forcedeth.c 193 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333
  1. /*
  2. * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
  3. *
  4. * Note: This driver is a cleanroom reimplementation based on reverse
  5. * engineered documentation written by Carl-Daniel Hailfinger
  6. * and Andrew de Quincey.
  7. *
  8. * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
  9. * trademarks of NVIDIA Corporation in the United States and other
  10. * countries.
  11. *
  12. * Copyright (C) 2003,4,5 Manfred Spraul
  13. * Copyright (C) 2004 Andrew de Quincey (wol support)
  14. * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
  15. * IRQ rate fixes, bigendian fixes, cleanups, verification)
  16. * Copyright (c) 2004,2005,2006,2007,2008,2009 NVIDIA Corporation
  17. *
  18. * This program is free software; you can redistribute it and/or modify
  19. * it under the terms of the GNU General Public License as published by
  20. * the Free Software Foundation; either version 2 of the License, or
  21. * (at your option) any later version.
  22. *
  23. * This program is distributed in the hope that it will be useful,
  24. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  25. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  26. * GNU General Public License for more details.
  27. *
  28. * You should have received a copy of the GNU General Public License
  29. * along with this program; if not, write to the Free Software
  30. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  31. *
  32. * Known bugs:
  33. * We suspect that on some hardware no TX done interrupts are generated.
  34. * This means recovery from netif_stop_queue only happens if the hw timer
  35. * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
  36. * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
  37. * If your hardware reliably generates tx done interrupts, then you can remove
  38. * DEV_NEED_TIMERIRQ from the driver_data flags.
  39. * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
  40. * superfluous timer interrupts from the nic.
  41. */
  42. #define FORCEDETH_VERSION "0.63"
  43. #define DRV_NAME "forcedeth"
  44. #include <linux/module.h>
  45. #include <linux/types.h>
  46. #include <linux/pci.h>
  47. #include <linux/interrupt.h>
  48. #include <linux/netdevice.h>
  49. #include <linux/etherdevice.h>
  50. #include <linux/delay.h>
  51. #include <linux/spinlock.h>
  52. #include <linux/ethtool.h>
  53. #include <linux/timer.h>
  54. #include <linux/skbuff.h>
  55. #include <linux/mii.h>
  56. #include <linux/random.h>
  57. #include <linux/init.h>
  58. #include <linux/if_vlan.h>
  59. #include <linux/dma-mapping.h>
  60. #include <asm/irq.h>
  61. #include <asm/io.h>
  62. #include <asm/uaccess.h>
  63. #include <asm/system.h>
  64. #if 0
  65. #define dprintk printk
  66. #else
  67. #define dprintk(x...) do { } while (0)
  68. #endif
  69. #define TX_WORK_PER_LOOP 64
  70. #define RX_WORK_PER_LOOP 64
  71. /*
  72. * Hardware access:
  73. */
  74. #define DEV_NEED_TIMERIRQ 0x000001 /* set the timer irq flag in the irq mask */
  75. #define DEV_NEED_LINKTIMER 0x000002 /* poll link settings. Relies on the timer irq */
  76. #define DEV_HAS_LARGEDESC 0x000004 /* device supports jumbo frames and needs packet format 2 */
  77. #define DEV_HAS_HIGH_DMA 0x000008 /* device supports 64bit dma */
  78. #define DEV_HAS_CHECKSUM 0x000010 /* device supports tx and rx checksum offloads */
  79. #define DEV_HAS_VLAN 0x000020 /* device supports vlan tagging and striping */
  80. #define DEV_HAS_MSI 0x000040 /* device supports MSI */
  81. #define DEV_HAS_MSI_X 0x000080 /* device supports MSI-X */
  82. #define DEV_HAS_POWER_CNTRL 0x000100 /* device supports power savings */
  83. #define DEV_HAS_STATISTICS_V1 0x000200 /* device supports hw statistics version 1 */
  84. #define DEV_HAS_STATISTICS_V2 0x000400 /* device supports hw statistics version 2 */
  85. #define DEV_HAS_STATISTICS_V3 0x000800 /* device supports hw statistics version 3 */
  86. #define DEV_HAS_TEST_EXTENDED 0x001000 /* device supports extended diagnostic test */
  87. #define DEV_HAS_MGMT_UNIT 0x002000 /* device supports management unit */
  88. #define DEV_HAS_CORRECT_MACADDR 0x004000 /* device supports correct mac address order */
  89. #define DEV_HAS_COLLISION_FIX 0x008000 /* device supports tx collision fix */
  90. #define DEV_HAS_PAUSEFRAME_TX_V1 0x010000 /* device supports tx pause frames version 1 */
  91. #define DEV_HAS_PAUSEFRAME_TX_V2 0x020000 /* device supports tx pause frames version 2 */
  92. #define DEV_HAS_PAUSEFRAME_TX_V3 0x040000 /* device supports tx pause frames version 3 */
  93. #define DEV_NEED_TX_LIMIT 0x080000 /* device needs to limit tx */
  94. #define DEV_HAS_GEAR_MODE 0x100000 /* device supports gear mode */
  95. enum {
  96. NvRegIrqStatus = 0x000,
  97. #define NVREG_IRQSTAT_MIIEVENT 0x040
  98. #define NVREG_IRQSTAT_MASK 0x83ff
  99. NvRegIrqMask = 0x004,
  100. #define NVREG_IRQ_RX_ERROR 0x0001
  101. #define NVREG_IRQ_RX 0x0002
  102. #define NVREG_IRQ_RX_NOBUF 0x0004
  103. #define NVREG_IRQ_TX_ERR 0x0008
  104. #define NVREG_IRQ_TX_OK 0x0010
  105. #define NVREG_IRQ_TIMER 0x0020
  106. #define NVREG_IRQ_LINK 0x0040
  107. #define NVREG_IRQ_RX_FORCED 0x0080
  108. #define NVREG_IRQ_TX_FORCED 0x0100
  109. #define NVREG_IRQ_RECOVER_ERROR 0x8200
  110. #define NVREG_IRQMASK_THROUGHPUT 0x00df
  111. #define NVREG_IRQMASK_CPU 0x0060
  112. #define NVREG_IRQ_TX_ALL (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
  113. #define NVREG_IRQ_RX_ALL (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
  114. #define NVREG_IRQ_OTHER (NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RECOVER_ERROR)
  115. #define NVREG_IRQ_UNKNOWN (~(NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_TX_ERR| \
  116. NVREG_IRQ_TX_OK|NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RX_FORCED| \
  117. NVREG_IRQ_TX_FORCED|NVREG_IRQ_RECOVER_ERROR))
  118. NvRegUnknownSetupReg6 = 0x008,
  119. #define NVREG_UNKSETUP6_VAL 3
  120. /*
  121. * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
  122. * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
  123. */
  124. NvRegPollingInterval = 0x00c,
  125. #define NVREG_POLL_DEFAULT_THROUGHPUT 970 /* backup tx cleanup if loop max reached */
  126. #define NVREG_POLL_DEFAULT_CPU 13
  127. NvRegMSIMap0 = 0x020,
  128. NvRegMSIMap1 = 0x024,
  129. NvRegMSIIrqMask = 0x030,
  130. #define NVREG_MSI_VECTOR_0_ENABLED 0x01
  131. NvRegMisc1 = 0x080,
  132. #define NVREG_MISC1_PAUSE_TX 0x01
  133. #define NVREG_MISC1_HD 0x02
  134. #define NVREG_MISC1_FORCE 0x3b0f3c
  135. NvRegMacReset = 0x34,
  136. #define NVREG_MAC_RESET_ASSERT 0x0F3
  137. NvRegTransmitterControl = 0x084,
  138. #define NVREG_XMITCTL_START 0x01
  139. #define NVREG_XMITCTL_MGMT_ST 0x40000000
  140. #define NVREG_XMITCTL_SYNC_MASK 0x000f0000
  141. #define NVREG_XMITCTL_SYNC_NOT_READY 0x0
  142. #define NVREG_XMITCTL_SYNC_PHY_INIT 0x00040000
  143. #define NVREG_XMITCTL_MGMT_SEMA_MASK 0x00000f00
  144. #define NVREG_XMITCTL_MGMT_SEMA_FREE 0x0
  145. #define NVREG_XMITCTL_HOST_SEMA_MASK 0x0000f000
  146. #define NVREG_XMITCTL_HOST_SEMA_ACQ 0x0000f000
  147. #define NVREG_XMITCTL_HOST_LOADED 0x00004000
  148. #define NVREG_XMITCTL_TX_PATH_EN 0x01000000
  149. #define NVREG_XMITCTL_DATA_START 0x00100000
  150. #define NVREG_XMITCTL_DATA_READY 0x00010000
  151. #define NVREG_XMITCTL_DATA_ERROR 0x00020000
  152. NvRegTransmitterStatus = 0x088,
  153. #define NVREG_XMITSTAT_BUSY 0x01
  154. NvRegPacketFilterFlags = 0x8c,
  155. #define NVREG_PFF_PAUSE_RX 0x08
  156. #define NVREG_PFF_ALWAYS 0x7F0000
  157. #define NVREG_PFF_PROMISC 0x80
  158. #define NVREG_PFF_MYADDR 0x20
  159. #define NVREG_PFF_LOOPBACK 0x10
  160. NvRegOffloadConfig = 0x90,
  161. #define NVREG_OFFLOAD_HOMEPHY 0x601
  162. #define NVREG_OFFLOAD_NORMAL RX_NIC_BUFSIZE
  163. NvRegReceiverControl = 0x094,
  164. #define NVREG_RCVCTL_START 0x01
  165. #define NVREG_RCVCTL_RX_PATH_EN 0x01000000
  166. NvRegReceiverStatus = 0x98,
  167. #define NVREG_RCVSTAT_BUSY 0x01
  168. NvRegSlotTime = 0x9c,
  169. #define NVREG_SLOTTIME_LEGBF_ENABLED 0x80000000
  170. #define NVREG_SLOTTIME_10_100_FULL 0x00007f00
  171. #define NVREG_SLOTTIME_1000_FULL 0x0003ff00
  172. #define NVREG_SLOTTIME_HALF 0x0000ff00
  173. #define NVREG_SLOTTIME_DEFAULT 0x00007f00
  174. #define NVREG_SLOTTIME_MASK 0x000000ff
  175. NvRegTxDeferral = 0xA0,
  176. #define NVREG_TX_DEFERRAL_DEFAULT 0x15050f
  177. #define NVREG_TX_DEFERRAL_RGMII_10_100 0x16070f
  178. #define NVREG_TX_DEFERRAL_RGMII_1000 0x14050f
  179. #define NVREG_TX_DEFERRAL_RGMII_STRETCH_10 0x16190f
  180. #define NVREG_TX_DEFERRAL_RGMII_STRETCH_100 0x16300f
  181. #define NVREG_TX_DEFERRAL_MII_STRETCH 0x152000
  182. NvRegRxDeferral = 0xA4,
  183. #define NVREG_RX_DEFERRAL_DEFAULT 0x16
  184. NvRegMacAddrA = 0xA8,
  185. NvRegMacAddrB = 0xAC,
  186. NvRegMulticastAddrA = 0xB0,
  187. #define NVREG_MCASTADDRA_FORCE 0x01
  188. NvRegMulticastAddrB = 0xB4,
  189. NvRegMulticastMaskA = 0xB8,
  190. #define NVREG_MCASTMASKA_NONE 0xffffffff
  191. NvRegMulticastMaskB = 0xBC,
  192. #define NVREG_MCASTMASKB_NONE 0xffff
  193. NvRegPhyInterface = 0xC0,
  194. #define PHY_RGMII 0x10000000
  195. NvRegBackOffControl = 0xC4,
  196. #define NVREG_BKOFFCTRL_DEFAULT 0x70000000
  197. #define NVREG_BKOFFCTRL_SEED_MASK 0x000003ff
  198. #define NVREG_BKOFFCTRL_SELECT 24
  199. #define NVREG_BKOFFCTRL_GEAR 12
  200. NvRegTxRingPhysAddr = 0x100,
  201. NvRegRxRingPhysAddr = 0x104,
  202. NvRegRingSizes = 0x108,
  203. #define NVREG_RINGSZ_TXSHIFT 0
  204. #define NVREG_RINGSZ_RXSHIFT 16
  205. NvRegTransmitPoll = 0x10c,
  206. #define NVREG_TRANSMITPOLL_MAC_ADDR_REV 0x00008000
  207. NvRegLinkSpeed = 0x110,
  208. #define NVREG_LINKSPEED_FORCE 0x10000
  209. #define NVREG_LINKSPEED_10 1000
  210. #define NVREG_LINKSPEED_100 100
  211. #define NVREG_LINKSPEED_1000 50
  212. #define NVREG_LINKSPEED_MASK (0xFFF)
  213. NvRegUnknownSetupReg5 = 0x130,
  214. #define NVREG_UNKSETUP5_BIT31 (1<<31)
  215. NvRegTxWatermark = 0x13c,
  216. #define NVREG_TX_WM_DESC1_DEFAULT 0x0200010
  217. #define NVREG_TX_WM_DESC2_3_DEFAULT 0x1e08000
  218. #define NVREG_TX_WM_DESC2_3_1000 0xfe08000
  219. NvRegTxRxControl = 0x144,
  220. #define NVREG_TXRXCTL_KICK 0x0001
  221. #define NVREG_TXRXCTL_BIT1 0x0002
  222. #define NVREG_TXRXCTL_BIT2 0x0004
  223. #define NVREG_TXRXCTL_IDLE 0x0008
  224. #define NVREG_TXRXCTL_RESET 0x0010
  225. #define NVREG_TXRXCTL_RXCHECK 0x0400
  226. #define NVREG_TXRXCTL_DESC_1 0
  227. #define NVREG_TXRXCTL_DESC_2 0x002100
  228. #define NVREG_TXRXCTL_DESC_3 0xc02200
  229. #define NVREG_TXRXCTL_VLANSTRIP 0x00040
  230. #define NVREG_TXRXCTL_VLANINS 0x00080
  231. NvRegTxRingPhysAddrHigh = 0x148,
  232. NvRegRxRingPhysAddrHigh = 0x14C,
  233. NvRegTxPauseFrame = 0x170,
  234. #define NVREG_TX_PAUSEFRAME_DISABLE 0x0fff0080
  235. #define NVREG_TX_PAUSEFRAME_ENABLE_V1 0x01800010
  236. #define NVREG_TX_PAUSEFRAME_ENABLE_V2 0x056003f0
  237. #define NVREG_TX_PAUSEFRAME_ENABLE_V3 0x09f00880
  238. NvRegTxPauseFrameLimit = 0x174,
  239. #define NVREG_TX_PAUSEFRAMELIMIT_ENABLE 0x00010000
  240. NvRegMIIStatus = 0x180,
  241. #define NVREG_MIISTAT_ERROR 0x0001
  242. #define NVREG_MIISTAT_LINKCHANGE 0x0008
  243. #define NVREG_MIISTAT_MASK_RW 0x0007
  244. #define NVREG_MIISTAT_MASK_ALL 0x000f
  245. NvRegMIIMask = 0x184,
  246. #define NVREG_MII_LINKCHANGE 0x0008
  247. NvRegAdapterControl = 0x188,
  248. #define NVREG_ADAPTCTL_START 0x02
  249. #define NVREG_ADAPTCTL_LINKUP 0x04
  250. #define NVREG_ADAPTCTL_PHYVALID 0x40000
  251. #define NVREG_ADAPTCTL_RUNNING 0x100000
  252. #define NVREG_ADAPTCTL_PHYSHIFT 24
  253. NvRegMIISpeed = 0x18c,
  254. #define NVREG_MIISPEED_BIT8 (1<<8)
  255. #define NVREG_MIIDELAY 5
  256. NvRegMIIControl = 0x190,
  257. #define NVREG_MIICTL_INUSE 0x08000
  258. #define NVREG_MIICTL_WRITE 0x00400
  259. #define NVREG_MIICTL_ADDRSHIFT 5
  260. NvRegMIIData = 0x194,
  261. NvRegTxUnicast = 0x1a0,
  262. NvRegTxMulticast = 0x1a4,
  263. NvRegTxBroadcast = 0x1a8,
  264. NvRegWakeUpFlags = 0x200,
  265. #define NVREG_WAKEUPFLAGS_VAL 0x7770
  266. #define NVREG_WAKEUPFLAGS_BUSYSHIFT 24
  267. #define NVREG_WAKEUPFLAGS_ENABLESHIFT 16
  268. #define NVREG_WAKEUPFLAGS_D3SHIFT 12
  269. #define NVREG_WAKEUPFLAGS_D2SHIFT 8
  270. #define NVREG_WAKEUPFLAGS_D1SHIFT 4
  271. #define NVREG_WAKEUPFLAGS_D0SHIFT 0
  272. #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01
  273. #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02
  274. #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04
  275. #define NVREG_WAKEUPFLAGS_ENABLE 0x1111
  276. NvRegMgmtUnitGetVersion = 0x204,
  277. #define NVREG_MGMTUNITGETVERSION 0x01
  278. NvRegMgmtUnitVersion = 0x208,
  279. #define NVREG_MGMTUNITVERSION 0x08
  280. NvRegPowerCap = 0x268,
  281. #define NVREG_POWERCAP_D3SUPP (1<<30)
  282. #define NVREG_POWERCAP_D2SUPP (1<<26)
  283. #define NVREG_POWERCAP_D1SUPP (1<<25)
  284. NvRegPowerState = 0x26c,
  285. #define NVREG_POWERSTATE_POWEREDUP 0x8000
  286. #define NVREG_POWERSTATE_VALID 0x0100
  287. #define NVREG_POWERSTATE_MASK 0x0003
  288. #define NVREG_POWERSTATE_D0 0x0000
  289. #define NVREG_POWERSTATE_D1 0x0001
  290. #define NVREG_POWERSTATE_D2 0x0002
  291. #define NVREG_POWERSTATE_D3 0x0003
  292. NvRegMgmtUnitControl = 0x278,
  293. #define NVREG_MGMTUNITCONTROL_INUSE 0x20000
  294. NvRegTxCnt = 0x280,
  295. NvRegTxZeroReXmt = 0x284,
  296. NvRegTxOneReXmt = 0x288,
  297. NvRegTxManyReXmt = 0x28c,
  298. NvRegTxLateCol = 0x290,
  299. NvRegTxUnderflow = 0x294,
  300. NvRegTxLossCarrier = 0x298,
  301. NvRegTxExcessDef = 0x29c,
  302. NvRegTxRetryErr = 0x2a0,
  303. NvRegRxFrameErr = 0x2a4,
  304. NvRegRxExtraByte = 0x2a8,
  305. NvRegRxLateCol = 0x2ac,
  306. NvRegRxRunt = 0x2b0,
  307. NvRegRxFrameTooLong = 0x2b4,
  308. NvRegRxOverflow = 0x2b8,
  309. NvRegRxFCSErr = 0x2bc,
  310. NvRegRxFrameAlignErr = 0x2c0,
  311. NvRegRxLenErr = 0x2c4,
  312. NvRegRxUnicast = 0x2c8,
  313. NvRegRxMulticast = 0x2cc,
  314. NvRegRxBroadcast = 0x2d0,
  315. NvRegTxDef = 0x2d4,
  316. NvRegTxFrame = 0x2d8,
  317. NvRegRxCnt = 0x2dc,
  318. NvRegTxPause = 0x2e0,
  319. NvRegRxPause = 0x2e4,
  320. NvRegRxDropFrame = 0x2e8,
  321. NvRegVlanControl = 0x300,
  322. #define NVREG_VLANCONTROL_ENABLE 0x2000
  323. NvRegMSIXMap0 = 0x3e0,
  324. NvRegMSIXMap1 = 0x3e4,
  325. NvRegMSIXIrqStatus = 0x3f0,
  326. NvRegPowerState2 = 0x600,
  327. #define NVREG_POWERSTATE2_POWERUP_MASK 0x0F15
  328. #define NVREG_POWERSTATE2_POWERUP_REV_A3 0x0001
  329. #define NVREG_POWERSTATE2_PHY_RESET 0x0004
  330. };
  331. /* Big endian: should work, but is untested */
  332. struct ring_desc {
  333. __le32 buf;
  334. __le32 flaglen;
  335. };
  336. struct ring_desc_ex {
  337. __le32 bufhigh;
  338. __le32 buflow;
  339. __le32 txvlan;
  340. __le32 flaglen;
  341. };
  342. union ring_type {
  343. struct ring_desc* orig;
  344. struct ring_desc_ex* ex;
  345. };
  346. #define FLAG_MASK_V1 0xffff0000
  347. #define FLAG_MASK_V2 0xffffc000
  348. #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
  349. #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
  350. #define NV_TX_LASTPACKET (1<<16)
  351. #define NV_TX_RETRYERROR (1<<19)
  352. #define NV_TX_RETRYCOUNT_MASK (0xF<<20)
  353. #define NV_TX_FORCED_INTERRUPT (1<<24)
  354. #define NV_TX_DEFERRED (1<<26)
  355. #define NV_TX_CARRIERLOST (1<<27)
  356. #define NV_TX_LATECOLLISION (1<<28)
  357. #define NV_TX_UNDERFLOW (1<<29)
  358. #define NV_TX_ERROR (1<<30)
  359. #define NV_TX_VALID (1<<31)
  360. #define NV_TX2_LASTPACKET (1<<29)
  361. #define NV_TX2_RETRYERROR (1<<18)
  362. #define NV_TX2_RETRYCOUNT_MASK (0xF<<19)
  363. #define NV_TX2_FORCED_INTERRUPT (1<<30)
  364. #define NV_TX2_DEFERRED (1<<25)
  365. #define NV_TX2_CARRIERLOST (1<<26)
  366. #define NV_TX2_LATECOLLISION (1<<27)
  367. #define NV_TX2_UNDERFLOW (1<<28)
  368. /* error and valid are the same for both */
  369. #define NV_TX2_ERROR (1<<30)
  370. #define NV_TX2_VALID (1<<31)
  371. #define NV_TX2_TSO (1<<28)
  372. #define NV_TX2_TSO_SHIFT 14
  373. #define NV_TX2_TSO_MAX_SHIFT 14
  374. #define NV_TX2_TSO_MAX_SIZE (1<<NV_TX2_TSO_MAX_SHIFT)
  375. #define NV_TX2_CHECKSUM_L3 (1<<27)
  376. #define NV_TX2_CHECKSUM_L4 (1<<26)
  377. #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
  378. #define NV_RX_DESCRIPTORVALID (1<<16)
  379. #define NV_RX_MISSEDFRAME (1<<17)
  380. #define NV_RX_SUBSTRACT1 (1<<18)
  381. #define NV_RX_ERROR1 (1<<23)
  382. #define NV_RX_ERROR2 (1<<24)
  383. #define NV_RX_ERROR3 (1<<25)
  384. #define NV_RX_ERROR4 (1<<26)
  385. #define NV_RX_CRCERR (1<<27)
  386. #define NV_RX_OVERFLOW (1<<28)
  387. #define NV_RX_FRAMINGERR (1<<29)
  388. #define NV_RX_ERROR (1<<30)
  389. #define NV_RX_AVAIL (1<<31)
  390. #define NV_RX_ERROR_MASK (NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3|NV_RX_ERROR4|NV_RX_CRCERR|NV_RX_OVERFLOW|NV_RX_FRAMINGERR)
  391. #define NV_RX2_CHECKSUMMASK (0x1C000000)
  392. #define NV_RX2_CHECKSUM_IP (0x10000000)
  393. #define NV_RX2_CHECKSUM_IP_TCP (0x14000000)
  394. #define NV_RX2_CHECKSUM_IP_UDP (0x18000000)
  395. #define NV_RX2_DESCRIPTORVALID (1<<29)
  396. #define NV_RX2_SUBSTRACT1 (1<<25)
  397. #define NV_RX2_ERROR1 (1<<18)
  398. #define NV_RX2_ERROR2 (1<<19)
  399. #define NV_RX2_ERROR3 (1<<20)
  400. #define NV_RX2_ERROR4 (1<<21)
  401. #define NV_RX2_CRCERR (1<<22)
  402. #define NV_RX2_OVERFLOW (1<<23)
  403. #define NV_RX2_FRAMINGERR (1<<24)
  404. /* error and avail are the same for both */
  405. #define NV_RX2_ERROR (1<<30)
  406. #define NV_RX2_AVAIL (1<<31)
  407. #define NV_RX2_ERROR_MASK (NV_RX2_ERROR1|NV_RX2_ERROR2|NV_RX2_ERROR3|NV_RX2_ERROR4|NV_RX2_CRCERR|NV_RX2_OVERFLOW|NV_RX2_FRAMINGERR)
  408. #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
  409. #define NV_RX3_VLAN_TAG_MASK (0x0000FFFF)
  410. /* Miscelaneous hardware related defines: */
  411. #define NV_PCI_REGSZ_VER1 0x270
  412. #define NV_PCI_REGSZ_VER2 0x2d4
  413. #define NV_PCI_REGSZ_VER3 0x604
  414. #define NV_PCI_REGSZ_MAX 0x604
  415. /* various timeout delays: all in usec */
  416. #define NV_TXRX_RESET_DELAY 4
  417. #define NV_TXSTOP_DELAY1 10
  418. #define NV_TXSTOP_DELAY1MAX 500000
  419. #define NV_TXSTOP_DELAY2 100
  420. #define NV_RXSTOP_DELAY1 10
  421. #define NV_RXSTOP_DELAY1MAX 500000
  422. #define NV_RXSTOP_DELAY2 100
  423. #define NV_SETUP5_DELAY 5
  424. #define NV_SETUP5_DELAYMAX 50000
  425. #define NV_POWERUP_DELAY 5
  426. #define NV_POWERUP_DELAYMAX 5000
  427. #define NV_MIIBUSY_DELAY 50
  428. #define NV_MIIPHY_DELAY 10
  429. #define NV_MIIPHY_DELAYMAX 10000
  430. #define NV_MAC_RESET_DELAY 64
  431. #define NV_WAKEUPPATTERNS 5
  432. #define NV_WAKEUPMASKENTRIES 4
  433. /* General driver defaults */
  434. #define NV_WATCHDOG_TIMEO (5*HZ)
  435. #define RX_RING_DEFAULT 128
  436. #define TX_RING_DEFAULT 256
  437. #define RX_RING_MIN 128
  438. #define TX_RING_MIN 64
  439. #define RING_MAX_DESC_VER_1 1024
  440. #define RING_MAX_DESC_VER_2_3 16384
  441. /* rx/tx mac addr + type + vlan + align + slack*/
  442. #define NV_RX_HEADERS (64)
  443. /* even more slack. */
  444. #define NV_RX_ALLOC_PAD (64)
  445. /* maximum mtu size */
  446. #define NV_PKTLIMIT_1 ETH_DATA_LEN /* hard limit not known */
  447. #define NV_PKTLIMIT_2 9100 /* Actual limit according to NVidia: 9202 */
  448. #define OOM_REFILL (1+HZ/20)
  449. #define POLL_WAIT (1+HZ/100)
  450. #define LINK_TIMEOUT (3*HZ)
  451. #define STATS_INTERVAL (10*HZ)
  452. /*
  453. * desc_ver values:
  454. * The nic supports three different descriptor types:
  455. * - DESC_VER_1: Original
  456. * - DESC_VER_2: support for jumbo frames.
  457. * - DESC_VER_3: 64-bit format.
  458. */
  459. #define DESC_VER_1 1
  460. #define DESC_VER_2 2
  461. #define DESC_VER_3 3
  462. /* PHY defines */
  463. #define PHY_OUI_MARVELL 0x5043
  464. #define PHY_OUI_CICADA 0x03f1
  465. #define PHY_OUI_VITESSE 0x01c1
  466. #define PHY_OUI_REALTEK 0x0732
  467. #define PHY_OUI_REALTEK2 0x0020
  468. #define PHYID1_OUI_MASK 0x03ff
  469. #define PHYID1_OUI_SHFT 6
  470. #define PHYID2_OUI_MASK 0xfc00
  471. #define PHYID2_OUI_SHFT 10
  472. #define PHYID2_MODEL_MASK 0x03f0
  473. #define PHY_MODEL_REALTEK_8211 0x0110
  474. #define PHY_REV_MASK 0x0001
  475. #define PHY_REV_REALTEK_8211B 0x0000
  476. #define PHY_REV_REALTEK_8211C 0x0001
  477. #define PHY_MODEL_REALTEK_8201 0x0200
  478. #define PHY_MODEL_MARVELL_E3016 0x0220
  479. #define PHY_MARVELL_E3016_INITMASK 0x0300
  480. #define PHY_CICADA_INIT1 0x0f000
  481. #define PHY_CICADA_INIT2 0x0e00
  482. #define PHY_CICADA_INIT3 0x01000
  483. #define PHY_CICADA_INIT4 0x0200
  484. #define PHY_CICADA_INIT5 0x0004
  485. #define PHY_CICADA_INIT6 0x02000
  486. #define PHY_VITESSE_INIT_REG1 0x1f
  487. #define PHY_VITESSE_INIT_REG2 0x10
  488. #define PHY_VITESSE_INIT_REG3 0x11
  489. #define PHY_VITESSE_INIT_REG4 0x12
  490. #define PHY_VITESSE_INIT_MSK1 0xc
  491. #define PHY_VITESSE_INIT_MSK2 0x0180
  492. #define PHY_VITESSE_INIT1 0x52b5
  493. #define PHY_VITESSE_INIT2 0xaf8a
  494. #define PHY_VITESSE_INIT3 0x8
  495. #define PHY_VITESSE_INIT4 0x8f8a
  496. #define PHY_VITESSE_INIT5 0xaf86
  497. #define PHY_VITESSE_INIT6 0x8f86
  498. #define PHY_VITESSE_INIT7 0xaf82
  499. #define PHY_VITESSE_INIT8 0x0100
  500. #define PHY_VITESSE_INIT9 0x8f82
  501. #define PHY_VITESSE_INIT10 0x0
  502. #define PHY_REALTEK_INIT_REG1 0x1f
  503. #define PHY_REALTEK_INIT_REG2 0x19
  504. #define PHY_REALTEK_INIT_REG3 0x13
  505. #define PHY_REALTEK_INIT_REG4 0x14
  506. #define PHY_REALTEK_INIT_REG5 0x18
  507. #define PHY_REALTEK_INIT_REG6 0x11
  508. #define PHY_REALTEK_INIT_REG7 0x01
  509. #define PHY_REALTEK_INIT1 0x0000
  510. #define PHY_REALTEK_INIT2 0x8e00
  511. #define PHY_REALTEK_INIT3 0x0001
  512. #define PHY_REALTEK_INIT4 0xad17
  513. #define PHY_REALTEK_INIT5 0xfb54
  514. #define PHY_REALTEK_INIT6 0xf5c7
  515. #define PHY_REALTEK_INIT7 0x1000
  516. #define PHY_REALTEK_INIT8 0x0003
  517. #define PHY_REALTEK_INIT9 0x0008
  518. #define PHY_REALTEK_INIT10 0x0005
  519. #define PHY_REALTEK_INIT11 0x0200
  520. #define PHY_REALTEK_INIT_MSK1 0x0003
  521. #define PHY_GIGABIT 0x0100
  522. #define PHY_TIMEOUT 0x1
  523. #define PHY_ERROR 0x2
  524. #define PHY_100 0x1
  525. #define PHY_1000 0x2
  526. #define PHY_HALF 0x100
  527. #define NV_PAUSEFRAME_RX_CAPABLE 0x0001
  528. #define NV_PAUSEFRAME_TX_CAPABLE 0x0002
  529. #define NV_PAUSEFRAME_RX_ENABLE 0x0004
  530. #define NV_PAUSEFRAME_TX_ENABLE 0x0008
  531. #define NV_PAUSEFRAME_RX_REQ 0x0010
  532. #define NV_PAUSEFRAME_TX_REQ 0x0020
  533. #define NV_PAUSEFRAME_AUTONEG 0x0040
  534. /* MSI/MSI-X defines */
  535. #define NV_MSI_X_MAX_VECTORS 8
  536. #define NV_MSI_X_VECTORS_MASK 0x000f
  537. #define NV_MSI_CAPABLE 0x0010
  538. #define NV_MSI_X_CAPABLE 0x0020
  539. #define NV_MSI_ENABLED 0x0040
  540. #define NV_MSI_X_ENABLED 0x0080
  541. #define NV_MSI_X_VECTOR_ALL 0x0
  542. #define NV_MSI_X_VECTOR_RX 0x0
  543. #define NV_MSI_X_VECTOR_TX 0x1
  544. #define NV_MSI_X_VECTOR_OTHER 0x2
  545. #define NV_MSI_PRIV_OFFSET 0x68
  546. #define NV_MSI_PRIV_VALUE 0xffffffff
  547. #define NV_RESTART_TX 0x1
  548. #define NV_RESTART_RX 0x2
  549. #define NV_TX_LIMIT_COUNT 16
  550. /* statistics */
  551. struct nv_ethtool_str {
  552. char name[ETH_GSTRING_LEN];
  553. };
  554. static const struct nv_ethtool_str nv_estats_str[] = {
  555. { "tx_bytes" },
  556. { "tx_zero_rexmt" },
  557. { "tx_one_rexmt" },
  558. { "tx_many_rexmt" },
  559. { "tx_late_collision" },
  560. { "tx_fifo_errors" },
  561. { "tx_carrier_errors" },
  562. { "tx_excess_deferral" },
  563. { "tx_retry_error" },
  564. { "rx_frame_error" },
  565. { "rx_extra_byte" },
  566. { "rx_late_collision" },
  567. { "rx_runt" },
  568. { "rx_frame_too_long" },
  569. { "rx_over_errors" },
  570. { "rx_crc_errors" },
  571. { "rx_frame_align_error" },
  572. { "rx_length_error" },
  573. { "rx_unicast" },
  574. { "rx_multicast" },
  575. { "rx_broadcast" },
  576. { "rx_packets" },
  577. { "rx_errors_total" },
  578. { "tx_errors_total" },
  579. /* version 2 stats */
  580. { "tx_deferral" },
  581. { "tx_packets" },
  582. { "rx_bytes" },
  583. { "tx_pause" },
  584. { "rx_pause" },
  585. { "rx_drop_frame" },
  586. /* version 3 stats */
  587. { "tx_unicast" },
  588. { "tx_multicast" },
  589. { "tx_broadcast" }
  590. };
  591. struct nv_ethtool_stats {
  592. u64 tx_bytes;
  593. u64 tx_zero_rexmt;
  594. u64 tx_one_rexmt;
  595. u64 tx_many_rexmt;
  596. u64 tx_late_collision;
  597. u64 tx_fifo_errors;
  598. u64 tx_carrier_errors;
  599. u64 tx_excess_deferral;
  600. u64 tx_retry_error;
  601. u64 rx_frame_error;
  602. u64 rx_extra_byte;
  603. u64 rx_late_collision;
  604. u64 rx_runt;
  605. u64 rx_frame_too_long;
  606. u64 rx_over_errors;
  607. u64 rx_crc_errors;
  608. u64 rx_frame_align_error;
  609. u64 rx_length_error;
  610. u64 rx_unicast;
  611. u64 rx_multicast;
  612. u64 rx_broadcast;
  613. u64 rx_packets;
  614. u64 rx_errors_total;
  615. u64 tx_errors_total;
  616. /* version 2 stats */
  617. u64 tx_deferral;
  618. u64 tx_packets;
  619. u64 rx_bytes;
  620. u64 tx_pause;
  621. u64 rx_pause;
  622. u64 rx_drop_frame;
  623. /* version 3 stats */
  624. u64 tx_unicast;
  625. u64 tx_multicast;
  626. u64 tx_broadcast;
  627. };
  628. #define NV_DEV_STATISTICS_V3_COUNT (sizeof(struct nv_ethtool_stats)/sizeof(u64))
  629. #define NV_DEV_STATISTICS_V2_COUNT (NV_DEV_STATISTICS_V3_COUNT - 3)
  630. #define NV_DEV_STATISTICS_V1_COUNT (NV_DEV_STATISTICS_V2_COUNT - 6)
  631. /* diagnostics */
  632. #define NV_TEST_COUNT_BASE 3
  633. #define NV_TEST_COUNT_EXTENDED 4
  634. static const struct nv_ethtool_str nv_etests_str[] = {
  635. { "link (online/offline)" },
  636. { "register (offline) " },
  637. { "interrupt (offline) " },
  638. { "loopback (offline) " }
  639. };
  640. struct register_test {
  641. __u32 reg;
  642. __u32 mask;
  643. };
  644. static const struct register_test nv_registers_test[] = {
  645. { NvRegUnknownSetupReg6, 0x01 },
  646. { NvRegMisc1, 0x03c },
  647. { NvRegOffloadConfig, 0x03ff },
  648. { NvRegMulticastAddrA, 0xffffffff },
  649. { NvRegTxWatermark, 0x0ff },
  650. { NvRegWakeUpFlags, 0x07777 },
  651. { 0,0 }
  652. };
  653. struct nv_skb_map {
  654. struct sk_buff *skb;
  655. dma_addr_t dma;
  656. unsigned int dma_len;
  657. struct ring_desc_ex *first_tx_desc;
  658. struct nv_skb_map *next_tx_ctx;
  659. };
  660. /*
  661. * SMP locking:
  662. * All hardware access under netdev_priv(dev)->lock, except the performance
  663. * critical parts:
  664. * - rx is (pseudo-) lockless: it relies on the single-threading provided
  665. * by the arch code for interrupts.
  666. * - tx setup is lockless: it relies on netif_tx_lock. Actual submission
  667. * needs netdev_priv(dev)->lock :-(
  668. * - set_multicast_list: preparation lockless, relies on netif_tx_lock.
  669. */
  670. /* in dev: base, irq */
  671. struct fe_priv {
  672. spinlock_t lock;
  673. struct net_device *dev;
  674. struct napi_struct napi;
  675. /* General data:
  676. * Locking: spin_lock(&np->lock); */
  677. struct nv_ethtool_stats estats;
  678. int in_shutdown;
  679. u32 linkspeed;
  680. int duplex;
  681. int autoneg;
  682. int fixed_mode;
  683. int phyaddr;
  684. int wolenabled;
  685. unsigned int phy_oui;
  686. unsigned int phy_model;
  687. unsigned int phy_rev;
  688. u16 gigabit;
  689. int intr_test;
  690. int recover_error;
  691. /* General data: RO fields */
  692. dma_addr_t ring_addr;
  693. struct pci_dev *pci_dev;
  694. u32 orig_mac[2];
  695. u32 irqmask;
  696. u32 desc_ver;
  697. u32 txrxctl_bits;
  698. u32 vlanctl_bits;
  699. u32 driver_data;
  700. u32 device_id;
  701. u32 register_size;
  702. int rx_csum;
  703. u32 mac_in_use;
  704. int mgmt_version;
  705. int mgmt_sema;
  706. void __iomem *base;
  707. /* rx specific fields.
  708. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  709. */
  710. union ring_type get_rx, put_rx, first_rx, last_rx;
  711. struct nv_skb_map *get_rx_ctx, *put_rx_ctx;
  712. struct nv_skb_map *first_rx_ctx, *last_rx_ctx;
  713. struct nv_skb_map *rx_skb;
  714. union ring_type rx_ring;
  715. unsigned int rx_buf_sz;
  716. unsigned int pkt_limit;
  717. struct timer_list oom_kick;
  718. struct timer_list nic_poll;
  719. struct timer_list stats_poll;
  720. u32 nic_poll_irq;
  721. int rx_ring_size;
  722. /* media detection workaround.
  723. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  724. */
  725. int need_linktimer;
  726. unsigned long link_timeout;
  727. /*
  728. * tx specific fields.
  729. */
  730. union ring_type get_tx, put_tx, first_tx, last_tx;
  731. struct nv_skb_map *get_tx_ctx, *put_tx_ctx;
  732. struct nv_skb_map *first_tx_ctx, *last_tx_ctx;
  733. struct nv_skb_map *tx_skb;
  734. union ring_type tx_ring;
  735. u32 tx_flags;
  736. int tx_ring_size;
  737. int tx_limit;
  738. u32 tx_pkts_in_progress;
  739. struct nv_skb_map *tx_change_owner;
  740. struct nv_skb_map *tx_end_flip;
  741. int tx_stop;
  742. /* vlan fields */
  743. struct vlan_group *vlangrp;
  744. /* msi/msi-x fields */
  745. u32 msi_flags;
  746. struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
  747. /* flow control */
  748. u32 pause_flags;
  749. /* power saved state */
  750. u32 saved_config_space[NV_PCI_REGSZ_MAX/4];
  751. /* for different msi-x irq type */
  752. char name_rx[IFNAMSIZ + 3]; /* -rx */
  753. char name_tx[IFNAMSIZ + 3]; /* -tx */
  754. char name_other[IFNAMSIZ + 6]; /* -other */
  755. };
  756. /*
  757. * Maximum number of loops until we assume that a bit in the irq mask
  758. * is stuck. Overridable with module param.
  759. */
  760. static int max_interrupt_work = 15;
  761. /*
  762. * Optimization can be either throuput mode or cpu mode
  763. *
  764. * Throughput Mode: Every tx and rx packet will generate an interrupt.
  765. * CPU Mode: Interrupts are controlled by a timer.
  766. */
  767. enum {
  768. NV_OPTIMIZATION_MODE_THROUGHPUT,
  769. NV_OPTIMIZATION_MODE_CPU
  770. };
  771. static int optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
  772. /*
  773. * Poll interval for timer irq
  774. *
  775. * This interval determines how frequent an interrupt is generated.
  776. * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
  777. * Min = 0, and Max = 65535
  778. */
  779. static int poll_interval = -1;
  780. /*
  781. * MSI interrupts
  782. */
  783. enum {
  784. NV_MSI_INT_DISABLED,
  785. NV_MSI_INT_ENABLED
  786. };
  787. static int msi = NV_MSI_INT_ENABLED;
  788. /*
  789. * MSIX interrupts
  790. */
  791. enum {
  792. NV_MSIX_INT_DISABLED,
  793. NV_MSIX_INT_ENABLED
  794. };
  795. static int msix = NV_MSIX_INT_ENABLED;
  796. /*
  797. * DMA 64bit
  798. */
  799. enum {
  800. NV_DMA_64BIT_DISABLED,
  801. NV_DMA_64BIT_ENABLED
  802. };
  803. static int dma_64bit = NV_DMA_64BIT_ENABLED;
  804. /*
  805. * Crossover Detection
  806. * Realtek 8201 phy + some OEM boards do not work properly.
  807. */
  808. enum {
  809. NV_CROSSOVER_DETECTION_DISABLED,
  810. NV_CROSSOVER_DETECTION_ENABLED
  811. };
  812. static int phy_cross = NV_CROSSOVER_DETECTION_DISABLED;
  813. static inline struct fe_priv *get_nvpriv(struct net_device *dev)
  814. {
  815. return netdev_priv(dev);
  816. }
  817. static inline u8 __iomem *get_hwbase(struct net_device *dev)
  818. {
  819. return ((struct fe_priv *)netdev_priv(dev))->base;
  820. }
  821. static inline void pci_push(u8 __iomem *base)
  822. {
  823. /* force out pending posted writes */
  824. readl(base);
  825. }
  826. static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
  827. {
  828. return le32_to_cpu(prd->flaglen)
  829. & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
  830. }
  831. static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
  832. {
  833. return le32_to_cpu(prd->flaglen) & LEN_MASK_V2;
  834. }
  835. static bool nv_optimized(struct fe_priv *np)
  836. {
  837. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  838. return false;
  839. return true;
  840. }
  841. static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
  842. int delay, int delaymax, const char *msg)
  843. {
  844. u8 __iomem *base = get_hwbase(dev);
  845. pci_push(base);
  846. do {
  847. udelay(delay);
  848. delaymax -= delay;
  849. if (delaymax < 0) {
  850. if (msg)
  851. printk("%s", msg);
  852. return 1;
  853. }
  854. } while ((readl(base + offset) & mask) != target);
  855. return 0;
  856. }
  857. #define NV_SETUP_RX_RING 0x01
  858. #define NV_SETUP_TX_RING 0x02
  859. static inline u32 dma_low(dma_addr_t addr)
  860. {
  861. return addr;
  862. }
  863. static inline u32 dma_high(dma_addr_t addr)
  864. {
  865. return addr>>31>>1; /* 0 if 32bit, shift down by 32 if 64bit */
  866. }
  867. static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
  868. {
  869. struct fe_priv *np = get_nvpriv(dev);
  870. u8 __iomem *base = get_hwbase(dev);
  871. if (!nv_optimized(np)) {
  872. if (rxtx_flags & NV_SETUP_RX_RING) {
  873. writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
  874. }
  875. if (rxtx_flags & NV_SETUP_TX_RING) {
  876. writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
  877. }
  878. } else {
  879. if (rxtx_flags & NV_SETUP_RX_RING) {
  880. writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
  881. writel(dma_high(np->ring_addr), base + NvRegRxRingPhysAddrHigh);
  882. }
  883. if (rxtx_flags & NV_SETUP_TX_RING) {
  884. writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
  885. writel(dma_high(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddrHigh);
  886. }
  887. }
  888. }
  889. static void free_rings(struct net_device *dev)
  890. {
  891. struct fe_priv *np = get_nvpriv(dev);
  892. if (!nv_optimized(np)) {
  893. if (np->rx_ring.orig)
  894. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
  895. np->rx_ring.orig, np->ring_addr);
  896. } else {
  897. if (np->rx_ring.ex)
  898. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
  899. np->rx_ring.ex, np->ring_addr);
  900. }
  901. if (np->rx_skb)
  902. kfree(np->rx_skb);
  903. if (np->tx_skb)
  904. kfree(np->tx_skb);
  905. }
  906. static int using_multi_irqs(struct net_device *dev)
  907. {
  908. struct fe_priv *np = get_nvpriv(dev);
  909. if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
  910. ((np->msi_flags & NV_MSI_X_ENABLED) &&
  911. ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1)))
  912. return 0;
  913. else
  914. return 1;
  915. }
  916. static void nv_enable_irq(struct net_device *dev)
  917. {
  918. struct fe_priv *np = get_nvpriv(dev);
  919. if (!using_multi_irqs(dev)) {
  920. if (np->msi_flags & NV_MSI_X_ENABLED)
  921. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  922. else
  923. enable_irq(np->pci_dev->irq);
  924. } else {
  925. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  926. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  927. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  928. }
  929. }
  930. static void nv_disable_irq(struct net_device *dev)
  931. {
  932. struct fe_priv *np = get_nvpriv(dev);
  933. if (!using_multi_irqs(dev)) {
  934. if (np->msi_flags & NV_MSI_X_ENABLED)
  935. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  936. else
  937. disable_irq(np->pci_dev->irq);
  938. } else {
  939. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  940. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  941. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  942. }
  943. }
  944. /* In MSIX mode, a write to irqmask behaves as XOR */
  945. static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask)
  946. {
  947. u8 __iomem *base = get_hwbase(dev);
  948. writel(mask, base + NvRegIrqMask);
  949. }
  950. static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask)
  951. {
  952. struct fe_priv *np = get_nvpriv(dev);
  953. u8 __iomem *base = get_hwbase(dev);
  954. if (np->msi_flags & NV_MSI_X_ENABLED) {
  955. writel(mask, base + NvRegIrqMask);
  956. } else {
  957. if (np->msi_flags & NV_MSI_ENABLED)
  958. writel(0, base + NvRegMSIIrqMask);
  959. writel(0, base + NvRegIrqMask);
  960. }
  961. }
  962. #define MII_READ (-1)
  963. /* mii_rw: read/write a register on the PHY.
  964. *
  965. * Caller must guarantee serialization
  966. */
  967. static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
  968. {
  969. u8 __iomem *base = get_hwbase(dev);
  970. u32 reg;
  971. int retval;
  972. writel(NVREG_MIISTAT_MASK_RW, base + NvRegMIIStatus);
  973. reg = readl(base + NvRegMIIControl);
  974. if (reg & NVREG_MIICTL_INUSE) {
  975. writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
  976. udelay(NV_MIIBUSY_DELAY);
  977. }
  978. reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
  979. if (value != MII_READ) {
  980. writel(value, base + NvRegMIIData);
  981. reg |= NVREG_MIICTL_WRITE;
  982. }
  983. writel(reg, base + NvRegMIIControl);
  984. if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
  985. NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
  986. dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
  987. dev->name, miireg, addr);
  988. retval = -1;
  989. } else if (value != MII_READ) {
  990. /* it was a write operation - fewer failures are detectable */
  991. dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
  992. dev->name, value, miireg, addr);
  993. retval = 0;
  994. } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
  995. dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
  996. dev->name, miireg, addr);
  997. retval = -1;
  998. } else {
  999. retval = readl(base + NvRegMIIData);
  1000. dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
  1001. dev->name, miireg, addr, retval);
  1002. }
  1003. return retval;
  1004. }
  1005. static int phy_reset(struct net_device *dev, u32 bmcr_setup)
  1006. {
  1007. struct fe_priv *np = netdev_priv(dev);
  1008. u32 miicontrol;
  1009. unsigned int tries = 0;
  1010. miicontrol = BMCR_RESET | bmcr_setup;
  1011. if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
  1012. return -1;
  1013. }
  1014. /* wait for 500ms */
  1015. msleep(500);
  1016. /* must wait till reset is deasserted */
  1017. while (miicontrol & BMCR_RESET) {
  1018. msleep(10);
  1019. miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1020. /* FIXME: 100 tries seem excessive */
  1021. if (tries++ > 100)
  1022. return -1;
  1023. }
  1024. return 0;
  1025. }
  1026. static int phy_init(struct net_device *dev)
  1027. {
  1028. struct fe_priv *np = get_nvpriv(dev);
  1029. u8 __iomem *base = get_hwbase(dev);
  1030. u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
  1031. /* phy errata for E3016 phy */
  1032. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  1033. reg = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
  1034. reg &= ~PHY_MARVELL_E3016_INITMASK;
  1035. if (mii_rw(dev, np->phyaddr, MII_NCONFIG, reg)) {
  1036. printk(KERN_INFO "%s: phy write to errata reg failed.\n", pci_name(np->pci_dev));
  1037. return PHY_ERROR;
  1038. }
  1039. }
  1040. if (np->phy_oui == PHY_OUI_REALTEK) {
  1041. if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
  1042. np->phy_rev == PHY_REV_REALTEK_8211B) {
  1043. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1044. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1045. return PHY_ERROR;
  1046. }
  1047. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2)) {
  1048. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1049. return PHY_ERROR;
  1050. }
  1051. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
  1052. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1053. return PHY_ERROR;
  1054. }
  1055. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4)) {
  1056. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1057. return PHY_ERROR;
  1058. }
  1059. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG4, PHY_REALTEK_INIT5)) {
  1060. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1061. return PHY_ERROR;
  1062. }
  1063. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG5, PHY_REALTEK_INIT6)) {
  1064. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1065. return PHY_ERROR;
  1066. }
  1067. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1068. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1069. return PHY_ERROR;
  1070. }
  1071. }
  1072. if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
  1073. np->phy_rev == PHY_REV_REALTEK_8211C) {
  1074. u32 powerstate = readl(base + NvRegPowerState2);
  1075. /* need to perform hw phy reset */
  1076. powerstate |= NVREG_POWERSTATE2_PHY_RESET;
  1077. writel(powerstate, base + NvRegPowerState2);
  1078. msleep(25);
  1079. powerstate &= ~NVREG_POWERSTATE2_PHY_RESET;
  1080. writel(powerstate, base + NvRegPowerState2);
  1081. msleep(25);
  1082. reg = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ);
  1083. reg |= PHY_REALTEK_INIT9;
  1084. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, reg)) {
  1085. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1086. return PHY_ERROR;
  1087. }
  1088. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT10)) {
  1089. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1090. return PHY_ERROR;
  1091. }
  1092. reg = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG7, MII_READ);
  1093. if (!(reg & PHY_REALTEK_INIT11)) {
  1094. reg |= PHY_REALTEK_INIT11;
  1095. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG7, reg)) {
  1096. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1097. return PHY_ERROR;
  1098. }
  1099. }
  1100. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1101. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1102. return PHY_ERROR;
  1103. }
  1104. }
  1105. if (np->phy_model == PHY_MODEL_REALTEK_8201) {
  1106. if (np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_32 ||
  1107. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_33 ||
  1108. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_34 ||
  1109. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_35 ||
  1110. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_36 ||
  1111. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_37 ||
  1112. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_38 ||
  1113. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_39) {
  1114. phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ);
  1115. phy_reserved |= PHY_REALTEK_INIT7;
  1116. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, phy_reserved)) {
  1117. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1118. return PHY_ERROR;
  1119. }
  1120. }
  1121. }
  1122. }
  1123. /* set advertise register */
  1124. reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  1125. reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|ADVERTISE_PAUSE_ASYM|ADVERTISE_PAUSE_CAP);
  1126. if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
  1127. printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
  1128. return PHY_ERROR;
  1129. }
  1130. /* get phy interface type */
  1131. phyinterface = readl(base + NvRegPhyInterface);
  1132. /* see if gigabit phy */
  1133. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  1134. if (mii_status & PHY_GIGABIT) {
  1135. np->gigabit = PHY_GIGABIT;
  1136. mii_control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  1137. mii_control_1000 &= ~ADVERTISE_1000HALF;
  1138. if (phyinterface & PHY_RGMII)
  1139. mii_control_1000 |= ADVERTISE_1000FULL;
  1140. else
  1141. mii_control_1000 &= ~ADVERTISE_1000FULL;
  1142. if (mii_rw(dev, np->phyaddr, MII_CTRL1000, mii_control_1000)) {
  1143. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1144. return PHY_ERROR;
  1145. }
  1146. }
  1147. else
  1148. np->gigabit = 0;
  1149. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1150. mii_control |= BMCR_ANENABLE;
  1151. if (np->phy_oui == PHY_OUI_REALTEK &&
  1152. np->phy_model == PHY_MODEL_REALTEK_8211 &&
  1153. np->phy_rev == PHY_REV_REALTEK_8211C) {
  1154. /* start autoneg since we already performed hw reset above */
  1155. mii_control |= BMCR_ANRESTART;
  1156. if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
  1157. printk(KERN_INFO "%s: phy init failed\n", pci_name(np->pci_dev));
  1158. return PHY_ERROR;
  1159. }
  1160. } else {
  1161. /* reset the phy
  1162. * (certain phys need bmcr to be setup with reset)
  1163. */
  1164. if (phy_reset(dev, mii_control)) {
  1165. printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
  1166. return PHY_ERROR;
  1167. }
  1168. }
  1169. /* phy vendor specific configuration */
  1170. if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
  1171. phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
  1172. phy_reserved &= ~(PHY_CICADA_INIT1 | PHY_CICADA_INIT2);
  1173. phy_reserved |= (PHY_CICADA_INIT3 | PHY_CICADA_INIT4);
  1174. if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
  1175. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1176. return PHY_ERROR;
  1177. }
  1178. phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
  1179. phy_reserved |= PHY_CICADA_INIT5;
  1180. if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
  1181. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1182. return PHY_ERROR;
  1183. }
  1184. }
  1185. if (np->phy_oui == PHY_OUI_CICADA) {
  1186. phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
  1187. phy_reserved |= PHY_CICADA_INIT6;
  1188. if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
  1189. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1190. return PHY_ERROR;
  1191. }
  1192. }
  1193. if (np->phy_oui == PHY_OUI_VITESSE) {
  1194. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT1)) {
  1195. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1196. return PHY_ERROR;
  1197. }
  1198. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT2)) {
  1199. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1200. return PHY_ERROR;
  1201. }
  1202. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
  1203. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
  1204. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1205. return PHY_ERROR;
  1206. }
  1207. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
  1208. phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
  1209. phy_reserved |= PHY_VITESSE_INIT3;
  1210. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
  1211. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1212. return PHY_ERROR;
  1213. }
  1214. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT4)) {
  1215. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1216. return PHY_ERROR;
  1217. }
  1218. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT5)) {
  1219. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1220. return PHY_ERROR;
  1221. }
  1222. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
  1223. phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
  1224. phy_reserved |= PHY_VITESSE_INIT3;
  1225. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
  1226. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1227. return PHY_ERROR;
  1228. }
  1229. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
  1230. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
  1231. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1232. return PHY_ERROR;
  1233. }
  1234. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT6)) {
  1235. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1236. return PHY_ERROR;
  1237. }
  1238. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT7)) {
  1239. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1240. return PHY_ERROR;
  1241. }
  1242. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
  1243. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
  1244. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1245. return PHY_ERROR;
  1246. }
  1247. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
  1248. phy_reserved &= ~PHY_VITESSE_INIT_MSK2;
  1249. phy_reserved |= PHY_VITESSE_INIT8;
  1250. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
  1251. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1252. return PHY_ERROR;
  1253. }
  1254. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT9)) {
  1255. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1256. return PHY_ERROR;
  1257. }
  1258. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT10)) {
  1259. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1260. return PHY_ERROR;
  1261. }
  1262. }
  1263. if (np->phy_oui == PHY_OUI_REALTEK) {
  1264. if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
  1265. np->phy_rev == PHY_REV_REALTEK_8211B) {
  1266. /* reset could have cleared these out, set them back */
  1267. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1268. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1269. return PHY_ERROR;
  1270. }
  1271. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2)) {
  1272. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1273. return PHY_ERROR;
  1274. }
  1275. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
  1276. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1277. return PHY_ERROR;
  1278. }
  1279. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4)) {
  1280. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1281. return PHY_ERROR;
  1282. }
  1283. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG4, PHY_REALTEK_INIT5)) {
  1284. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1285. return PHY_ERROR;
  1286. }
  1287. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG5, PHY_REALTEK_INIT6)) {
  1288. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1289. return PHY_ERROR;
  1290. }
  1291. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1292. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1293. return PHY_ERROR;
  1294. }
  1295. }
  1296. if (np->phy_model == PHY_MODEL_REALTEK_8201) {
  1297. if (np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_32 ||
  1298. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_33 ||
  1299. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_34 ||
  1300. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_35 ||
  1301. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_36 ||
  1302. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_37 ||
  1303. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_38 ||
  1304. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_39) {
  1305. phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ);
  1306. phy_reserved |= PHY_REALTEK_INIT7;
  1307. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, phy_reserved)) {
  1308. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1309. return PHY_ERROR;
  1310. }
  1311. }
  1312. if (phy_cross == NV_CROSSOVER_DETECTION_DISABLED) {
  1313. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
  1314. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1315. return PHY_ERROR;
  1316. }
  1317. phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, MII_READ);
  1318. phy_reserved &= ~PHY_REALTEK_INIT_MSK1;
  1319. phy_reserved |= PHY_REALTEK_INIT3;
  1320. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, phy_reserved)) {
  1321. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1322. return PHY_ERROR;
  1323. }
  1324. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1325. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1326. return PHY_ERROR;
  1327. }
  1328. }
  1329. }
  1330. }
  1331. /* some phys clear out pause advertisment on reset, set it back */
  1332. mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg);
  1333. /* restart auto negotiation, power down phy */
  1334. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1335. mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE | BMCR_PDOWN);
  1336. if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
  1337. return PHY_ERROR;
  1338. }
  1339. return 0;
  1340. }
  1341. static void nv_start_rx(struct net_device *dev)
  1342. {
  1343. struct fe_priv *np = netdev_priv(dev);
  1344. u8 __iomem *base = get_hwbase(dev);
  1345. u32 rx_ctrl = readl(base + NvRegReceiverControl);
  1346. dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
  1347. /* Already running? Stop it. */
  1348. if ((readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) && !np->mac_in_use) {
  1349. rx_ctrl &= ~NVREG_RCVCTL_START;
  1350. writel(rx_ctrl, base + NvRegReceiverControl);
  1351. pci_push(base);
  1352. }
  1353. writel(np->linkspeed, base + NvRegLinkSpeed);
  1354. pci_push(base);
  1355. rx_ctrl |= NVREG_RCVCTL_START;
  1356. if (np->mac_in_use)
  1357. rx_ctrl &= ~NVREG_RCVCTL_RX_PATH_EN;
  1358. writel(rx_ctrl, base + NvRegReceiverControl);
  1359. dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
  1360. dev->name, np->duplex, np->linkspeed);
  1361. pci_push(base);
  1362. }
  1363. static void nv_stop_rx(struct net_device *dev)
  1364. {
  1365. struct fe_priv *np = netdev_priv(dev);
  1366. u8 __iomem *base = get_hwbase(dev);
  1367. u32 rx_ctrl = readl(base + NvRegReceiverControl);
  1368. dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
  1369. if (!np->mac_in_use)
  1370. rx_ctrl &= ~NVREG_RCVCTL_START;
  1371. else
  1372. rx_ctrl |= NVREG_RCVCTL_RX_PATH_EN;
  1373. writel(rx_ctrl, base + NvRegReceiverControl);
  1374. reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
  1375. NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
  1376. KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
  1377. udelay(NV_RXSTOP_DELAY2);
  1378. if (!np->mac_in_use)
  1379. writel(0, base + NvRegLinkSpeed);
  1380. }
  1381. static void nv_start_tx(struct net_device *dev)
  1382. {
  1383. struct fe_priv *np = netdev_priv(dev);
  1384. u8 __iomem *base = get_hwbase(dev);
  1385. u32 tx_ctrl = readl(base + NvRegTransmitterControl);
  1386. dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
  1387. tx_ctrl |= NVREG_XMITCTL_START;
  1388. if (np->mac_in_use)
  1389. tx_ctrl &= ~NVREG_XMITCTL_TX_PATH_EN;
  1390. writel(tx_ctrl, base + NvRegTransmitterControl);
  1391. pci_push(base);
  1392. }
  1393. static void nv_stop_tx(struct net_device *dev)
  1394. {
  1395. struct fe_priv *np = netdev_priv(dev);
  1396. u8 __iomem *base = get_hwbase(dev);
  1397. u32 tx_ctrl = readl(base + NvRegTransmitterControl);
  1398. dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
  1399. if (!np->mac_in_use)
  1400. tx_ctrl &= ~NVREG_XMITCTL_START;
  1401. else
  1402. tx_ctrl |= NVREG_XMITCTL_TX_PATH_EN;
  1403. writel(tx_ctrl, base + NvRegTransmitterControl);
  1404. reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
  1405. NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
  1406. KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
  1407. udelay(NV_TXSTOP_DELAY2);
  1408. if (!np->mac_in_use)
  1409. writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV,
  1410. base + NvRegTransmitPoll);
  1411. }
  1412. static void nv_start_rxtx(struct net_device *dev)
  1413. {
  1414. nv_start_rx(dev);
  1415. nv_start_tx(dev);
  1416. }
  1417. static void nv_stop_rxtx(struct net_device *dev)
  1418. {
  1419. nv_stop_rx(dev);
  1420. nv_stop_tx(dev);
  1421. }
  1422. static void nv_txrx_reset(struct net_device *dev)
  1423. {
  1424. struct fe_priv *np = netdev_priv(dev);
  1425. u8 __iomem *base = get_hwbase(dev);
  1426. dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
  1427. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  1428. pci_push(base);
  1429. udelay(NV_TXRX_RESET_DELAY);
  1430. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  1431. pci_push(base);
  1432. }
  1433. static void nv_mac_reset(struct net_device *dev)
  1434. {
  1435. struct fe_priv *np = netdev_priv(dev);
  1436. u8 __iomem *base = get_hwbase(dev);
  1437. u32 temp1, temp2, temp3;
  1438. dprintk(KERN_DEBUG "%s: nv_mac_reset\n", dev->name);
  1439. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  1440. pci_push(base);
  1441. /* save registers since they will be cleared on reset */
  1442. temp1 = readl(base + NvRegMacAddrA);
  1443. temp2 = readl(base + NvRegMacAddrB);
  1444. temp3 = readl(base + NvRegTransmitPoll);
  1445. writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset);
  1446. pci_push(base);
  1447. udelay(NV_MAC_RESET_DELAY);
  1448. writel(0, base + NvRegMacReset);
  1449. pci_push(base);
  1450. udelay(NV_MAC_RESET_DELAY);
  1451. /* restore saved registers */
  1452. writel(temp1, base + NvRegMacAddrA);
  1453. writel(temp2, base + NvRegMacAddrB);
  1454. writel(temp3, base + NvRegTransmitPoll);
  1455. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  1456. pci_push(base);
  1457. }
  1458. static void nv_get_hw_stats(struct net_device *dev)
  1459. {
  1460. struct fe_priv *np = netdev_priv(dev);
  1461. u8 __iomem *base = get_hwbase(dev);
  1462. np->estats.tx_bytes += readl(base + NvRegTxCnt);
  1463. np->estats.tx_zero_rexmt += readl(base + NvRegTxZeroReXmt);
  1464. np->estats.tx_one_rexmt += readl(base + NvRegTxOneReXmt);
  1465. np->estats.tx_many_rexmt += readl(base + NvRegTxManyReXmt);
  1466. np->estats.tx_late_collision += readl(base + NvRegTxLateCol);
  1467. np->estats.tx_fifo_errors += readl(base + NvRegTxUnderflow);
  1468. np->estats.tx_carrier_errors += readl(base + NvRegTxLossCarrier);
  1469. np->estats.tx_excess_deferral += readl(base + NvRegTxExcessDef);
  1470. np->estats.tx_retry_error += readl(base + NvRegTxRetryErr);
  1471. np->estats.rx_frame_error += readl(base + NvRegRxFrameErr);
  1472. np->estats.rx_extra_byte += readl(base + NvRegRxExtraByte);
  1473. np->estats.rx_late_collision += readl(base + NvRegRxLateCol);
  1474. np->estats.rx_runt += readl(base + NvRegRxRunt);
  1475. np->estats.rx_frame_too_long += readl(base + NvRegRxFrameTooLong);
  1476. np->estats.rx_over_errors += readl(base + NvRegRxOverflow);
  1477. np->estats.rx_crc_errors += readl(base + NvRegRxFCSErr);
  1478. np->estats.rx_frame_align_error += readl(base + NvRegRxFrameAlignErr);
  1479. np->estats.rx_length_error += readl(base + NvRegRxLenErr);
  1480. np->estats.rx_unicast += readl(base + NvRegRxUnicast);
  1481. np->estats.rx_multicast += readl(base + NvRegRxMulticast);
  1482. np->estats.rx_broadcast += readl(base + NvRegRxBroadcast);
  1483. np->estats.rx_packets =
  1484. np->estats.rx_unicast +
  1485. np->estats.rx_multicast +
  1486. np->estats.rx_broadcast;
  1487. np->estats.rx_errors_total =
  1488. np->estats.rx_crc_errors +
  1489. np->estats.rx_over_errors +
  1490. np->estats.rx_frame_error +
  1491. (np->estats.rx_frame_align_error - np->estats.rx_extra_byte) +
  1492. np->estats.rx_late_collision +
  1493. np->estats.rx_runt +
  1494. np->estats.rx_frame_too_long;
  1495. np->estats.tx_errors_total =
  1496. np->estats.tx_late_collision +
  1497. np->estats.tx_fifo_errors +
  1498. np->estats.tx_carrier_errors +
  1499. np->estats.tx_excess_deferral +
  1500. np->estats.tx_retry_error;
  1501. if (np->driver_data & DEV_HAS_STATISTICS_V2) {
  1502. np->estats.tx_deferral += readl(base + NvRegTxDef);
  1503. np->estats.tx_packets += readl(base + NvRegTxFrame);
  1504. np->estats.rx_bytes += readl(base + NvRegRxCnt);
  1505. np->estats.tx_pause += readl(base + NvRegTxPause);
  1506. np->estats.rx_pause += readl(base + NvRegRxPause);
  1507. np->estats.rx_drop_frame += readl(base + NvRegRxDropFrame);
  1508. }
  1509. if (np->driver_data & DEV_HAS_STATISTICS_V3) {
  1510. np->estats.tx_unicast += readl(base + NvRegTxUnicast);
  1511. np->estats.tx_multicast += readl(base + NvRegTxMulticast);
  1512. np->estats.tx_broadcast += readl(base + NvRegTxBroadcast);
  1513. }
  1514. }
  1515. /*
  1516. * nv_get_stats: dev->get_stats function
  1517. * Get latest stats value from the nic.
  1518. * Called with read_lock(&dev_base_lock) held for read -
  1519. * only synchronized against unregister_netdevice.
  1520. */
  1521. static struct net_device_stats *nv_get_stats(struct net_device *dev)
  1522. {
  1523. struct fe_priv *np = netdev_priv(dev);
  1524. /* If the nic supports hw counters then retrieve latest values */
  1525. if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3)) {
  1526. nv_get_hw_stats(dev);
  1527. /* copy to net_device stats */
  1528. dev->stats.tx_bytes = np->estats.tx_bytes;
  1529. dev->stats.tx_fifo_errors = np->estats.tx_fifo_errors;
  1530. dev->stats.tx_carrier_errors = np->estats.tx_carrier_errors;
  1531. dev->stats.rx_crc_errors = np->estats.rx_crc_errors;
  1532. dev->stats.rx_over_errors = np->estats.rx_over_errors;
  1533. dev->stats.rx_errors = np->estats.rx_errors_total;
  1534. dev->stats.tx_errors = np->estats.tx_errors_total;
  1535. }
  1536. return &dev->stats;
  1537. }
  1538. /*
  1539. * nv_alloc_rx: fill rx ring entries.
  1540. * Return 1 if the allocations for the skbs failed and the
  1541. * rx engine is without Available descriptors
  1542. */
  1543. static int nv_alloc_rx(struct net_device *dev)
  1544. {
  1545. struct fe_priv *np = netdev_priv(dev);
  1546. struct ring_desc* less_rx;
  1547. less_rx = np->get_rx.orig;
  1548. if (less_rx-- == np->first_rx.orig)
  1549. less_rx = np->last_rx.orig;
  1550. while (np->put_rx.orig != less_rx) {
  1551. struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
  1552. if (skb) {
  1553. np->put_rx_ctx->skb = skb;
  1554. np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
  1555. skb->data,
  1556. skb_tailroom(skb),
  1557. PCI_DMA_FROMDEVICE);
  1558. np->put_rx_ctx->dma_len = skb_tailroom(skb);
  1559. np->put_rx.orig->buf = cpu_to_le32(np->put_rx_ctx->dma);
  1560. wmb();
  1561. np->put_rx.orig->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
  1562. if (unlikely(np->put_rx.orig++ == np->last_rx.orig))
  1563. np->put_rx.orig = np->first_rx.orig;
  1564. if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
  1565. np->put_rx_ctx = np->first_rx_ctx;
  1566. } else {
  1567. return 1;
  1568. }
  1569. }
  1570. return 0;
  1571. }
  1572. static int nv_alloc_rx_optimized(struct net_device *dev)
  1573. {
  1574. struct fe_priv *np = netdev_priv(dev);
  1575. struct ring_desc_ex* less_rx;
  1576. less_rx = np->get_rx.ex;
  1577. if (less_rx-- == np->first_rx.ex)
  1578. less_rx = np->last_rx.ex;
  1579. while (np->put_rx.ex != less_rx) {
  1580. struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
  1581. if (skb) {
  1582. np->put_rx_ctx->skb = skb;
  1583. np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
  1584. skb->data,
  1585. skb_tailroom(skb),
  1586. PCI_DMA_FROMDEVICE);
  1587. np->put_rx_ctx->dma_len = skb_tailroom(skb);
  1588. np->put_rx.ex->bufhigh = cpu_to_le32(dma_high(np->put_rx_ctx->dma));
  1589. np->put_rx.ex->buflow = cpu_to_le32(dma_low(np->put_rx_ctx->dma));
  1590. wmb();
  1591. np->put_rx.ex->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
  1592. if (unlikely(np->put_rx.ex++ == np->last_rx.ex))
  1593. np->put_rx.ex = np->first_rx.ex;
  1594. if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
  1595. np->put_rx_ctx = np->first_rx_ctx;
  1596. } else {
  1597. return 1;
  1598. }
  1599. }
  1600. return 0;
  1601. }
  1602. /* If rx bufs are exhausted called after 50ms to attempt to refresh */
  1603. #ifdef CONFIG_FORCEDETH_NAPI
  1604. static void nv_do_rx_refill(unsigned long data)
  1605. {
  1606. struct net_device *dev = (struct net_device *) data;
  1607. struct fe_priv *np = netdev_priv(dev);
  1608. /* Just reschedule NAPI rx processing */
  1609. napi_schedule(&np->napi);
  1610. }
  1611. #else
  1612. static void nv_do_rx_refill(unsigned long data)
  1613. {
  1614. struct net_device *dev = (struct net_device *) data;
  1615. struct fe_priv *np = netdev_priv(dev);
  1616. int retcode;
  1617. if (!using_multi_irqs(dev)) {
  1618. if (np->msi_flags & NV_MSI_X_ENABLED)
  1619. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  1620. else
  1621. disable_irq(np->pci_dev->irq);
  1622. } else {
  1623. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  1624. }
  1625. if (!nv_optimized(np))
  1626. retcode = nv_alloc_rx(dev);
  1627. else
  1628. retcode = nv_alloc_rx_optimized(dev);
  1629. if (retcode) {
  1630. spin_lock_irq(&np->lock);
  1631. if (!np->in_shutdown)
  1632. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  1633. spin_unlock_irq(&np->lock);
  1634. }
  1635. if (!using_multi_irqs(dev)) {
  1636. if (np->msi_flags & NV_MSI_X_ENABLED)
  1637. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  1638. else
  1639. enable_irq(np->pci_dev->irq);
  1640. } else {
  1641. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  1642. }
  1643. }
  1644. #endif
  1645. static void nv_init_rx(struct net_device *dev)
  1646. {
  1647. struct fe_priv *np = netdev_priv(dev);
  1648. int i;
  1649. np->get_rx = np->put_rx = np->first_rx = np->rx_ring;
  1650. if (!nv_optimized(np))
  1651. np->last_rx.orig = &np->rx_ring.orig[np->rx_ring_size-1];
  1652. else
  1653. np->last_rx.ex = &np->rx_ring.ex[np->rx_ring_size-1];
  1654. np->get_rx_ctx = np->put_rx_ctx = np->first_rx_ctx = np->rx_skb;
  1655. np->last_rx_ctx = &np->rx_skb[np->rx_ring_size-1];
  1656. for (i = 0; i < np->rx_ring_size; i++) {
  1657. if (!nv_optimized(np)) {
  1658. np->rx_ring.orig[i].flaglen = 0;
  1659. np->rx_ring.orig[i].buf = 0;
  1660. } else {
  1661. np->rx_ring.ex[i].flaglen = 0;
  1662. np->rx_ring.ex[i].txvlan = 0;
  1663. np->rx_ring.ex[i].bufhigh = 0;
  1664. np->rx_ring.ex[i].buflow = 0;
  1665. }
  1666. np->rx_skb[i].skb = NULL;
  1667. np->rx_skb[i].dma = 0;
  1668. }
  1669. }
  1670. static void nv_init_tx(struct net_device *dev)
  1671. {
  1672. struct fe_priv *np = netdev_priv(dev);
  1673. int i;
  1674. np->get_tx = np->put_tx = np->first_tx = np->tx_ring;
  1675. if (!nv_optimized(np))
  1676. np->last_tx.orig = &np->tx_ring.orig[np->tx_ring_size-1];
  1677. else
  1678. np->last_tx.ex = &np->tx_ring.ex[np->tx_ring_size-1];
  1679. np->get_tx_ctx = np->put_tx_ctx = np->first_tx_ctx = np->tx_skb;
  1680. np->last_tx_ctx = &np->tx_skb[np->tx_ring_size-1];
  1681. np->tx_pkts_in_progress = 0;
  1682. np->tx_change_owner = NULL;
  1683. np->tx_end_flip = NULL;
  1684. for (i = 0; i < np->tx_ring_size; i++) {
  1685. if (!nv_optimized(np)) {
  1686. np->tx_ring.orig[i].flaglen = 0;
  1687. np->tx_ring.orig[i].buf = 0;
  1688. } else {
  1689. np->tx_ring.ex[i].flaglen = 0;
  1690. np->tx_ring.ex[i].txvlan = 0;
  1691. np->tx_ring.ex[i].bufhigh = 0;
  1692. np->tx_ring.ex[i].buflow = 0;
  1693. }
  1694. np->tx_skb[i].skb = NULL;
  1695. np->tx_skb[i].dma = 0;
  1696. np->tx_skb[i].dma_len = 0;
  1697. np->tx_skb[i].first_tx_desc = NULL;
  1698. np->tx_skb[i].next_tx_ctx = NULL;
  1699. }
  1700. }
  1701. static int nv_init_ring(struct net_device *dev)
  1702. {
  1703. struct fe_priv *np = netdev_priv(dev);
  1704. nv_init_tx(dev);
  1705. nv_init_rx(dev);
  1706. if (!nv_optimized(np))
  1707. return nv_alloc_rx(dev);
  1708. else
  1709. return nv_alloc_rx_optimized(dev);
  1710. }
  1711. static int nv_release_txskb(struct net_device *dev, struct nv_skb_map* tx_skb)
  1712. {
  1713. struct fe_priv *np = netdev_priv(dev);
  1714. if (tx_skb->dma) {
  1715. pci_unmap_page(np->pci_dev, tx_skb->dma,
  1716. tx_skb->dma_len,
  1717. PCI_DMA_TODEVICE);
  1718. tx_skb->dma = 0;
  1719. }
  1720. if (tx_skb->skb) {
  1721. dev_kfree_skb_any(tx_skb->skb);
  1722. tx_skb->skb = NULL;
  1723. return 1;
  1724. } else {
  1725. return 0;
  1726. }
  1727. }
  1728. static void nv_drain_tx(struct net_device *dev)
  1729. {
  1730. struct fe_priv *np = netdev_priv(dev);
  1731. unsigned int i;
  1732. for (i = 0; i < np->tx_ring_size; i++) {
  1733. if (!nv_optimized(np)) {
  1734. np->tx_ring.orig[i].flaglen = 0;
  1735. np->tx_ring.orig[i].buf = 0;
  1736. } else {
  1737. np->tx_ring.ex[i].flaglen = 0;
  1738. np->tx_ring.ex[i].txvlan = 0;
  1739. np->tx_ring.ex[i].bufhigh = 0;
  1740. np->tx_ring.ex[i].buflow = 0;
  1741. }
  1742. if (nv_release_txskb(dev, &np->tx_skb[i]))
  1743. dev->stats.tx_dropped++;
  1744. np->tx_skb[i].dma = 0;
  1745. np->tx_skb[i].dma_len = 0;
  1746. np->tx_skb[i].first_tx_desc = NULL;
  1747. np->tx_skb[i].next_tx_ctx = NULL;
  1748. }
  1749. np->tx_pkts_in_progress = 0;
  1750. np->tx_change_owner = NULL;
  1751. np->tx_end_flip = NULL;
  1752. }
  1753. static void nv_drain_rx(struct net_device *dev)
  1754. {
  1755. struct fe_priv *np = netdev_priv(dev);
  1756. int i;
  1757. for (i = 0; i < np->rx_ring_size; i++) {
  1758. if (!nv_optimized(np)) {
  1759. np->rx_ring.orig[i].flaglen = 0;
  1760. np->rx_ring.orig[i].buf = 0;
  1761. } else {
  1762. np->rx_ring.ex[i].flaglen = 0;
  1763. np->rx_ring.ex[i].txvlan = 0;
  1764. np->rx_ring.ex[i].bufhigh = 0;
  1765. np->rx_ring.ex[i].buflow = 0;
  1766. }
  1767. wmb();
  1768. if (np->rx_skb[i].skb) {
  1769. pci_unmap_single(np->pci_dev, np->rx_skb[i].dma,
  1770. (skb_end_pointer(np->rx_skb[i].skb) -
  1771. np->rx_skb[i].skb->data),
  1772. PCI_DMA_FROMDEVICE);
  1773. dev_kfree_skb(np->rx_skb[i].skb);
  1774. np->rx_skb[i].skb = NULL;
  1775. }
  1776. }
  1777. }
  1778. static void nv_drain_rxtx(struct net_device *dev)
  1779. {
  1780. nv_drain_tx(dev);
  1781. nv_drain_rx(dev);
  1782. }
  1783. static inline u32 nv_get_empty_tx_slots(struct fe_priv *np)
  1784. {
  1785. return (u32)(np->tx_ring_size - ((np->tx_ring_size + (np->put_tx_ctx - np->get_tx_ctx)) % np->tx_ring_size));
  1786. }
  1787. static void nv_legacybackoff_reseed(struct net_device *dev)
  1788. {
  1789. u8 __iomem *base = get_hwbase(dev);
  1790. u32 reg;
  1791. u32 low;
  1792. int tx_status = 0;
  1793. reg = readl(base + NvRegSlotTime) & ~NVREG_SLOTTIME_MASK;
  1794. get_random_bytes(&low, sizeof(low));
  1795. reg |= low & NVREG_SLOTTIME_MASK;
  1796. /* Need to stop tx before change takes effect.
  1797. * Caller has already gained np->lock.
  1798. */
  1799. tx_status = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START;
  1800. if (tx_status)
  1801. nv_stop_tx(dev);
  1802. nv_stop_rx(dev);
  1803. writel(reg, base + NvRegSlotTime);
  1804. if (tx_status)
  1805. nv_start_tx(dev);
  1806. nv_start_rx(dev);
  1807. }
  1808. /* Gear Backoff Seeds */
  1809. #define BACKOFF_SEEDSET_ROWS 8
  1810. #define BACKOFF_SEEDSET_LFSRS 15
  1811. /* Known Good seed sets */
  1812. static const u32 main_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = {
  1813. {145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874},
  1814. {245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 385, 761, 790, 974},
  1815. {145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874},
  1816. {245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 386, 761, 790, 974},
  1817. {266, 265, 276, 585, 397, 208, 345, 355, 365, 376, 385, 396, 771, 700, 984},
  1818. {266, 265, 276, 586, 397, 208, 346, 355, 365, 376, 285, 396, 771, 700, 984},
  1819. {366, 365, 376, 686, 497, 308, 447, 455, 466, 476, 485, 496, 871, 800, 84},
  1820. {466, 465, 476, 786, 597, 408, 547, 555, 566, 576, 585, 597, 971, 900, 184}};
  1821. static const u32 gear_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = {
  1822. {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
  1823. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
  1824. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 397},
  1825. {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
  1826. {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
  1827. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
  1828. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
  1829. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395}};
  1830. static void nv_gear_backoff_reseed(struct net_device *dev)
  1831. {
  1832. u8 __iomem *base = get_hwbase(dev);
  1833. u32 miniseed1, miniseed2, miniseed2_reversed, miniseed3, miniseed3_reversed;
  1834. u32 temp, seedset, combinedSeed;
  1835. int i;
  1836. /* Setup seed for free running LFSR */
  1837. /* We are going to read the time stamp counter 3 times
  1838. and swizzle bits around to increase randomness */
  1839. get_random_bytes(&miniseed1, sizeof(miniseed1));
  1840. miniseed1 &= 0x0fff;
  1841. if (miniseed1 == 0)
  1842. miniseed1 = 0xabc;
  1843. get_random_bytes(&miniseed2, sizeof(miniseed2));
  1844. miniseed2 &= 0x0fff;
  1845. if (miniseed2 == 0)
  1846. miniseed2 = 0xabc;
  1847. miniseed2_reversed =
  1848. ((miniseed2 & 0xF00) >> 8) |
  1849. (miniseed2 & 0x0F0) |
  1850. ((miniseed2 & 0x00F) << 8);
  1851. get_random_bytes(&miniseed3, sizeof(miniseed3));
  1852. miniseed3 &= 0x0fff;
  1853. if (miniseed3 == 0)
  1854. miniseed3 = 0xabc;
  1855. miniseed3_reversed =
  1856. ((miniseed3 & 0xF00) >> 8) |
  1857. (miniseed3 & 0x0F0) |
  1858. ((miniseed3 & 0x00F) << 8);
  1859. combinedSeed = ((miniseed1 ^ miniseed2_reversed) << 12) |
  1860. (miniseed2 ^ miniseed3_reversed);
  1861. /* Seeds can not be zero */
  1862. if ((combinedSeed & NVREG_BKOFFCTRL_SEED_MASK) == 0)
  1863. combinedSeed |= 0x08;
  1864. if ((combinedSeed & (NVREG_BKOFFCTRL_SEED_MASK << NVREG_BKOFFCTRL_GEAR)) == 0)
  1865. combinedSeed |= 0x8000;
  1866. /* No need to disable tx here */
  1867. temp = NVREG_BKOFFCTRL_DEFAULT | (0 << NVREG_BKOFFCTRL_SELECT);
  1868. temp |= combinedSeed & NVREG_BKOFFCTRL_SEED_MASK;
  1869. temp |= combinedSeed >> NVREG_BKOFFCTRL_GEAR;
  1870. writel(temp,base + NvRegBackOffControl);
  1871. /* Setup seeds for all gear LFSRs. */
  1872. get_random_bytes(&seedset, sizeof(seedset));
  1873. seedset = seedset % BACKOFF_SEEDSET_ROWS;
  1874. for (i = 1; i <= BACKOFF_SEEDSET_LFSRS; i++)
  1875. {
  1876. temp = NVREG_BKOFFCTRL_DEFAULT | (i << NVREG_BKOFFCTRL_SELECT);
  1877. temp |= main_seedset[seedset][i-1] & 0x3ff;
  1878. temp |= ((gear_seedset[seedset][i-1] & 0x3ff) << NVREG_BKOFFCTRL_GEAR);
  1879. writel(temp, base + NvRegBackOffControl);
  1880. }
  1881. }
  1882. /*
  1883. * nv_start_xmit: dev->hard_start_xmit function
  1884. * Called with netif_tx_lock held.
  1885. */
  1886. static int nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
  1887. {
  1888. struct fe_priv *np = netdev_priv(dev);
  1889. u32 tx_flags = 0;
  1890. u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
  1891. unsigned int fragments = skb_shinfo(skb)->nr_frags;
  1892. unsigned int i;
  1893. u32 offset = 0;
  1894. u32 bcnt;
  1895. u32 size = skb->len-skb->data_len;
  1896. u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1897. u32 empty_slots;
  1898. struct ring_desc* put_tx;
  1899. struct ring_desc* start_tx;
  1900. struct ring_desc* prev_tx;
  1901. struct nv_skb_map* prev_tx_ctx;
  1902. unsigned long flags;
  1903. /* add fragments to entries count */
  1904. for (i = 0; i < fragments; i++) {
  1905. entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
  1906. ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1907. }
  1908. spin_lock_irqsave(&np->lock, flags);
  1909. empty_slots = nv_get_empty_tx_slots(np);
  1910. if (unlikely(empty_slots <= entries)) {
  1911. netif_stop_queue(dev);
  1912. np->tx_stop = 1;
  1913. spin_unlock_irqrestore(&np->lock, flags);
  1914. return NETDEV_TX_BUSY;
  1915. }
  1916. spin_unlock_irqrestore(&np->lock, flags);
  1917. start_tx = put_tx = np->put_tx.orig;
  1918. /* setup the header buffer */
  1919. do {
  1920. prev_tx = put_tx;
  1921. prev_tx_ctx = np->put_tx_ctx;
  1922. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1923. np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
  1924. PCI_DMA_TODEVICE);
  1925. np->put_tx_ctx->dma_len = bcnt;
  1926. put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
  1927. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1928. tx_flags = np->tx_flags;
  1929. offset += bcnt;
  1930. size -= bcnt;
  1931. if (unlikely(put_tx++ == np->last_tx.orig))
  1932. put_tx = np->first_tx.orig;
  1933. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  1934. np->put_tx_ctx = np->first_tx_ctx;
  1935. } while (size);
  1936. /* setup the fragments */
  1937. for (i = 0; i < fragments; i++) {
  1938. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1939. u32 size = frag->size;
  1940. offset = 0;
  1941. do {
  1942. prev_tx = put_tx;
  1943. prev_tx_ctx = np->put_tx_ctx;
  1944. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1945. np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
  1946. PCI_DMA_TODEVICE);
  1947. np->put_tx_ctx->dma_len = bcnt;
  1948. put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
  1949. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1950. offset += bcnt;
  1951. size -= bcnt;
  1952. if (unlikely(put_tx++ == np->last_tx.orig))
  1953. put_tx = np->first_tx.orig;
  1954. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  1955. np->put_tx_ctx = np->first_tx_ctx;
  1956. } while (size);
  1957. }
  1958. /* set last fragment flag */
  1959. prev_tx->flaglen |= cpu_to_le32(tx_flags_extra);
  1960. /* save skb in this slot's context area */
  1961. prev_tx_ctx->skb = skb;
  1962. if (skb_is_gso(skb))
  1963. tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
  1964. else
  1965. tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
  1966. NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
  1967. spin_lock_irqsave(&np->lock, flags);
  1968. /* set tx flags */
  1969. start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
  1970. np->put_tx.orig = put_tx;
  1971. spin_unlock_irqrestore(&np->lock, flags);
  1972. dprintk(KERN_DEBUG "%s: nv_start_xmit: entries %d queued for transmission. tx_flags_extra: %x\n",
  1973. dev->name, entries, tx_flags_extra);
  1974. {
  1975. int j;
  1976. for (j=0; j<64; j++) {
  1977. if ((j%16) == 0)
  1978. dprintk("\n%03x:", j);
  1979. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  1980. }
  1981. dprintk("\n");
  1982. }
  1983. dev->trans_start = jiffies;
  1984. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  1985. return NETDEV_TX_OK;
  1986. }
  1987. static int nv_start_xmit_optimized(struct sk_buff *skb, struct net_device *dev)
  1988. {
  1989. struct fe_priv *np = netdev_priv(dev);
  1990. u32 tx_flags = 0;
  1991. u32 tx_flags_extra;
  1992. unsigned int fragments = skb_shinfo(skb)->nr_frags;
  1993. unsigned int i;
  1994. u32 offset = 0;
  1995. u32 bcnt;
  1996. u32 size = skb->len-skb->data_len;
  1997. u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1998. u32 empty_slots;
  1999. struct ring_desc_ex* put_tx;
  2000. struct ring_desc_ex* start_tx;
  2001. struct ring_desc_ex* prev_tx;
  2002. struct nv_skb_map* prev_tx_ctx;
  2003. struct nv_skb_map* start_tx_ctx;
  2004. unsigned long flags;
  2005. /* add fragments to entries count */
  2006. for (i = 0; i < fragments; i++) {
  2007. entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
  2008. ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  2009. }
  2010. spin_lock_irqsave(&np->lock, flags);
  2011. empty_slots = nv_get_empty_tx_slots(np);
  2012. if (unlikely(empty_slots <= entries)) {
  2013. netif_stop_queue(dev);
  2014. np->tx_stop = 1;
  2015. spin_unlock_irqrestore(&np->lock, flags);
  2016. return NETDEV_TX_BUSY;
  2017. }
  2018. spin_unlock_irqrestore(&np->lock, flags);
  2019. start_tx = put_tx = np->put_tx.ex;
  2020. start_tx_ctx = np->put_tx_ctx;
  2021. /* setup the header buffer */
  2022. do {
  2023. prev_tx = put_tx;
  2024. prev_tx_ctx = np->put_tx_ctx;
  2025. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  2026. np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
  2027. PCI_DMA_TODEVICE);
  2028. np->put_tx_ctx->dma_len = bcnt;
  2029. put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
  2030. put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
  2031. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  2032. tx_flags = NV_TX2_VALID;
  2033. offset += bcnt;
  2034. size -= bcnt;
  2035. if (unlikely(put_tx++ == np->last_tx.ex))
  2036. put_tx = np->first_tx.ex;
  2037. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  2038. np->put_tx_ctx = np->first_tx_ctx;
  2039. } while (size);
  2040. /* setup the fragments */
  2041. for (i = 0; i < fragments; i++) {
  2042. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  2043. u32 size = frag->size;
  2044. offset = 0;
  2045. do {
  2046. prev_tx = put_tx;
  2047. prev_tx_ctx = np->put_tx_ctx;
  2048. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  2049. np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
  2050. PCI_DMA_TODEVICE);
  2051. np->put_tx_ctx->dma_len = bcnt;
  2052. put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
  2053. put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
  2054. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  2055. offset += bcnt;
  2056. size -= bcnt;
  2057. if (unlikely(put_tx++ == np->last_tx.ex))
  2058. put_tx = np->first_tx.ex;
  2059. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  2060. np->put_tx_ctx = np->first_tx_ctx;
  2061. } while (size);
  2062. }
  2063. /* set last fragment flag */
  2064. prev_tx->flaglen |= cpu_to_le32(NV_TX2_LASTPACKET);
  2065. /* save skb in this slot's context area */
  2066. prev_tx_ctx->skb = skb;
  2067. if (skb_is_gso(skb))
  2068. tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
  2069. else
  2070. tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
  2071. NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
  2072. /* vlan tag */
  2073. if (likely(!np->vlangrp)) {
  2074. start_tx->txvlan = 0;
  2075. } else {
  2076. if (vlan_tx_tag_present(skb))
  2077. start_tx->txvlan = cpu_to_le32(NV_TX3_VLAN_TAG_PRESENT | vlan_tx_tag_get(skb));
  2078. else
  2079. start_tx->txvlan = 0;
  2080. }
  2081. spin_lock_irqsave(&np->lock, flags);
  2082. if (np->tx_limit) {
  2083. /* Limit the number of outstanding tx. Setup all fragments, but
  2084. * do not set the VALID bit on the first descriptor. Save a pointer
  2085. * to that descriptor and also for next skb_map element.
  2086. */
  2087. if (np->tx_pkts_in_progress == NV_TX_LIMIT_COUNT) {
  2088. if (!np->tx_change_owner)
  2089. np->tx_change_owner = start_tx_ctx;
  2090. /* remove VALID bit */
  2091. tx_flags &= ~NV_TX2_VALID;
  2092. start_tx_ctx->first_tx_desc = start_tx;
  2093. start_tx_ctx->next_tx_ctx = np->put_tx_ctx;
  2094. np->tx_end_flip = np->put_tx_ctx;
  2095. } else {
  2096. np->tx_pkts_in_progress++;
  2097. }
  2098. }
  2099. /* set tx flags */
  2100. start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
  2101. np->put_tx.ex = put_tx;
  2102. spin_unlock_irqrestore(&np->lock, flags);
  2103. dprintk(KERN_DEBUG "%s: nv_start_xmit_optimized: entries %d queued for transmission. tx_flags_extra: %x\n",
  2104. dev->name, entries, tx_flags_extra);
  2105. {
  2106. int j;
  2107. for (j=0; j<64; j++) {
  2108. if ((j%16) == 0)
  2109. dprintk("\n%03x:", j);
  2110. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  2111. }
  2112. dprintk("\n");
  2113. }
  2114. dev->trans_start = jiffies;
  2115. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2116. return NETDEV_TX_OK;
  2117. }
  2118. static inline void nv_tx_flip_ownership(struct net_device *dev)
  2119. {
  2120. struct fe_priv *np = netdev_priv(dev);
  2121. np->tx_pkts_in_progress--;
  2122. if (np->tx_change_owner) {
  2123. np->tx_change_owner->first_tx_desc->flaglen |=
  2124. cpu_to_le32(NV_TX2_VALID);
  2125. np->tx_pkts_in_progress++;
  2126. np->tx_change_owner = np->tx_change_owner->next_tx_ctx;
  2127. if (np->tx_change_owner == np->tx_end_flip)
  2128. np->tx_change_owner = NULL;
  2129. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2130. }
  2131. }
  2132. /*
  2133. * nv_tx_done: check for completed packets, release the skbs.
  2134. *
  2135. * Caller must own np->lock.
  2136. */
  2137. static void nv_tx_done(struct net_device *dev)
  2138. {
  2139. struct fe_priv *np = netdev_priv(dev);
  2140. u32 flags;
  2141. struct ring_desc* orig_get_tx = np->get_tx.orig;
  2142. while ((np->get_tx.orig != np->put_tx.orig) &&
  2143. !((flags = le32_to_cpu(np->get_tx.orig->flaglen)) & NV_TX_VALID)) {
  2144. dprintk(KERN_DEBUG "%s: nv_tx_done: flags 0x%x.\n",
  2145. dev->name, flags);
  2146. pci_unmap_page(np->pci_dev, np->get_tx_ctx->dma,
  2147. np->get_tx_ctx->dma_len,
  2148. PCI_DMA_TODEVICE);
  2149. np->get_tx_ctx->dma = 0;
  2150. if (np->desc_ver == DESC_VER_1) {
  2151. if (flags & NV_TX_LASTPACKET) {
  2152. if (flags & NV_TX_ERROR) {
  2153. if (flags & NV_TX_UNDERFLOW)
  2154. dev->stats.tx_fifo_errors++;
  2155. if (flags & NV_TX_CARRIERLOST)
  2156. dev->stats.tx_carrier_errors++;
  2157. if ((flags & NV_TX_RETRYERROR) && !(flags & NV_TX_RETRYCOUNT_MASK))
  2158. nv_legacybackoff_reseed(dev);
  2159. dev->stats.tx_errors++;
  2160. } else {
  2161. dev->stats.tx_packets++;
  2162. dev->stats.tx_bytes += np->get_tx_ctx->skb->len;
  2163. }
  2164. dev_kfree_skb_any(np->get_tx_ctx->skb);
  2165. np->get_tx_ctx->skb = NULL;
  2166. }
  2167. } else {
  2168. if (flags & NV_TX2_LASTPACKET) {
  2169. if (flags & NV_TX2_ERROR) {
  2170. if (flags & NV_TX2_UNDERFLOW)
  2171. dev->stats.tx_fifo_errors++;
  2172. if (flags & NV_TX2_CARRIERLOST)
  2173. dev->stats.tx_carrier_errors++;
  2174. if ((flags & NV_TX2_RETRYERROR) && !(flags & NV_TX2_RETRYCOUNT_MASK))
  2175. nv_legacybackoff_reseed(dev);
  2176. dev->stats.tx_errors++;
  2177. } else {
  2178. dev->stats.tx_packets++;
  2179. dev->stats.tx_bytes += np->get_tx_ctx->skb->len;
  2180. }
  2181. dev_kfree_skb_any(np->get_tx_ctx->skb);
  2182. np->get_tx_ctx->skb = NULL;
  2183. }
  2184. }
  2185. if (unlikely(np->get_tx.orig++ == np->last_tx.orig))
  2186. np->get_tx.orig = np->first_tx.orig;
  2187. if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
  2188. np->get_tx_ctx = np->first_tx_ctx;
  2189. }
  2190. if (unlikely((np->tx_stop == 1) && (np->get_tx.orig != orig_get_tx))) {
  2191. np->tx_stop = 0;
  2192. netif_wake_queue(dev);
  2193. }
  2194. }
  2195. static void nv_tx_done_optimized(struct net_device *dev, int limit)
  2196. {
  2197. struct fe_priv *np = netdev_priv(dev);
  2198. u32 flags;
  2199. struct ring_desc_ex* orig_get_tx = np->get_tx.ex;
  2200. while ((np->get_tx.ex != np->put_tx.ex) &&
  2201. !((flags = le32_to_cpu(np->get_tx.ex->flaglen)) & NV_TX_VALID) &&
  2202. (limit-- > 0)) {
  2203. dprintk(KERN_DEBUG "%s: nv_tx_done_optimized: flags 0x%x.\n",
  2204. dev->name, flags);
  2205. pci_unmap_page(np->pci_dev, np->get_tx_ctx->dma,
  2206. np->get_tx_ctx->dma_len,
  2207. PCI_DMA_TODEVICE);
  2208. np->get_tx_ctx->dma = 0;
  2209. if (flags & NV_TX2_LASTPACKET) {
  2210. if (!(flags & NV_TX2_ERROR))
  2211. dev->stats.tx_packets++;
  2212. else {
  2213. if ((flags & NV_TX2_RETRYERROR) && !(flags & NV_TX2_RETRYCOUNT_MASK)) {
  2214. if (np->driver_data & DEV_HAS_GEAR_MODE)
  2215. nv_gear_backoff_reseed(dev);
  2216. else
  2217. nv_legacybackoff_reseed(dev);
  2218. }
  2219. }
  2220. dev_kfree_skb_any(np->get_tx_ctx->skb);
  2221. np->get_tx_ctx->skb = NULL;
  2222. if (np->tx_limit) {
  2223. nv_tx_flip_ownership(dev);
  2224. }
  2225. }
  2226. if (unlikely(np->get_tx.ex++ == np->last_tx.ex))
  2227. np->get_tx.ex = np->first_tx.ex;
  2228. if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
  2229. np->get_tx_ctx = np->first_tx_ctx;
  2230. }
  2231. if (unlikely((np->tx_stop == 1) && (np->get_tx.ex != orig_get_tx))) {
  2232. np->tx_stop = 0;
  2233. netif_wake_queue(dev);
  2234. }
  2235. }
  2236. /*
  2237. * nv_tx_timeout: dev->tx_timeout function
  2238. * Called with netif_tx_lock held.
  2239. */
  2240. static void nv_tx_timeout(struct net_device *dev)
  2241. {
  2242. struct fe_priv *np = netdev_priv(dev);
  2243. u8 __iomem *base = get_hwbase(dev);
  2244. u32 status;
  2245. if (np->msi_flags & NV_MSI_X_ENABLED)
  2246. status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  2247. else
  2248. status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  2249. printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name, status);
  2250. {
  2251. int i;
  2252. printk(KERN_INFO "%s: Ring at %lx\n",
  2253. dev->name, (unsigned long)np->ring_addr);
  2254. printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
  2255. for (i=0;i<=np->register_size;i+= 32) {
  2256. printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
  2257. i,
  2258. readl(base + i + 0), readl(base + i + 4),
  2259. readl(base + i + 8), readl(base + i + 12),
  2260. readl(base + i + 16), readl(base + i + 20),
  2261. readl(base + i + 24), readl(base + i + 28));
  2262. }
  2263. printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
  2264. for (i=0;i<np->tx_ring_size;i+= 4) {
  2265. if (!nv_optimized(np)) {
  2266. printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
  2267. i,
  2268. le32_to_cpu(np->tx_ring.orig[i].buf),
  2269. le32_to_cpu(np->tx_ring.orig[i].flaglen),
  2270. le32_to_cpu(np->tx_ring.orig[i+1].buf),
  2271. le32_to_cpu(np->tx_ring.orig[i+1].flaglen),
  2272. le32_to_cpu(np->tx_ring.orig[i+2].buf),
  2273. le32_to_cpu(np->tx_ring.orig[i+2].flaglen),
  2274. le32_to_cpu(np->tx_ring.orig[i+3].buf),
  2275. le32_to_cpu(np->tx_ring.orig[i+3].flaglen));
  2276. } else {
  2277. printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
  2278. i,
  2279. le32_to_cpu(np->tx_ring.ex[i].bufhigh),
  2280. le32_to_cpu(np->tx_ring.ex[i].buflow),
  2281. le32_to_cpu(np->tx_ring.ex[i].flaglen),
  2282. le32_to_cpu(np->tx_ring.ex[i+1].bufhigh),
  2283. le32_to_cpu(np->tx_ring.ex[i+1].buflow),
  2284. le32_to_cpu(np->tx_ring.ex[i+1].flaglen),
  2285. le32_to_cpu(np->tx_ring.ex[i+2].bufhigh),
  2286. le32_to_cpu(np->tx_ring.ex[i+2].buflow),
  2287. le32_to_cpu(np->tx_ring.ex[i+2].flaglen),
  2288. le32_to_cpu(np->tx_ring.ex[i+3].bufhigh),
  2289. le32_to_cpu(np->tx_ring.ex[i+3].buflow),
  2290. le32_to_cpu(np->tx_ring.ex[i+3].flaglen));
  2291. }
  2292. }
  2293. }
  2294. spin_lock_irq(&np->lock);
  2295. /* 1) stop tx engine */
  2296. nv_stop_tx(dev);
  2297. /* 2) check that the packets were not sent already: */
  2298. if (!nv_optimized(np))
  2299. nv_tx_done(dev);
  2300. else
  2301. nv_tx_done_optimized(dev, np->tx_ring_size);
  2302. /* 3) if there are dead entries: clear everything */
  2303. if (np->get_tx_ctx != np->put_tx_ctx) {
  2304. printk(KERN_DEBUG "%s: tx_timeout: dead entries!\n", dev->name);
  2305. nv_drain_tx(dev);
  2306. nv_init_tx(dev);
  2307. setup_hw_rings(dev, NV_SETUP_TX_RING);
  2308. }
  2309. netif_wake_queue(dev);
  2310. /* 4) restart tx engine */
  2311. nv_start_tx(dev);
  2312. spin_unlock_irq(&np->lock);
  2313. }
  2314. /*
  2315. * Called when the nic notices a mismatch between the actual data len on the
  2316. * wire and the len indicated in the 802 header
  2317. */
  2318. static int nv_getlen(struct net_device *dev, void *packet, int datalen)
  2319. {
  2320. int hdrlen; /* length of the 802 header */
  2321. int protolen; /* length as stored in the proto field */
  2322. /* 1) calculate len according to header */
  2323. if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == htons(ETH_P_8021Q)) {
  2324. protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto );
  2325. hdrlen = VLAN_HLEN;
  2326. } else {
  2327. protolen = ntohs( ((struct ethhdr *)packet)->h_proto);
  2328. hdrlen = ETH_HLEN;
  2329. }
  2330. dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n",
  2331. dev->name, datalen, protolen, hdrlen);
  2332. if (protolen > ETH_DATA_LEN)
  2333. return datalen; /* Value in proto field not a len, no checks possible */
  2334. protolen += hdrlen;
  2335. /* consistency checks: */
  2336. if (datalen > ETH_ZLEN) {
  2337. if (datalen >= protolen) {
  2338. /* more data on wire than in 802 header, trim of
  2339. * additional data.
  2340. */
  2341. dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
  2342. dev->name, protolen);
  2343. return protolen;
  2344. } else {
  2345. /* less data on wire than mentioned in header.
  2346. * Discard the packet.
  2347. */
  2348. dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n",
  2349. dev->name);
  2350. return -1;
  2351. }
  2352. } else {
  2353. /* short packet. Accept only if 802 values are also short */
  2354. if (protolen > ETH_ZLEN) {
  2355. dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n",
  2356. dev->name);
  2357. return -1;
  2358. }
  2359. dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
  2360. dev->name, datalen);
  2361. return datalen;
  2362. }
  2363. }
  2364. static int nv_rx_process(struct net_device *dev, int limit)
  2365. {
  2366. struct fe_priv *np = netdev_priv(dev);
  2367. u32 flags;
  2368. int rx_work = 0;
  2369. struct sk_buff *skb;
  2370. int len;
  2371. while((np->get_rx.orig != np->put_rx.orig) &&
  2372. !((flags = le32_to_cpu(np->get_rx.orig->flaglen)) & NV_RX_AVAIL) &&
  2373. (rx_work < limit)) {
  2374. dprintk(KERN_DEBUG "%s: nv_rx_process: flags 0x%x.\n",
  2375. dev->name, flags);
  2376. /*
  2377. * the packet is for us - immediately tear down the pci mapping.
  2378. * TODO: check if a prefetch of the first cacheline improves
  2379. * the performance.
  2380. */
  2381. pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
  2382. np->get_rx_ctx->dma_len,
  2383. PCI_DMA_FROMDEVICE);
  2384. skb = np->get_rx_ctx->skb;
  2385. np->get_rx_ctx->skb = NULL;
  2386. {
  2387. int j;
  2388. dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
  2389. for (j=0; j<64; j++) {
  2390. if ((j%16) == 0)
  2391. dprintk("\n%03x:", j);
  2392. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  2393. }
  2394. dprintk("\n");
  2395. }
  2396. /* look at what we actually got: */
  2397. if (np->desc_ver == DESC_VER_1) {
  2398. if (likely(flags & NV_RX_DESCRIPTORVALID)) {
  2399. len = flags & LEN_MASK_V1;
  2400. if (unlikely(flags & NV_RX_ERROR)) {
  2401. if ((flags & NV_RX_ERROR_MASK) == NV_RX_ERROR4) {
  2402. len = nv_getlen(dev, skb->data, len);
  2403. if (len < 0) {
  2404. dev->stats.rx_errors++;
  2405. dev_kfree_skb(skb);
  2406. goto next_pkt;
  2407. }
  2408. }
  2409. /* framing errors are soft errors */
  2410. else if ((flags & NV_RX_ERROR_MASK) == NV_RX_FRAMINGERR) {
  2411. if (flags & NV_RX_SUBSTRACT1) {
  2412. len--;
  2413. }
  2414. }
  2415. /* the rest are hard errors */
  2416. else {
  2417. if (flags & NV_RX_MISSEDFRAME)
  2418. dev->stats.rx_missed_errors++;
  2419. if (flags & NV_RX_CRCERR)
  2420. dev->stats.rx_crc_errors++;
  2421. if (flags & NV_RX_OVERFLOW)
  2422. dev->stats.rx_over_errors++;
  2423. dev->stats.rx_errors++;
  2424. dev_kfree_skb(skb);
  2425. goto next_pkt;
  2426. }
  2427. }
  2428. } else {
  2429. dev_kfree_skb(skb);
  2430. goto next_pkt;
  2431. }
  2432. } else {
  2433. if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
  2434. len = flags & LEN_MASK_V2;
  2435. if (unlikely(flags & NV_RX2_ERROR)) {
  2436. if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_ERROR4) {
  2437. len = nv_getlen(dev, skb->data, len);
  2438. if (len < 0) {
  2439. dev->stats.rx_errors++;
  2440. dev_kfree_skb(skb);
  2441. goto next_pkt;
  2442. }
  2443. }
  2444. /* framing errors are soft errors */
  2445. else if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_FRAMINGERR) {
  2446. if (flags & NV_RX2_SUBSTRACT1) {
  2447. len--;
  2448. }
  2449. }
  2450. /* the rest are hard errors */
  2451. else {
  2452. if (flags & NV_RX2_CRCERR)
  2453. dev->stats.rx_crc_errors++;
  2454. if (flags & NV_RX2_OVERFLOW)
  2455. dev->stats.rx_over_errors++;
  2456. dev->stats.rx_errors++;
  2457. dev_kfree_skb(skb);
  2458. goto next_pkt;
  2459. }
  2460. }
  2461. if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
  2462. ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */
  2463. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2464. } else {
  2465. dev_kfree_skb(skb);
  2466. goto next_pkt;
  2467. }
  2468. }
  2469. /* got a valid packet - forward it to the network core */
  2470. skb_put(skb, len);
  2471. skb->protocol = eth_type_trans(skb, dev);
  2472. dprintk(KERN_DEBUG "%s: nv_rx_process: %d bytes, proto %d accepted.\n",
  2473. dev->name, len, skb->protocol);
  2474. #ifdef CONFIG_FORCEDETH_NAPI
  2475. netif_receive_skb(skb);
  2476. #else
  2477. netif_rx(skb);
  2478. #endif
  2479. dev->stats.rx_packets++;
  2480. dev->stats.rx_bytes += len;
  2481. next_pkt:
  2482. if (unlikely(np->get_rx.orig++ == np->last_rx.orig))
  2483. np->get_rx.orig = np->first_rx.orig;
  2484. if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
  2485. np->get_rx_ctx = np->first_rx_ctx;
  2486. rx_work++;
  2487. }
  2488. return rx_work;
  2489. }
  2490. static int nv_rx_process_optimized(struct net_device *dev, int limit)
  2491. {
  2492. struct fe_priv *np = netdev_priv(dev);
  2493. u32 flags;
  2494. u32 vlanflags = 0;
  2495. int rx_work = 0;
  2496. struct sk_buff *skb;
  2497. int len;
  2498. while((np->get_rx.ex != np->put_rx.ex) &&
  2499. !((flags = le32_to_cpu(np->get_rx.ex->flaglen)) & NV_RX2_AVAIL) &&
  2500. (rx_work < limit)) {
  2501. dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: flags 0x%x.\n",
  2502. dev->name, flags);
  2503. /*
  2504. * the packet is for us - immediately tear down the pci mapping.
  2505. * TODO: check if a prefetch of the first cacheline improves
  2506. * the performance.
  2507. */
  2508. pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
  2509. np->get_rx_ctx->dma_len,
  2510. PCI_DMA_FROMDEVICE);
  2511. skb = np->get_rx_ctx->skb;
  2512. np->get_rx_ctx->skb = NULL;
  2513. {
  2514. int j;
  2515. dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
  2516. for (j=0; j<64; j++) {
  2517. if ((j%16) == 0)
  2518. dprintk("\n%03x:", j);
  2519. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  2520. }
  2521. dprintk("\n");
  2522. }
  2523. /* look at what we actually got: */
  2524. if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
  2525. len = flags & LEN_MASK_V2;
  2526. if (unlikely(flags & NV_RX2_ERROR)) {
  2527. if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_ERROR4) {
  2528. len = nv_getlen(dev, skb->data, len);
  2529. if (len < 0) {
  2530. dev_kfree_skb(skb);
  2531. goto next_pkt;
  2532. }
  2533. }
  2534. /* framing errors are soft errors */
  2535. else if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_FRAMINGERR) {
  2536. if (flags & NV_RX2_SUBSTRACT1) {
  2537. len--;
  2538. }
  2539. }
  2540. /* the rest are hard errors */
  2541. else {
  2542. dev_kfree_skb(skb);
  2543. goto next_pkt;
  2544. }
  2545. }
  2546. if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
  2547. ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */
  2548. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2549. /* got a valid packet - forward it to the network core */
  2550. skb_put(skb, len);
  2551. skb->protocol = eth_type_trans(skb, dev);
  2552. prefetch(skb->data);
  2553. dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: %d bytes, proto %d accepted.\n",
  2554. dev->name, len, skb->protocol);
  2555. if (likely(!np->vlangrp)) {
  2556. #ifdef CONFIG_FORCEDETH_NAPI
  2557. netif_receive_skb(skb);
  2558. #else
  2559. netif_rx(skb);
  2560. #endif
  2561. } else {
  2562. vlanflags = le32_to_cpu(np->get_rx.ex->buflow);
  2563. if (vlanflags & NV_RX3_VLAN_TAG_PRESENT) {
  2564. #ifdef CONFIG_FORCEDETH_NAPI
  2565. vlan_hwaccel_receive_skb(skb, np->vlangrp,
  2566. vlanflags & NV_RX3_VLAN_TAG_MASK);
  2567. #else
  2568. vlan_hwaccel_rx(skb, np->vlangrp,
  2569. vlanflags & NV_RX3_VLAN_TAG_MASK);
  2570. #endif
  2571. } else {
  2572. #ifdef CONFIG_FORCEDETH_NAPI
  2573. netif_receive_skb(skb);
  2574. #else
  2575. netif_rx(skb);
  2576. #endif
  2577. }
  2578. }
  2579. dev->stats.rx_packets++;
  2580. dev->stats.rx_bytes += len;
  2581. } else {
  2582. dev_kfree_skb(skb);
  2583. }
  2584. next_pkt:
  2585. if (unlikely(np->get_rx.ex++ == np->last_rx.ex))
  2586. np->get_rx.ex = np->first_rx.ex;
  2587. if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
  2588. np->get_rx_ctx = np->first_rx_ctx;
  2589. rx_work++;
  2590. }
  2591. return rx_work;
  2592. }
  2593. static void set_bufsize(struct net_device *dev)
  2594. {
  2595. struct fe_priv *np = netdev_priv(dev);
  2596. if (dev->mtu <= ETH_DATA_LEN)
  2597. np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
  2598. else
  2599. np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
  2600. }
  2601. /*
  2602. * nv_change_mtu: dev->change_mtu function
  2603. * Called with dev_base_lock held for read.
  2604. */
  2605. static int nv_change_mtu(struct net_device *dev, int new_mtu)
  2606. {
  2607. struct fe_priv *np = netdev_priv(dev);
  2608. int old_mtu;
  2609. if (new_mtu < 64 || new_mtu > np->pkt_limit)
  2610. return -EINVAL;
  2611. old_mtu = dev->mtu;
  2612. dev->mtu = new_mtu;
  2613. /* return early if the buffer sizes will not change */
  2614. if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
  2615. return 0;
  2616. if (old_mtu == new_mtu)
  2617. return 0;
  2618. /* synchronized against open : rtnl_lock() held by caller */
  2619. if (netif_running(dev)) {
  2620. u8 __iomem *base = get_hwbase(dev);
  2621. /*
  2622. * It seems that the nic preloads valid ring entries into an
  2623. * internal buffer. The procedure for flushing everything is
  2624. * guessed, there is probably a simpler approach.
  2625. * Changing the MTU is a rare event, it shouldn't matter.
  2626. */
  2627. nv_disable_irq(dev);
  2628. netif_tx_lock_bh(dev);
  2629. netif_addr_lock(dev);
  2630. spin_lock(&np->lock);
  2631. /* stop engines */
  2632. nv_stop_rxtx(dev);
  2633. nv_txrx_reset(dev);
  2634. /* drain rx queue */
  2635. nv_drain_rxtx(dev);
  2636. /* reinit driver view of the rx queue */
  2637. set_bufsize(dev);
  2638. if (nv_init_ring(dev)) {
  2639. if (!np->in_shutdown)
  2640. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2641. }
  2642. /* reinit nic view of the rx queue */
  2643. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  2644. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  2645. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  2646. base + NvRegRingSizes);
  2647. pci_push(base);
  2648. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2649. pci_push(base);
  2650. /* restart rx engine */
  2651. nv_start_rxtx(dev);
  2652. spin_unlock(&np->lock);
  2653. netif_addr_unlock(dev);
  2654. netif_tx_unlock_bh(dev);
  2655. nv_enable_irq(dev);
  2656. }
  2657. return 0;
  2658. }
  2659. static void nv_copy_mac_to_hw(struct net_device *dev)
  2660. {
  2661. u8 __iomem *base = get_hwbase(dev);
  2662. u32 mac[2];
  2663. mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
  2664. (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
  2665. mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
  2666. writel(mac[0], base + NvRegMacAddrA);
  2667. writel(mac[1], base + NvRegMacAddrB);
  2668. }
  2669. /*
  2670. * nv_set_mac_address: dev->set_mac_address function
  2671. * Called with rtnl_lock() held.
  2672. */
  2673. static int nv_set_mac_address(struct net_device *dev, void *addr)
  2674. {
  2675. struct fe_priv *np = netdev_priv(dev);
  2676. struct sockaddr *macaddr = (struct sockaddr*)addr;
  2677. if (!is_valid_ether_addr(macaddr->sa_data))
  2678. return -EADDRNOTAVAIL;
  2679. /* synchronized against open : rtnl_lock() held by caller */
  2680. memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
  2681. if (netif_running(dev)) {
  2682. netif_tx_lock_bh(dev);
  2683. netif_addr_lock(dev);
  2684. spin_lock_irq(&np->lock);
  2685. /* stop rx engine */
  2686. nv_stop_rx(dev);
  2687. /* set mac address */
  2688. nv_copy_mac_to_hw(dev);
  2689. /* restart rx engine */
  2690. nv_start_rx(dev);
  2691. spin_unlock_irq(&np->lock);
  2692. netif_addr_unlock(dev);
  2693. netif_tx_unlock_bh(dev);
  2694. } else {
  2695. nv_copy_mac_to_hw(dev);
  2696. }
  2697. return 0;
  2698. }
  2699. /*
  2700. * nv_set_multicast: dev->set_multicast function
  2701. * Called with netif_tx_lock held.
  2702. */
  2703. static void nv_set_multicast(struct net_device *dev)
  2704. {
  2705. struct fe_priv *np = netdev_priv(dev);
  2706. u8 __iomem *base = get_hwbase(dev);
  2707. u32 addr[2];
  2708. u32 mask[2];
  2709. u32 pff = readl(base + NvRegPacketFilterFlags) & NVREG_PFF_PAUSE_RX;
  2710. memset(addr, 0, sizeof(addr));
  2711. memset(mask, 0, sizeof(mask));
  2712. if (dev->flags & IFF_PROMISC) {
  2713. pff |= NVREG_PFF_PROMISC;
  2714. } else {
  2715. pff |= NVREG_PFF_MYADDR;
  2716. if (dev->flags & IFF_ALLMULTI || dev->mc_list) {
  2717. u32 alwaysOff[2];
  2718. u32 alwaysOn[2];
  2719. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
  2720. if (dev->flags & IFF_ALLMULTI) {
  2721. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
  2722. } else {
  2723. struct dev_mc_list *walk;
  2724. walk = dev->mc_list;
  2725. while (walk != NULL) {
  2726. u32 a, b;
  2727. a = le32_to_cpu(*(__le32 *) walk->dmi_addr);
  2728. b = le16_to_cpu(*(__le16 *) (&walk->dmi_addr[4]));
  2729. alwaysOn[0] &= a;
  2730. alwaysOff[0] &= ~a;
  2731. alwaysOn[1] &= b;
  2732. alwaysOff[1] &= ~b;
  2733. walk = walk->next;
  2734. }
  2735. }
  2736. addr[0] = alwaysOn[0];
  2737. addr[1] = alwaysOn[1];
  2738. mask[0] = alwaysOn[0] | alwaysOff[0];
  2739. mask[1] = alwaysOn[1] | alwaysOff[1];
  2740. } else {
  2741. mask[0] = NVREG_MCASTMASKA_NONE;
  2742. mask[1] = NVREG_MCASTMASKB_NONE;
  2743. }
  2744. }
  2745. addr[0] |= NVREG_MCASTADDRA_FORCE;
  2746. pff |= NVREG_PFF_ALWAYS;
  2747. spin_lock_irq(&np->lock);
  2748. nv_stop_rx(dev);
  2749. writel(addr[0], base + NvRegMulticastAddrA);
  2750. writel(addr[1], base + NvRegMulticastAddrB);
  2751. writel(mask[0], base + NvRegMulticastMaskA);
  2752. writel(mask[1], base + NvRegMulticastMaskB);
  2753. writel(pff, base + NvRegPacketFilterFlags);
  2754. dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
  2755. dev->name);
  2756. nv_start_rx(dev);
  2757. spin_unlock_irq(&np->lock);
  2758. }
  2759. static void nv_update_pause(struct net_device *dev, u32 pause_flags)
  2760. {
  2761. struct fe_priv *np = netdev_priv(dev);
  2762. u8 __iomem *base = get_hwbase(dev);
  2763. np->pause_flags &= ~(NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE);
  2764. if (np->pause_flags & NV_PAUSEFRAME_RX_CAPABLE) {
  2765. u32 pff = readl(base + NvRegPacketFilterFlags) & ~NVREG_PFF_PAUSE_RX;
  2766. if (pause_flags & NV_PAUSEFRAME_RX_ENABLE) {
  2767. writel(pff|NVREG_PFF_PAUSE_RX, base + NvRegPacketFilterFlags);
  2768. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2769. } else {
  2770. writel(pff, base + NvRegPacketFilterFlags);
  2771. }
  2772. }
  2773. if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) {
  2774. u32 regmisc = readl(base + NvRegMisc1) & ~NVREG_MISC1_PAUSE_TX;
  2775. if (pause_flags & NV_PAUSEFRAME_TX_ENABLE) {
  2776. u32 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V1;
  2777. if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V2)
  2778. pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V2;
  2779. if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V3) {
  2780. pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V3;
  2781. /* limit the number of tx pause frames to a default of 8 */
  2782. writel(readl(base + NvRegTxPauseFrameLimit)|NVREG_TX_PAUSEFRAMELIMIT_ENABLE, base + NvRegTxPauseFrameLimit);
  2783. }
  2784. writel(pause_enable, base + NvRegTxPauseFrame);
  2785. writel(regmisc|NVREG_MISC1_PAUSE_TX, base + NvRegMisc1);
  2786. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2787. } else {
  2788. writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
  2789. writel(regmisc, base + NvRegMisc1);
  2790. }
  2791. }
  2792. }
  2793. /**
  2794. * nv_update_linkspeed: Setup the MAC according to the link partner
  2795. * @dev: Network device to be configured
  2796. *
  2797. * The function queries the PHY and checks if there is a link partner.
  2798. * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
  2799. * set to 10 MBit HD.
  2800. *
  2801. * The function returns 0 if there is no link partner and 1 if there is
  2802. * a good link partner.
  2803. */
  2804. static int nv_update_linkspeed(struct net_device *dev)
  2805. {
  2806. struct fe_priv *np = netdev_priv(dev);
  2807. u8 __iomem *base = get_hwbase(dev);
  2808. int adv = 0;
  2809. int lpa = 0;
  2810. int adv_lpa, adv_pause, lpa_pause;
  2811. int newls = np->linkspeed;
  2812. int newdup = np->duplex;
  2813. int mii_status;
  2814. int retval = 0;
  2815. u32 control_1000, status_1000, phyreg, pause_flags, txreg;
  2816. u32 txrxFlags = 0;
  2817. u32 phy_exp;
  2818. /* BMSR_LSTATUS is latched, read it twice:
  2819. * we want the current value.
  2820. */
  2821. mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  2822. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  2823. if (!(mii_status & BMSR_LSTATUS)) {
  2824. dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
  2825. dev->name);
  2826. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2827. newdup = 0;
  2828. retval = 0;
  2829. goto set_speed;
  2830. }
  2831. if (np->autoneg == 0) {
  2832. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
  2833. dev->name, np->fixed_mode);
  2834. if (np->fixed_mode & LPA_100FULL) {
  2835. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2836. newdup = 1;
  2837. } else if (np->fixed_mode & LPA_100HALF) {
  2838. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2839. newdup = 0;
  2840. } else if (np->fixed_mode & LPA_10FULL) {
  2841. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2842. newdup = 1;
  2843. } else {
  2844. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2845. newdup = 0;
  2846. }
  2847. retval = 1;
  2848. goto set_speed;
  2849. }
  2850. /* check auto negotiation is complete */
  2851. if (!(mii_status & BMSR_ANEGCOMPLETE)) {
  2852. /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
  2853. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2854. newdup = 0;
  2855. retval = 0;
  2856. dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
  2857. goto set_speed;
  2858. }
  2859. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  2860. lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
  2861. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
  2862. dev->name, adv, lpa);
  2863. retval = 1;
  2864. if (np->gigabit == PHY_GIGABIT) {
  2865. control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  2866. status_1000 = mii_rw(dev, np->phyaddr, MII_STAT1000, MII_READ);
  2867. if ((control_1000 & ADVERTISE_1000FULL) &&
  2868. (status_1000 & LPA_1000FULL)) {
  2869. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
  2870. dev->name);
  2871. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
  2872. newdup = 1;
  2873. goto set_speed;
  2874. }
  2875. }
  2876. /* FIXME: handle parallel detection properly */
  2877. adv_lpa = lpa & adv;
  2878. if (adv_lpa & LPA_100FULL) {
  2879. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2880. newdup = 1;
  2881. } else if (adv_lpa & LPA_100HALF) {
  2882. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2883. newdup = 0;
  2884. } else if (adv_lpa & LPA_10FULL) {
  2885. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2886. newdup = 1;
  2887. } else if (adv_lpa & LPA_10HALF) {
  2888. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2889. newdup = 0;
  2890. } else {
  2891. dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, adv_lpa);
  2892. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2893. newdup = 0;
  2894. }
  2895. set_speed:
  2896. if (np->duplex == newdup && np->linkspeed == newls)
  2897. return retval;
  2898. dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
  2899. dev->name, np->linkspeed, np->duplex, newls, newdup);
  2900. np->duplex = newdup;
  2901. np->linkspeed = newls;
  2902. /* The transmitter and receiver must be restarted for safe update */
  2903. if (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START) {
  2904. txrxFlags |= NV_RESTART_TX;
  2905. nv_stop_tx(dev);
  2906. }
  2907. if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) {
  2908. txrxFlags |= NV_RESTART_RX;
  2909. nv_stop_rx(dev);
  2910. }
  2911. if (np->gigabit == PHY_GIGABIT) {
  2912. phyreg = readl(base + NvRegSlotTime);
  2913. phyreg &= ~(0x3FF00);
  2914. if (((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10) ||
  2915. ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100))
  2916. phyreg |= NVREG_SLOTTIME_10_100_FULL;
  2917. else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
  2918. phyreg |= NVREG_SLOTTIME_1000_FULL;
  2919. writel(phyreg, base + NvRegSlotTime);
  2920. }
  2921. phyreg = readl(base + NvRegPhyInterface);
  2922. phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
  2923. if (np->duplex == 0)
  2924. phyreg |= PHY_HALF;
  2925. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
  2926. phyreg |= PHY_100;
  2927. else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  2928. phyreg |= PHY_1000;
  2929. writel(phyreg, base + NvRegPhyInterface);
  2930. phy_exp = mii_rw(dev, np->phyaddr, MII_EXPANSION, MII_READ) & EXPANSION_NWAY; /* autoneg capable */
  2931. if (phyreg & PHY_RGMII) {
  2932. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000) {
  2933. txreg = NVREG_TX_DEFERRAL_RGMII_1000;
  2934. } else {
  2935. if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX)) {
  2936. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_10)
  2937. txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_10;
  2938. else
  2939. txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_100;
  2940. } else {
  2941. txreg = NVREG_TX_DEFERRAL_RGMII_10_100;
  2942. }
  2943. }
  2944. } else {
  2945. if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX))
  2946. txreg = NVREG_TX_DEFERRAL_MII_STRETCH;
  2947. else
  2948. txreg = NVREG_TX_DEFERRAL_DEFAULT;
  2949. }
  2950. writel(txreg, base + NvRegTxDeferral);
  2951. if (np->desc_ver == DESC_VER_1) {
  2952. txreg = NVREG_TX_WM_DESC1_DEFAULT;
  2953. } else {
  2954. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  2955. txreg = NVREG_TX_WM_DESC2_3_1000;
  2956. else
  2957. txreg = NVREG_TX_WM_DESC2_3_DEFAULT;
  2958. }
  2959. writel(txreg, base + NvRegTxWatermark);
  2960. writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
  2961. base + NvRegMisc1);
  2962. pci_push(base);
  2963. writel(np->linkspeed, base + NvRegLinkSpeed);
  2964. pci_push(base);
  2965. pause_flags = 0;
  2966. /* setup pause frame */
  2967. if (np->duplex != 0) {
  2968. if (np->autoneg && np->pause_flags & NV_PAUSEFRAME_AUTONEG) {
  2969. adv_pause = adv & (ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM);
  2970. lpa_pause = lpa & (LPA_PAUSE_CAP| LPA_PAUSE_ASYM);
  2971. switch (adv_pause) {
  2972. case ADVERTISE_PAUSE_CAP:
  2973. if (lpa_pause & LPA_PAUSE_CAP) {
  2974. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2975. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  2976. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2977. }
  2978. break;
  2979. case ADVERTISE_PAUSE_ASYM:
  2980. if (lpa_pause == (LPA_PAUSE_CAP| LPA_PAUSE_ASYM))
  2981. {
  2982. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2983. }
  2984. break;
  2985. case ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM:
  2986. if (lpa_pause & LPA_PAUSE_CAP)
  2987. {
  2988. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2989. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  2990. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2991. }
  2992. if (lpa_pause == LPA_PAUSE_ASYM)
  2993. {
  2994. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2995. }
  2996. break;
  2997. }
  2998. } else {
  2999. pause_flags = np->pause_flags;
  3000. }
  3001. }
  3002. nv_update_pause(dev, pause_flags);
  3003. if (txrxFlags & NV_RESTART_TX)
  3004. nv_start_tx(dev);
  3005. if (txrxFlags & NV_RESTART_RX)
  3006. nv_start_rx(dev);
  3007. return retval;
  3008. }
  3009. static void nv_linkchange(struct net_device *dev)
  3010. {
  3011. if (nv_update_linkspeed(dev)) {
  3012. if (!netif_carrier_ok(dev)) {
  3013. netif_carrier_on(dev);
  3014. printk(KERN_INFO "%s: link up.\n", dev->name);
  3015. nv_start_rx(dev);
  3016. }
  3017. } else {
  3018. if (netif_carrier_ok(dev)) {
  3019. netif_carrier_off(dev);
  3020. printk(KERN_INFO "%s: link down.\n", dev->name);
  3021. nv_stop_rx(dev);
  3022. }
  3023. }
  3024. }
  3025. static void nv_link_irq(struct net_device *dev)
  3026. {
  3027. u8 __iomem *base = get_hwbase(dev);
  3028. u32 miistat;
  3029. miistat = readl(base + NvRegMIIStatus);
  3030. writel(NVREG_MIISTAT_LINKCHANGE, base + NvRegMIIStatus);
  3031. dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
  3032. if (miistat & (NVREG_MIISTAT_LINKCHANGE))
  3033. nv_linkchange(dev);
  3034. dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
  3035. }
  3036. static void nv_msi_workaround(struct fe_priv *np)
  3037. {
  3038. /* Need to toggle the msi irq mask within the ethernet device,
  3039. * otherwise, future interrupts will not be detected.
  3040. */
  3041. if (np->msi_flags & NV_MSI_ENABLED) {
  3042. u8 __iomem *base = np->base;
  3043. writel(0, base + NvRegMSIIrqMask);
  3044. writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
  3045. }
  3046. }
  3047. static irqreturn_t nv_nic_irq(int foo, void *data)
  3048. {
  3049. struct net_device *dev = (struct net_device *) data;
  3050. struct fe_priv *np = netdev_priv(dev);
  3051. u8 __iomem *base = get_hwbase(dev);
  3052. u32 events;
  3053. int i;
  3054. dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
  3055. for (i=0; ; i++) {
  3056. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  3057. events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  3058. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  3059. } else {
  3060. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  3061. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  3062. }
  3063. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  3064. if (!(events & np->irqmask))
  3065. break;
  3066. nv_msi_workaround(np);
  3067. spin_lock(&np->lock);
  3068. nv_tx_done(dev);
  3069. spin_unlock(&np->lock);
  3070. #ifdef CONFIG_FORCEDETH_NAPI
  3071. if (events & NVREG_IRQ_RX_ALL) {
  3072. spin_lock(&np->lock);
  3073. napi_schedule(&np->napi);
  3074. /* Disable furthur receive irq's */
  3075. np->irqmask &= ~NVREG_IRQ_RX_ALL;
  3076. if (np->msi_flags & NV_MSI_X_ENABLED)
  3077. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  3078. else
  3079. writel(np->irqmask, base + NvRegIrqMask);
  3080. spin_unlock(&np->lock);
  3081. }
  3082. #else
  3083. if (nv_rx_process(dev, RX_WORK_PER_LOOP)) {
  3084. if (unlikely(nv_alloc_rx(dev))) {
  3085. spin_lock(&np->lock);
  3086. if (!np->in_shutdown)
  3087. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3088. spin_unlock(&np->lock);
  3089. }
  3090. }
  3091. #endif
  3092. if (unlikely(events & NVREG_IRQ_LINK)) {
  3093. spin_lock(&np->lock);
  3094. nv_link_irq(dev);
  3095. spin_unlock(&np->lock);
  3096. }
  3097. if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
  3098. spin_lock(&np->lock);
  3099. nv_linkchange(dev);
  3100. spin_unlock(&np->lock);
  3101. np->link_timeout = jiffies + LINK_TIMEOUT;
  3102. }
  3103. if (unlikely(events & (NVREG_IRQ_TX_ERR))) {
  3104. dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
  3105. dev->name, events);
  3106. }
  3107. if (unlikely(events & (NVREG_IRQ_UNKNOWN))) {
  3108. printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
  3109. dev->name, events);
  3110. }
  3111. if (unlikely(events & NVREG_IRQ_RECOVER_ERROR)) {
  3112. spin_lock(&np->lock);
  3113. /* disable interrupts on the nic */
  3114. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  3115. writel(0, base + NvRegIrqMask);
  3116. else
  3117. writel(np->irqmask, base + NvRegIrqMask);
  3118. pci_push(base);
  3119. if (!np->in_shutdown) {
  3120. np->nic_poll_irq = np->irqmask;
  3121. np->recover_error = 1;
  3122. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3123. }
  3124. spin_unlock(&np->lock);
  3125. break;
  3126. }
  3127. if (unlikely(i > max_interrupt_work)) {
  3128. spin_lock(&np->lock);
  3129. /* disable interrupts on the nic */
  3130. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  3131. writel(0, base + NvRegIrqMask);
  3132. else
  3133. writel(np->irqmask, base + NvRegIrqMask);
  3134. pci_push(base);
  3135. if (!np->in_shutdown) {
  3136. np->nic_poll_irq = np->irqmask;
  3137. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3138. }
  3139. spin_unlock(&np->lock);
  3140. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
  3141. break;
  3142. }
  3143. }
  3144. dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
  3145. return IRQ_RETVAL(i);
  3146. }
  3147. /**
  3148. * All _optimized functions are used to help increase performance
  3149. * (reduce CPU and increase throughput). They use descripter version 3,
  3150. * compiler directives, and reduce memory accesses.
  3151. */
  3152. static irqreturn_t nv_nic_irq_optimized(int foo, void *data)
  3153. {
  3154. struct net_device *dev = (struct net_device *) data;
  3155. struct fe_priv *np = netdev_priv(dev);
  3156. u8 __iomem *base = get_hwbase(dev);
  3157. u32 events;
  3158. int i;
  3159. dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized\n", dev->name);
  3160. for (i=0; ; i++) {
  3161. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  3162. events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  3163. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  3164. } else {
  3165. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  3166. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  3167. }
  3168. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  3169. if (!(events & np->irqmask))
  3170. break;
  3171. nv_msi_workaround(np);
  3172. spin_lock(&np->lock);
  3173. nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  3174. spin_unlock(&np->lock);
  3175. #ifdef CONFIG_FORCEDETH_NAPI
  3176. if (events & NVREG_IRQ_RX_ALL) {
  3177. spin_lock(&np->lock);
  3178. napi_schedule(&np->napi);
  3179. /* Disable furthur receive irq's */
  3180. np->irqmask &= ~NVREG_IRQ_RX_ALL;
  3181. if (np->msi_flags & NV_MSI_X_ENABLED)
  3182. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  3183. else
  3184. writel(np->irqmask, base + NvRegIrqMask);
  3185. spin_unlock(&np->lock);
  3186. }
  3187. #else
  3188. if (nv_rx_process_optimized(dev, RX_WORK_PER_LOOP)) {
  3189. if (unlikely(nv_alloc_rx_optimized(dev))) {
  3190. spin_lock(&np->lock);
  3191. if (!np->in_shutdown)
  3192. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3193. spin_unlock(&np->lock);
  3194. }
  3195. }
  3196. #endif
  3197. if (unlikely(events & NVREG_IRQ_LINK)) {
  3198. spin_lock(&np->lock);
  3199. nv_link_irq(dev);
  3200. spin_unlock(&np->lock);
  3201. }
  3202. if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
  3203. spin_lock(&np->lock);
  3204. nv_linkchange(dev);
  3205. spin_unlock(&np->lock);
  3206. np->link_timeout = jiffies + LINK_TIMEOUT;
  3207. }
  3208. if (unlikely(events & (NVREG_IRQ_TX_ERR))) {
  3209. dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
  3210. dev->name, events);
  3211. }
  3212. if (unlikely(events & (NVREG_IRQ_UNKNOWN))) {
  3213. printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
  3214. dev->name, events);
  3215. }
  3216. if (unlikely(events & NVREG_IRQ_RECOVER_ERROR)) {
  3217. spin_lock(&np->lock);
  3218. /* disable interrupts on the nic */
  3219. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  3220. writel(0, base + NvRegIrqMask);
  3221. else
  3222. writel(np->irqmask, base + NvRegIrqMask);
  3223. pci_push(base);
  3224. if (!np->in_shutdown) {
  3225. np->nic_poll_irq = np->irqmask;
  3226. np->recover_error = 1;
  3227. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3228. }
  3229. spin_unlock(&np->lock);
  3230. break;
  3231. }
  3232. if (unlikely(i > max_interrupt_work)) {
  3233. spin_lock(&np->lock);
  3234. /* disable interrupts on the nic */
  3235. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  3236. writel(0, base + NvRegIrqMask);
  3237. else
  3238. writel(np->irqmask, base + NvRegIrqMask);
  3239. pci_push(base);
  3240. if (!np->in_shutdown) {
  3241. np->nic_poll_irq = np->irqmask;
  3242. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3243. }
  3244. spin_unlock(&np->lock);
  3245. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
  3246. break;
  3247. }
  3248. }
  3249. dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized completed\n", dev->name);
  3250. return IRQ_RETVAL(i);
  3251. }
  3252. static irqreturn_t nv_nic_irq_tx(int foo, void *data)
  3253. {
  3254. struct net_device *dev = (struct net_device *) data;
  3255. struct fe_priv *np = netdev_priv(dev);
  3256. u8 __iomem *base = get_hwbase(dev);
  3257. u32 events;
  3258. int i;
  3259. unsigned long flags;
  3260. dprintk(KERN_DEBUG "%s: nv_nic_irq_tx\n", dev->name);
  3261. for (i=0; ; i++) {
  3262. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
  3263. writel(NVREG_IRQ_TX_ALL, base + NvRegMSIXIrqStatus);
  3264. dprintk(KERN_DEBUG "%s: tx irq: %08x\n", dev->name, events);
  3265. if (!(events & np->irqmask))
  3266. break;
  3267. spin_lock_irqsave(&np->lock, flags);
  3268. nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  3269. spin_unlock_irqrestore(&np->lock, flags);
  3270. if (unlikely(events & (NVREG_IRQ_TX_ERR))) {
  3271. dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
  3272. dev->name, events);
  3273. }
  3274. if (unlikely(i > max_interrupt_work)) {
  3275. spin_lock_irqsave(&np->lock, flags);
  3276. /* disable interrupts on the nic */
  3277. writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask);
  3278. pci_push(base);
  3279. if (!np->in_shutdown) {
  3280. np->nic_poll_irq |= NVREG_IRQ_TX_ALL;
  3281. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3282. }
  3283. spin_unlock_irqrestore(&np->lock, flags);
  3284. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_tx.\n", dev->name, i);
  3285. break;
  3286. }
  3287. }
  3288. dprintk(KERN_DEBUG "%s: nv_nic_irq_tx completed\n", dev->name);
  3289. return IRQ_RETVAL(i);
  3290. }
  3291. #ifdef CONFIG_FORCEDETH_NAPI
  3292. static int nv_napi_poll(struct napi_struct *napi, int budget)
  3293. {
  3294. struct fe_priv *np = container_of(napi, struct fe_priv, napi);
  3295. struct net_device *dev = np->dev;
  3296. u8 __iomem *base = get_hwbase(dev);
  3297. unsigned long flags;
  3298. int pkts, retcode;
  3299. if (!nv_optimized(np)) {
  3300. pkts = nv_rx_process(dev, budget);
  3301. retcode = nv_alloc_rx(dev);
  3302. } else {
  3303. pkts = nv_rx_process_optimized(dev, budget);
  3304. retcode = nv_alloc_rx_optimized(dev);
  3305. }
  3306. if (retcode) {
  3307. spin_lock_irqsave(&np->lock, flags);
  3308. if (!np->in_shutdown)
  3309. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3310. spin_unlock_irqrestore(&np->lock, flags);
  3311. }
  3312. if (pkts < budget) {
  3313. /* re-enable receive interrupts */
  3314. spin_lock_irqsave(&np->lock, flags);
  3315. __napi_complete(napi);
  3316. np->irqmask |= NVREG_IRQ_RX_ALL;
  3317. if (np->msi_flags & NV_MSI_X_ENABLED)
  3318. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  3319. else
  3320. writel(np->irqmask, base + NvRegIrqMask);
  3321. spin_unlock_irqrestore(&np->lock, flags);
  3322. }
  3323. return pkts;
  3324. }
  3325. #endif
  3326. #ifdef CONFIG_FORCEDETH_NAPI
  3327. static irqreturn_t nv_nic_irq_rx(int foo, void *data)
  3328. {
  3329. struct net_device *dev = (struct net_device *) data;
  3330. struct fe_priv *np = netdev_priv(dev);
  3331. u8 __iomem *base = get_hwbase(dev);
  3332. u32 events;
  3333. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
  3334. if (events) {
  3335. /* disable receive interrupts on the nic */
  3336. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  3337. pci_push(base);
  3338. writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
  3339. napi_schedule(&np->napi);
  3340. }
  3341. return IRQ_HANDLED;
  3342. }
  3343. #else
  3344. static irqreturn_t nv_nic_irq_rx(int foo, void *data)
  3345. {
  3346. struct net_device *dev = (struct net_device *) data;
  3347. struct fe_priv *np = netdev_priv(dev);
  3348. u8 __iomem *base = get_hwbase(dev);
  3349. u32 events;
  3350. int i;
  3351. unsigned long flags;
  3352. dprintk(KERN_DEBUG "%s: nv_nic_irq_rx\n", dev->name);
  3353. for (i=0; ; i++) {
  3354. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
  3355. writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
  3356. dprintk(KERN_DEBUG "%s: rx irq: %08x\n", dev->name, events);
  3357. if (!(events & np->irqmask))
  3358. break;
  3359. if (nv_rx_process_optimized(dev, RX_WORK_PER_LOOP)) {
  3360. if (unlikely(nv_alloc_rx_optimized(dev))) {
  3361. spin_lock_irqsave(&np->lock, flags);
  3362. if (!np->in_shutdown)
  3363. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3364. spin_unlock_irqrestore(&np->lock, flags);
  3365. }
  3366. }
  3367. if (unlikely(i > max_interrupt_work)) {
  3368. spin_lock_irqsave(&np->lock, flags);
  3369. /* disable interrupts on the nic */
  3370. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  3371. pci_push(base);
  3372. if (!np->in_shutdown) {
  3373. np->nic_poll_irq |= NVREG_IRQ_RX_ALL;
  3374. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3375. }
  3376. spin_unlock_irqrestore(&np->lock, flags);
  3377. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_rx.\n", dev->name, i);
  3378. break;
  3379. }
  3380. }
  3381. dprintk(KERN_DEBUG "%s: nv_nic_irq_rx completed\n", dev->name);
  3382. return IRQ_RETVAL(i);
  3383. }
  3384. #endif
  3385. static irqreturn_t nv_nic_irq_other(int foo, void *data)
  3386. {
  3387. struct net_device *dev = (struct net_device *) data;
  3388. struct fe_priv *np = netdev_priv(dev);
  3389. u8 __iomem *base = get_hwbase(dev);
  3390. u32 events;
  3391. int i;
  3392. unsigned long flags;
  3393. dprintk(KERN_DEBUG "%s: nv_nic_irq_other\n", dev->name);
  3394. for (i=0; ; i++) {
  3395. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
  3396. writel(NVREG_IRQ_OTHER, base + NvRegMSIXIrqStatus);
  3397. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  3398. if (!(events & np->irqmask))
  3399. break;
  3400. /* check tx in case we reached max loop limit in tx isr */
  3401. spin_lock_irqsave(&np->lock, flags);
  3402. nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  3403. spin_unlock_irqrestore(&np->lock, flags);
  3404. if (events & NVREG_IRQ_LINK) {
  3405. spin_lock_irqsave(&np->lock, flags);
  3406. nv_link_irq(dev);
  3407. spin_unlock_irqrestore(&np->lock, flags);
  3408. }
  3409. if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
  3410. spin_lock_irqsave(&np->lock, flags);
  3411. nv_linkchange(dev);
  3412. spin_unlock_irqrestore(&np->lock, flags);
  3413. np->link_timeout = jiffies + LINK_TIMEOUT;
  3414. }
  3415. if (events & NVREG_IRQ_RECOVER_ERROR) {
  3416. spin_lock_irq(&np->lock);
  3417. /* disable interrupts on the nic */
  3418. writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
  3419. pci_push(base);
  3420. if (!np->in_shutdown) {
  3421. np->nic_poll_irq |= NVREG_IRQ_OTHER;
  3422. np->recover_error = 1;
  3423. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3424. }
  3425. spin_unlock_irq(&np->lock);
  3426. break;
  3427. }
  3428. if (events & (NVREG_IRQ_UNKNOWN)) {
  3429. printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
  3430. dev->name, events);
  3431. }
  3432. if (unlikely(i > max_interrupt_work)) {
  3433. spin_lock_irqsave(&np->lock, flags);
  3434. /* disable interrupts on the nic */
  3435. writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
  3436. pci_push(base);
  3437. if (!np->in_shutdown) {
  3438. np->nic_poll_irq |= NVREG_IRQ_OTHER;
  3439. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3440. }
  3441. spin_unlock_irqrestore(&np->lock, flags);
  3442. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_other.\n", dev->name, i);
  3443. break;
  3444. }
  3445. }
  3446. dprintk(KERN_DEBUG "%s: nv_nic_irq_other completed\n", dev->name);
  3447. return IRQ_RETVAL(i);
  3448. }
  3449. static irqreturn_t nv_nic_irq_test(int foo, void *data)
  3450. {
  3451. struct net_device *dev = (struct net_device *) data;
  3452. struct fe_priv *np = netdev_priv(dev);
  3453. u8 __iomem *base = get_hwbase(dev);
  3454. u32 events;
  3455. dprintk(KERN_DEBUG "%s: nv_nic_irq_test\n", dev->name);
  3456. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  3457. events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  3458. writel(NVREG_IRQ_TIMER, base + NvRegIrqStatus);
  3459. } else {
  3460. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  3461. writel(NVREG_IRQ_TIMER, base + NvRegMSIXIrqStatus);
  3462. }
  3463. pci_push(base);
  3464. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  3465. if (!(events & NVREG_IRQ_TIMER))
  3466. return IRQ_RETVAL(0);
  3467. nv_msi_workaround(np);
  3468. spin_lock(&np->lock);
  3469. np->intr_test = 1;
  3470. spin_unlock(&np->lock);
  3471. dprintk(KERN_DEBUG "%s: nv_nic_irq_test completed\n", dev->name);
  3472. return IRQ_RETVAL(1);
  3473. }
  3474. static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
  3475. {
  3476. u8 __iomem *base = get_hwbase(dev);
  3477. int i;
  3478. u32 msixmap = 0;
  3479. /* Each interrupt bit can be mapped to a MSIX vector (4 bits).
  3480. * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
  3481. * the remaining 8 interrupts.
  3482. */
  3483. for (i = 0; i < 8; i++) {
  3484. if ((irqmask >> i) & 0x1) {
  3485. msixmap |= vector << (i << 2);
  3486. }
  3487. }
  3488. writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);
  3489. msixmap = 0;
  3490. for (i = 0; i < 8; i++) {
  3491. if ((irqmask >> (i + 8)) & 0x1) {
  3492. msixmap |= vector << (i << 2);
  3493. }
  3494. }
  3495. writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
  3496. }
  3497. static int nv_request_irq(struct net_device *dev, int intr_test)
  3498. {
  3499. struct fe_priv *np = get_nvpriv(dev);
  3500. u8 __iomem *base = get_hwbase(dev);
  3501. int ret = 1;
  3502. int i;
  3503. irqreturn_t (*handler)(int foo, void *data);
  3504. if (intr_test) {
  3505. handler = nv_nic_irq_test;
  3506. } else {
  3507. if (nv_optimized(np))
  3508. handler = nv_nic_irq_optimized;
  3509. else
  3510. handler = nv_nic_irq;
  3511. }
  3512. if (np->msi_flags & NV_MSI_X_CAPABLE) {
  3513. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
  3514. np->msi_x_entry[i].entry = i;
  3515. }
  3516. if ((ret = pci_enable_msix(np->pci_dev, np->msi_x_entry, (np->msi_flags & NV_MSI_X_VECTORS_MASK))) == 0) {
  3517. np->msi_flags |= NV_MSI_X_ENABLED;
  3518. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT && !intr_test) {
  3519. /* Request irq for rx handling */
  3520. sprintf(np->name_rx, "%s-rx", dev->name);
  3521. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector,
  3522. &nv_nic_irq_rx, IRQF_SHARED, np->name_rx, dev) != 0) {
  3523. printk(KERN_INFO "forcedeth: request_irq failed for rx %d\n", ret);
  3524. pci_disable_msix(np->pci_dev);
  3525. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3526. goto out_err;
  3527. }
  3528. /* Request irq for tx handling */
  3529. sprintf(np->name_tx, "%s-tx", dev->name);
  3530. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector,
  3531. &nv_nic_irq_tx, IRQF_SHARED, np->name_tx, dev) != 0) {
  3532. printk(KERN_INFO "forcedeth: request_irq failed for tx %d\n", ret);
  3533. pci_disable_msix(np->pci_dev);
  3534. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3535. goto out_free_rx;
  3536. }
  3537. /* Request irq for link and timer handling */
  3538. sprintf(np->name_other, "%s-other", dev->name);
  3539. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector,
  3540. &nv_nic_irq_other, IRQF_SHARED, np->name_other, dev) != 0) {
  3541. printk(KERN_INFO "forcedeth: request_irq failed for link %d\n", ret);
  3542. pci_disable_msix(np->pci_dev);
  3543. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3544. goto out_free_tx;
  3545. }
  3546. /* map interrupts to their respective vector */
  3547. writel(0, base + NvRegMSIXMap0);
  3548. writel(0, base + NvRegMSIXMap1);
  3549. set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
  3550. set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
  3551. set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
  3552. } else {
  3553. /* Request irq for all interrupts */
  3554. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, handler, IRQF_SHARED, dev->name, dev) != 0) {
  3555. printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
  3556. pci_disable_msix(np->pci_dev);
  3557. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3558. goto out_err;
  3559. }
  3560. /* map interrupts to vector 0 */
  3561. writel(0, base + NvRegMSIXMap0);
  3562. writel(0, base + NvRegMSIXMap1);
  3563. }
  3564. }
  3565. }
  3566. if (ret != 0 && np->msi_flags & NV_MSI_CAPABLE) {
  3567. if ((ret = pci_enable_msi(np->pci_dev)) == 0) {
  3568. np->msi_flags |= NV_MSI_ENABLED;
  3569. dev->irq = np->pci_dev->irq;
  3570. if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0) {
  3571. printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
  3572. pci_disable_msi(np->pci_dev);
  3573. np->msi_flags &= ~NV_MSI_ENABLED;
  3574. dev->irq = np->pci_dev->irq;
  3575. goto out_err;
  3576. }
  3577. /* map interrupts to vector 0 */
  3578. writel(0, base + NvRegMSIMap0);
  3579. writel(0, base + NvRegMSIMap1);
  3580. /* enable msi vector 0 */
  3581. writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
  3582. }
  3583. }
  3584. if (ret != 0) {
  3585. if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0)
  3586. goto out_err;
  3587. }
  3588. return 0;
  3589. out_free_tx:
  3590. free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev);
  3591. out_free_rx:
  3592. free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev);
  3593. out_err:
  3594. return 1;
  3595. }
  3596. static void nv_free_irq(struct net_device *dev)
  3597. {
  3598. struct fe_priv *np = get_nvpriv(dev);
  3599. int i;
  3600. if (np->msi_flags & NV_MSI_X_ENABLED) {
  3601. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
  3602. free_irq(np->msi_x_entry[i].vector, dev);
  3603. }
  3604. pci_disable_msix(np->pci_dev);
  3605. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3606. } else {
  3607. free_irq(np->pci_dev->irq, dev);
  3608. if (np->msi_flags & NV_MSI_ENABLED) {
  3609. pci_disable_msi(np->pci_dev);
  3610. np->msi_flags &= ~NV_MSI_ENABLED;
  3611. }
  3612. }
  3613. }
  3614. static void nv_do_nic_poll(unsigned long data)
  3615. {
  3616. struct net_device *dev = (struct net_device *) data;
  3617. struct fe_priv *np = netdev_priv(dev);
  3618. u8 __iomem *base = get_hwbase(dev);
  3619. u32 mask = 0;
  3620. /*
  3621. * First disable irq(s) and then
  3622. * reenable interrupts on the nic, we have to do this before calling
  3623. * nv_nic_irq because that may decide to do otherwise
  3624. */
  3625. if (!using_multi_irqs(dev)) {
  3626. if (np->msi_flags & NV_MSI_X_ENABLED)
  3627. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  3628. else
  3629. disable_irq_lockdep(np->pci_dev->irq);
  3630. mask = np->irqmask;
  3631. } else {
  3632. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  3633. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  3634. mask |= NVREG_IRQ_RX_ALL;
  3635. }
  3636. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  3637. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  3638. mask |= NVREG_IRQ_TX_ALL;
  3639. }
  3640. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  3641. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  3642. mask |= NVREG_IRQ_OTHER;
  3643. }
  3644. }
  3645. /* disable_irq() contains synchronize_irq, thus no irq handler can run now */
  3646. if (np->recover_error) {
  3647. np->recover_error = 0;
  3648. printk(KERN_INFO "%s: MAC in recoverable error state\n", dev->name);
  3649. if (netif_running(dev)) {
  3650. netif_tx_lock_bh(dev);
  3651. netif_addr_lock(dev);
  3652. spin_lock(&np->lock);
  3653. /* stop engines */
  3654. nv_stop_rxtx(dev);
  3655. if (np->driver_data & DEV_HAS_POWER_CNTRL)
  3656. nv_mac_reset(dev);
  3657. nv_txrx_reset(dev);
  3658. /* drain rx queue */
  3659. nv_drain_rxtx(dev);
  3660. /* reinit driver view of the rx queue */
  3661. set_bufsize(dev);
  3662. if (nv_init_ring(dev)) {
  3663. if (!np->in_shutdown)
  3664. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3665. }
  3666. /* reinit nic view of the rx queue */
  3667. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  3668. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  3669. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  3670. base + NvRegRingSizes);
  3671. pci_push(base);
  3672. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  3673. pci_push(base);
  3674. /* clear interrupts */
  3675. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  3676. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  3677. else
  3678. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  3679. /* restart rx engine */
  3680. nv_start_rxtx(dev);
  3681. spin_unlock(&np->lock);
  3682. netif_addr_unlock(dev);
  3683. netif_tx_unlock_bh(dev);
  3684. }
  3685. }
  3686. writel(mask, base + NvRegIrqMask);
  3687. pci_push(base);
  3688. if (!using_multi_irqs(dev)) {
  3689. np->nic_poll_irq = 0;
  3690. if (nv_optimized(np))
  3691. nv_nic_irq_optimized(0, dev);
  3692. else
  3693. nv_nic_irq(0, dev);
  3694. if (np->msi_flags & NV_MSI_X_ENABLED)
  3695. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  3696. else
  3697. enable_irq_lockdep(np->pci_dev->irq);
  3698. } else {
  3699. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  3700. np->nic_poll_irq &= ~NVREG_IRQ_RX_ALL;
  3701. nv_nic_irq_rx(0, dev);
  3702. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  3703. }
  3704. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  3705. np->nic_poll_irq &= ~NVREG_IRQ_TX_ALL;
  3706. nv_nic_irq_tx(0, dev);
  3707. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  3708. }
  3709. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  3710. np->nic_poll_irq &= ~NVREG_IRQ_OTHER;
  3711. nv_nic_irq_other(0, dev);
  3712. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  3713. }
  3714. }
  3715. }
  3716. #ifdef CONFIG_NET_POLL_CONTROLLER
  3717. static void nv_poll_controller(struct net_device *dev)
  3718. {
  3719. nv_do_nic_poll((unsigned long) dev);
  3720. }
  3721. #endif
  3722. static void nv_do_stats_poll(unsigned long data)
  3723. {
  3724. struct net_device *dev = (struct net_device *) data;
  3725. struct fe_priv *np = netdev_priv(dev);
  3726. nv_get_hw_stats(dev);
  3727. if (!np->in_shutdown)
  3728. mod_timer(&np->stats_poll,
  3729. round_jiffies(jiffies + STATS_INTERVAL));
  3730. }
  3731. static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  3732. {
  3733. struct fe_priv *np = netdev_priv(dev);
  3734. strcpy(info->driver, DRV_NAME);
  3735. strcpy(info->version, FORCEDETH_VERSION);
  3736. strcpy(info->bus_info, pci_name(np->pci_dev));
  3737. }
  3738. static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  3739. {
  3740. struct fe_priv *np = netdev_priv(dev);
  3741. wolinfo->supported = WAKE_MAGIC;
  3742. spin_lock_irq(&np->lock);
  3743. if (np->wolenabled)
  3744. wolinfo->wolopts = WAKE_MAGIC;
  3745. spin_unlock_irq(&np->lock);
  3746. }
  3747. static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  3748. {
  3749. struct fe_priv *np = netdev_priv(dev);
  3750. u8 __iomem *base = get_hwbase(dev);
  3751. u32 flags = 0;
  3752. if (wolinfo->wolopts == 0) {
  3753. np->wolenabled = 0;
  3754. } else if (wolinfo->wolopts & WAKE_MAGIC) {
  3755. np->wolenabled = 1;
  3756. flags = NVREG_WAKEUPFLAGS_ENABLE;
  3757. }
  3758. if (netif_running(dev)) {
  3759. spin_lock_irq(&np->lock);
  3760. writel(flags, base + NvRegWakeUpFlags);
  3761. spin_unlock_irq(&np->lock);
  3762. }
  3763. return 0;
  3764. }
  3765. static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  3766. {
  3767. struct fe_priv *np = netdev_priv(dev);
  3768. int adv;
  3769. spin_lock_irq(&np->lock);
  3770. ecmd->port = PORT_MII;
  3771. if (!netif_running(dev)) {
  3772. /* We do not track link speed / duplex setting if the
  3773. * interface is disabled. Force a link check */
  3774. if (nv_update_linkspeed(dev)) {
  3775. if (!netif_carrier_ok(dev))
  3776. netif_carrier_on(dev);
  3777. } else {
  3778. if (netif_carrier_ok(dev))
  3779. netif_carrier_off(dev);
  3780. }
  3781. }
  3782. if (netif_carrier_ok(dev)) {
  3783. switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) {
  3784. case NVREG_LINKSPEED_10:
  3785. ecmd->speed = SPEED_10;
  3786. break;
  3787. case NVREG_LINKSPEED_100:
  3788. ecmd->speed = SPEED_100;
  3789. break;
  3790. case NVREG_LINKSPEED_1000:
  3791. ecmd->speed = SPEED_1000;
  3792. break;
  3793. }
  3794. ecmd->duplex = DUPLEX_HALF;
  3795. if (np->duplex)
  3796. ecmd->duplex = DUPLEX_FULL;
  3797. } else {
  3798. ecmd->speed = -1;
  3799. ecmd->duplex = -1;
  3800. }
  3801. ecmd->autoneg = np->autoneg;
  3802. ecmd->advertising = ADVERTISED_MII;
  3803. if (np->autoneg) {
  3804. ecmd->advertising |= ADVERTISED_Autoneg;
  3805. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3806. if (adv & ADVERTISE_10HALF)
  3807. ecmd->advertising |= ADVERTISED_10baseT_Half;
  3808. if (adv & ADVERTISE_10FULL)
  3809. ecmd->advertising |= ADVERTISED_10baseT_Full;
  3810. if (adv & ADVERTISE_100HALF)
  3811. ecmd->advertising |= ADVERTISED_100baseT_Half;
  3812. if (adv & ADVERTISE_100FULL)
  3813. ecmd->advertising |= ADVERTISED_100baseT_Full;
  3814. if (np->gigabit == PHY_GIGABIT) {
  3815. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3816. if (adv & ADVERTISE_1000FULL)
  3817. ecmd->advertising |= ADVERTISED_1000baseT_Full;
  3818. }
  3819. }
  3820. ecmd->supported = (SUPPORTED_Autoneg |
  3821. SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
  3822. SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
  3823. SUPPORTED_MII);
  3824. if (np->gigabit == PHY_GIGABIT)
  3825. ecmd->supported |= SUPPORTED_1000baseT_Full;
  3826. ecmd->phy_address = np->phyaddr;
  3827. ecmd->transceiver = XCVR_EXTERNAL;
  3828. /* ignore maxtxpkt, maxrxpkt for now */
  3829. spin_unlock_irq(&np->lock);
  3830. return 0;
  3831. }
  3832. static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  3833. {
  3834. struct fe_priv *np = netdev_priv(dev);
  3835. if (ecmd->port != PORT_MII)
  3836. return -EINVAL;
  3837. if (ecmd->transceiver != XCVR_EXTERNAL)
  3838. return -EINVAL;
  3839. if (ecmd->phy_address != np->phyaddr) {
  3840. /* TODO: support switching between multiple phys. Should be
  3841. * trivial, but not enabled due to lack of test hardware. */
  3842. return -EINVAL;
  3843. }
  3844. if (ecmd->autoneg == AUTONEG_ENABLE) {
  3845. u32 mask;
  3846. mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
  3847. ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
  3848. if (np->gigabit == PHY_GIGABIT)
  3849. mask |= ADVERTISED_1000baseT_Full;
  3850. if ((ecmd->advertising & mask) == 0)
  3851. return -EINVAL;
  3852. } else if (ecmd->autoneg == AUTONEG_DISABLE) {
  3853. /* Note: autonegotiation disable, speed 1000 intentionally
  3854. * forbidden - noone should need that. */
  3855. if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
  3856. return -EINVAL;
  3857. if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
  3858. return -EINVAL;
  3859. } else {
  3860. return -EINVAL;
  3861. }
  3862. netif_carrier_off(dev);
  3863. if (netif_running(dev)) {
  3864. unsigned long flags;
  3865. nv_disable_irq(dev);
  3866. netif_tx_lock_bh(dev);
  3867. netif_addr_lock(dev);
  3868. /* with plain spinlock lockdep complains */
  3869. spin_lock_irqsave(&np->lock, flags);
  3870. /* stop engines */
  3871. /* FIXME:
  3872. * this can take some time, and interrupts are disabled
  3873. * due to spin_lock_irqsave, but let's hope no daemon
  3874. * is going to change the settings very often...
  3875. * Worst case:
  3876. * NV_RXSTOP_DELAY1MAX + NV_TXSTOP_DELAY1MAX
  3877. * + some minor delays, which is up to a second approximately
  3878. */
  3879. nv_stop_rxtx(dev);
  3880. spin_unlock_irqrestore(&np->lock, flags);
  3881. netif_addr_unlock(dev);
  3882. netif_tx_unlock_bh(dev);
  3883. }
  3884. if (ecmd->autoneg == AUTONEG_ENABLE) {
  3885. int adv, bmcr;
  3886. np->autoneg = 1;
  3887. /* advertise only what has been requested */
  3888. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3889. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  3890. if (ecmd->advertising & ADVERTISED_10baseT_Half)
  3891. adv |= ADVERTISE_10HALF;
  3892. if (ecmd->advertising & ADVERTISED_10baseT_Full)
  3893. adv |= ADVERTISE_10FULL;
  3894. if (ecmd->advertising & ADVERTISED_100baseT_Half)
  3895. adv |= ADVERTISE_100HALF;
  3896. if (ecmd->advertising & ADVERTISED_100baseT_Full)
  3897. adv |= ADVERTISE_100FULL;
  3898. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
  3899. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  3900. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  3901. adv |= ADVERTISE_PAUSE_ASYM;
  3902. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  3903. if (np->gigabit == PHY_GIGABIT) {
  3904. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3905. adv &= ~ADVERTISE_1000FULL;
  3906. if (ecmd->advertising & ADVERTISED_1000baseT_Full)
  3907. adv |= ADVERTISE_1000FULL;
  3908. mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
  3909. }
  3910. if (netif_running(dev))
  3911. printk(KERN_INFO "%s: link down.\n", dev->name);
  3912. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3913. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  3914. bmcr |= BMCR_ANENABLE;
  3915. /* reset the phy in order for settings to stick,
  3916. * and cause autoneg to start */
  3917. if (phy_reset(dev, bmcr)) {
  3918. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  3919. return -EINVAL;
  3920. }
  3921. } else {
  3922. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  3923. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3924. }
  3925. } else {
  3926. int adv, bmcr;
  3927. np->autoneg = 0;
  3928. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3929. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  3930. if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
  3931. adv |= ADVERTISE_10HALF;
  3932. if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
  3933. adv |= ADVERTISE_10FULL;
  3934. if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
  3935. adv |= ADVERTISE_100HALF;
  3936. if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
  3937. adv |= ADVERTISE_100FULL;
  3938. np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
  3939. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) {/* for rx we set both advertisments but disable tx pause */
  3940. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  3941. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  3942. }
  3943. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) {
  3944. adv |= ADVERTISE_PAUSE_ASYM;
  3945. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  3946. }
  3947. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  3948. np->fixed_mode = adv;
  3949. if (np->gigabit == PHY_GIGABIT) {
  3950. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3951. adv &= ~ADVERTISE_1000FULL;
  3952. mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
  3953. }
  3954. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3955. bmcr &= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_SPEED1000|BMCR_FULLDPLX);
  3956. if (np->fixed_mode & (ADVERTISE_10FULL|ADVERTISE_100FULL))
  3957. bmcr |= BMCR_FULLDPLX;
  3958. if (np->fixed_mode & (ADVERTISE_100HALF|ADVERTISE_100FULL))
  3959. bmcr |= BMCR_SPEED100;
  3960. if (np->phy_oui == PHY_OUI_MARVELL) {
  3961. /* reset the phy in order for forced mode settings to stick */
  3962. if (phy_reset(dev, bmcr)) {
  3963. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  3964. return -EINVAL;
  3965. }
  3966. } else {
  3967. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3968. if (netif_running(dev)) {
  3969. /* Wait a bit and then reconfigure the nic. */
  3970. udelay(10);
  3971. nv_linkchange(dev);
  3972. }
  3973. }
  3974. }
  3975. if (netif_running(dev)) {
  3976. nv_start_rxtx(dev);
  3977. nv_enable_irq(dev);
  3978. }
  3979. return 0;
  3980. }
  3981. #define FORCEDETH_REGS_VER 1
  3982. static int nv_get_regs_len(struct net_device *dev)
  3983. {
  3984. struct fe_priv *np = netdev_priv(dev);
  3985. return np->register_size;
  3986. }
  3987. static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
  3988. {
  3989. struct fe_priv *np = netdev_priv(dev);
  3990. u8 __iomem *base = get_hwbase(dev);
  3991. u32 *rbuf = buf;
  3992. int i;
  3993. regs->version = FORCEDETH_REGS_VER;
  3994. spin_lock_irq(&np->lock);
  3995. for (i = 0;i <= np->register_size/sizeof(u32); i++)
  3996. rbuf[i] = readl(base + i*sizeof(u32));
  3997. spin_unlock_irq(&np->lock);
  3998. }
  3999. static int nv_nway_reset(struct net_device *dev)
  4000. {
  4001. struct fe_priv *np = netdev_priv(dev);
  4002. int ret;
  4003. if (np->autoneg) {
  4004. int bmcr;
  4005. netif_carrier_off(dev);
  4006. if (netif_running(dev)) {
  4007. nv_disable_irq(dev);
  4008. netif_tx_lock_bh(dev);
  4009. netif_addr_lock(dev);
  4010. spin_lock(&np->lock);
  4011. /* stop engines */
  4012. nv_stop_rxtx(dev);
  4013. spin_unlock(&np->lock);
  4014. netif_addr_unlock(dev);
  4015. netif_tx_unlock_bh(dev);
  4016. printk(KERN_INFO "%s: link down.\n", dev->name);
  4017. }
  4018. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  4019. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  4020. bmcr |= BMCR_ANENABLE;
  4021. /* reset the phy in order for settings to stick*/
  4022. if (phy_reset(dev, bmcr)) {
  4023. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  4024. return -EINVAL;
  4025. }
  4026. } else {
  4027. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  4028. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  4029. }
  4030. if (netif_running(dev)) {
  4031. nv_start_rxtx(dev);
  4032. nv_enable_irq(dev);
  4033. }
  4034. ret = 0;
  4035. } else {
  4036. ret = -EINVAL;
  4037. }
  4038. return ret;
  4039. }
  4040. static int nv_set_tso(struct net_device *dev, u32 value)
  4041. {
  4042. struct fe_priv *np = netdev_priv(dev);
  4043. if ((np->driver_data & DEV_HAS_CHECKSUM))
  4044. return ethtool_op_set_tso(dev, value);
  4045. else
  4046. return -EOPNOTSUPP;
  4047. }
  4048. static void nv_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
  4049. {
  4050. struct fe_priv *np = netdev_priv(dev);
  4051. ring->rx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
  4052. ring->rx_mini_max_pending = 0;
  4053. ring->rx_jumbo_max_pending = 0;
  4054. ring->tx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
  4055. ring->rx_pending = np->rx_ring_size;
  4056. ring->rx_mini_pending = 0;
  4057. ring->rx_jumbo_pending = 0;
  4058. ring->tx_pending = np->tx_ring_size;
  4059. }
  4060. static int nv_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
  4061. {
  4062. struct fe_priv *np = netdev_priv(dev);
  4063. u8 __iomem *base = get_hwbase(dev);
  4064. u8 *rxtx_ring, *rx_skbuff, *tx_skbuff;
  4065. dma_addr_t ring_addr;
  4066. if (ring->rx_pending < RX_RING_MIN ||
  4067. ring->tx_pending < TX_RING_MIN ||
  4068. ring->rx_mini_pending != 0 ||
  4069. ring->rx_jumbo_pending != 0 ||
  4070. (np->desc_ver == DESC_VER_1 &&
  4071. (ring->rx_pending > RING_MAX_DESC_VER_1 ||
  4072. ring->tx_pending > RING_MAX_DESC_VER_1)) ||
  4073. (np->desc_ver != DESC_VER_1 &&
  4074. (ring->rx_pending > RING_MAX_DESC_VER_2_3 ||
  4075. ring->tx_pending > RING_MAX_DESC_VER_2_3))) {
  4076. return -EINVAL;
  4077. }
  4078. /* allocate new rings */
  4079. if (!nv_optimized(np)) {
  4080. rxtx_ring = pci_alloc_consistent(np->pci_dev,
  4081. sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
  4082. &ring_addr);
  4083. } else {
  4084. rxtx_ring = pci_alloc_consistent(np->pci_dev,
  4085. sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
  4086. &ring_addr);
  4087. }
  4088. rx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->rx_pending, GFP_KERNEL);
  4089. tx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->tx_pending, GFP_KERNEL);
  4090. if (!rxtx_ring || !rx_skbuff || !tx_skbuff) {
  4091. /* fall back to old rings */
  4092. if (!nv_optimized(np)) {
  4093. if (rxtx_ring)
  4094. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
  4095. rxtx_ring, ring_addr);
  4096. } else {
  4097. if (rxtx_ring)
  4098. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
  4099. rxtx_ring, ring_addr);
  4100. }
  4101. if (rx_skbuff)
  4102. kfree(rx_skbuff);
  4103. if (tx_skbuff)
  4104. kfree(tx_skbuff);
  4105. goto exit;
  4106. }
  4107. if (netif_running(dev)) {
  4108. nv_disable_irq(dev);
  4109. netif_tx_lock_bh(dev);
  4110. netif_addr_lock(dev);
  4111. spin_lock(&np->lock);
  4112. /* stop engines */
  4113. nv_stop_rxtx(dev);
  4114. nv_txrx_reset(dev);
  4115. /* drain queues */
  4116. nv_drain_rxtx(dev);
  4117. /* delete queues */
  4118. free_rings(dev);
  4119. }
  4120. /* set new values */
  4121. np->rx_ring_size = ring->rx_pending;
  4122. np->tx_ring_size = ring->tx_pending;
  4123. if (!nv_optimized(np)) {
  4124. np->rx_ring.orig = (struct ring_desc*)rxtx_ring;
  4125. np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
  4126. } else {
  4127. np->rx_ring.ex = (struct ring_desc_ex*)rxtx_ring;
  4128. np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
  4129. }
  4130. np->rx_skb = (struct nv_skb_map*)rx_skbuff;
  4131. np->tx_skb = (struct nv_skb_map*)tx_skbuff;
  4132. np->ring_addr = ring_addr;
  4133. memset(np->rx_skb, 0, sizeof(struct nv_skb_map) * np->rx_ring_size);
  4134. memset(np->tx_skb, 0, sizeof(struct nv_skb_map) * np->tx_ring_size);
  4135. if (netif_running(dev)) {
  4136. /* reinit driver view of the queues */
  4137. set_bufsize(dev);
  4138. if (nv_init_ring(dev)) {
  4139. if (!np->in_shutdown)
  4140. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  4141. }
  4142. /* reinit nic view of the queues */
  4143. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4144. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4145. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4146. base + NvRegRingSizes);
  4147. pci_push(base);
  4148. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4149. pci_push(base);
  4150. /* restart engines */
  4151. nv_start_rxtx(dev);
  4152. spin_unlock(&np->lock);
  4153. netif_addr_unlock(dev);
  4154. netif_tx_unlock_bh(dev);
  4155. nv_enable_irq(dev);
  4156. }
  4157. return 0;
  4158. exit:
  4159. return -ENOMEM;
  4160. }
  4161. static void nv_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
  4162. {
  4163. struct fe_priv *np = netdev_priv(dev);
  4164. pause->autoneg = (np->pause_flags & NV_PAUSEFRAME_AUTONEG) != 0;
  4165. pause->rx_pause = (np->pause_flags & NV_PAUSEFRAME_RX_ENABLE) != 0;
  4166. pause->tx_pause = (np->pause_flags & NV_PAUSEFRAME_TX_ENABLE) != 0;
  4167. }
  4168. static int nv_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
  4169. {
  4170. struct fe_priv *np = netdev_priv(dev);
  4171. int adv, bmcr;
  4172. if ((!np->autoneg && np->duplex == 0) ||
  4173. (np->autoneg && !pause->autoneg && np->duplex == 0)) {
  4174. printk(KERN_INFO "%s: can not set pause settings when forced link is in half duplex.\n",
  4175. dev->name);
  4176. return -EINVAL;
  4177. }
  4178. if (pause->tx_pause && !(np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)) {
  4179. printk(KERN_INFO "%s: hardware does not support tx pause frames.\n", dev->name);
  4180. return -EINVAL;
  4181. }
  4182. netif_carrier_off(dev);
  4183. if (netif_running(dev)) {
  4184. nv_disable_irq(dev);
  4185. netif_tx_lock_bh(dev);
  4186. netif_addr_lock(dev);
  4187. spin_lock(&np->lock);
  4188. /* stop engines */
  4189. nv_stop_rxtx(dev);
  4190. spin_unlock(&np->lock);
  4191. netif_addr_unlock(dev);
  4192. netif_tx_unlock_bh(dev);
  4193. }
  4194. np->pause_flags &= ~(NV_PAUSEFRAME_RX_REQ|NV_PAUSEFRAME_TX_REQ);
  4195. if (pause->rx_pause)
  4196. np->pause_flags |= NV_PAUSEFRAME_RX_REQ;
  4197. if (pause->tx_pause)
  4198. np->pause_flags |= NV_PAUSEFRAME_TX_REQ;
  4199. if (np->autoneg && pause->autoneg) {
  4200. np->pause_flags |= NV_PAUSEFRAME_AUTONEG;
  4201. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  4202. adv &= ~(ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  4203. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
  4204. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  4205. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  4206. adv |= ADVERTISE_PAUSE_ASYM;
  4207. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  4208. if (netif_running(dev))
  4209. printk(KERN_INFO "%s: link down.\n", dev->name);
  4210. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  4211. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  4212. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  4213. } else {
  4214. np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
  4215. if (pause->rx_pause)
  4216. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  4217. if (pause->tx_pause)
  4218. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  4219. if (!netif_running(dev))
  4220. nv_update_linkspeed(dev);
  4221. else
  4222. nv_update_pause(dev, np->pause_flags);
  4223. }
  4224. if (netif_running(dev)) {
  4225. nv_start_rxtx(dev);
  4226. nv_enable_irq(dev);
  4227. }
  4228. return 0;
  4229. }
  4230. static u32 nv_get_rx_csum(struct net_device *dev)
  4231. {
  4232. struct fe_priv *np = netdev_priv(dev);
  4233. return (np->rx_csum) != 0;
  4234. }
  4235. static int nv_set_rx_csum(struct net_device *dev, u32 data)
  4236. {
  4237. struct fe_priv *np = netdev_priv(dev);
  4238. u8 __iomem *base = get_hwbase(dev);
  4239. int retcode = 0;
  4240. if (np->driver_data & DEV_HAS_CHECKSUM) {
  4241. if (data) {
  4242. np->rx_csum = 1;
  4243. np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
  4244. } else {
  4245. np->rx_csum = 0;
  4246. /* vlan is dependent on rx checksum offload */
  4247. if (!(np->vlanctl_bits & NVREG_VLANCONTROL_ENABLE))
  4248. np->txrxctl_bits &= ~NVREG_TXRXCTL_RXCHECK;
  4249. }
  4250. if (netif_running(dev)) {
  4251. spin_lock_irq(&np->lock);
  4252. writel(np->txrxctl_bits, base + NvRegTxRxControl);
  4253. spin_unlock_irq(&np->lock);
  4254. }
  4255. } else {
  4256. return -EINVAL;
  4257. }
  4258. return retcode;
  4259. }
  4260. static int nv_set_tx_csum(struct net_device *dev, u32 data)
  4261. {
  4262. struct fe_priv *np = netdev_priv(dev);
  4263. if (np->driver_data & DEV_HAS_CHECKSUM)
  4264. return ethtool_op_set_tx_csum(dev, data);
  4265. else
  4266. return -EOPNOTSUPP;
  4267. }
  4268. static int nv_set_sg(struct net_device *dev, u32 data)
  4269. {
  4270. struct fe_priv *np = netdev_priv(dev);
  4271. if (np->driver_data & DEV_HAS_CHECKSUM)
  4272. return ethtool_op_set_sg(dev, data);
  4273. else
  4274. return -EOPNOTSUPP;
  4275. }
  4276. static int nv_get_sset_count(struct net_device *dev, int sset)
  4277. {
  4278. struct fe_priv *np = netdev_priv(dev);
  4279. switch (sset) {
  4280. case ETH_SS_TEST:
  4281. if (np->driver_data & DEV_HAS_TEST_EXTENDED)
  4282. return NV_TEST_COUNT_EXTENDED;
  4283. else
  4284. return NV_TEST_COUNT_BASE;
  4285. case ETH_SS_STATS:
  4286. if (np->driver_data & DEV_HAS_STATISTICS_V1)
  4287. return NV_DEV_STATISTICS_V1_COUNT;
  4288. else if (np->driver_data & DEV_HAS_STATISTICS_V2)
  4289. return NV_DEV_STATISTICS_V2_COUNT;
  4290. else if (np->driver_data & DEV_HAS_STATISTICS_V3)
  4291. return NV_DEV_STATISTICS_V3_COUNT;
  4292. else
  4293. return 0;
  4294. default:
  4295. return -EOPNOTSUPP;
  4296. }
  4297. }
  4298. static void nv_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *estats, u64 *buffer)
  4299. {
  4300. struct fe_priv *np = netdev_priv(dev);
  4301. /* update stats */
  4302. nv_do_stats_poll((unsigned long)dev);
  4303. memcpy(buffer, &np->estats, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(u64));
  4304. }
  4305. static int nv_link_test(struct net_device *dev)
  4306. {
  4307. struct fe_priv *np = netdev_priv(dev);
  4308. int mii_status;
  4309. mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  4310. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  4311. /* check phy link status */
  4312. if (!(mii_status & BMSR_LSTATUS))
  4313. return 0;
  4314. else
  4315. return 1;
  4316. }
  4317. static int nv_register_test(struct net_device *dev)
  4318. {
  4319. u8 __iomem *base = get_hwbase(dev);
  4320. int i = 0;
  4321. u32 orig_read, new_read;
  4322. do {
  4323. orig_read = readl(base + nv_registers_test[i].reg);
  4324. /* xor with mask to toggle bits */
  4325. orig_read ^= nv_registers_test[i].mask;
  4326. writel(orig_read, base + nv_registers_test[i].reg);
  4327. new_read = readl(base + nv_registers_test[i].reg);
  4328. if ((new_read & nv_registers_test[i].mask) != (orig_read & nv_registers_test[i].mask))
  4329. return 0;
  4330. /* restore original value */
  4331. orig_read ^= nv_registers_test[i].mask;
  4332. writel(orig_read, base + nv_registers_test[i].reg);
  4333. } while (nv_registers_test[++i].reg != 0);
  4334. return 1;
  4335. }
  4336. static int nv_interrupt_test(struct net_device *dev)
  4337. {
  4338. struct fe_priv *np = netdev_priv(dev);
  4339. u8 __iomem *base = get_hwbase(dev);
  4340. int ret = 1;
  4341. int testcnt;
  4342. u32 save_msi_flags, save_poll_interval = 0;
  4343. if (netif_running(dev)) {
  4344. /* free current irq */
  4345. nv_free_irq(dev);
  4346. save_poll_interval = readl(base+NvRegPollingInterval);
  4347. }
  4348. /* flag to test interrupt handler */
  4349. np->intr_test = 0;
  4350. /* setup test irq */
  4351. save_msi_flags = np->msi_flags;
  4352. np->msi_flags &= ~NV_MSI_X_VECTORS_MASK;
  4353. np->msi_flags |= 0x001; /* setup 1 vector */
  4354. if (nv_request_irq(dev, 1))
  4355. return 0;
  4356. /* setup timer interrupt */
  4357. writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
  4358. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  4359. nv_enable_hw_interrupts(dev, NVREG_IRQ_TIMER);
  4360. /* wait for at least one interrupt */
  4361. msleep(100);
  4362. spin_lock_irq(&np->lock);
  4363. /* flag should be set within ISR */
  4364. testcnt = np->intr_test;
  4365. if (!testcnt)
  4366. ret = 2;
  4367. nv_disable_hw_interrupts(dev, NVREG_IRQ_TIMER);
  4368. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  4369. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4370. else
  4371. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  4372. spin_unlock_irq(&np->lock);
  4373. nv_free_irq(dev);
  4374. np->msi_flags = save_msi_flags;
  4375. if (netif_running(dev)) {
  4376. writel(save_poll_interval, base + NvRegPollingInterval);
  4377. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  4378. /* restore original irq */
  4379. if (nv_request_irq(dev, 0))
  4380. return 0;
  4381. }
  4382. return ret;
  4383. }
  4384. static int nv_loopback_test(struct net_device *dev)
  4385. {
  4386. struct fe_priv *np = netdev_priv(dev);
  4387. u8 __iomem *base = get_hwbase(dev);
  4388. struct sk_buff *tx_skb, *rx_skb;
  4389. dma_addr_t test_dma_addr;
  4390. u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
  4391. u32 flags;
  4392. int len, i, pkt_len;
  4393. u8 *pkt_data;
  4394. u32 filter_flags = 0;
  4395. u32 misc1_flags = 0;
  4396. int ret = 1;
  4397. if (netif_running(dev)) {
  4398. nv_disable_irq(dev);
  4399. filter_flags = readl(base + NvRegPacketFilterFlags);
  4400. misc1_flags = readl(base + NvRegMisc1);
  4401. } else {
  4402. nv_txrx_reset(dev);
  4403. }
  4404. /* reinit driver view of the rx queue */
  4405. set_bufsize(dev);
  4406. nv_init_ring(dev);
  4407. /* setup hardware for loopback */
  4408. writel(NVREG_MISC1_FORCE, base + NvRegMisc1);
  4409. writel(NVREG_PFF_ALWAYS | NVREG_PFF_LOOPBACK, base + NvRegPacketFilterFlags);
  4410. /* reinit nic view of the rx queue */
  4411. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4412. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4413. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4414. base + NvRegRingSizes);
  4415. pci_push(base);
  4416. /* restart rx engine */
  4417. nv_start_rxtx(dev);
  4418. /* setup packet for tx */
  4419. pkt_len = ETH_DATA_LEN;
  4420. tx_skb = dev_alloc_skb(pkt_len);
  4421. if (!tx_skb) {
  4422. printk(KERN_ERR "dev_alloc_skb() failed during loopback test"
  4423. " of %s\n", dev->name);
  4424. ret = 0;
  4425. goto out;
  4426. }
  4427. test_dma_addr = pci_map_single(np->pci_dev, tx_skb->data,
  4428. skb_tailroom(tx_skb),
  4429. PCI_DMA_FROMDEVICE);
  4430. pkt_data = skb_put(tx_skb, pkt_len);
  4431. for (i = 0; i < pkt_len; i++)
  4432. pkt_data[i] = (u8)(i & 0xff);
  4433. if (!nv_optimized(np)) {
  4434. np->tx_ring.orig[0].buf = cpu_to_le32(test_dma_addr);
  4435. np->tx_ring.orig[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
  4436. } else {
  4437. np->tx_ring.ex[0].bufhigh = cpu_to_le32(dma_high(test_dma_addr));
  4438. np->tx_ring.ex[0].buflow = cpu_to_le32(dma_low(test_dma_addr));
  4439. np->tx_ring.ex[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
  4440. }
  4441. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4442. pci_push(get_hwbase(dev));
  4443. msleep(500);
  4444. /* check for rx of the packet */
  4445. if (!nv_optimized(np)) {
  4446. flags = le32_to_cpu(np->rx_ring.orig[0].flaglen);
  4447. len = nv_descr_getlength(&np->rx_ring.orig[0], np->desc_ver);
  4448. } else {
  4449. flags = le32_to_cpu(np->rx_ring.ex[0].flaglen);
  4450. len = nv_descr_getlength_ex(&np->rx_ring.ex[0], np->desc_ver);
  4451. }
  4452. if (flags & NV_RX_AVAIL) {
  4453. ret = 0;
  4454. } else if (np->desc_ver == DESC_VER_1) {
  4455. if (flags & NV_RX_ERROR)
  4456. ret = 0;
  4457. } else {
  4458. if (flags & NV_RX2_ERROR) {
  4459. ret = 0;
  4460. }
  4461. }
  4462. if (ret) {
  4463. if (len != pkt_len) {
  4464. ret = 0;
  4465. dprintk(KERN_DEBUG "%s: loopback len mismatch %d vs %d\n",
  4466. dev->name, len, pkt_len);
  4467. } else {
  4468. rx_skb = np->rx_skb[0].skb;
  4469. for (i = 0; i < pkt_len; i++) {
  4470. if (rx_skb->data[i] != (u8)(i & 0xff)) {
  4471. ret = 0;
  4472. dprintk(KERN_DEBUG "%s: loopback pattern check failed on byte %d\n",
  4473. dev->name, i);
  4474. break;
  4475. }
  4476. }
  4477. }
  4478. } else {
  4479. dprintk(KERN_DEBUG "%s: loopback - did not receive test packet\n", dev->name);
  4480. }
  4481. pci_unmap_page(np->pci_dev, test_dma_addr,
  4482. (skb_end_pointer(tx_skb) - tx_skb->data),
  4483. PCI_DMA_TODEVICE);
  4484. dev_kfree_skb_any(tx_skb);
  4485. out:
  4486. /* stop engines */
  4487. nv_stop_rxtx(dev);
  4488. nv_txrx_reset(dev);
  4489. /* drain rx queue */
  4490. nv_drain_rxtx(dev);
  4491. if (netif_running(dev)) {
  4492. writel(misc1_flags, base + NvRegMisc1);
  4493. writel(filter_flags, base + NvRegPacketFilterFlags);
  4494. nv_enable_irq(dev);
  4495. }
  4496. return ret;
  4497. }
  4498. static void nv_self_test(struct net_device *dev, struct ethtool_test *test, u64 *buffer)
  4499. {
  4500. struct fe_priv *np = netdev_priv(dev);
  4501. u8 __iomem *base = get_hwbase(dev);
  4502. int result;
  4503. memset(buffer, 0, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(u64));
  4504. if (!nv_link_test(dev)) {
  4505. test->flags |= ETH_TEST_FL_FAILED;
  4506. buffer[0] = 1;
  4507. }
  4508. if (test->flags & ETH_TEST_FL_OFFLINE) {
  4509. if (netif_running(dev)) {
  4510. netif_stop_queue(dev);
  4511. #ifdef CONFIG_FORCEDETH_NAPI
  4512. napi_disable(&np->napi);
  4513. #endif
  4514. netif_tx_lock_bh(dev);
  4515. netif_addr_lock(dev);
  4516. spin_lock_irq(&np->lock);
  4517. nv_disable_hw_interrupts(dev, np->irqmask);
  4518. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  4519. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4520. } else {
  4521. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  4522. }
  4523. /* stop engines */
  4524. nv_stop_rxtx(dev);
  4525. nv_txrx_reset(dev);
  4526. /* drain rx queue */
  4527. nv_drain_rxtx(dev);
  4528. spin_unlock_irq(&np->lock);
  4529. netif_addr_unlock(dev);
  4530. netif_tx_unlock_bh(dev);
  4531. }
  4532. if (!nv_register_test(dev)) {
  4533. test->flags |= ETH_TEST_FL_FAILED;
  4534. buffer[1] = 1;
  4535. }
  4536. result = nv_interrupt_test(dev);
  4537. if (result != 1) {
  4538. test->flags |= ETH_TEST_FL_FAILED;
  4539. buffer[2] = 1;
  4540. }
  4541. if (result == 0) {
  4542. /* bail out */
  4543. return;
  4544. }
  4545. if (!nv_loopback_test(dev)) {
  4546. test->flags |= ETH_TEST_FL_FAILED;
  4547. buffer[3] = 1;
  4548. }
  4549. if (netif_running(dev)) {
  4550. /* reinit driver view of the rx queue */
  4551. set_bufsize(dev);
  4552. if (nv_init_ring(dev)) {
  4553. if (!np->in_shutdown)
  4554. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  4555. }
  4556. /* reinit nic view of the rx queue */
  4557. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4558. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4559. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4560. base + NvRegRingSizes);
  4561. pci_push(base);
  4562. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4563. pci_push(base);
  4564. /* restart rx engine */
  4565. nv_start_rxtx(dev);
  4566. netif_start_queue(dev);
  4567. #ifdef CONFIG_FORCEDETH_NAPI
  4568. napi_enable(&np->napi);
  4569. #endif
  4570. nv_enable_hw_interrupts(dev, np->irqmask);
  4571. }
  4572. }
  4573. }
  4574. static void nv_get_strings(struct net_device *dev, u32 stringset, u8 *buffer)
  4575. {
  4576. switch (stringset) {
  4577. case ETH_SS_STATS:
  4578. memcpy(buffer, &nv_estats_str, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(struct nv_ethtool_str));
  4579. break;
  4580. case ETH_SS_TEST:
  4581. memcpy(buffer, &nv_etests_str, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(struct nv_ethtool_str));
  4582. break;
  4583. }
  4584. }
  4585. static const struct ethtool_ops ops = {
  4586. .get_drvinfo = nv_get_drvinfo,
  4587. .get_link = ethtool_op_get_link,
  4588. .get_wol = nv_get_wol,
  4589. .set_wol = nv_set_wol,
  4590. .get_settings = nv_get_settings,
  4591. .set_settings = nv_set_settings,
  4592. .get_regs_len = nv_get_regs_len,
  4593. .get_regs = nv_get_regs,
  4594. .nway_reset = nv_nway_reset,
  4595. .set_tso = nv_set_tso,
  4596. .get_ringparam = nv_get_ringparam,
  4597. .set_ringparam = nv_set_ringparam,
  4598. .get_pauseparam = nv_get_pauseparam,
  4599. .set_pauseparam = nv_set_pauseparam,
  4600. .get_rx_csum = nv_get_rx_csum,
  4601. .set_rx_csum = nv_set_rx_csum,
  4602. .set_tx_csum = nv_set_tx_csum,
  4603. .set_sg = nv_set_sg,
  4604. .get_strings = nv_get_strings,
  4605. .get_ethtool_stats = nv_get_ethtool_stats,
  4606. .get_sset_count = nv_get_sset_count,
  4607. .self_test = nv_self_test,
  4608. };
  4609. static void nv_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
  4610. {
  4611. struct fe_priv *np = get_nvpriv(dev);
  4612. spin_lock_irq(&np->lock);
  4613. /* save vlan group */
  4614. np->vlangrp = grp;
  4615. if (grp) {
  4616. /* enable vlan on MAC */
  4617. np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP | NVREG_TXRXCTL_VLANINS;
  4618. } else {
  4619. /* disable vlan on MAC */
  4620. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;
  4621. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;
  4622. }
  4623. writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4624. spin_unlock_irq(&np->lock);
  4625. }
  4626. /* The mgmt unit and driver use a semaphore to access the phy during init */
  4627. static int nv_mgmt_acquire_sema(struct net_device *dev)
  4628. {
  4629. struct fe_priv *np = netdev_priv(dev);
  4630. u8 __iomem *base = get_hwbase(dev);
  4631. int i;
  4632. u32 tx_ctrl, mgmt_sema;
  4633. for (i = 0; i < 10; i++) {
  4634. mgmt_sema = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_SEMA_MASK;
  4635. if (mgmt_sema == NVREG_XMITCTL_MGMT_SEMA_FREE)
  4636. break;
  4637. msleep(500);
  4638. }
  4639. if (mgmt_sema != NVREG_XMITCTL_MGMT_SEMA_FREE)
  4640. return 0;
  4641. for (i = 0; i < 2; i++) {
  4642. tx_ctrl = readl(base + NvRegTransmitterControl);
  4643. tx_ctrl |= NVREG_XMITCTL_HOST_SEMA_ACQ;
  4644. writel(tx_ctrl, base + NvRegTransmitterControl);
  4645. /* verify that semaphore was acquired */
  4646. tx_ctrl = readl(base + NvRegTransmitterControl);
  4647. if (((tx_ctrl & NVREG_XMITCTL_HOST_SEMA_MASK) == NVREG_XMITCTL_HOST_SEMA_ACQ) &&
  4648. ((tx_ctrl & NVREG_XMITCTL_MGMT_SEMA_MASK) == NVREG_XMITCTL_MGMT_SEMA_FREE)) {
  4649. np->mgmt_sema = 1;
  4650. return 1;
  4651. }
  4652. else
  4653. udelay(50);
  4654. }
  4655. return 0;
  4656. }
  4657. static void nv_mgmt_release_sema(struct net_device *dev)
  4658. {
  4659. struct fe_priv *np = netdev_priv(dev);
  4660. u8 __iomem *base = get_hwbase(dev);
  4661. u32 tx_ctrl;
  4662. if (np->driver_data & DEV_HAS_MGMT_UNIT) {
  4663. if (np->mgmt_sema) {
  4664. tx_ctrl = readl(base + NvRegTransmitterControl);
  4665. tx_ctrl &= ~NVREG_XMITCTL_HOST_SEMA_ACQ;
  4666. writel(tx_ctrl, base + NvRegTransmitterControl);
  4667. }
  4668. }
  4669. }
  4670. static int nv_mgmt_get_version(struct net_device *dev)
  4671. {
  4672. struct fe_priv *np = netdev_priv(dev);
  4673. u8 __iomem *base = get_hwbase(dev);
  4674. u32 data_ready = readl(base + NvRegTransmitterControl);
  4675. u32 data_ready2 = 0;
  4676. unsigned long start;
  4677. int ready = 0;
  4678. writel(NVREG_MGMTUNITGETVERSION, base + NvRegMgmtUnitGetVersion);
  4679. writel(data_ready ^ NVREG_XMITCTL_DATA_START, base + NvRegTransmitterControl);
  4680. start = jiffies;
  4681. while (time_before(jiffies, start + 5*HZ)) {
  4682. data_ready2 = readl(base + NvRegTransmitterControl);
  4683. if ((data_ready & NVREG_XMITCTL_DATA_READY) != (data_ready2 & NVREG_XMITCTL_DATA_READY)) {
  4684. ready = 1;
  4685. break;
  4686. }
  4687. schedule_timeout_uninterruptible(1);
  4688. }
  4689. if (!ready || (data_ready2 & NVREG_XMITCTL_DATA_ERROR))
  4690. return 0;
  4691. np->mgmt_version = readl(base + NvRegMgmtUnitVersion) & NVREG_MGMTUNITVERSION;
  4692. return 1;
  4693. }
  4694. static int nv_open(struct net_device *dev)
  4695. {
  4696. struct fe_priv *np = netdev_priv(dev);
  4697. u8 __iomem *base = get_hwbase(dev);
  4698. int ret = 1;
  4699. int oom, i;
  4700. u32 low;
  4701. dprintk(KERN_DEBUG "nv_open: begin\n");
  4702. /* power up phy */
  4703. mii_rw(dev, np->phyaddr, MII_BMCR,
  4704. mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ) & ~BMCR_PDOWN);
  4705. /* erase previous misconfiguration */
  4706. if (np->driver_data & DEV_HAS_POWER_CNTRL)
  4707. nv_mac_reset(dev);
  4708. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  4709. writel(0, base + NvRegMulticastAddrB);
  4710. writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
  4711. writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
  4712. writel(0, base + NvRegPacketFilterFlags);
  4713. writel(0, base + NvRegTransmitterControl);
  4714. writel(0, base + NvRegReceiverControl);
  4715. writel(0, base + NvRegAdapterControl);
  4716. if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)
  4717. writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
  4718. /* initialize descriptor rings */
  4719. set_bufsize(dev);
  4720. oom = nv_init_ring(dev);
  4721. writel(0, base + NvRegLinkSpeed);
  4722. writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
  4723. nv_txrx_reset(dev);
  4724. writel(0, base + NvRegUnknownSetupReg6);
  4725. np->in_shutdown = 0;
  4726. /* give hw rings */
  4727. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4728. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4729. base + NvRegRingSizes);
  4730. writel(np->linkspeed, base + NvRegLinkSpeed);
  4731. if (np->desc_ver == DESC_VER_1)
  4732. writel(NVREG_TX_WM_DESC1_DEFAULT, base + NvRegTxWatermark);
  4733. else
  4734. writel(NVREG_TX_WM_DESC2_3_DEFAULT, base + NvRegTxWatermark);
  4735. writel(np->txrxctl_bits, base + NvRegTxRxControl);
  4736. writel(np->vlanctl_bits, base + NvRegVlanControl);
  4737. pci_push(base);
  4738. writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
  4739. reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
  4740. NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX,
  4741. KERN_INFO "open: SetupReg5, Bit 31 remained off\n");
  4742. writel(0, base + NvRegMIIMask);
  4743. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4744. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  4745. writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
  4746. writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
  4747. writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
  4748. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4749. writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
  4750. get_random_bytes(&low, sizeof(low));
  4751. low &= NVREG_SLOTTIME_MASK;
  4752. if (np->desc_ver == DESC_VER_1) {
  4753. writel(low|NVREG_SLOTTIME_DEFAULT, base + NvRegSlotTime);
  4754. } else {
  4755. if (!(np->driver_data & DEV_HAS_GEAR_MODE)) {
  4756. /* setup legacy backoff */
  4757. writel(NVREG_SLOTTIME_LEGBF_ENABLED|NVREG_SLOTTIME_10_100_FULL|low, base + NvRegSlotTime);
  4758. } else {
  4759. writel(NVREG_SLOTTIME_10_100_FULL, base + NvRegSlotTime);
  4760. nv_gear_backoff_reseed(dev);
  4761. }
  4762. }
  4763. writel(NVREG_TX_DEFERRAL_DEFAULT, base + NvRegTxDeferral);
  4764. writel(NVREG_RX_DEFERRAL_DEFAULT, base + NvRegRxDeferral);
  4765. if (poll_interval == -1) {
  4766. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
  4767. writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
  4768. else
  4769. writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
  4770. }
  4771. else
  4772. writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
  4773. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  4774. writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
  4775. base + NvRegAdapterControl);
  4776. writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
  4777. writel(NVREG_MII_LINKCHANGE, base + NvRegMIIMask);
  4778. if (np->wolenabled)
  4779. writel(NVREG_WAKEUPFLAGS_ENABLE , base + NvRegWakeUpFlags);
  4780. i = readl(base + NvRegPowerState);
  4781. if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0)
  4782. writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
  4783. pci_push(base);
  4784. udelay(10);
  4785. writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
  4786. nv_disable_hw_interrupts(dev, np->irqmask);
  4787. pci_push(base);
  4788. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  4789. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4790. pci_push(base);
  4791. if (nv_request_irq(dev, 0)) {
  4792. goto out_drain;
  4793. }
  4794. /* ask for interrupts */
  4795. nv_enable_hw_interrupts(dev, np->irqmask);
  4796. spin_lock_irq(&np->lock);
  4797. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  4798. writel(0, base + NvRegMulticastAddrB);
  4799. writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
  4800. writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
  4801. writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
  4802. /* One manual link speed update: Interrupts are enabled, future link
  4803. * speed changes cause interrupts and are handled by nv_link_irq().
  4804. */
  4805. {
  4806. u32 miistat;
  4807. miistat = readl(base + NvRegMIIStatus);
  4808. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  4809. dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat);
  4810. }
  4811. /* set linkspeed to invalid value, thus force nv_update_linkspeed
  4812. * to init hw */
  4813. np->linkspeed = 0;
  4814. ret = nv_update_linkspeed(dev);
  4815. nv_start_rxtx(dev);
  4816. netif_start_queue(dev);
  4817. #ifdef CONFIG_FORCEDETH_NAPI
  4818. napi_enable(&np->napi);
  4819. #endif
  4820. if (ret) {
  4821. netif_carrier_on(dev);
  4822. } else {
  4823. printk(KERN_INFO "%s: no link during initialization.\n", dev->name);
  4824. netif_carrier_off(dev);
  4825. }
  4826. if (oom)
  4827. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  4828. /* start statistics timer */
  4829. if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3))
  4830. mod_timer(&np->stats_poll,
  4831. round_jiffies(jiffies + STATS_INTERVAL));
  4832. spin_unlock_irq(&np->lock);
  4833. return 0;
  4834. out_drain:
  4835. nv_drain_rxtx(dev);
  4836. return ret;
  4837. }
  4838. static int nv_close(struct net_device *dev)
  4839. {
  4840. struct fe_priv *np = netdev_priv(dev);
  4841. u8 __iomem *base;
  4842. spin_lock_irq(&np->lock);
  4843. np->in_shutdown = 1;
  4844. spin_unlock_irq(&np->lock);
  4845. #ifdef CONFIG_FORCEDETH_NAPI
  4846. napi_disable(&np->napi);
  4847. #endif
  4848. synchronize_irq(np->pci_dev->irq);
  4849. del_timer_sync(&np->oom_kick);
  4850. del_timer_sync(&np->nic_poll);
  4851. del_timer_sync(&np->stats_poll);
  4852. netif_stop_queue(dev);
  4853. spin_lock_irq(&np->lock);
  4854. nv_stop_rxtx(dev);
  4855. nv_txrx_reset(dev);
  4856. /* disable interrupts on the nic or we will lock up */
  4857. base = get_hwbase(dev);
  4858. nv_disable_hw_interrupts(dev, np->irqmask);
  4859. pci_push(base);
  4860. dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name);
  4861. spin_unlock_irq(&np->lock);
  4862. nv_free_irq(dev);
  4863. nv_drain_rxtx(dev);
  4864. if (np->wolenabled) {
  4865. writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
  4866. nv_start_rx(dev);
  4867. } else {
  4868. /* power down phy */
  4869. mii_rw(dev, np->phyaddr, MII_BMCR,
  4870. mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ)|BMCR_PDOWN);
  4871. }
  4872. /* FIXME: power down nic */
  4873. return 0;
  4874. }
  4875. static const struct net_device_ops nv_netdev_ops = {
  4876. .ndo_open = nv_open,
  4877. .ndo_stop = nv_close,
  4878. .ndo_get_stats = nv_get_stats,
  4879. .ndo_start_xmit = nv_start_xmit,
  4880. .ndo_tx_timeout = nv_tx_timeout,
  4881. .ndo_change_mtu = nv_change_mtu,
  4882. .ndo_validate_addr = eth_validate_addr,
  4883. .ndo_set_mac_address = nv_set_mac_address,
  4884. .ndo_set_multicast_list = nv_set_multicast,
  4885. .ndo_vlan_rx_register = nv_vlan_rx_register,
  4886. #ifdef CONFIG_NET_POLL_CONTROLLER
  4887. .ndo_poll_controller = nv_poll_controller,
  4888. #endif
  4889. };
  4890. static const struct net_device_ops nv_netdev_ops_optimized = {
  4891. .ndo_open = nv_open,
  4892. .ndo_stop = nv_close,
  4893. .ndo_get_stats = nv_get_stats,
  4894. .ndo_start_xmit = nv_start_xmit_optimized,
  4895. .ndo_tx_timeout = nv_tx_timeout,
  4896. .ndo_change_mtu = nv_change_mtu,
  4897. .ndo_validate_addr = eth_validate_addr,
  4898. .ndo_set_mac_address = nv_set_mac_address,
  4899. .ndo_set_multicast_list = nv_set_multicast,
  4900. .ndo_vlan_rx_register = nv_vlan_rx_register,
  4901. #ifdef CONFIG_NET_POLL_CONTROLLER
  4902. .ndo_poll_controller = nv_poll_controller,
  4903. #endif
  4904. };
  4905. static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
  4906. {
  4907. struct net_device *dev;
  4908. struct fe_priv *np;
  4909. unsigned long addr;
  4910. u8 __iomem *base;
  4911. int err, i;
  4912. u32 powerstate, txreg;
  4913. u32 phystate_orig = 0, phystate;
  4914. int phyinitialized = 0;
  4915. static int printed_version;
  4916. if (!printed_version++)
  4917. printk(KERN_INFO "%s: Reverse Engineered nForce ethernet"
  4918. " driver. Version %s.\n", DRV_NAME, FORCEDETH_VERSION);
  4919. dev = alloc_etherdev(sizeof(struct fe_priv));
  4920. err = -ENOMEM;
  4921. if (!dev)
  4922. goto out;
  4923. np = netdev_priv(dev);
  4924. np->dev = dev;
  4925. np->pci_dev = pci_dev;
  4926. spin_lock_init(&np->lock);
  4927. SET_NETDEV_DEV(dev, &pci_dev->dev);
  4928. init_timer(&np->oom_kick);
  4929. np->oom_kick.data = (unsigned long) dev;
  4930. np->oom_kick.function = &nv_do_rx_refill; /* timer handler */
  4931. init_timer(&np->nic_poll);
  4932. np->nic_poll.data = (unsigned long) dev;
  4933. np->nic_poll.function = &nv_do_nic_poll; /* timer handler */
  4934. init_timer(&np->stats_poll);
  4935. np->stats_poll.data = (unsigned long) dev;
  4936. np->stats_poll.function = &nv_do_stats_poll; /* timer handler */
  4937. err = pci_enable_device(pci_dev);
  4938. if (err)
  4939. goto out_free;
  4940. pci_set_master(pci_dev);
  4941. err = pci_request_regions(pci_dev, DRV_NAME);
  4942. if (err < 0)
  4943. goto out_disable;
  4944. if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3))
  4945. np->register_size = NV_PCI_REGSZ_VER3;
  4946. else if (id->driver_data & DEV_HAS_STATISTICS_V1)
  4947. np->register_size = NV_PCI_REGSZ_VER2;
  4948. else
  4949. np->register_size = NV_PCI_REGSZ_VER1;
  4950. err = -EINVAL;
  4951. addr = 0;
  4952. for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
  4953. dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n",
  4954. pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i),
  4955. pci_resource_len(pci_dev, i),
  4956. pci_resource_flags(pci_dev, i));
  4957. if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
  4958. pci_resource_len(pci_dev, i) >= np->register_size) {
  4959. addr = pci_resource_start(pci_dev, i);
  4960. break;
  4961. }
  4962. }
  4963. if (i == DEVICE_COUNT_RESOURCE) {
  4964. dev_printk(KERN_INFO, &pci_dev->dev,
  4965. "Couldn't find register window\n");
  4966. goto out_relreg;
  4967. }
  4968. /* copy of driver data */
  4969. np->driver_data = id->driver_data;
  4970. /* copy of device id */
  4971. np->device_id = id->device;
  4972. /* handle different descriptor versions */
  4973. if (id->driver_data & DEV_HAS_HIGH_DMA) {
  4974. /* packet format 3: supports 40-bit addressing */
  4975. np->desc_ver = DESC_VER_3;
  4976. np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
  4977. if (dma_64bit) {
  4978. if (pci_set_dma_mask(pci_dev, DMA_39BIT_MASK))
  4979. dev_printk(KERN_INFO, &pci_dev->dev,
  4980. "64-bit DMA failed, using 32-bit addressing\n");
  4981. else
  4982. dev->features |= NETIF_F_HIGHDMA;
  4983. if (pci_set_consistent_dma_mask(pci_dev, DMA_39BIT_MASK)) {
  4984. dev_printk(KERN_INFO, &pci_dev->dev,
  4985. "64-bit DMA (consistent) failed, using 32-bit ring buffers\n");
  4986. }
  4987. }
  4988. } else if (id->driver_data & DEV_HAS_LARGEDESC) {
  4989. /* packet format 2: supports jumbo frames */
  4990. np->desc_ver = DESC_VER_2;
  4991. np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
  4992. } else {
  4993. /* original packet format */
  4994. np->desc_ver = DESC_VER_1;
  4995. np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
  4996. }
  4997. np->pkt_limit = NV_PKTLIMIT_1;
  4998. if (id->driver_data & DEV_HAS_LARGEDESC)
  4999. np->pkt_limit = NV_PKTLIMIT_2;
  5000. if (id->driver_data & DEV_HAS_CHECKSUM) {
  5001. np->rx_csum = 1;
  5002. np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
  5003. dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
  5004. dev->features |= NETIF_F_TSO;
  5005. }
  5006. np->vlanctl_bits = 0;
  5007. if (id->driver_data & DEV_HAS_VLAN) {
  5008. np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE;
  5009. dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX;
  5010. }
  5011. np->msi_flags = 0;
  5012. if ((id->driver_data & DEV_HAS_MSI) && msi) {
  5013. np->msi_flags |= NV_MSI_CAPABLE;
  5014. }
  5015. if ((id->driver_data & DEV_HAS_MSI_X) && msix) {
  5016. np->msi_flags |= NV_MSI_X_CAPABLE;
  5017. }
  5018. np->pause_flags = NV_PAUSEFRAME_RX_CAPABLE | NV_PAUSEFRAME_RX_REQ | NV_PAUSEFRAME_AUTONEG;
  5019. if ((id->driver_data & DEV_HAS_PAUSEFRAME_TX_V1) ||
  5020. (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V2) ||
  5021. (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V3)) {
  5022. np->pause_flags |= NV_PAUSEFRAME_TX_CAPABLE | NV_PAUSEFRAME_TX_REQ;
  5023. }
  5024. err = -ENOMEM;
  5025. np->base = ioremap(addr, np->register_size);
  5026. if (!np->base)
  5027. goto out_relreg;
  5028. dev->base_addr = (unsigned long)np->base;
  5029. dev->irq = pci_dev->irq;
  5030. np->rx_ring_size = RX_RING_DEFAULT;
  5031. np->tx_ring_size = TX_RING_DEFAULT;
  5032. if (!nv_optimized(np)) {
  5033. np->rx_ring.orig = pci_alloc_consistent(pci_dev,
  5034. sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
  5035. &np->ring_addr);
  5036. if (!np->rx_ring.orig)
  5037. goto out_unmap;
  5038. np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
  5039. } else {
  5040. np->rx_ring.ex = pci_alloc_consistent(pci_dev,
  5041. sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
  5042. &np->ring_addr);
  5043. if (!np->rx_ring.ex)
  5044. goto out_unmap;
  5045. np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
  5046. }
  5047. np->rx_skb = kcalloc(np->rx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
  5048. np->tx_skb = kcalloc(np->tx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
  5049. if (!np->rx_skb || !np->tx_skb)
  5050. goto out_freering;
  5051. if (!nv_optimized(np))
  5052. dev->netdev_ops = &nv_netdev_ops;
  5053. else
  5054. dev->netdev_ops = &nv_netdev_ops_optimized;
  5055. #ifdef CONFIG_FORCEDETH_NAPI
  5056. netif_napi_add(dev, &np->napi, nv_napi_poll, RX_WORK_PER_LOOP);
  5057. #endif
  5058. SET_ETHTOOL_OPS(dev, &ops);
  5059. dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
  5060. pci_set_drvdata(pci_dev, dev);
  5061. /* read the mac address */
  5062. base = get_hwbase(dev);
  5063. np->orig_mac[0] = readl(base + NvRegMacAddrA);
  5064. np->orig_mac[1] = readl(base + NvRegMacAddrB);
  5065. /* check the workaround bit for correct mac address order */
  5066. txreg = readl(base + NvRegTransmitPoll);
  5067. if (id->driver_data & DEV_HAS_CORRECT_MACADDR) {
  5068. /* mac address is already in correct order */
  5069. dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
  5070. dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
  5071. dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
  5072. dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
  5073. dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
  5074. dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
  5075. } else if (txreg & NVREG_TRANSMITPOLL_MAC_ADDR_REV) {
  5076. /* mac address is already in correct order */
  5077. dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
  5078. dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
  5079. dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
  5080. dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
  5081. dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
  5082. dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
  5083. /*
  5084. * Set orig mac address back to the reversed version.
  5085. * This flag will be cleared during low power transition.
  5086. * Therefore, we should always put back the reversed address.
  5087. */
  5088. np->orig_mac[0] = (dev->dev_addr[5] << 0) + (dev->dev_addr[4] << 8) +
  5089. (dev->dev_addr[3] << 16) + (dev->dev_addr[2] << 24);
  5090. np->orig_mac[1] = (dev->dev_addr[1] << 0) + (dev->dev_addr[0] << 8);
  5091. } else {
  5092. /* need to reverse mac address to correct order */
  5093. dev->dev_addr[0] = (np->orig_mac[1] >> 8) & 0xff;
  5094. dev->dev_addr[1] = (np->orig_mac[1] >> 0) & 0xff;
  5095. dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
  5096. dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
  5097. dev->dev_addr[4] = (np->orig_mac[0] >> 8) & 0xff;
  5098. dev->dev_addr[5] = (np->orig_mac[0] >> 0) & 0xff;
  5099. writel(txreg|NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
  5100. printk(KERN_DEBUG "nv_probe: set workaround bit for reversed mac addr\n");
  5101. }
  5102. memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
  5103. if (!is_valid_ether_addr(dev->perm_addr)) {
  5104. /*
  5105. * Bad mac address. At least one bios sets the mac address
  5106. * to 01:23:45:67:89:ab
  5107. */
  5108. dev_printk(KERN_ERR, &pci_dev->dev,
  5109. "Invalid Mac address detected: %pM\n",
  5110. dev->dev_addr);
  5111. dev_printk(KERN_ERR, &pci_dev->dev,
  5112. "Please complain to your hardware vendor. Switching to a random MAC.\n");
  5113. dev->dev_addr[0] = 0x00;
  5114. dev->dev_addr[1] = 0x00;
  5115. dev->dev_addr[2] = 0x6c;
  5116. get_random_bytes(&dev->dev_addr[3], 3);
  5117. }
  5118. dprintk(KERN_DEBUG "%s: MAC Address %pM\n",
  5119. pci_name(pci_dev), dev->dev_addr);
  5120. /* set mac address */
  5121. nv_copy_mac_to_hw(dev);
  5122. /* Workaround current PCI init glitch: wakeup bits aren't
  5123. * being set from PCI PM capability.
  5124. */
  5125. device_init_wakeup(&pci_dev->dev, 1);
  5126. /* disable WOL */
  5127. writel(0, base + NvRegWakeUpFlags);
  5128. np->wolenabled = 0;
  5129. if (id->driver_data & DEV_HAS_POWER_CNTRL) {
  5130. /* take phy and nic out of low power mode */
  5131. powerstate = readl(base + NvRegPowerState2);
  5132. powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK;
  5133. if ((id->device == PCI_DEVICE_ID_NVIDIA_NVENET_12 ||
  5134. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_13) &&
  5135. pci_dev->revision >= 0xA3)
  5136. powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3;
  5137. writel(powerstate, base + NvRegPowerState2);
  5138. }
  5139. if (np->desc_ver == DESC_VER_1) {
  5140. np->tx_flags = NV_TX_VALID;
  5141. } else {
  5142. np->tx_flags = NV_TX2_VALID;
  5143. }
  5144. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT) {
  5145. np->irqmask = NVREG_IRQMASK_THROUGHPUT;
  5146. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  5147. np->msi_flags |= 0x0003;
  5148. } else {
  5149. np->irqmask = NVREG_IRQMASK_CPU;
  5150. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  5151. np->msi_flags |= 0x0001;
  5152. }
  5153. if (id->driver_data & DEV_NEED_TIMERIRQ)
  5154. np->irqmask |= NVREG_IRQ_TIMER;
  5155. if (id->driver_data & DEV_NEED_LINKTIMER) {
  5156. dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev));
  5157. np->need_linktimer = 1;
  5158. np->link_timeout = jiffies + LINK_TIMEOUT;
  5159. } else {
  5160. dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev));
  5161. np->need_linktimer = 0;
  5162. }
  5163. /* Limit the number of tx's outstanding for hw bug */
  5164. if (id->driver_data & DEV_NEED_TX_LIMIT) {
  5165. np->tx_limit = 1;
  5166. if ((id->device == PCI_DEVICE_ID_NVIDIA_NVENET_32 ||
  5167. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_33 ||
  5168. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_34 ||
  5169. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_35 ||
  5170. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_36 ||
  5171. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_37 ||
  5172. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_38 ||
  5173. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_39) &&
  5174. pci_dev->revision >= 0xA2)
  5175. np->tx_limit = 0;
  5176. }
  5177. /* clear phy state and temporarily halt phy interrupts */
  5178. writel(0, base + NvRegMIIMask);
  5179. phystate = readl(base + NvRegAdapterControl);
  5180. if (phystate & NVREG_ADAPTCTL_RUNNING) {
  5181. phystate_orig = 1;
  5182. phystate &= ~NVREG_ADAPTCTL_RUNNING;
  5183. writel(phystate, base + NvRegAdapterControl);
  5184. }
  5185. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  5186. if (id->driver_data & DEV_HAS_MGMT_UNIT) {
  5187. /* management unit running on the mac? */
  5188. if ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_ST) &&
  5189. (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_PHY_INIT) &&
  5190. nv_mgmt_acquire_sema(dev) &&
  5191. nv_mgmt_get_version(dev)) {
  5192. np->mac_in_use = 1;
  5193. if (np->mgmt_version > 0) {
  5194. np->mac_in_use = readl(base + NvRegMgmtUnitControl) & NVREG_MGMTUNITCONTROL_INUSE;
  5195. }
  5196. dprintk(KERN_INFO "%s: mgmt unit is running. mac in use %x.\n",
  5197. pci_name(pci_dev), np->mac_in_use);
  5198. /* management unit setup the phy already? */
  5199. if (np->mac_in_use &&
  5200. ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_MASK) ==
  5201. NVREG_XMITCTL_SYNC_PHY_INIT)) {
  5202. /* phy is inited by mgmt unit */
  5203. phyinitialized = 1;
  5204. dprintk(KERN_INFO "%s: Phy already initialized by mgmt unit.\n",
  5205. pci_name(pci_dev));
  5206. } else {
  5207. /* we need to init the phy */
  5208. }
  5209. }
  5210. }
  5211. /* find a suitable phy */
  5212. for (i = 1; i <= 32; i++) {
  5213. int id1, id2;
  5214. int phyaddr = i & 0x1F;
  5215. spin_lock_irq(&np->lock);
  5216. id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
  5217. spin_unlock_irq(&np->lock);
  5218. if (id1 < 0 || id1 == 0xffff)
  5219. continue;
  5220. spin_lock_irq(&np->lock);
  5221. id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
  5222. spin_unlock_irq(&np->lock);
  5223. if (id2 < 0 || id2 == 0xffff)
  5224. continue;
  5225. np->phy_model = id2 & PHYID2_MODEL_MASK;
  5226. id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
  5227. id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
  5228. dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n",
  5229. pci_name(pci_dev), id1, id2, phyaddr);
  5230. np->phyaddr = phyaddr;
  5231. np->phy_oui = id1 | id2;
  5232. /* Realtek hardcoded phy id1 to all zero's on certain phys */
  5233. if (np->phy_oui == PHY_OUI_REALTEK2)
  5234. np->phy_oui = PHY_OUI_REALTEK;
  5235. /* Setup phy revision for Realtek */
  5236. if (np->phy_oui == PHY_OUI_REALTEK && np->phy_model == PHY_MODEL_REALTEK_8211)
  5237. np->phy_rev = mii_rw(dev, phyaddr, MII_RESV1, MII_READ) & PHY_REV_MASK;
  5238. break;
  5239. }
  5240. if (i == 33) {
  5241. dev_printk(KERN_INFO, &pci_dev->dev,
  5242. "open: Could not find a valid PHY.\n");
  5243. goto out_error;
  5244. }
  5245. if (!phyinitialized) {
  5246. /* reset it */
  5247. phy_init(dev);
  5248. } else {
  5249. /* see if it is a gigabit phy */
  5250. u32 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  5251. if (mii_status & PHY_GIGABIT) {
  5252. np->gigabit = PHY_GIGABIT;
  5253. }
  5254. }
  5255. /* set default link speed settings */
  5256. np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  5257. np->duplex = 0;
  5258. np->autoneg = 1;
  5259. err = register_netdev(dev);
  5260. if (err) {
  5261. dev_printk(KERN_INFO, &pci_dev->dev,
  5262. "unable to register netdev: %d\n", err);
  5263. goto out_error;
  5264. }
  5265. dev_printk(KERN_INFO, &pci_dev->dev, "ifname %s, PHY OUI 0x%x @ %d, "
  5266. "addr %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x\n",
  5267. dev->name,
  5268. np->phy_oui,
  5269. np->phyaddr,
  5270. dev->dev_addr[0],
  5271. dev->dev_addr[1],
  5272. dev->dev_addr[2],
  5273. dev->dev_addr[3],
  5274. dev->dev_addr[4],
  5275. dev->dev_addr[5]);
  5276. dev_printk(KERN_INFO, &pci_dev->dev, "%s%s%s%s%s%s%s%s%s%sdesc-v%u\n",
  5277. dev->features & NETIF_F_HIGHDMA ? "highdma " : "",
  5278. dev->features & (NETIF_F_IP_CSUM | NETIF_F_SG) ?
  5279. "csum " : "",
  5280. dev->features & (NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX) ?
  5281. "vlan " : "",
  5282. id->driver_data & DEV_HAS_POWER_CNTRL ? "pwrctl " : "",
  5283. id->driver_data & DEV_HAS_MGMT_UNIT ? "mgmt " : "",
  5284. id->driver_data & DEV_NEED_TIMERIRQ ? "timirq " : "",
  5285. np->gigabit == PHY_GIGABIT ? "gbit " : "",
  5286. np->need_linktimer ? "lnktim " : "",
  5287. np->msi_flags & NV_MSI_CAPABLE ? "msi " : "",
  5288. np->msi_flags & NV_MSI_X_CAPABLE ? "msi-x " : "",
  5289. np->desc_ver);
  5290. return 0;
  5291. out_error:
  5292. if (phystate_orig)
  5293. writel(phystate|NVREG_ADAPTCTL_RUNNING, base + NvRegAdapterControl);
  5294. pci_set_drvdata(pci_dev, NULL);
  5295. out_freering:
  5296. free_rings(dev);
  5297. out_unmap:
  5298. iounmap(get_hwbase(dev));
  5299. out_relreg:
  5300. pci_release_regions(pci_dev);
  5301. out_disable:
  5302. pci_disable_device(pci_dev);
  5303. out_free:
  5304. free_netdev(dev);
  5305. out:
  5306. return err;
  5307. }
  5308. static void nv_restore_phy(struct net_device *dev)
  5309. {
  5310. struct fe_priv *np = netdev_priv(dev);
  5311. u16 phy_reserved, mii_control;
  5312. if (np->phy_oui == PHY_OUI_REALTEK &&
  5313. np->phy_model == PHY_MODEL_REALTEK_8201 &&
  5314. phy_cross == NV_CROSSOVER_DETECTION_DISABLED) {
  5315. mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3);
  5316. phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, MII_READ);
  5317. phy_reserved &= ~PHY_REALTEK_INIT_MSK1;
  5318. phy_reserved |= PHY_REALTEK_INIT8;
  5319. mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, phy_reserved);
  5320. mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1);
  5321. /* restart auto negotiation */
  5322. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  5323. mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
  5324. mii_rw(dev, np->phyaddr, MII_BMCR, mii_control);
  5325. }
  5326. }
  5327. static void nv_restore_mac_addr(struct pci_dev *pci_dev)
  5328. {
  5329. struct net_device *dev = pci_get_drvdata(pci_dev);
  5330. struct fe_priv *np = netdev_priv(dev);
  5331. u8 __iomem *base = get_hwbase(dev);
  5332. /* special op: write back the misordered MAC address - otherwise
  5333. * the next nv_probe would see a wrong address.
  5334. */
  5335. writel(np->orig_mac[0], base + NvRegMacAddrA);
  5336. writel(np->orig_mac[1], base + NvRegMacAddrB);
  5337. writel(readl(base + NvRegTransmitPoll) & ~NVREG_TRANSMITPOLL_MAC_ADDR_REV,
  5338. base + NvRegTransmitPoll);
  5339. }
  5340. static void __devexit nv_remove(struct pci_dev *pci_dev)
  5341. {
  5342. struct net_device *dev = pci_get_drvdata(pci_dev);
  5343. unregister_netdev(dev);
  5344. nv_restore_mac_addr(pci_dev);
  5345. /* restore any phy related changes */
  5346. nv_restore_phy(dev);
  5347. nv_mgmt_release_sema(dev);
  5348. /* free all structures */
  5349. free_rings(dev);
  5350. iounmap(get_hwbase(dev));
  5351. pci_release_regions(pci_dev);
  5352. pci_disable_device(pci_dev);
  5353. free_netdev(dev);
  5354. pci_set_drvdata(pci_dev, NULL);
  5355. }
  5356. #ifdef CONFIG_PM
  5357. static int nv_suspend(struct pci_dev *pdev, pm_message_t state)
  5358. {
  5359. struct net_device *dev = pci_get_drvdata(pdev);
  5360. struct fe_priv *np = netdev_priv(dev);
  5361. u8 __iomem *base = get_hwbase(dev);
  5362. int i;
  5363. if (netif_running(dev)) {
  5364. // Gross.
  5365. nv_close(dev);
  5366. }
  5367. netif_device_detach(dev);
  5368. /* save non-pci configuration space */
  5369. for (i = 0;i <= np->register_size/sizeof(u32); i++)
  5370. np->saved_config_space[i] = readl(base + i*sizeof(u32));
  5371. pci_save_state(pdev);
  5372. pci_enable_wake(pdev, pci_choose_state(pdev, state), np->wolenabled);
  5373. pci_disable_device(pdev);
  5374. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  5375. return 0;
  5376. }
  5377. static int nv_resume(struct pci_dev *pdev)
  5378. {
  5379. struct net_device *dev = pci_get_drvdata(pdev);
  5380. struct fe_priv *np = netdev_priv(dev);
  5381. u8 __iomem *base = get_hwbase(dev);
  5382. int i, rc = 0;
  5383. pci_set_power_state(pdev, PCI_D0);
  5384. pci_restore_state(pdev);
  5385. /* ack any pending wake events, disable PME */
  5386. pci_enable_wake(pdev, PCI_D0, 0);
  5387. /* restore non-pci configuration space */
  5388. for (i = 0;i <= np->register_size/sizeof(u32); i++)
  5389. writel(np->saved_config_space[i], base+i*sizeof(u32));
  5390. pci_write_config_dword(pdev, NV_MSI_PRIV_OFFSET, NV_MSI_PRIV_VALUE);
  5391. netif_device_attach(dev);
  5392. if (netif_running(dev)) {
  5393. rc = nv_open(dev);
  5394. nv_set_multicast(dev);
  5395. }
  5396. return rc;
  5397. }
  5398. static void nv_shutdown(struct pci_dev *pdev)
  5399. {
  5400. struct net_device *dev = pci_get_drvdata(pdev);
  5401. struct fe_priv *np = netdev_priv(dev);
  5402. if (netif_running(dev))
  5403. nv_close(dev);
  5404. /*
  5405. * Restore the MAC so a kernel started by kexec won't get confused.
  5406. * If we really go for poweroff, we must not restore the MAC,
  5407. * otherwise the MAC for WOL will be reversed at least on some boards.
  5408. */
  5409. if (system_state != SYSTEM_POWER_OFF) {
  5410. nv_restore_mac_addr(pdev);
  5411. }
  5412. pci_disable_device(pdev);
  5413. /*
  5414. * Apparently it is not possible to reinitialise from D3 hot,
  5415. * only put the device into D3 if we really go for poweroff.
  5416. */
  5417. if (system_state == SYSTEM_POWER_OFF) {
  5418. if (pci_enable_wake(pdev, PCI_D3cold, np->wolenabled))
  5419. pci_enable_wake(pdev, PCI_D3hot, np->wolenabled);
  5420. pci_set_power_state(pdev, PCI_D3hot);
  5421. }
  5422. }
  5423. #else
  5424. #define nv_suspend NULL
  5425. #define nv_shutdown NULL
  5426. #define nv_resume NULL
  5427. #endif /* CONFIG_PM */
  5428. static struct pci_device_id pci_tbl[] = {
  5429. { /* nForce Ethernet Controller */
  5430. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_1),
  5431. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  5432. },
  5433. { /* nForce2 Ethernet Controller */
  5434. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_2),
  5435. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  5436. },
  5437. { /* nForce3 Ethernet Controller */
  5438. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_3),
  5439. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  5440. },
  5441. { /* nForce3 Ethernet Controller */
  5442. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_4),
  5443. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5444. },
  5445. { /* nForce3 Ethernet Controller */
  5446. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_5),
  5447. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5448. },
  5449. { /* nForce3 Ethernet Controller */
  5450. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_6),
  5451. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5452. },
  5453. { /* nForce3 Ethernet Controller */
  5454. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_7),
  5455. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5456. },
  5457. { /* CK804 Ethernet Controller */
  5458. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_8),
  5459. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5460. },
  5461. { /* CK804 Ethernet Controller */
  5462. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_9),
  5463. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5464. },
  5465. { /* MCP04 Ethernet Controller */
  5466. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_10),
  5467. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5468. },
  5469. { /* MCP04 Ethernet Controller */
  5470. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_11),
  5471. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5472. },
  5473. { /* MCP51 Ethernet Controller */
  5474. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_12),
  5475. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1,
  5476. },
  5477. { /* MCP51 Ethernet Controller */
  5478. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_13),
  5479. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1,
  5480. },
  5481. { /* MCP55 Ethernet Controller */
  5482. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_14),
  5483. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT,
  5484. },
  5485. { /* MCP55 Ethernet Controller */
  5486. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_15),
  5487. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT,
  5488. },
  5489. { /* MCP61 Ethernet Controller */
  5490. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_16),
  5491. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  5492. },
  5493. { /* MCP61 Ethernet Controller */
  5494. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_17),
  5495. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  5496. },
  5497. { /* MCP61 Ethernet Controller */
  5498. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_18),
  5499. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  5500. },
  5501. { /* MCP61 Ethernet Controller */
  5502. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_19),
  5503. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  5504. },
  5505. { /* MCP65 Ethernet Controller */
  5506. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_20),
  5507. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5508. },
  5509. { /* MCP65 Ethernet Controller */
  5510. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_21),
  5511. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5512. },
  5513. { /* MCP65 Ethernet Controller */
  5514. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_22),
  5515. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5516. },
  5517. { /* MCP65 Ethernet Controller */
  5518. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_23),
  5519. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5520. },
  5521. { /* MCP67 Ethernet Controller */
  5522. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_24),
  5523. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE,
  5524. },
  5525. { /* MCP67 Ethernet Controller */
  5526. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_25),
  5527. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE,
  5528. },
  5529. { /* MCP67 Ethernet Controller */
  5530. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_26),
  5531. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE,
  5532. },
  5533. { /* MCP67 Ethernet Controller */
  5534. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_27),
  5535. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE,
  5536. },
  5537. { /* MCP73 Ethernet Controller */
  5538. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_28),
  5539. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE,
  5540. },
  5541. { /* MCP73 Ethernet Controller */
  5542. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_29),
  5543. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE,
  5544. },
  5545. { /* MCP73 Ethernet Controller */
  5546. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_30),
  5547. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE,
  5548. },
  5549. { /* MCP73 Ethernet Controller */
  5550. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_31),
  5551. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE,
  5552. },
  5553. { /* MCP77 Ethernet Controller */
  5554. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_32),
  5555. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5556. },
  5557. { /* MCP77 Ethernet Controller */
  5558. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_33),
  5559. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5560. },
  5561. { /* MCP77 Ethernet Controller */
  5562. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_34),
  5563. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5564. },
  5565. { /* MCP77 Ethernet Controller */
  5566. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_35),
  5567. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5568. },
  5569. { /* MCP79 Ethernet Controller */
  5570. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_36),
  5571. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5572. },
  5573. { /* MCP79 Ethernet Controller */
  5574. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_37),
  5575. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5576. },
  5577. { /* MCP79 Ethernet Controller */
  5578. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_38),
  5579. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5580. },
  5581. { /* MCP79 Ethernet Controller */
  5582. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_39),
  5583. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5584. },
  5585. {0,},
  5586. };
  5587. static struct pci_driver driver = {
  5588. .name = DRV_NAME,
  5589. .id_table = pci_tbl,
  5590. .probe = nv_probe,
  5591. .remove = __devexit_p(nv_remove),
  5592. .suspend = nv_suspend,
  5593. .resume = nv_resume,
  5594. .shutdown = nv_shutdown,
  5595. };
  5596. static int __init init_nic(void)
  5597. {
  5598. return pci_register_driver(&driver);
  5599. }
  5600. static void __exit exit_nic(void)
  5601. {
  5602. pci_unregister_driver(&driver);
  5603. }
  5604. module_param(max_interrupt_work, int, 0);
  5605. MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
  5606. module_param(optimization_mode, int, 0);
  5607. MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer.");
  5608. module_param(poll_interval, int, 0);
  5609. MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
  5610. module_param(msi, int, 0);
  5611. MODULE_PARM_DESC(msi, "MSI interrupts are enabled by setting to 1 and disabled by setting to 0.");
  5612. module_param(msix, int, 0);
  5613. MODULE_PARM_DESC(msix, "MSIX interrupts are enabled by setting to 1 and disabled by setting to 0.");
  5614. module_param(dma_64bit, int, 0);
  5615. MODULE_PARM_DESC(dma_64bit, "High DMA is enabled by setting to 1 and disabled by setting to 0.");
  5616. module_param(phy_cross, int, 0);
  5617. MODULE_PARM_DESC(phy_cross, "Phy crossover detection for Realtek 8201 phy is enabled by setting to 1 and disabled by setting to 0.");
  5618. MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
  5619. MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
  5620. MODULE_LICENSE("GPL");
  5621. MODULE_DEVICE_TABLE(pci, pci_tbl);
  5622. module_init(init_nic);
  5623. module_exit(exit_nic);