i915_gem.c 130 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include "i915_trace.h"
  32. #include "intel_drv.h"
  33. #include <linux/slab.h>
  34. #include <linux/swap.h>
  35. #include <linux/pci.h>
  36. #include <linux/intel-gtt.h>
  37. static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
  38. static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
  39. bool pipelined);
  40. static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
  41. static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
  42. static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
  43. int write);
  44. static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  45. uint64_t offset,
  46. uint64_t size);
  47. static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
  48. static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
  49. bool interruptible);
  50. static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
  51. unsigned alignment);
  52. static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
  53. static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  54. struct drm_i915_gem_pwrite *args,
  55. struct drm_file *file_priv);
  56. static void i915_gem_free_object_tail(struct drm_gem_object *obj);
  57. static LIST_HEAD(shrink_list);
  58. static DEFINE_SPINLOCK(shrink_list_lock);
  59. static inline bool
  60. i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
  61. {
  62. return obj_priv->gtt_space &&
  63. !obj_priv->active &&
  64. obj_priv->pin_count == 0;
  65. }
  66. int i915_gem_do_init(struct drm_device *dev, unsigned long start,
  67. unsigned long end)
  68. {
  69. drm_i915_private_t *dev_priv = dev->dev_private;
  70. if (start >= end ||
  71. (start & (PAGE_SIZE - 1)) != 0 ||
  72. (end & (PAGE_SIZE - 1)) != 0) {
  73. return -EINVAL;
  74. }
  75. drm_mm_init(&dev_priv->mm.gtt_space, start,
  76. end - start);
  77. dev->gtt_total = (uint32_t) (end - start);
  78. return 0;
  79. }
  80. int
  81. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  82. struct drm_file *file_priv)
  83. {
  84. struct drm_i915_gem_init *args = data;
  85. int ret;
  86. mutex_lock(&dev->struct_mutex);
  87. ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
  88. mutex_unlock(&dev->struct_mutex);
  89. return ret;
  90. }
  91. int
  92. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  93. struct drm_file *file_priv)
  94. {
  95. struct drm_i915_gem_get_aperture *args = data;
  96. if (!(dev->driver->driver_features & DRIVER_GEM))
  97. return -ENODEV;
  98. args->aper_size = dev->gtt_total;
  99. args->aper_available_size = (args->aper_size -
  100. atomic_read(&dev->pin_memory));
  101. return 0;
  102. }
  103. /**
  104. * Creates a new mm object and returns a handle to it.
  105. */
  106. int
  107. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  108. struct drm_file *file_priv)
  109. {
  110. struct drm_i915_gem_create *args = data;
  111. struct drm_gem_object *obj;
  112. int ret;
  113. u32 handle;
  114. args->size = roundup(args->size, PAGE_SIZE);
  115. /* Allocate the new object */
  116. obj = i915_gem_alloc_object(dev, args->size);
  117. if (obj == NULL)
  118. return -ENOMEM;
  119. ret = drm_gem_handle_create(file_priv, obj, &handle);
  120. if (ret) {
  121. drm_gem_object_unreference_unlocked(obj);
  122. return ret;
  123. }
  124. /* Sink the floating reference from kref_init(handlecount) */
  125. drm_gem_object_handle_unreference_unlocked(obj);
  126. args->handle = handle;
  127. return 0;
  128. }
  129. static inline int
  130. fast_shmem_read(struct page **pages,
  131. loff_t page_base, int page_offset,
  132. char __user *data,
  133. int length)
  134. {
  135. char __iomem *vaddr;
  136. int unwritten;
  137. vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
  138. if (vaddr == NULL)
  139. return -ENOMEM;
  140. unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
  141. kunmap_atomic(vaddr, KM_USER0);
  142. if (unwritten)
  143. return -EFAULT;
  144. return 0;
  145. }
  146. static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
  147. {
  148. drm_i915_private_t *dev_priv = obj->dev->dev_private;
  149. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  150. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  151. obj_priv->tiling_mode != I915_TILING_NONE;
  152. }
  153. static inline void
  154. slow_shmem_copy(struct page *dst_page,
  155. int dst_offset,
  156. struct page *src_page,
  157. int src_offset,
  158. int length)
  159. {
  160. char *dst_vaddr, *src_vaddr;
  161. dst_vaddr = kmap(dst_page);
  162. src_vaddr = kmap(src_page);
  163. memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
  164. kunmap(src_page);
  165. kunmap(dst_page);
  166. }
  167. static inline void
  168. slow_shmem_bit17_copy(struct page *gpu_page,
  169. int gpu_offset,
  170. struct page *cpu_page,
  171. int cpu_offset,
  172. int length,
  173. int is_read)
  174. {
  175. char *gpu_vaddr, *cpu_vaddr;
  176. /* Use the unswizzled path if this page isn't affected. */
  177. if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
  178. if (is_read)
  179. return slow_shmem_copy(cpu_page, cpu_offset,
  180. gpu_page, gpu_offset, length);
  181. else
  182. return slow_shmem_copy(gpu_page, gpu_offset,
  183. cpu_page, cpu_offset, length);
  184. }
  185. gpu_vaddr = kmap(gpu_page);
  186. cpu_vaddr = kmap(cpu_page);
  187. /* Copy the data, XORing A6 with A17 (1). The user already knows he's
  188. * XORing with the other bits (A9 for Y, A9 and A10 for X)
  189. */
  190. while (length > 0) {
  191. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  192. int this_length = min(cacheline_end - gpu_offset, length);
  193. int swizzled_gpu_offset = gpu_offset ^ 64;
  194. if (is_read) {
  195. memcpy(cpu_vaddr + cpu_offset,
  196. gpu_vaddr + swizzled_gpu_offset,
  197. this_length);
  198. } else {
  199. memcpy(gpu_vaddr + swizzled_gpu_offset,
  200. cpu_vaddr + cpu_offset,
  201. this_length);
  202. }
  203. cpu_offset += this_length;
  204. gpu_offset += this_length;
  205. length -= this_length;
  206. }
  207. kunmap(cpu_page);
  208. kunmap(gpu_page);
  209. }
  210. /**
  211. * This is the fast shmem pread path, which attempts to copy_from_user directly
  212. * from the backing pages of the object to the user's address space. On a
  213. * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
  214. */
  215. static int
  216. i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
  217. struct drm_i915_gem_pread *args,
  218. struct drm_file *file_priv)
  219. {
  220. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  221. ssize_t remain;
  222. loff_t offset, page_base;
  223. char __user *user_data;
  224. int page_offset, page_length;
  225. int ret;
  226. user_data = (char __user *) (uintptr_t) args->data_ptr;
  227. remain = args->size;
  228. mutex_lock(&dev->struct_mutex);
  229. ret = i915_gem_object_get_pages(obj, 0);
  230. if (ret != 0)
  231. goto fail_unlock;
  232. ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
  233. args->size);
  234. if (ret != 0)
  235. goto fail_put_pages;
  236. obj_priv = to_intel_bo(obj);
  237. offset = args->offset;
  238. while (remain > 0) {
  239. /* Operation in this page
  240. *
  241. * page_base = page offset within aperture
  242. * page_offset = offset within page
  243. * page_length = bytes to copy for this page
  244. */
  245. page_base = (offset & ~(PAGE_SIZE-1));
  246. page_offset = offset & (PAGE_SIZE-1);
  247. page_length = remain;
  248. if ((page_offset + remain) > PAGE_SIZE)
  249. page_length = PAGE_SIZE - page_offset;
  250. ret = fast_shmem_read(obj_priv->pages,
  251. page_base, page_offset,
  252. user_data, page_length);
  253. if (ret)
  254. goto fail_put_pages;
  255. remain -= page_length;
  256. user_data += page_length;
  257. offset += page_length;
  258. }
  259. fail_put_pages:
  260. i915_gem_object_put_pages(obj);
  261. fail_unlock:
  262. mutex_unlock(&dev->struct_mutex);
  263. return ret;
  264. }
  265. static int
  266. i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
  267. {
  268. int ret;
  269. ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
  270. /* If we've insufficient memory to map in the pages, attempt
  271. * to make some space by throwing out some old buffers.
  272. */
  273. if (ret == -ENOMEM) {
  274. struct drm_device *dev = obj->dev;
  275. ret = i915_gem_evict_something(dev, obj->size,
  276. i915_gem_get_gtt_alignment(obj));
  277. if (ret)
  278. return ret;
  279. ret = i915_gem_object_get_pages(obj, 0);
  280. }
  281. return ret;
  282. }
  283. /**
  284. * This is the fallback shmem pread path, which allocates temporary storage
  285. * in kernel space to copy_to_user into outside of the struct_mutex, so we
  286. * can copy out of the object's backing pages while holding the struct mutex
  287. * and not take page faults.
  288. */
  289. static int
  290. i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
  291. struct drm_i915_gem_pread *args,
  292. struct drm_file *file_priv)
  293. {
  294. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  295. struct mm_struct *mm = current->mm;
  296. struct page **user_pages;
  297. ssize_t remain;
  298. loff_t offset, pinned_pages, i;
  299. loff_t first_data_page, last_data_page, num_pages;
  300. int shmem_page_index, shmem_page_offset;
  301. int data_page_index, data_page_offset;
  302. int page_length;
  303. int ret;
  304. uint64_t data_ptr = args->data_ptr;
  305. int do_bit17_swizzling;
  306. remain = args->size;
  307. /* Pin the user pages containing the data. We can't fault while
  308. * holding the struct mutex, yet we want to hold it while
  309. * dereferencing the user data.
  310. */
  311. first_data_page = data_ptr / PAGE_SIZE;
  312. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  313. num_pages = last_data_page - first_data_page + 1;
  314. user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
  315. if (user_pages == NULL)
  316. return -ENOMEM;
  317. down_read(&mm->mmap_sem);
  318. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  319. num_pages, 1, 0, user_pages, NULL);
  320. up_read(&mm->mmap_sem);
  321. if (pinned_pages < num_pages) {
  322. ret = -EFAULT;
  323. goto fail_put_user_pages;
  324. }
  325. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  326. mutex_lock(&dev->struct_mutex);
  327. ret = i915_gem_object_get_pages_or_evict(obj);
  328. if (ret)
  329. goto fail_unlock;
  330. ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
  331. args->size);
  332. if (ret != 0)
  333. goto fail_put_pages;
  334. obj_priv = to_intel_bo(obj);
  335. offset = args->offset;
  336. while (remain > 0) {
  337. /* Operation in this page
  338. *
  339. * shmem_page_index = page number within shmem file
  340. * shmem_page_offset = offset within page in shmem file
  341. * data_page_index = page number in get_user_pages return
  342. * data_page_offset = offset with data_page_index page.
  343. * page_length = bytes to copy for this page
  344. */
  345. shmem_page_index = offset / PAGE_SIZE;
  346. shmem_page_offset = offset & ~PAGE_MASK;
  347. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  348. data_page_offset = data_ptr & ~PAGE_MASK;
  349. page_length = remain;
  350. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  351. page_length = PAGE_SIZE - shmem_page_offset;
  352. if ((data_page_offset + page_length) > PAGE_SIZE)
  353. page_length = PAGE_SIZE - data_page_offset;
  354. if (do_bit17_swizzling) {
  355. slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
  356. shmem_page_offset,
  357. user_pages[data_page_index],
  358. data_page_offset,
  359. page_length,
  360. 1);
  361. } else {
  362. slow_shmem_copy(user_pages[data_page_index],
  363. data_page_offset,
  364. obj_priv->pages[shmem_page_index],
  365. shmem_page_offset,
  366. page_length);
  367. }
  368. remain -= page_length;
  369. data_ptr += page_length;
  370. offset += page_length;
  371. }
  372. fail_put_pages:
  373. i915_gem_object_put_pages(obj);
  374. fail_unlock:
  375. mutex_unlock(&dev->struct_mutex);
  376. fail_put_user_pages:
  377. for (i = 0; i < pinned_pages; i++) {
  378. SetPageDirty(user_pages[i]);
  379. page_cache_release(user_pages[i]);
  380. }
  381. drm_free_large(user_pages);
  382. return ret;
  383. }
  384. /**
  385. * Reads data from the object referenced by handle.
  386. *
  387. * On error, the contents of *data are undefined.
  388. */
  389. int
  390. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  391. struct drm_file *file_priv)
  392. {
  393. struct drm_i915_gem_pread *args = data;
  394. struct drm_gem_object *obj;
  395. struct drm_i915_gem_object *obj_priv;
  396. int ret;
  397. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  398. if (obj == NULL)
  399. return -ENOENT;
  400. obj_priv = to_intel_bo(obj);
  401. /* Bounds check source.
  402. *
  403. * XXX: This could use review for overflow issues...
  404. */
  405. if (args->offset > obj->size || args->size > obj->size ||
  406. args->offset + args->size > obj->size) {
  407. drm_gem_object_unreference_unlocked(obj);
  408. return -EINVAL;
  409. }
  410. if (i915_gem_object_needs_bit17_swizzle(obj)) {
  411. ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
  412. } else {
  413. ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
  414. if (ret != 0)
  415. ret = i915_gem_shmem_pread_slow(dev, obj, args,
  416. file_priv);
  417. }
  418. drm_gem_object_unreference_unlocked(obj);
  419. return ret;
  420. }
  421. /* This is the fast write path which cannot handle
  422. * page faults in the source data
  423. */
  424. static inline int
  425. fast_user_write(struct io_mapping *mapping,
  426. loff_t page_base, int page_offset,
  427. char __user *user_data,
  428. int length)
  429. {
  430. char *vaddr_atomic;
  431. unsigned long unwritten;
  432. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base, KM_USER0);
  433. unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
  434. user_data, length);
  435. io_mapping_unmap_atomic(vaddr_atomic, KM_USER0);
  436. if (unwritten)
  437. return -EFAULT;
  438. return 0;
  439. }
  440. /* Here's the write path which can sleep for
  441. * page faults
  442. */
  443. static inline void
  444. slow_kernel_write(struct io_mapping *mapping,
  445. loff_t gtt_base, int gtt_offset,
  446. struct page *user_page, int user_offset,
  447. int length)
  448. {
  449. char __iomem *dst_vaddr;
  450. char *src_vaddr;
  451. dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
  452. src_vaddr = kmap(user_page);
  453. memcpy_toio(dst_vaddr + gtt_offset,
  454. src_vaddr + user_offset,
  455. length);
  456. kunmap(user_page);
  457. io_mapping_unmap(dst_vaddr);
  458. }
  459. static inline int
  460. fast_shmem_write(struct page **pages,
  461. loff_t page_base, int page_offset,
  462. char __user *data,
  463. int length)
  464. {
  465. char __iomem *vaddr;
  466. unsigned long unwritten;
  467. vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
  468. if (vaddr == NULL)
  469. return -ENOMEM;
  470. unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
  471. kunmap_atomic(vaddr, KM_USER0);
  472. if (unwritten)
  473. return -EFAULT;
  474. return 0;
  475. }
  476. /**
  477. * This is the fast pwrite path, where we copy the data directly from the
  478. * user into the GTT, uncached.
  479. */
  480. static int
  481. i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  482. struct drm_i915_gem_pwrite *args,
  483. struct drm_file *file_priv)
  484. {
  485. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  486. drm_i915_private_t *dev_priv = dev->dev_private;
  487. ssize_t remain;
  488. loff_t offset, page_base;
  489. char __user *user_data;
  490. int page_offset, page_length;
  491. int ret;
  492. user_data = (char __user *) (uintptr_t) args->data_ptr;
  493. remain = args->size;
  494. if (!access_ok(VERIFY_READ, user_data, remain))
  495. return -EFAULT;
  496. mutex_lock(&dev->struct_mutex);
  497. ret = i915_gem_object_pin(obj, 0);
  498. if (ret) {
  499. mutex_unlock(&dev->struct_mutex);
  500. return ret;
  501. }
  502. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  503. if (ret)
  504. goto fail;
  505. obj_priv = to_intel_bo(obj);
  506. offset = obj_priv->gtt_offset + args->offset;
  507. while (remain > 0) {
  508. /* Operation in this page
  509. *
  510. * page_base = page offset within aperture
  511. * page_offset = offset within page
  512. * page_length = bytes to copy for this page
  513. */
  514. page_base = (offset & ~(PAGE_SIZE-1));
  515. page_offset = offset & (PAGE_SIZE-1);
  516. page_length = remain;
  517. if ((page_offset + remain) > PAGE_SIZE)
  518. page_length = PAGE_SIZE - page_offset;
  519. ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
  520. page_offset, user_data, page_length);
  521. /* If we get a fault while copying data, then (presumably) our
  522. * source page isn't available. Return the error and we'll
  523. * retry in the slow path.
  524. */
  525. if (ret)
  526. goto fail;
  527. remain -= page_length;
  528. user_data += page_length;
  529. offset += page_length;
  530. }
  531. fail:
  532. i915_gem_object_unpin(obj);
  533. mutex_unlock(&dev->struct_mutex);
  534. return ret;
  535. }
  536. /**
  537. * This is the fallback GTT pwrite path, which uses get_user_pages to pin
  538. * the memory and maps it using kmap_atomic for copying.
  539. *
  540. * This code resulted in x11perf -rgb10text consuming about 10% more CPU
  541. * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
  542. */
  543. static int
  544. i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  545. struct drm_i915_gem_pwrite *args,
  546. struct drm_file *file_priv)
  547. {
  548. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  549. drm_i915_private_t *dev_priv = dev->dev_private;
  550. ssize_t remain;
  551. loff_t gtt_page_base, offset;
  552. loff_t first_data_page, last_data_page, num_pages;
  553. loff_t pinned_pages, i;
  554. struct page **user_pages;
  555. struct mm_struct *mm = current->mm;
  556. int gtt_page_offset, data_page_offset, data_page_index, page_length;
  557. int ret;
  558. uint64_t data_ptr = args->data_ptr;
  559. remain = args->size;
  560. /* Pin the user pages containing the data. We can't fault while
  561. * holding the struct mutex, and all of the pwrite implementations
  562. * want to hold it while dereferencing the user data.
  563. */
  564. first_data_page = data_ptr / PAGE_SIZE;
  565. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  566. num_pages = last_data_page - first_data_page + 1;
  567. user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
  568. if (user_pages == NULL)
  569. return -ENOMEM;
  570. down_read(&mm->mmap_sem);
  571. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  572. num_pages, 0, 0, user_pages, NULL);
  573. up_read(&mm->mmap_sem);
  574. if (pinned_pages < num_pages) {
  575. ret = -EFAULT;
  576. goto out_unpin_pages;
  577. }
  578. mutex_lock(&dev->struct_mutex);
  579. ret = i915_gem_object_pin(obj, 0);
  580. if (ret)
  581. goto out_unlock;
  582. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  583. if (ret)
  584. goto out_unpin_object;
  585. obj_priv = to_intel_bo(obj);
  586. offset = obj_priv->gtt_offset + args->offset;
  587. while (remain > 0) {
  588. /* Operation in this page
  589. *
  590. * gtt_page_base = page offset within aperture
  591. * gtt_page_offset = offset within page in aperture
  592. * data_page_index = page number in get_user_pages return
  593. * data_page_offset = offset with data_page_index page.
  594. * page_length = bytes to copy for this page
  595. */
  596. gtt_page_base = offset & PAGE_MASK;
  597. gtt_page_offset = offset & ~PAGE_MASK;
  598. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  599. data_page_offset = data_ptr & ~PAGE_MASK;
  600. page_length = remain;
  601. if ((gtt_page_offset + page_length) > PAGE_SIZE)
  602. page_length = PAGE_SIZE - gtt_page_offset;
  603. if ((data_page_offset + page_length) > PAGE_SIZE)
  604. page_length = PAGE_SIZE - data_page_offset;
  605. slow_kernel_write(dev_priv->mm.gtt_mapping,
  606. gtt_page_base, gtt_page_offset,
  607. user_pages[data_page_index],
  608. data_page_offset,
  609. page_length);
  610. remain -= page_length;
  611. offset += page_length;
  612. data_ptr += page_length;
  613. }
  614. out_unpin_object:
  615. i915_gem_object_unpin(obj);
  616. out_unlock:
  617. mutex_unlock(&dev->struct_mutex);
  618. out_unpin_pages:
  619. for (i = 0; i < pinned_pages; i++)
  620. page_cache_release(user_pages[i]);
  621. drm_free_large(user_pages);
  622. return ret;
  623. }
  624. /**
  625. * This is the fast shmem pwrite path, which attempts to directly
  626. * copy_from_user into the kmapped pages backing the object.
  627. */
  628. static int
  629. i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  630. struct drm_i915_gem_pwrite *args,
  631. struct drm_file *file_priv)
  632. {
  633. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  634. ssize_t remain;
  635. loff_t offset, page_base;
  636. char __user *user_data;
  637. int page_offset, page_length;
  638. int ret;
  639. user_data = (char __user *) (uintptr_t) args->data_ptr;
  640. remain = args->size;
  641. mutex_lock(&dev->struct_mutex);
  642. ret = i915_gem_object_get_pages(obj, 0);
  643. if (ret != 0)
  644. goto fail_unlock;
  645. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  646. if (ret != 0)
  647. goto fail_put_pages;
  648. obj_priv = to_intel_bo(obj);
  649. offset = args->offset;
  650. obj_priv->dirty = 1;
  651. while (remain > 0) {
  652. /* Operation in this page
  653. *
  654. * page_base = page offset within aperture
  655. * page_offset = offset within page
  656. * page_length = bytes to copy for this page
  657. */
  658. page_base = (offset & ~(PAGE_SIZE-1));
  659. page_offset = offset & (PAGE_SIZE-1);
  660. page_length = remain;
  661. if ((page_offset + remain) > PAGE_SIZE)
  662. page_length = PAGE_SIZE - page_offset;
  663. ret = fast_shmem_write(obj_priv->pages,
  664. page_base, page_offset,
  665. user_data, page_length);
  666. if (ret)
  667. goto fail_put_pages;
  668. remain -= page_length;
  669. user_data += page_length;
  670. offset += page_length;
  671. }
  672. fail_put_pages:
  673. i915_gem_object_put_pages(obj);
  674. fail_unlock:
  675. mutex_unlock(&dev->struct_mutex);
  676. return ret;
  677. }
  678. /**
  679. * This is the fallback shmem pwrite path, which uses get_user_pages to pin
  680. * the memory and maps it using kmap_atomic for copying.
  681. *
  682. * This avoids taking mmap_sem for faulting on the user's address while the
  683. * struct_mutex is held.
  684. */
  685. static int
  686. i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  687. struct drm_i915_gem_pwrite *args,
  688. struct drm_file *file_priv)
  689. {
  690. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  691. struct mm_struct *mm = current->mm;
  692. struct page **user_pages;
  693. ssize_t remain;
  694. loff_t offset, pinned_pages, i;
  695. loff_t first_data_page, last_data_page, num_pages;
  696. int shmem_page_index, shmem_page_offset;
  697. int data_page_index, data_page_offset;
  698. int page_length;
  699. int ret;
  700. uint64_t data_ptr = args->data_ptr;
  701. int do_bit17_swizzling;
  702. remain = args->size;
  703. /* Pin the user pages containing the data. We can't fault while
  704. * holding the struct mutex, and all of the pwrite implementations
  705. * want to hold it while dereferencing the user data.
  706. */
  707. first_data_page = data_ptr / PAGE_SIZE;
  708. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  709. num_pages = last_data_page - first_data_page + 1;
  710. user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
  711. if (user_pages == NULL)
  712. return -ENOMEM;
  713. down_read(&mm->mmap_sem);
  714. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  715. num_pages, 0, 0, user_pages, NULL);
  716. up_read(&mm->mmap_sem);
  717. if (pinned_pages < num_pages) {
  718. ret = -EFAULT;
  719. goto fail_put_user_pages;
  720. }
  721. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  722. mutex_lock(&dev->struct_mutex);
  723. ret = i915_gem_object_get_pages_or_evict(obj);
  724. if (ret)
  725. goto fail_unlock;
  726. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  727. if (ret != 0)
  728. goto fail_put_pages;
  729. obj_priv = to_intel_bo(obj);
  730. offset = args->offset;
  731. obj_priv->dirty = 1;
  732. while (remain > 0) {
  733. /* Operation in this page
  734. *
  735. * shmem_page_index = page number within shmem file
  736. * shmem_page_offset = offset within page in shmem file
  737. * data_page_index = page number in get_user_pages return
  738. * data_page_offset = offset with data_page_index page.
  739. * page_length = bytes to copy for this page
  740. */
  741. shmem_page_index = offset / PAGE_SIZE;
  742. shmem_page_offset = offset & ~PAGE_MASK;
  743. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  744. data_page_offset = data_ptr & ~PAGE_MASK;
  745. page_length = remain;
  746. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  747. page_length = PAGE_SIZE - shmem_page_offset;
  748. if ((data_page_offset + page_length) > PAGE_SIZE)
  749. page_length = PAGE_SIZE - data_page_offset;
  750. if (do_bit17_swizzling) {
  751. slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
  752. shmem_page_offset,
  753. user_pages[data_page_index],
  754. data_page_offset,
  755. page_length,
  756. 0);
  757. } else {
  758. slow_shmem_copy(obj_priv->pages[shmem_page_index],
  759. shmem_page_offset,
  760. user_pages[data_page_index],
  761. data_page_offset,
  762. page_length);
  763. }
  764. remain -= page_length;
  765. data_ptr += page_length;
  766. offset += page_length;
  767. }
  768. fail_put_pages:
  769. i915_gem_object_put_pages(obj);
  770. fail_unlock:
  771. mutex_unlock(&dev->struct_mutex);
  772. fail_put_user_pages:
  773. for (i = 0; i < pinned_pages; i++)
  774. page_cache_release(user_pages[i]);
  775. drm_free_large(user_pages);
  776. return ret;
  777. }
  778. /**
  779. * Writes data to the object referenced by handle.
  780. *
  781. * On error, the contents of the buffer that were to be modified are undefined.
  782. */
  783. int
  784. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  785. struct drm_file *file_priv)
  786. {
  787. struct drm_i915_gem_pwrite *args = data;
  788. struct drm_gem_object *obj;
  789. struct drm_i915_gem_object *obj_priv;
  790. int ret = 0;
  791. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  792. if (obj == NULL)
  793. return -ENOENT;
  794. obj_priv = to_intel_bo(obj);
  795. /* Bounds check destination.
  796. *
  797. * XXX: This could use review for overflow issues...
  798. */
  799. if (args->offset > obj->size || args->size > obj->size ||
  800. args->offset + args->size > obj->size) {
  801. drm_gem_object_unreference_unlocked(obj);
  802. return -EINVAL;
  803. }
  804. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  805. * it would end up going through the fenced access, and we'll get
  806. * different detiling behavior between reading and writing.
  807. * pread/pwrite currently are reading and writing from the CPU
  808. * perspective, requiring manual detiling by the client.
  809. */
  810. if (obj_priv->phys_obj)
  811. ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
  812. else if (obj_priv->tiling_mode == I915_TILING_NONE &&
  813. dev->gtt_total != 0 &&
  814. obj->write_domain != I915_GEM_DOMAIN_CPU) {
  815. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
  816. if (ret == -EFAULT) {
  817. ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
  818. file_priv);
  819. }
  820. } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
  821. ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
  822. } else {
  823. ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
  824. if (ret == -EFAULT) {
  825. ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
  826. file_priv);
  827. }
  828. }
  829. #if WATCH_PWRITE
  830. if (ret)
  831. DRM_INFO("pwrite failed %d\n", ret);
  832. #endif
  833. drm_gem_object_unreference_unlocked(obj);
  834. return ret;
  835. }
  836. /**
  837. * Called when user space prepares to use an object with the CPU, either
  838. * through the mmap ioctl's mapping or a GTT mapping.
  839. */
  840. int
  841. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  842. struct drm_file *file_priv)
  843. {
  844. struct drm_i915_private *dev_priv = dev->dev_private;
  845. struct drm_i915_gem_set_domain *args = data;
  846. struct drm_gem_object *obj;
  847. struct drm_i915_gem_object *obj_priv;
  848. uint32_t read_domains = args->read_domains;
  849. uint32_t write_domain = args->write_domain;
  850. int ret;
  851. if (!(dev->driver->driver_features & DRIVER_GEM))
  852. return -ENODEV;
  853. /* Only handle setting domains to types used by the CPU. */
  854. if (write_domain & I915_GEM_GPU_DOMAINS)
  855. return -EINVAL;
  856. if (read_domains & I915_GEM_GPU_DOMAINS)
  857. return -EINVAL;
  858. /* Having something in the write domain implies it's in the read
  859. * domain, and only that read domain. Enforce that in the request.
  860. */
  861. if (write_domain != 0 && read_domains != write_domain)
  862. return -EINVAL;
  863. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  864. if (obj == NULL)
  865. return -ENOENT;
  866. obj_priv = to_intel_bo(obj);
  867. mutex_lock(&dev->struct_mutex);
  868. intel_mark_busy(dev, obj);
  869. #if WATCH_BUF
  870. DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
  871. obj, obj->size, read_domains, write_domain);
  872. #endif
  873. if (read_domains & I915_GEM_DOMAIN_GTT) {
  874. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  875. /* Update the LRU on the fence for the CPU access that's
  876. * about to occur.
  877. */
  878. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  879. struct drm_i915_fence_reg *reg =
  880. &dev_priv->fence_regs[obj_priv->fence_reg];
  881. list_move_tail(&reg->lru_list,
  882. &dev_priv->mm.fence_list);
  883. }
  884. /* Silently promote "you're not bound, there was nothing to do"
  885. * to success, since the client was just asking us to
  886. * make sure everything was done.
  887. */
  888. if (ret == -EINVAL)
  889. ret = 0;
  890. } else {
  891. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  892. }
  893. /* Maintain LRU order of "inactive" objects */
  894. if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
  895. list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  896. drm_gem_object_unreference(obj);
  897. mutex_unlock(&dev->struct_mutex);
  898. return ret;
  899. }
  900. /**
  901. * Called when user space has done writes to this buffer
  902. */
  903. int
  904. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  905. struct drm_file *file_priv)
  906. {
  907. struct drm_i915_gem_sw_finish *args = data;
  908. struct drm_gem_object *obj;
  909. struct drm_i915_gem_object *obj_priv;
  910. int ret = 0;
  911. if (!(dev->driver->driver_features & DRIVER_GEM))
  912. return -ENODEV;
  913. mutex_lock(&dev->struct_mutex);
  914. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  915. if (obj == NULL) {
  916. mutex_unlock(&dev->struct_mutex);
  917. return -ENOENT;
  918. }
  919. #if WATCH_BUF
  920. DRM_INFO("%s: sw_finish %d (%p %zd)\n",
  921. __func__, args->handle, obj, obj->size);
  922. #endif
  923. obj_priv = to_intel_bo(obj);
  924. /* Pinned buffers may be scanout, so flush the cache */
  925. if (obj_priv->pin_count)
  926. i915_gem_object_flush_cpu_write_domain(obj);
  927. drm_gem_object_unreference(obj);
  928. mutex_unlock(&dev->struct_mutex);
  929. return ret;
  930. }
  931. /**
  932. * Maps the contents of an object, returning the address it is mapped
  933. * into.
  934. *
  935. * While the mapping holds a reference on the contents of the object, it doesn't
  936. * imply a ref on the object itself.
  937. */
  938. int
  939. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  940. struct drm_file *file_priv)
  941. {
  942. struct drm_i915_gem_mmap *args = data;
  943. struct drm_gem_object *obj;
  944. loff_t offset;
  945. unsigned long addr;
  946. if (!(dev->driver->driver_features & DRIVER_GEM))
  947. return -ENODEV;
  948. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  949. if (obj == NULL)
  950. return -ENOENT;
  951. offset = args->offset;
  952. down_write(&current->mm->mmap_sem);
  953. addr = do_mmap(obj->filp, 0, args->size,
  954. PROT_READ | PROT_WRITE, MAP_SHARED,
  955. args->offset);
  956. up_write(&current->mm->mmap_sem);
  957. drm_gem_object_unreference_unlocked(obj);
  958. if (IS_ERR((void *)addr))
  959. return addr;
  960. args->addr_ptr = (uint64_t) addr;
  961. return 0;
  962. }
  963. /**
  964. * i915_gem_fault - fault a page into the GTT
  965. * vma: VMA in question
  966. * vmf: fault info
  967. *
  968. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  969. * from userspace. The fault handler takes care of binding the object to
  970. * the GTT (if needed), allocating and programming a fence register (again,
  971. * only if needed based on whether the old reg is still valid or the object
  972. * is tiled) and inserting a new PTE into the faulting process.
  973. *
  974. * Note that the faulting process may involve evicting existing objects
  975. * from the GTT and/or fence registers to make room. So performance may
  976. * suffer if the GTT working set is large or there are few fence registers
  977. * left.
  978. */
  979. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  980. {
  981. struct drm_gem_object *obj = vma->vm_private_data;
  982. struct drm_device *dev = obj->dev;
  983. drm_i915_private_t *dev_priv = dev->dev_private;
  984. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  985. pgoff_t page_offset;
  986. unsigned long pfn;
  987. int ret = 0;
  988. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  989. /* We don't use vmf->pgoff since that has the fake offset */
  990. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  991. PAGE_SHIFT;
  992. /* Now bind it into the GTT if needed */
  993. mutex_lock(&dev->struct_mutex);
  994. if (!obj_priv->gtt_space) {
  995. ret = i915_gem_object_bind_to_gtt(obj, 0);
  996. if (ret)
  997. goto unlock;
  998. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  999. if (ret)
  1000. goto unlock;
  1001. }
  1002. /* Need a new fence register? */
  1003. if (obj_priv->tiling_mode != I915_TILING_NONE) {
  1004. ret = i915_gem_object_get_fence_reg(obj, true);
  1005. if (ret)
  1006. goto unlock;
  1007. }
  1008. if (i915_gem_object_is_inactive(obj_priv))
  1009. list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  1010. pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
  1011. page_offset;
  1012. /* Finally, remap it using the new GTT offset */
  1013. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  1014. unlock:
  1015. mutex_unlock(&dev->struct_mutex);
  1016. switch (ret) {
  1017. case 0:
  1018. case -ERESTARTSYS:
  1019. return VM_FAULT_NOPAGE;
  1020. case -ENOMEM:
  1021. case -EAGAIN:
  1022. return VM_FAULT_OOM;
  1023. default:
  1024. return VM_FAULT_SIGBUS;
  1025. }
  1026. }
  1027. /**
  1028. * i915_gem_create_mmap_offset - create a fake mmap offset for an object
  1029. * @obj: obj in question
  1030. *
  1031. * GEM memory mapping works by handing back to userspace a fake mmap offset
  1032. * it can use in a subsequent mmap(2) call. The DRM core code then looks
  1033. * up the object based on the offset and sets up the various memory mapping
  1034. * structures.
  1035. *
  1036. * This routine allocates and attaches a fake offset for @obj.
  1037. */
  1038. static int
  1039. i915_gem_create_mmap_offset(struct drm_gem_object *obj)
  1040. {
  1041. struct drm_device *dev = obj->dev;
  1042. struct drm_gem_mm *mm = dev->mm_private;
  1043. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1044. struct drm_map_list *list;
  1045. struct drm_local_map *map;
  1046. int ret = 0;
  1047. /* Set the object up for mmap'ing */
  1048. list = &obj->map_list;
  1049. list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
  1050. if (!list->map)
  1051. return -ENOMEM;
  1052. map = list->map;
  1053. map->type = _DRM_GEM;
  1054. map->size = obj->size;
  1055. map->handle = obj;
  1056. /* Get a DRM GEM mmap offset allocated... */
  1057. list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
  1058. obj->size / PAGE_SIZE, 0, 0);
  1059. if (!list->file_offset_node) {
  1060. DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
  1061. ret = -ENOMEM;
  1062. goto out_free_list;
  1063. }
  1064. list->file_offset_node = drm_mm_get_block(list->file_offset_node,
  1065. obj->size / PAGE_SIZE, 0);
  1066. if (!list->file_offset_node) {
  1067. ret = -ENOMEM;
  1068. goto out_free_list;
  1069. }
  1070. list->hash.key = list->file_offset_node->start;
  1071. if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
  1072. DRM_ERROR("failed to add to map hash\n");
  1073. ret = -ENOMEM;
  1074. goto out_free_mm;
  1075. }
  1076. /* By now we should be all set, any drm_mmap request on the offset
  1077. * below will get to our mmap & fault handler */
  1078. obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
  1079. return 0;
  1080. out_free_mm:
  1081. drm_mm_put_block(list->file_offset_node);
  1082. out_free_list:
  1083. kfree(list->map);
  1084. return ret;
  1085. }
  1086. /**
  1087. * i915_gem_release_mmap - remove physical page mappings
  1088. * @obj: obj in question
  1089. *
  1090. * Preserve the reservation of the mmapping with the DRM core code, but
  1091. * relinquish ownership of the pages back to the system.
  1092. *
  1093. * It is vital that we remove the page mapping if we have mapped a tiled
  1094. * object through the GTT and then lose the fence register due to
  1095. * resource pressure. Similarly if the object has been moved out of the
  1096. * aperture, than pages mapped into userspace must be revoked. Removing the
  1097. * mapping will then trigger a page fault on the next user access, allowing
  1098. * fixup by i915_gem_fault().
  1099. */
  1100. void
  1101. i915_gem_release_mmap(struct drm_gem_object *obj)
  1102. {
  1103. struct drm_device *dev = obj->dev;
  1104. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1105. if (dev->dev_mapping)
  1106. unmap_mapping_range(dev->dev_mapping,
  1107. obj_priv->mmap_offset, obj->size, 1);
  1108. }
  1109. static void
  1110. i915_gem_free_mmap_offset(struct drm_gem_object *obj)
  1111. {
  1112. struct drm_device *dev = obj->dev;
  1113. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1114. struct drm_gem_mm *mm = dev->mm_private;
  1115. struct drm_map_list *list;
  1116. list = &obj->map_list;
  1117. drm_ht_remove_item(&mm->offset_hash, &list->hash);
  1118. if (list->file_offset_node) {
  1119. drm_mm_put_block(list->file_offset_node);
  1120. list->file_offset_node = NULL;
  1121. }
  1122. if (list->map) {
  1123. kfree(list->map);
  1124. list->map = NULL;
  1125. }
  1126. obj_priv->mmap_offset = 0;
  1127. }
  1128. /**
  1129. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1130. * @obj: object to check
  1131. *
  1132. * Return the required GTT alignment for an object, taking into account
  1133. * potential fence register mapping if needed.
  1134. */
  1135. static uint32_t
  1136. i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
  1137. {
  1138. struct drm_device *dev = obj->dev;
  1139. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1140. int start, i;
  1141. /*
  1142. * Minimum alignment is 4k (GTT page size), but might be greater
  1143. * if a fence register is needed for the object.
  1144. */
  1145. if (INTEL_INFO(dev)->gen >= 4 || obj_priv->tiling_mode == I915_TILING_NONE)
  1146. return 4096;
  1147. /*
  1148. * Previous chips need to be aligned to the size of the smallest
  1149. * fence register that can contain the object.
  1150. */
  1151. if (INTEL_INFO(dev)->gen == 3)
  1152. start = 1024*1024;
  1153. else
  1154. start = 512*1024;
  1155. for (i = start; i < obj->size; i <<= 1)
  1156. ;
  1157. return i;
  1158. }
  1159. /**
  1160. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1161. * @dev: DRM device
  1162. * @data: GTT mapping ioctl data
  1163. * @file_priv: GEM object info
  1164. *
  1165. * Simply returns the fake offset to userspace so it can mmap it.
  1166. * The mmap call will end up in drm_gem_mmap(), which will set things
  1167. * up so we can get faults in the handler above.
  1168. *
  1169. * The fault handler will take care of binding the object into the GTT
  1170. * (since it may have been evicted to make room for something), allocating
  1171. * a fence register, and mapping the appropriate aperture address into
  1172. * userspace.
  1173. */
  1174. int
  1175. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1176. struct drm_file *file_priv)
  1177. {
  1178. struct drm_i915_gem_mmap_gtt *args = data;
  1179. struct drm_gem_object *obj;
  1180. struct drm_i915_gem_object *obj_priv;
  1181. int ret;
  1182. if (!(dev->driver->driver_features & DRIVER_GEM))
  1183. return -ENODEV;
  1184. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  1185. if (obj == NULL)
  1186. return -ENOENT;
  1187. mutex_lock(&dev->struct_mutex);
  1188. obj_priv = to_intel_bo(obj);
  1189. if (obj_priv->madv != I915_MADV_WILLNEED) {
  1190. DRM_ERROR("Attempting to mmap a purgeable buffer\n");
  1191. drm_gem_object_unreference(obj);
  1192. mutex_unlock(&dev->struct_mutex);
  1193. return -EINVAL;
  1194. }
  1195. if (!obj_priv->mmap_offset) {
  1196. ret = i915_gem_create_mmap_offset(obj);
  1197. if (ret) {
  1198. drm_gem_object_unreference(obj);
  1199. mutex_unlock(&dev->struct_mutex);
  1200. return ret;
  1201. }
  1202. }
  1203. args->offset = obj_priv->mmap_offset;
  1204. /*
  1205. * Pull it into the GTT so that we have a page list (makes the
  1206. * initial fault faster and any subsequent flushing possible).
  1207. */
  1208. if (!obj_priv->agp_mem) {
  1209. ret = i915_gem_object_bind_to_gtt(obj, 0);
  1210. if (ret) {
  1211. drm_gem_object_unreference(obj);
  1212. mutex_unlock(&dev->struct_mutex);
  1213. return ret;
  1214. }
  1215. }
  1216. drm_gem_object_unreference(obj);
  1217. mutex_unlock(&dev->struct_mutex);
  1218. return 0;
  1219. }
  1220. void
  1221. i915_gem_object_put_pages(struct drm_gem_object *obj)
  1222. {
  1223. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1224. int page_count = obj->size / PAGE_SIZE;
  1225. int i;
  1226. BUG_ON(obj_priv->pages_refcount == 0);
  1227. BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
  1228. if (--obj_priv->pages_refcount != 0)
  1229. return;
  1230. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1231. i915_gem_object_save_bit_17_swizzle(obj);
  1232. if (obj_priv->madv == I915_MADV_DONTNEED)
  1233. obj_priv->dirty = 0;
  1234. for (i = 0; i < page_count; i++) {
  1235. if (obj_priv->dirty)
  1236. set_page_dirty(obj_priv->pages[i]);
  1237. if (obj_priv->madv == I915_MADV_WILLNEED)
  1238. mark_page_accessed(obj_priv->pages[i]);
  1239. page_cache_release(obj_priv->pages[i]);
  1240. }
  1241. obj_priv->dirty = 0;
  1242. drm_free_large(obj_priv->pages);
  1243. obj_priv->pages = NULL;
  1244. }
  1245. static uint32_t
  1246. i915_gem_next_request_seqno(struct drm_device *dev,
  1247. struct intel_ring_buffer *ring)
  1248. {
  1249. drm_i915_private_t *dev_priv = dev->dev_private;
  1250. ring->outstanding_lazy_request = true;
  1251. return dev_priv->next_seqno;
  1252. }
  1253. static void
  1254. i915_gem_object_move_to_active(struct drm_gem_object *obj,
  1255. struct intel_ring_buffer *ring)
  1256. {
  1257. struct drm_device *dev = obj->dev;
  1258. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1259. uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
  1260. BUG_ON(ring == NULL);
  1261. obj_priv->ring = ring;
  1262. /* Add a reference if we're newly entering the active list. */
  1263. if (!obj_priv->active) {
  1264. drm_gem_object_reference(obj);
  1265. obj_priv->active = 1;
  1266. }
  1267. /* Move from whatever list we were on to the tail of execution. */
  1268. list_move_tail(&obj_priv->list, &ring->active_list);
  1269. obj_priv->last_rendering_seqno = seqno;
  1270. }
  1271. static void
  1272. i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
  1273. {
  1274. struct drm_device *dev = obj->dev;
  1275. drm_i915_private_t *dev_priv = dev->dev_private;
  1276. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1277. BUG_ON(!obj_priv->active);
  1278. list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
  1279. obj_priv->last_rendering_seqno = 0;
  1280. }
  1281. /* Immediately discard the backing storage */
  1282. static void
  1283. i915_gem_object_truncate(struct drm_gem_object *obj)
  1284. {
  1285. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1286. struct inode *inode;
  1287. /* Our goal here is to return as much of the memory as
  1288. * is possible back to the system as we are called from OOM.
  1289. * To do this we must instruct the shmfs to drop all of its
  1290. * backing pages, *now*. Here we mirror the actions taken
  1291. * when by shmem_delete_inode() to release the backing store.
  1292. */
  1293. inode = obj->filp->f_path.dentry->d_inode;
  1294. truncate_inode_pages(inode->i_mapping, 0);
  1295. if (inode->i_op->truncate_range)
  1296. inode->i_op->truncate_range(inode, 0, (loff_t)-1);
  1297. obj_priv->madv = __I915_MADV_PURGED;
  1298. }
  1299. static inline int
  1300. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
  1301. {
  1302. return obj_priv->madv == I915_MADV_DONTNEED;
  1303. }
  1304. static void
  1305. i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
  1306. {
  1307. struct drm_device *dev = obj->dev;
  1308. drm_i915_private_t *dev_priv = dev->dev_private;
  1309. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1310. i915_verify_inactive(dev, __FILE__, __LINE__);
  1311. if (obj_priv->pin_count != 0)
  1312. list_del_init(&obj_priv->list);
  1313. else
  1314. list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  1315. BUG_ON(!list_empty(&obj_priv->gpu_write_list));
  1316. obj_priv->last_rendering_seqno = 0;
  1317. obj_priv->ring = NULL;
  1318. if (obj_priv->active) {
  1319. obj_priv->active = 0;
  1320. drm_gem_object_unreference(obj);
  1321. }
  1322. i915_verify_inactive(dev, __FILE__, __LINE__);
  1323. }
  1324. static void
  1325. i915_gem_process_flushing_list(struct drm_device *dev,
  1326. uint32_t flush_domains,
  1327. struct intel_ring_buffer *ring)
  1328. {
  1329. drm_i915_private_t *dev_priv = dev->dev_private;
  1330. struct drm_i915_gem_object *obj_priv, *next;
  1331. list_for_each_entry_safe(obj_priv, next,
  1332. &dev_priv->mm.gpu_write_list,
  1333. gpu_write_list) {
  1334. struct drm_gem_object *obj = &obj_priv->base;
  1335. if (obj->write_domain & flush_domains &&
  1336. obj_priv->ring == ring) {
  1337. uint32_t old_write_domain = obj->write_domain;
  1338. obj->write_domain = 0;
  1339. list_del_init(&obj_priv->gpu_write_list);
  1340. i915_gem_object_move_to_active(obj, ring);
  1341. /* update the fence lru list */
  1342. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  1343. struct drm_i915_fence_reg *reg =
  1344. &dev_priv->fence_regs[obj_priv->fence_reg];
  1345. list_move_tail(&reg->lru_list,
  1346. &dev_priv->mm.fence_list);
  1347. }
  1348. trace_i915_gem_object_change_domain(obj,
  1349. obj->read_domains,
  1350. old_write_domain);
  1351. }
  1352. }
  1353. }
  1354. uint32_t
  1355. i915_add_request(struct drm_device *dev,
  1356. struct drm_file *file_priv,
  1357. struct drm_i915_gem_request *request,
  1358. struct intel_ring_buffer *ring)
  1359. {
  1360. drm_i915_private_t *dev_priv = dev->dev_private;
  1361. struct drm_i915_file_private *i915_file_priv = NULL;
  1362. uint32_t seqno;
  1363. int was_empty;
  1364. if (file_priv != NULL)
  1365. i915_file_priv = file_priv->driver_priv;
  1366. if (request == NULL) {
  1367. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1368. if (request == NULL)
  1369. return 0;
  1370. }
  1371. seqno = ring->add_request(dev, ring, file_priv, 0);
  1372. request->seqno = seqno;
  1373. request->ring = ring;
  1374. request->emitted_jiffies = jiffies;
  1375. was_empty = list_empty(&ring->request_list);
  1376. list_add_tail(&request->list, &ring->request_list);
  1377. if (i915_file_priv) {
  1378. list_add_tail(&request->client_list,
  1379. &i915_file_priv->mm.request_list);
  1380. } else {
  1381. INIT_LIST_HEAD(&request->client_list);
  1382. }
  1383. if (!dev_priv->mm.suspended) {
  1384. mod_timer(&dev_priv->hangcheck_timer,
  1385. jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
  1386. if (was_empty)
  1387. queue_delayed_work(dev_priv->wq,
  1388. &dev_priv->mm.retire_work, HZ);
  1389. }
  1390. return seqno;
  1391. }
  1392. /**
  1393. * Command execution barrier
  1394. *
  1395. * Ensures that all commands in the ring are finished
  1396. * before signalling the CPU
  1397. */
  1398. static void
  1399. i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
  1400. {
  1401. uint32_t flush_domains = 0;
  1402. /* The sampler always gets flushed on i965 (sigh) */
  1403. if (INTEL_INFO(dev)->gen >= 4)
  1404. flush_domains |= I915_GEM_DOMAIN_SAMPLER;
  1405. ring->flush(dev, ring,
  1406. I915_GEM_DOMAIN_COMMAND, flush_domains);
  1407. }
  1408. /**
  1409. * Returns true if seq1 is later than seq2.
  1410. */
  1411. bool
  1412. i915_seqno_passed(uint32_t seq1, uint32_t seq2)
  1413. {
  1414. return (int32_t)(seq1 - seq2) >= 0;
  1415. }
  1416. uint32_t
  1417. i915_get_gem_seqno(struct drm_device *dev,
  1418. struct intel_ring_buffer *ring)
  1419. {
  1420. return ring->get_gem_seqno(dev, ring);
  1421. }
  1422. /**
  1423. * This function clears the request list as sequence numbers are passed.
  1424. */
  1425. static void
  1426. i915_gem_retire_requests_ring(struct drm_device *dev,
  1427. struct intel_ring_buffer *ring)
  1428. {
  1429. drm_i915_private_t *dev_priv = dev->dev_private;
  1430. uint32_t seqno;
  1431. bool wedged;
  1432. if (!ring->status_page.page_addr ||
  1433. list_empty(&ring->request_list))
  1434. return;
  1435. seqno = i915_get_gem_seqno(dev, ring);
  1436. wedged = atomic_read(&dev_priv->mm.wedged);
  1437. while (!list_empty(&ring->request_list)) {
  1438. struct drm_i915_gem_request *request;
  1439. request = list_first_entry(&ring->request_list,
  1440. struct drm_i915_gem_request,
  1441. list);
  1442. if (!wedged && !i915_seqno_passed(seqno, request->seqno))
  1443. break;
  1444. trace_i915_gem_request_retire(dev, request->seqno);
  1445. list_del(&request->list);
  1446. list_del(&request->client_list);
  1447. kfree(request);
  1448. }
  1449. /* Move any buffers on the active list that are no longer referenced
  1450. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1451. */
  1452. while (!list_empty(&ring->active_list)) {
  1453. struct drm_gem_object *obj;
  1454. struct drm_i915_gem_object *obj_priv;
  1455. obj_priv = list_first_entry(&ring->active_list,
  1456. struct drm_i915_gem_object,
  1457. list);
  1458. if (!wedged &&
  1459. !i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
  1460. break;
  1461. obj = &obj_priv->base;
  1462. #if WATCH_LRU
  1463. DRM_INFO("%s: retire %d moves to inactive list %p\n",
  1464. __func__, request->seqno, obj);
  1465. #endif
  1466. if (obj->write_domain != 0)
  1467. i915_gem_object_move_to_flushing(obj);
  1468. else
  1469. i915_gem_object_move_to_inactive(obj);
  1470. }
  1471. if (unlikely (dev_priv->trace_irq_seqno &&
  1472. i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
  1473. ring->user_irq_put(dev, ring);
  1474. dev_priv->trace_irq_seqno = 0;
  1475. }
  1476. }
  1477. void
  1478. i915_gem_retire_requests(struct drm_device *dev)
  1479. {
  1480. drm_i915_private_t *dev_priv = dev->dev_private;
  1481. if (!list_empty(&dev_priv->mm.deferred_free_list)) {
  1482. struct drm_i915_gem_object *obj_priv, *tmp;
  1483. /* We must be careful that during unbind() we do not
  1484. * accidentally infinitely recurse into retire requests.
  1485. * Currently:
  1486. * retire -> free -> unbind -> wait -> retire_ring
  1487. */
  1488. list_for_each_entry_safe(obj_priv, tmp,
  1489. &dev_priv->mm.deferred_free_list,
  1490. list)
  1491. i915_gem_free_object_tail(&obj_priv->base);
  1492. }
  1493. i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
  1494. if (HAS_BSD(dev))
  1495. i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
  1496. }
  1497. static void
  1498. i915_gem_retire_work_handler(struct work_struct *work)
  1499. {
  1500. drm_i915_private_t *dev_priv;
  1501. struct drm_device *dev;
  1502. dev_priv = container_of(work, drm_i915_private_t,
  1503. mm.retire_work.work);
  1504. dev = dev_priv->dev;
  1505. mutex_lock(&dev->struct_mutex);
  1506. i915_gem_retire_requests(dev);
  1507. if (!dev_priv->mm.suspended &&
  1508. (!list_empty(&dev_priv->render_ring.request_list) ||
  1509. (HAS_BSD(dev) &&
  1510. !list_empty(&dev_priv->bsd_ring.request_list))))
  1511. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1512. mutex_unlock(&dev->struct_mutex);
  1513. }
  1514. int
  1515. i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
  1516. bool interruptible, struct intel_ring_buffer *ring)
  1517. {
  1518. drm_i915_private_t *dev_priv = dev->dev_private;
  1519. u32 ier;
  1520. int ret = 0;
  1521. BUG_ON(seqno == 0);
  1522. if (seqno == dev_priv->next_seqno) {
  1523. seqno = i915_add_request(dev, NULL, NULL, ring);
  1524. if (seqno == 0)
  1525. return -ENOMEM;
  1526. }
  1527. if (atomic_read(&dev_priv->mm.wedged))
  1528. return -EIO;
  1529. if (!i915_seqno_passed(ring->get_gem_seqno(dev, ring), seqno)) {
  1530. if (HAS_PCH_SPLIT(dev))
  1531. ier = I915_READ(DEIER) | I915_READ(GTIER);
  1532. else
  1533. ier = I915_READ(IER);
  1534. if (!ier) {
  1535. DRM_ERROR("something (likely vbetool) disabled "
  1536. "interrupts, re-enabling\n");
  1537. i915_driver_irq_preinstall(dev);
  1538. i915_driver_irq_postinstall(dev);
  1539. }
  1540. trace_i915_gem_request_wait_begin(dev, seqno);
  1541. ring->waiting_gem_seqno = seqno;
  1542. ring->user_irq_get(dev, ring);
  1543. if (interruptible)
  1544. ret = wait_event_interruptible(ring->irq_queue,
  1545. i915_seqno_passed(
  1546. ring->get_gem_seqno(dev, ring), seqno)
  1547. || atomic_read(&dev_priv->mm.wedged));
  1548. else
  1549. wait_event(ring->irq_queue,
  1550. i915_seqno_passed(
  1551. ring->get_gem_seqno(dev, ring), seqno)
  1552. || atomic_read(&dev_priv->mm.wedged));
  1553. ring->user_irq_put(dev, ring);
  1554. ring->waiting_gem_seqno = 0;
  1555. trace_i915_gem_request_wait_end(dev, seqno);
  1556. }
  1557. if (atomic_read(&dev_priv->mm.wedged))
  1558. ret = -EIO;
  1559. if (ret && ret != -ERESTARTSYS)
  1560. DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
  1561. __func__, ret, seqno, ring->get_gem_seqno(dev, ring),
  1562. dev_priv->next_seqno);
  1563. /* Directly dispatch request retiring. While we have the work queue
  1564. * to handle this, the waiter on a request often wants an associated
  1565. * buffer to have made it to the inactive list, and we would need
  1566. * a separate wait queue to handle that.
  1567. */
  1568. if (ret == 0)
  1569. i915_gem_retire_requests_ring(dev, ring);
  1570. return ret;
  1571. }
  1572. /**
  1573. * Waits for a sequence number to be signaled, and cleans up the
  1574. * request and object lists appropriately for that event.
  1575. */
  1576. static int
  1577. i915_wait_request(struct drm_device *dev, uint32_t seqno,
  1578. struct intel_ring_buffer *ring)
  1579. {
  1580. return i915_do_wait_request(dev, seqno, 1, ring);
  1581. }
  1582. static void
  1583. i915_gem_flush_ring(struct drm_device *dev,
  1584. struct intel_ring_buffer *ring,
  1585. uint32_t invalidate_domains,
  1586. uint32_t flush_domains)
  1587. {
  1588. ring->flush(dev, ring, invalidate_domains, flush_domains);
  1589. i915_gem_process_flushing_list(dev, flush_domains, ring);
  1590. }
  1591. static void
  1592. i915_gem_flush(struct drm_device *dev,
  1593. uint32_t invalidate_domains,
  1594. uint32_t flush_domains,
  1595. uint32_t flush_rings)
  1596. {
  1597. drm_i915_private_t *dev_priv = dev->dev_private;
  1598. if (flush_domains & I915_GEM_DOMAIN_CPU)
  1599. drm_agp_chipset_flush(dev);
  1600. if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
  1601. if (flush_rings & RING_RENDER)
  1602. i915_gem_flush_ring(dev,
  1603. &dev_priv->render_ring,
  1604. invalidate_domains, flush_domains);
  1605. if (flush_rings & RING_BSD)
  1606. i915_gem_flush_ring(dev,
  1607. &dev_priv->bsd_ring,
  1608. invalidate_domains, flush_domains);
  1609. }
  1610. }
  1611. /**
  1612. * Ensures that all rendering to the object has completed and the object is
  1613. * safe to unbind from the GTT or access from the CPU.
  1614. */
  1615. static int
  1616. i915_gem_object_wait_rendering(struct drm_gem_object *obj,
  1617. bool interruptible)
  1618. {
  1619. struct drm_device *dev = obj->dev;
  1620. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1621. int ret;
  1622. /* This function only exists to support waiting for existing rendering,
  1623. * not for emitting required flushes.
  1624. */
  1625. BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1626. /* If there is rendering queued on the buffer being evicted, wait for
  1627. * it.
  1628. */
  1629. if (obj_priv->active) {
  1630. #if WATCH_BUF
  1631. DRM_INFO("%s: object %p wait for seqno %08x\n",
  1632. __func__, obj, obj_priv->last_rendering_seqno);
  1633. #endif
  1634. ret = i915_do_wait_request(dev,
  1635. obj_priv->last_rendering_seqno,
  1636. interruptible,
  1637. obj_priv->ring);
  1638. if (ret)
  1639. return ret;
  1640. }
  1641. return 0;
  1642. }
  1643. /**
  1644. * Unbinds an object from the GTT aperture.
  1645. */
  1646. int
  1647. i915_gem_object_unbind(struct drm_gem_object *obj)
  1648. {
  1649. struct drm_device *dev = obj->dev;
  1650. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1651. int ret = 0;
  1652. #if WATCH_BUF
  1653. DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
  1654. DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
  1655. #endif
  1656. if (obj_priv->gtt_space == NULL)
  1657. return 0;
  1658. if (obj_priv->pin_count != 0) {
  1659. DRM_ERROR("Attempting to unbind pinned buffer\n");
  1660. return -EINVAL;
  1661. }
  1662. /* blow away mappings if mapped through GTT */
  1663. i915_gem_release_mmap(obj);
  1664. /* Move the object to the CPU domain to ensure that
  1665. * any possible CPU writes while it's not in the GTT
  1666. * are flushed when we go to remap it. This will
  1667. * also ensure that all pending GPU writes are finished
  1668. * before we unbind.
  1669. */
  1670. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1671. if (ret == -ERESTARTSYS)
  1672. return ret;
  1673. /* Continue on if we fail due to EIO, the GPU is hung so we
  1674. * should be safe and we need to cleanup or else we might
  1675. * cause memory corruption through use-after-free.
  1676. */
  1677. /* release the fence reg _after_ flushing */
  1678. if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
  1679. i915_gem_clear_fence_reg(obj);
  1680. if (obj_priv->agp_mem != NULL) {
  1681. drm_unbind_agp(obj_priv->agp_mem);
  1682. drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
  1683. obj_priv->agp_mem = NULL;
  1684. }
  1685. i915_gem_object_put_pages(obj);
  1686. BUG_ON(obj_priv->pages_refcount);
  1687. if (obj_priv->gtt_space) {
  1688. atomic_dec(&dev->gtt_count);
  1689. atomic_sub(obj->size, &dev->gtt_memory);
  1690. drm_mm_put_block(obj_priv->gtt_space);
  1691. obj_priv->gtt_space = NULL;
  1692. }
  1693. /* Remove ourselves from the LRU list if present. */
  1694. if (!list_empty(&obj_priv->list))
  1695. list_del_init(&obj_priv->list);
  1696. if (i915_gem_object_is_purgeable(obj_priv))
  1697. i915_gem_object_truncate(obj);
  1698. trace_i915_gem_object_unbind(obj);
  1699. return ret;
  1700. }
  1701. int
  1702. i915_gpu_idle(struct drm_device *dev)
  1703. {
  1704. drm_i915_private_t *dev_priv = dev->dev_private;
  1705. bool lists_empty;
  1706. int ret;
  1707. lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
  1708. list_empty(&dev_priv->render_ring.active_list) &&
  1709. (!HAS_BSD(dev) ||
  1710. list_empty(&dev_priv->bsd_ring.active_list)));
  1711. if (lists_empty)
  1712. return 0;
  1713. /* Flush everything onto the inactive list. */
  1714. i915_gem_flush_ring(dev,
  1715. &dev_priv->render_ring,
  1716. I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  1717. ret = i915_wait_request(dev,
  1718. i915_gem_next_request_seqno(dev, &dev_priv->render_ring),
  1719. &dev_priv->render_ring);
  1720. if (ret)
  1721. return ret;
  1722. if (HAS_BSD(dev)) {
  1723. i915_gem_flush_ring(dev,
  1724. &dev_priv->bsd_ring,
  1725. I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  1726. ret = i915_wait_request(dev,
  1727. i915_gem_next_request_seqno(dev, &dev_priv->bsd_ring),
  1728. &dev_priv->bsd_ring);
  1729. if (ret)
  1730. return ret;
  1731. }
  1732. return 0;
  1733. }
  1734. int
  1735. i915_gem_object_get_pages(struct drm_gem_object *obj,
  1736. gfp_t gfpmask)
  1737. {
  1738. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1739. int page_count, i;
  1740. struct address_space *mapping;
  1741. struct inode *inode;
  1742. struct page *page;
  1743. BUG_ON(obj_priv->pages_refcount
  1744. == DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);
  1745. if (obj_priv->pages_refcount++ != 0)
  1746. return 0;
  1747. /* Get the list of pages out of our struct file. They'll be pinned
  1748. * at this point until we release them.
  1749. */
  1750. page_count = obj->size / PAGE_SIZE;
  1751. BUG_ON(obj_priv->pages != NULL);
  1752. obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
  1753. if (obj_priv->pages == NULL) {
  1754. obj_priv->pages_refcount--;
  1755. return -ENOMEM;
  1756. }
  1757. inode = obj->filp->f_path.dentry->d_inode;
  1758. mapping = inode->i_mapping;
  1759. for (i = 0; i < page_count; i++) {
  1760. page = read_cache_page_gfp(mapping, i,
  1761. GFP_HIGHUSER |
  1762. __GFP_COLD |
  1763. __GFP_RECLAIMABLE |
  1764. gfpmask);
  1765. if (IS_ERR(page))
  1766. goto err_pages;
  1767. obj_priv->pages[i] = page;
  1768. }
  1769. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1770. i915_gem_object_do_bit_17_swizzle(obj);
  1771. return 0;
  1772. err_pages:
  1773. while (i--)
  1774. page_cache_release(obj_priv->pages[i]);
  1775. drm_free_large(obj_priv->pages);
  1776. obj_priv->pages = NULL;
  1777. obj_priv->pages_refcount--;
  1778. return PTR_ERR(page);
  1779. }
  1780. static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
  1781. {
  1782. struct drm_gem_object *obj = reg->obj;
  1783. struct drm_device *dev = obj->dev;
  1784. drm_i915_private_t *dev_priv = dev->dev_private;
  1785. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1786. int regnum = obj_priv->fence_reg;
  1787. uint64_t val;
  1788. val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
  1789. 0xfffff000) << 32;
  1790. val |= obj_priv->gtt_offset & 0xfffff000;
  1791. val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
  1792. SANDYBRIDGE_FENCE_PITCH_SHIFT;
  1793. if (obj_priv->tiling_mode == I915_TILING_Y)
  1794. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1795. val |= I965_FENCE_REG_VALID;
  1796. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
  1797. }
  1798. static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
  1799. {
  1800. struct drm_gem_object *obj = reg->obj;
  1801. struct drm_device *dev = obj->dev;
  1802. drm_i915_private_t *dev_priv = dev->dev_private;
  1803. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1804. int regnum = obj_priv->fence_reg;
  1805. uint64_t val;
  1806. val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
  1807. 0xfffff000) << 32;
  1808. val |= obj_priv->gtt_offset & 0xfffff000;
  1809. val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  1810. if (obj_priv->tiling_mode == I915_TILING_Y)
  1811. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1812. val |= I965_FENCE_REG_VALID;
  1813. I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
  1814. }
  1815. static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
  1816. {
  1817. struct drm_gem_object *obj = reg->obj;
  1818. struct drm_device *dev = obj->dev;
  1819. drm_i915_private_t *dev_priv = dev->dev_private;
  1820. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1821. int regnum = obj_priv->fence_reg;
  1822. int tile_width;
  1823. uint32_t fence_reg, val;
  1824. uint32_t pitch_val;
  1825. if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
  1826. (obj_priv->gtt_offset & (obj->size - 1))) {
  1827. WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
  1828. __func__, obj_priv->gtt_offset, obj->size);
  1829. return;
  1830. }
  1831. if (obj_priv->tiling_mode == I915_TILING_Y &&
  1832. HAS_128_BYTE_Y_TILING(dev))
  1833. tile_width = 128;
  1834. else
  1835. tile_width = 512;
  1836. /* Note: pitch better be a power of two tile widths */
  1837. pitch_val = obj_priv->stride / tile_width;
  1838. pitch_val = ffs(pitch_val) - 1;
  1839. if (obj_priv->tiling_mode == I915_TILING_Y &&
  1840. HAS_128_BYTE_Y_TILING(dev))
  1841. WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
  1842. else
  1843. WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
  1844. val = obj_priv->gtt_offset;
  1845. if (obj_priv->tiling_mode == I915_TILING_Y)
  1846. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1847. val |= I915_FENCE_SIZE_BITS(obj->size);
  1848. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1849. val |= I830_FENCE_REG_VALID;
  1850. if (regnum < 8)
  1851. fence_reg = FENCE_REG_830_0 + (regnum * 4);
  1852. else
  1853. fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
  1854. I915_WRITE(fence_reg, val);
  1855. }
  1856. static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
  1857. {
  1858. struct drm_gem_object *obj = reg->obj;
  1859. struct drm_device *dev = obj->dev;
  1860. drm_i915_private_t *dev_priv = dev->dev_private;
  1861. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1862. int regnum = obj_priv->fence_reg;
  1863. uint32_t val;
  1864. uint32_t pitch_val;
  1865. uint32_t fence_size_bits;
  1866. if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
  1867. (obj_priv->gtt_offset & (obj->size - 1))) {
  1868. WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
  1869. __func__, obj_priv->gtt_offset);
  1870. return;
  1871. }
  1872. pitch_val = obj_priv->stride / 128;
  1873. pitch_val = ffs(pitch_val) - 1;
  1874. WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
  1875. val = obj_priv->gtt_offset;
  1876. if (obj_priv->tiling_mode == I915_TILING_Y)
  1877. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1878. fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
  1879. WARN_ON(fence_size_bits & ~0x00000f00);
  1880. val |= fence_size_bits;
  1881. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1882. val |= I830_FENCE_REG_VALID;
  1883. I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
  1884. }
  1885. static int i915_find_fence_reg(struct drm_device *dev,
  1886. bool interruptible)
  1887. {
  1888. struct drm_i915_fence_reg *reg = NULL;
  1889. struct drm_i915_gem_object *obj_priv = NULL;
  1890. struct drm_i915_private *dev_priv = dev->dev_private;
  1891. struct drm_gem_object *obj = NULL;
  1892. int i, avail, ret;
  1893. /* First try to find a free reg */
  1894. avail = 0;
  1895. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  1896. reg = &dev_priv->fence_regs[i];
  1897. if (!reg->obj)
  1898. return i;
  1899. obj_priv = to_intel_bo(reg->obj);
  1900. if (!obj_priv->pin_count)
  1901. avail++;
  1902. }
  1903. if (avail == 0)
  1904. return -ENOSPC;
  1905. /* None available, try to steal one or wait for a user to finish */
  1906. i = I915_FENCE_REG_NONE;
  1907. list_for_each_entry(reg, &dev_priv->mm.fence_list,
  1908. lru_list) {
  1909. obj = reg->obj;
  1910. obj_priv = to_intel_bo(obj);
  1911. if (obj_priv->pin_count)
  1912. continue;
  1913. /* found one! */
  1914. i = obj_priv->fence_reg;
  1915. break;
  1916. }
  1917. BUG_ON(i == I915_FENCE_REG_NONE);
  1918. /* We only have a reference on obj from the active list. put_fence_reg
  1919. * might drop that one, causing a use-after-free in it. So hold a
  1920. * private reference to obj like the other callers of put_fence_reg
  1921. * (set_tiling ioctl) do. */
  1922. drm_gem_object_reference(obj);
  1923. ret = i915_gem_object_put_fence_reg(obj, interruptible);
  1924. drm_gem_object_unreference(obj);
  1925. if (ret != 0)
  1926. return ret;
  1927. return i;
  1928. }
  1929. /**
  1930. * i915_gem_object_get_fence_reg - set up a fence reg for an object
  1931. * @obj: object to map through a fence reg
  1932. *
  1933. * When mapping objects through the GTT, userspace wants to be able to write
  1934. * to them without having to worry about swizzling if the object is tiled.
  1935. *
  1936. * This function walks the fence regs looking for a free one for @obj,
  1937. * stealing one if it can't find any.
  1938. *
  1939. * It then sets up the reg based on the object's properties: address, pitch
  1940. * and tiling format.
  1941. */
  1942. int
  1943. i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
  1944. bool interruptible)
  1945. {
  1946. struct drm_device *dev = obj->dev;
  1947. struct drm_i915_private *dev_priv = dev->dev_private;
  1948. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1949. struct drm_i915_fence_reg *reg = NULL;
  1950. int ret;
  1951. /* Just update our place in the LRU if our fence is getting used. */
  1952. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  1953. reg = &dev_priv->fence_regs[obj_priv->fence_reg];
  1954. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  1955. return 0;
  1956. }
  1957. switch (obj_priv->tiling_mode) {
  1958. case I915_TILING_NONE:
  1959. WARN(1, "allocating a fence for non-tiled object?\n");
  1960. break;
  1961. case I915_TILING_X:
  1962. if (!obj_priv->stride)
  1963. return -EINVAL;
  1964. WARN((obj_priv->stride & (512 - 1)),
  1965. "object 0x%08x is X tiled but has non-512B pitch\n",
  1966. obj_priv->gtt_offset);
  1967. break;
  1968. case I915_TILING_Y:
  1969. if (!obj_priv->stride)
  1970. return -EINVAL;
  1971. WARN((obj_priv->stride & (128 - 1)),
  1972. "object 0x%08x is Y tiled but has non-128B pitch\n",
  1973. obj_priv->gtt_offset);
  1974. break;
  1975. }
  1976. ret = i915_find_fence_reg(dev, interruptible);
  1977. if (ret < 0)
  1978. return ret;
  1979. obj_priv->fence_reg = ret;
  1980. reg = &dev_priv->fence_regs[obj_priv->fence_reg];
  1981. list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  1982. reg->obj = obj;
  1983. switch (INTEL_INFO(dev)->gen) {
  1984. case 6:
  1985. sandybridge_write_fence_reg(reg);
  1986. break;
  1987. case 5:
  1988. case 4:
  1989. i965_write_fence_reg(reg);
  1990. break;
  1991. case 3:
  1992. i915_write_fence_reg(reg);
  1993. break;
  1994. case 2:
  1995. i830_write_fence_reg(reg);
  1996. break;
  1997. }
  1998. trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
  1999. obj_priv->tiling_mode);
  2000. return 0;
  2001. }
  2002. /**
  2003. * i915_gem_clear_fence_reg - clear out fence register info
  2004. * @obj: object to clear
  2005. *
  2006. * Zeroes out the fence register itself and clears out the associated
  2007. * data structures in dev_priv and obj_priv.
  2008. */
  2009. static void
  2010. i915_gem_clear_fence_reg(struct drm_gem_object *obj)
  2011. {
  2012. struct drm_device *dev = obj->dev;
  2013. drm_i915_private_t *dev_priv = dev->dev_private;
  2014. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2015. struct drm_i915_fence_reg *reg =
  2016. &dev_priv->fence_regs[obj_priv->fence_reg];
  2017. uint32_t fence_reg;
  2018. switch (INTEL_INFO(dev)->gen) {
  2019. case 6:
  2020. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
  2021. (obj_priv->fence_reg * 8), 0);
  2022. break;
  2023. case 5:
  2024. case 4:
  2025. I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
  2026. break;
  2027. case 3:
  2028. if (obj_priv->fence_reg > 8)
  2029. fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
  2030. else
  2031. case 2:
  2032. fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
  2033. I915_WRITE(fence_reg, 0);
  2034. break;
  2035. }
  2036. reg->obj = NULL;
  2037. obj_priv->fence_reg = I915_FENCE_REG_NONE;
  2038. list_del_init(&reg->lru_list);
  2039. }
  2040. /**
  2041. * i915_gem_object_put_fence_reg - waits on outstanding fenced access
  2042. * to the buffer to finish, and then resets the fence register.
  2043. * @obj: tiled object holding a fence register.
  2044. * @bool: whether the wait upon the fence is interruptible
  2045. *
  2046. * Zeroes out the fence register itself and clears out the associated
  2047. * data structures in dev_priv and obj_priv.
  2048. */
  2049. int
  2050. i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
  2051. bool interruptible)
  2052. {
  2053. struct drm_device *dev = obj->dev;
  2054. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2055. if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
  2056. return 0;
  2057. /* If we've changed tiling, GTT-mappings of the object
  2058. * need to re-fault to ensure that the correct fence register
  2059. * setup is in place.
  2060. */
  2061. i915_gem_release_mmap(obj);
  2062. /* On the i915, GPU access to tiled buffers is via a fence,
  2063. * therefore we must wait for any outstanding access to complete
  2064. * before clearing the fence.
  2065. */
  2066. if (INTEL_INFO(dev)->gen < 4) {
  2067. int ret;
  2068. ret = i915_gem_object_flush_gpu_write_domain(obj, true);
  2069. if (ret)
  2070. return ret;
  2071. ret = i915_gem_object_wait_rendering(obj, interruptible);
  2072. if (ret)
  2073. return ret;
  2074. }
  2075. i915_gem_object_flush_gtt_write_domain(obj);
  2076. i915_gem_clear_fence_reg(obj);
  2077. return 0;
  2078. }
  2079. /**
  2080. * Finds free space in the GTT aperture and binds the object there.
  2081. */
  2082. static int
  2083. i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
  2084. {
  2085. struct drm_device *dev = obj->dev;
  2086. drm_i915_private_t *dev_priv = dev->dev_private;
  2087. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2088. struct drm_mm_node *free_space;
  2089. gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
  2090. int ret;
  2091. if (obj_priv->madv != I915_MADV_WILLNEED) {
  2092. DRM_ERROR("Attempting to bind a purgeable object\n");
  2093. return -EINVAL;
  2094. }
  2095. if (alignment == 0)
  2096. alignment = i915_gem_get_gtt_alignment(obj);
  2097. if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
  2098. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2099. return -EINVAL;
  2100. }
  2101. /* If the object is bigger than the entire aperture, reject it early
  2102. * before evicting everything in a vain attempt to find space.
  2103. */
  2104. if (obj->size > dev->gtt_total) {
  2105. DRM_ERROR("Attempting to bind an object larger than the aperture\n");
  2106. return -E2BIG;
  2107. }
  2108. search_free:
  2109. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  2110. obj->size, alignment, 0);
  2111. if (free_space != NULL) {
  2112. obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
  2113. alignment);
  2114. if (obj_priv->gtt_space != NULL)
  2115. obj_priv->gtt_offset = obj_priv->gtt_space->start;
  2116. }
  2117. if (obj_priv->gtt_space == NULL) {
  2118. /* If the gtt is empty and we're still having trouble
  2119. * fitting our object in, we're out of memory.
  2120. */
  2121. #if WATCH_LRU
  2122. DRM_INFO("%s: GTT full, evicting something\n", __func__);
  2123. #endif
  2124. ret = i915_gem_evict_something(dev, obj->size, alignment);
  2125. if (ret)
  2126. return ret;
  2127. goto search_free;
  2128. }
  2129. #if WATCH_BUF
  2130. DRM_INFO("Binding object of size %zd at 0x%08x\n",
  2131. obj->size, obj_priv->gtt_offset);
  2132. #endif
  2133. ret = i915_gem_object_get_pages(obj, gfpmask);
  2134. if (ret) {
  2135. drm_mm_put_block(obj_priv->gtt_space);
  2136. obj_priv->gtt_space = NULL;
  2137. if (ret == -ENOMEM) {
  2138. /* first try to clear up some space from the GTT */
  2139. ret = i915_gem_evict_something(dev, obj->size,
  2140. alignment);
  2141. if (ret) {
  2142. /* now try to shrink everyone else */
  2143. if (gfpmask) {
  2144. gfpmask = 0;
  2145. goto search_free;
  2146. }
  2147. return ret;
  2148. }
  2149. goto search_free;
  2150. }
  2151. return ret;
  2152. }
  2153. /* Create an AGP memory structure pointing at our pages, and bind it
  2154. * into the GTT.
  2155. */
  2156. obj_priv->agp_mem = drm_agp_bind_pages(dev,
  2157. obj_priv->pages,
  2158. obj->size >> PAGE_SHIFT,
  2159. obj_priv->gtt_offset,
  2160. obj_priv->agp_type);
  2161. if (obj_priv->agp_mem == NULL) {
  2162. i915_gem_object_put_pages(obj);
  2163. drm_mm_put_block(obj_priv->gtt_space);
  2164. obj_priv->gtt_space = NULL;
  2165. ret = i915_gem_evict_something(dev, obj->size, alignment);
  2166. if (ret)
  2167. return ret;
  2168. goto search_free;
  2169. }
  2170. atomic_inc(&dev->gtt_count);
  2171. atomic_add(obj->size, &dev->gtt_memory);
  2172. /* keep track of bounds object by adding it to the inactive list */
  2173. list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  2174. /* Assert that the object is not currently in any GPU domain. As it
  2175. * wasn't in the GTT, there shouldn't be any way it could have been in
  2176. * a GPU cache
  2177. */
  2178. BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
  2179. BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
  2180. trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
  2181. return 0;
  2182. }
  2183. void
  2184. i915_gem_clflush_object(struct drm_gem_object *obj)
  2185. {
  2186. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2187. /* If we don't have a page list set up, then we're not pinned
  2188. * to GPU, and we can ignore the cache flush because it'll happen
  2189. * again at bind time.
  2190. */
  2191. if (obj_priv->pages == NULL)
  2192. return;
  2193. trace_i915_gem_object_clflush(obj);
  2194. drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
  2195. }
  2196. /** Flushes any GPU write domain for the object if it's dirty. */
  2197. static int
  2198. i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
  2199. bool pipelined)
  2200. {
  2201. struct drm_device *dev = obj->dev;
  2202. uint32_t old_write_domain;
  2203. if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
  2204. return 0;
  2205. /* Queue the GPU write cache flushing we need. */
  2206. old_write_domain = obj->write_domain;
  2207. i915_gem_flush_ring(dev,
  2208. to_intel_bo(obj)->ring,
  2209. 0, obj->write_domain);
  2210. BUG_ON(obj->write_domain);
  2211. trace_i915_gem_object_change_domain(obj,
  2212. obj->read_domains,
  2213. old_write_domain);
  2214. if (pipelined)
  2215. return 0;
  2216. return i915_gem_object_wait_rendering(obj, true);
  2217. }
  2218. /** Flushes the GTT write domain for the object if it's dirty. */
  2219. static void
  2220. i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
  2221. {
  2222. uint32_t old_write_domain;
  2223. if (obj->write_domain != I915_GEM_DOMAIN_GTT)
  2224. return;
  2225. /* No actual flushing is required for the GTT write domain. Writes
  2226. * to it immediately go to main memory as far as we know, so there's
  2227. * no chipset flush. It also doesn't land in render cache.
  2228. */
  2229. old_write_domain = obj->write_domain;
  2230. obj->write_domain = 0;
  2231. trace_i915_gem_object_change_domain(obj,
  2232. obj->read_domains,
  2233. old_write_domain);
  2234. }
  2235. /** Flushes the CPU write domain for the object if it's dirty. */
  2236. static void
  2237. i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
  2238. {
  2239. struct drm_device *dev = obj->dev;
  2240. uint32_t old_write_domain;
  2241. if (obj->write_domain != I915_GEM_DOMAIN_CPU)
  2242. return;
  2243. i915_gem_clflush_object(obj);
  2244. drm_agp_chipset_flush(dev);
  2245. old_write_domain = obj->write_domain;
  2246. obj->write_domain = 0;
  2247. trace_i915_gem_object_change_domain(obj,
  2248. obj->read_domains,
  2249. old_write_domain);
  2250. }
  2251. /**
  2252. * Moves a single object to the GTT read, and possibly write domain.
  2253. *
  2254. * This function returns when the move is complete, including waiting on
  2255. * flushes to occur.
  2256. */
  2257. int
  2258. i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
  2259. {
  2260. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2261. uint32_t old_write_domain, old_read_domains;
  2262. int ret;
  2263. /* Not valid to be called on unbound objects. */
  2264. if (obj_priv->gtt_space == NULL)
  2265. return -EINVAL;
  2266. ret = i915_gem_object_flush_gpu_write_domain(obj, false);
  2267. if (ret != 0)
  2268. return ret;
  2269. i915_gem_object_flush_cpu_write_domain(obj);
  2270. if (write) {
  2271. ret = i915_gem_object_wait_rendering(obj, true);
  2272. if (ret)
  2273. return ret;
  2274. }
  2275. old_write_domain = obj->write_domain;
  2276. old_read_domains = obj->read_domains;
  2277. /* It should now be out of any other write domains, and we can update
  2278. * the domain values for our changes.
  2279. */
  2280. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2281. obj->read_domains |= I915_GEM_DOMAIN_GTT;
  2282. if (write) {
  2283. obj->read_domains = I915_GEM_DOMAIN_GTT;
  2284. obj->write_domain = I915_GEM_DOMAIN_GTT;
  2285. obj_priv->dirty = 1;
  2286. }
  2287. trace_i915_gem_object_change_domain(obj,
  2288. old_read_domains,
  2289. old_write_domain);
  2290. return 0;
  2291. }
  2292. /*
  2293. * Prepare buffer for display plane. Use uninterruptible for possible flush
  2294. * wait, as in modesetting process we're not supposed to be interrupted.
  2295. */
  2296. int
  2297. i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
  2298. bool pipelined)
  2299. {
  2300. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2301. uint32_t old_read_domains;
  2302. int ret;
  2303. /* Not valid to be called on unbound objects. */
  2304. if (obj_priv->gtt_space == NULL)
  2305. return -EINVAL;
  2306. ret = i915_gem_object_flush_gpu_write_domain(obj, pipelined);
  2307. if (ret)
  2308. return ret;
  2309. i915_gem_object_flush_cpu_write_domain(obj);
  2310. old_read_domains = obj->read_domains;
  2311. obj->read_domains = I915_GEM_DOMAIN_GTT;
  2312. trace_i915_gem_object_change_domain(obj,
  2313. old_read_domains,
  2314. obj->write_domain);
  2315. return 0;
  2316. }
  2317. /**
  2318. * Moves a single object to the CPU read, and possibly write domain.
  2319. *
  2320. * This function returns when the move is complete, including waiting on
  2321. * flushes to occur.
  2322. */
  2323. static int
  2324. i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
  2325. {
  2326. uint32_t old_write_domain, old_read_domains;
  2327. int ret;
  2328. ret = i915_gem_object_flush_gpu_write_domain(obj, false);
  2329. if (ret != 0)
  2330. return ret;
  2331. i915_gem_object_flush_gtt_write_domain(obj);
  2332. /* If we have a partially-valid cache of the object in the CPU,
  2333. * finish invalidating it and free the per-page flags.
  2334. */
  2335. i915_gem_object_set_to_full_cpu_read_domain(obj);
  2336. if (write) {
  2337. ret = i915_gem_object_wait_rendering(obj, true);
  2338. if (ret)
  2339. return ret;
  2340. }
  2341. old_write_domain = obj->write_domain;
  2342. old_read_domains = obj->read_domains;
  2343. /* Flush the CPU cache if it's still invalid. */
  2344. if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2345. i915_gem_clflush_object(obj);
  2346. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2347. }
  2348. /* It should now be out of any other write domains, and we can update
  2349. * the domain values for our changes.
  2350. */
  2351. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2352. /* If we're writing through the CPU, then the GPU read domains will
  2353. * need to be invalidated at next use.
  2354. */
  2355. if (write) {
  2356. obj->read_domains &= I915_GEM_DOMAIN_CPU;
  2357. obj->write_domain = I915_GEM_DOMAIN_CPU;
  2358. }
  2359. trace_i915_gem_object_change_domain(obj,
  2360. old_read_domains,
  2361. old_write_domain);
  2362. return 0;
  2363. }
  2364. /*
  2365. * Set the next domain for the specified object. This
  2366. * may not actually perform the necessary flushing/invaliding though,
  2367. * as that may want to be batched with other set_domain operations
  2368. *
  2369. * This is (we hope) the only really tricky part of gem. The goal
  2370. * is fairly simple -- track which caches hold bits of the object
  2371. * and make sure they remain coherent. A few concrete examples may
  2372. * help to explain how it works. For shorthand, we use the notation
  2373. * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
  2374. * a pair of read and write domain masks.
  2375. *
  2376. * Case 1: the batch buffer
  2377. *
  2378. * 1. Allocated
  2379. * 2. Written by CPU
  2380. * 3. Mapped to GTT
  2381. * 4. Read by GPU
  2382. * 5. Unmapped from GTT
  2383. * 6. Freed
  2384. *
  2385. * Let's take these a step at a time
  2386. *
  2387. * 1. Allocated
  2388. * Pages allocated from the kernel may still have
  2389. * cache contents, so we set them to (CPU, CPU) always.
  2390. * 2. Written by CPU (using pwrite)
  2391. * The pwrite function calls set_domain (CPU, CPU) and
  2392. * this function does nothing (as nothing changes)
  2393. * 3. Mapped by GTT
  2394. * This function asserts that the object is not
  2395. * currently in any GPU-based read or write domains
  2396. * 4. Read by GPU
  2397. * i915_gem_execbuffer calls set_domain (COMMAND, 0).
  2398. * As write_domain is zero, this function adds in the
  2399. * current read domains (CPU+COMMAND, 0).
  2400. * flush_domains is set to CPU.
  2401. * invalidate_domains is set to COMMAND
  2402. * clflush is run to get data out of the CPU caches
  2403. * then i915_dev_set_domain calls i915_gem_flush to
  2404. * emit an MI_FLUSH and drm_agp_chipset_flush
  2405. * 5. Unmapped from GTT
  2406. * i915_gem_object_unbind calls set_domain (CPU, CPU)
  2407. * flush_domains and invalidate_domains end up both zero
  2408. * so no flushing/invalidating happens
  2409. * 6. Freed
  2410. * yay, done
  2411. *
  2412. * Case 2: The shared render buffer
  2413. *
  2414. * 1. Allocated
  2415. * 2. Mapped to GTT
  2416. * 3. Read/written by GPU
  2417. * 4. set_domain to (CPU,CPU)
  2418. * 5. Read/written by CPU
  2419. * 6. Read/written by GPU
  2420. *
  2421. * 1. Allocated
  2422. * Same as last example, (CPU, CPU)
  2423. * 2. Mapped to GTT
  2424. * Nothing changes (assertions find that it is not in the GPU)
  2425. * 3. Read/written by GPU
  2426. * execbuffer calls set_domain (RENDER, RENDER)
  2427. * flush_domains gets CPU
  2428. * invalidate_domains gets GPU
  2429. * clflush (obj)
  2430. * MI_FLUSH and drm_agp_chipset_flush
  2431. * 4. set_domain (CPU, CPU)
  2432. * flush_domains gets GPU
  2433. * invalidate_domains gets CPU
  2434. * wait_rendering (obj) to make sure all drawing is complete.
  2435. * This will include an MI_FLUSH to get the data from GPU
  2436. * to memory
  2437. * clflush (obj) to invalidate the CPU cache
  2438. * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
  2439. * 5. Read/written by CPU
  2440. * cache lines are loaded and dirtied
  2441. * 6. Read written by GPU
  2442. * Same as last GPU access
  2443. *
  2444. * Case 3: The constant buffer
  2445. *
  2446. * 1. Allocated
  2447. * 2. Written by CPU
  2448. * 3. Read by GPU
  2449. * 4. Updated (written) by CPU again
  2450. * 5. Read by GPU
  2451. *
  2452. * 1. Allocated
  2453. * (CPU, CPU)
  2454. * 2. Written by CPU
  2455. * (CPU, CPU)
  2456. * 3. Read by GPU
  2457. * (CPU+RENDER, 0)
  2458. * flush_domains = CPU
  2459. * invalidate_domains = RENDER
  2460. * clflush (obj)
  2461. * MI_FLUSH
  2462. * drm_agp_chipset_flush
  2463. * 4. Updated (written) by CPU again
  2464. * (CPU, CPU)
  2465. * flush_domains = 0 (no previous write domain)
  2466. * invalidate_domains = 0 (no new read domains)
  2467. * 5. Read by GPU
  2468. * (CPU+RENDER, 0)
  2469. * flush_domains = CPU
  2470. * invalidate_domains = RENDER
  2471. * clflush (obj)
  2472. * MI_FLUSH
  2473. * drm_agp_chipset_flush
  2474. */
  2475. static void
  2476. i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
  2477. {
  2478. struct drm_device *dev = obj->dev;
  2479. struct drm_i915_private *dev_priv = dev->dev_private;
  2480. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2481. uint32_t invalidate_domains = 0;
  2482. uint32_t flush_domains = 0;
  2483. uint32_t old_read_domains;
  2484. BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
  2485. BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
  2486. intel_mark_busy(dev, obj);
  2487. #if WATCH_BUF
  2488. DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
  2489. __func__, obj,
  2490. obj->read_domains, obj->pending_read_domains,
  2491. obj->write_domain, obj->pending_write_domain);
  2492. #endif
  2493. /*
  2494. * If the object isn't moving to a new write domain,
  2495. * let the object stay in multiple read domains
  2496. */
  2497. if (obj->pending_write_domain == 0)
  2498. obj->pending_read_domains |= obj->read_domains;
  2499. else
  2500. obj_priv->dirty = 1;
  2501. /*
  2502. * Flush the current write domain if
  2503. * the new read domains don't match. Invalidate
  2504. * any read domains which differ from the old
  2505. * write domain
  2506. */
  2507. if (obj->write_domain &&
  2508. obj->write_domain != obj->pending_read_domains) {
  2509. flush_domains |= obj->write_domain;
  2510. invalidate_domains |=
  2511. obj->pending_read_domains & ~obj->write_domain;
  2512. }
  2513. /*
  2514. * Invalidate any read caches which may have
  2515. * stale data. That is, any new read domains.
  2516. */
  2517. invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
  2518. if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
  2519. #if WATCH_BUF
  2520. DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
  2521. __func__, flush_domains, invalidate_domains);
  2522. #endif
  2523. i915_gem_clflush_object(obj);
  2524. }
  2525. old_read_domains = obj->read_domains;
  2526. /* The actual obj->write_domain will be updated with
  2527. * pending_write_domain after we emit the accumulated flush for all
  2528. * of our domain changes in execbuffers (which clears objects'
  2529. * write_domains). So if we have a current write domain that we
  2530. * aren't changing, set pending_write_domain to that.
  2531. */
  2532. if (flush_domains == 0 && obj->pending_write_domain == 0)
  2533. obj->pending_write_domain = obj->write_domain;
  2534. obj->read_domains = obj->pending_read_domains;
  2535. dev->invalidate_domains |= invalidate_domains;
  2536. dev->flush_domains |= flush_domains;
  2537. if (obj_priv->ring)
  2538. dev_priv->mm.flush_rings |= obj_priv->ring->id;
  2539. #if WATCH_BUF
  2540. DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
  2541. __func__,
  2542. obj->read_domains, obj->write_domain,
  2543. dev->invalidate_domains, dev->flush_domains);
  2544. #endif
  2545. trace_i915_gem_object_change_domain(obj,
  2546. old_read_domains,
  2547. obj->write_domain);
  2548. }
  2549. /**
  2550. * Moves the object from a partially CPU read to a full one.
  2551. *
  2552. * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
  2553. * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
  2554. */
  2555. static void
  2556. i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
  2557. {
  2558. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2559. if (!obj_priv->page_cpu_valid)
  2560. return;
  2561. /* If we're partially in the CPU read domain, finish moving it in.
  2562. */
  2563. if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
  2564. int i;
  2565. for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
  2566. if (obj_priv->page_cpu_valid[i])
  2567. continue;
  2568. drm_clflush_pages(obj_priv->pages + i, 1);
  2569. }
  2570. }
  2571. /* Free the page_cpu_valid mappings which are now stale, whether
  2572. * or not we've got I915_GEM_DOMAIN_CPU.
  2573. */
  2574. kfree(obj_priv->page_cpu_valid);
  2575. obj_priv->page_cpu_valid = NULL;
  2576. }
  2577. /**
  2578. * Set the CPU read domain on a range of the object.
  2579. *
  2580. * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
  2581. * not entirely valid. The page_cpu_valid member of the object flags which
  2582. * pages have been flushed, and will be respected by
  2583. * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
  2584. * of the whole object.
  2585. *
  2586. * This function returns when the move is complete, including waiting on
  2587. * flushes to occur.
  2588. */
  2589. static int
  2590. i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  2591. uint64_t offset, uint64_t size)
  2592. {
  2593. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2594. uint32_t old_read_domains;
  2595. int i, ret;
  2596. if (offset == 0 && size == obj->size)
  2597. return i915_gem_object_set_to_cpu_domain(obj, 0);
  2598. ret = i915_gem_object_flush_gpu_write_domain(obj, false);
  2599. if (ret != 0)
  2600. return ret;
  2601. i915_gem_object_flush_gtt_write_domain(obj);
  2602. /* If we're already fully in the CPU read domain, we're done. */
  2603. if (obj_priv->page_cpu_valid == NULL &&
  2604. (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
  2605. return 0;
  2606. /* Otherwise, create/clear the per-page CPU read domain flag if we're
  2607. * newly adding I915_GEM_DOMAIN_CPU
  2608. */
  2609. if (obj_priv->page_cpu_valid == NULL) {
  2610. obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
  2611. GFP_KERNEL);
  2612. if (obj_priv->page_cpu_valid == NULL)
  2613. return -ENOMEM;
  2614. } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
  2615. memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
  2616. /* Flush the cache on any pages that are still invalid from the CPU's
  2617. * perspective.
  2618. */
  2619. for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
  2620. i++) {
  2621. if (obj_priv->page_cpu_valid[i])
  2622. continue;
  2623. drm_clflush_pages(obj_priv->pages + i, 1);
  2624. obj_priv->page_cpu_valid[i] = 1;
  2625. }
  2626. /* It should now be out of any other write domains, and we can update
  2627. * the domain values for our changes.
  2628. */
  2629. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2630. old_read_domains = obj->read_domains;
  2631. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2632. trace_i915_gem_object_change_domain(obj,
  2633. old_read_domains,
  2634. obj->write_domain);
  2635. return 0;
  2636. }
  2637. /**
  2638. * Pin an object to the GTT and evaluate the relocations landing in it.
  2639. */
  2640. static int
  2641. i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
  2642. struct drm_file *file_priv,
  2643. struct drm_i915_gem_exec_object2 *entry,
  2644. struct drm_i915_gem_relocation_entry *relocs)
  2645. {
  2646. struct drm_device *dev = obj->dev;
  2647. drm_i915_private_t *dev_priv = dev->dev_private;
  2648. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2649. int i, ret;
  2650. void __iomem *reloc_page;
  2651. bool need_fence;
  2652. need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
  2653. obj_priv->tiling_mode != I915_TILING_NONE;
  2654. /* Check fence reg constraints and rebind if necessary */
  2655. if (need_fence &&
  2656. !i915_gem_object_fence_offset_ok(obj,
  2657. obj_priv->tiling_mode)) {
  2658. ret = i915_gem_object_unbind(obj);
  2659. if (ret)
  2660. return ret;
  2661. }
  2662. /* Choose the GTT offset for our buffer and put it there. */
  2663. ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
  2664. if (ret)
  2665. return ret;
  2666. /*
  2667. * Pre-965 chips need a fence register set up in order to
  2668. * properly handle blits to/from tiled surfaces.
  2669. */
  2670. if (need_fence) {
  2671. ret = i915_gem_object_get_fence_reg(obj, false);
  2672. if (ret != 0) {
  2673. i915_gem_object_unpin(obj);
  2674. return ret;
  2675. }
  2676. }
  2677. entry->offset = obj_priv->gtt_offset;
  2678. /* Apply the relocations, using the GTT aperture to avoid cache
  2679. * flushing requirements.
  2680. */
  2681. for (i = 0; i < entry->relocation_count; i++) {
  2682. struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
  2683. struct drm_gem_object *target_obj;
  2684. struct drm_i915_gem_object *target_obj_priv;
  2685. uint32_t reloc_val, reloc_offset;
  2686. uint32_t __iomem *reloc_entry;
  2687. target_obj = drm_gem_object_lookup(obj->dev, file_priv,
  2688. reloc->target_handle);
  2689. if (target_obj == NULL) {
  2690. i915_gem_object_unpin(obj);
  2691. return -ENOENT;
  2692. }
  2693. target_obj_priv = to_intel_bo(target_obj);
  2694. #if WATCH_RELOC
  2695. DRM_INFO("%s: obj %p offset %08x target %d "
  2696. "read %08x write %08x gtt %08x "
  2697. "presumed %08x delta %08x\n",
  2698. __func__,
  2699. obj,
  2700. (int) reloc->offset,
  2701. (int) reloc->target_handle,
  2702. (int) reloc->read_domains,
  2703. (int) reloc->write_domain,
  2704. (int) target_obj_priv->gtt_offset,
  2705. (int) reloc->presumed_offset,
  2706. reloc->delta);
  2707. #endif
  2708. /* The target buffer should have appeared before us in the
  2709. * exec_object list, so it should have a GTT space bound by now.
  2710. */
  2711. if (target_obj_priv->gtt_space == NULL) {
  2712. DRM_ERROR("No GTT space found for object %d\n",
  2713. reloc->target_handle);
  2714. drm_gem_object_unreference(target_obj);
  2715. i915_gem_object_unpin(obj);
  2716. return -EINVAL;
  2717. }
  2718. /* Validate that the target is in a valid r/w GPU domain */
  2719. if (reloc->write_domain & (reloc->write_domain - 1)) {
  2720. DRM_ERROR("reloc with multiple write domains: "
  2721. "obj %p target %d offset %d "
  2722. "read %08x write %08x",
  2723. obj, reloc->target_handle,
  2724. (int) reloc->offset,
  2725. reloc->read_domains,
  2726. reloc->write_domain);
  2727. return -EINVAL;
  2728. }
  2729. if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
  2730. reloc->read_domains & I915_GEM_DOMAIN_CPU) {
  2731. DRM_ERROR("reloc with read/write CPU domains: "
  2732. "obj %p target %d offset %d "
  2733. "read %08x write %08x",
  2734. obj, reloc->target_handle,
  2735. (int) reloc->offset,
  2736. reloc->read_domains,
  2737. reloc->write_domain);
  2738. drm_gem_object_unreference(target_obj);
  2739. i915_gem_object_unpin(obj);
  2740. return -EINVAL;
  2741. }
  2742. if (reloc->write_domain && target_obj->pending_write_domain &&
  2743. reloc->write_domain != target_obj->pending_write_domain) {
  2744. DRM_ERROR("Write domain conflict: "
  2745. "obj %p target %d offset %d "
  2746. "new %08x old %08x\n",
  2747. obj, reloc->target_handle,
  2748. (int) reloc->offset,
  2749. reloc->write_domain,
  2750. target_obj->pending_write_domain);
  2751. drm_gem_object_unreference(target_obj);
  2752. i915_gem_object_unpin(obj);
  2753. return -EINVAL;
  2754. }
  2755. target_obj->pending_read_domains |= reloc->read_domains;
  2756. target_obj->pending_write_domain |= reloc->write_domain;
  2757. /* If the relocation already has the right value in it, no
  2758. * more work needs to be done.
  2759. */
  2760. if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
  2761. drm_gem_object_unreference(target_obj);
  2762. continue;
  2763. }
  2764. /* Check that the relocation address is valid... */
  2765. if (reloc->offset > obj->size - 4) {
  2766. DRM_ERROR("Relocation beyond object bounds: "
  2767. "obj %p target %d offset %d size %d.\n",
  2768. obj, reloc->target_handle,
  2769. (int) reloc->offset, (int) obj->size);
  2770. drm_gem_object_unreference(target_obj);
  2771. i915_gem_object_unpin(obj);
  2772. return -EINVAL;
  2773. }
  2774. if (reloc->offset & 3) {
  2775. DRM_ERROR("Relocation not 4-byte aligned: "
  2776. "obj %p target %d offset %d.\n",
  2777. obj, reloc->target_handle,
  2778. (int) reloc->offset);
  2779. drm_gem_object_unreference(target_obj);
  2780. i915_gem_object_unpin(obj);
  2781. return -EINVAL;
  2782. }
  2783. /* and points to somewhere within the target object. */
  2784. if (reloc->delta >= target_obj->size) {
  2785. DRM_ERROR("Relocation beyond target object bounds: "
  2786. "obj %p target %d delta %d size %d.\n",
  2787. obj, reloc->target_handle,
  2788. (int) reloc->delta, (int) target_obj->size);
  2789. drm_gem_object_unreference(target_obj);
  2790. i915_gem_object_unpin(obj);
  2791. return -EINVAL;
  2792. }
  2793. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  2794. if (ret != 0) {
  2795. drm_gem_object_unreference(target_obj);
  2796. i915_gem_object_unpin(obj);
  2797. return -EINVAL;
  2798. }
  2799. /* Map the page containing the relocation we're going to
  2800. * perform.
  2801. */
  2802. reloc_offset = obj_priv->gtt_offset + reloc->offset;
  2803. reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
  2804. (reloc_offset &
  2805. ~(PAGE_SIZE - 1)),
  2806. KM_USER0);
  2807. reloc_entry = (uint32_t __iomem *)(reloc_page +
  2808. (reloc_offset & (PAGE_SIZE - 1)));
  2809. reloc_val = target_obj_priv->gtt_offset + reloc->delta;
  2810. #if WATCH_BUF
  2811. DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
  2812. obj, (unsigned int) reloc->offset,
  2813. readl(reloc_entry), reloc_val);
  2814. #endif
  2815. writel(reloc_val, reloc_entry);
  2816. io_mapping_unmap_atomic(reloc_page, KM_USER0);
  2817. /* The updated presumed offset for this entry will be
  2818. * copied back out to the user.
  2819. */
  2820. reloc->presumed_offset = target_obj_priv->gtt_offset;
  2821. drm_gem_object_unreference(target_obj);
  2822. }
  2823. #if WATCH_BUF
  2824. if (0)
  2825. i915_gem_dump_object(obj, 128, __func__, ~0);
  2826. #endif
  2827. return 0;
  2828. }
  2829. /* Throttle our rendering by waiting until the ring has completed our requests
  2830. * emitted over 20 msec ago.
  2831. *
  2832. * Note that if we were to use the current jiffies each time around the loop,
  2833. * we wouldn't escape the function with any frames outstanding if the time to
  2834. * render a frame was over 20ms.
  2835. *
  2836. * This should get us reasonable parallelism between CPU and GPU but also
  2837. * relatively low latency when blocking on a particular request to finish.
  2838. */
  2839. static int
  2840. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
  2841. {
  2842. struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
  2843. int ret = 0;
  2844. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  2845. mutex_lock(&dev->struct_mutex);
  2846. while (!list_empty(&i915_file_priv->mm.request_list)) {
  2847. struct drm_i915_gem_request *request;
  2848. request = list_first_entry(&i915_file_priv->mm.request_list,
  2849. struct drm_i915_gem_request,
  2850. client_list);
  2851. if (time_after_eq(request->emitted_jiffies, recent_enough))
  2852. break;
  2853. ret = i915_wait_request(dev, request->seqno, request->ring);
  2854. if (ret != 0)
  2855. break;
  2856. }
  2857. mutex_unlock(&dev->struct_mutex);
  2858. return ret;
  2859. }
  2860. static int
  2861. i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list,
  2862. uint32_t buffer_count,
  2863. struct drm_i915_gem_relocation_entry **relocs)
  2864. {
  2865. uint32_t reloc_count = 0, reloc_index = 0, i;
  2866. int ret;
  2867. *relocs = NULL;
  2868. for (i = 0; i < buffer_count; i++) {
  2869. if (reloc_count + exec_list[i].relocation_count < reloc_count)
  2870. return -EINVAL;
  2871. reloc_count += exec_list[i].relocation_count;
  2872. }
  2873. *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
  2874. if (*relocs == NULL) {
  2875. DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count);
  2876. return -ENOMEM;
  2877. }
  2878. for (i = 0; i < buffer_count; i++) {
  2879. struct drm_i915_gem_relocation_entry __user *user_relocs;
  2880. user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
  2881. ret = copy_from_user(&(*relocs)[reloc_index],
  2882. user_relocs,
  2883. exec_list[i].relocation_count *
  2884. sizeof(**relocs));
  2885. if (ret != 0) {
  2886. drm_free_large(*relocs);
  2887. *relocs = NULL;
  2888. return -EFAULT;
  2889. }
  2890. reloc_index += exec_list[i].relocation_count;
  2891. }
  2892. return 0;
  2893. }
  2894. static int
  2895. i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list,
  2896. uint32_t buffer_count,
  2897. struct drm_i915_gem_relocation_entry *relocs)
  2898. {
  2899. uint32_t reloc_count = 0, i;
  2900. int ret = 0;
  2901. if (relocs == NULL)
  2902. return 0;
  2903. for (i = 0; i < buffer_count; i++) {
  2904. struct drm_i915_gem_relocation_entry __user *user_relocs;
  2905. int unwritten;
  2906. user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
  2907. unwritten = copy_to_user(user_relocs,
  2908. &relocs[reloc_count],
  2909. exec_list[i].relocation_count *
  2910. sizeof(*relocs));
  2911. if (unwritten) {
  2912. ret = -EFAULT;
  2913. goto err;
  2914. }
  2915. reloc_count += exec_list[i].relocation_count;
  2916. }
  2917. err:
  2918. drm_free_large(relocs);
  2919. return ret;
  2920. }
  2921. static int
  2922. i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec,
  2923. uint64_t exec_offset)
  2924. {
  2925. uint32_t exec_start, exec_len;
  2926. exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
  2927. exec_len = (uint32_t) exec->batch_len;
  2928. if ((exec_start | exec_len) & 0x7)
  2929. return -EINVAL;
  2930. if (!exec_start)
  2931. return -EINVAL;
  2932. return 0;
  2933. }
  2934. static int
  2935. i915_gem_wait_for_pending_flip(struct drm_device *dev,
  2936. struct drm_gem_object **object_list,
  2937. int count)
  2938. {
  2939. drm_i915_private_t *dev_priv = dev->dev_private;
  2940. struct drm_i915_gem_object *obj_priv;
  2941. DEFINE_WAIT(wait);
  2942. int i, ret = 0;
  2943. for (;;) {
  2944. prepare_to_wait(&dev_priv->pending_flip_queue,
  2945. &wait, TASK_INTERRUPTIBLE);
  2946. for (i = 0; i < count; i++) {
  2947. obj_priv = to_intel_bo(object_list[i]);
  2948. if (atomic_read(&obj_priv->pending_flip) > 0)
  2949. break;
  2950. }
  2951. if (i == count)
  2952. break;
  2953. if (!signal_pending(current)) {
  2954. mutex_unlock(&dev->struct_mutex);
  2955. schedule();
  2956. mutex_lock(&dev->struct_mutex);
  2957. continue;
  2958. }
  2959. ret = -ERESTARTSYS;
  2960. break;
  2961. }
  2962. finish_wait(&dev_priv->pending_flip_queue, &wait);
  2963. return ret;
  2964. }
  2965. static int
  2966. i915_gem_do_execbuffer(struct drm_device *dev, void *data,
  2967. struct drm_file *file_priv,
  2968. struct drm_i915_gem_execbuffer2 *args,
  2969. struct drm_i915_gem_exec_object2 *exec_list)
  2970. {
  2971. drm_i915_private_t *dev_priv = dev->dev_private;
  2972. struct drm_gem_object **object_list = NULL;
  2973. struct drm_gem_object *batch_obj;
  2974. struct drm_i915_gem_object *obj_priv;
  2975. struct drm_clip_rect *cliprects = NULL;
  2976. struct drm_i915_gem_relocation_entry *relocs = NULL;
  2977. struct drm_i915_gem_request *request = NULL;
  2978. int ret = 0, ret2, i, pinned = 0;
  2979. uint64_t exec_offset;
  2980. uint32_t seqno, reloc_index;
  2981. int pin_tries, flips;
  2982. struct intel_ring_buffer *ring = NULL;
  2983. #if WATCH_EXEC
  2984. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  2985. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  2986. #endif
  2987. if (args->flags & I915_EXEC_BSD) {
  2988. if (!HAS_BSD(dev)) {
  2989. DRM_ERROR("execbuf with wrong flag\n");
  2990. return -EINVAL;
  2991. }
  2992. ring = &dev_priv->bsd_ring;
  2993. } else {
  2994. ring = &dev_priv->render_ring;
  2995. }
  2996. if (args->buffer_count < 1) {
  2997. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  2998. return -EINVAL;
  2999. }
  3000. object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
  3001. if (object_list == NULL) {
  3002. DRM_ERROR("Failed to allocate object list for %d buffers\n",
  3003. args->buffer_count);
  3004. ret = -ENOMEM;
  3005. goto pre_mutex_err;
  3006. }
  3007. if (args->num_cliprects != 0) {
  3008. cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
  3009. GFP_KERNEL);
  3010. if (cliprects == NULL) {
  3011. ret = -ENOMEM;
  3012. goto pre_mutex_err;
  3013. }
  3014. ret = copy_from_user(cliprects,
  3015. (struct drm_clip_rect __user *)
  3016. (uintptr_t) args->cliprects_ptr,
  3017. sizeof(*cliprects) * args->num_cliprects);
  3018. if (ret != 0) {
  3019. DRM_ERROR("copy %d cliprects failed: %d\n",
  3020. args->num_cliprects, ret);
  3021. ret = -EFAULT;
  3022. goto pre_mutex_err;
  3023. }
  3024. }
  3025. request = kzalloc(sizeof(*request), GFP_KERNEL);
  3026. if (request == NULL) {
  3027. ret = -ENOMEM;
  3028. goto pre_mutex_err;
  3029. }
  3030. ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
  3031. &relocs);
  3032. if (ret != 0)
  3033. goto pre_mutex_err;
  3034. mutex_lock(&dev->struct_mutex);
  3035. i915_verify_inactive(dev, __FILE__, __LINE__);
  3036. if (atomic_read(&dev_priv->mm.wedged)) {
  3037. mutex_unlock(&dev->struct_mutex);
  3038. ret = -EIO;
  3039. goto pre_mutex_err;
  3040. }
  3041. if (dev_priv->mm.suspended) {
  3042. mutex_unlock(&dev->struct_mutex);
  3043. ret = -EBUSY;
  3044. goto pre_mutex_err;
  3045. }
  3046. /* Look up object handles */
  3047. flips = 0;
  3048. for (i = 0; i < args->buffer_count; i++) {
  3049. object_list[i] = drm_gem_object_lookup(dev, file_priv,
  3050. exec_list[i].handle);
  3051. if (object_list[i] == NULL) {
  3052. DRM_ERROR("Invalid object handle %d at index %d\n",
  3053. exec_list[i].handle, i);
  3054. /* prevent error path from reading uninitialized data */
  3055. args->buffer_count = i + 1;
  3056. ret = -ENOENT;
  3057. goto err;
  3058. }
  3059. obj_priv = to_intel_bo(object_list[i]);
  3060. if (obj_priv->in_execbuffer) {
  3061. DRM_ERROR("Object %p appears more than once in object list\n",
  3062. object_list[i]);
  3063. /* prevent error path from reading uninitialized data */
  3064. args->buffer_count = i + 1;
  3065. ret = -EINVAL;
  3066. goto err;
  3067. }
  3068. obj_priv->in_execbuffer = true;
  3069. flips += atomic_read(&obj_priv->pending_flip);
  3070. }
  3071. if (flips > 0) {
  3072. ret = i915_gem_wait_for_pending_flip(dev, object_list,
  3073. args->buffer_count);
  3074. if (ret)
  3075. goto err;
  3076. }
  3077. /* Pin and relocate */
  3078. for (pin_tries = 0; ; pin_tries++) {
  3079. ret = 0;
  3080. reloc_index = 0;
  3081. for (i = 0; i < args->buffer_count; i++) {
  3082. object_list[i]->pending_read_domains = 0;
  3083. object_list[i]->pending_write_domain = 0;
  3084. ret = i915_gem_object_pin_and_relocate(object_list[i],
  3085. file_priv,
  3086. &exec_list[i],
  3087. &relocs[reloc_index]);
  3088. if (ret)
  3089. break;
  3090. pinned = i + 1;
  3091. reloc_index += exec_list[i].relocation_count;
  3092. }
  3093. /* success */
  3094. if (ret == 0)
  3095. break;
  3096. /* error other than GTT full, or we've already tried again */
  3097. if (ret != -ENOSPC || pin_tries >= 1) {
  3098. if (ret != -ERESTARTSYS) {
  3099. unsigned long long total_size = 0;
  3100. int num_fences = 0;
  3101. for (i = 0; i < args->buffer_count; i++) {
  3102. obj_priv = to_intel_bo(object_list[i]);
  3103. total_size += object_list[i]->size;
  3104. num_fences +=
  3105. exec_list[i].flags & EXEC_OBJECT_NEEDS_FENCE &&
  3106. obj_priv->tiling_mode != I915_TILING_NONE;
  3107. }
  3108. DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes, %d fences: %d\n",
  3109. pinned+1, args->buffer_count,
  3110. total_size, num_fences,
  3111. ret);
  3112. DRM_ERROR("%d objects [%d pinned], "
  3113. "%d object bytes [%d pinned], "
  3114. "%d/%d gtt bytes\n",
  3115. atomic_read(&dev->object_count),
  3116. atomic_read(&dev->pin_count),
  3117. atomic_read(&dev->object_memory),
  3118. atomic_read(&dev->pin_memory),
  3119. atomic_read(&dev->gtt_memory),
  3120. dev->gtt_total);
  3121. }
  3122. goto err;
  3123. }
  3124. /* unpin all of our buffers */
  3125. for (i = 0; i < pinned; i++)
  3126. i915_gem_object_unpin(object_list[i]);
  3127. pinned = 0;
  3128. /* evict everyone we can from the aperture */
  3129. ret = i915_gem_evict_everything(dev);
  3130. if (ret && ret != -ENOSPC)
  3131. goto err;
  3132. }
  3133. /* Set the pending read domains for the batch buffer to COMMAND */
  3134. batch_obj = object_list[args->buffer_count-1];
  3135. if (batch_obj->pending_write_domain) {
  3136. DRM_ERROR("Attempting to use self-modifying batch buffer\n");
  3137. ret = -EINVAL;
  3138. goto err;
  3139. }
  3140. batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
  3141. /* Sanity check the batch buffer, prior to moving objects */
  3142. exec_offset = exec_list[args->buffer_count - 1].offset;
  3143. ret = i915_gem_check_execbuffer (args, exec_offset);
  3144. if (ret != 0) {
  3145. DRM_ERROR("execbuf with invalid offset/length\n");
  3146. goto err;
  3147. }
  3148. i915_verify_inactive(dev, __FILE__, __LINE__);
  3149. /* Zero the global flush/invalidate flags. These
  3150. * will be modified as new domains are computed
  3151. * for each object
  3152. */
  3153. dev->invalidate_domains = 0;
  3154. dev->flush_domains = 0;
  3155. dev_priv->mm.flush_rings = 0;
  3156. for (i = 0; i < args->buffer_count; i++) {
  3157. struct drm_gem_object *obj = object_list[i];
  3158. /* Compute new gpu domains and update invalidate/flush */
  3159. i915_gem_object_set_to_gpu_domain(obj);
  3160. }
  3161. i915_verify_inactive(dev, __FILE__, __LINE__);
  3162. if (dev->invalidate_domains | dev->flush_domains) {
  3163. #if WATCH_EXEC
  3164. DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
  3165. __func__,
  3166. dev->invalidate_domains,
  3167. dev->flush_domains);
  3168. #endif
  3169. i915_gem_flush(dev,
  3170. dev->invalidate_domains,
  3171. dev->flush_domains,
  3172. dev_priv->mm.flush_rings);
  3173. }
  3174. if (dev_priv->render_ring.outstanding_lazy_request) {
  3175. (void)i915_add_request(dev, file_priv, NULL, &dev_priv->render_ring);
  3176. dev_priv->render_ring.outstanding_lazy_request = false;
  3177. }
  3178. if (dev_priv->bsd_ring.outstanding_lazy_request) {
  3179. (void)i915_add_request(dev, file_priv, NULL, &dev_priv->bsd_ring);
  3180. dev_priv->bsd_ring.outstanding_lazy_request = false;
  3181. }
  3182. for (i = 0; i < args->buffer_count; i++) {
  3183. struct drm_gem_object *obj = object_list[i];
  3184. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3185. uint32_t old_write_domain = obj->write_domain;
  3186. obj->write_domain = obj->pending_write_domain;
  3187. if (obj->write_domain)
  3188. list_move_tail(&obj_priv->gpu_write_list,
  3189. &dev_priv->mm.gpu_write_list);
  3190. else
  3191. list_del_init(&obj_priv->gpu_write_list);
  3192. trace_i915_gem_object_change_domain(obj,
  3193. obj->read_domains,
  3194. old_write_domain);
  3195. }
  3196. i915_verify_inactive(dev, __FILE__, __LINE__);
  3197. #if WATCH_COHERENCY
  3198. for (i = 0; i < args->buffer_count; i++) {
  3199. i915_gem_object_check_coherency(object_list[i],
  3200. exec_list[i].handle);
  3201. }
  3202. #endif
  3203. #if WATCH_EXEC
  3204. i915_gem_dump_object(batch_obj,
  3205. args->batch_len,
  3206. __func__,
  3207. ~0);
  3208. #endif
  3209. /* Exec the batchbuffer */
  3210. ret = ring->dispatch_gem_execbuffer(dev, ring, args,
  3211. cliprects, exec_offset);
  3212. if (ret) {
  3213. DRM_ERROR("dispatch failed %d\n", ret);
  3214. goto err;
  3215. }
  3216. /*
  3217. * Ensure that the commands in the batch buffer are
  3218. * finished before the interrupt fires
  3219. */
  3220. i915_retire_commands(dev, ring);
  3221. i915_verify_inactive(dev, __FILE__, __LINE__);
  3222. for (i = 0; i < args->buffer_count; i++) {
  3223. struct drm_gem_object *obj = object_list[i];
  3224. obj_priv = to_intel_bo(obj);
  3225. i915_gem_object_move_to_active(obj, ring);
  3226. #if WATCH_LRU
  3227. DRM_INFO("%s: move to exec list %p\n", __func__, obj);
  3228. #endif
  3229. }
  3230. /*
  3231. * Get a seqno representing the execution of the current buffer,
  3232. * which we can wait on. We would like to mitigate these interrupts,
  3233. * likely by only creating seqnos occasionally (so that we have
  3234. * *some* interrupts representing completion of buffers that we can
  3235. * wait on when trying to clear up gtt space).
  3236. */
  3237. seqno = i915_add_request(dev, file_priv, request, ring);
  3238. request = NULL;
  3239. #if WATCH_LRU
  3240. i915_dump_lru(dev, __func__);
  3241. #endif
  3242. i915_verify_inactive(dev, __FILE__, __LINE__);
  3243. err:
  3244. for (i = 0; i < pinned; i++)
  3245. i915_gem_object_unpin(object_list[i]);
  3246. for (i = 0; i < args->buffer_count; i++) {
  3247. if (object_list[i]) {
  3248. obj_priv = to_intel_bo(object_list[i]);
  3249. obj_priv->in_execbuffer = false;
  3250. }
  3251. drm_gem_object_unreference(object_list[i]);
  3252. }
  3253. mutex_unlock(&dev->struct_mutex);
  3254. pre_mutex_err:
  3255. /* Copy the updated relocations out regardless of current error
  3256. * state. Failure to update the relocs would mean that the next
  3257. * time userland calls execbuf, it would do so with presumed offset
  3258. * state that didn't match the actual object state.
  3259. */
  3260. ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
  3261. relocs);
  3262. if (ret2 != 0) {
  3263. DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
  3264. if (ret == 0)
  3265. ret = ret2;
  3266. }
  3267. drm_free_large(object_list);
  3268. kfree(cliprects);
  3269. kfree(request);
  3270. return ret;
  3271. }
  3272. /*
  3273. * Legacy execbuffer just creates an exec2 list from the original exec object
  3274. * list array and passes it to the real function.
  3275. */
  3276. int
  3277. i915_gem_execbuffer(struct drm_device *dev, void *data,
  3278. struct drm_file *file_priv)
  3279. {
  3280. struct drm_i915_gem_execbuffer *args = data;
  3281. struct drm_i915_gem_execbuffer2 exec2;
  3282. struct drm_i915_gem_exec_object *exec_list = NULL;
  3283. struct drm_i915_gem_exec_object2 *exec2_list = NULL;
  3284. int ret, i;
  3285. #if WATCH_EXEC
  3286. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3287. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3288. #endif
  3289. if (args->buffer_count < 1) {
  3290. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  3291. return -EINVAL;
  3292. }
  3293. /* Copy in the exec list from userland */
  3294. exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
  3295. exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
  3296. if (exec_list == NULL || exec2_list == NULL) {
  3297. DRM_ERROR("Failed to allocate exec list for %d buffers\n",
  3298. args->buffer_count);
  3299. drm_free_large(exec_list);
  3300. drm_free_large(exec2_list);
  3301. return -ENOMEM;
  3302. }
  3303. ret = copy_from_user(exec_list,
  3304. (struct drm_i915_relocation_entry __user *)
  3305. (uintptr_t) args->buffers_ptr,
  3306. sizeof(*exec_list) * args->buffer_count);
  3307. if (ret != 0) {
  3308. DRM_ERROR("copy %d exec entries failed %d\n",
  3309. args->buffer_count, ret);
  3310. drm_free_large(exec_list);
  3311. drm_free_large(exec2_list);
  3312. return -EFAULT;
  3313. }
  3314. for (i = 0; i < args->buffer_count; i++) {
  3315. exec2_list[i].handle = exec_list[i].handle;
  3316. exec2_list[i].relocation_count = exec_list[i].relocation_count;
  3317. exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
  3318. exec2_list[i].alignment = exec_list[i].alignment;
  3319. exec2_list[i].offset = exec_list[i].offset;
  3320. if (INTEL_INFO(dev)->gen < 4)
  3321. exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
  3322. else
  3323. exec2_list[i].flags = 0;
  3324. }
  3325. exec2.buffers_ptr = args->buffers_ptr;
  3326. exec2.buffer_count = args->buffer_count;
  3327. exec2.batch_start_offset = args->batch_start_offset;
  3328. exec2.batch_len = args->batch_len;
  3329. exec2.DR1 = args->DR1;
  3330. exec2.DR4 = args->DR4;
  3331. exec2.num_cliprects = args->num_cliprects;
  3332. exec2.cliprects_ptr = args->cliprects_ptr;
  3333. exec2.flags = I915_EXEC_RENDER;
  3334. ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
  3335. if (!ret) {
  3336. /* Copy the new buffer offsets back to the user's exec list. */
  3337. for (i = 0; i < args->buffer_count; i++)
  3338. exec_list[i].offset = exec2_list[i].offset;
  3339. /* ... and back out to userspace */
  3340. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  3341. (uintptr_t) args->buffers_ptr,
  3342. exec_list,
  3343. sizeof(*exec_list) * args->buffer_count);
  3344. if (ret) {
  3345. ret = -EFAULT;
  3346. DRM_ERROR("failed to copy %d exec entries "
  3347. "back to user (%d)\n",
  3348. args->buffer_count, ret);
  3349. }
  3350. }
  3351. drm_free_large(exec_list);
  3352. drm_free_large(exec2_list);
  3353. return ret;
  3354. }
  3355. int
  3356. i915_gem_execbuffer2(struct drm_device *dev, void *data,
  3357. struct drm_file *file_priv)
  3358. {
  3359. struct drm_i915_gem_execbuffer2 *args = data;
  3360. struct drm_i915_gem_exec_object2 *exec2_list = NULL;
  3361. int ret;
  3362. #if WATCH_EXEC
  3363. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3364. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3365. #endif
  3366. if (args->buffer_count < 1) {
  3367. DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
  3368. return -EINVAL;
  3369. }
  3370. exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
  3371. if (exec2_list == NULL) {
  3372. DRM_ERROR("Failed to allocate exec list for %d buffers\n",
  3373. args->buffer_count);
  3374. return -ENOMEM;
  3375. }
  3376. ret = copy_from_user(exec2_list,
  3377. (struct drm_i915_relocation_entry __user *)
  3378. (uintptr_t) args->buffers_ptr,
  3379. sizeof(*exec2_list) * args->buffer_count);
  3380. if (ret != 0) {
  3381. DRM_ERROR("copy %d exec entries failed %d\n",
  3382. args->buffer_count, ret);
  3383. drm_free_large(exec2_list);
  3384. return -EFAULT;
  3385. }
  3386. ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
  3387. if (!ret) {
  3388. /* Copy the new buffer offsets back to the user's exec list. */
  3389. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  3390. (uintptr_t) args->buffers_ptr,
  3391. exec2_list,
  3392. sizeof(*exec2_list) * args->buffer_count);
  3393. if (ret) {
  3394. ret = -EFAULT;
  3395. DRM_ERROR("failed to copy %d exec entries "
  3396. "back to user (%d)\n",
  3397. args->buffer_count, ret);
  3398. }
  3399. }
  3400. drm_free_large(exec2_list);
  3401. return ret;
  3402. }
  3403. int
  3404. i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
  3405. {
  3406. struct drm_device *dev = obj->dev;
  3407. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3408. int ret;
  3409. BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
  3410. i915_verify_inactive(dev, __FILE__, __LINE__);
  3411. if (obj_priv->gtt_space != NULL) {
  3412. if (alignment == 0)
  3413. alignment = i915_gem_get_gtt_alignment(obj);
  3414. if (obj_priv->gtt_offset & (alignment - 1)) {
  3415. WARN(obj_priv->pin_count,
  3416. "bo is already pinned with incorrect alignment:"
  3417. " offset=%x, req.alignment=%x\n",
  3418. obj_priv->gtt_offset, alignment);
  3419. ret = i915_gem_object_unbind(obj);
  3420. if (ret)
  3421. return ret;
  3422. }
  3423. }
  3424. if (obj_priv->gtt_space == NULL) {
  3425. ret = i915_gem_object_bind_to_gtt(obj, alignment);
  3426. if (ret)
  3427. return ret;
  3428. }
  3429. obj_priv->pin_count++;
  3430. /* If the object is not active and not pending a flush,
  3431. * remove it from the inactive list
  3432. */
  3433. if (obj_priv->pin_count == 1) {
  3434. atomic_inc(&dev->pin_count);
  3435. atomic_add(obj->size, &dev->pin_memory);
  3436. if (!obj_priv->active &&
  3437. (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
  3438. list_del_init(&obj_priv->list);
  3439. }
  3440. i915_verify_inactive(dev, __FILE__, __LINE__);
  3441. return 0;
  3442. }
  3443. void
  3444. i915_gem_object_unpin(struct drm_gem_object *obj)
  3445. {
  3446. struct drm_device *dev = obj->dev;
  3447. drm_i915_private_t *dev_priv = dev->dev_private;
  3448. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3449. i915_verify_inactive(dev, __FILE__, __LINE__);
  3450. obj_priv->pin_count--;
  3451. BUG_ON(obj_priv->pin_count < 0);
  3452. BUG_ON(obj_priv->gtt_space == NULL);
  3453. /* If the object is no longer pinned, and is
  3454. * neither active nor being flushed, then stick it on
  3455. * the inactive list
  3456. */
  3457. if (obj_priv->pin_count == 0) {
  3458. if (!obj_priv->active &&
  3459. (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
  3460. list_move_tail(&obj_priv->list,
  3461. &dev_priv->mm.inactive_list);
  3462. atomic_dec(&dev->pin_count);
  3463. atomic_sub(obj->size, &dev->pin_memory);
  3464. }
  3465. i915_verify_inactive(dev, __FILE__, __LINE__);
  3466. }
  3467. int
  3468. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  3469. struct drm_file *file_priv)
  3470. {
  3471. struct drm_i915_gem_pin *args = data;
  3472. struct drm_gem_object *obj;
  3473. struct drm_i915_gem_object *obj_priv;
  3474. int ret;
  3475. mutex_lock(&dev->struct_mutex);
  3476. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3477. if (obj == NULL) {
  3478. DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
  3479. args->handle);
  3480. mutex_unlock(&dev->struct_mutex);
  3481. return -ENOENT;
  3482. }
  3483. obj_priv = to_intel_bo(obj);
  3484. if (obj_priv->madv != I915_MADV_WILLNEED) {
  3485. DRM_ERROR("Attempting to pin a purgeable buffer\n");
  3486. drm_gem_object_unreference(obj);
  3487. mutex_unlock(&dev->struct_mutex);
  3488. return -EINVAL;
  3489. }
  3490. if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
  3491. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  3492. args->handle);
  3493. drm_gem_object_unreference(obj);
  3494. mutex_unlock(&dev->struct_mutex);
  3495. return -EINVAL;
  3496. }
  3497. obj_priv->user_pin_count++;
  3498. obj_priv->pin_filp = file_priv;
  3499. if (obj_priv->user_pin_count == 1) {
  3500. ret = i915_gem_object_pin(obj, args->alignment);
  3501. if (ret != 0) {
  3502. drm_gem_object_unreference(obj);
  3503. mutex_unlock(&dev->struct_mutex);
  3504. return ret;
  3505. }
  3506. }
  3507. /* XXX - flush the CPU caches for pinned objects
  3508. * as the X server doesn't manage domains yet
  3509. */
  3510. i915_gem_object_flush_cpu_write_domain(obj);
  3511. args->offset = obj_priv->gtt_offset;
  3512. drm_gem_object_unreference(obj);
  3513. mutex_unlock(&dev->struct_mutex);
  3514. return 0;
  3515. }
  3516. int
  3517. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  3518. struct drm_file *file_priv)
  3519. {
  3520. struct drm_i915_gem_pin *args = data;
  3521. struct drm_gem_object *obj;
  3522. struct drm_i915_gem_object *obj_priv;
  3523. mutex_lock(&dev->struct_mutex);
  3524. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3525. if (obj == NULL) {
  3526. DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
  3527. args->handle);
  3528. mutex_unlock(&dev->struct_mutex);
  3529. return -ENOENT;
  3530. }
  3531. obj_priv = to_intel_bo(obj);
  3532. if (obj_priv->pin_filp != file_priv) {
  3533. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  3534. args->handle);
  3535. drm_gem_object_unreference(obj);
  3536. mutex_unlock(&dev->struct_mutex);
  3537. return -EINVAL;
  3538. }
  3539. obj_priv->user_pin_count--;
  3540. if (obj_priv->user_pin_count == 0) {
  3541. obj_priv->pin_filp = NULL;
  3542. i915_gem_object_unpin(obj);
  3543. }
  3544. drm_gem_object_unreference(obj);
  3545. mutex_unlock(&dev->struct_mutex);
  3546. return 0;
  3547. }
  3548. int
  3549. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  3550. struct drm_file *file_priv)
  3551. {
  3552. struct drm_i915_gem_busy *args = data;
  3553. struct drm_gem_object *obj;
  3554. struct drm_i915_gem_object *obj_priv;
  3555. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3556. if (obj == NULL) {
  3557. DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
  3558. args->handle);
  3559. return -ENOENT;
  3560. }
  3561. mutex_lock(&dev->struct_mutex);
  3562. /* Count all active objects as busy, even if they are currently not used
  3563. * by the gpu. Users of this interface expect objects to eventually
  3564. * become non-busy without any further actions, therefore emit any
  3565. * necessary flushes here.
  3566. */
  3567. obj_priv = to_intel_bo(obj);
  3568. args->busy = obj_priv->active;
  3569. if (args->busy) {
  3570. /* Unconditionally flush objects, even when the gpu still uses this
  3571. * object. Userspace calling this function indicates that it wants to
  3572. * use this buffer rather sooner than later, so issuing the required
  3573. * flush earlier is beneficial.
  3574. */
  3575. if (obj->write_domain & I915_GEM_GPU_DOMAINS) {
  3576. i915_gem_flush_ring(dev,
  3577. obj_priv->ring,
  3578. 0, obj->write_domain);
  3579. (void)i915_add_request(dev, file_priv, NULL, obj_priv->ring);
  3580. }
  3581. /* Update the active list for the hardware's current position.
  3582. * Otherwise this only updates on a delayed timer or when irqs
  3583. * are actually unmasked, and our working set ends up being
  3584. * larger than required.
  3585. */
  3586. i915_gem_retire_requests_ring(dev, obj_priv->ring);
  3587. args->busy = obj_priv->active;
  3588. }
  3589. drm_gem_object_unreference(obj);
  3590. mutex_unlock(&dev->struct_mutex);
  3591. return 0;
  3592. }
  3593. int
  3594. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  3595. struct drm_file *file_priv)
  3596. {
  3597. return i915_gem_ring_throttle(dev, file_priv);
  3598. }
  3599. int
  3600. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  3601. struct drm_file *file_priv)
  3602. {
  3603. struct drm_i915_gem_madvise *args = data;
  3604. struct drm_gem_object *obj;
  3605. struct drm_i915_gem_object *obj_priv;
  3606. switch (args->madv) {
  3607. case I915_MADV_DONTNEED:
  3608. case I915_MADV_WILLNEED:
  3609. break;
  3610. default:
  3611. return -EINVAL;
  3612. }
  3613. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3614. if (obj == NULL) {
  3615. DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
  3616. args->handle);
  3617. return -ENOENT;
  3618. }
  3619. mutex_lock(&dev->struct_mutex);
  3620. obj_priv = to_intel_bo(obj);
  3621. if (obj_priv->pin_count) {
  3622. drm_gem_object_unreference(obj);
  3623. mutex_unlock(&dev->struct_mutex);
  3624. DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
  3625. return -EINVAL;
  3626. }
  3627. if (obj_priv->madv != __I915_MADV_PURGED)
  3628. obj_priv->madv = args->madv;
  3629. /* if the object is no longer bound, discard its backing storage */
  3630. if (i915_gem_object_is_purgeable(obj_priv) &&
  3631. obj_priv->gtt_space == NULL)
  3632. i915_gem_object_truncate(obj);
  3633. args->retained = obj_priv->madv != __I915_MADV_PURGED;
  3634. drm_gem_object_unreference(obj);
  3635. mutex_unlock(&dev->struct_mutex);
  3636. return 0;
  3637. }
  3638. struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
  3639. size_t size)
  3640. {
  3641. struct drm_i915_gem_object *obj;
  3642. obj = kzalloc(sizeof(*obj), GFP_KERNEL);
  3643. if (obj == NULL)
  3644. return NULL;
  3645. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  3646. kfree(obj);
  3647. return NULL;
  3648. }
  3649. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  3650. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  3651. obj->agp_type = AGP_USER_MEMORY;
  3652. obj->base.driver_private = NULL;
  3653. obj->fence_reg = I915_FENCE_REG_NONE;
  3654. INIT_LIST_HEAD(&obj->list);
  3655. INIT_LIST_HEAD(&obj->gpu_write_list);
  3656. obj->madv = I915_MADV_WILLNEED;
  3657. trace_i915_gem_object_create(&obj->base);
  3658. return &obj->base;
  3659. }
  3660. int i915_gem_init_object(struct drm_gem_object *obj)
  3661. {
  3662. BUG();
  3663. return 0;
  3664. }
  3665. static void i915_gem_free_object_tail(struct drm_gem_object *obj)
  3666. {
  3667. struct drm_device *dev = obj->dev;
  3668. drm_i915_private_t *dev_priv = dev->dev_private;
  3669. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3670. int ret;
  3671. ret = i915_gem_object_unbind(obj);
  3672. if (ret == -ERESTARTSYS) {
  3673. list_move(&obj_priv->list,
  3674. &dev_priv->mm.deferred_free_list);
  3675. return;
  3676. }
  3677. if (obj_priv->mmap_offset)
  3678. i915_gem_free_mmap_offset(obj);
  3679. drm_gem_object_release(obj);
  3680. kfree(obj_priv->page_cpu_valid);
  3681. kfree(obj_priv->bit_17);
  3682. kfree(obj_priv);
  3683. }
  3684. void i915_gem_free_object(struct drm_gem_object *obj)
  3685. {
  3686. struct drm_device *dev = obj->dev;
  3687. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3688. trace_i915_gem_object_destroy(obj);
  3689. while (obj_priv->pin_count > 0)
  3690. i915_gem_object_unpin(obj);
  3691. if (obj_priv->phys_obj)
  3692. i915_gem_detach_phys_object(dev, obj);
  3693. i915_gem_free_object_tail(obj);
  3694. }
  3695. int
  3696. i915_gem_idle(struct drm_device *dev)
  3697. {
  3698. drm_i915_private_t *dev_priv = dev->dev_private;
  3699. int ret;
  3700. mutex_lock(&dev->struct_mutex);
  3701. if (dev_priv->mm.suspended ||
  3702. (dev_priv->render_ring.gem_object == NULL) ||
  3703. (HAS_BSD(dev) &&
  3704. dev_priv->bsd_ring.gem_object == NULL)) {
  3705. mutex_unlock(&dev->struct_mutex);
  3706. return 0;
  3707. }
  3708. ret = i915_gpu_idle(dev);
  3709. if (ret) {
  3710. mutex_unlock(&dev->struct_mutex);
  3711. return ret;
  3712. }
  3713. /* Under UMS, be paranoid and evict. */
  3714. if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
  3715. ret = i915_gem_evict_inactive(dev);
  3716. if (ret) {
  3717. mutex_unlock(&dev->struct_mutex);
  3718. return ret;
  3719. }
  3720. }
  3721. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  3722. * We need to replace this with a semaphore, or something.
  3723. * And not confound mm.suspended!
  3724. */
  3725. dev_priv->mm.suspended = 1;
  3726. del_timer_sync(&dev_priv->hangcheck_timer);
  3727. i915_kernel_lost_context(dev);
  3728. i915_gem_cleanup_ringbuffer(dev);
  3729. mutex_unlock(&dev->struct_mutex);
  3730. /* Cancel the retire work handler, which should be idle now. */
  3731. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3732. return 0;
  3733. }
  3734. /*
  3735. * 965+ support PIPE_CONTROL commands, which provide finer grained control
  3736. * over cache flushing.
  3737. */
  3738. static int
  3739. i915_gem_init_pipe_control(struct drm_device *dev)
  3740. {
  3741. drm_i915_private_t *dev_priv = dev->dev_private;
  3742. struct drm_gem_object *obj;
  3743. struct drm_i915_gem_object *obj_priv;
  3744. int ret;
  3745. obj = i915_gem_alloc_object(dev, 4096);
  3746. if (obj == NULL) {
  3747. DRM_ERROR("Failed to allocate seqno page\n");
  3748. ret = -ENOMEM;
  3749. goto err;
  3750. }
  3751. obj_priv = to_intel_bo(obj);
  3752. obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
  3753. ret = i915_gem_object_pin(obj, 4096);
  3754. if (ret)
  3755. goto err_unref;
  3756. dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
  3757. dev_priv->seqno_page = kmap(obj_priv->pages[0]);
  3758. if (dev_priv->seqno_page == NULL)
  3759. goto err_unpin;
  3760. dev_priv->seqno_obj = obj;
  3761. memset(dev_priv->seqno_page, 0, PAGE_SIZE);
  3762. return 0;
  3763. err_unpin:
  3764. i915_gem_object_unpin(obj);
  3765. err_unref:
  3766. drm_gem_object_unreference(obj);
  3767. err:
  3768. return ret;
  3769. }
  3770. static void
  3771. i915_gem_cleanup_pipe_control(struct drm_device *dev)
  3772. {
  3773. drm_i915_private_t *dev_priv = dev->dev_private;
  3774. struct drm_gem_object *obj;
  3775. struct drm_i915_gem_object *obj_priv;
  3776. obj = dev_priv->seqno_obj;
  3777. obj_priv = to_intel_bo(obj);
  3778. kunmap(obj_priv->pages[0]);
  3779. i915_gem_object_unpin(obj);
  3780. drm_gem_object_unreference(obj);
  3781. dev_priv->seqno_obj = NULL;
  3782. dev_priv->seqno_page = NULL;
  3783. }
  3784. int
  3785. i915_gem_init_ringbuffer(struct drm_device *dev)
  3786. {
  3787. drm_i915_private_t *dev_priv = dev->dev_private;
  3788. int ret;
  3789. dev_priv->render_ring = render_ring;
  3790. if (!I915_NEED_GFX_HWS(dev)) {
  3791. dev_priv->render_ring.status_page.page_addr
  3792. = dev_priv->status_page_dmah->vaddr;
  3793. memset(dev_priv->render_ring.status_page.page_addr,
  3794. 0, PAGE_SIZE);
  3795. }
  3796. if (HAS_PIPE_CONTROL(dev)) {
  3797. ret = i915_gem_init_pipe_control(dev);
  3798. if (ret)
  3799. return ret;
  3800. }
  3801. ret = intel_init_ring_buffer(dev, &dev_priv->render_ring);
  3802. if (ret)
  3803. goto cleanup_pipe_control;
  3804. if (HAS_BSD(dev)) {
  3805. dev_priv->bsd_ring = bsd_ring;
  3806. ret = intel_init_ring_buffer(dev, &dev_priv->bsd_ring);
  3807. if (ret)
  3808. goto cleanup_render_ring;
  3809. }
  3810. dev_priv->next_seqno = 1;
  3811. return 0;
  3812. cleanup_render_ring:
  3813. intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
  3814. cleanup_pipe_control:
  3815. if (HAS_PIPE_CONTROL(dev))
  3816. i915_gem_cleanup_pipe_control(dev);
  3817. return ret;
  3818. }
  3819. void
  3820. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3821. {
  3822. drm_i915_private_t *dev_priv = dev->dev_private;
  3823. intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
  3824. if (HAS_BSD(dev))
  3825. intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
  3826. if (HAS_PIPE_CONTROL(dev))
  3827. i915_gem_cleanup_pipe_control(dev);
  3828. }
  3829. int
  3830. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3831. struct drm_file *file_priv)
  3832. {
  3833. drm_i915_private_t *dev_priv = dev->dev_private;
  3834. int ret;
  3835. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3836. return 0;
  3837. if (atomic_read(&dev_priv->mm.wedged)) {
  3838. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3839. atomic_set(&dev_priv->mm.wedged, 0);
  3840. }
  3841. mutex_lock(&dev->struct_mutex);
  3842. dev_priv->mm.suspended = 0;
  3843. ret = i915_gem_init_ringbuffer(dev);
  3844. if (ret != 0) {
  3845. mutex_unlock(&dev->struct_mutex);
  3846. return ret;
  3847. }
  3848. BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
  3849. BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.active_list));
  3850. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  3851. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  3852. BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
  3853. BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.request_list));
  3854. mutex_unlock(&dev->struct_mutex);
  3855. ret = drm_irq_install(dev);
  3856. if (ret)
  3857. goto cleanup_ringbuffer;
  3858. return 0;
  3859. cleanup_ringbuffer:
  3860. mutex_lock(&dev->struct_mutex);
  3861. i915_gem_cleanup_ringbuffer(dev);
  3862. dev_priv->mm.suspended = 1;
  3863. mutex_unlock(&dev->struct_mutex);
  3864. return ret;
  3865. }
  3866. int
  3867. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3868. struct drm_file *file_priv)
  3869. {
  3870. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3871. return 0;
  3872. drm_irq_uninstall(dev);
  3873. return i915_gem_idle(dev);
  3874. }
  3875. void
  3876. i915_gem_lastclose(struct drm_device *dev)
  3877. {
  3878. int ret;
  3879. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3880. return;
  3881. ret = i915_gem_idle(dev);
  3882. if (ret)
  3883. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3884. }
  3885. void
  3886. i915_gem_load(struct drm_device *dev)
  3887. {
  3888. int i;
  3889. drm_i915_private_t *dev_priv = dev->dev_private;
  3890. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  3891. INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
  3892. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  3893. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  3894. INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
  3895. INIT_LIST_HEAD(&dev_priv->render_ring.active_list);
  3896. INIT_LIST_HEAD(&dev_priv->render_ring.request_list);
  3897. if (HAS_BSD(dev)) {
  3898. INIT_LIST_HEAD(&dev_priv->bsd_ring.active_list);
  3899. INIT_LIST_HEAD(&dev_priv->bsd_ring.request_list);
  3900. }
  3901. for (i = 0; i < 16; i++)
  3902. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  3903. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  3904. i915_gem_retire_work_handler);
  3905. spin_lock(&shrink_list_lock);
  3906. list_add(&dev_priv->mm.shrink_list, &shrink_list);
  3907. spin_unlock(&shrink_list_lock);
  3908. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  3909. if (IS_GEN3(dev)) {
  3910. u32 tmp = I915_READ(MI_ARB_STATE);
  3911. if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
  3912. /* arb state is a masked write, so set bit + bit in mask */
  3913. tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
  3914. I915_WRITE(MI_ARB_STATE, tmp);
  3915. }
  3916. }
  3917. /* Old X drivers will take 0-2 for front, back, depth buffers */
  3918. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3919. dev_priv->fence_reg_start = 3;
  3920. if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3921. dev_priv->num_fence_regs = 16;
  3922. else
  3923. dev_priv->num_fence_regs = 8;
  3924. /* Initialize fence registers to zero */
  3925. switch (INTEL_INFO(dev)->gen) {
  3926. case 6:
  3927. for (i = 0; i < 16; i++)
  3928. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
  3929. break;
  3930. case 5:
  3931. case 4:
  3932. for (i = 0; i < 16; i++)
  3933. I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
  3934. break;
  3935. case 3:
  3936. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3937. for (i = 0; i < 8; i++)
  3938. I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
  3939. case 2:
  3940. for (i = 0; i < 8; i++)
  3941. I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
  3942. break;
  3943. }
  3944. i915_gem_detect_bit_6_swizzle(dev);
  3945. init_waitqueue_head(&dev_priv->pending_flip_queue);
  3946. }
  3947. /*
  3948. * Create a physically contiguous memory object for this object
  3949. * e.g. for cursor + overlay regs
  3950. */
  3951. static int i915_gem_init_phys_object(struct drm_device *dev,
  3952. int id, int size, int align)
  3953. {
  3954. drm_i915_private_t *dev_priv = dev->dev_private;
  3955. struct drm_i915_gem_phys_object *phys_obj;
  3956. int ret;
  3957. if (dev_priv->mm.phys_objs[id - 1] || !size)
  3958. return 0;
  3959. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  3960. if (!phys_obj)
  3961. return -ENOMEM;
  3962. phys_obj->id = id;
  3963. phys_obj->handle = drm_pci_alloc(dev, size, align);
  3964. if (!phys_obj->handle) {
  3965. ret = -ENOMEM;
  3966. goto kfree_obj;
  3967. }
  3968. #ifdef CONFIG_X86
  3969. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3970. #endif
  3971. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  3972. return 0;
  3973. kfree_obj:
  3974. kfree(phys_obj);
  3975. return ret;
  3976. }
  3977. static void i915_gem_free_phys_object(struct drm_device *dev, int id)
  3978. {
  3979. drm_i915_private_t *dev_priv = dev->dev_private;
  3980. struct drm_i915_gem_phys_object *phys_obj;
  3981. if (!dev_priv->mm.phys_objs[id - 1])
  3982. return;
  3983. phys_obj = dev_priv->mm.phys_objs[id - 1];
  3984. if (phys_obj->cur_obj) {
  3985. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  3986. }
  3987. #ifdef CONFIG_X86
  3988. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3989. #endif
  3990. drm_pci_free(dev, phys_obj->handle);
  3991. kfree(phys_obj);
  3992. dev_priv->mm.phys_objs[id - 1] = NULL;
  3993. }
  3994. void i915_gem_free_all_phys_object(struct drm_device *dev)
  3995. {
  3996. int i;
  3997. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  3998. i915_gem_free_phys_object(dev, i);
  3999. }
  4000. void i915_gem_detach_phys_object(struct drm_device *dev,
  4001. struct drm_gem_object *obj)
  4002. {
  4003. struct drm_i915_gem_object *obj_priv;
  4004. int i;
  4005. int ret;
  4006. int page_count;
  4007. obj_priv = to_intel_bo(obj);
  4008. if (!obj_priv->phys_obj)
  4009. return;
  4010. ret = i915_gem_object_get_pages(obj, 0);
  4011. if (ret)
  4012. goto out;
  4013. page_count = obj->size / PAGE_SIZE;
  4014. for (i = 0; i < page_count; i++) {
  4015. char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
  4016. char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  4017. memcpy(dst, src, PAGE_SIZE);
  4018. kunmap_atomic(dst, KM_USER0);
  4019. }
  4020. drm_clflush_pages(obj_priv->pages, page_count);
  4021. drm_agp_chipset_flush(dev);
  4022. i915_gem_object_put_pages(obj);
  4023. out:
  4024. obj_priv->phys_obj->cur_obj = NULL;
  4025. obj_priv->phys_obj = NULL;
  4026. }
  4027. int
  4028. i915_gem_attach_phys_object(struct drm_device *dev,
  4029. struct drm_gem_object *obj,
  4030. int id,
  4031. int align)
  4032. {
  4033. drm_i915_private_t *dev_priv = dev->dev_private;
  4034. struct drm_i915_gem_object *obj_priv;
  4035. int ret = 0;
  4036. int page_count;
  4037. int i;
  4038. if (id > I915_MAX_PHYS_OBJECT)
  4039. return -EINVAL;
  4040. obj_priv = to_intel_bo(obj);
  4041. if (obj_priv->phys_obj) {
  4042. if (obj_priv->phys_obj->id == id)
  4043. return 0;
  4044. i915_gem_detach_phys_object(dev, obj);
  4045. }
  4046. /* create a new object */
  4047. if (!dev_priv->mm.phys_objs[id - 1]) {
  4048. ret = i915_gem_init_phys_object(dev, id,
  4049. obj->size, align);
  4050. if (ret) {
  4051. DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
  4052. goto out;
  4053. }
  4054. }
  4055. /* bind to the object */
  4056. obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
  4057. obj_priv->phys_obj->cur_obj = obj;
  4058. ret = i915_gem_object_get_pages(obj, 0);
  4059. if (ret) {
  4060. DRM_ERROR("failed to get page list\n");
  4061. goto out;
  4062. }
  4063. page_count = obj->size / PAGE_SIZE;
  4064. for (i = 0; i < page_count; i++) {
  4065. char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
  4066. char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  4067. memcpy(dst, src, PAGE_SIZE);
  4068. kunmap_atomic(src, KM_USER0);
  4069. }
  4070. i915_gem_object_put_pages(obj);
  4071. return 0;
  4072. out:
  4073. return ret;
  4074. }
  4075. static int
  4076. i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  4077. struct drm_i915_gem_pwrite *args,
  4078. struct drm_file *file_priv)
  4079. {
  4080. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  4081. void *obj_addr;
  4082. int ret;
  4083. char __user *user_data;
  4084. user_data = (char __user *) (uintptr_t) args->data_ptr;
  4085. obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
  4086. DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
  4087. ret = copy_from_user(obj_addr, user_data, args->size);
  4088. if (ret)
  4089. return -EFAULT;
  4090. drm_agp_chipset_flush(dev);
  4091. return 0;
  4092. }
  4093. void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
  4094. {
  4095. struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
  4096. /* Clean up our request list when the client is going away, so that
  4097. * later retire_requests won't dereference our soon-to-be-gone
  4098. * file_priv.
  4099. */
  4100. mutex_lock(&dev->struct_mutex);
  4101. while (!list_empty(&i915_file_priv->mm.request_list))
  4102. list_del_init(i915_file_priv->mm.request_list.next);
  4103. mutex_unlock(&dev->struct_mutex);
  4104. }
  4105. static int
  4106. i915_gpu_is_active(struct drm_device *dev)
  4107. {
  4108. drm_i915_private_t *dev_priv = dev->dev_private;
  4109. int lists_empty;
  4110. lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
  4111. list_empty(&dev_priv->render_ring.active_list);
  4112. if (HAS_BSD(dev))
  4113. lists_empty &= list_empty(&dev_priv->bsd_ring.active_list);
  4114. return !lists_empty;
  4115. }
  4116. static int
  4117. i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
  4118. {
  4119. drm_i915_private_t *dev_priv, *next_dev;
  4120. struct drm_i915_gem_object *obj_priv, *next_obj;
  4121. int cnt = 0;
  4122. int would_deadlock = 1;
  4123. /* "fast-path" to count number of available objects */
  4124. if (nr_to_scan == 0) {
  4125. spin_lock(&shrink_list_lock);
  4126. list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
  4127. struct drm_device *dev = dev_priv->dev;
  4128. if (mutex_trylock(&dev->struct_mutex)) {
  4129. list_for_each_entry(obj_priv,
  4130. &dev_priv->mm.inactive_list,
  4131. list)
  4132. cnt++;
  4133. mutex_unlock(&dev->struct_mutex);
  4134. }
  4135. }
  4136. spin_unlock(&shrink_list_lock);
  4137. return (cnt / 100) * sysctl_vfs_cache_pressure;
  4138. }
  4139. spin_lock(&shrink_list_lock);
  4140. rescan:
  4141. /* first scan for clean buffers */
  4142. list_for_each_entry_safe(dev_priv, next_dev,
  4143. &shrink_list, mm.shrink_list) {
  4144. struct drm_device *dev = dev_priv->dev;
  4145. if (! mutex_trylock(&dev->struct_mutex))
  4146. continue;
  4147. spin_unlock(&shrink_list_lock);
  4148. i915_gem_retire_requests(dev);
  4149. list_for_each_entry_safe(obj_priv, next_obj,
  4150. &dev_priv->mm.inactive_list,
  4151. list) {
  4152. if (i915_gem_object_is_purgeable(obj_priv)) {
  4153. i915_gem_object_unbind(&obj_priv->base);
  4154. if (--nr_to_scan <= 0)
  4155. break;
  4156. }
  4157. }
  4158. spin_lock(&shrink_list_lock);
  4159. mutex_unlock(&dev->struct_mutex);
  4160. would_deadlock = 0;
  4161. if (nr_to_scan <= 0)
  4162. break;
  4163. }
  4164. /* second pass, evict/count anything still on the inactive list */
  4165. list_for_each_entry_safe(dev_priv, next_dev,
  4166. &shrink_list, mm.shrink_list) {
  4167. struct drm_device *dev = dev_priv->dev;
  4168. if (! mutex_trylock(&dev->struct_mutex))
  4169. continue;
  4170. spin_unlock(&shrink_list_lock);
  4171. list_for_each_entry_safe(obj_priv, next_obj,
  4172. &dev_priv->mm.inactive_list,
  4173. list) {
  4174. if (nr_to_scan > 0) {
  4175. i915_gem_object_unbind(&obj_priv->base);
  4176. nr_to_scan--;
  4177. } else
  4178. cnt++;
  4179. }
  4180. spin_lock(&shrink_list_lock);
  4181. mutex_unlock(&dev->struct_mutex);
  4182. would_deadlock = 0;
  4183. }
  4184. if (nr_to_scan) {
  4185. int active = 0;
  4186. /*
  4187. * We are desperate for pages, so as a last resort, wait
  4188. * for the GPU to finish and discard whatever we can.
  4189. * This has a dramatic impact to reduce the number of
  4190. * OOM-killer events whilst running the GPU aggressively.
  4191. */
  4192. list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
  4193. struct drm_device *dev = dev_priv->dev;
  4194. if (!mutex_trylock(&dev->struct_mutex))
  4195. continue;
  4196. spin_unlock(&shrink_list_lock);
  4197. if (i915_gpu_is_active(dev)) {
  4198. i915_gpu_idle(dev);
  4199. active++;
  4200. }
  4201. spin_lock(&shrink_list_lock);
  4202. mutex_unlock(&dev->struct_mutex);
  4203. }
  4204. if (active)
  4205. goto rescan;
  4206. }
  4207. spin_unlock(&shrink_list_lock);
  4208. if (would_deadlock)
  4209. return -1;
  4210. else if (cnt > 0)
  4211. return (cnt / 100) * sysctl_vfs_cache_pressure;
  4212. else
  4213. return 0;
  4214. }
  4215. static struct shrinker shrinker = {
  4216. .shrink = i915_gem_shrink,
  4217. .seeks = DEFAULT_SEEKS,
  4218. };
  4219. __init void
  4220. i915_gem_shrinker_init(void)
  4221. {
  4222. register_shrinker(&shrinker);
  4223. }
  4224. __exit void
  4225. i915_gem_shrinker_exit(void)
  4226. {
  4227. unregister_shrinker(&shrinker);
  4228. }