. *class = CLASS_CODE_SCTP_IPV6;
  5775. break;
  5776. default:
  5777. return 0;
  5778. }
  5779. return 1;
  5780. }
  5781. static u64 niu_flowkey_to_ethflow(u64 flow_key)
  5782. {
  5783. u64 ethflow = 0;
  5784. if (flow_key & FLOW_KEY_L2DA)
  5785. ethflow |= RXH_L2DA;
  5786. if (flow_key & FLOW_KEY_VLAN)
  5787. ethflow |= RXH_VLAN;
  5788. if (flow_key & FLOW_KEY_IPSA)
  5789. ethflow |= RXH_IP_SRC;
  5790. if (flow_key & FLOW_KEY_IPDA)
  5791. ethflow |= RXH_IP_DST;
  5792. if (flow_key & FLOW_KEY_PROTO)
  5793. ethflow |= RXH_L3_PROTO;
  5794. if (flow_key & (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_0_SHIFT))
  5795. ethflow |= RXH_L4_B_0_1;
  5796. if (flow_key & (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_1_SHIFT))
  5797. ethflow |= RXH_L4_B_2_3;
  5798. return ethflow;
  5799. }
  5800. static int niu_ethflow_to_flowkey(u64 ethflow, u64 *flow_key)
  5801. {
  5802. u64 key = 0;
  5803. if (ethflow & RXH_L2DA)
  5804. key |= FLOW_KEY_L2DA;
  5805. if (ethflow & RXH_VLAN)
  5806. key |= FLOW_KEY_VLAN;
  5807. if (ethflow & RXH_IP_SRC)
  5808. key |= FLOW_KEY_IPSA;
  5809. if (ethflow & RXH_IP_DST)
  5810. key |= FLOW_KEY_IPDA;
  5811. if (ethflow & RXH_L3_PROTO)
  5812. key |= FLOW_KEY_PROTO;
  5813. if (ethflow & RXH_L4_B_0_1)
  5814. key |= (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_0_SHIFT);
  5815. if (ethflow & RXH_L4_B_2_3)
  5816. key |= (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_1_SHIFT);
  5817. *flow_key = key;
  5818. return 1;
  5819. }
  5820. static int niu_get_hash_opts(struct niu *np, struct ethtool_rxnfc *nfc)
  5821. {
  5822. u64 class;
  5823. nfc->data = 0;
  5824. if (!niu_ethflow_to_class(nfc->flow_type, &class))
  5825. return -EINVAL;
  5826. if (np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] &
  5827. TCAM_KEY_DISC)
  5828. nfc->data = RXH_DISCARD;
  5829. else
  5830. nfc->data = niu_flowkey_to_ethflow(np->parent->flow_key[class -
  5831. CLASS_CODE_USER_PROG1]);
  5832. return 0;
  5833. }
  5834. static void niu_get_ip4fs_from_tcam_key(struct niu_tcam_entry *tp,
  5835. struct ethtool_rx_flow_spec *fsp)
  5836. {
  5837. fsp->h_u.tcp_ip4_spec.ip4src = (tp->key[3] & TCAM_V4KEY3_SADDR) >>
  5838. TCAM_V4KEY3_SADDR_SHIFT;
  5839. fsp->h_u.tcp_ip4_spec.ip4dst = (tp->key[3] & TCAM_V4KEY3_DADDR) >>
  5840. TCAM_V4KEY3_DADDR_SHIFT;
  5841. fsp->m_u.tcp_ip4_spec.ip4src = (tp->key_mask[3] & TCAM_V4KEY3_SADDR) >>
  5842. TCAM_V4KEY3_SADDR_SHIFT;
  5843. fsp->m_u.tcp_ip4_spec.ip4dst = (tp->key_mask[3] & TCAM_V4KEY3_DADDR) >>
  5844. TCAM_V4KEY3_DADDR_SHIFT;
  5845. fsp->h_u.tcp_ip4_spec.ip4src =
  5846. cpu_to_be32(fsp->h_u.tcp_ip4_spec.ip4src);
  5847. fsp->m_u.tcp_ip4_spec.ip4src =
  5848. cpu_to_be32(fsp->m_u.tcp_ip4_spec.ip4src);
  5849. fsp->h_u.tcp_ip4_spec.ip4dst =
  5850. cpu_to_be32(fsp->h_u.tcp_ip4_spec.ip4dst);
  5851. fsp->m_u.tcp_ip4_spec.ip4dst =
  5852. cpu_to_be32(fsp->m_u.tcp_ip4_spec.ip4dst);
  5853. fsp->h_u.tcp_ip4_spec.tos = (tp->key[2] & TCAM_V4KEY2_TOS) >>
  5854. TCAM_V4KEY2_TOS_SHIFT;
  5855. fsp->m_u.tcp_ip4_spec.tos = (tp->key_mask[2] & TCAM_V4KEY2_TOS) >>
  5856. TCAM_V4KEY2_TOS_SHIFT;
  5857. switch (fsp->flow_type) {
  5858. case TCP_V4_FLOW:
  5859. case UDP_V4_FLOW:
  5860. case SCTP_V4_FLOW:
  5861. fsp->h_u.tcp_ip4_spec.psrc =
  5862. ((tp->key[2] & TCAM_V4KEY2_PORT_SPI) >>
  5863. TCAM_V4KEY2_PORT_SPI_SHIFT) >> 16;
  5864. fsp->h_u.tcp_ip4_spec.pdst =
  5865. ((tp->key[2] & TCAM_V4KEY2_PORT_SPI) >>
  5866. TCAM_V4KEY2_PORT_SPI_SHIFT) & 0xffff;
  5867. fsp->m_u.tcp_ip4_spec.psrc =
  5868. ((tp->key_mask[2] & TCAM_V4KEY2_PORT_SPI) >>
  5869. TCAM_V4KEY2_PORT_SPI_SHIFT) >> 16;
  5870. fsp->m_u.tcp_ip4_spec.pdst =
  5871. ((tp->key_mask[2] & TCAM_V4KEY2_PORT_SPI) >>
  5872. TCAM_V4KEY2_PORT_SPI_SHIFT) & 0xffff;
  5873. fsp->h_u.tcp_ip4_spec.psrc =
  5874. cpu_to_be16(fsp->h_u.tcp_ip4_spec.psrc);
  5875. fsp->h_u.tcp_ip4_spec.pdst =
  5876. cpu_to_be16(fsp->h_u.tcp_ip4_spec.pdst);
  5877. fsp->m_u.tcp_ip4_spec.psrc =
  5878. cpu_to_be16(fsp->m_u.tcp_ip4_spec.psrc);
  5879. fsp->m_u.tcp_ip4_spec.pdst =
  5880. cpu_to_be16(fsp->m_u.tcp_ip4_spec.pdst);
  5881. break;
  5882. case AH_V4_FLOW:
  5883. case ESP_V4_FLOW:
  5884. fsp->h_u.ah_ip4_spec.spi =
  5885. (tp->key[2] & TCAM_V4KEY2_PORT_SPI) >>
  5886. TCAM_V4KEY2_PORT_SPI_SHIFT;
  5887. fsp->m_u.ah_ip4_spec.spi =
  5888. (tp->key_mask[2] & TCAM_V4KEY2_PORT_SPI) >>
  5889. TCAM_V4KEY2_PORT_SPI_SHIFT;
  5890. fsp->h_u.ah_ip4_spec.spi =
  5891. cpu_to_be32(fsp->h_u.ah_ip4_spec.spi);
  5892. fsp->m_u.ah_ip4_spec.spi =
  5893. cpu_to_be32(fsp->m_u.ah_ip4_spec.spi);
  5894. break;
  5895. case IP_USER_FLOW:
  5896. fsp->h_u.usr_ip4_spec.l4_4_bytes =
  5897. (tp->key[2] & TCAM_V4KEY2_PORT_SPI) >>
  5898. TCAM_V4KEY2_PORT_SPI_SHIFT;
  5899. fsp->m_u.usr_ip4_spec.l4_4_bytes =
  5900. (tp->key_mask[2] & TCAM_V4KEY2_PORT_SPI) >>
  5901. TCAM_V4KEY2_PORT_SPI_SHIFT;
  5902. fsp->h_u.usr_ip4_spec.l4_4_bytes =
  5903. cpu_to_be32(fsp->h_u.usr_ip4_spec.l4_4_bytes);
  5904. fsp->m_u.usr_ip4_spec.l4_4_bytes =
  5905. cpu_to_be32(fsp->m_u.usr_ip4_spec.l4_4_bytes);
  5906. fsp->h_u.usr_ip4_spec.proto =
  5907. (tp->key[2] & TCAM_V4KEY2_PROTO) >>
  5908. TCAM_V4KEY2_PROTO_SHIFT;
  5909. fsp->m_u.usr_ip4_spec.proto =
  5910. (tp->key_mask[2] & TCAM_V4KEY2_PROTO) >>
  5911. TCAM_V4KEY2_PROTO_SHIFT;
  5912. fsp->h_u.usr_ip4_spec.ip_ver = ETH_RX_NFC_IP4;
  5913. break;
  5914. default:
  5915. break;
  5916. }
  5917. }
  5918. static int niu_get_ethtool_tcam_entry(struct niu *np,
  5919. struct ethtool_rxnfc *nfc)
  5920. {
  5921. struct niu_parent *parent = np->parent;
  5922. struct niu_tcam_entry *tp;
  5923. struct ethtool_rx_flow_spec *fsp = &nfc->fs;
  5924. u16 idx;
  5925. u64 class;
  5926. int ret = 0;
  5927. idx = tcam_get_index(np, (u16)nfc->fs.location);
  5928. tp = &parent->tcam[idx];
  5929. if (!tp->valid) {
  5930. pr_info(PFX "niu%d: %s entry [%d] invalid for idx[%d]\n",
  5931. parent->index, np->dev->name, (u16)nfc->fs.location, idx);
  5932. return -EINVAL;
  5933. }
  5934. /* fill the flow spec entry */
  5935. class = (tp->key[0] & TCAM_V4KEY0_CLASS_CODE) >>
  5936. TCAM_V4KEY0_CLASS_CODE_SHIFT;
  5937. ret = niu_class_to_ethflow(class, &fsp->flow_type);
  5938. if (ret < 0) {
  5939. pr_info(PFX "niu%d: %s niu_class_to_ethflow failed\n",
  5940. parent->index, np->dev->name);
  5941. ret = -EINVAL;
  5942. goto out;
  5943. }
  5944. if (fsp->flow_type == AH_V4_FLOW || fsp->flow_type == AH_V6_FLOW) {
  5945. u32 proto = (tp->key[2] & TCAM_V4KEY2_PROTO) >>
  5946. TCAM_V4KEY2_PROTO_SHIFT;
  5947. if (proto == IPPROTO_ESP) {
  5948. if (fsp->flow_type == AH_V4_FLOW)
  5949. fsp->flow_type = ESP_V4_FLOW;
  5950. else
  5951. fsp->flow_type = ESP_V6_FLOW;
  5952. }
  5953. }
  5954. switch (fsp->flow_type) {
  5955. case TCP_V4_FLOW:
  5956. case UDP_V4_FLOW:
  5957. case SCTP_V4_FLOW:
  5958. case AH_V4_FLOW:
  5959. case ESP_V4_FLOW:
  5960. niu_get_ip4fs_from_tcam_key(tp, fsp);
  5961. break;
  5962. case TCP_V6_FLOW:
  5963. case UDP_V6_FLOW:
  5964. case SCTP_V6_FLOW:
  5965. case AH_V6_FLOW:
  5966. case ESP_V6_FLOW:
  5967. /* Not yet implemented */
  5968. ret = -EINVAL;
  5969. break;
  5970. case IP_USER_FLOW:
  5971. niu_get_ip4fs_from_tcam_key(tp, fsp);
  5972. break;
  5973. default:
  5974. ret = -EINVAL;
  5975. break;
  5976. }
  5977. if (ret < 0)
  5978. goto out;
  5979. if (tp->assoc_data & TCAM_ASSOCDATA_DISC)
  5980. fsp->ring_cookie = RX_CLS_FLOW_DISC;
  5981. else
  5982. fsp->ring_cookie = (tp->assoc_data & TCAM_ASSOCDATA_OFFSET) >>
  5983. TCAM_ASSOCDATA_OFFSET_SHIFT;
  5984. /* put the tcam size here */
  5985. nfc->data = tcam_get_size(np);
  5986. out:
  5987. return ret;
  5988. }
  5989. static int niu_get_ethtool_tcam_all(struct niu *np,
  5990. struct ethtool_rxnfc *nfc,
  5991. u32 *rule_locs)
  5992. {
  5993. struct niu_parent *parent = np->parent;
  5994. struct niu_tcam_entry *tp;
  5995. int i, idx, cnt;
  5996. u16 n_entries;
  5997. unsigned long flags;
  5998. /* put the tcam size here */
  5999. nfc->data = tcam_get_size(np);
  6000. niu_lock_parent(np, flags);
  6001. n_entries = nfc->rule_cnt;
  6002. for (cnt = 0, i = 0; i < nfc->data; i++) {
  6003. idx = tcam_get_index(np, i);
  6004. tp = &parent->tcam[idx];
  6005. if (!tp->valid)
  6006. continue;
  6007. rule_locs[cnt] = i;
  6008. cnt++;
  6009. }
  6010. niu_unlock_parent(np, flags);
  6011. if (n_entries != cnt) {
  6012. /* print warning, this should not happen */
  6013. pr_info(PFX "niu%d: %s In niu_get_ethtool_tcam_all, "
  6014. "n_entries[%d] != cnt[%d]!!!\n\n",
  6015. np->parent->index, np->dev->name, n_entries, cnt);
  6016. }
  6017. return 0;
  6018. }
  6019. static int niu_get_nfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
  6020. void *rule_locs)
  6021. {
  6022. struct niu *np = netdev_priv(dev);
  6023. int ret = 0;
  6024. switch (cmd->cmd) {
  6025. case ETHTOOL_GRXFH:
  6026. ret = niu_get_hash_opts(np, cmd);
  6027. break;
  6028. case ETHTOOL_GRXRINGS:
  6029. cmd->data = np->num_rx_rings;
  6030. break;
  6031. case ETHTOOL_GRXCLSRLCNT:
  6032. cmd->rule_cnt = tcam_get_valid_entry_cnt(np);
  6033. break;
  6034. case ETHTOOL_GRXCLSRULE:
  6035. ret = niu_get_ethtool_tcam_entry(np, cmd);
  6036. break;
  6037. case ETHTOOL_GRXCLSRLALL:
  6038. ret = niu_get_ethtool_tcam_all(np, cmd, (u32 *)rule_locs);
  6039. break;
  6040. default:
  6041. ret = -EINVAL;
  6042. break;
  6043. }
  6044. return ret;
  6045. }
  6046. static int niu_set_hash_opts(struct niu *np, struct ethtool_rxnfc *nfc)
  6047. {
  6048. u64 class;
  6049. u64 flow_key = 0;
  6050. unsigned long flags;
  6051. if (!niu_ethflow_to_class(nfc->flow_type, &class))
  6052. return -EINVAL;
  6053. if (class < CLASS_CODE_USER_PROG1 ||
  6054. class > CLASS_CODE_SCTP_IPV6)
  6055. return -EINVAL;
  6056. if (nfc->data & RXH_DISCARD) {
  6057. niu_lock_parent(np, flags);
  6058. flow_key = np->parent->tcam_key[class -
  6059. CLASS_CODE_USER_PROG1];
  6060. flow_key |= TCAM_KEY_DISC;
  6061. nw64(TCAM_KEY(class - CLASS_CODE_USER_PROG1), flow_key);
  6062. np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] = flow_key;
  6063. niu_unlock_parent(np, flags);
  6064. return 0;
  6065. } else {
  6066. /* Discard was set before, but is not set now */
  6067. if (np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] &
  6068. TCAM_KEY_DISC) {
  6069. niu_lock_parent(np, flags);
  6070. flow_key = np->parent->tcam_key[class -
  6071. CLASS_CODE_USER_PROG1];
  6072. flow_key &= ~TCAM_KEY_DISC;
  6073. nw64(TCAM_KEY(class - CLASS_CODE_USER_PROG1),
  6074. flow_key);
  6075. np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] =
  6076. flow_key;
  6077. niu_unlock_parent(np, flags);
  6078. }
  6079. }
  6080. if (!niu_ethflow_to_flowkey(nfc->data, &flow_key))
  6081. return -EINVAL;
  6082. niu_lock_parent(np, flags);
  6083. nw64(FLOW_KEY(class - CLASS_CODE_USER_PROG1), flow_key);
  6084. np->parent->flow_key[class - CLASS_CODE_USER_PROG1] = flow_key;
  6085. niu_unlock_parent(np, flags);
  6086. return 0;
  6087. }
  6088. static void niu_get_tcamkey_from_ip4fs(struct ethtool_rx_flow_spec *fsp,
  6089. struct niu_tcam_entry *tp,
  6090. int l2_rdc_tab, u64 class)
  6091. {
  6092. u8 pid = 0;
  6093. u32 sip, dip, sipm, dipm, spi, spim;
  6094. u16 sport, dport, spm, dpm;
  6095. sip = be32_to_cpu(fsp->h_u.tcp_ip4_spec.ip4src);
  6096. sipm = be32_to_cpu(fsp->m_u.tcp_ip4_spec.ip4src);
  6097. dip = be32_to_cpu(fsp->h_u.tcp_ip4_spec.ip4dst);
  6098. dipm = be32_to_cpu(fsp->m_u.tcp_ip4_spec.ip4dst);
  6099. tp->key[0] = class << TCAM_V4KEY0_CLASS_CODE_SHIFT;
  6100. tp->key_mask[0] = TCAM_V4KEY0_CLASS_CODE;
  6101. tp->key[1] = (u64)l2_rdc_tab << TCAM_V4KEY1_L2RDCNUM_SHIFT;
  6102. tp->key_mask[1] = TCAM_V4KEY1_L2RDCNUM;
  6103. tp->key[3] = (u64)sip << TCAM_V4KEY3_SADDR_SHIFT;
  6104. tp->key[3] |= dip;
  6105. tp->key_mask[3] = (u64)sipm << TCAM_V4KEY3_SADDR_SHIFT;
  6106. tp->key_mask[3] |= dipm;
  6107. tp->key[2] |= ((u64)fsp->h_u.tcp_ip4_spec.tos <<
  6108. TCAM_V4KEY2_TOS_SHIFT);
  6109. tp->key_mask[2] |= ((u64)fsp->m_u.tcp_ip4_spec.tos <<
  6110. TCAM_V4KEY2_TOS_SHIFT);
  6111. switch (fsp->flow_type) {
  6112. case TCP_V4_FLOW:
  6113. case UDP_V4_FLOW:
  6114. case SCTP_V4_FLOW:
  6115. sport = be16_to_cpu(fsp->h_u.tcp_ip4_spec.psrc);
  6116. spm = be16_to_cpu(fsp->m_u.tcp_ip4_spec.psrc);
  6117. dport = be16_to_cpu(fsp->h_u.tcp_ip4_spec.pdst);
  6118. dpm = be16_to_cpu(fsp->m_u.tcp_ip4_spec.pdst);
  6119. tp->key[2] |= (((u64)sport << 16) | dport);
  6120. tp->key_mask[2] |= (((u64)spm << 16) | dpm);
  6121. niu_ethflow_to_l3proto(fsp->flow_type, &pid);
  6122. break;
  6123. case AH_V4_FLOW:
  6124. case ESP_V4_FLOW:
  6125. spi = be32_to_cpu(fsp->h_u.ah_ip4_spec.spi);
  6126. spim = be32_to_cpu(fsp->m_u.ah_ip4_spec.spi);
  6127. tp->key[2] |= spi;
  6128. tp->key_mask[2] |= spim;
  6129. niu_ethflow_to_l3proto(fsp->flow_type, &pid);
  6130. break;
  6131. case IP_USER_FLOW:
  6132. spi = be32_to_cpu(fsp->h_u.usr_ip4_spec.l4_4_bytes);
  6133. spim = be32_to_cpu(fsp->m_u.usr_ip4_spec.l4_4_bytes);
  6134. tp->key[2] |= spi;
  6135. tp->key_mask[2] |= spim;
  6136. pid = fsp->h_u.usr_ip4_spec.proto;
  6137. break;
  6138. default:
  6139. break;
  6140. }
  6141. tp->key[2] |= ((u64)pid << TCAM_V4KEY2_PROTO_SHIFT);
  6142. if (pid) {
  6143. tp->key_mask[2] |= TCAM_V4KEY2_PROTO;
  6144. }
  6145. }
  6146. static int niu_add_ethtool_tcam_entry(struct niu *np,
  6147. struct ethtool_rxnfc *nfc)
  6148. {
  6149. struct niu_parent *parent = np->parent;
  6150. struct niu_tcam_entry *tp;
  6151. struct ethtool_rx_flow_spec *fsp = &nfc->fs;
  6152. struct niu_rdc_tables *rdc_table = &parent->rdc_group_cfg[np->port];
  6153. int l2_rdc_table = rdc_table->first_table_num;
  6154. u16 idx;
  6155. u64 class;
  6156. unsigned long flags;
  6157. int err, ret;
  6158. ret = 0;
  6159. idx = nfc->fs.location;
  6160. if (idx >= tcam_get_size(np))
  6161. return -EINVAL;
  6162. if (fsp->flow_type == IP_USER_FLOW) {
  6163. int i;
  6164. int add_usr_cls = 0;
  6165. int ipv6 = 0;
  6166. struct ethtool_usrip4_spec *uspec = &fsp->h_u.usr_ip4_spec;
  6167. struct ethtool_usrip4_spec *umask = &fsp->m_u.usr_ip4_spec;
  6168. niu_lock_parent(np, flags);
  6169. for (i = 0; i < NIU_L3_PROG_CLS; i++) {
  6170. if (parent->l3_cls[i]) {
  6171. if (uspec->proto == parent->l3_cls_pid[i]) {
  6172. class = parent->l3_cls[i];
  6173. parent->l3_cls_refcnt[i]++;
  6174. add_usr_cls = 1;
  6175. break;
  6176. }
  6177. } else {
  6178. /* Program new user IP class */
  6179. switch (i) {
  6180. case 0:
  6181. class = CLASS_CODE_USER_PROG1;
  6182. break;
  6183. case 1:
  6184. class = CLASS_CODE_USER_PROG2;
  6185. break;
  6186. case 2:
  6187. class = CLASS_CODE_USER_PROG3;
  6188. break;
  6189. case 3:
  6190. class = CLASS_CODE_USER_PROG4;
  6191. break;
  6192. default:
  6193. break;
  6194. }
  6195. if (uspec->ip_ver == ETH_RX_NFC_IP6)
  6196. ipv6 = 1;
  6197. ret = tcam_user_ip_class_set(np, class, ipv6,
  6198. uspec->proto,
  6199. uspec->tos,
  6200. umask->tos);
  6201. if (ret)
  6202. goto out;
  6203. ret = tcam_user_ip_class_enable(np, class, 1);
  6204. if (ret)
  6205. goto out;
  6206. parent->l3_cls[i] = class;
  6207. parent->l3_cls_pid[i] = uspec->proto;
  6208. parent->l3_cls_refcnt[i]++;
  6209. add_usr_cls = 1;
  6210. break;
  6211. }
  6212. }
  6213. if (!add_usr_cls) {
  6214. pr_info(PFX "niu%d: %s niu_add_ethtool_tcam_entry: "
  6215. "Could not find/insert class for pid %d\n",
  6216. parent->index, np->dev->name, uspec->proto);
  6217. ret = -EINVAL;
  6218. goto out;
  6219. }
  6220. niu_unlock_parent(np, flags);
  6221. } else {
  6222. if (!niu_ethflow_to_class(fsp->flow_type, &class)) {
  6223. return -EINVAL;
  6224. }
  6225. }
  6226. niu_lock_parent(np, flags);
  6227. idx = tcam_get_index(np, idx);
  6228. tp = &parent->tcam[idx];
  6229. memset(tp, 0, sizeof(*tp));
  6230. /* fill in the tcam key and mask */
  6231. switch (fsp->flow_type) {
  6232. case TCP_V4_FLOW:
  6233. case UDP_V4_FLOW:
  6234. case SCTP_V4_FLOW:
  6235. case AH_V4_FLOW:
  6236. case ESP_V4_FLOW:
  6237. niu_get_tcamkey_from_ip4fs(fsp, tp, l2_rdc_table, class);
  6238. break;
  6239. case TCP_V6_FLOW:
  6240. case UDP_V6_FLOW:
  6241. case SCTP_V6_FLOW:
  6242. case AH_V6_FLOW:
  6243. case ESP_V6_FLOW:
  6244. /* Not yet implemented */
  6245. pr_info(PFX "niu%d: %s In niu_add_ethtool_tcam_entry: "
  6246. "flow %d for IPv6 not implemented\n\n",
  6247. parent->index, np->dev->name, fsp->flow_type);
  6248. ret = -EINVAL;
  6249. goto out;
  6250. case IP_USER_FLOW:
  6251. if (fsp->h_u.usr_ip4_spec.ip_ver == ETH_RX_NFC_IP4) {
  6252. niu_get_tcamkey_from_ip4fs(fsp, tp, l2_rdc_table,
  6253. class);
  6254. } else {
  6255. /* Not yet implemented */
  6256. pr_info(PFX "niu%d: %s In niu_add_ethtool_tcam_entry: "
  6257. "usr flow for IPv6 not implemented\n\n",
  6258. parent->index, np->dev->name);
  6259. ret = -EINVAL;
  6260. goto out;
  6261. }
  6262. break;
  6263. default:
  6264. pr_info(PFX "niu%d: %s In niu_add_ethtool_tcam_entry: "
  6265. "Unknown flow type %d\n\n",
  6266. parent->index, np->dev->name, fsp->flow_type);
  6267. ret = -EINVAL;
  6268. goto out;
  6269. }
  6270. /* fill in the assoc data */
  6271. if (fsp->ring_cookie == RX_CLS_FLOW_DISC) {
  6272. tp->assoc_data = TCAM_ASSOCDATA_DISC;
  6273. } else {
  6274. if (fsp->ring_cookie >= np->num_rx_rings) {
  6275. pr_info(PFX "niu%d: %s In niu_add_ethtool_tcam_entry: "
  6276. "Invalid RX ring %lld\n\n",
  6277. parent->index, np->dev->name,
  6278. (long long) fsp->ring_cookie);
  6279. ret = -EINVAL;
  6280. goto out;
  6281. }
  6282. tp->assoc_data = (TCAM_ASSOCDATA_TRES_USE_OFFSET |
  6283. (fsp->ring_cookie <<
  6284. TCAM_ASSOCDATA_OFFSET_SHIFT));
  6285. }
  6286. err = tcam_write(np, idx, tp->key, tp->key_mask);
  6287. if (err) {
  6288. ret = -EINVAL;
  6289. goto out;
  6290. }
  6291. err = tcam_assoc_write(np, idx, tp->assoc_data);
  6292. if (err) {
  6293. ret = -EINVAL;
  6294. goto out;
  6295. }
  6296. /* validate the entry */
  6297. tp->valid = 1;
  6298. np->clas.tcam_valid_entries++;
  6299. out:
  6300. niu_unlock_parent(np, flags);
  6301. return ret;
  6302. }
  6303. static int niu_del_ethtool_tcam_entry(struct niu *np, u32 loc)
  6304. {
  6305. struct niu_parent *parent = np->parent;
  6306. struct niu_tcam_entry *tp;
  6307. u16 idx;
  6308. unsigned long flags;
  6309. u64 class;
  6310. int ret = 0;
  6311. if (loc >= tcam_get_size(np))
  6312. return -EINVAL;
  6313. niu_lock_parent(np, flags);
  6314. idx = tcam_get_index(np, loc);
  6315. tp = &parent->tcam[idx];
  6316. /* if the entry is of a user defined class, then update*/
  6317. class = (tp->key[0] & TCAM_V4KEY0_CLASS_CODE) >>
  6318. TCAM_V4KEY0_CLASS_CODE_SHIFT;
  6319. if (class >= CLASS_CODE_USER_PROG1 && class <= CLASS_CODE_USER_PROG4) {
  6320. int i;
  6321. for (i = 0; i < NIU_L3_PROG_CLS; i++) {
  6322. if (parent->l3_cls[i] == class) {
  6323. parent->l3_cls_refcnt[i]--;
  6324. if (!parent->l3_cls_refcnt[i]) {
  6325. /* disable class */
  6326. ret = tcam_user_ip_class_enable(np,
  6327. class,
  6328. 0);
  6329. if (ret)
  6330. goto out;
  6331. parent->l3_cls[i] = 0;
  6332. parent->l3_cls_pid[i] = 0;
  6333. }
  6334. break;
  6335. }
  6336. }
  6337. if (i == NIU_L3_PROG_CLS) {
  6338. pr_info(PFX "niu%d: %s In niu_del_ethtool_tcam_entry,"
  6339. "Usr class 0x%llx not found \n",
  6340. parent->index, np->dev->name,
  6341. (unsigned long long) class);
  6342. ret = -EINVAL;
  6343. goto out;
  6344. }
  6345. }
  6346. ret = tcam_flush(np, idx);
  6347. if (ret)
  6348. goto out;
  6349. /* invalidate the entry */
  6350. tp->valid = 0;
  6351. np->clas.tcam_valid_entries--;
  6352. out:
  6353. niu_unlock_parent(np, flags);
  6354. return ret;
  6355. }
  6356. static int niu_set_nfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
  6357. {
  6358. struct niu *np = netdev_priv(dev);
  6359. int ret = 0;
  6360. switch (cmd->cmd) {
  6361. case ETHTOOL_SRXFH:
  6362. ret = niu_set_hash_opts(np, cmd);
  6363. break;
  6364. case ETHTOOL_SRXCLSRLINS:
  6365. ret = niu_add_ethtool_tcam_entry(np, cmd);
  6366. break;
  6367. case ETHTOOL_SRXCLSRLDEL:
  6368. ret = niu_del_ethtool_tcam_entry(np, cmd->fs.location);
  6369. break;
  6370. default:
  6371. ret = -EINVAL;
  6372. break;
  6373. }
  6374. return ret;
  6375. }
  6376. static const struct {
  6377. const char string[ETH_GSTRING_LEN];
  6378. } niu_xmac_stat_keys[] = {
  6379. { "tx_frames" },
  6380. { "tx_bytes" },
  6381. { "tx_fifo_errors" },
  6382. { "tx_overflow_errors" },
  6383. { "tx_max_pkt_size_errors" },
  6384. { "tx_underflow_errors" },
  6385. { "rx_local_faults" },
  6386. { "rx_remote_faults" },
  6387. { "rx_link_faults" },
  6388. { "rx_align_errors" },
  6389. { "rx_frags" },
  6390. { "rx_mcasts" },
  6391. { "rx_bcasts" },
  6392. { "rx_hist_cnt1" },
  6393. { "rx_hist_cnt2" },
  6394. { "rx_hist_cnt3" },
  6395. { "rx_hist_cnt4" },
  6396. { "rx_hist_cnt5" },
  6397. { "rx_hist_cnt6" },
  6398. { "rx_hist_cnt7" },
  6399. { "rx_octets" },
  6400. { "rx_code_violations" },
  6401. { "rx_len_errors" },
  6402. { "rx_crc_errors" },
  6403. { "rx_underflows" },
  6404. { "rx_overflows" },
  6405. { "pause_off_state" },
  6406. { "pause_on_state" },
  6407. { "pause_received" },
  6408. };
  6409. #define NUM_XMAC_STAT_KEYS ARRAY_SIZE(niu_xmac_stat_keys)
  6410. static const struct {
  6411. const char string[ETH_GSTRING_LEN];
  6412. } niu_bmac_stat_keys[] = {
  6413. { "tx_underflow_errors" },
  6414. { "tx_max_pkt_size_errors" },
  6415. { "tx_bytes" },
  6416. { "tx_frames" },
  6417. { "rx_overflows" },
  6418. { "rx_frames" },
  6419. { "rx_align_errors" },
  6420. { "rx_crc_errors" },
  6421. { "rx_len_errors" },
  6422. { "pause_off_state" },
  6423. { "pause_on_state" },
  6424. { "pause_received" },
  6425. };
  6426. #define NUM_BMAC_STAT_KEYS ARRAY_SIZE(niu_bmac_stat_keys)
  6427. static const struct {
  6428. const char string[ETH_GSTRING_LEN];
  6429. } niu_rxchan_stat_keys[] = {
  6430. { "rx_channel" },
  6431. { "rx_packets" },
  6432. { "rx_bytes" },
  6433. { "rx_dropped" },
  6434. { "rx_errors" },
  6435. };
  6436. #define NUM_RXCHAN_STAT_KEYS ARRAY_SIZE(niu_rxchan_stat_keys)
  6437. static const struct {
  6438. const char string[ETH_GSTRING_LEN];
  6439. } niu_txchan_stat_keys[] = {
  6440. { "tx_channel" },
  6441. { "tx_packets" },
  6442. { "tx_bytes" },
  6443. { "tx_errors" },
  6444. };
  6445. #define NUM_TXCHAN_STAT_KEYS ARRAY_SIZE(niu_txchan_stat_keys)
  6446. static void niu_get_strings(struct net_device *dev, u32 stringset, u8 *data)
  6447. {
  6448. struct niu *np = netdev_priv(dev);
  6449. int i;
  6450. if (stringset != ETH_SS_STATS)
  6451. return;
  6452. if (np->flags & NIU_FLAGS_XMAC) {
  6453. memcpy(data, niu_xmac_stat_keys,
  6454. sizeof(niu_xmac_stat_keys));
  6455. data += sizeof(niu_xmac_stat_keys);
  6456. } else {
  6457. memcpy(data, niu_bmac_stat_keys,
  6458. sizeof(niu_bmac_stat_keys));
  6459. data += sizeof(niu_bmac_stat_keys);
  6460. }
  6461. for (i = 0; i < np->num_rx_rings; i++) {
  6462. memcpy(data, niu_rxchan_stat_keys,
  6463. sizeof(niu_rxchan_stat_keys));
  6464. data += sizeof(niu_rxchan_stat_keys);
  6465. }
  6466. for (i = 0; i < np->num_tx_rings; i++) {
  6467. memcpy(data, niu_txchan_stat_keys,
  6468. sizeof(niu_txchan_stat_keys));
  6469. data += sizeof(niu_txchan_stat_keys);
  6470. }
  6471. }
  6472. static int niu_get_stats_count(struct net_device *dev)
  6473. {
  6474. struct niu *np = netdev_priv(dev);
  6475. return ((np->flags & NIU_FLAGS_XMAC ?
  6476. NUM_XMAC_STAT_KEYS :
  6477. NUM_BMAC_STAT_KEYS) +
  6478. (np->num_rx_rings * NUM_RXCHAN_STAT_KEYS) +
  6479. (np->num_tx_rings * NUM_TXCHAN_STAT_KEYS));
  6480. }
  6481. static void niu_get_ethtool_stats(struct net_device *dev,
  6482. struct ethtool_stats *stats, u64 *data)
  6483. {
  6484. struct niu *np = netdev_priv(dev);
  6485. int i;
  6486. niu_sync_mac_stats(np);
  6487. if (np->flags & NIU_FLAGS_XMAC) {
  6488. memcpy(data, &np->mac_stats.xmac,
  6489. sizeof(struct niu_xmac_stats));
  6490. data += (sizeof(struct niu_xmac_stats) / sizeof(u64));
  6491. } else {
  6492. memcpy(data, &np->mac_stats.bmac,
  6493. sizeof(struct niu_bmac_stats));
  6494. data += (sizeof(struct niu_bmac_stats) / sizeof(u64));
  6495. }
  6496. for (i = 0; i < np->num_rx_rings; i++) {
  6497. struct rx_ring_info *rp = &np->rx_rings[i];
  6498. niu_sync_rx_discard_stats(np, rp, 0);
  6499. data[0] = rp->rx_channel;
  6500. data[1] = rp->rx_packets;
  6501. data[2] = rp->rx_bytes;
  6502. data[3] = rp->rx_dropped;
  6503. data[4] = rp->rx_errors;
  6504. data += 5;
  6505. }
  6506. for (i = 0; i < np->num_tx_rings; i++) {
  6507. struct tx_ring_info *rp = &np->tx_rings[i];
  6508. data[0] = rp->tx_channel;
  6509. data[1] = rp->tx_packets;
  6510. data[2] = rp->tx_bytes;
  6511. data[3] = rp->tx_errors;
  6512. data += 4;
  6513. }
  6514. }
  6515. static u64 niu_led_state_save(struct niu *np)
  6516. {
  6517. if (np->flags & NIU_FLAGS_XMAC)
  6518. return nr64_mac(XMAC_CONFIG);
  6519. else
  6520. return nr64_mac(BMAC_XIF_CONFIG);
  6521. }
  6522. static void niu_led_state_restore(struct niu *np, u64 val)
  6523. {
  6524. if (np->flags & NIU_FLAGS_XMAC)
  6525. nw64_mac(XMAC_CONFIG, val);
  6526. else
  6527. nw64_mac(BMAC_XIF_CONFIG, val);
  6528. }
  6529. static void niu_force_led(struct niu *np, int on)
  6530. {
  6531. u64 val, reg, bit;
  6532. if (np->flags & NIU_FLAGS_XMAC) {
  6533. reg = XMAC_CONFIG;
  6534. bit = XMAC_CONFIG_FORCE_LED_ON;
  6535. } else {
  6536. reg = BMAC_XIF_CONFIG;
  6537. bit = BMAC_XIF_CONFIG_LINK_LED;
  6538. }
  6539. val = nr64_mac(reg);
  6540. if (on)
  6541. val |= bit;
  6542. else
  6543. val &= ~bit;
  6544. nw64_mac(reg, val);
  6545. }
  6546. static int niu_phys_id(struct net_device *dev, u32 data)
  6547. {
  6548. struct niu *np = netdev_priv(dev);
  6549. u64 orig_led_state;
  6550. int i;
  6551. if (!netif_running(dev))
  6552. return -EAGAIN;
  6553. if (data == 0)
  6554. data = 2;
  6555. orig_led_state = niu_led_state_save(np);
  6556. for (i = 0; i < (data * 2); i++) {
  6557. int on = ((i % 2) == 0);
  6558. niu_force_led(np, on);
  6559. if (msleep_interruptible(500))
  6560. break;
  6561. }
  6562. niu_led_state_restore(np, orig_led_state);
  6563. return 0;
  6564. }
  6565. static const struct ethtool_ops niu_ethtool_ops = {
  6566. .get_drvinfo = niu_get_drvinfo,
  6567. .get_link = ethtool_op_get_link,
  6568. .get_msglevel = niu_get_msglevel,
  6569. .set_msglevel = niu_set_msglevel,
  6570. .nway_reset = niu_nway_reset,
  6571. .get_eeprom_len = niu_get_eeprom_len,
  6572. .get_eeprom = niu_get_eeprom,
  6573. .get_settings = niu_get_settings,
  6574. .set_settings = niu_set_settings,
  6575. .get_strings = niu_get_strings,
  6576. .get_stats_count = niu_get_stats_count,
  6577. .get_ethtool_stats = niu_get_ethtool_stats,
  6578. .phys_id = niu_phys_id,
  6579. .get_rxnfc = niu_get_nfc,
  6580. .set_rxnfc = niu_set_nfc,
  6581. };
  6582. static int niu_ldg_assign_ldn(struct niu *np, struct niu_parent *parent,
  6583. int ldg, int ldn)
  6584. {
  6585. if (ldg < NIU_LDG_MIN || ldg > NIU_LDG_MAX)
  6586. return -EINVAL;
  6587. if (ldn < 0 || ldn > LDN_MAX)
  6588. return -EINVAL;
  6589. parent->ldg_map[ldn] = ldg;
  6590. if (np->parent->plat_type == PLAT_TYPE_NIU) {
  6591. /* On N2 NIU, the ldn-->ldg assignments are setup and fixed by
  6592. * the firmware, and we're not supposed to change them.
  6593. * Validate the mapping, because if it's wrong we probably
  6594. * won't get any interrupts and that's painful to debug.
  6595. */
  6596. if (nr64(LDG_NUM(ldn)) != ldg) {
  6597. dev_err(np->device, PFX "Port %u, mis-matched "
  6598. "LDG assignment "
  6599. "for ldn %d, should be %d is %llu\n",
  6600. np->port, ldn, ldg,
  6601. (unsigned long long) nr64(LDG_NUM(ldn)));
  6602. return -EINVAL;
  6603. }
  6604. } else
  6605. nw64(LDG_NUM(ldn), ldg);
  6606. return 0;
  6607. }
  6608. static int niu_set_ldg_timer_res(struct niu *np, int res)
  6609. {
  6610. if (res < 0 || res > LDG_TIMER_RES_VAL)
  6611. return -EINVAL;
  6612. nw64(LDG_TIMER_RES, res);
  6613. return 0;
  6614. }
  6615. static int niu_set_ldg_sid(struct niu *np, int ldg, int func, int vector)
  6616. {
  6617. if ((ldg < NIU_LDG_MIN || ldg > NIU_LDG_MAX) ||
  6618. (func < 0 || func > 3) ||
  6619. (vector < 0 || vector > 0x1f))
  6620. return -EINVAL;
  6621. nw64(SID(ldg), (func << SID_FUNC_SHIFT) | vector);
  6622. return 0;
  6623. }
  6624. static int __devinit niu_pci_eeprom_read(struct niu *np, u32 addr)
  6625. {
  6626. u64 frame, frame_base = (ESPC_PIO_STAT_READ_START |
  6627. (addr << ESPC_PIO_STAT_ADDR_SHIFT));
  6628. int limit;
  6629. if (addr > (ESPC_PIO_STAT_ADDR >> ESPC_PIO_STAT_ADDR_SHIFT))
  6630. return -EINVAL;
  6631. frame = frame_base;
  6632. nw64(ESPC_PIO_STAT, frame);
  6633. limit = 64;
  6634. do {
  6635. udelay(5);
  6636. frame = nr64(ESPC_PIO_STAT);
  6637. if (frame & ESPC_PIO_STAT_READ_END)
  6638. break;
  6639. } while (limit--);
  6640. if (!(frame & ESPC_PIO_STAT_READ_END)) {
  6641. dev_err(np->device, PFX "EEPROM read timeout frame[%llx]\n",
  6642. (unsigned long long) frame);
  6643. return -ENODEV;
  6644. }
  6645. frame = frame_base;
  6646. nw64(ESPC_PIO_STAT, frame);
  6647. limit = 64;
  6648. do {
  6649. udelay(5);
  6650. frame = nr64(ESPC_PIO_STAT);
  6651. if (frame & ESPC_PIO_STAT_READ_END)
  6652. break;
  6653. } while (limit--);
  6654. if (!(frame & ESPC_PIO_STAT_READ_END)) {
  6655. dev_err(np->device, PFX "EEPROM read timeout frame[%llx]\n",
  6656. (unsigned long long) frame);
  6657. return -ENODEV;
  6658. }
  6659. frame = nr64(ESPC_PIO_STAT);
  6660. return (frame & ESPC_PIO_STAT_DATA) >> ESPC_PIO_STAT_DATA_SHIFT;
  6661. }
  6662. static int __devinit niu_pci_eeprom_read16(struct niu *np, u32 off)
  6663. {
  6664. int err = niu_pci_eeprom_read(np, off);
  6665. u16 val;
  6666. if (err < 0)
  6667. return err;
  6668. val = (err << 8);
  6669. err = niu_pci_eeprom_read(np, off + 1);
  6670. if (err < 0)
  6671. return err;
  6672. val |= (err & 0xff);
  6673. return val;
  6674. }
  6675. static int __devinit niu_pci_eeprom_read16_swp(struct niu *np, u32 off)
  6676. {
  6677. int err = niu_pci_eeprom_read(np, off);
  6678. u16 val;
  6679. if (err < 0)
  6680. return err;
  6681. val = (err & 0xff);
  6682. err = niu_pci_eeprom_read(np, off + 1);
  6683. if (err < 0)
  6684. return err;
  6685. val |= (err & 0xff) << 8;
  6686. return val;
  6687. }
  6688. static int __devinit niu_pci_vpd_get_propname(struct niu *np,
  6689. u32 off,
  6690. char *namebuf,
  6691. int namebuf_len)
  6692. {
  6693. int i;
  6694. for (i = 0; i < namebuf_len; i++) {
  6695. int err = niu_pci_eeprom_read(np, off + i);
  6696. if (err < 0)
  6697. return err;
  6698. *namebuf++ = err;
  6699. if (!err)
  6700. break;
  6701. }
  6702. if (i >= namebuf_len)
  6703. return -EINVAL;
  6704. return i + 1;
  6705. }
  6706. static void __devinit niu_vpd_parse_version(struct niu *np)
  6707. {
  6708. struct niu_vpd *vpd = &np->vpd;
  6709. int len = strlen(vpd->version) + 1;
  6710. const char *s = vpd->version;
  6711. int i;
  6712. for (i = 0; i < len - 5; i++) {
  6713. if (!strncmp(s + i, "FCode ", 5))
  6714. break;
  6715. }
  6716. if (i >= len - 5)
  6717. return;
  6718. s += i + 5;
  6719. sscanf(s, "%d.%d", &vpd->fcode_major, &vpd->fcode_minor);
  6720. niudbg(PROBE, "VPD_SCAN: FCODE major(%d) minor(%d)\n",
  6721. vpd->fcode_major, vpd->fcode_minor);
  6722. if (vpd->fcode_major > NIU_VPD_MIN_MAJOR ||
  6723. (vpd->fcode_major == NIU_VPD_MIN_MAJOR &&
  6724. vpd->fcode_minor >= NIU_VPD_MIN_MINOR))
  6725. np->flags |= NIU_FLAGS_VPD_VALID;
  6726. }
  6727. /* ESPC_PIO_EN_ENABLE must be set */
  6728. static int __devinit niu_pci_vpd_scan_props(struct niu *np,
  6729. u32 start, u32 end)
  6730. {
  6731. unsigned int found_mask = 0;
  6732. #define FOUND_MASK_MODEL 0x00000001
  6733. #define FOUND_MASK_BMODEL 0x00000002
  6734. #define FOUND_MASK_VERS 0x00000004
  6735. #define FOUND_MASK_MAC 0x00000008
  6736. #define FOUND_MASK_NMAC 0x00000010
  6737. #define FOUND_MASK_PHY 0x00000020
  6738. #define FOUND_MASK_ALL 0x0000003f
  6739. niudbg(PROBE, "VPD_SCAN: start[%x] end[%x]\n",
  6740. start, end);
  6741. while (start < end) {
  6742. int len, err, instance, type, prop_len;
  6743. char namebuf[64];
  6744. u8 *prop_buf;
  6745. int max_len;
  6746. if (found_mask == FOUND_MASK_ALL) {
  6747. niu_vpd_parse_version(np);
  6748. return 1;
  6749. }
  6750. err = niu_pci_eeprom_read(np, start + 2);
  6751. if (err < 0)
  6752. return err;
  6753. len = err;
  6754. start += 3;
  6755. instance = niu_pci_eeprom_read(np, start);
  6756. type = niu_pci_eeprom_read(np, start + 3);
  6757. prop_len = niu_pci_eeprom_read(np, start + 4);
  6758. err = niu_pci_vpd_get_propname(np, start + 5, namebuf, 64);
  6759. if (err < 0)
  6760. return err;
  6761. prop_buf = NULL;
  6762. max_len = 0;
  6763. if (!strcmp(namebuf, "model")) {
  6764. prop_buf = np->vpd.model;
  6765. max_len = NIU_VPD_MODEL_MAX;
  6766. found_mask |= FOUND_MASK_MODEL;
  6767. } else if (!strcmp(namebuf, "board-model")) {
  6768. prop_buf = np->vpd.board_model;
  6769. max_len = NIU_VPD_BD_MODEL_MAX;
  6770. found_mask |= FOUND_MASK_BMODEL;
  6771. } else if (!strcmp(namebuf, "version")) {
  6772. prop_buf = np->vpd.version;
  6773. max_len = NIU_VPD_VERSION_MAX;
  6774. found_mask |= FOUND_MASK_VERS;
  6775. } else if (!strcmp(namebuf, "local-mac-address")) {
  6776. prop_buf = np->vpd.local_mac;
  6777. max_len = ETH_ALEN;
  6778. found_mask |= FOUND_MASK_MAC;
  6779. } else if (!strcmp(namebuf, "num-mac-addresses")) {
  6780. prop_buf = &np->vpd.mac_num;
  6781. max_len = 1;
  6782. found_mask |= FOUND_MASK_NMAC;
  6783. } else if (!strcmp(namebuf, "phy-type")) {
  6784. prop_buf = np->vpd.phy_type;
  6785. max_len = NIU_VPD_PHY_TYPE_MAX;
  6786. found_mask |= FOUND_MASK_PHY;
  6787. }
  6788. if (max_len && prop_len > max_len) {
  6789. dev_err(np->device, PFX "Property '%s' length (%d) is "
  6790. "too long.\n", namebuf, prop_len);
  6791. return -EINVAL;
  6792. }
  6793. if (prop_buf) {
  6794. u32 off = start + 5 + err;
  6795. int i;
  6796. niudbg(PROBE, "VPD_SCAN: Reading in property [%s] "
  6797. "len[%d]\n", namebuf, prop_len);
  6798. for (i = 0; i < prop_len; i++)
  6799. *prop_buf++ = niu_pci_eeprom_read(np, off + i);
  6800. }
  6801. start += len;
  6802. }
  6803. return 0;
  6804. }
  6805. /* ESPC_PIO_EN_ENABLE must be set */
  6806. static void __devinit niu_pci_vpd_fetch(struct niu *np, u32 start)
  6807. {
  6808. u32 offset;
  6809. int err;
  6810. err = niu_pci_eeprom_read16_swp(np, start + 1);
  6811. if (err < 0)
  6812. return;
  6813. offset = err + 3;
  6814. while (start + offset < ESPC_EEPROM_SIZE) {
  6815. u32 here = start + offset;
  6816. u32 end;
  6817. err = niu_pci_eeprom_read(np, here);
  6818. if (err != 0x90)
  6819. return;
  6820. err = niu_pci_eeprom_read16_swp(np, here + 1);
  6821. if (err < 0)
  6822. return;
  6823. here = start + offset + 3;
  6824. end = start + offset + err;
  6825. offset += err;
  6826. err = niu_pci_vpd_scan_props(np, here, end);
  6827. if (err < 0 || err == 1)
  6828. return;
  6829. }
  6830. }
  6831. /* ESPC_PIO_EN_ENABLE must be set */
  6832. static u32 __devinit niu_pci_vpd_offset(struct niu *np)
  6833. {
  6834. u32 start = 0, end = ESPC_EEPROM_SIZE, ret;
  6835. int err;
  6836. while (start < end) {
  6837. ret = start;
  6838. /* ROM header signature? */
  6839. err = niu_pci_eeprom_read16(np, start + 0);
  6840. if (err != 0x55aa)
  6841. return 0;
  6842. /* Apply offset to PCI data structure. */
  6843. err = niu_pci_eeprom_read16(np, start + 23);
  6844. if (err < 0)
  6845. return 0;
  6846. start += err;
  6847. /* Check for "PCIR" signature. */
  6848. err = niu_pci_eeprom_read16(np, start + 0);
  6849. if (err != 0x5043)
  6850. return 0;
  6851. err = niu_pci_eeprom_read16(np, start + 2);
  6852. if (err != 0x4952)
  6853. return 0;
  6854. /* Check for OBP image type. */
  6855. err = niu_pci_eeprom_read(np, start + 20);
  6856. if (err < 0)
  6857. return 0;
  6858. if (err != 0x01) {
  6859. err = niu_pci_eeprom_read(np, ret + 2);
  6860. if (err < 0)
  6861. return 0;
  6862. start = ret + (err * 512);
  6863. continue;
  6864. }
  6865. err = niu_pci_eeprom_read16_swp(np, start + 8);
  6866. if (err < 0)
  6867. return err;
  6868. ret += err;
  6869. err = niu_pci_eeprom_read(np, ret + 0);
  6870. if (err != 0x82)
  6871. return 0;
  6872. return ret;
  6873. }
  6874. return 0;
  6875. }
  6876. static int __devinit niu_phy_type_prop_decode(struct niu *np,
  6877. const char *phy_prop)
  6878. {
  6879. if (!strcmp(phy_prop, "mif")) {
  6880. /* 1G copper, MII */
  6881. np->flags &= ~(NIU_FLAGS_FIBER |
  6882. NIU_FLAGS_10G);
  6883. np->mac_xcvr = MAC_XCVR_MII;
  6884. } else if (!strcmp(phy_prop, "xgf")) {
  6885. /* 10G fiber, XPCS */
  6886. np->flags |= (NIU_FLAGS_10G |
  6887. NIU_FLAGS_FIBER);
  6888. np->mac_xcvr = MAC_XCVR_XPCS;
  6889. } else if (!strcmp(phy_prop, "pcs")) {
  6890. /* 1G fiber, PCS */
  6891. np->flags &= ~NIU_FLAGS_10G;
  6892. np->flags |= NIU_FLAGS_FIBER;
  6893. np->mac_xcvr = MAC_XCVR_PCS;
  6894. } else if (!strcmp(phy_prop, "xgc")) {
  6895. /* 10G copper, XPCS */
  6896. np->flags |= NIU_FLAGS_10G;
  6897. np->flags &= ~NIU_FLAGS_FIBER;
  6898. np->mac_xcvr = MAC_XCVR_XPCS;
  6899. } else if (!strcmp(phy_prop, "xgsd") || !strcmp(phy_prop, "gsd")) {
  6900. /* 10G Serdes or 1G Serdes, default to 10G */
  6901. np->flags |= NIU_FLAGS_10G;
  6902. np->flags &= ~NIU_FLAGS_FIBER;
  6903. np->flags |= NIU_FLAGS_XCVR_SERDES;
  6904. np->mac_xcvr = MAC_XCVR_XPCS;
  6905. } else {
  6906. return -EINVAL;
  6907. }
  6908. return 0;
  6909. }
  6910. static int niu_pci_vpd_get_nports(struct niu *np)
  6911. {
  6912. int ports = 0;
  6913. if ((!strcmp(np->vpd.model, NIU_QGC_LP_MDL_STR)) ||
  6914. (!strcmp(np->vpd.model, NIU_QGC_PEM_MDL_STR)) ||
  6915. (!strcmp(np->vpd.model, NIU_MARAMBA_MDL_STR)) ||
  6916. (!strcmp(np->vpd.model, NIU_KIMI_MDL_STR)) ||
  6917. (!strcmp(np->vpd.model, NIU_ALONSO_MDL_STR))) {
  6918. ports = 4;
  6919. } else if ((!strcmp(np->vpd.model, NIU_2XGF_LP_MDL_STR)) ||
  6920. (!strcmp(np->vpd.model, NIU_2XGF_PEM_MDL_STR)) ||
  6921. (!strcmp(np->vpd.model, NIU_FOXXY_MDL_STR)) ||
  6922. (!strcmp(np->vpd.model, NIU_2XGF_MRVL_MDL_STR))) {
  6923. ports = 2;
  6924. }
  6925. return ports;
  6926. }
  6927. static void __devinit niu_pci_vpd_validate(struct niu *np)
  6928. {
  6929. struct net_device *dev = np->dev;
  6930. struct niu_vpd *vpd = &np->vpd;
  6931. u8 val8;
  6932. if (!is_valid_ether_addr(&vpd->local_mac[0])) {
  6933. dev_err(np->device, PFX "VPD MAC invalid, "
  6934. "falling back to SPROM.\n");
  6935. np->flags &= ~NIU_FLAGS_VPD_VALID;
  6936. return;
  6937. }
  6938. if (!strcmp(np->vpd.model, NIU_ALONSO_MDL_STR) ||
  6939. !strcmp(np->vpd.model, NIU_KIMI_MDL_STR)) {
  6940. np->flags |= NIU_FLAGS_10G;
  6941. np->flags &= ~NIU_FLAGS_FIBER;
  6942. np->flags |= NIU_FLAGS_XCVR_SERDES;
  6943. np->mac_xcvr = MAC_XCVR_PCS;
  6944. if (np->port > 1) {
  6945. np->flags |= NIU_FLAGS_FIBER;
  6946. np->flags &= ~NIU_FLAGS_10G;
  6947. }
  6948. if (np->flags & NIU_FLAGS_10G)
  6949. np->mac_xcvr = MAC_XCVR_XPCS;
  6950. } else if (!strcmp(np->vpd.model, NIU_FOXXY_MDL_STR)) {
  6951. np->flags |= (NIU_FLAGS_10G | NIU_FLAGS_FIBER |
  6952. NIU_FLAGS_HOTPLUG_PHY);
  6953. } else if (niu_phy_type_prop_decode(np, np->vpd.phy_type)) {
  6954. dev_err(np->device, PFX "Illegal phy string [%s].\n",
  6955. np->vpd.phy_type);
  6956. dev_err(np->device, PFX "Falling back to SPROM.\n");
  6957. np->flags &= ~NIU_FLAGS_VPD_VALID;
  6958. return;
  6959. }
  6960. memcpy(dev->perm_addr, vpd->local_mac, ETH_ALEN);
  6961. val8 = dev->perm_addr[5];
  6962. dev->perm_addr[5] += np->port;
  6963. if (dev->perm_addr[5] < val8)
  6964. dev->perm_addr[4]++;
  6965. memcpy(dev->dev_addr, dev->perm_addr, dev->addr_len);
  6966. }
  6967. static int __devinit niu_pci_probe_sprom(struct niu *np)
  6968. {
  6969. struct net_device *dev = np->dev;
  6970. int len, i;
  6971. u64 val, sum;
  6972. u8 val8;
  6973. val = (nr64(ESPC_VER_IMGSZ) & ESPC_VER_IMGSZ_IMGSZ);
  6974. val >>= ESPC_VER_IMGSZ_IMGSZ_SHIFT;
  6975. len = val / 4;
  6976. np->eeprom_len = len;
  6977. niudbg(PROBE, "SPROM: Image size %llu\n", (unsigned long long) val);
  6978. sum = 0;
  6979. for (i = 0; i < len; i++) {
  6980. val = nr64(ESPC_NCR(i));
  6981. sum += (val >> 0) & 0xff;
  6982. sum += (val >> 8) & 0xff;
  6983. sum += (val >> 16) & 0xff;
  6984. sum += (val >> 24) & 0xff;
  6985. }
  6986. niudbg(PROBE, "SPROM: Checksum %x\n", (int)(sum & 0xff));
  6987. if ((sum & 0xff) != 0xab) {
  6988. dev_err(np->device, PFX "Bad SPROM checksum "
  6989. "(%x, should be 0xab)\n", (int) (sum & 0xff));
  6990. return -EINVAL;
  6991. }
  6992. val = nr64(ESPC_PHY_TYPE);
  6993. switch (np->port) {
  6994. case 0:
  6995. val8 = (val & ESPC_PHY_TYPE_PORT0) >>
  6996. ESPC_PHY_TYPE_PORT0_SHIFT;
  6997. break;
  6998. case 1:
  6999. val8 = (val & ESPC_PHY_TYPE_PORT1) >>
  7000. ESPC_PHY_TYPE_PORT1_SHIFT;
  7001. break;
  7002. case 2:
  7003. val8 = (val & ESPC_PHY_TYPE_PORT2) >>
  7004. ESPC_PHY_TYPE_PORT2_SHIFT;
  7005. break;
  7006. case 3:
  7007. val8 = (val & ESPC_PHY_TYPE_PORT3) >>
  7008. ESPC_PHY_TYPE_PORT3_SHIFT;
  7009. break;
  7010. default:
  7011. dev_err(np->device, PFX "Bogus port number %u\n",
  7012. np->port);
  7013. return -EINVAL;
  7014. }
  7015. niudbg(PROBE, "SPROM: PHY type %x\n", val8);
  7016. switch (val8) {
  7017. case ESPC_PHY_TYPE_1G_COPPER:
  7018. /* 1G copper, MII */
  7019. np->flags &= ~(NIU_FLAGS_FIBER |
  7020. NIU_FLAGS_10G);
  7021. np->mac_xcvr = MAC_XCVR_MII;
  7022. break;
  7023. case ESPC_PHY_TYPE_1G_FIBER:
  7024. /* 1G fiber, PCS */
  7025. np->flags &= ~NIU_FLAGS_10G;
  7026. np->flags |= NIU_FLAGS_FIBER;
  7027. np->mac_xcvr = MAC_XCVR_PCS;
  7028. break;
  7029. case ESPC_PHY_TYPE_10G_COPPER:
  7030. /* 10G copper, XPCS */
  7031. np->flags |= NIU_FLAGS_10G;
  7032. np->flags &= ~NIU_FLAGS_FIBER;
  7033. np->mac_xcvr = MAC_XCVR_XPCS;
  7034. break;
  7035. case ESPC_PHY_TYPE_10G_FIBER:
  7036. /* 10G fiber, XPCS */
  7037. np->flags |= (NIU_FLAGS_10G |
  7038. NIU_FLAGS_FIBER);
  7039. np->mac_xcvr = MAC_XCVR_XPCS;
  7040. break;
  7041. default:
  7042. dev_err(np->device, PFX "Bogus SPROM phy type %u\n", val8);
  7043. return -EINVAL;
  7044. }
  7045. val = nr64(ESPC_MAC_ADDR0);
  7046. niudbg(PROBE, "SPROM: MAC_ADDR0[%08llx]\n",
  7047. (unsigned long long) val);
  7048. dev->perm_addr[0] = (val >> 0) & 0xff;
  7049. dev->perm_addr[1] = (val >> 8) & 0xff;
  7050. dev->perm_addr[2] = (val >> 16) & 0xff;
  7051. dev->perm_addr[3] = (val >> 24) & 0xff;
  7052. val = nr64(ESPC_MAC_ADDR1);
  7053. niudbg(PROBE, "SPROM: MAC_ADDR1[%08llx]\n",
  7054. (unsigned long long) val);
  7055. dev->perm_addr[4] = (val >> 0) & 0xff;
  7056. dev->perm_addr[5] = (val >> 8) & 0xff;
  7057. if (!is_valid_ether_addr(&dev->perm_addr[0])) {
  7058. dev_err(np->device, PFX "SPROM MAC address invalid\n");
  7059. dev_err(np->device, PFX "[ \n");
  7060. for (i = 0; i < 6; i++)
  7061. printk("%02x ", dev->perm_addr[i]);
  7062. printk("]\n");
  7063. return -EINVAL;
  7064. }
  7065. val8 = dev->perm_addr[5];
  7066. dev->perm_addr[5] += np->port;
  7067. if (dev->perm_addr[5] < val8)
  7068. dev->perm_addr[4]++;
  7069. memcpy(dev->dev_addr, dev->perm_addr, dev->addr_len);
  7070. val = nr64(ESPC_MOD_STR_LEN);
  7071. niudbg(PROBE, "SPROM: MOD_STR_LEN[%llu]\n",
  7072. (unsigned long long) val);
  7073. if (val >= 8 * 4)
  7074. return -EINVAL;
  7075. for (i = 0; i < val; i += 4) {
  7076. u64 tmp = nr64(ESPC_NCR(5 + (i / 4)));
  7077. np->vpd.model[i + 3] = (tmp >> 0) & 0xff;
  7078. np->vpd.model[i + 2] = (tmp >> 8) & 0xff;
  7079. np->vpd.model[i + 1] = (tmp >> 16) & 0xff;
  7080. np->vpd.model[i + 0] = (tmp >> 24) & 0xff;
  7081. }
  7082. np->vpd.model[val] = '\0';
  7083. val = nr64(ESPC_BD_MOD_STR_LEN);
  7084. niudbg(PROBE, "SPROM: BD_MOD_STR_LEN[%llu]\n",
  7085. (unsigned long long) val);
  7086. if (val >= 4 * 4)
  7087. return -EINVAL;
  7088. for (i = 0; i < val; i += 4) {
  7089. u64 tmp = nr64(ESPC_NCR(14 + (i / 4)));
  7090. np->vpd.board_model[i + 3] = (tmp >> 0) & 0xff;
  7091. np->vpd.board_model[i + 2] = (tmp >> 8) & 0xff;
  7092. np->vpd.board_model[i + 1] = (tmp >> 16) & 0xff;
  7093. np->vpd.board_model[i + 0] = (tmp >> 24) & 0xff;
  7094. }
  7095. np->vpd.board_model[val] = '\0';
  7096. np->vpd.mac_num =
  7097. nr64(ESPC_NUM_PORTS_MACS) & ESPC_NUM_PORTS_MACS_VAL;
  7098. niudbg(PROBE, "SPROM: NUM_PORTS_MACS[%d]\n",
  7099. np->vpd.mac_num);
  7100. return 0;
  7101. }
  7102. static int __devinit niu_get_and_validate_port(struct niu *np)
  7103. {
  7104. struct niu_parent *parent = np->parent;
  7105. if (np->port <= 1)
  7106. np->flags |= NIU_FLAGS_XMAC;
  7107. if (!parent->num_ports) {
  7108. if (parent->plat_type == PLAT_TYPE_NIU) {
  7109. parent->num_ports = 2;
  7110. } else {
  7111. parent->num_ports = niu_pci_vpd_get_nports(np);
  7112. if (!parent->num_ports) {
  7113. /* Fall back to SPROM as last resort.
  7114. * This will fail on most cards.
  7115. */
  7116. parent->num_ports = nr64(ESPC_NUM_PORTS_MACS) &
  7117. ESPC_NUM_PORTS_MACS_VAL;
  7118. /* All of the current probing methods fail on
  7119. * Maramba on-board parts.
  7120. */
  7121. if (!parent->num_ports)
  7122. parent->num_ports = 4;
  7123. }
  7124. }
  7125. }
  7126. niudbg(PROBE, "niu_get_and_validate_port: port[%d] num_ports[%d]\n",
  7127. np->port, parent->num_ports);
  7128. if (np->port >= parent->num_ports)
  7129. return -ENODEV;
  7130. return 0;
  7131. }
  7132. static int __devinit phy_record(struct niu_parent *parent,
  7133. struct phy_probe_info *p,
  7134. int dev_id_1, int dev_id_2, u8 phy_port,
  7135. int type)
  7136. {
  7137. u32 id = (dev_id_1 << 16) | dev_id_2;
  7138. u8 idx;
  7139. if (dev_id_1 < 0 || dev_id_2 < 0)
  7140. return 0;
  7141. if (type == PHY_TYPE_PMA_PMD || type == PHY_TYPE_PCS) {
  7142. if (((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_BCM8704) &&
  7143. ((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_MRVL88X2011) &&
  7144. ((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_BCM8706))
  7145. return 0;
  7146. } else {
  7147. if ((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_BCM5464R)
  7148. return 0;
  7149. }
  7150. pr_info("niu%d: Found PHY %08x type %s at phy_port %u\n",
  7151. parent->index, id,
  7152. (type == PHY_TYPE_PMA_PMD ?
  7153. "PMA/PMD" :
  7154. (type == PHY_TYPE_PCS ?
  7155. "PCS" : "MII")),
  7156. phy_port);
  7157. if (p->cur[type] >= NIU_MAX_PORTS) {
  7158. printk(KERN_ERR PFX "Too many PHY ports.\n");
  7159. return -EINVAL;
  7160. }
  7161. idx = p->cur[type];
  7162. p->phy_id[type][idx] = id;
  7163. p->phy_port[type][idx] = phy_port;
  7164. p->cur[type] = idx + 1;
  7165. return 0;
  7166. }
  7167. static int __devinit port_has_10g(struct phy_probe_info *p, int port)
  7168. {
  7169. int i;
  7170. for (i = 0; i < p->cur[PHY_TYPE_PMA_PMD]; i++) {
  7171. if (p->phy_port[PHY_TYPE_PMA_PMD][i] == port)
  7172. return 1;
  7173. }
  7174. for (i = 0; i < p->cur[PHY_TYPE_PCS]; i++) {
  7175. if (p->phy_port[PHY_TYPE_PCS][i] == port)
  7176. return 1;
  7177. }
  7178. return 0;
  7179. }
  7180. static int __devinit count_10g_ports(struct phy_probe_info *p, int *lowest)
  7181. {
  7182. int port, cnt;
  7183. cnt = 0;
  7184. *lowest = 32;
  7185. for (port = 8; port < 32; port++) {
  7186. if (port_has_10g(p, port)) {
  7187. if (!cnt)
  7188. *lowest = port;
  7189. cnt++;
  7190. }
  7191. }
  7192. return cnt;
  7193. }
  7194. static int __devinit count_1g_ports(struct phy_probe_info *p, int *lowest)
  7195. {
  7196. *lowest = 32;
  7197. if (p->cur[PHY_TYPE_MII])
  7198. *lowest = p->phy_port[PHY_TYPE_MII][0];
  7199. return p->cur[PHY_TYPE_MII];
  7200. }
  7201. static void __devinit niu_n2_divide_channels(struct niu_parent *parent)
  7202. {
  7203. int num_ports = parent->num_ports;
  7204. int i;
  7205. for (i = 0; i < num_ports; i++) {
  7206. parent->rxchan_per_port[i] = (16 / num_ports);
  7207. parent->txchan_per_port[i] = (16 / num_ports);
  7208. pr_info(PFX "niu%d: Port %u [%u RX chans] "
  7209. "[%u TX chans]\n",
  7210. parent->index, i,
  7211. parent->rxchan_per_port[i],
  7212. parent->txchan_per_port[i]);
  7213. }
  7214. }
  7215. static void __devinit niu_divide_channels(struct niu_parent *parent,
  7216. int num_10g, int num_1g)
  7217. {
  7218. int num_ports = parent->num_ports;
  7219. int rx_chans_per_10g, rx_chans_per_1g;
  7220. int tx_chans_per_10g, tx_chans_per_1g;
  7221. int i, tot_rx, tot_tx;
  7222. if (!num_10g || !num_1g) {
  7223. rx_chans_per_10g = rx_chans_per_1g =
  7224. (NIU_NUM_RXCHAN / num_ports);
  7225. tx_chans_per_10g = tx_chans_per_1g =
  7226. (NIU_NUM_TXCHAN / num_ports);
  7227. } else {
  7228. rx_chans_per_1g = NIU_NUM_RXCHAN / 8;
  7229. rx_chans_per_10g = (NIU_NUM_RXCHAN -
  7230. (rx_chans_per_1g * num_1g)) /
  7231. num_10g;
  7232. tx_chans_per_1g = NIU_NUM_TXCHAN / 6;
  7233. tx_chans_per_10g = (NIU_NUM_TXCHAN -
  7234. (tx_chans_per_1g * num_1g)) /
  7235. num_10g;
  7236. }
  7237. tot_rx = tot_tx = 0;
  7238. for (i = 0; i < num_ports; i++) {
  7239. int type = phy_decode(parent->port_phy, i);
  7240. if (type == PORT_TYPE_10G) {
  7241. parent->rxchan_per_port[i] = rx_chans_per_10g;
  7242. parent->txchan_per_port[i] = tx_chans_per_10g;
  7243. } else {
  7244. parent->rxchan_per_port[i] = rx_chans_per_1g;
  7245. parent->txchan_per_port[i] = tx_chans_per_1g;
  7246. }
  7247. pr_info(PFX "niu%d: Port %u [%u RX chans] "
  7248. "[%u TX chans]\n",
  7249. parent->index, i,
  7250. parent->rxchan_per_port[i],
  7251. parent->txchan_per_port[i]);
  7252. tot_rx += parent->rxchan_per_port[i];
  7253. tot_tx += parent->txchan_per_port[i];
  7254. }
  7255. if (tot_rx > NIU_NUM_RXCHAN) {
  7256. printk(KERN_ERR PFX "niu%d: Too many RX channels (%d), "
  7257. "resetting to one per port.\n",
  7258. parent->index, tot_rx);
  7259. for (i = 0; i < num_ports; i++)
  7260. parent->rxchan_per_port[i] = 1;
  7261. }
  7262. if (tot_tx > NIU_NUM_TXCHAN) {
  7263. printk(KERN_ERR PFX "niu%d: Too many TX channels (%d), "
  7264. "resetting to one per port.\n",
  7265. parent->index, tot_tx);
  7266. for (i = 0; i < num_ports; i++)
  7267. parent->txchan_per_port[i] = 1;
  7268. }
  7269. if (tot_rx < NIU_NUM_RXCHAN || tot_tx < NIU_NUM_TXCHAN) {
  7270. printk(KERN_WARNING PFX "niu%d: Driver bug, wasted channels, "
  7271. "RX[%d] TX[%d]\n",
  7272. parent->index, tot_rx, tot_tx);
  7273. }
  7274. }
  7275. static void __devinit niu_divide_rdc_groups(struct niu_parent *parent,
  7276. int num_10g, int num_1g)
  7277. {
  7278. int i, num_ports = parent->num_ports;
  7279. int rdc_group, rdc_groups_per_port;
  7280. int rdc_channel_base;
  7281. rdc_group = 0;
  7282. rdc_groups_per_port = NIU_NUM_RDC_TABLES / num_ports;
  7283. rdc_channel_base = 0;
  7284. for (i = 0; i < num_ports; i++) {
  7285. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[i];
  7286. int grp, num_channels = parent->rxchan_per_port[i];
  7287. int this_channel_offset;
  7288. tp->first_table_num = rdc_group;
  7289. tp->num_tables = rdc_groups_per_port;
  7290. this_channel_offset = 0;
  7291. for (grp = 0; grp < tp->num_tables; grp++) {
  7292. struct rdc_table *rt = &tp->tables[grp];
  7293. int slot;
  7294. pr_info(PFX "niu%d: Port %d RDC tbl(%d) [ ",
  7295. parent->index, i, tp->first_table_num + grp);
  7296. for (slot = 0; slot < NIU_RDC_TABLE_SLOTS; slot++) {
  7297. rt->rxdma_channel[slot] =
  7298. rdc_channel_base + this_channel_offset;
  7299. printk("%d ", rt->rxdma_channel[slot]);
  7300. if (++this_channel_offset == num_channels)
  7301. this_channel_offset = 0;
  7302. }
  7303. printk("]\n");
  7304. }
  7305. parent->rdc_default[i] = rdc_channel_base;
  7306. rdc_channel_base += num_channels;
  7307. rdc_group += rdc_groups_per_port;
  7308. }
  7309. }
  7310. static int __devinit fill_phy_probe_info(struct niu *np,
  7311. struct niu_parent *parent,
  7312. struct phy_probe_info *info)
  7313. {
  7314. unsigned long flags;
  7315. int port, err;
  7316. memset(info, 0, sizeof(*info));
  7317. /* Port 0 to 7 are reserved for onboard Serdes, probe the rest. */
  7318. niu_lock_parent(np, flags);
  7319. err = 0;
  7320. for (port = 8; port < 32; port++) {
  7321. int dev_id_1, dev_id_2;
  7322. dev_id_1 = mdio_read(np, port,
  7323. NIU_PMA_PMD_DEV_ADDR, MII_PHYSID1);
  7324. dev_id_2 = mdio_read(np, port,
  7325. NIU_PMA_PMD_DEV_ADDR, MII_PHYSID2);
  7326. err = phy_record(parent, info, dev_id_1, dev_id_2, port,
  7327. PHY_TYPE_PMA_PMD);
  7328. if (err)
  7329. break;
  7330. dev_id_1 = mdio_read(np, port,
  7331. NIU_PCS_DEV_ADDR, MII_PHYSID1);
  7332. dev_id_2 = mdio_read(np, port,
  7333. NIU_PCS_DEV_ADDR, MII_PHYSID2);
  7334. err = phy_record(parent, info, dev_id_1, dev_id_2, port,
  7335. PHY_TYPE_PCS);
  7336. if (err)
  7337. break;
  7338. dev_id_1 = mii_read(np, port, MII_PHYSID1);
  7339. dev_id_2 = mii_read(np, port, MII_PHYSID2);
  7340. err = phy_record(parent, info, dev_id_1, dev_id_2, port,
  7341. PHY_TYPE_MII);
  7342. if (err)
  7343. break;
  7344. }
  7345. niu_unlock_parent(np, flags);
  7346. return err;
  7347. }
  7348. static int __devinit walk_phys(struct niu *np, struct niu_parent *parent)
  7349. {
  7350. struct phy_probe_info *info = &parent->phy_probe_info;
  7351. int lowest_10g, lowest_1g;
  7352. int num_10g, num_1g;
  7353. u32 val;
  7354. int err;
  7355. num_10g = num_1g = 0;
  7356. if (!strcmp(np->vpd.model, NIU_ALONSO_MDL_STR) ||
  7357. !strcmp(np->vpd.model, NIU_KIMI_MDL_STR)) {
  7358. num_10g = 0;
  7359. num_1g = 2;
  7360. parent->plat_type = PLAT_TYPE_ATCA_CP3220;
  7361. parent->num_ports = 4;
  7362. val = (phy_encode(PORT_TYPE_1G, 0) |
  7363. phy_encode(PORT_TYPE_1G, 1) |
  7364. phy_encode(PORT_TYPE_1G, 2) |
  7365. phy_encode(PORT_TYPE_1G, 3));
  7366. } else if (!strcmp(np->vpd.model, NIU_FOXXY_MDL_STR)) {
  7367. num_10g = 2;
  7368. num_1g = 0;
  7369. parent->num_ports = 2;
  7370. val = (phy_encode(PORT_TYPE_10G, 0) |
  7371. phy_encode(PORT_TYPE_10G, 1));
  7372. } else if ((np->flags & NIU_FLAGS_XCVR_SERDES) &&
  7373. (parent->plat_type == PLAT_TYPE_NIU)) {
  7374. /* this is the Monza case */
  7375. if (np->flags & NIU_FLAGS_10G) {
  7376. val = (phy_encode(PORT_TYPE_10G, 0) |
  7377. phy_encode(PORT_TYPE_10G, 1));
  7378. } else {
  7379. val = (phy_encode(PORT_TYPE_1G, 0) |
  7380. phy_encode(PORT_TYPE_1G, 1));
  7381. }
  7382. } else {
  7383. err = fill_phy_probe_info(np, parent, info);
  7384. if (err)
  7385. return err;
  7386. num_10g = count_10g_ports(info, &lowest_10g);
  7387. num_1g = count_1g_ports(info, &lowest_1g);
  7388. switch ((num_10g << 4) | num_1g) {
  7389. case 0x24:
  7390. if (lowest_1g == 10)
  7391. parent->plat_type = PLAT_TYPE_VF_P0;
  7392. else if (lowest_1g == 26)
  7393. parent->plat_type = PLAT_TYPE_VF_P1;
  7394. else
  7395. goto unknown_vg_1g_port;
  7396. /* fallthru */
  7397. case 0x22:
  7398. val = (phy_encode(PORT_TYPE_10G, 0) |
  7399. phy_encode(PORT_TYPE_10G, 1) |
  7400. phy_encode(PORT_TYPE_1G, 2) |
  7401. phy_encode(PORT_TYPE_1G, 3));
  7402. break;
  7403. case 0x20:
  7404. val = (phy_encode(PORT_TYPE_10G, 0) |
  7405. phy_encode(PORT_TYPE_10G, 1));
  7406. break;
  7407. case 0x10:
  7408. val = phy_encode(PORT_TYPE_10G, np->port);
  7409. break;
  7410. case 0x14:
  7411. if (lowest_1g == 10)
  7412. parent->plat_type = PLAT_TYPE_VF_P0;
  7413. else if (lowest_1g == 26)
  7414. parent->plat_type = PLAT_TYPE_VF_P1;
  7415. else
  7416. goto unknown_vg_1g_port;
  7417. /* fallthru */
  7418. case 0x13:
  7419. if ((lowest_10g & 0x7) == 0)
  7420. val = (phy_encode(PORT_TYPE_10G, 0) |
  7421. phy_encode(PORT_TYPE_1G, 1) |
  7422. phy_encode(PORT_TYPE_1G, 2) |
  7423. phy_encode(PORT_TYPE_1G, 3));
  7424. else
  7425. val = (phy_encode(PORT_TYPE_1G, 0) |
  7426. phy_encode(PORT_TYPE_10G, 1) |
  7427. phy_encode(PORT_TYPE_1G, 2) |
  7428. phy_encode(PORT_TYPE_1G, 3));
  7429. break;
  7430. case 0x04:
  7431. if (lowest_1g == 10)
  7432. parent->plat_type = PLAT_TYPE_VF_P0;
  7433. else if (lowest_1g == 26)
  7434. parent->plat_type = PLAT_TYPE_VF_P1;
  7435. else
  7436. goto unknown_vg_1g_port;
  7437. val = (phy_encode(PORT_TYPE_1G, 0) |
  7438. phy_encode(PORT_TYPE_1G, 1) |
  7439. phy_encode(PORT_TYPE_1G, 2) |
  7440. phy_encode(PORT_TYPE_1G, 3));
  7441. break;
  7442. default:
  7443. printk(KERN_ERR PFX "Unsupported port config "
  7444. "10G[%d] 1G[%d]\n",
  7445. num_10g, num_1g);
  7446. return -EINVAL;
  7447. }
  7448. }
  7449. parent->port_phy = val;
  7450. if (parent->plat_type == PLAT_TYPE_NIU)
  7451. niu_n2_divide_channels(parent);
  7452. else
  7453. niu_divide_channels(parent, num_10g, num_1g);
  7454. niu_divide_rdc_groups(parent, num_10g, num_1g);
  7455. return 0;
  7456. unknown_vg_1g_port:
  7457. printk(KERN_ERR PFX "Cannot identify platform type, 1gport=%d\n",
  7458. lowest_1g);
  7459. return -EINVAL;
  7460. }
  7461. static int __devinit niu_probe_ports(struct niu *np)
  7462. {
  7463. struct niu_parent *parent = np->parent;
  7464. int err, i;
  7465. niudbg(PROBE, "niu_probe_ports(): port_phy[%08x]\n",
  7466. parent->port_phy);
  7467. if (parent->port_phy == PORT_PHY_UNKNOWN) {
  7468. err = walk_phys(np, parent);
  7469. if (err)
  7470. return err;
  7471. niu_set_ldg_timer_res(np, 2);
  7472. for (i = 0; i <= LDN_MAX; i++)
  7473. niu_ldn_irq_enable(np, i, 0);
  7474. }
  7475. if (parent->port_phy == PORT_PHY_INVALID)
  7476. return -EINVAL;
  7477. return 0;
  7478. }
  7479. static int __devinit niu_classifier_swstate_init(struct niu *np)
  7480. {
  7481. struct niu_classifier *cp = &np->clas;
  7482. niudbg(PROBE, "niu_classifier_swstate_init: num_tcam(%d)\n",
  7483. np->parent->tcam_num_entries);
  7484. cp->tcam_top = (u16) np->port;
  7485. cp->tcam_sz = np->parent->tcam_num_entries / np->parent->num_ports;
  7486. cp->h1_init = 0xffffffff;
  7487. cp->h2_init = 0xffff;
  7488. return fflp_early_init(np);
  7489. }
  7490. static void __devinit niu_link_config_init(struct niu *np)
  7491. {
  7492. struct niu_link_config *lp = &np->link_config;
  7493. lp->advertising = (ADVERTISED_10baseT_Half |
  7494. ADVERTISED_10baseT_Full |
  7495. ADVERTISED_100baseT_Half |
  7496. ADVERTISED_100baseT_Full |
  7497. ADVERTISED_1000baseT_Half |
  7498. ADVERTISED_1000baseT_Full |
  7499. ADVERTISED_10000baseT_Full |
  7500. ADVERTISED_Autoneg);
  7501. lp->speed = lp->active_speed = SPEED_INVALID;
  7502. lp->duplex = DUPLEX_FULL;
  7503. lp->active_duplex = DUPLEX_INVALID;
  7504. lp->autoneg = 1;
  7505. #if 0
  7506. lp->loopback_mode = LOOPBACK_MAC;
  7507. lp->active_speed = SPEED_10000;
  7508. lp->active_duplex = DUPLEX_FULL;
  7509. #else
  7510. lp->loopback_mode = LOOPBACK_DISABLED;
  7511. #endif
  7512. }
  7513. static int __devinit niu_init_mac_ipp_pcs_base(struct niu *np)
  7514. {
  7515. switch (np->port) {
  7516. case 0:
  7517. np->mac_regs = np->regs + XMAC_PORT0_OFF;
  7518. np->ipp_off = 0x00000;
  7519. np->pcs_off = 0x04000;
  7520. np->xpcs_off = 0x02000;
  7521. break;
  7522. case 1:
  7523. np->mac_regs = np->regs + XMAC_PORT1_OFF;
  7524. np->ipp_off = 0x08000;
  7525. np->pcs_off = 0x0a000;
  7526. np->xpcs_off = 0x08000;
  7527. break;
  7528. case 2:
  7529. np->mac_regs = np->regs + BMAC_PORT2_OFF;
  7530. np->ipp_off = 0x04000;
  7531. np->pcs_off = 0x0e000;
  7532. np->xpcs_off = ~0UL;
  7533. break;
  7534. case 3:
  7535. np->mac_regs = np->regs + BMAC_PORT3_OFF;
  7536. np->ipp_off = 0x0c000;
  7537. np->pcs_off = 0x12000;
  7538. np->xpcs_off = ~0UL;
  7539. break;
  7540. default:
  7541. dev_err(np->device, PFX "Port %u is invalid, cannot "
  7542. "compute MAC block offset.\n", np->port);
  7543. return -EINVAL;
  7544. }
  7545. return 0;
  7546. }
  7547. static void __devinit niu_try_msix(struct niu *np, u8 *ldg_num_map)
  7548. {
  7549. struct msix_entry msi_vec[NIU_NUM_LDG];
  7550. struct niu_parent *parent = np->parent;
  7551. struct pci_dev *pdev = np->pdev;
  7552. int i, num_irqs, err;
  7553. u8 first_ldg;
  7554. first_ldg = (NIU_NUM_LDG / parent->num_ports) * np->port;
  7555. for (i = 0; i < (NIU_NUM_LDG / parent->num_ports); i++)
  7556. ldg_num_map[i] = first_ldg + i;
  7557. num_irqs = (parent->rxchan_per_port[np->port] +
  7558. parent->txchan_per_port[np->port] +
  7559. (np->port == 0 ? 3 : 1));
  7560. BUG_ON(num_irqs > (NIU_NUM_LDG / parent->num_ports));
  7561. retry:
  7562. for (i = 0; i < num_irqs; i++) {
  7563. msi_vec[i].vector = 0;
  7564. msi_vec[i].entry = i;
  7565. }
  7566. err = pci_enable_msix(pdev, msi_vec, num_irqs);
  7567. if (err < 0) {
  7568. np->flags &= ~NIU_FLAGS_MSIX;
  7569. return;
  7570. }
  7571. if (err > 0) {
  7572. num_irqs = err;
  7573. goto retry;
  7574. }
  7575. np->flags |= NIU_FLAGS_MSIX;
  7576. for (i = 0; i < num_irqs; i++)
  7577. np->ldg[i].irq = msi_vec[i].vector;
  7578. np->num_ldg = num_irqs;
  7579. }
  7580. static int __devinit niu_n2_irq_init(struct niu *np, u8 *ldg_num_map)
  7581. {
  7582. #ifdef CONFIG_SPARC64
  7583. struct of_device *op = np->op;
  7584. const u32 *int_prop;
  7585. int i;
  7586. int_prop = of_get_property(op->node, "interrupts", NULL);
  7587. if (!int_prop)
  7588. return -ENODEV;
  7589. for (i = 0; i < op->num_irqs; i++) {
  7590. ldg_num_map[i] = int_prop[i];
  7591. np->ldg[i].irq = op->irqs[i];
  7592. }
  7593. np->num_ldg = op->num_irqs;
  7594. return 0;
  7595. #else
  7596. return -EINVAL;
  7597. #endif
  7598. }
  7599. static int __devinit niu_ldg_init(struct niu *np)
  7600. {
  7601. struct niu_parent *parent = np->parent;
  7602. u8 ldg_num_map[NIU_NUM_LDG];
  7603. int first_chan, num_chan;
  7604. int i, err, ldg_rotor;
  7605. u8 port;
  7606. np->num_ldg = 1;
  7607. np->ldg[0].irq = np->dev->irq;
  7608. if (parent->plat_type == PLAT_TYPE_NIU) {
  7609. err = niu_n2_irq_init(np, ldg_num_map);
  7610. if (err)
  7611. return err;
  7612. } else
  7613. niu_try_msix(np, ldg_num_map);
  7614. port = np->port;
  7615. for (i = 0; i < np->num_ldg; i++) {
  7616. struct niu_ldg *lp = &np->ldg[i];
  7617. netif_napi_add(np->dev, &lp->napi, niu_poll, 64);
  7618. lp->np = np;
  7619. lp->ldg_num = ldg_num_map[i];
  7620. lp->timer = 2; /* XXX */
  7621. /* On N2 NIU the firmware has setup the SID mappings so they go
  7622. * to the correct values that will route the LDG to the proper
  7623. * interrupt in the NCU interrupt table.
  7624. */
  7625. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  7626. err = niu_set_ldg_sid(np, lp->ldg_num, port, i);
  7627. if (err)
  7628. return err;
  7629. }
  7630. }
  7631. /* We adopt the LDG assignment ordering used by the N2 NIU
  7632. * 'interrupt' properties because that simplifies a lot of
  7633. * things. This ordering is:
  7634. *
  7635. * MAC
  7636. * MIF (if port zero)
  7637. * SYSERR (if port zero)
  7638. * RX channels
  7639. * TX channels
  7640. */
  7641. ldg_rotor = 0;
  7642. err = niu_ldg_assign_ldn(np, parent, ldg_num_map[ldg_rotor],
  7643. LDN_MAC(port));
  7644. if (err)
  7645. return err;
  7646. ldg_rotor++;
  7647. if (ldg_rotor == np->num_ldg)
  7648. ldg_rotor = 0;
  7649. if (port == 0) {
  7650. err = niu_ldg_assign_ldn(np, parent,
  7651. ldg_num_map[ldg_rotor],
  7652. LDN_MIF);
  7653. if (err)
  7654. return err;
  7655. ldg_rotor++;
  7656. if (ldg_rotor == np->num_ldg)
  7657. ldg_rotor = 0;
  7658. err = niu_ldg_assign_ldn(np, parent,
  7659. ldg_num_map[ldg_rotor],
  7660. LDN_DEVICE_ERROR);
  7661. if (err)
  7662. return err;
  7663. ldg_rotor++;
  7664. if (ldg_rotor == np->num_ldg)
  7665. ldg_rotor = 0;
  7666. }
  7667. first_chan = 0;
  7668. for (i = 0; i < port; i++)
  7669. first_chan += parent->rxchan_per_port[port];
  7670. num_chan = parent->rxchan_per_port[port];
  7671. for (i = first_chan; i < (first_chan + num_chan); i++) {
  7672. err = niu_ldg_assign_ldn(np, parent,
  7673. ldg_num_map[ldg_rotor],
  7674. LDN_RXDMA(i));
  7675. if (err)
  7676. return err;
  7677. ldg_rotor++;
  7678. if (ldg_rotor == np->num_ldg)
  7679. ldg_rotor = 0;
  7680. }
  7681. first_chan = 0;
  7682. for (i = 0; i < port; i++)
  7683. first_chan += parent->txchan_per_port[port];
  7684. num_chan = parent->txchan_per_port[port];
  7685. for (i = first_chan; i < (first_chan + num_chan); i++) {
  7686. err = niu_ldg_assign_ldn(np, parent,
  7687. ldg_num_map[ldg_rotor],
  7688. LDN_TXDMA(i));
  7689. if (err)
  7690. return err;
  7691. ldg_rotor++;
  7692. if (ldg_rotor == np->num_ldg)
  7693. ldg_rotor = 0;
  7694. }
  7695. return 0;
  7696. }
  7697. static void __devexit niu_ldg_free(struct niu *np)
  7698. {
  7699. if (np->flags & NIU_FLAGS_MSIX)
  7700. pci_disable_msix(np->pdev);
  7701. }
  7702. static int __devinit niu_get_of_props(struct niu *np)
  7703. {
  7704. #ifdef CONFIG_SPARC64
  7705. struct net_device *dev = np->dev;
  7706. struct device_node *dp;
  7707. const char *phy_type;
  7708. const u8 *mac_addr;
  7709. const char *model;
  7710. int prop_len;
  7711. if (np->parent->plat_type == PLAT_TYPE_NIU)
  7712. dp = np->op->node;
  7713. else
  7714. dp = pci_device_to_OF_node(np->pdev);
  7715. phy_type = of_get_property(dp, "phy-type", &prop_len);
  7716. if (!phy_type) {
  7717. dev_err(np->device, PFX "%s: OF node lacks "
  7718. "phy-type property\n",
  7719. dp->full_name);
  7720. return -EINVAL;
  7721. }
  7722. if (!strcmp(phy_type, "none"))
  7723. return -ENODEV;
  7724. strcpy(np->vpd.phy_type, phy_type);
  7725. if (niu_phy_type_prop_decode(np, np->vpd.phy_type)) {
  7726. dev_err(np->device, PFX "%s: Illegal phy string [%s].\n",
  7727. dp->full_name, np->vpd.phy_type);
  7728. return -EINVAL;
  7729. }
  7730. mac_addr = of_get_property(dp, "local-mac-address", &prop_len);
  7731. if (!mac_addr) {
  7732. dev_err(np->device, PFX "%s: OF node lacks "
  7733. "local-mac-address property\n",
  7734. dp->full_name);
  7735. return -EINVAL;
  7736. }
  7737. if (prop_len != dev->addr_len) {
  7738. dev_err(np->device, PFX "%s: OF MAC address prop len (%d) "
  7739. "is wrong.\n",
  7740. dp->full_name, prop_len);
  7741. }
  7742. memcpy(dev->perm_addr, mac_addr, dev->addr_len);
  7743. if (!is_valid_ether_addr(&dev->perm_addr[0])) {
  7744. int i;
  7745. dev_err(np->device, PFX "%s: OF MAC address is invalid\n",
  7746. dp->full_name);
  7747. dev_err(np->device, PFX "%s: [ \n",
  7748. dp->full_name);
  7749. for (i = 0; i < 6; i++)
  7750. printk("%02x ", dev->perm_addr[i]);
  7751. printk("]\n");
  7752. return -EINVAL;
  7753. }
  7754. memcpy(dev->dev_addr, dev->perm_addr, dev->addr_len);
  7755. model = of_get_property(dp, "model", &prop_len);
  7756. if (model)
  7757. strcpy(np->vpd.model, model);
  7758. return 0;
  7759. #else
  7760. return -EINVAL;
  7761. #endif
  7762. }
  7763. static int __devinit niu_get_invariants(struct niu *np)
  7764. {
  7765. int err, have_props;
  7766. u32 offset;
  7767. err = niu_get_of_props(np);
  7768. if (err == -ENODEV)
  7769. return err;
  7770. have_props = !err;
  7771. err = niu_init_mac_ipp_pcs_base(np);
  7772. if (err)
  7773. return err;
  7774. if (have_props) {
  7775. err = niu_get_and_validate_port(np);
  7776. if (err)
  7777. return err;
  7778. } else {
  7779. if (np->parent->plat_type == PLAT_TYPE_NIU)
  7780. return -EINVAL;
  7781. nw64(ESPC_PIO_EN, ESPC_PIO_EN_ENABLE);
  7782. offset = niu_pci_vpd_offset(np);
  7783. niudbg(PROBE, "niu_get_invariants: VPD offset [%08x]\n",
  7784. offset);
  7785. if (offset)
  7786. niu_pci_vpd_fetch(np, offset);
  7787. nw64(ESPC_PIO_EN, 0);
  7788. if (np->flags & NIU_FLAGS_VPD_VALID) {
  7789. niu_pci_vpd_validate(np);
  7790. err = niu_get_and_validate_port(np);
  7791. if (err)
  7792. return err;
  7793. }
  7794. if (!(np->flags & NIU_FLAGS_VPD_VALID)) {
  7795. err = niu_get_and_validate_port(np);
  7796. if (err)
  7797. return err;
  7798. err = niu_pci_probe_sprom(np);
  7799. if (err)
  7800. return err;
  7801. }
  7802. }
  7803. err = niu_probe_ports(np);
  7804. if (err)
  7805. return err;
  7806. niu_ldg_init(np);
  7807. niu_classifier_swstate_init(np);
  7808. niu_link_config_init(np);
  7809. err = niu_determine_phy_disposition(np);
  7810. if (!err)
  7811. err = niu_init_link(np);
  7812. return err;
  7813. }
  7814. static LIST_HEAD(niu_parent_list);
  7815. static DEFINE_MUTEX(niu_parent_lock);
  7816. static int niu_parent_index;
  7817. static ssize_t show_port_phy(struct device *dev,
  7818. struct device_attribute *attr, char *buf)
  7819. {
  7820. struct platform_device *plat_dev = to_platform_device(dev);
  7821. struct niu_parent *p = plat_dev->dev.platform_data;
  7822. u32 port_phy = p->port_phy;
  7823. char *orig_buf = buf;
  7824. int i;
  7825. if (port_phy == PORT_PHY_UNKNOWN ||
  7826. port_phy == PORT_PHY_INVALID)
  7827. return 0;
  7828. for (i = 0; i < p->num_ports; i++) {
  7829. const char *type_str;
  7830. int type;
  7831. type = phy_decode(port_phy, i);
  7832. if (type == PORT_TYPE_10G)
  7833. type_str = "10G";
  7834. else
  7835. type_str = "1G";
  7836. buf += sprintf(buf,
  7837. (i == 0) ? "%s" : " %s",
  7838. type_str);
  7839. }
  7840. buf += sprintf(buf, "\n");
  7841. return buf - orig_buf;
  7842. }
  7843. static ssize_t show_plat_type(struct device *dev,
  7844. struct device_attribute *attr, char *buf)
  7845. {
  7846. struct platform_device *plat_dev = to_platform_device(dev);
  7847. struct niu_parent *p = plat_dev->dev.platform_data;
  7848. const char *type_str;
  7849. switch (p->plat_type) {
  7850. case PLAT_TYPE_ATLAS:
  7851. type_str = "atlas";
  7852. break;
  7853. case PLAT_TYPE_NIU:
  7854. type_str = "niu";
  7855. break;
  7856. case PLAT_TYPE_VF_P0:
  7857. type_str = "vf_p0";
  7858. break;
  7859. case PLAT_TYPE_VF_P1:
  7860. type_str = "vf_p1";
  7861. break;
  7862. default:
  7863. type_str = "unknown";
  7864. break;
  7865. }
  7866. return sprintf(buf, "%s\n", type_str);
  7867. }
  7868. static ssize_t __show_chan_per_port(struct device *dev,
  7869. struct device_attribute *attr, char *buf,
  7870. int rx)
  7871. {
  7872. struct platform_device *plat_dev = to_platform_device(dev);
  7873. struct niu_parent *p = plat_dev->dev.platform_data;
  7874. char *orig_buf = buf;
  7875. u8 *arr;
  7876. int i;
  7877. arr = (rx ? p->rxchan_per_port : p->txchan_per_port);
  7878. for (i = 0; i < p->num_ports; i++) {
  7879. buf += sprintf(buf,
  7880. (i == 0) ? "%d" : " %d",
  7881. arr[i]);
  7882. }
  7883. buf += sprintf(buf, "\n");
  7884. return buf - orig_buf;
  7885. }
  7886. static ssize_t show_rxchan_per_port(struct device *dev,
  7887. struct device_attribute *attr, char *buf)
  7888. {
  7889. return __show_chan_per_port(dev, attr, buf, 1);
  7890. }
  7891. static ssize_t show_txchan_per_port(struct device *dev,
  7892. struct device_attribute *attr, char *buf)
  7893. {
  7894. return __show_chan_per_port(dev, attr, buf, 1);
  7895. }
  7896. static ssize_t show_num_ports(struct device *dev,
  7897. struct device_attribute *attr, char *buf)
  7898. {
  7899. struct platform_device *plat_dev = to_platform_device(dev);
  7900. struct niu_parent *p = plat_dev->dev.platform_data;
  7901. return sprintf(buf, "%d\n", p->num_ports);
  7902. }
  7903. static struct device_attribute niu_parent_attributes[] = {
  7904. __ATTR(port_phy, S_IRUGO, show_port_phy, NULL),
  7905. __ATTR(plat_type, S_IRUGO, show_plat_type, NULL),
  7906. __ATTR(rxchan_per_port, S_IRUGO, show_rxchan_per_port, NULL),
  7907. __ATTR(txchan_per_port, S_IRUGO, show_txchan_per_port, NULL),
  7908. __ATTR(num_ports, S_IRUGO, show_num_ports, NULL),
  7909. {}
  7910. };
  7911. static struct niu_parent * __devinit niu_new_parent(struct niu *np,
  7912. union niu_parent_id *id,
  7913. u8 ptype)
  7914. {
  7915. struct platform_device *plat_dev;
  7916. struct niu_parent *p;
  7917. int i;
  7918. niudbg(PROBE, "niu_new_parent: Creating new parent.\n");
  7919. plat_dev = platform_device_register_simple("niu", niu_parent_index,
  7920. NULL, 0);
  7921. if (!plat_dev)
  7922. return NULL;
  7923. for (i = 0; attr_name(niu_parent_attributes[i]); i++) {
  7924. int err = device_create_file(&plat_dev->dev,
  7925. &niu_parent_attributes[i]);
  7926. if (err)
  7927. goto fail_unregister;
  7928. }
  7929. p = kzalloc(sizeof(*p), GFP_KERNEL);
  7930. if (!p)
  7931. goto fail_unregister;
  7932. p->index = niu_parent_index++;
  7933. plat_dev->dev.platform_data = p;
  7934. p->plat_dev = plat_dev;
  7935. memcpy(&p->id, id, sizeof(*id));
  7936. p->plat_type = ptype;
  7937. INIT_LIST_HEAD(&p->list);
  7938. atomic_set(&p->refcnt, 0);
  7939. list_add(&p->list, &niu_parent_list);
  7940. spin_lock_init(&p->lock);
  7941. p->rxdma_clock_divider = 7500;
  7942. p->tcam_num_entries = NIU_PCI_TCAM_ENTRIES;
  7943. if (p->plat_type == PLAT_TYPE_NIU)
  7944. p->tcam_num_entries = NIU_NONPCI_TCAM_ENTRIES;
  7945. for (i = CLASS_CODE_USER_PROG1; i <= CLASS_CODE_SCTP_IPV6; i++) {
  7946. int index = i - CLASS_CODE_USER_PROG1;
  7947. p->tcam_key[index] = TCAM_KEY_TSEL;
  7948. p->flow_key[index] = (FLOW_KEY_IPSA |
  7949. FLOW_KEY_IPDA |
  7950. FLOW_KEY_PROTO |
  7951. (FLOW_KEY_L4_BYTE12 <<
  7952. FLOW_KEY_L4_0_SHIFT) |
  7953. (FLOW_KEY_L4_BYTE12 <<
  7954. FLOW_KEY_L4_1_SHIFT));
  7955. }
  7956. for (i = 0; i < LDN_MAX + 1; i++)
  7957. p->ldg_map[i] = LDG_INVALID;
  7958. return p;
  7959. fail_unregister:
  7960. platform_device_unregister(plat_dev);
  7961. return NULL;
  7962. }
  7963. static struct niu_parent * __devinit niu_get_parent(struct niu *np,
  7964. union niu_parent_id *id,
  7965. u8 ptype)
  7966. {
  7967. struct niu_parent *p, *tmp;
  7968. int port = np->port;
  7969. niudbg(PROBE, "niu_get_parent: platform_type[%u] port[%u]\n",
  7970. ptype, port);
  7971. mutex_lock(&niu_parent_lock);
  7972. p = NULL;
  7973. list_for_each_entry(tmp, &niu_parent_list, list) {
  7974. if (!memcmp(id, &tmp->id, sizeof(*id))) {
  7975. p = tmp;
  7976. break;
  7977. }
  7978. }
  7979. if (!p)
  7980. p = niu_new_parent(np, id, ptype);
  7981. if (p) {
  7982. char port_name[6];
  7983. int err;
  7984. sprintf(port_name, "port%d", port);
  7985. err = sysfs_create_link(&p->plat_dev->dev.kobj,
  7986. &np->device->kobj,
  7987. port_name);
  7988. if (!err) {
  7989. p->ports[port] = np;
  7990. atomic_inc(&p->refcnt);
  7991. }
  7992. }
  7993. mutex_unlock(&niu_parent_lock);
  7994. return p;
  7995. }
  7996. static void niu_put_parent(struct niu *np)
  7997. {
  7998. struct niu_parent *p = np->parent;
  7999. u8 port = np->port;
  8000. char port_name[6];
  8001. BUG_ON(!p || p->ports[port] != np);
  8002. niudbg(PROBE, "niu_put_parent: port[%u]\n", port);
  8003. sprintf(port_name, "port%d", port);
  8004. mutex_lock(&niu_parent_lock);
  8005. sysfs_remove_link(&p->plat_dev->dev.kobj, port_name);
  8006. p->ports[port] = NULL;
  8007. np->parent = NULL;
  8008. if (atomic_dec_and_test(&p->refcnt)) {
  8009. list_del(&p->list);
  8010. platform_device_unregister(p->plat_dev);
  8011. }
  8012. mutex_unlock(&niu_parent_lock);
  8013. }
  8014. static void *niu_pci_alloc_coherent(struct device *dev, size_t size,
  8015. u64 *handle, gfp_t flag)
  8016. {
  8017. dma_addr_t dh;
  8018. void *ret;
  8019. ret = dma_alloc_coherent(dev, size, &dh, flag);
  8020. if (ret)
  8021. *handle = dh;
  8022. return ret;
  8023. }
  8024. static void niu_pci_free_coherent(struct device *dev, size_t size,
  8025. void *cpu_addr, u64 handle)
  8026. {
  8027. dma_free_coherent(dev, size, cpu_addr, handle);
  8028. }
  8029. static u64 niu_pci_map_page(struct device *dev, struct page *page,
  8030. unsigned long offset, size_t size,
  8031. enum dma_data_direction direction)
  8032. {
  8033. return dma_map_page(dev, page, offset, size, direction);
  8034. }
  8035. static void niu_pci_unmap_page(struct device *dev, u64 dma_address,
  8036. size_t size, enum dma_data_direction direction)
  8037. {
  8038. dma_unmap_page(dev, dma_address, size, direction);
  8039. }
  8040. static u64 niu_pci_map_single(struct device *dev, void *cpu_addr,
  8041. size_t size,
  8042. enum dma_data_direction direction)
  8043. {
  8044. return dma_map_single(dev, cpu_addr, size, direction);
  8045. }
  8046. static void niu_pci_unmap_single(struct device *dev, u64 dma_address,
  8047. size_t size,
  8048. enum dma_data_direction direction)
  8049. {
  8050. dma_unmap_single(dev, dma_address, size, direction);
  8051. }
  8052. static const struct niu_ops niu_pci_ops = {
  8053. .alloc_coherent = niu_pci_alloc_coherent,
  8054. .free_coherent = niu_pci_free_coherent,
  8055. .map_page = niu_pci_map_page,
  8056. .unmap_page = niu_pci_unmap_page,
  8057. .map_single = niu_pci_map_single,
  8058. .unmap_single = niu_pci_unmap_single,
  8059. };
  8060. static void __devinit niu_driver_version(void)
  8061. {
  8062. static int niu_version_printed;
  8063. if (niu_version_printed++ == 0)
  8064. pr_info("%s", version);
  8065. }
  8066. static struct net_device * __devinit niu_alloc_and_init(
  8067. struct device *gen_dev, struct pci_dev *pdev,
  8068. struct of_device *op, const struct niu_ops *ops,
  8069. u8 port)
  8070. {
  8071. struct net_device *dev;
  8072. struct niu *np;
  8073. dev = alloc_etherdev_mq(sizeof(struct niu), NIU_NUM_TXCHAN);
  8074. if (!dev) {
  8075. dev_err(gen_dev, PFX "Etherdev alloc failed, aborting.\n");
  8076. return NULL;
  8077. }
  8078. SET_NETDEV_DEV(dev, gen_dev);
  8079. np = netdev_priv(dev);
  8080. np->dev = dev;
  8081. np->pdev = pdev;
  8082. np->op = op;
  8083. np->device = gen_dev;
  8084. np->ops = ops;
  8085. np->msg_enable = niu_debug;
  8086. spin_lock_init(&np->lock);
  8087. INIT_WORK(&np->reset_task, niu_reset_task);
  8088. np->port = port;
  8089. return dev;
  8090. }
  8091. static const struct net_device_ops niu_netdev_ops = {
  8092. .ndo_open = niu_open,
  8093. .ndo_stop = niu_close,
  8094. .ndo_start_xmit = niu_start_xmit,
  8095. .ndo_get_stats = niu_get_stats,
  8096. .ndo_set_multicast_list = niu_set_rx_mode,
  8097. .ndo_validate_addr = eth_validate_addr,
  8098. .ndo_set_mac_address = niu_set_mac_addr,
  8099. .ndo_do_ioctl = niu_ioctl,
  8100. .ndo_tx_timeout = niu_tx_timeout,
  8101. .ndo_change_mtu = niu_change_mtu,
  8102. };
  8103. static void __devinit niu_assign_netdev_ops(struct net_device *dev)
  8104. {
  8105. dev->netdev_ops = &niu_netdev_ops;
  8106. dev->ethtool_ops = &niu_ethtool_ops;
  8107. dev->watchdog_timeo = NIU_TX_TIMEOUT;
  8108. }
  8109. static void __devinit niu_device_announce(struct niu *np)
  8110. {
  8111. struct net_device *dev = np->dev;
  8112. pr_info("%s: NIU Ethernet %pM\n", dev->name, dev->dev_addr);
  8113. if (np->parent->plat_type == PLAT_TYPE_ATCA_CP3220) {
  8114. pr_info("%s: Port type[%s] mode[%s:%s] XCVR[%s] phy[%s]\n",
  8115. dev->name,
  8116. (np->flags & NIU_FLAGS_XMAC ? "XMAC" : "BMAC"),
  8117. (np->flags & NIU_FLAGS_10G ? "10G" : "1G"),
  8118. (np->flags & NIU_FLAGS_FIBER ? "RGMII FIBER" : "SERDES"),
  8119. (np->mac_xcvr == MAC_XCVR_MII ? "MII" :
  8120. (np->mac_xcvr == MAC_XCVR_PCS ? "PCS" : "XPCS")),
  8121. np->vpd.phy_type);
  8122. } else {
  8123. pr_info("%s: Port type[%s] mode[%s:%s] XCVR[%s] phy[%s]\n",
  8124. dev->name,
  8125. (np->flags & NIU_FLAGS_XMAC ? "XMAC" : "BMAC"),
  8126. (np->flags & NIU_FLAGS_10G ? "10G" : "1G"),
  8127. (np->flags & NIU_FLAGS_FIBER ? "FIBER" :
  8128. (np->flags & NIU_FLAGS_XCVR_SERDES ? "SERDES" :
  8129. "COPPER")),
  8130. (np->mac_xcvr == MAC_XCVR_MII ? "MII" :
  8131. (np->mac_xcvr == MAC_XCVR_PCS ? "PCS" : "XPCS")),
  8132. np->vpd.phy_type);
  8133. }
  8134. }
  8135. static int __devinit niu_pci_init_one(struct pci_dev *pdev,
  8136. const struct pci_device_id *ent)
  8137. {
  8138. union niu_parent_id parent_id;
  8139. struct net_device *dev;
  8140. struct niu *np;
  8141. int err, pos;
  8142. u64 dma_mask;
  8143. u16 val16;
  8144. niu_driver_version();
  8145. err = pci_enable_device(pdev);
  8146. if (err) {
  8147. dev_err(&pdev->dev, PFX "Cannot enable PCI device, "
  8148. "aborting.\n");
  8149. return err;
  8150. }
  8151. if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM) ||
  8152. !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
  8153. dev_err(&pdev->dev, PFX "Cannot find proper PCI device "
  8154. "base addresses, aborting.\n");
  8155. err = -ENODEV;
  8156. goto err_out_disable_pdev;
  8157. }
  8158. err = pci_request_regions(pdev, DRV_MODULE_NAME);
  8159. if (err) {
  8160. dev_err(&pdev->dev, PFX "Cannot obtain PCI resources, "
  8161. "aborting.\n");
  8162. goto err_out_disable_pdev;
  8163. }
  8164. pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
  8165. if (pos <= 0) {
  8166. dev_err(&pdev->dev, PFX "Cannot find PCI Express capability, "
  8167. "aborting.\n");
  8168. goto err_out_free_res;
  8169. }
  8170. dev = niu_alloc_and_init(&pdev->dev, pdev, NULL,
  8171. &niu_pci_ops, PCI_FUNC(pdev->devfn));
  8172. if (!dev) {
  8173. err = -ENOMEM;
  8174. goto err_out_free_res;
  8175. }
  8176. np = netdev_priv(dev);
  8177. memset(&parent_id, 0, sizeof(parent_id));
  8178. parent_id.pci.domain = pci_domain_nr(pdev->bus);
  8179. parent_id.pci.bus = pdev->bus->number;
  8180. parent_id.pci.device = PCI_SLOT(pdev->devfn);
  8181. np->parent = niu_get_parent(np, &parent_id,
  8182. PLAT_TYPE_ATLAS);
  8183. if (!np->parent) {
  8184. err = -ENOMEM;
  8185. goto err_out_free_dev;
  8186. }
  8187. pci_read_config_word(pdev, pos + PCI_EXP_DEVCTL, &val16);
  8188. val16 &= ~PCI_EXP_DEVCTL_NOSNOOP_EN;
  8189. val16 |= (PCI_EXP_DEVCTL_CERE |
  8190. PCI_EXP_DEVCTL_NFERE |
  8191. PCI_EXP_DEVCTL_FERE |
  8192. PCI_EXP_DEVCTL_URRE |
  8193. PCI_EXP_DEVCTL_RELAX_EN);
  8194. pci_write_config_word(pdev, pos + PCI_EXP_DEVCTL, val16);
  8195. dma_mask = DMA_44BIT_MASK;
  8196. err = pci_set_dma_mask(pdev, dma_mask);
  8197. if (!err) {
  8198. dev->features |= NETIF_F_HIGHDMA;
  8199. err = pci_set_consistent_dma_mask(pdev, dma_mask);
  8200. if (err) {
  8201. dev_err(&pdev->dev, PFX "Unable to obtain 44 bit "
  8202. "DMA for consistent allocations, "
  8203. "aborting.\n");
  8204. goto err_out_release_parent;
  8205. }
  8206. }
  8207. if (err || dma_mask == DMA_32BIT_MASK) {
  8208. err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
  8209. if (err) {
  8210. dev_err(&pdev->dev, PFX "No usable DMA configuration, "
  8211. "aborting.\n");
  8212. goto err_out_release_parent;
  8213. }
  8214. }
  8215. dev->features |= (NETIF_F_SG | NETIF_F_HW_CSUM);
  8216. np->regs = pci_ioremap_bar(pdev, 0);
  8217. if (!np->regs) {
  8218. dev_err(&pdev->dev, PFX "Cannot map device registers, "
  8219. "aborting.\n");
  8220. err = -ENOMEM;
  8221. goto err_out_release_parent;
  8222. }
  8223. pci_set_master(pdev);
  8224. pci_save_state(pdev);
  8225. dev->irq = pdev->irq;
  8226. niu_assign_netdev_ops(dev);
  8227. err = niu_get_invariants(np);
  8228. if (err) {
  8229. if (err != -ENODEV)
  8230. dev_err(&pdev->dev, PFX "Problem fetching invariants "
  8231. "of chip, aborting.\n");
  8232. goto err_out_iounmap;
  8233. }
  8234. err = register_netdev(dev);
  8235. if (err) {
  8236. dev_err(&pdev->dev, PFX "Cannot register net device, "
  8237. "aborting.\n");
  8238. goto err_out_iounmap;
  8239. }
  8240. pci_set_drvdata(pdev, dev);
  8241. niu_device_announce(np);
  8242. return 0;
  8243. err_out_iounmap:
  8244. if (np->regs) {
  8245. iounmap(np->regs);
  8246. np->regs = NULL;
  8247. }
  8248. err_out_release_parent:
  8249. niu_put_parent(np);
  8250. err_out_free_dev:
  8251. free_netdev(dev);
  8252. err_out_free_res:
  8253. pci_release_regions(pdev);
  8254. err_out_disable_pdev:
  8255. pci_disable_device(pdev);
  8256. pci_set_drvdata(pdev, NULL);
  8257. return err;
  8258. }
  8259. static void __devexit niu_pci_remove_one(struct pci_dev *pdev)
  8260. {
  8261. struct net_device *dev = pci_get_drvdata(pdev);
  8262. if (dev) {
  8263. struct niu *np = netdev_priv(dev);
  8264. unregister_netdev(dev);
  8265. if (np->regs) {
  8266. iounmap(np->regs);
  8267. np->regs = NULL;
  8268. }
  8269. niu_ldg_free(np);
  8270. niu_put_parent(np);
  8271. free_netdev(dev);
  8272. pci_release_regions(pdev);
  8273. pci_disable_device(pdev);
  8274. pci_set_drvdata(pdev, NULL);
  8275. }
  8276. }
  8277. static int niu_suspend(struct pci_dev *pdev, pm_message_t state)
  8278. {
  8279. struct net_device *dev = pci_get_drvdata(pdev);
  8280. struct niu *np = netdev_priv(dev);
  8281. unsigned long flags;
  8282. if (!netif_running(dev))
  8283. return 0;
  8284. flush_scheduled_work();
  8285. niu_netif_stop(np);
  8286. del_timer_sync(&np->timer);
  8287. spin_lock_irqsave(&np->lock, flags);
  8288. niu_enable_interrupts(np, 0);
  8289. spin_unlock_irqrestore(&np->lock, flags);
  8290. netif_device_detach(dev);
  8291. spin_lock_irqsave(&np->lock, flags);
  8292. niu_stop_hw(np);
  8293. spin_unlock_irqrestore(&np->lock, flags);
  8294. pci_save_state(pdev);
  8295. return 0;
  8296. }
  8297. static int niu_resume(struct pci_dev *pdev)
  8298. {
  8299. struct net_device *dev = pci_get_drvdata(pdev);
  8300. struct niu *np = netdev_priv(dev);
  8301. unsigned long flags;
  8302. int err;
  8303. if (!netif_running(dev))
  8304. return 0;
  8305. pci_restore_state(pdev);
  8306. netif_device_attach(dev);
  8307. spin_lock_irqsave(&np->lock, flags);
  8308. err = niu_init_hw(np);
  8309. if (!err) {
  8310. np->timer.expires = jiffies + HZ;
  8311. add_timer(&np->timer);
  8312. niu_netif_start(np);
  8313. }
  8314. spin_unlock_irqrestore(&np->lock, flags);
  8315. return err;
  8316. }
  8317. static struct pci_driver niu_pci_driver = {
  8318. .name = DRV_MODULE_NAME,
  8319. .id_table = niu_pci_tbl,
  8320. .probe = niu_pci_init_one,
  8321. .remove = __devexit_p(niu_pci_remove_one),
  8322. .suspend = niu_suspend,
  8323. .resume = niu_resume,
  8324. };
  8325. #ifdef CONFIG_SPARC64
  8326. static void *niu_phys_alloc_coherent(struct device *dev, size_t size,
  8327. u64 *dma_addr, gfp_t flag)
  8328. {
  8329. unsigned long order = get_order(size);
  8330. unsigned long page = __get_free_pages(flag, order);
  8331. if (page == 0UL)
  8332. return NULL;
  8333. memset((char *)page, 0, PAGE_SIZE << order);
  8334. *dma_addr = __pa(page);
  8335. return (void *) page;
  8336. }
  8337. static void niu_phys_free_coherent(struct device *dev, size_t size,
  8338. void *cpu_addr, u64 handle)
  8339. {
  8340. unsigned long order = get_order(size);
  8341. free_pages((unsigned long) cpu_addr, order);
  8342. }
  8343. static u64 niu_phys_map_page(struct device *dev, struct page *page,
  8344. unsigned long offset, size_t size,
  8345. enum dma_data_direction direction)
  8346. {
  8347. return page_to_phys(page) + offset;
  8348. }
  8349. static void niu_phys_unmap_page(struct device *dev, u64 dma_address,
  8350. size_t size, enum dma_data_direction direction)
  8351. {
  8352. /* Nothing to do. */
  8353. }
  8354. static u64 niu_phys_map_single(struct device *dev, void *cpu_addr,
  8355. size_t size,
  8356. enum dma_data_direction direction)
  8357. {
  8358. return __pa(cpu_addr);
  8359. }
  8360. static void niu_phys_unmap_single(struct device *dev, u64 dma_address,
  8361. size_t size,
  8362. enum dma_data_direction direction)
  8363. {
  8364. /* Nothing to do. */
  8365. }
  8366. static const struct niu_ops niu_phys_ops = {
  8367. .alloc_coherent = niu_phys_alloc_coherent,
  8368. .free_coherent = niu_phys_free_coherent,
  8369. .map_page = niu_phys_map_page,
  8370. .unmap_page = niu_phys_unmap_page,
  8371. .map_single = niu_phys_map_single,
  8372. .unmap_single = niu_phys_unmap_single,
  8373. };
  8374. static unsigned long res_size(struct resource *r)
  8375. {
  8376. return r->end - r->start + 1UL;
  8377. }
  8378. static int __devinit niu_of_probe(struct of_device *op,
  8379. const struct of_device_id *match)
  8380. {
  8381. union niu_parent_id parent_id;
  8382. struct net_device *dev;
  8383. struct niu *np;
  8384. const u32 *reg;
  8385. int err;
  8386. niu_driver_version();
  8387. reg = of_get_property(op->node, "reg", NULL);
  8388. if (!reg) {
  8389. dev_err(&op->dev, PFX "%s: No 'reg' property, aborting.\n",
  8390. op->node->full_name);
  8391. return -ENODEV;
  8392. }
  8393. dev = niu_alloc_and_init(&op->dev, NULL, op,
  8394. &niu_phys_ops, reg[0] & 0x1);
  8395. if (!dev) {
  8396. err = -ENOMEM;
  8397. goto err_out;
  8398. }
  8399. np = netdev_priv(dev);
  8400. memset(&parent_id, 0, sizeof(parent_id));
  8401. parent_id.of = of_get_parent(op->node);
  8402. np->parent = niu_get_parent(np, &parent_id,
  8403. PLAT_TYPE_NIU);
  8404. if (!np->parent) {
  8405. err = -ENOMEM;
  8406. goto err_out_free_dev;
  8407. }
  8408. dev->features |= (NETIF_F_SG | NETIF_F_HW_CSUM);
  8409. np->regs = of_ioremap(&op->resource[1], 0,
  8410. res_size(&op->resource[1]),
  8411. "niu regs");
  8412. if (!np->regs) {
  8413. dev_err(&op->dev, PFX "Cannot map device registers, "
  8414. "aborting.\n");
  8415. err = -ENOMEM;
  8416. goto err_out_release_parent;
  8417. }
  8418. np->vir_regs_1 = of_ioremap(&op->resource[2], 0,
  8419. res_size(&op->resource[2]),
  8420. "niu vregs-1");
  8421. if (!np->vir_regs_1) {
  8422. dev_err(&op->dev, PFX "Cannot map device vir registers 1, "
  8423. "aborting.\n");
  8424. err = -ENOMEM;
  8425. goto err_out_iounmap;
  8426. }
  8427. np->vir_regs_2 = of_ioremap(&op->resource[3], 0,
  8428. res_size(&op->resource[3]),
  8429. "niu vregs-2");
  8430. if (!np->vir_regs_2) {
  8431. dev_err(&op->dev, PFX "Cannot map device vir registers 2, "
  8432. "aborting.\n");
  8433. err = -ENOMEM;
  8434. goto err_out_iounmap;
  8435. }
  8436. niu_assign_netdev_ops(dev);
  8437. err = niu_get_invariants(np);
  8438. if (err) {
  8439. if (err != -ENODEV)
  8440. dev_err(&op->dev, PFX "Problem fetching invariants "
  8441. "of chip, aborting.\n");
  8442. goto err_out_iounmap;
  8443. }
  8444. err = register_netdev(dev);
  8445. if (err) {
  8446. dev_err(&op->dev, PFX "Cannot register net device, "
  8447. "aborting.\n");
  8448. goto err_out_iounmap;
  8449. }
  8450. dev_set_drvdata(&op->dev, dev);
  8451. niu_device_announce(np);
  8452. return 0;
  8453. err_out_iounmap:
  8454. if (np->vir_regs_1) {
  8455. of_iounmap(&op->resource[2], np->vir_regs_1,
  8456. res_size(&op->resource[2]));
  8457. np->vir_regs_1 = NULL;
  8458. }
  8459. if (np->vir_regs_2) {
  8460. of_iounmap(&op->resource[3], np->vir_regs_2,
  8461. res_size(&op->resource[3]));
  8462. np->vir_regs_2 = NULL;
  8463. }
  8464. if (np->regs) {
  8465. of_iounmap(&op->resource[1], np->regs,
  8466. res_size(&op->resource[1]));
  8467. np->regs = NULL;
  8468. }
  8469. err_out_release_parent:
  8470. niu_put_parent(np);
  8471. err_out_free_dev:
  8472. free_netdev(dev);
  8473. err_out:
  8474. return err;
  8475. }
  8476. static int __devexit niu_of_remove(struct of_device *op)
  8477. {
  8478. struct net_device *dev = dev_get_drvdata(&op->dev);
  8479. if (dev) {
  8480. struct niu *np = netdev_priv(dev);
  8481. unregister_netdev(dev);
  8482. if (np->vir_regs_1) {
  8483. of_iounmap(&op->resource[2], np->vir_regs_1,
  8484. res_size(&op->resource[2]));
  8485. np->vir_regs_1 = NULL;
  8486. }
  8487. if (np->vir_regs_2) {
  8488. of_iounmap(&op->resource[3], np->vir_regs_2,
  8489. res_size(&op->resource[3]));
  8490. np->vir_regs_2 = NULL;
  8491. }
  8492. if (np->regs) {
  8493. of_iounmap(&op->resource[1], np->regs,
  8494. res_size(&op->resource[1]));
  8495. np->regs = NULL;
  8496. }
  8497. niu_ldg_free(np);
  8498. niu_put_parent(np);
  8499. free_netdev(dev);
  8500. dev_set_drvdata(&op->dev, NULL);
  8501. }
  8502. return 0;
  8503. }
  8504. static const struct of_device_id niu_match[] = {
  8505. {
  8506. .name = "network",
  8507. .compatible = "SUNW,niusl",
  8508. },
  8509. {},
  8510. };
  8511. MODULE_DEVICE_TABLE(of, niu_match);
  8512. static struct of_platform_driver niu_of_driver = {
  8513. .name = "niu",
  8514. .match_table = niu_match,
  8515. .probe = niu_of_probe,
  8516. .remove = __devexit_p(niu_of_remove),
  8517. };
  8518. #endif /* CONFIG_SPARC64 */
  8519. static int __init niu_init(void)
  8520. {
  8521. int err = 0;
  8522. BUILD_BUG_ON(PAGE_SIZE < 4 * 1024);
  8523. niu_debug = netif_msg_init(debug, NIU_MSG_DEFAULT);
  8524. #ifdef CONFIG_SPARC64
  8525. err = of_register_driver(&niu_of_driver, &of_bus_type);
  8526. #endif
  8527. if (!err) {
  8528. err = pci_register_driver(&niu_pci_driver);
  8529. #ifdef CONFIG_SPARC64
  8530. if (err)
  8531. of_unregister_driver(&niu_of_driver);
  8532. #endif
  8533. }
  8534. return err;
  8535. }
  8536. static void __exit niu_exit(void)
  8537. {
  8538. pci_unregister_driver(&niu_pci_driver);
  8539. #ifdef CONFIG_SPARC64
  8540. of_unregister_driver(&niu_of_driver);
  8541. #endif
  8542. }
  8543. module_init(niu_init);
  8544. module_exit(niu_exit);