mmzone.h 31 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013
  1. #ifndef _LINUX_MMZONE_H
  2. #define _LINUX_MMZONE_H
  3. #ifdef __KERNEL__
  4. #ifndef __ASSEMBLY__
  5. #include <linux/spinlock.h>
  6. #include <linux/list.h>
  7. #include <linux/wait.h>
  8. #include <linux/bitops.h>
  9. #include <linux/cache.h>
  10. #include <linux/threads.h>
  11. #include <linux/numa.h>
  12. #include <linux/init.h>
  13. #include <linux/seqlock.h>
  14. #include <linux/nodemask.h>
  15. #include <linux/pageblock-flags.h>
  16. #include <asm/atomic.h>
  17. #include <asm/page.h>
  18. /* Free memory management - zoned buddy allocator. */
  19. #ifndef CONFIG_FORCE_MAX_ZONEORDER
  20. #define MAX_ORDER 11
  21. #else
  22. #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
  23. #endif
  24. #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
  25. /*
  26. * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
  27. * costly to service. That is between allocation orders which should
  28. * coelesce naturally under reasonable reclaim pressure and those which
  29. * will not.
  30. */
  31. #define PAGE_ALLOC_COSTLY_ORDER 3
  32. #define MIGRATE_UNMOVABLE 0
  33. #define MIGRATE_RECLAIMABLE 1
  34. #define MIGRATE_MOVABLE 2
  35. #define MIGRATE_RESERVE 3
  36. #define MIGRATE_ISOLATE 4 /* can't allocate from here */
  37. #define MIGRATE_TYPES 5
  38. #define for_each_migratetype_order(order, type) \
  39. for (order = 0; order < MAX_ORDER; order++) \
  40. for (type = 0; type < MIGRATE_TYPES; type++)
  41. extern int page_group_by_mobility_disabled;
  42. static inline int get_pageblock_migratetype(struct page *page)
  43. {
  44. if (unlikely(page_group_by_mobility_disabled))
  45. return MIGRATE_UNMOVABLE;
  46. return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
  47. }
  48. struct free_area {
  49. struct list_head free_list[MIGRATE_TYPES];
  50. unsigned long nr_free;
  51. };
  52. struct pglist_data;
  53. /*
  54. * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
  55. * So add a wild amount of padding here to ensure that they fall into separate
  56. * cachelines. There are very few zone structures in the machine, so space
  57. * consumption is not a concern here.
  58. */
  59. #if defined(CONFIG_SMP)
  60. struct zone_padding {
  61. char x[0];
  62. } ____cacheline_internodealigned_in_smp;
  63. #define ZONE_PADDING(name) struct zone_padding name;
  64. #else
  65. #define ZONE_PADDING(name)
  66. #endif
  67. enum zone_stat_item {
  68. /* First 128 byte cacheline (assuming 64 bit words) */
  69. NR_FREE_PAGES,
  70. NR_INACTIVE,
  71. NR_ACTIVE,
  72. NR_ANON_PAGES, /* Mapped anonymous pages */
  73. NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
  74. only modified from process context */
  75. NR_FILE_PAGES,
  76. NR_FILE_DIRTY,
  77. NR_WRITEBACK,
  78. /* Second 128 byte cacheline */
  79. NR_SLAB_RECLAIMABLE,
  80. NR_SLAB_UNRECLAIMABLE,
  81. NR_PAGETABLE, /* used for pagetables */
  82. NR_UNSTABLE_NFS, /* NFS unstable pages */
  83. NR_BOUNCE,
  84. NR_VMSCAN_WRITE,
  85. #ifdef CONFIG_NUMA
  86. NUMA_HIT, /* allocated in intended node */
  87. NUMA_MISS, /* allocated in non intended node */
  88. NUMA_FOREIGN, /* was intended here, hit elsewhere */
  89. NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
  90. NUMA_LOCAL, /* allocation from local node */
  91. NUMA_OTHER, /* allocation from other node */
  92. #endif
  93. NR_VM_ZONE_STAT_ITEMS };
  94. struct per_cpu_pages {
  95. int count; /* number of pages in the list */
  96. int high; /* high watermark, emptying needed */
  97. int batch; /* chunk size for buddy add/remove */
  98. struct list_head list; /* the list of pages */
  99. };
  100. struct per_cpu_pageset {
  101. struct per_cpu_pages pcp;
  102. #ifdef CONFIG_NUMA
  103. s8 expire;
  104. #endif
  105. #ifdef CONFIG_SMP
  106. s8 stat_threshold;
  107. s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
  108. #endif
  109. } ____cacheline_aligned_in_smp;
  110. #ifdef CONFIG_NUMA
  111. #define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)])
  112. #else
  113. #define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)])
  114. #endif
  115. enum zone_type {
  116. #ifdef CONFIG_ZONE_DMA
  117. /*
  118. * ZONE_DMA is used when there are devices that are not able
  119. * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
  120. * carve out the portion of memory that is needed for these devices.
  121. * The range is arch specific.
  122. *
  123. * Some examples
  124. *
  125. * Architecture Limit
  126. * ---------------------------
  127. * parisc, ia64, sparc <4G
  128. * s390 <2G
  129. * arm Various
  130. * alpha Unlimited or 0-16MB.
  131. *
  132. * i386, x86_64 and multiple other arches
  133. * <16M.
  134. */
  135. ZONE_DMA,
  136. #endif
  137. #ifdef CONFIG_ZONE_DMA32
  138. /*
  139. * x86_64 needs two ZONE_DMAs because it supports devices that are
  140. * only able to do DMA to the lower 16M but also 32 bit devices that
  141. * can only do DMA areas below 4G.
  142. */
  143. ZONE_DMA32,
  144. #endif
  145. /*
  146. * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
  147. * performed on pages in ZONE_NORMAL if the DMA devices support
  148. * transfers to all addressable memory.
  149. */
  150. ZONE_NORMAL,
  151. #ifdef CONFIG_HIGHMEM
  152. /*
  153. * A memory area that is only addressable by the kernel through
  154. * mapping portions into its own address space. This is for example
  155. * used by i386 to allow the kernel to address the memory beyond
  156. * 900MB. The kernel will set up special mappings (page
  157. * table entries on i386) for each page that the kernel needs to
  158. * access.
  159. */
  160. ZONE_HIGHMEM,
  161. #endif
  162. ZONE_MOVABLE,
  163. MAX_NR_ZONES
  164. };
  165. /*
  166. * When a memory allocation must conform to specific limitations (such
  167. * as being suitable for DMA) the caller will pass in hints to the
  168. * allocator in the gfp_mask, in the zone modifier bits. These bits
  169. * are used to select a priority ordered list of memory zones which
  170. * match the requested limits. See gfp_zone() in include/linux/gfp.h
  171. */
  172. /*
  173. * Count the active zones. Note that the use of defined(X) outside
  174. * #if and family is not necessarily defined so ensure we cannot use
  175. * it later. Use __ZONE_COUNT to work out how many shift bits we need.
  176. */
  177. #define __ZONE_COUNT ( \
  178. defined(CONFIG_ZONE_DMA) \
  179. + defined(CONFIG_ZONE_DMA32) \
  180. + 1 \
  181. + defined(CONFIG_HIGHMEM) \
  182. + 1 \
  183. )
  184. #if __ZONE_COUNT < 2
  185. #define ZONES_SHIFT 0
  186. #elif __ZONE_COUNT <= 2
  187. #define ZONES_SHIFT 1
  188. #elif __ZONE_COUNT <= 4
  189. #define ZONES_SHIFT 2
  190. #else
  191. #error ZONES_SHIFT -- too many zones configured adjust calculation
  192. #endif
  193. #undef __ZONE_COUNT
  194. struct zone {
  195. /* Fields commonly accessed by the page allocator */
  196. unsigned long pages_min, pages_low, pages_high;
  197. /*
  198. * We don't know if the memory that we're going to allocate will be freeable
  199. * or/and it will be released eventually, so to avoid totally wasting several
  200. * GB of ram we must reserve some of the lower zone memory (otherwise we risk
  201. * to run OOM on the lower zones despite there's tons of freeable ram
  202. * on the higher zones). This array is recalculated at runtime if the
  203. * sysctl_lowmem_reserve_ratio sysctl changes.
  204. */
  205. unsigned long lowmem_reserve[MAX_NR_ZONES];
  206. #ifdef CONFIG_NUMA
  207. int node;
  208. /*
  209. * zone reclaim becomes active if more unmapped pages exist.
  210. */
  211. unsigned long min_unmapped_pages;
  212. unsigned long min_slab_pages;
  213. struct per_cpu_pageset *pageset[NR_CPUS];
  214. #else
  215. struct per_cpu_pageset pageset[NR_CPUS];
  216. #endif
  217. /*
  218. * free areas of different sizes
  219. */
  220. spinlock_t lock;
  221. #ifdef CONFIG_MEMORY_HOTPLUG
  222. /* see spanned/present_pages for more description */
  223. seqlock_t span_seqlock;
  224. #endif
  225. struct free_area free_area[MAX_ORDER];
  226. #ifndef CONFIG_SPARSEMEM
  227. /*
  228. * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
  229. * In SPARSEMEM, this map is stored in struct mem_section
  230. */
  231. unsigned long *pageblock_flags;
  232. #endif /* CONFIG_SPARSEMEM */
  233. ZONE_PADDING(_pad1_)
  234. /* Fields commonly accessed by the page reclaim scanner */
  235. spinlock_t lru_lock;
  236. struct list_head active_list;
  237. struct list_head inactive_list;
  238. unsigned long nr_scan_active;
  239. unsigned long nr_scan_inactive;
  240. unsigned long pages_scanned; /* since last reclaim */
  241. unsigned long flags; /* zone flags, see below */
  242. /* Zone statistics */
  243. atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
  244. /*
  245. * prev_priority holds the scanning priority for this zone. It is
  246. * defined as the scanning priority at which we achieved our reclaim
  247. * target at the previous try_to_free_pages() or balance_pgdat()
  248. * invokation.
  249. *
  250. * We use prev_priority as a measure of how much stress page reclaim is
  251. * under - it drives the swappiness decision: whether to unmap mapped
  252. * pages.
  253. *
  254. * Access to both this field is quite racy even on uniprocessor. But
  255. * it is expected to average out OK.
  256. */
  257. int prev_priority;
  258. ZONE_PADDING(_pad2_)
  259. /* Rarely used or read-mostly fields */
  260. /*
  261. * wait_table -- the array holding the hash table
  262. * wait_table_hash_nr_entries -- the size of the hash table array
  263. * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
  264. *
  265. * The purpose of all these is to keep track of the people
  266. * waiting for a page to become available and make them
  267. * runnable again when possible. The trouble is that this
  268. * consumes a lot of space, especially when so few things
  269. * wait on pages at a given time. So instead of using
  270. * per-page waitqueues, we use a waitqueue hash table.
  271. *
  272. * The bucket discipline is to sleep on the same queue when
  273. * colliding and wake all in that wait queue when removing.
  274. * When something wakes, it must check to be sure its page is
  275. * truly available, a la thundering herd. The cost of a
  276. * collision is great, but given the expected load of the
  277. * table, they should be so rare as to be outweighed by the
  278. * benefits from the saved space.
  279. *
  280. * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
  281. * primary users of these fields, and in mm/page_alloc.c
  282. * free_area_init_core() performs the initialization of them.
  283. */
  284. wait_queue_head_t * wait_table;
  285. unsigned long wait_table_hash_nr_entries;
  286. unsigned long wait_table_bits;
  287. /*
  288. * Discontig memory support fields.
  289. */
  290. struct pglist_data *zone_pgdat;
  291. /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
  292. unsigned long zone_start_pfn;
  293. /*
  294. * zone_start_pfn, spanned_pages and present_pages are all
  295. * protected by span_seqlock. It is a seqlock because it has
  296. * to be read outside of zone->lock, and it is done in the main
  297. * allocator path. But, it is written quite infrequently.
  298. *
  299. * The lock is declared along with zone->lock because it is
  300. * frequently read in proximity to zone->lock. It's good to
  301. * give them a chance of being in the same cacheline.
  302. */
  303. unsigned long spanned_pages; /* total size, including holes */
  304. unsigned long present_pages; /* amount of memory (excluding holes) */
  305. /*
  306. * rarely used fields:
  307. */
  308. const char *name;
  309. } ____cacheline_internodealigned_in_smp;
  310. typedef enum {
  311. ZONE_ALL_UNRECLAIMABLE, /* all pages pinned */
  312. ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */
  313. ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */
  314. } zone_flags_t;
  315. static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
  316. {
  317. set_bit(flag, &zone->flags);
  318. }
  319. static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
  320. {
  321. return test_and_set_bit(flag, &zone->flags);
  322. }
  323. static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
  324. {
  325. clear_bit(flag, &zone->flags);
  326. }
  327. static inline int zone_is_all_unreclaimable(const struct zone *zone)
  328. {
  329. return test_bit(ZONE_ALL_UNRECLAIMABLE, &zone->flags);
  330. }
  331. static inline int zone_is_reclaim_locked(const struct zone *zone)
  332. {
  333. return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
  334. }
  335. static inline int zone_is_oom_locked(const struct zone *zone)
  336. {
  337. return test_bit(ZONE_OOM_LOCKED, &zone->flags);
  338. }
  339. /*
  340. * The "priority" of VM scanning is how much of the queues we will scan in one
  341. * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
  342. * queues ("queue_length >> 12") during an aging round.
  343. */
  344. #define DEF_PRIORITY 12
  345. /* Maximum number of zones on a zonelist */
  346. #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
  347. #ifdef CONFIG_NUMA
  348. /*
  349. * The NUMA zonelists are doubled becausse we need zonelists that restrict the
  350. * allocations to a single node for GFP_THISNODE.
  351. *
  352. * [0] : Zonelist with fallback
  353. * [1] : No fallback (GFP_THISNODE)
  354. */
  355. #define MAX_ZONELISTS 2
  356. /*
  357. * We cache key information from each zonelist for smaller cache
  358. * footprint when scanning for free pages in get_page_from_freelist().
  359. *
  360. * 1) The BITMAP fullzones tracks which zones in a zonelist have come
  361. * up short of free memory since the last time (last_fullzone_zap)
  362. * we zero'd fullzones.
  363. * 2) The array z_to_n[] maps each zone in the zonelist to its node
  364. * id, so that we can efficiently evaluate whether that node is
  365. * set in the current tasks mems_allowed.
  366. *
  367. * Both fullzones and z_to_n[] are one-to-one with the zonelist,
  368. * indexed by a zones offset in the zonelist zones[] array.
  369. *
  370. * The get_page_from_freelist() routine does two scans. During the
  371. * first scan, we skip zones whose corresponding bit in 'fullzones'
  372. * is set or whose corresponding node in current->mems_allowed (which
  373. * comes from cpusets) is not set. During the second scan, we bypass
  374. * this zonelist_cache, to ensure we look methodically at each zone.
  375. *
  376. * Once per second, we zero out (zap) fullzones, forcing us to
  377. * reconsider nodes that might have regained more free memory.
  378. * The field last_full_zap is the time we last zapped fullzones.
  379. *
  380. * This mechanism reduces the amount of time we waste repeatedly
  381. * reexaming zones for free memory when they just came up low on
  382. * memory momentarilly ago.
  383. *
  384. * The zonelist_cache struct members logically belong in struct
  385. * zonelist. However, the mempolicy zonelists constructed for
  386. * MPOL_BIND are intentionally variable length (and usually much
  387. * shorter). A general purpose mechanism for handling structs with
  388. * multiple variable length members is more mechanism than we want
  389. * here. We resort to some special case hackery instead.
  390. *
  391. * The MPOL_BIND zonelists don't need this zonelist_cache (in good
  392. * part because they are shorter), so we put the fixed length stuff
  393. * at the front of the zonelist struct, ending in a variable length
  394. * zones[], as is needed by MPOL_BIND.
  395. *
  396. * Then we put the optional zonelist cache on the end of the zonelist
  397. * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
  398. * the fixed length portion at the front of the struct. This pointer
  399. * both enables us to find the zonelist cache, and in the case of
  400. * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
  401. * to know that the zonelist cache is not there.
  402. *
  403. * The end result is that struct zonelists come in two flavors:
  404. * 1) The full, fixed length version, shown below, and
  405. * 2) The custom zonelists for MPOL_BIND.
  406. * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
  407. *
  408. * Even though there may be multiple CPU cores on a node modifying
  409. * fullzones or last_full_zap in the same zonelist_cache at the same
  410. * time, we don't lock it. This is just hint data - if it is wrong now
  411. * and then, the allocator will still function, perhaps a bit slower.
  412. */
  413. struct zonelist_cache {
  414. unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
  415. DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
  416. unsigned long last_full_zap; /* when last zap'd (jiffies) */
  417. };
  418. #else
  419. #define MAX_ZONELISTS 1
  420. struct zonelist_cache;
  421. #endif
  422. /*
  423. * This struct contains information about a zone in a zonelist. It is stored
  424. * here to avoid dereferences into large structures and lookups of tables
  425. */
  426. struct zoneref {
  427. struct zone *zone; /* Pointer to actual zone */
  428. int zone_idx; /* zone_idx(zoneref->zone) */
  429. };
  430. /*
  431. * One allocation request operates on a zonelist. A zonelist
  432. * is a list of zones, the first one is the 'goal' of the
  433. * allocation, the other zones are fallback zones, in decreasing
  434. * priority.
  435. *
  436. * If zlcache_ptr is not NULL, then it is just the address of zlcache,
  437. * as explained above. If zlcache_ptr is NULL, there is no zlcache.
  438. * *
  439. * To speed the reading of the zonelist, the zonerefs contain the zone index
  440. * of the entry being read. Helper functions to access information given
  441. * a struct zoneref are
  442. *
  443. * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
  444. * zonelist_zone_idx() - Return the index of the zone for an entry
  445. * zonelist_node_idx() - Return the index of the node for an entry
  446. */
  447. struct zonelist {
  448. struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
  449. struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
  450. #ifdef CONFIG_NUMA
  451. struct zonelist_cache zlcache; // optional ...
  452. #endif
  453. };
  454. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  455. struct node_active_region {
  456. unsigned long start_pfn;
  457. unsigned long end_pfn;
  458. int nid;
  459. };
  460. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  461. #ifndef CONFIG_DISCONTIGMEM
  462. /* The array of struct pages - for discontigmem use pgdat->lmem_map */
  463. extern struct page *mem_map;
  464. #endif
  465. /*
  466. * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
  467. * (mostly NUMA machines?) to denote a higher-level memory zone than the
  468. * zone denotes.
  469. *
  470. * On NUMA machines, each NUMA node would have a pg_data_t to describe
  471. * it's memory layout.
  472. *
  473. * Memory statistics and page replacement data structures are maintained on a
  474. * per-zone basis.
  475. */
  476. struct bootmem_data;
  477. typedef struct pglist_data {
  478. struct zone node_zones[MAX_NR_ZONES];
  479. struct zonelist node_zonelists[MAX_ZONELISTS];
  480. int nr_zones;
  481. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  482. struct page *node_mem_map;
  483. #endif
  484. struct bootmem_data *bdata;
  485. #ifdef CONFIG_MEMORY_HOTPLUG
  486. /*
  487. * Must be held any time you expect node_start_pfn, node_present_pages
  488. * or node_spanned_pages stay constant. Holding this will also
  489. * guarantee that any pfn_valid() stays that way.
  490. *
  491. * Nests above zone->lock and zone->size_seqlock.
  492. */
  493. spinlock_t node_size_lock;
  494. #endif
  495. unsigned long node_start_pfn;
  496. unsigned long node_present_pages; /* total number of physical pages */
  497. unsigned long node_spanned_pages; /* total size of physical page
  498. range, including holes */
  499. int node_id;
  500. wait_queue_head_t kswapd_wait;
  501. struct task_struct *kswapd;
  502. int kswapd_max_order;
  503. } pg_data_t;
  504. #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
  505. #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
  506. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  507. #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
  508. #else
  509. #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
  510. #endif
  511. #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
  512. #include <linux/memory_hotplug.h>
  513. void get_zone_counts(unsigned long *active, unsigned long *inactive,
  514. unsigned long *free);
  515. void build_all_zonelists(void);
  516. void wakeup_kswapd(struct zone *zone, int order);
  517. int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  518. int classzone_idx, int alloc_flags);
  519. enum memmap_context {
  520. MEMMAP_EARLY,
  521. MEMMAP_HOTPLUG,
  522. };
  523. extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
  524. unsigned long size,
  525. enum memmap_context context);
  526. #ifdef CONFIG_HAVE_MEMORY_PRESENT
  527. void memory_present(int nid, unsigned long start, unsigned long end);
  528. #else
  529. static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
  530. #endif
  531. #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
  532. unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
  533. #endif
  534. /*
  535. * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
  536. */
  537. #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
  538. static inline int populated_zone(struct zone *zone)
  539. {
  540. return (!!zone->present_pages);
  541. }
  542. extern int movable_zone;
  543. static inline int zone_movable_is_highmem(void)
  544. {
  545. #if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP)
  546. return movable_zone == ZONE_HIGHMEM;
  547. #else
  548. return 0;
  549. #endif
  550. }
  551. static inline int is_highmem_idx(enum zone_type idx)
  552. {
  553. #ifdef CONFIG_HIGHMEM
  554. return (idx == ZONE_HIGHMEM ||
  555. (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
  556. #else
  557. return 0;
  558. #endif
  559. }
  560. static inline int is_normal_idx(enum zone_type idx)
  561. {
  562. return (idx == ZONE_NORMAL);
  563. }
  564. /**
  565. * is_highmem - helper function to quickly check if a struct zone is a
  566. * highmem zone or not. This is an attempt to keep references
  567. * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
  568. * @zone - pointer to struct zone variable
  569. */
  570. static inline int is_highmem(struct zone *zone)
  571. {
  572. #ifdef CONFIG_HIGHMEM
  573. int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
  574. return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
  575. (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
  576. zone_movable_is_highmem());
  577. #else
  578. return 0;
  579. #endif
  580. }
  581. static inline int is_normal(struct zone *zone)
  582. {
  583. return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
  584. }
  585. static inline int is_dma32(struct zone *zone)
  586. {
  587. #ifdef CONFIG_ZONE_DMA32
  588. return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
  589. #else
  590. return 0;
  591. #endif
  592. }
  593. static inline int is_dma(struct zone *zone)
  594. {
  595. #ifdef CONFIG_ZONE_DMA
  596. return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
  597. #else
  598. return 0;
  599. #endif
  600. }
  601. /* These two functions are used to setup the per zone pages min values */
  602. struct ctl_table;
  603. struct file;
  604. int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *,
  605. void __user *, size_t *, loff_t *);
  606. extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
  607. int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *,
  608. void __user *, size_t *, loff_t *);
  609. int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *,
  610. void __user *, size_t *, loff_t *);
  611. int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
  612. struct file *, void __user *, size_t *, loff_t *);
  613. int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
  614. struct file *, void __user *, size_t *, loff_t *);
  615. extern int numa_zonelist_order_handler(struct ctl_table *, int,
  616. struct file *, void __user *, size_t *, loff_t *);
  617. extern char numa_zonelist_order[];
  618. #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
  619. #include <linux/topology.h>
  620. /* Returns the number of the current Node. */
  621. #ifndef numa_node_id
  622. #define numa_node_id() (cpu_to_node(raw_smp_processor_id()))
  623. #endif
  624. #ifndef CONFIG_NEED_MULTIPLE_NODES
  625. extern struct pglist_data contig_page_data;
  626. #define NODE_DATA(nid) (&contig_page_data)
  627. #define NODE_MEM_MAP(nid) mem_map
  628. #else /* CONFIG_NEED_MULTIPLE_NODES */
  629. #include <asm/mmzone.h>
  630. #endif /* !CONFIG_NEED_MULTIPLE_NODES */
  631. extern struct pglist_data *first_online_pgdat(void);
  632. extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
  633. extern struct zone *next_zone(struct zone *zone);
  634. /**
  635. * for_each_pgdat - helper macro to iterate over all nodes
  636. * @pgdat - pointer to a pg_data_t variable
  637. */
  638. #define for_each_online_pgdat(pgdat) \
  639. for (pgdat = first_online_pgdat(); \
  640. pgdat; \
  641. pgdat = next_online_pgdat(pgdat))
  642. /**
  643. * for_each_zone - helper macro to iterate over all memory zones
  644. * @zone - pointer to struct zone variable
  645. *
  646. * The user only needs to declare the zone variable, for_each_zone
  647. * fills it in.
  648. */
  649. #define for_each_zone(zone) \
  650. for (zone = (first_online_pgdat())->node_zones; \
  651. zone; \
  652. zone = next_zone(zone))
  653. static inline struct zone *zonelist_zone(struct zoneref *zoneref)
  654. {
  655. return zoneref->zone;
  656. }
  657. static inline int zonelist_zone_idx(struct zoneref *zoneref)
  658. {
  659. return zoneref->zone_idx;
  660. }
  661. static inline int zonelist_node_idx(struct zoneref *zoneref)
  662. {
  663. #ifdef CONFIG_NUMA
  664. /* zone_to_nid not available in this context */
  665. return zoneref->zone->node;
  666. #else
  667. return 0;
  668. #endif /* CONFIG_NUMA */
  669. }
  670. /**
  671. * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
  672. * @z - The cursor used as a starting point for the search
  673. * @highest_zoneidx - The zone index of the highest zone to return
  674. * @nodes - An optional nodemask to filter the zonelist with
  675. * @zone - The first suitable zone found is returned via this parameter
  676. *
  677. * This function returns the next zone at or below a given zone index that is
  678. * within the allowed nodemask using a cursor as the starting point for the
  679. * search. The zoneref returned is a cursor that is used as the next starting
  680. * point for future calls to next_zones_zonelist().
  681. */
  682. struct zoneref *next_zones_zonelist(struct zoneref *z,
  683. enum zone_type highest_zoneidx,
  684. nodemask_t *nodes,
  685. struct zone **zone);
  686. /**
  687. * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
  688. * @zonelist - The zonelist to search for a suitable zone
  689. * @highest_zoneidx - The zone index of the highest zone to return
  690. * @nodes - An optional nodemask to filter the zonelist with
  691. * @zone - The first suitable zone found is returned via this parameter
  692. *
  693. * This function returns the first zone at or below a given zone index that is
  694. * within the allowed nodemask. The zoneref returned is a cursor that can be
  695. * used to iterate the zonelist with next_zones_zonelist. The cursor should
  696. * not be used by the caller as it does not match the value of the zone
  697. * returned.
  698. */
  699. static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
  700. enum zone_type highest_zoneidx,
  701. nodemask_t *nodes,
  702. struct zone **zone)
  703. {
  704. return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
  705. zone);
  706. }
  707. /**
  708. * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
  709. * @zone - The current zone in the iterator
  710. * @z - The current pointer within zonelist->zones being iterated
  711. * @zlist - The zonelist being iterated
  712. * @highidx - The zone index of the highest zone to return
  713. * @nodemask - Nodemask allowed by the allocator
  714. *
  715. * This iterator iterates though all zones at or below a given zone index and
  716. * within a given nodemask
  717. */
  718. #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
  719. for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \
  720. zone; \
  721. z = next_zones_zonelist(z, highidx, nodemask, &zone)) \
  722. /**
  723. * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
  724. * @zone - The current zone in the iterator
  725. * @z - The current pointer within zonelist->zones being iterated
  726. * @zlist - The zonelist being iterated
  727. * @highidx - The zone index of the highest zone to return
  728. *
  729. * This iterator iterates though all zones at or below a given zone index.
  730. */
  731. #define for_each_zone_zonelist(zone, z, zlist, highidx) \
  732. for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
  733. #ifdef CONFIG_SPARSEMEM
  734. #include <asm/sparsemem.h>
  735. #endif
  736. #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
  737. !defined(CONFIG_ARCH_POPULATES_NODE_MAP)
  738. static inline unsigned long early_pfn_to_nid(unsigned long pfn)
  739. {
  740. return 0;
  741. }
  742. #endif
  743. #ifdef CONFIG_FLATMEM
  744. #define pfn_to_nid(pfn) (0)
  745. #endif
  746. #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
  747. #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
  748. #ifdef CONFIG_SPARSEMEM
  749. /*
  750. * SECTION_SHIFT #bits space required to store a section #
  751. *
  752. * PA_SECTION_SHIFT physical address to/from section number
  753. * PFN_SECTION_SHIFT pfn to/from section number
  754. */
  755. #define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
  756. #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
  757. #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
  758. #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
  759. #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
  760. #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
  761. #define SECTION_BLOCKFLAGS_BITS \
  762. ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
  763. #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
  764. #error Allocator MAX_ORDER exceeds SECTION_SIZE
  765. #endif
  766. struct page;
  767. struct mem_section {
  768. /*
  769. * This is, logically, a pointer to an array of struct
  770. * pages. However, it is stored with some other magic.
  771. * (see sparse.c::sparse_init_one_section())
  772. *
  773. * Additionally during early boot we encode node id of
  774. * the location of the section here to guide allocation.
  775. * (see sparse.c::memory_present())
  776. *
  777. * Making it a UL at least makes someone do a cast
  778. * before using it wrong.
  779. */
  780. unsigned long section_mem_map;
  781. /* See declaration of similar field in struct zone */
  782. unsigned long *pageblock_flags;
  783. };
  784. #ifdef CONFIG_SPARSEMEM_EXTREME
  785. #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
  786. #else
  787. #define SECTIONS_PER_ROOT 1
  788. #endif
  789. #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
  790. #define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
  791. #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
  792. #ifdef CONFIG_SPARSEMEM_EXTREME
  793. extern struct mem_section *mem_section[NR_SECTION_ROOTS];
  794. #else
  795. extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
  796. #endif
  797. static inline struct mem_section *__nr_to_section(unsigned long nr)
  798. {
  799. if (!mem_section[SECTION_NR_TO_ROOT(nr)])
  800. return NULL;
  801. return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
  802. }
  803. extern int __section_nr(struct mem_section* ms);
  804. /*
  805. * We use the lower bits of the mem_map pointer to store
  806. * a little bit of information. There should be at least
  807. * 3 bits here due to 32-bit alignment.
  808. */
  809. #define SECTION_MARKED_PRESENT (1UL<<0)
  810. #define SECTION_HAS_MEM_MAP (1UL<<1)
  811. #define SECTION_MAP_LAST_BIT (1UL<<2)
  812. #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
  813. #define SECTION_NID_SHIFT 2
  814. static inline struct page *__section_mem_map_addr(struct mem_section *section)
  815. {
  816. unsigned long map = section->section_mem_map;
  817. map &= SECTION_MAP_MASK;
  818. return (struct page *)map;
  819. }
  820. static inline int present_section(struct mem_section *section)
  821. {
  822. return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
  823. }
  824. static inline int present_section_nr(unsigned long nr)
  825. {
  826. return present_section(__nr_to_section(nr));
  827. }
  828. static inline int valid_section(struct mem_section *section)
  829. {
  830. return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
  831. }
  832. static inline int valid_section_nr(unsigned long nr)
  833. {
  834. return valid_section(__nr_to_section(nr));
  835. }
  836. static inline struct mem_section *__pfn_to_section(unsigned long pfn)
  837. {
  838. return __nr_to_section(pfn_to_section_nr(pfn));
  839. }
  840. static inline int pfn_valid(unsigned long pfn)
  841. {
  842. if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
  843. return 0;
  844. return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
  845. }
  846. static inline int pfn_present(unsigned long pfn)
  847. {
  848. if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
  849. return 0;
  850. return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
  851. }
  852. /*
  853. * These are _only_ used during initialisation, therefore they
  854. * can use __initdata ... They could have names to indicate
  855. * this restriction.
  856. */
  857. #ifdef CONFIG_NUMA
  858. #define pfn_to_nid(pfn) \
  859. ({ \
  860. unsigned long __pfn_to_nid_pfn = (pfn); \
  861. page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
  862. })
  863. #else
  864. #define pfn_to_nid(pfn) (0)
  865. #endif
  866. #define early_pfn_valid(pfn) pfn_valid(pfn)
  867. void sparse_init(void);
  868. #else
  869. #define sparse_init() do {} while (0)
  870. #define sparse_index_init(_sec, _nid) do {} while (0)
  871. #endif /* CONFIG_SPARSEMEM */
  872. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  873. #define early_pfn_in_nid(pfn, nid) (early_pfn_to_nid(pfn) == (nid))
  874. #else
  875. #define early_pfn_in_nid(pfn, nid) (1)
  876. #endif
  877. #ifndef early_pfn_valid
  878. #define early_pfn_valid(pfn) (1)
  879. #endif
  880. void memory_present(int nid, unsigned long start, unsigned long end);
  881. unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
  882. /*
  883. * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
  884. * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
  885. * pfn_valid_within() should be used in this case; we optimise this away
  886. * when we have no holes within a MAX_ORDER_NR_PAGES block.
  887. */
  888. #ifdef CONFIG_HOLES_IN_ZONE
  889. #define pfn_valid_within(pfn) pfn_valid(pfn)
  890. #else
  891. #define pfn_valid_within(pfn) (1)
  892. #endif
  893. #endif /* !__ASSEMBLY__ */
  894. #endif /* __KERNEL__ */
  895. #endif /* _LINUX_MMZONE_H */