af_key.c 97 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769
  1. /*
  2. * net/key/af_key.c An implementation of PF_KEYv2 sockets.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public License
  6. * as published by the Free Software Foundation; either version
  7. * 2 of the License, or (at your option) any later version.
  8. *
  9. * Authors: Maxim Giryaev <gem@asplinux.ru>
  10. * David S. Miller <davem@redhat.com>
  11. * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
  12. * Kunihiro Ishiguro <kunihiro@ipinfusion.com>
  13. * Kazunori MIYAZAWA / USAGI Project <miyazawa@linux-ipv6.org>
  14. * Derek Atkins <derek@ihtfp.com>
  15. */
  16. #include <linux/capability.h>
  17. #include <linux/module.h>
  18. #include <linux/kernel.h>
  19. #include <linux/socket.h>
  20. #include <linux/pfkeyv2.h>
  21. #include <linux/ipsec.h>
  22. #include <linux/skbuff.h>
  23. #include <linux/rtnetlink.h>
  24. #include <linux/in.h>
  25. #include <linux/in6.h>
  26. #include <linux/proc_fs.h>
  27. #include <linux/init.h>
  28. #include <net/net_namespace.h>
  29. #include <net/xfrm.h>
  30. #include <net/sock.h>
  31. #define _X2KEY(x) ((x) == XFRM_INF ? 0 : (x))
  32. #define _KEY2X(x) ((x) == 0 ? XFRM_INF : (x))
  33. /* List of all pfkey sockets. */
  34. static HLIST_HEAD(pfkey_table);
  35. static DECLARE_WAIT_QUEUE_HEAD(pfkey_table_wait);
  36. static DEFINE_RWLOCK(pfkey_table_lock);
  37. static atomic_t pfkey_table_users = ATOMIC_INIT(0);
  38. static atomic_t pfkey_socks_nr = ATOMIC_INIT(0);
  39. struct pfkey_sock {
  40. /* struct sock must be the first member of struct pfkey_sock */
  41. struct sock sk;
  42. int registered;
  43. int promisc;
  44. struct {
  45. uint8_t msg_version;
  46. uint32_t msg_pid;
  47. int (*dump)(struct pfkey_sock *sk);
  48. void (*done)(struct pfkey_sock *sk);
  49. union {
  50. struct xfrm_policy_walk policy;
  51. struct xfrm_state_walk state;
  52. } u;
  53. struct sk_buff *skb;
  54. } dump;
  55. };
  56. static inline struct pfkey_sock *pfkey_sk(struct sock *sk)
  57. {
  58. return (struct pfkey_sock *)sk;
  59. }
  60. static int pfkey_can_dump(struct sock *sk)
  61. {
  62. if (3 * atomic_read(&sk->sk_rmem_alloc) <= 2 * sk->sk_rcvbuf)
  63. return 1;
  64. return 0;
  65. }
  66. static void pfkey_terminate_dump(struct pfkey_sock *pfk)
  67. {
  68. if (pfk->dump.dump) {
  69. if (pfk->dump.skb) {
  70. kfree_skb(pfk->dump.skb);
  71. pfk->dump.skb = NULL;
  72. }
  73. pfk->dump.done(pfk);
  74. pfk->dump.dump = NULL;
  75. pfk->dump.done = NULL;
  76. }
  77. }
  78. static void pfkey_sock_destruct(struct sock *sk)
  79. {
  80. pfkey_terminate_dump(pfkey_sk(sk));
  81. skb_queue_purge(&sk->sk_receive_queue);
  82. if (!sock_flag(sk, SOCK_DEAD)) {
  83. printk("Attempt to release alive pfkey socket: %p\n", sk);
  84. return;
  85. }
  86. WARN_ON(atomic_read(&sk->sk_rmem_alloc));
  87. WARN_ON(atomic_read(&sk->sk_wmem_alloc));
  88. atomic_dec(&pfkey_socks_nr);
  89. }
  90. static void pfkey_table_grab(void)
  91. {
  92. write_lock_bh(&pfkey_table_lock);
  93. if (atomic_read(&pfkey_table_users)) {
  94. DECLARE_WAITQUEUE(wait, current);
  95. add_wait_queue_exclusive(&pfkey_table_wait, &wait);
  96. for(;;) {
  97. set_current_state(TASK_UNINTERRUPTIBLE);
  98. if (atomic_read(&pfkey_table_users) == 0)
  99. break;
  100. write_unlock_bh(&pfkey_table_lock);
  101. schedule();
  102. write_lock_bh(&pfkey_table_lock);
  103. }
  104. __set_current_state(TASK_RUNNING);
  105. remove_wait_queue(&pfkey_table_wait, &wait);
  106. }
  107. }
  108. static __inline__ void pfkey_table_ungrab(void)
  109. {
  110. write_unlock_bh(&pfkey_table_lock);
  111. wake_up(&pfkey_table_wait);
  112. }
  113. static __inline__ void pfkey_lock_table(void)
  114. {
  115. /* read_lock() synchronizes us to pfkey_table_grab */
  116. read_lock(&pfkey_table_lock);
  117. atomic_inc(&pfkey_table_users);
  118. read_unlock(&pfkey_table_lock);
  119. }
  120. static __inline__ void pfkey_unlock_table(void)
  121. {
  122. if (atomic_dec_and_test(&pfkey_table_users))
  123. wake_up(&pfkey_table_wait);
  124. }
  125. static const struct proto_ops pfkey_ops;
  126. static void pfkey_insert(struct sock *sk)
  127. {
  128. pfkey_table_grab();
  129. sk_add_node(sk, &pfkey_table);
  130. pfkey_table_ungrab();
  131. }
  132. static void pfkey_remove(struct sock *sk)
  133. {
  134. pfkey_table_grab();
  135. sk_del_node_init(sk);
  136. pfkey_table_ungrab();
  137. }
  138. static struct proto key_proto = {
  139. .name = "KEY",
  140. .owner = THIS_MODULE,
  141. .obj_size = sizeof(struct pfkey_sock),
  142. };
  143. static int pfkey_create(struct net *net, struct socket *sock, int protocol)
  144. {
  145. struct sock *sk;
  146. int err;
  147. if (net != &init_net)
  148. return -EAFNOSUPPORT;
  149. if (!capable(CAP_NET_ADMIN))
  150. return -EPERM;
  151. if (sock->type != SOCK_RAW)
  152. return -ESOCKTNOSUPPORT;
  153. if (protocol != PF_KEY_V2)
  154. return -EPROTONOSUPPORT;
  155. err = -ENOMEM;
  156. sk = sk_alloc(net, PF_KEY, GFP_KERNEL, &key_proto);
  157. if (sk == NULL)
  158. goto out;
  159. sock->ops = &pfkey_ops;
  160. sock_init_data(sock, sk);
  161. sk->sk_family = PF_KEY;
  162. sk->sk_destruct = pfkey_sock_destruct;
  163. atomic_inc(&pfkey_socks_nr);
  164. pfkey_insert(sk);
  165. return 0;
  166. out:
  167. return err;
  168. }
  169. static int pfkey_release(struct socket *sock)
  170. {
  171. struct sock *sk = sock->sk;
  172. if (!sk)
  173. return 0;
  174. pfkey_remove(sk);
  175. sock_orphan(sk);
  176. sock->sk = NULL;
  177. skb_queue_purge(&sk->sk_write_queue);
  178. sock_put(sk);
  179. return 0;
  180. }
  181. static int pfkey_broadcast_one(struct sk_buff *skb, struct sk_buff **skb2,
  182. gfp_t allocation, struct sock *sk)
  183. {
  184. int err = -ENOBUFS;
  185. sock_hold(sk);
  186. if (*skb2 == NULL) {
  187. if (atomic_read(&skb->users) != 1) {
  188. *skb2 = skb_clone(skb, allocation);
  189. } else {
  190. *skb2 = skb;
  191. atomic_inc(&skb->users);
  192. }
  193. }
  194. if (*skb2 != NULL) {
  195. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) {
  196. skb_orphan(*skb2);
  197. skb_set_owner_r(*skb2, sk);
  198. skb_queue_tail(&sk->sk_receive_queue, *skb2);
  199. sk->sk_data_ready(sk, (*skb2)->len);
  200. *skb2 = NULL;
  201. err = 0;
  202. }
  203. }
  204. sock_put(sk);
  205. return err;
  206. }
  207. /* Send SKB to all pfkey sockets matching selected criteria. */
  208. #define BROADCAST_ALL 0
  209. #define BROADCAST_ONE 1
  210. #define BROADCAST_REGISTERED 2
  211. #define BROADCAST_PROMISC_ONLY 4
  212. static int pfkey_broadcast(struct sk_buff *skb, gfp_t allocation,
  213. int broadcast_flags, struct sock *one_sk)
  214. {
  215. struct sock *sk;
  216. struct hlist_node *node;
  217. struct sk_buff *skb2 = NULL;
  218. int err = -ESRCH;
  219. /* XXX Do we need something like netlink_overrun? I think
  220. * XXX PF_KEY socket apps will not mind current behavior.
  221. */
  222. if (!skb)
  223. return -ENOMEM;
  224. pfkey_lock_table();
  225. sk_for_each(sk, node, &pfkey_table) {
  226. struct pfkey_sock *pfk = pfkey_sk(sk);
  227. int err2;
  228. /* Yes, it means that if you are meant to receive this
  229. * pfkey message you receive it twice as promiscuous
  230. * socket.
  231. */
  232. if (pfk->promisc)
  233. pfkey_broadcast_one(skb, &skb2, allocation, sk);
  234. /* the exact target will be processed later */
  235. if (sk == one_sk)
  236. continue;
  237. if (broadcast_flags != BROADCAST_ALL) {
  238. if (broadcast_flags & BROADCAST_PROMISC_ONLY)
  239. continue;
  240. if ((broadcast_flags & BROADCAST_REGISTERED) &&
  241. !pfk->registered)
  242. continue;
  243. if (broadcast_flags & BROADCAST_ONE)
  244. continue;
  245. }
  246. err2 = pfkey_broadcast_one(skb, &skb2, allocation, sk);
  247. /* Error is cleare after succecful sending to at least one
  248. * registered KM */
  249. if ((broadcast_flags & BROADCAST_REGISTERED) && err)
  250. err = err2;
  251. }
  252. pfkey_unlock_table();
  253. if (one_sk != NULL)
  254. err = pfkey_broadcast_one(skb, &skb2, allocation, one_sk);
  255. if (skb2)
  256. kfree_skb(skb2);
  257. kfree_skb(skb);
  258. return err;
  259. }
  260. static int pfkey_do_dump(struct pfkey_sock *pfk)
  261. {
  262. struct sadb_msg *hdr;
  263. int rc;
  264. rc = pfk->dump.dump(pfk);
  265. if (rc == -ENOBUFS)
  266. return 0;
  267. if (pfk->dump.skb) {
  268. if (!pfkey_can_dump(&pfk->sk))
  269. return 0;
  270. hdr = (struct sadb_msg *) pfk->dump.skb->data;
  271. hdr->sadb_msg_seq = 0;
  272. hdr->sadb_msg_errno = rc;
  273. pfkey_broadcast(pfk->dump.skb, GFP_ATOMIC, BROADCAST_ONE,
  274. &pfk->sk);
  275. pfk->dump.skb = NULL;
  276. }
  277. pfkey_terminate_dump(pfk);
  278. return rc;
  279. }
  280. static inline void pfkey_hdr_dup(struct sadb_msg *new, struct sadb_msg *orig)
  281. {
  282. *new = *orig;
  283. }
  284. static int pfkey_error(struct sadb_msg *orig, int err, struct sock *sk)
  285. {
  286. struct sk_buff *skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_KERNEL);
  287. struct sadb_msg *hdr;
  288. if (!skb)
  289. return -ENOBUFS;
  290. /* Woe be to the platform trying to support PFKEY yet
  291. * having normal errnos outside the 1-255 range, inclusive.
  292. */
  293. err = -err;
  294. if (err == ERESTARTSYS ||
  295. err == ERESTARTNOHAND ||
  296. err == ERESTARTNOINTR)
  297. err = EINTR;
  298. if (err >= 512)
  299. err = EINVAL;
  300. BUG_ON(err <= 0 || err >= 256);
  301. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  302. pfkey_hdr_dup(hdr, orig);
  303. hdr->sadb_msg_errno = (uint8_t) err;
  304. hdr->sadb_msg_len = (sizeof(struct sadb_msg) /
  305. sizeof(uint64_t));
  306. pfkey_broadcast(skb, GFP_KERNEL, BROADCAST_ONE, sk);
  307. return 0;
  308. }
  309. static u8 sadb_ext_min_len[] = {
  310. [SADB_EXT_RESERVED] = (u8) 0,
  311. [SADB_EXT_SA] = (u8) sizeof(struct sadb_sa),
  312. [SADB_EXT_LIFETIME_CURRENT] = (u8) sizeof(struct sadb_lifetime),
  313. [SADB_EXT_LIFETIME_HARD] = (u8) sizeof(struct sadb_lifetime),
  314. [SADB_EXT_LIFETIME_SOFT] = (u8) sizeof(struct sadb_lifetime),
  315. [SADB_EXT_ADDRESS_SRC] = (u8) sizeof(struct sadb_address),
  316. [SADB_EXT_ADDRESS_DST] = (u8) sizeof(struct sadb_address),
  317. [SADB_EXT_ADDRESS_PROXY] = (u8) sizeof(struct sadb_address),
  318. [SADB_EXT_KEY_AUTH] = (u8) sizeof(struct sadb_key),
  319. [SADB_EXT_KEY_ENCRYPT] = (u8) sizeof(struct sadb_key),
  320. [SADB_EXT_IDENTITY_SRC] = (u8) sizeof(struct sadb_ident),
  321. [SADB_EXT_IDENTITY_DST] = (u8) sizeof(struct sadb_ident),
  322. [SADB_EXT_SENSITIVITY] = (u8) sizeof(struct sadb_sens),
  323. [SADB_EXT_PROPOSAL] = (u8) sizeof(struct sadb_prop),
  324. [SADB_EXT_SUPPORTED_AUTH] = (u8) sizeof(struct sadb_supported),
  325. [SADB_EXT_SUPPORTED_ENCRYPT] = (u8) sizeof(struct sadb_supported),
  326. [SADB_EXT_SPIRANGE] = (u8) sizeof(struct sadb_spirange),
  327. [SADB_X_EXT_KMPRIVATE] = (u8) sizeof(struct sadb_x_kmprivate),
  328. [SADB_X_EXT_POLICY] = (u8) sizeof(struct sadb_x_policy),
  329. [SADB_X_EXT_SA2] = (u8) sizeof(struct sadb_x_sa2),
  330. [SADB_X_EXT_NAT_T_TYPE] = (u8) sizeof(struct sadb_x_nat_t_type),
  331. [SADB_X_EXT_NAT_T_SPORT] = (u8) sizeof(struct sadb_x_nat_t_port),
  332. [SADB_X_EXT_NAT_T_DPORT] = (u8) sizeof(struct sadb_x_nat_t_port),
  333. [SADB_X_EXT_NAT_T_OA] = (u8) sizeof(struct sadb_address),
  334. [SADB_X_EXT_SEC_CTX] = (u8) sizeof(struct sadb_x_sec_ctx),
  335. [SADB_X_EXT_KMADDRESS] = (u8) sizeof(struct sadb_x_kmaddress),
  336. };
  337. /* Verify sadb_address_{len,prefixlen} against sa_family. */
  338. static int verify_address_len(void *p)
  339. {
  340. struct sadb_address *sp = p;
  341. struct sockaddr *addr = (struct sockaddr *)(sp + 1);
  342. struct sockaddr_in *sin;
  343. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  344. struct sockaddr_in6 *sin6;
  345. #endif
  346. int len;
  347. switch (addr->sa_family) {
  348. case AF_INET:
  349. len = DIV_ROUND_UP(sizeof(*sp) + sizeof(*sin), sizeof(uint64_t));
  350. if (sp->sadb_address_len != len ||
  351. sp->sadb_address_prefixlen > 32)
  352. return -EINVAL;
  353. break;
  354. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  355. case AF_INET6:
  356. len = DIV_ROUND_UP(sizeof(*sp) + sizeof(*sin6), sizeof(uint64_t));
  357. if (sp->sadb_address_len != len ||
  358. sp->sadb_address_prefixlen > 128)
  359. return -EINVAL;
  360. break;
  361. #endif
  362. default:
  363. /* It is user using kernel to keep track of security
  364. * associations for another protocol, such as
  365. * OSPF/RSVP/RIPV2/MIP. It is user's job to verify
  366. * lengths.
  367. *
  368. * XXX Actually, association/policy database is not yet
  369. * XXX able to cope with arbitrary sockaddr families.
  370. * XXX When it can, remove this -EINVAL. -DaveM
  371. */
  372. return -EINVAL;
  373. break;
  374. }
  375. return 0;
  376. }
  377. static inline int pfkey_sec_ctx_len(struct sadb_x_sec_ctx *sec_ctx)
  378. {
  379. return DIV_ROUND_UP(sizeof(struct sadb_x_sec_ctx) +
  380. sec_ctx->sadb_x_ctx_len,
  381. sizeof(uint64_t));
  382. }
  383. static inline int verify_sec_ctx_len(void *p)
  384. {
  385. struct sadb_x_sec_ctx *sec_ctx = (struct sadb_x_sec_ctx *)p;
  386. int len = sec_ctx->sadb_x_ctx_len;
  387. if (len > PAGE_SIZE)
  388. return -EINVAL;
  389. len = pfkey_sec_ctx_len(sec_ctx);
  390. if (sec_ctx->sadb_x_sec_len != len)
  391. return -EINVAL;
  392. return 0;
  393. }
  394. static inline struct xfrm_user_sec_ctx *pfkey_sadb2xfrm_user_sec_ctx(struct sadb_x_sec_ctx *sec_ctx)
  395. {
  396. struct xfrm_user_sec_ctx *uctx = NULL;
  397. int ctx_size = sec_ctx->sadb_x_ctx_len;
  398. uctx = kmalloc((sizeof(*uctx)+ctx_size), GFP_KERNEL);
  399. if (!uctx)
  400. return NULL;
  401. uctx->len = pfkey_sec_ctx_len(sec_ctx);
  402. uctx->exttype = sec_ctx->sadb_x_sec_exttype;
  403. uctx->ctx_doi = sec_ctx->sadb_x_ctx_doi;
  404. uctx->ctx_alg = sec_ctx->sadb_x_ctx_alg;
  405. uctx->ctx_len = sec_ctx->sadb_x_ctx_len;
  406. memcpy(uctx + 1, sec_ctx + 1,
  407. uctx->ctx_len);
  408. return uctx;
  409. }
  410. static int present_and_same_family(struct sadb_address *src,
  411. struct sadb_address *dst)
  412. {
  413. struct sockaddr *s_addr, *d_addr;
  414. if (!src || !dst)
  415. return 0;
  416. s_addr = (struct sockaddr *)(src + 1);
  417. d_addr = (struct sockaddr *)(dst + 1);
  418. if (s_addr->sa_family != d_addr->sa_family)
  419. return 0;
  420. if (s_addr->sa_family != AF_INET
  421. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  422. && s_addr->sa_family != AF_INET6
  423. #endif
  424. )
  425. return 0;
  426. return 1;
  427. }
  428. static int parse_exthdrs(struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  429. {
  430. char *p = (char *) hdr;
  431. int len = skb->len;
  432. len -= sizeof(*hdr);
  433. p += sizeof(*hdr);
  434. while (len > 0) {
  435. struct sadb_ext *ehdr = (struct sadb_ext *) p;
  436. uint16_t ext_type;
  437. int ext_len;
  438. ext_len = ehdr->sadb_ext_len;
  439. ext_len *= sizeof(uint64_t);
  440. ext_type = ehdr->sadb_ext_type;
  441. if (ext_len < sizeof(uint64_t) ||
  442. ext_len > len ||
  443. ext_type == SADB_EXT_RESERVED)
  444. return -EINVAL;
  445. if (ext_type <= SADB_EXT_MAX) {
  446. int min = (int) sadb_ext_min_len[ext_type];
  447. if (ext_len < min)
  448. return -EINVAL;
  449. if (ext_hdrs[ext_type-1] != NULL)
  450. return -EINVAL;
  451. if (ext_type == SADB_EXT_ADDRESS_SRC ||
  452. ext_type == SADB_EXT_ADDRESS_DST ||
  453. ext_type == SADB_EXT_ADDRESS_PROXY ||
  454. ext_type == SADB_X_EXT_NAT_T_OA) {
  455. if (verify_address_len(p))
  456. return -EINVAL;
  457. }
  458. if (ext_type == SADB_X_EXT_SEC_CTX) {
  459. if (verify_sec_ctx_len(p))
  460. return -EINVAL;
  461. }
  462. ext_hdrs[ext_type-1] = p;
  463. }
  464. p += ext_len;
  465. len -= ext_len;
  466. }
  467. return 0;
  468. }
  469. static uint16_t
  470. pfkey_satype2proto(uint8_t satype)
  471. {
  472. switch (satype) {
  473. case SADB_SATYPE_UNSPEC:
  474. return IPSEC_PROTO_ANY;
  475. case SADB_SATYPE_AH:
  476. return IPPROTO_AH;
  477. case SADB_SATYPE_ESP:
  478. return IPPROTO_ESP;
  479. case SADB_X_SATYPE_IPCOMP:
  480. return IPPROTO_COMP;
  481. break;
  482. default:
  483. return 0;
  484. }
  485. /* NOTREACHED */
  486. }
  487. static uint8_t
  488. pfkey_proto2satype(uint16_t proto)
  489. {
  490. switch (proto) {
  491. case IPPROTO_AH:
  492. return SADB_SATYPE_AH;
  493. case IPPROTO_ESP:
  494. return SADB_SATYPE_ESP;
  495. case IPPROTO_COMP:
  496. return SADB_X_SATYPE_IPCOMP;
  497. break;
  498. default:
  499. return 0;
  500. }
  501. /* NOTREACHED */
  502. }
  503. /* BTW, this scheme means that there is no way with PFKEY2 sockets to
  504. * say specifically 'just raw sockets' as we encode them as 255.
  505. */
  506. static uint8_t pfkey_proto_to_xfrm(uint8_t proto)
  507. {
  508. return (proto == IPSEC_PROTO_ANY ? 0 : proto);
  509. }
  510. static uint8_t pfkey_proto_from_xfrm(uint8_t proto)
  511. {
  512. return (proto ? proto : IPSEC_PROTO_ANY);
  513. }
  514. static inline int pfkey_sockaddr_len(sa_family_t family)
  515. {
  516. switch (family) {
  517. case AF_INET:
  518. return sizeof(struct sockaddr_in);
  519. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  520. case AF_INET6:
  521. return sizeof(struct sockaddr_in6);
  522. #endif
  523. }
  524. return 0;
  525. }
  526. static
  527. int pfkey_sockaddr_extract(const struct sockaddr *sa, xfrm_address_t *xaddr)
  528. {
  529. switch (sa->sa_family) {
  530. case AF_INET:
  531. xaddr->a4 =
  532. ((struct sockaddr_in *)sa)->sin_addr.s_addr;
  533. return AF_INET;
  534. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  535. case AF_INET6:
  536. memcpy(xaddr->a6,
  537. &((struct sockaddr_in6 *)sa)->sin6_addr,
  538. sizeof(struct in6_addr));
  539. return AF_INET6;
  540. #endif
  541. }
  542. return 0;
  543. }
  544. static
  545. int pfkey_sadb_addr2xfrm_addr(struct sadb_address *addr, xfrm_address_t *xaddr)
  546. {
  547. return pfkey_sockaddr_extract((struct sockaddr *)(addr + 1),
  548. xaddr);
  549. }
  550. static struct xfrm_state *pfkey_xfrm_state_lookup(struct sadb_msg *hdr, void **ext_hdrs)
  551. {
  552. struct sadb_sa *sa;
  553. struct sadb_address *addr;
  554. uint16_t proto;
  555. unsigned short family;
  556. xfrm_address_t *xaddr;
  557. sa = (struct sadb_sa *) ext_hdrs[SADB_EXT_SA-1];
  558. if (sa == NULL)
  559. return NULL;
  560. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  561. if (proto == 0)
  562. return NULL;
  563. /* sadb_address_len should be checked by caller */
  564. addr = (struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_DST-1];
  565. if (addr == NULL)
  566. return NULL;
  567. family = ((struct sockaddr *)(addr + 1))->sa_family;
  568. switch (family) {
  569. case AF_INET:
  570. xaddr = (xfrm_address_t *)&((struct sockaddr_in *)(addr + 1))->sin_addr;
  571. break;
  572. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  573. case AF_INET6:
  574. xaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(addr + 1))->sin6_addr;
  575. break;
  576. #endif
  577. default:
  578. xaddr = NULL;
  579. }
  580. if (!xaddr)
  581. return NULL;
  582. return xfrm_state_lookup(xaddr, sa->sadb_sa_spi, proto, family);
  583. }
  584. #define PFKEY_ALIGN8(a) (1 + (((a) - 1) | (8 - 1)))
  585. static int
  586. pfkey_sockaddr_size(sa_family_t family)
  587. {
  588. return PFKEY_ALIGN8(pfkey_sockaddr_len(family));
  589. }
  590. static inline int pfkey_mode_from_xfrm(int mode)
  591. {
  592. switch(mode) {
  593. case XFRM_MODE_TRANSPORT:
  594. return IPSEC_MODE_TRANSPORT;
  595. case XFRM_MODE_TUNNEL:
  596. return IPSEC_MODE_TUNNEL;
  597. case XFRM_MODE_BEET:
  598. return IPSEC_MODE_BEET;
  599. default:
  600. return -1;
  601. }
  602. }
  603. static inline int pfkey_mode_to_xfrm(int mode)
  604. {
  605. switch(mode) {
  606. case IPSEC_MODE_ANY: /*XXX*/
  607. case IPSEC_MODE_TRANSPORT:
  608. return XFRM_MODE_TRANSPORT;
  609. case IPSEC_MODE_TUNNEL:
  610. return XFRM_MODE_TUNNEL;
  611. case IPSEC_MODE_BEET:
  612. return XFRM_MODE_BEET;
  613. default:
  614. return -1;
  615. }
  616. }
  617. static unsigned int pfkey_sockaddr_fill(xfrm_address_t *xaddr, __be16 port,
  618. struct sockaddr *sa,
  619. unsigned short family)
  620. {
  621. switch (family) {
  622. case AF_INET:
  623. {
  624. struct sockaddr_in *sin = (struct sockaddr_in *)sa;
  625. sin->sin_family = AF_INET;
  626. sin->sin_port = port;
  627. sin->sin_addr.s_addr = xaddr->a4;
  628. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  629. return 32;
  630. }
  631. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  632. case AF_INET6:
  633. {
  634. struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sa;
  635. sin6->sin6_family = AF_INET6;
  636. sin6->sin6_port = port;
  637. sin6->sin6_flowinfo = 0;
  638. ipv6_addr_copy(&sin6->sin6_addr, (struct in6_addr *)xaddr->a6);
  639. sin6->sin6_scope_id = 0;
  640. return 128;
  641. }
  642. #endif
  643. }
  644. return 0;
  645. }
  646. static struct sk_buff *__pfkey_xfrm_state2msg(struct xfrm_state *x,
  647. int add_keys, int hsc)
  648. {
  649. struct sk_buff *skb;
  650. struct sadb_msg *hdr;
  651. struct sadb_sa *sa;
  652. struct sadb_lifetime *lifetime;
  653. struct sadb_address *addr;
  654. struct sadb_key *key;
  655. struct sadb_x_sa2 *sa2;
  656. struct sadb_x_sec_ctx *sec_ctx;
  657. struct xfrm_sec_ctx *xfrm_ctx;
  658. int ctx_size = 0;
  659. int size;
  660. int auth_key_size = 0;
  661. int encrypt_key_size = 0;
  662. int sockaddr_size;
  663. struct xfrm_encap_tmpl *natt = NULL;
  664. int mode;
  665. /* address family check */
  666. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  667. if (!sockaddr_size)
  668. return ERR_PTR(-EINVAL);
  669. /* base, SA, (lifetime (HSC),) address(SD), (address(P),)
  670. key(AE), (identity(SD),) (sensitivity)> */
  671. size = sizeof(struct sadb_msg) +sizeof(struct sadb_sa) +
  672. sizeof(struct sadb_lifetime) +
  673. ((hsc & 1) ? sizeof(struct sadb_lifetime) : 0) +
  674. ((hsc & 2) ? sizeof(struct sadb_lifetime) : 0) +
  675. sizeof(struct sadb_address)*2 +
  676. sockaddr_size*2 +
  677. sizeof(struct sadb_x_sa2);
  678. if ((xfrm_ctx = x->security)) {
  679. ctx_size = PFKEY_ALIGN8(xfrm_ctx->ctx_len);
  680. size += sizeof(struct sadb_x_sec_ctx) + ctx_size;
  681. }
  682. /* identity & sensitivity */
  683. if (xfrm_addr_cmp(&x->sel.saddr, &x->props.saddr, x->props.family))
  684. size += sizeof(struct sadb_address) + sockaddr_size;
  685. if (add_keys) {
  686. if (x->aalg && x->aalg->alg_key_len) {
  687. auth_key_size =
  688. PFKEY_ALIGN8((x->aalg->alg_key_len + 7) / 8);
  689. size += sizeof(struct sadb_key) + auth_key_size;
  690. }
  691. if (x->ealg && x->ealg->alg_key_len) {
  692. encrypt_key_size =
  693. PFKEY_ALIGN8((x->ealg->alg_key_len+7) / 8);
  694. size += sizeof(struct sadb_key) + encrypt_key_size;
  695. }
  696. }
  697. if (x->encap)
  698. natt = x->encap;
  699. if (natt && natt->encap_type) {
  700. size += sizeof(struct sadb_x_nat_t_type);
  701. size += sizeof(struct sadb_x_nat_t_port);
  702. size += sizeof(struct sadb_x_nat_t_port);
  703. }
  704. skb = alloc_skb(size + 16, GFP_ATOMIC);
  705. if (skb == NULL)
  706. return ERR_PTR(-ENOBUFS);
  707. /* call should fill header later */
  708. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  709. memset(hdr, 0, size); /* XXX do we need this ? */
  710. hdr->sadb_msg_len = size / sizeof(uint64_t);
  711. /* sa */
  712. sa = (struct sadb_sa *) skb_put(skb, sizeof(struct sadb_sa));
  713. sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t);
  714. sa->sadb_sa_exttype = SADB_EXT_SA;
  715. sa->sadb_sa_spi = x->id.spi;
  716. sa->sadb_sa_replay = x->props.replay_window;
  717. switch (x->km.state) {
  718. case XFRM_STATE_VALID:
  719. sa->sadb_sa_state = x->km.dying ?
  720. SADB_SASTATE_DYING : SADB_SASTATE_MATURE;
  721. break;
  722. case XFRM_STATE_ACQ:
  723. sa->sadb_sa_state = SADB_SASTATE_LARVAL;
  724. break;
  725. default:
  726. sa->sadb_sa_state = SADB_SASTATE_DEAD;
  727. break;
  728. }
  729. sa->sadb_sa_auth = 0;
  730. if (x->aalg) {
  731. struct xfrm_algo_desc *a = xfrm_aalg_get_byname(x->aalg->alg_name, 0);
  732. sa->sadb_sa_auth = a ? a->desc.sadb_alg_id : 0;
  733. }
  734. sa->sadb_sa_encrypt = 0;
  735. BUG_ON(x->ealg && x->calg);
  736. if (x->ealg) {
  737. struct xfrm_algo_desc *a = xfrm_ealg_get_byname(x->ealg->alg_name, 0);
  738. sa->sadb_sa_encrypt = a ? a->desc.sadb_alg_id : 0;
  739. }
  740. /* KAME compatible: sadb_sa_encrypt is overloaded with calg id */
  741. if (x->calg) {
  742. struct xfrm_algo_desc *a = xfrm_calg_get_byname(x->calg->alg_name, 0);
  743. sa->sadb_sa_encrypt = a ? a->desc.sadb_alg_id : 0;
  744. }
  745. sa->sadb_sa_flags = 0;
  746. if (x->props.flags & XFRM_STATE_NOECN)
  747. sa->sadb_sa_flags |= SADB_SAFLAGS_NOECN;
  748. if (x->props.flags & XFRM_STATE_DECAP_DSCP)
  749. sa->sadb_sa_flags |= SADB_SAFLAGS_DECAP_DSCP;
  750. if (x->props.flags & XFRM_STATE_NOPMTUDISC)
  751. sa->sadb_sa_flags |= SADB_SAFLAGS_NOPMTUDISC;
  752. /* hard time */
  753. if (hsc & 2) {
  754. lifetime = (struct sadb_lifetime *) skb_put(skb,
  755. sizeof(struct sadb_lifetime));
  756. lifetime->sadb_lifetime_len =
  757. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  758. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
  759. lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.hard_packet_limit);
  760. lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.hard_byte_limit);
  761. lifetime->sadb_lifetime_addtime = x->lft.hard_add_expires_seconds;
  762. lifetime->sadb_lifetime_usetime = x->lft.hard_use_expires_seconds;
  763. }
  764. /* soft time */
  765. if (hsc & 1) {
  766. lifetime = (struct sadb_lifetime *) skb_put(skb,
  767. sizeof(struct sadb_lifetime));
  768. lifetime->sadb_lifetime_len =
  769. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  770. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
  771. lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.soft_packet_limit);
  772. lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.soft_byte_limit);
  773. lifetime->sadb_lifetime_addtime = x->lft.soft_add_expires_seconds;
  774. lifetime->sadb_lifetime_usetime = x->lft.soft_use_expires_seconds;
  775. }
  776. /* current time */
  777. lifetime = (struct sadb_lifetime *) skb_put(skb,
  778. sizeof(struct sadb_lifetime));
  779. lifetime->sadb_lifetime_len =
  780. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  781. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
  782. lifetime->sadb_lifetime_allocations = x->curlft.packets;
  783. lifetime->sadb_lifetime_bytes = x->curlft.bytes;
  784. lifetime->sadb_lifetime_addtime = x->curlft.add_time;
  785. lifetime->sadb_lifetime_usetime = x->curlft.use_time;
  786. /* src address */
  787. addr = (struct sadb_address*) skb_put(skb,
  788. sizeof(struct sadb_address)+sockaddr_size);
  789. addr->sadb_address_len =
  790. (sizeof(struct sadb_address)+sockaddr_size)/
  791. sizeof(uint64_t);
  792. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  793. /* "if the ports are non-zero, then the sadb_address_proto field,
  794. normally zero, MUST be filled in with the transport
  795. protocol's number." - RFC2367 */
  796. addr->sadb_address_proto = 0;
  797. addr->sadb_address_reserved = 0;
  798. addr->sadb_address_prefixlen =
  799. pfkey_sockaddr_fill(&x->props.saddr, 0,
  800. (struct sockaddr *) (addr + 1),
  801. x->props.family);
  802. if (!addr->sadb_address_prefixlen)
  803. BUG();
  804. /* dst address */
  805. addr = (struct sadb_address*) skb_put(skb,
  806. sizeof(struct sadb_address)+sockaddr_size);
  807. addr->sadb_address_len =
  808. (sizeof(struct sadb_address)+sockaddr_size)/
  809. sizeof(uint64_t);
  810. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  811. addr->sadb_address_proto = 0;
  812. addr->sadb_address_reserved = 0;
  813. addr->sadb_address_prefixlen =
  814. pfkey_sockaddr_fill(&x->id.daddr, 0,
  815. (struct sockaddr *) (addr + 1),
  816. x->props.family);
  817. if (!addr->sadb_address_prefixlen)
  818. BUG();
  819. if (xfrm_addr_cmp(&x->sel.saddr, &x->props.saddr,
  820. x->props.family)) {
  821. addr = (struct sadb_address*) skb_put(skb,
  822. sizeof(struct sadb_address)+sockaddr_size);
  823. addr->sadb_address_len =
  824. (sizeof(struct sadb_address)+sockaddr_size)/
  825. sizeof(uint64_t);
  826. addr->sadb_address_exttype = SADB_EXT_ADDRESS_PROXY;
  827. addr->sadb_address_proto =
  828. pfkey_proto_from_xfrm(x->sel.proto);
  829. addr->sadb_address_prefixlen = x->sel.prefixlen_s;
  830. addr->sadb_address_reserved = 0;
  831. pfkey_sockaddr_fill(&x->sel.saddr, x->sel.sport,
  832. (struct sockaddr *) (addr + 1),
  833. x->props.family);
  834. }
  835. /* auth key */
  836. if (add_keys && auth_key_size) {
  837. key = (struct sadb_key *) skb_put(skb,
  838. sizeof(struct sadb_key)+auth_key_size);
  839. key->sadb_key_len = (sizeof(struct sadb_key) + auth_key_size) /
  840. sizeof(uint64_t);
  841. key->sadb_key_exttype = SADB_EXT_KEY_AUTH;
  842. key->sadb_key_bits = x->aalg->alg_key_len;
  843. key->sadb_key_reserved = 0;
  844. memcpy(key + 1, x->aalg->alg_key, (x->aalg->alg_key_len+7)/8);
  845. }
  846. /* encrypt key */
  847. if (add_keys && encrypt_key_size) {
  848. key = (struct sadb_key *) skb_put(skb,
  849. sizeof(struct sadb_key)+encrypt_key_size);
  850. key->sadb_key_len = (sizeof(struct sadb_key) +
  851. encrypt_key_size) / sizeof(uint64_t);
  852. key->sadb_key_exttype = SADB_EXT_KEY_ENCRYPT;
  853. key->sadb_key_bits = x->ealg->alg_key_len;
  854. key->sadb_key_reserved = 0;
  855. memcpy(key + 1, x->ealg->alg_key,
  856. (x->ealg->alg_key_len+7)/8);
  857. }
  858. /* sa */
  859. sa2 = (struct sadb_x_sa2 *) skb_put(skb, sizeof(struct sadb_x_sa2));
  860. sa2->sadb_x_sa2_len = sizeof(struct sadb_x_sa2)/sizeof(uint64_t);
  861. sa2->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
  862. if ((mode = pfkey_mode_from_xfrm(x->props.mode)) < 0) {
  863. kfree_skb(skb);
  864. return ERR_PTR(-EINVAL);
  865. }
  866. sa2->sadb_x_sa2_mode = mode;
  867. sa2->sadb_x_sa2_reserved1 = 0;
  868. sa2->sadb_x_sa2_reserved2 = 0;
  869. sa2->sadb_x_sa2_sequence = 0;
  870. sa2->sadb_x_sa2_reqid = x->props.reqid;
  871. if (natt && natt->encap_type) {
  872. struct sadb_x_nat_t_type *n_type;
  873. struct sadb_x_nat_t_port *n_port;
  874. /* type */
  875. n_type = (struct sadb_x_nat_t_type*) skb_put(skb, sizeof(*n_type));
  876. n_type->sadb_x_nat_t_type_len = sizeof(*n_type)/sizeof(uint64_t);
  877. n_type->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
  878. n_type->sadb_x_nat_t_type_type = natt->encap_type;
  879. n_type->sadb_x_nat_t_type_reserved[0] = 0;
  880. n_type->sadb_x_nat_t_type_reserved[1] = 0;
  881. n_type->sadb_x_nat_t_type_reserved[2] = 0;
  882. /* source port */
  883. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  884. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  885. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
  886. n_port->sadb_x_nat_t_port_port = natt->encap_sport;
  887. n_port->sadb_x_nat_t_port_reserved = 0;
  888. /* dest port */
  889. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  890. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  891. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
  892. n_port->sadb_x_nat_t_port_port = natt->encap_dport;
  893. n_port->sadb_x_nat_t_port_reserved = 0;
  894. }
  895. /* security context */
  896. if (xfrm_ctx) {
  897. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb,
  898. sizeof(struct sadb_x_sec_ctx) + ctx_size);
  899. sec_ctx->sadb_x_sec_len =
  900. (sizeof(struct sadb_x_sec_ctx) + ctx_size) / sizeof(uint64_t);
  901. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  902. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  903. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  904. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  905. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  906. xfrm_ctx->ctx_len);
  907. }
  908. return skb;
  909. }
  910. static inline struct sk_buff *pfkey_xfrm_state2msg(struct xfrm_state *x)
  911. {
  912. struct sk_buff *skb;
  913. skb = __pfkey_xfrm_state2msg(x, 1, 3);
  914. return skb;
  915. }
  916. static inline struct sk_buff *pfkey_xfrm_state2msg_expire(struct xfrm_state *x,
  917. int hsc)
  918. {
  919. return __pfkey_xfrm_state2msg(x, 0, hsc);
  920. }
  921. static struct xfrm_state * pfkey_msg2xfrm_state(struct sadb_msg *hdr,
  922. void **ext_hdrs)
  923. {
  924. struct xfrm_state *x;
  925. struct sadb_lifetime *lifetime;
  926. struct sadb_sa *sa;
  927. struct sadb_key *key;
  928. struct sadb_x_sec_ctx *sec_ctx;
  929. uint16_t proto;
  930. int err;
  931. sa = (struct sadb_sa *) ext_hdrs[SADB_EXT_SA-1];
  932. if (!sa ||
  933. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  934. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  935. return ERR_PTR(-EINVAL);
  936. if (hdr->sadb_msg_satype == SADB_SATYPE_ESP &&
  937. !ext_hdrs[SADB_EXT_KEY_ENCRYPT-1])
  938. return ERR_PTR(-EINVAL);
  939. if (hdr->sadb_msg_satype == SADB_SATYPE_AH &&
  940. !ext_hdrs[SADB_EXT_KEY_AUTH-1])
  941. return ERR_PTR(-EINVAL);
  942. if (!!ext_hdrs[SADB_EXT_LIFETIME_HARD-1] !=
  943. !!ext_hdrs[SADB_EXT_LIFETIME_SOFT-1])
  944. return ERR_PTR(-EINVAL);
  945. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  946. if (proto == 0)
  947. return ERR_PTR(-EINVAL);
  948. /* default error is no buffer space */
  949. err = -ENOBUFS;
  950. /* RFC2367:
  951. Only SADB_SASTATE_MATURE SAs may be submitted in an SADB_ADD message.
  952. SADB_SASTATE_LARVAL SAs are created by SADB_GETSPI and it is not
  953. sensible to add a new SA in the DYING or SADB_SASTATE_DEAD state.
  954. Therefore, the sadb_sa_state field of all submitted SAs MUST be
  955. SADB_SASTATE_MATURE and the kernel MUST return an error if this is
  956. not true.
  957. However, KAME setkey always uses SADB_SASTATE_LARVAL.
  958. Hence, we have to _ignore_ sadb_sa_state, which is also reasonable.
  959. */
  960. if (sa->sadb_sa_auth > SADB_AALG_MAX ||
  961. (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP &&
  962. sa->sadb_sa_encrypt > SADB_X_CALG_MAX) ||
  963. sa->sadb_sa_encrypt > SADB_EALG_MAX)
  964. return ERR_PTR(-EINVAL);
  965. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_AUTH-1];
  966. if (key != NULL &&
  967. sa->sadb_sa_auth != SADB_X_AALG_NULL &&
  968. ((key->sadb_key_bits+7) / 8 == 0 ||
  969. (key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t)))
  970. return ERR_PTR(-EINVAL);
  971. key = ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
  972. if (key != NULL &&
  973. sa->sadb_sa_encrypt != SADB_EALG_NULL &&
  974. ((key->sadb_key_bits+7) / 8 == 0 ||
  975. (key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t)))
  976. return ERR_PTR(-EINVAL);
  977. x = xfrm_state_alloc();
  978. if (x == NULL)
  979. return ERR_PTR(-ENOBUFS);
  980. x->id.proto = proto;
  981. x->id.spi = sa->sadb_sa_spi;
  982. x->props.replay_window = sa->sadb_sa_replay;
  983. if (sa->sadb_sa_flags & SADB_SAFLAGS_NOECN)
  984. x->props.flags |= XFRM_STATE_NOECN;
  985. if (sa->sadb_sa_flags & SADB_SAFLAGS_DECAP_DSCP)
  986. x->props.flags |= XFRM_STATE_DECAP_DSCP;
  987. if (sa->sadb_sa_flags & SADB_SAFLAGS_NOPMTUDISC)
  988. x->props.flags |= XFRM_STATE_NOPMTUDISC;
  989. lifetime = (struct sadb_lifetime*) ext_hdrs[SADB_EXT_LIFETIME_HARD-1];
  990. if (lifetime != NULL) {
  991. x->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  992. x->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  993. x->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  994. x->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  995. }
  996. lifetime = (struct sadb_lifetime*) ext_hdrs[SADB_EXT_LIFETIME_SOFT-1];
  997. if (lifetime != NULL) {
  998. x->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  999. x->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  1000. x->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  1001. x->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  1002. }
  1003. sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1];
  1004. if (sec_ctx != NULL) {
  1005. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  1006. if (!uctx)
  1007. goto out;
  1008. err = security_xfrm_state_alloc(x, uctx);
  1009. kfree(uctx);
  1010. if (err)
  1011. goto out;
  1012. }
  1013. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_AUTH-1];
  1014. if (sa->sadb_sa_auth) {
  1015. int keysize = 0;
  1016. struct xfrm_algo_desc *a = xfrm_aalg_get_byid(sa->sadb_sa_auth);
  1017. if (!a) {
  1018. err = -ENOSYS;
  1019. goto out;
  1020. }
  1021. if (key)
  1022. keysize = (key->sadb_key_bits + 7) / 8;
  1023. x->aalg = kmalloc(sizeof(*x->aalg) + keysize, GFP_KERNEL);
  1024. if (!x->aalg)
  1025. goto out;
  1026. strcpy(x->aalg->alg_name, a->name);
  1027. x->aalg->alg_key_len = 0;
  1028. if (key) {
  1029. x->aalg->alg_key_len = key->sadb_key_bits;
  1030. memcpy(x->aalg->alg_key, key+1, keysize);
  1031. }
  1032. x->props.aalgo = sa->sadb_sa_auth;
  1033. /* x->algo.flags = sa->sadb_sa_flags; */
  1034. }
  1035. if (sa->sadb_sa_encrypt) {
  1036. if (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP) {
  1037. struct xfrm_algo_desc *a = xfrm_calg_get_byid(sa->sadb_sa_encrypt);
  1038. if (!a) {
  1039. err = -ENOSYS;
  1040. goto out;
  1041. }
  1042. x->calg = kmalloc(sizeof(*x->calg), GFP_KERNEL);
  1043. if (!x->calg)
  1044. goto out;
  1045. strcpy(x->calg->alg_name, a->name);
  1046. x->props.calgo = sa->sadb_sa_encrypt;
  1047. } else {
  1048. int keysize = 0;
  1049. struct xfrm_algo_desc *a = xfrm_ealg_get_byid(sa->sadb_sa_encrypt);
  1050. if (!a) {
  1051. err = -ENOSYS;
  1052. goto out;
  1053. }
  1054. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
  1055. if (key)
  1056. keysize = (key->sadb_key_bits + 7) / 8;
  1057. x->ealg = kmalloc(sizeof(*x->ealg) + keysize, GFP_KERNEL);
  1058. if (!x->ealg)
  1059. goto out;
  1060. strcpy(x->ealg->alg_name, a->name);
  1061. x->ealg->alg_key_len = 0;
  1062. if (key) {
  1063. x->ealg->alg_key_len = key->sadb_key_bits;
  1064. memcpy(x->ealg->alg_key, key+1, keysize);
  1065. }
  1066. x->props.ealgo = sa->sadb_sa_encrypt;
  1067. }
  1068. }
  1069. /* x->algo.flags = sa->sadb_sa_flags; */
  1070. x->props.family = pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1071. &x->props.saddr);
  1072. if (!x->props.family) {
  1073. err = -EAFNOSUPPORT;
  1074. goto out;
  1075. }
  1076. pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  1077. &x->id.daddr);
  1078. if (ext_hdrs[SADB_X_EXT_SA2-1]) {
  1079. struct sadb_x_sa2 *sa2 = (void*)ext_hdrs[SADB_X_EXT_SA2-1];
  1080. int mode = pfkey_mode_to_xfrm(sa2->sadb_x_sa2_mode);
  1081. if (mode < 0) {
  1082. err = -EINVAL;
  1083. goto out;
  1084. }
  1085. x->props.mode = mode;
  1086. x->props.reqid = sa2->sadb_x_sa2_reqid;
  1087. }
  1088. if (ext_hdrs[SADB_EXT_ADDRESS_PROXY-1]) {
  1089. struct sadb_address *addr = ext_hdrs[SADB_EXT_ADDRESS_PROXY-1];
  1090. /* Nobody uses this, but we try. */
  1091. x->sel.family = pfkey_sadb_addr2xfrm_addr(addr, &x->sel.saddr);
  1092. x->sel.prefixlen_s = addr->sadb_address_prefixlen;
  1093. }
  1094. if (!x->sel.family)
  1095. x->sel.family = x->props.family;
  1096. if (ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1]) {
  1097. struct sadb_x_nat_t_type* n_type;
  1098. struct xfrm_encap_tmpl *natt;
  1099. x->encap = kmalloc(sizeof(*x->encap), GFP_KERNEL);
  1100. if (!x->encap)
  1101. goto out;
  1102. natt = x->encap;
  1103. n_type = ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1];
  1104. natt->encap_type = n_type->sadb_x_nat_t_type_type;
  1105. if (ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1]) {
  1106. struct sadb_x_nat_t_port* n_port =
  1107. ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1];
  1108. natt->encap_sport = n_port->sadb_x_nat_t_port_port;
  1109. }
  1110. if (ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1]) {
  1111. struct sadb_x_nat_t_port* n_port =
  1112. ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1];
  1113. natt->encap_dport = n_port->sadb_x_nat_t_port_port;
  1114. }
  1115. }
  1116. err = xfrm_init_state(x);
  1117. if (err)
  1118. goto out;
  1119. x->km.seq = hdr->sadb_msg_seq;
  1120. return x;
  1121. out:
  1122. x->km.state = XFRM_STATE_DEAD;
  1123. xfrm_state_put(x);
  1124. return ERR_PTR(err);
  1125. }
  1126. static int pfkey_reserved(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1127. {
  1128. return -EOPNOTSUPP;
  1129. }
  1130. static int pfkey_getspi(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1131. {
  1132. struct sk_buff *resp_skb;
  1133. struct sadb_x_sa2 *sa2;
  1134. struct sadb_address *saddr, *daddr;
  1135. struct sadb_msg *out_hdr;
  1136. struct sadb_spirange *range;
  1137. struct xfrm_state *x = NULL;
  1138. int mode;
  1139. int err;
  1140. u32 min_spi, max_spi;
  1141. u32 reqid;
  1142. u8 proto;
  1143. unsigned short family;
  1144. xfrm_address_t *xsaddr = NULL, *xdaddr = NULL;
  1145. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1146. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1147. return -EINVAL;
  1148. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1149. if (proto == 0)
  1150. return -EINVAL;
  1151. if ((sa2 = ext_hdrs[SADB_X_EXT_SA2-1]) != NULL) {
  1152. mode = pfkey_mode_to_xfrm(sa2->sadb_x_sa2_mode);
  1153. if (mode < 0)
  1154. return -EINVAL;
  1155. reqid = sa2->sadb_x_sa2_reqid;
  1156. } else {
  1157. mode = 0;
  1158. reqid = 0;
  1159. }
  1160. saddr = ext_hdrs[SADB_EXT_ADDRESS_SRC-1];
  1161. daddr = ext_hdrs[SADB_EXT_ADDRESS_DST-1];
  1162. family = ((struct sockaddr *)(saddr + 1))->sa_family;
  1163. switch (family) {
  1164. case AF_INET:
  1165. xdaddr = (xfrm_address_t *)&((struct sockaddr_in *)(daddr + 1))->sin_addr.s_addr;
  1166. xsaddr = (xfrm_address_t *)&((struct sockaddr_in *)(saddr + 1))->sin_addr.s_addr;
  1167. break;
  1168. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1169. case AF_INET6:
  1170. xdaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(daddr + 1))->sin6_addr;
  1171. xsaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(saddr + 1))->sin6_addr;
  1172. break;
  1173. #endif
  1174. }
  1175. if (hdr->sadb_msg_seq) {
  1176. x = xfrm_find_acq_byseq(hdr->sadb_msg_seq);
  1177. if (x && xfrm_addr_cmp(&x->id.daddr, xdaddr, family)) {
  1178. xfrm_state_put(x);
  1179. x = NULL;
  1180. }
  1181. }
  1182. if (!x)
  1183. x = xfrm_find_acq(mode, reqid, proto, xdaddr, xsaddr, 1, family);
  1184. if (x == NULL)
  1185. return -ENOENT;
  1186. min_spi = 0x100;
  1187. max_spi = 0x0fffffff;
  1188. range = ext_hdrs[SADB_EXT_SPIRANGE-1];
  1189. if (range) {
  1190. min_spi = range->sadb_spirange_min;
  1191. max_spi = range->sadb_spirange_max;
  1192. }
  1193. err = xfrm_alloc_spi(x, min_spi, max_spi);
  1194. resp_skb = err ? ERR_PTR(err) : pfkey_xfrm_state2msg(x);
  1195. if (IS_ERR(resp_skb)) {
  1196. xfrm_state_put(x);
  1197. return PTR_ERR(resp_skb);
  1198. }
  1199. out_hdr = (struct sadb_msg *) resp_skb->data;
  1200. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  1201. out_hdr->sadb_msg_type = SADB_GETSPI;
  1202. out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
  1203. out_hdr->sadb_msg_errno = 0;
  1204. out_hdr->sadb_msg_reserved = 0;
  1205. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  1206. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  1207. xfrm_state_put(x);
  1208. pfkey_broadcast(resp_skb, GFP_KERNEL, BROADCAST_ONE, sk);
  1209. return 0;
  1210. }
  1211. static int pfkey_acquire(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1212. {
  1213. struct xfrm_state *x;
  1214. if (hdr->sadb_msg_len != sizeof(struct sadb_msg)/8)
  1215. return -EOPNOTSUPP;
  1216. if (hdr->sadb_msg_seq == 0 || hdr->sadb_msg_errno == 0)
  1217. return 0;
  1218. x = xfrm_find_acq_byseq(hdr->sadb_msg_seq);
  1219. if (x == NULL)
  1220. return 0;
  1221. spin_lock_bh(&x->lock);
  1222. if (x->km.state == XFRM_STATE_ACQ) {
  1223. x->km.state = XFRM_STATE_ERROR;
  1224. wake_up(&km_waitq);
  1225. }
  1226. spin_unlock_bh(&x->lock);
  1227. xfrm_state_put(x);
  1228. return 0;
  1229. }
  1230. static inline int event2poltype(int event)
  1231. {
  1232. switch (event) {
  1233. case XFRM_MSG_DELPOLICY:
  1234. return SADB_X_SPDDELETE;
  1235. case XFRM_MSG_NEWPOLICY:
  1236. return SADB_X_SPDADD;
  1237. case XFRM_MSG_UPDPOLICY:
  1238. return SADB_X_SPDUPDATE;
  1239. case XFRM_MSG_POLEXPIRE:
  1240. // return SADB_X_SPDEXPIRE;
  1241. default:
  1242. printk("pfkey: Unknown policy event %d\n", event);
  1243. break;
  1244. }
  1245. return 0;
  1246. }
  1247. static inline int event2keytype(int event)
  1248. {
  1249. switch (event) {
  1250. case XFRM_MSG_DELSA:
  1251. return SADB_DELETE;
  1252. case XFRM_MSG_NEWSA:
  1253. return SADB_ADD;
  1254. case XFRM_MSG_UPDSA:
  1255. return SADB_UPDATE;
  1256. case XFRM_MSG_EXPIRE:
  1257. return SADB_EXPIRE;
  1258. default:
  1259. printk("pfkey: Unknown SA event %d\n", event);
  1260. break;
  1261. }
  1262. return 0;
  1263. }
  1264. /* ADD/UPD/DEL */
  1265. static int key_notify_sa(struct xfrm_state *x, struct km_event *c)
  1266. {
  1267. struct sk_buff *skb;
  1268. struct sadb_msg *hdr;
  1269. skb = pfkey_xfrm_state2msg(x);
  1270. if (IS_ERR(skb))
  1271. return PTR_ERR(skb);
  1272. hdr = (struct sadb_msg *) skb->data;
  1273. hdr->sadb_msg_version = PF_KEY_V2;
  1274. hdr->sadb_msg_type = event2keytype(c->event);
  1275. hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  1276. hdr->sadb_msg_errno = 0;
  1277. hdr->sadb_msg_reserved = 0;
  1278. hdr->sadb_msg_seq = c->seq;
  1279. hdr->sadb_msg_pid = c->pid;
  1280. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
  1281. return 0;
  1282. }
  1283. static int pfkey_add(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1284. {
  1285. struct xfrm_state *x;
  1286. int err;
  1287. struct km_event c;
  1288. x = pfkey_msg2xfrm_state(hdr, ext_hdrs);
  1289. if (IS_ERR(x))
  1290. return PTR_ERR(x);
  1291. xfrm_state_hold(x);
  1292. if (hdr->sadb_msg_type == SADB_ADD)
  1293. err = xfrm_state_add(x);
  1294. else
  1295. err = xfrm_state_update(x);
  1296. xfrm_audit_state_add(x, err ? 0 : 1,
  1297. audit_get_loginuid(current),
  1298. audit_get_sessionid(current), 0);
  1299. if (err < 0) {
  1300. x->km.state = XFRM_STATE_DEAD;
  1301. __xfrm_state_put(x);
  1302. goto out;
  1303. }
  1304. if (hdr->sadb_msg_type == SADB_ADD)
  1305. c.event = XFRM_MSG_NEWSA;
  1306. else
  1307. c.event = XFRM_MSG_UPDSA;
  1308. c.seq = hdr->sadb_msg_seq;
  1309. c.pid = hdr->sadb_msg_pid;
  1310. km_state_notify(x, &c);
  1311. out:
  1312. xfrm_state_put(x);
  1313. return err;
  1314. }
  1315. static int pfkey_delete(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1316. {
  1317. struct xfrm_state *x;
  1318. struct km_event c;
  1319. int err;
  1320. if (!ext_hdrs[SADB_EXT_SA-1] ||
  1321. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1322. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1323. return -EINVAL;
  1324. x = pfkey_xfrm_state_lookup(hdr, ext_hdrs);
  1325. if (x == NULL)
  1326. return -ESRCH;
  1327. if ((err = security_xfrm_state_delete(x)))
  1328. goto out;
  1329. if (xfrm_state_kern(x)) {
  1330. err = -EPERM;
  1331. goto out;
  1332. }
  1333. err = xfrm_state_delete(x);
  1334. if (err < 0)
  1335. goto out;
  1336. c.seq = hdr->sadb_msg_seq;
  1337. c.pid = hdr->sadb_msg_pid;
  1338. c.event = XFRM_MSG_DELSA;
  1339. km_state_notify(x, &c);
  1340. out:
  1341. xfrm_audit_state_delete(x, err ? 0 : 1,
  1342. audit_get_loginuid(current),
  1343. audit_get_sessionid(current), 0);
  1344. xfrm_state_put(x);
  1345. return err;
  1346. }
  1347. static int pfkey_get(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1348. {
  1349. __u8 proto;
  1350. struct sk_buff *out_skb;
  1351. struct sadb_msg *out_hdr;
  1352. struct xfrm_state *x;
  1353. if (!ext_hdrs[SADB_EXT_SA-1] ||
  1354. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1355. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1356. return -EINVAL;
  1357. x = pfkey_xfrm_state_lookup(hdr, ext_hdrs);
  1358. if (x == NULL)
  1359. return -ESRCH;
  1360. out_skb = pfkey_xfrm_state2msg(x);
  1361. proto = x->id.proto;
  1362. xfrm_state_put(x);
  1363. if (IS_ERR(out_skb))
  1364. return PTR_ERR(out_skb);
  1365. out_hdr = (struct sadb_msg *) out_skb->data;
  1366. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  1367. out_hdr->sadb_msg_type = SADB_GET;
  1368. out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
  1369. out_hdr->sadb_msg_errno = 0;
  1370. out_hdr->sadb_msg_reserved = 0;
  1371. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  1372. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  1373. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk);
  1374. return 0;
  1375. }
  1376. static struct sk_buff *compose_sadb_supported(struct sadb_msg *orig,
  1377. gfp_t allocation)
  1378. {
  1379. struct sk_buff *skb;
  1380. struct sadb_msg *hdr;
  1381. int len, auth_len, enc_len, i;
  1382. auth_len = xfrm_count_auth_supported();
  1383. if (auth_len) {
  1384. auth_len *= sizeof(struct sadb_alg);
  1385. auth_len += sizeof(struct sadb_supported);
  1386. }
  1387. enc_len = xfrm_count_enc_supported();
  1388. if (enc_len) {
  1389. enc_len *= sizeof(struct sadb_alg);
  1390. enc_len += sizeof(struct sadb_supported);
  1391. }
  1392. len = enc_len + auth_len + sizeof(struct sadb_msg);
  1393. skb = alloc_skb(len + 16, allocation);
  1394. if (!skb)
  1395. goto out_put_algs;
  1396. hdr = (struct sadb_msg *) skb_put(skb, sizeof(*hdr));
  1397. pfkey_hdr_dup(hdr, orig);
  1398. hdr->sadb_msg_errno = 0;
  1399. hdr->sadb_msg_len = len / sizeof(uint64_t);
  1400. if (auth_len) {
  1401. struct sadb_supported *sp;
  1402. struct sadb_alg *ap;
  1403. sp = (struct sadb_supported *) skb_put(skb, auth_len);
  1404. ap = (struct sadb_alg *) (sp + 1);
  1405. sp->sadb_supported_len = auth_len / sizeof(uint64_t);
  1406. sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
  1407. for (i = 0; ; i++) {
  1408. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  1409. if (!aalg)
  1410. break;
  1411. if (aalg->available)
  1412. *ap++ = aalg->desc;
  1413. }
  1414. }
  1415. if (enc_len) {
  1416. struct sadb_supported *sp;
  1417. struct sadb_alg *ap;
  1418. sp = (struct sadb_supported *) skb_put(skb, enc_len);
  1419. ap = (struct sadb_alg *) (sp + 1);
  1420. sp->sadb_supported_len = enc_len / sizeof(uint64_t);
  1421. sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
  1422. for (i = 0; ; i++) {
  1423. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  1424. if (!ealg)
  1425. break;
  1426. if (ealg->available)
  1427. *ap++ = ealg->desc;
  1428. }
  1429. }
  1430. out_put_algs:
  1431. return skb;
  1432. }
  1433. static int pfkey_register(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1434. {
  1435. struct pfkey_sock *pfk = pfkey_sk(sk);
  1436. struct sk_buff *supp_skb;
  1437. if (hdr->sadb_msg_satype > SADB_SATYPE_MAX)
  1438. return -EINVAL;
  1439. if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC) {
  1440. if (pfk->registered&(1<<hdr->sadb_msg_satype))
  1441. return -EEXIST;
  1442. pfk->registered |= (1<<hdr->sadb_msg_satype);
  1443. }
  1444. xfrm_probe_algs();
  1445. supp_skb = compose_sadb_supported(hdr, GFP_KERNEL);
  1446. if (!supp_skb) {
  1447. if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC)
  1448. pfk->registered &= ~(1<<hdr->sadb_msg_satype);
  1449. return -ENOBUFS;
  1450. }
  1451. pfkey_broadcast(supp_skb, GFP_KERNEL, BROADCAST_REGISTERED, sk);
  1452. return 0;
  1453. }
  1454. static int key_notify_sa_flush(struct km_event *c)
  1455. {
  1456. struct sk_buff *skb;
  1457. struct sadb_msg *hdr;
  1458. skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  1459. if (!skb)
  1460. return -ENOBUFS;
  1461. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  1462. hdr->sadb_msg_satype = pfkey_proto2satype(c->data.proto);
  1463. hdr->sadb_msg_type = SADB_FLUSH;
  1464. hdr->sadb_msg_seq = c->seq;
  1465. hdr->sadb_msg_pid = c->pid;
  1466. hdr->sadb_msg_version = PF_KEY_V2;
  1467. hdr->sadb_msg_errno = (uint8_t) 0;
  1468. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  1469. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
  1470. return 0;
  1471. }
  1472. static int pfkey_flush(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1473. {
  1474. unsigned proto;
  1475. struct km_event c;
  1476. struct xfrm_audit audit_info;
  1477. int err;
  1478. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1479. if (proto == 0)
  1480. return -EINVAL;
  1481. audit_info.loginuid = audit_get_loginuid(current);
  1482. audit_info.sessionid = audit_get_sessionid(current);
  1483. audit_info.secid = 0;
  1484. err = xfrm_state_flush(proto, &audit_info);
  1485. if (err)
  1486. return err;
  1487. c.data.proto = proto;
  1488. c.seq = hdr->sadb_msg_seq;
  1489. c.pid = hdr->sadb_msg_pid;
  1490. c.event = XFRM_MSG_FLUSHSA;
  1491. km_state_notify(NULL, &c);
  1492. return 0;
  1493. }
  1494. static int dump_sa(struct xfrm_state *x, int count, void *ptr)
  1495. {
  1496. struct pfkey_sock *pfk = ptr;
  1497. struct sk_buff *out_skb;
  1498. struct sadb_msg *out_hdr;
  1499. if (!pfkey_can_dump(&pfk->sk))
  1500. return -ENOBUFS;
  1501. out_skb = pfkey_xfrm_state2msg(x);
  1502. if (IS_ERR(out_skb))
  1503. return PTR_ERR(out_skb);
  1504. out_hdr = (struct sadb_msg *) out_skb->data;
  1505. out_hdr->sadb_msg_version = pfk->dump.msg_version;
  1506. out_hdr->sadb_msg_type = SADB_DUMP;
  1507. out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  1508. out_hdr->sadb_msg_errno = 0;
  1509. out_hdr->sadb_msg_reserved = 0;
  1510. out_hdr->sadb_msg_seq = count + 1;
  1511. out_hdr->sadb_msg_pid = pfk->dump.msg_pid;
  1512. if (pfk->dump.skb)
  1513. pfkey_broadcast(pfk->dump.skb, GFP_ATOMIC, BROADCAST_ONE,
  1514. &pfk->sk);
  1515. pfk->dump.skb = out_skb;
  1516. return 0;
  1517. }
  1518. static int pfkey_dump_sa(struct pfkey_sock *pfk)
  1519. {
  1520. return xfrm_state_walk(&pfk->dump.u.state, dump_sa, (void *) pfk);
  1521. }
  1522. static void pfkey_dump_sa_done(struct pfkey_sock *pfk)
  1523. {
  1524. xfrm_state_walk_done(&pfk->dump.u.state);
  1525. }
  1526. static int pfkey_dump(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1527. {
  1528. u8 proto;
  1529. struct pfkey_sock *pfk = pfkey_sk(sk);
  1530. if (pfk->dump.dump != NULL)
  1531. return -EBUSY;
  1532. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1533. if (proto == 0)
  1534. return -EINVAL;
  1535. pfk->dump.msg_version = hdr->sadb_msg_version;
  1536. pfk->dump.msg_pid = hdr->sadb_msg_pid;
  1537. pfk->dump.dump = pfkey_dump_sa;
  1538. pfk->dump.done = pfkey_dump_sa_done;
  1539. xfrm_state_walk_init(&pfk->dump.u.state, proto);
  1540. return pfkey_do_dump(pfk);
  1541. }
  1542. static int pfkey_promisc(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1543. {
  1544. struct pfkey_sock *pfk = pfkey_sk(sk);
  1545. int satype = hdr->sadb_msg_satype;
  1546. if (hdr->sadb_msg_len == (sizeof(*hdr) / sizeof(uint64_t))) {
  1547. /* XXX we mangle packet... */
  1548. hdr->sadb_msg_errno = 0;
  1549. if (satype != 0 && satype != 1)
  1550. return -EINVAL;
  1551. pfk->promisc = satype;
  1552. }
  1553. pfkey_broadcast(skb_clone(skb, GFP_KERNEL), GFP_KERNEL, BROADCAST_ALL, NULL);
  1554. return 0;
  1555. }
  1556. static int check_reqid(struct xfrm_policy *xp, int dir, int count, void *ptr)
  1557. {
  1558. int i;
  1559. u32 reqid = *(u32*)ptr;
  1560. for (i=0; i<xp->xfrm_nr; i++) {
  1561. if (xp->xfrm_vec[i].reqid == reqid)
  1562. return -EEXIST;
  1563. }
  1564. return 0;
  1565. }
  1566. static u32 gen_reqid(void)
  1567. {
  1568. struct xfrm_policy_walk walk;
  1569. u32 start;
  1570. int rc;
  1571. static u32 reqid = IPSEC_MANUAL_REQID_MAX;
  1572. start = reqid;
  1573. do {
  1574. ++reqid;
  1575. if (reqid == 0)
  1576. reqid = IPSEC_MANUAL_REQID_MAX+1;
  1577. xfrm_policy_walk_init(&walk, XFRM_POLICY_TYPE_MAIN);
  1578. rc = xfrm_policy_walk(&walk, check_reqid, (void*)&reqid);
  1579. xfrm_policy_walk_done(&walk);
  1580. if (rc != -EEXIST)
  1581. return reqid;
  1582. } while (reqid != start);
  1583. return 0;
  1584. }
  1585. static int
  1586. parse_ipsecrequest(struct xfrm_policy *xp, struct sadb_x_ipsecrequest *rq)
  1587. {
  1588. struct xfrm_tmpl *t = xp->xfrm_vec + xp->xfrm_nr;
  1589. int mode;
  1590. if (xp->xfrm_nr >= XFRM_MAX_DEPTH)
  1591. return -ELOOP;
  1592. if (rq->sadb_x_ipsecrequest_mode == 0)
  1593. return -EINVAL;
  1594. t->id.proto = rq->sadb_x_ipsecrequest_proto; /* XXX check proto */
  1595. if ((mode = pfkey_mode_to_xfrm(rq->sadb_x_ipsecrequest_mode)) < 0)
  1596. return -EINVAL;
  1597. t->mode = mode;
  1598. if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_USE)
  1599. t->optional = 1;
  1600. else if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_UNIQUE) {
  1601. t->reqid = rq->sadb_x_ipsecrequest_reqid;
  1602. if (t->reqid > IPSEC_MANUAL_REQID_MAX)
  1603. t->reqid = 0;
  1604. if (!t->reqid && !(t->reqid = gen_reqid()))
  1605. return -ENOBUFS;
  1606. }
  1607. /* addresses present only in tunnel mode */
  1608. if (t->mode == XFRM_MODE_TUNNEL) {
  1609. u8 *sa = (u8 *) (rq + 1);
  1610. int family, socklen;
  1611. family = pfkey_sockaddr_extract((struct sockaddr *)sa,
  1612. &t->saddr);
  1613. if (!family)
  1614. return -EINVAL;
  1615. socklen = pfkey_sockaddr_len(family);
  1616. if (pfkey_sockaddr_extract((struct sockaddr *)(sa + socklen),
  1617. &t->id.daddr) != family)
  1618. return -EINVAL;
  1619. t->encap_family = family;
  1620. } else
  1621. t->encap_family = xp->family;
  1622. /* No way to set this via kame pfkey */
  1623. t->allalgs = 1;
  1624. xp->xfrm_nr++;
  1625. return 0;
  1626. }
  1627. static int
  1628. parse_ipsecrequests(struct xfrm_policy *xp, struct sadb_x_policy *pol)
  1629. {
  1630. int err;
  1631. int len = pol->sadb_x_policy_len*8 - sizeof(struct sadb_x_policy);
  1632. struct sadb_x_ipsecrequest *rq = (void*)(pol+1);
  1633. while (len >= sizeof(struct sadb_x_ipsecrequest)) {
  1634. if ((err = parse_ipsecrequest(xp, rq)) < 0)
  1635. return err;
  1636. len -= rq->sadb_x_ipsecrequest_len;
  1637. rq = (void*)((u8*)rq + rq->sadb_x_ipsecrequest_len);
  1638. }
  1639. return 0;
  1640. }
  1641. static inline int pfkey_xfrm_policy2sec_ctx_size(struct xfrm_policy *xp)
  1642. {
  1643. struct xfrm_sec_ctx *xfrm_ctx = xp->security;
  1644. if (xfrm_ctx) {
  1645. int len = sizeof(struct sadb_x_sec_ctx);
  1646. len += xfrm_ctx->ctx_len;
  1647. return PFKEY_ALIGN8(len);
  1648. }
  1649. return 0;
  1650. }
  1651. static int pfkey_xfrm_policy2msg_size(struct xfrm_policy *xp)
  1652. {
  1653. struct xfrm_tmpl *t;
  1654. int sockaddr_size = pfkey_sockaddr_size(xp->family);
  1655. int socklen = 0;
  1656. int i;
  1657. for (i=0; i<xp->xfrm_nr; i++) {
  1658. t = xp->xfrm_vec + i;
  1659. socklen += pfkey_sockaddr_len(t->encap_family);
  1660. }
  1661. return sizeof(struct sadb_msg) +
  1662. (sizeof(struct sadb_lifetime) * 3) +
  1663. (sizeof(struct sadb_address) * 2) +
  1664. (sockaddr_size * 2) +
  1665. sizeof(struct sadb_x_policy) +
  1666. (xp->xfrm_nr * sizeof(struct sadb_x_ipsecrequest)) +
  1667. (socklen * 2) +
  1668. pfkey_xfrm_policy2sec_ctx_size(xp);
  1669. }
  1670. static struct sk_buff * pfkey_xfrm_policy2msg_prep(struct xfrm_policy *xp)
  1671. {
  1672. struct sk_buff *skb;
  1673. int size;
  1674. size = pfkey_xfrm_policy2msg_size(xp);
  1675. skb = alloc_skb(size + 16, GFP_ATOMIC);
  1676. if (skb == NULL)
  1677. return ERR_PTR(-ENOBUFS);
  1678. return skb;
  1679. }
  1680. static int pfkey_xfrm_policy2msg(struct sk_buff *skb, struct xfrm_policy *xp, int dir)
  1681. {
  1682. struct sadb_msg *hdr;
  1683. struct sadb_address *addr;
  1684. struct sadb_lifetime *lifetime;
  1685. struct sadb_x_policy *pol;
  1686. struct sadb_x_sec_ctx *sec_ctx;
  1687. struct xfrm_sec_ctx *xfrm_ctx;
  1688. int i;
  1689. int size;
  1690. int sockaddr_size = pfkey_sockaddr_size(xp->family);
  1691. int socklen = pfkey_sockaddr_len(xp->family);
  1692. size = pfkey_xfrm_policy2msg_size(xp);
  1693. /* call should fill header later */
  1694. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  1695. memset(hdr, 0, size); /* XXX do we need this ? */
  1696. /* src address */
  1697. addr = (struct sadb_address*) skb_put(skb,
  1698. sizeof(struct sadb_address)+sockaddr_size);
  1699. addr->sadb_address_len =
  1700. (sizeof(struct sadb_address)+sockaddr_size)/
  1701. sizeof(uint64_t);
  1702. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  1703. addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto);
  1704. addr->sadb_address_prefixlen = xp->selector.prefixlen_s;
  1705. addr->sadb_address_reserved = 0;
  1706. if (!pfkey_sockaddr_fill(&xp->selector.saddr,
  1707. xp->selector.sport,
  1708. (struct sockaddr *) (addr + 1),
  1709. xp->family))
  1710. BUG();
  1711. /* dst address */
  1712. addr = (struct sadb_address*) skb_put(skb,
  1713. sizeof(struct sadb_address)+sockaddr_size);
  1714. addr->sadb_address_len =
  1715. (sizeof(struct sadb_address)+sockaddr_size)/
  1716. sizeof(uint64_t);
  1717. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  1718. addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto);
  1719. addr->sadb_address_prefixlen = xp->selector.prefixlen_d;
  1720. addr->sadb_address_reserved = 0;
  1721. pfkey_sockaddr_fill(&xp->selector.daddr, xp->selector.dport,
  1722. (struct sockaddr *) (addr + 1),
  1723. xp->family);
  1724. /* hard time */
  1725. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1726. sizeof(struct sadb_lifetime));
  1727. lifetime->sadb_lifetime_len =
  1728. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1729. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
  1730. lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.hard_packet_limit);
  1731. lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.hard_byte_limit);
  1732. lifetime->sadb_lifetime_addtime = xp->lft.hard_add_expires_seconds;
  1733. lifetime->sadb_lifetime_usetime = xp->lft.hard_use_expires_seconds;
  1734. /* soft time */
  1735. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1736. sizeof(struct sadb_lifetime));
  1737. lifetime->sadb_lifetime_len =
  1738. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1739. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
  1740. lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.soft_packet_limit);
  1741. lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.soft_byte_limit);
  1742. lifetime->sadb_lifetime_addtime = xp->lft.soft_add_expires_seconds;
  1743. lifetime->sadb_lifetime_usetime = xp->lft.soft_use_expires_seconds;
  1744. /* current time */
  1745. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1746. sizeof(struct sadb_lifetime));
  1747. lifetime->sadb_lifetime_len =
  1748. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1749. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
  1750. lifetime->sadb_lifetime_allocations = xp->curlft.packets;
  1751. lifetime->sadb_lifetime_bytes = xp->curlft.bytes;
  1752. lifetime->sadb_lifetime_addtime = xp->curlft.add_time;
  1753. lifetime->sadb_lifetime_usetime = xp->curlft.use_time;
  1754. pol = (struct sadb_x_policy *) skb_put(skb, sizeof(struct sadb_x_policy));
  1755. pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t);
  1756. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  1757. pol->sadb_x_policy_type = IPSEC_POLICY_DISCARD;
  1758. if (xp->action == XFRM_POLICY_ALLOW) {
  1759. if (xp->xfrm_nr)
  1760. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  1761. else
  1762. pol->sadb_x_policy_type = IPSEC_POLICY_NONE;
  1763. }
  1764. pol->sadb_x_policy_dir = dir+1;
  1765. pol->sadb_x_policy_id = xp->index;
  1766. pol->sadb_x_policy_priority = xp->priority;
  1767. for (i=0; i<xp->xfrm_nr; i++) {
  1768. struct sadb_x_ipsecrequest *rq;
  1769. struct xfrm_tmpl *t = xp->xfrm_vec + i;
  1770. int req_size;
  1771. int mode;
  1772. req_size = sizeof(struct sadb_x_ipsecrequest);
  1773. if (t->mode == XFRM_MODE_TUNNEL) {
  1774. socklen = pfkey_sockaddr_len(t->encap_family);
  1775. req_size += socklen * 2;
  1776. } else {
  1777. size -= 2*socklen;
  1778. }
  1779. rq = (void*)skb_put(skb, req_size);
  1780. pol->sadb_x_policy_len += req_size/8;
  1781. memset(rq, 0, sizeof(*rq));
  1782. rq->sadb_x_ipsecrequest_len = req_size;
  1783. rq->sadb_x_ipsecrequest_proto = t->id.proto;
  1784. if ((mode = pfkey_mode_from_xfrm(t->mode)) < 0)
  1785. return -EINVAL;
  1786. rq->sadb_x_ipsecrequest_mode = mode;
  1787. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_REQUIRE;
  1788. if (t->reqid)
  1789. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_UNIQUE;
  1790. if (t->optional)
  1791. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_USE;
  1792. rq->sadb_x_ipsecrequest_reqid = t->reqid;
  1793. if (t->mode == XFRM_MODE_TUNNEL) {
  1794. u8 *sa = (void *)(rq + 1);
  1795. pfkey_sockaddr_fill(&t->saddr, 0,
  1796. (struct sockaddr *)sa,
  1797. t->encap_family);
  1798. pfkey_sockaddr_fill(&t->id.daddr, 0,
  1799. (struct sockaddr *) (sa + socklen),
  1800. t->encap_family);
  1801. }
  1802. }
  1803. /* security context */
  1804. if ((xfrm_ctx = xp->security)) {
  1805. int ctx_size = pfkey_xfrm_policy2sec_ctx_size(xp);
  1806. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb, ctx_size);
  1807. sec_ctx->sadb_x_sec_len = ctx_size / sizeof(uint64_t);
  1808. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  1809. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  1810. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  1811. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  1812. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  1813. xfrm_ctx->ctx_len);
  1814. }
  1815. hdr->sadb_msg_len = size / sizeof(uint64_t);
  1816. hdr->sadb_msg_reserved = atomic_read(&xp->refcnt);
  1817. return 0;
  1818. }
  1819. static int key_notify_policy(struct xfrm_policy *xp, int dir, struct km_event *c)
  1820. {
  1821. struct sk_buff *out_skb;
  1822. struct sadb_msg *out_hdr;
  1823. int err;
  1824. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  1825. if (IS_ERR(out_skb)) {
  1826. err = PTR_ERR(out_skb);
  1827. goto out;
  1828. }
  1829. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  1830. if (err < 0)
  1831. return err;
  1832. out_hdr = (struct sadb_msg *) out_skb->data;
  1833. out_hdr->sadb_msg_version = PF_KEY_V2;
  1834. if (c->data.byid && c->event == XFRM_MSG_DELPOLICY)
  1835. out_hdr->sadb_msg_type = SADB_X_SPDDELETE2;
  1836. else
  1837. out_hdr->sadb_msg_type = event2poltype(c->event);
  1838. out_hdr->sadb_msg_errno = 0;
  1839. out_hdr->sadb_msg_seq = c->seq;
  1840. out_hdr->sadb_msg_pid = c->pid;
  1841. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
  1842. out:
  1843. return 0;
  1844. }
  1845. static int pfkey_spdadd(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1846. {
  1847. int err = 0;
  1848. struct sadb_lifetime *lifetime;
  1849. struct sadb_address *sa;
  1850. struct sadb_x_policy *pol;
  1851. struct xfrm_policy *xp;
  1852. struct km_event c;
  1853. struct sadb_x_sec_ctx *sec_ctx;
  1854. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1855. ext_hdrs[SADB_EXT_ADDRESS_DST-1]) ||
  1856. !ext_hdrs[SADB_X_EXT_POLICY-1])
  1857. return -EINVAL;
  1858. pol = ext_hdrs[SADB_X_EXT_POLICY-1];
  1859. if (pol->sadb_x_policy_type > IPSEC_POLICY_IPSEC)
  1860. return -EINVAL;
  1861. if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX)
  1862. return -EINVAL;
  1863. xp = xfrm_policy_alloc(GFP_KERNEL);
  1864. if (xp == NULL)
  1865. return -ENOBUFS;
  1866. xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ?
  1867. XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW);
  1868. xp->priority = pol->sadb_x_policy_priority;
  1869. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1870. xp->family = pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.saddr);
  1871. if (!xp->family) {
  1872. err = -EINVAL;
  1873. goto out;
  1874. }
  1875. xp->selector.family = xp->family;
  1876. xp->selector.prefixlen_s = sa->sadb_address_prefixlen;
  1877. xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1878. xp->selector.sport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1879. if (xp->selector.sport)
  1880. xp->selector.sport_mask = htons(0xffff);
  1881. sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  1882. pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.daddr);
  1883. xp->selector.prefixlen_d = sa->sadb_address_prefixlen;
  1884. /* Amusing, we set this twice. KAME apps appear to set same value
  1885. * in both addresses.
  1886. */
  1887. xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1888. xp->selector.dport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1889. if (xp->selector.dport)
  1890. xp->selector.dport_mask = htons(0xffff);
  1891. sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1];
  1892. if (sec_ctx != NULL) {
  1893. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  1894. if (!uctx) {
  1895. err = -ENOBUFS;
  1896. goto out;
  1897. }
  1898. err = security_xfrm_policy_alloc(&xp->security, uctx);
  1899. kfree(uctx);
  1900. if (err)
  1901. goto out;
  1902. }
  1903. xp->lft.soft_byte_limit = XFRM_INF;
  1904. xp->lft.hard_byte_limit = XFRM_INF;
  1905. xp->lft.soft_packet_limit = XFRM_INF;
  1906. xp->lft.hard_packet_limit = XFRM_INF;
  1907. if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_HARD-1]) != NULL) {
  1908. xp->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  1909. xp->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  1910. xp->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  1911. xp->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  1912. }
  1913. if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_SOFT-1]) != NULL) {
  1914. xp->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  1915. xp->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  1916. xp->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  1917. xp->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  1918. }
  1919. xp->xfrm_nr = 0;
  1920. if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
  1921. (err = parse_ipsecrequests(xp, pol)) < 0)
  1922. goto out;
  1923. err = xfrm_policy_insert(pol->sadb_x_policy_dir-1, xp,
  1924. hdr->sadb_msg_type != SADB_X_SPDUPDATE);
  1925. xfrm_audit_policy_add(xp, err ? 0 : 1,
  1926. audit_get_loginuid(current),
  1927. audit_get_sessionid(current), 0);
  1928. if (err)
  1929. goto out;
  1930. if (hdr->sadb_msg_type == SADB_X_SPDUPDATE)
  1931. c.event = XFRM_MSG_UPDPOLICY;
  1932. else
  1933. c.event = XFRM_MSG_NEWPOLICY;
  1934. c.seq = hdr->sadb_msg_seq;
  1935. c.pid = hdr->sadb_msg_pid;
  1936. km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
  1937. xfrm_pol_put(xp);
  1938. return 0;
  1939. out:
  1940. xp->walk.dead = 1;
  1941. xfrm_policy_destroy(xp);
  1942. return err;
  1943. }
  1944. static int pfkey_spddelete(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1945. {
  1946. int err;
  1947. struct sadb_address *sa;
  1948. struct sadb_x_policy *pol;
  1949. struct xfrm_policy *xp;
  1950. struct xfrm_selector sel;
  1951. struct km_event c;
  1952. struct sadb_x_sec_ctx *sec_ctx;
  1953. struct xfrm_sec_ctx *pol_ctx = NULL;
  1954. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1955. ext_hdrs[SADB_EXT_ADDRESS_DST-1]) ||
  1956. !ext_hdrs[SADB_X_EXT_POLICY-1])
  1957. return -EINVAL;
  1958. pol = ext_hdrs[SADB_X_EXT_POLICY-1];
  1959. if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX)
  1960. return -EINVAL;
  1961. memset(&sel, 0, sizeof(sel));
  1962. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1963. sel.family = pfkey_sadb_addr2xfrm_addr(sa, &sel.saddr);
  1964. sel.prefixlen_s = sa->sadb_address_prefixlen;
  1965. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1966. sel.sport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1967. if (sel.sport)
  1968. sel.sport_mask = htons(0xffff);
  1969. sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  1970. pfkey_sadb_addr2xfrm_addr(sa, &sel.daddr);
  1971. sel.prefixlen_d = sa->sadb_address_prefixlen;
  1972. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1973. sel.dport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1974. if (sel.dport)
  1975. sel.dport_mask = htons(0xffff);
  1976. sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1];
  1977. if (sec_ctx != NULL) {
  1978. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  1979. if (!uctx)
  1980. return -ENOMEM;
  1981. err = security_xfrm_policy_alloc(&pol_ctx, uctx);
  1982. kfree(uctx);
  1983. if (err)
  1984. return err;
  1985. }
  1986. xp = xfrm_policy_bysel_ctx(XFRM_POLICY_TYPE_MAIN,
  1987. pol->sadb_x_policy_dir - 1, &sel, pol_ctx,
  1988. 1, &err);
  1989. security_xfrm_policy_free(pol_ctx);
  1990. if (xp == NULL)
  1991. return -ENOENT;
  1992. xfrm_audit_policy_delete(xp, err ? 0 : 1,
  1993. audit_get_loginuid(current),
  1994. audit_get_sessionid(current), 0);
  1995. if (err)
  1996. goto out;
  1997. c.seq = hdr->sadb_msg_seq;
  1998. c.pid = hdr->sadb_msg_pid;
  1999. c.data.byid = 0;
  2000. c.event = XFRM_MSG_DELPOLICY;
  2001. km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
  2002. out:
  2003. xfrm_pol_put(xp);
  2004. return err;
  2005. }
  2006. static int key_pol_get_resp(struct sock *sk, struct xfrm_policy *xp, struct sadb_msg *hdr, int dir)
  2007. {
  2008. int err;
  2009. struct sk_buff *out_skb;
  2010. struct sadb_msg *out_hdr;
  2011. err = 0;
  2012. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  2013. if (IS_ERR(out_skb)) {
  2014. err = PTR_ERR(out_skb);
  2015. goto out;
  2016. }
  2017. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  2018. if (err < 0)
  2019. goto out;
  2020. out_hdr = (struct sadb_msg *) out_skb->data;
  2021. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  2022. out_hdr->sadb_msg_type = hdr->sadb_msg_type;
  2023. out_hdr->sadb_msg_satype = 0;
  2024. out_hdr->sadb_msg_errno = 0;
  2025. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  2026. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  2027. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk);
  2028. err = 0;
  2029. out:
  2030. return err;
  2031. }
  2032. #ifdef CONFIG_NET_KEY_MIGRATE
  2033. static int pfkey_sockaddr_pair_size(sa_family_t family)
  2034. {
  2035. return PFKEY_ALIGN8(pfkey_sockaddr_len(family) * 2);
  2036. }
  2037. static int parse_sockaddr_pair(struct sockaddr *sa, int ext_len,
  2038. xfrm_address_t *saddr, xfrm_address_t *daddr,
  2039. u16 *family)
  2040. {
  2041. int af, socklen;
  2042. if (ext_len < pfkey_sockaddr_pair_size(sa->sa_family))
  2043. return -EINVAL;
  2044. af = pfkey_sockaddr_extract(sa, saddr);
  2045. if (!af)
  2046. return -EINVAL;
  2047. socklen = pfkey_sockaddr_len(af);
  2048. if (pfkey_sockaddr_extract((struct sockaddr *) (((u8 *)sa) + socklen),
  2049. daddr) != af)
  2050. return -EINVAL;
  2051. *family = af;
  2052. return 0;
  2053. }
  2054. static int ipsecrequests_to_migrate(struct sadb_x_ipsecrequest *rq1, int len,
  2055. struct xfrm_migrate *m)
  2056. {
  2057. int err;
  2058. struct sadb_x_ipsecrequest *rq2;
  2059. int mode;
  2060. if (len <= sizeof(struct sadb_x_ipsecrequest) ||
  2061. len < rq1->sadb_x_ipsecrequest_len)
  2062. return -EINVAL;
  2063. /* old endoints */
  2064. err = parse_sockaddr_pair((struct sockaddr *)(rq1 + 1),
  2065. rq1->sadb_x_ipsecrequest_len,
  2066. &m->old_saddr, &m->old_daddr,
  2067. &m->old_family);
  2068. if (err)
  2069. return err;
  2070. rq2 = (struct sadb_x_ipsecrequest *)((u8 *)rq1 + rq1->sadb_x_ipsecrequest_len);
  2071. len -= rq1->sadb_x_ipsecrequest_len;
  2072. if (len <= sizeof(struct sadb_x_ipsecrequest) ||
  2073. len < rq2->sadb_x_ipsecrequest_len)
  2074. return -EINVAL;
  2075. /* new endpoints */
  2076. err = parse_sockaddr_pair((struct sockaddr *)(rq2 + 1),
  2077. rq2->sadb_x_ipsecrequest_len,
  2078. &m->new_saddr, &m->new_daddr,
  2079. &m->new_family);
  2080. if (err)
  2081. return err;
  2082. if (rq1->sadb_x_ipsecrequest_proto != rq2->sadb_x_ipsecrequest_proto ||
  2083. rq1->sadb_x_ipsecrequest_mode != rq2->sadb_x_ipsecrequest_mode ||
  2084. rq1->sadb_x_ipsecrequest_reqid != rq2->sadb_x_ipsecrequest_reqid)
  2085. return -EINVAL;
  2086. m->proto = rq1->sadb_x_ipsecrequest_proto;
  2087. if ((mode = pfkey_mode_to_xfrm(rq1->sadb_x_ipsecrequest_mode)) < 0)
  2088. return -EINVAL;
  2089. m->mode = mode;
  2090. m->reqid = rq1->sadb_x_ipsecrequest_reqid;
  2091. return ((int)(rq1->sadb_x_ipsecrequest_len +
  2092. rq2->sadb_x_ipsecrequest_len));
  2093. }
  2094. static int pfkey_migrate(struct sock *sk, struct sk_buff *skb,
  2095. struct sadb_msg *hdr, void **ext_hdrs)
  2096. {
  2097. int i, len, ret, err = -EINVAL;
  2098. u8 dir;
  2099. struct sadb_address *sa;
  2100. struct sadb_x_kmaddress *kma;
  2101. struct sadb_x_policy *pol;
  2102. struct sadb_x_ipsecrequest *rq;
  2103. struct xfrm_selector sel;
  2104. struct xfrm_migrate m[XFRM_MAX_DEPTH];
  2105. struct xfrm_kmaddress k;
  2106. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC - 1],
  2107. ext_hdrs[SADB_EXT_ADDRESS_DST - 1]) ||
  2108. !ext_hdrs[SADB_X_EXT_POLICY - 1]) {
  2109. err = -EINVAL;
  2110. goto out;
  2111. }
  2112. kma = ext_hdrs[SADB_X_EXT_KMADDRESS - 1];
  2113. pol = ext_hdrs[SADB_X_EXT_POLICY - 1];
  2114. if (pol->sadb_x_policy_dir >= IPSEC_DIR_MAX) {
  2115. err = -EINVAL;
  2116. goto out;
  2117. }
  2118. if (kma) {
  2119. /* convert sadb_x_kmaddress to xfrm_kmaddress */
  2120. k.reserved = kma->sadb_x_kmaddress_reserved;
  2121. ret = parse_sockaddr_pair((struct sockaddr *)(kma + 1),
  2122. 8*(kma->sadb_x_kmaddress_len) - sizeof(*kma),
  2123. &k.local, &k.remote, &k.family);
  2124. if (ret < 0) {
  2125. err = ret;
  2126. goto out;
  2127. }
  2128. }
  2129. dir = pol->sadb_x_policy_dir - 1;
  2130. memset(&sel, 0, sizeof(sel));
  2131. /* set source address info of selector */
  2132. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC - 1];
  2133. sel.family = pfkey_sadb_addr2xfrm_addr(sa, &sel.saddr);
  2134. sel.prefixlen_s = sa->sadb_address_prefixlen;
  2135. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  2136. sel.sport = ((struct sockaddr_in *)(sa + 1))->sin_port;
  2137. if (sel.sport)
  2138. sel.sport_mask = htons(0xffff);
  2139. /* set destination address info of selector */
  2140. sa = ext_hdrs[SADB_EXT_ADDRESS_DST - 1],
  2141. pfkey_sadb_addr2xfrm_addr(sa, &sel.daddr);
  2142. sel.prefixlen_d = sa->sadb_address_prefixlen;
  2143. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  2144. sel.dport = ((struct sockaddr_in *)(sa + 1))->sin_port;
  2145. if (sel.dport)
  2146. sel.dport_mask = htons(0xffff);
  2147. rq = (struct sadb_x_ipsecrequest *)(pol + 1);
  2148. /* extract ipsecrequests */
  2149. i = 0;
  2150. len = pol->sadb_x_policy_len * 8 - sizeof(struct sadb_x_policy);
  2151. while (len > 0 && i < XFRM_MAX_DEPTH) {
  2152. ret = ipsecrequests_to_migrate(rq, len, &m[i]);
  2153. if (ret < 0) {
  2154. err = ret;
  2155. goto out;
  2156. } else {
  2157. rq = (struct sadb_x_ipsecrequest *)((u8 *)rq + ret);
  2158. len -= ret;
  2159. i++;
  2160. }
  2161. }
  2162. if (!i || len > 0) {
  2163. err = -EINVAL;
  2164. goto out;
  2165. }
  2166. return xfrm_migrate(&sel, dir, XFRM_POLICY_TYPE_MAIN, m, i,
  2167. kma ? &k : NULL);
  2168. out:
  2169. return err;
  2170. }
  2171. #else
  2172. static int pfkey_migrate(struct sock *sk, struct sk_buff *skb,
  2173. struct sadb_msg *hdr, void **ext_hdrs)
  2174. {
  2175. return -ENOPROTOOPT;
  2176. }
  2177. #endif
  2178. static int pfkey_spdget(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  2179. {
  2180. unsigned int dir;
  2181. int err = 0, delete;
  2182. struct sadb_x_policy *pol;
  2183. struct xfrm_policy *xp;
  2184. struct km_event c;
  2185. if ((pol = ext_hdrs[SADB_X_EXT_POLICY-1]) == NULL)
  2186. return -EINVAL;
  2187. dir = xfrm_policy_id2dir(pol->sadb_x_policy_id);
  2188. if (dir >= XFRM_POLICY_MAX)
  2189. return -EINVAL;
  2190. delete = (hdr->sadb_msg_type == SADB_X_SPDDELETE2);
  2191. xp = xfrm_policy_byid(XFRM_POLICY_TYPE_MAIN, dir, pol->sadb_x_policy_id,
  2192. delete, &err);
  2193. if (xp == NULL)
  2194. return -ENOENT;
  2195. if (delete) {
  2196. xfrm_audit_policy_delete(xp, err ? 0 : 1,
  2197. audit_get_loginuid(current),
  2198. audit_get_sessionid(current), 0);
  2199. if (err)
  2200. goto out;
  2201. c.seq = hdr->sadb_msg_seq;
  2202. c.pid = hdr->sadb_msg_pid;
  2203. c.data.byid = 1;
  2204. c.event = XFRM_MSG_DELPOLICY;
  2205. km_policy_notify(xp, dir, &c);
  2206. } else {
  2207. err = key_pol_get_resp(sk, xp, hdr, dir);
  2208. }
  2209. out:
  2210. xfrm_pol_put(xp);
  2211. return err;
  2212. }
  2213. static int dump_sp(struct xfrm_policy *xp, int dir, int count, void *ptr)
  2214. {
  2215. struct pfkey_sock *pfk = ptr;
  2216. struct sk_buff *out_skb;
  2217. struct sadb_msg *out_hdr;
  2218. int err;
  2219. if (!pfkey_can_dump(&pfk->sk))
  2220. return -ENOBUFS;
  2221. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  2222. if (IS_ERR(out_skb))
  2223. return PTR_ERR(out_skb);
  2224. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  2225. if (err < 0)
  2226. return err;
  2227. out_hdr = (struct sadb_msg *) out_skb->data;
  2228. out_hdr->sadb_msg_version = pfk->dump.msg_version;
  2229. out_hdr->sadb_msg_type = SADB_X_SPDDUMP;
  2230. out_hdr->sadb_msg_satype = SADB_SATYPE_UNSPEC;
  2231. out_hdr->sadb_msg_errno = 0;
  2232. out_hdr->sadb_msg_seq = count + 1;
  2233. out_hdr->sadb_msg_pid = pfk->dump.msg_pid;
  2234. if (pfk->dump.skb)
  2235. pfkey_broadcast(pfk->dump.skb, GFP_ATOMIC, BROADCAST_ONE,
  2236. &pfk->sk);
  2237. pfk->dump.skb = out_skb;
  2238. return 0;
  2239. }
  2240. static int pfkey_dump_sp(struct pfkey_sock *pfk)
  2241. {
  2242. return xfrm_policy_walk(&pfk->dump.u.policy, dump_sp, (void *) pfk);
  2243. }
  2244. static void pfkey_dump_sp_done(struct pfkey_sock *pfk)
  2245. {
  2246. xfrm_policy_walk_done(&pfk->dump.u.policy);
  2247. }
  2248. static int pfkey_spddump(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  2249. {
  2250. struct pfkey_sock *pfk = pfkey_sk(sk);
  2251. if (pfk->dump.dump != NULL)
  2252. return -EBUSY;
  2253. pfk->dump.msg_version = hdr->sadb_msg_version;
  2254. pfk->dump.msg_pid = hdr->sadb_msg_pid;
  2255. pfk->dump.dump = pfkey_dump_sp;
  2256. pfk->dump.done = pfkey_dump_sp_done;
  2257. xfrm_policy_walk_init(&pfk->dump.u.policy, XFRM_POLICY_TYPE_MAIN);
  2258. return pfkey_do_dump(pfk);
  2259. }
  2260. static int key_notify_policy_flush(struct km_event *c)
  2261. {
  2262. struct sk_buff *skb_out;
  2263. struct sadb_msg *hdr;
  2264. skb_out = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  2265. if (!skb_out)
  2266. return -ENOBUFS;
  2267. hdr = (struct sadb_msg *) skb_put(skb_out, sizeof(struct sadb_msg));
  2268. hdr->sadb_msg_type = SADB_X_SPDFLUSH;
  2269. hdr->sadb_msg_seq = c->seq;
  2270. hdr->sadb_msg_pid = c->pid;
  2271. hdr->sadb_msg_version = PF_KEY_V2;
  2272. hdr->sadb_msg_errno = (uint8_t) 0;
  2273. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  2274. pfkey_broadcast(skb_out, GFP_ATOMIC, BROADCAST_ALL, NULL);
  2275. return 0;
  2276. }
  2277. static int pfkey_spdflush(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  2278. {
  2279. struct km_event c;
  2280. struct xfrm_audit audit_info;
  2281. int err;
  2282. audit_info.loginuid = audit_get_loginuid(current);
  2283. audit_info.sessionid = audit_get_sessionid(current);
  2284. audit_info.secid = 0;
  2285. err = xfrm_policy_flush(XFRM_POLICY_TYPE_MAIN, &audit_info);
  2286. if (err)
  2287. return err;
  2288. c.data.type = XFRM_POLICY_TYPE_MAIN;
  2289. c.event = XFRM_MSG_FLUSHPOLICY;
  2290. c.pid = hdr->sadb_msg_pid;
  2291. c.seq = hdr->sadb_msg_seq;
  2292. km_policy_notify(NULL, 0, &c);
  2293. return 0;
  2294. }
  2295. typedef int (*pfkey_handler)(struct sock *sk, struct sk_buff *skb,
  2296. struct sadb_msg *hdr, void **ext_hdrs);
  2297. static pfkey_handler pfkey_funcs[SADB_MAX + 1] = {
  2298. [SADB_RESERVED] = pfkey_reserved,
  2299. [SADB_GETSPI] = pfkey_getspi,
  2300. [SADB_UPDATE] = pfkey_add,
  2301. [SADB_ADD] = pfkey_add,
  2302. [SADB_DELETE] = pfkey_delete,
  2303. [SADB_GET] = pfkey_get,
  2304. [SADB_ACQUIRE] = pfkey_acquire,
  2305. [SADB_REGISTER] = pfkey_register,
  2306. [SADB_EXPIRE] = NULL,
  2307. [SADB_FLUSH] = pfkey_flush,
  2308. [SADB_DUMP] = pfkey_dump,
  2309. [SADB_X_PROMISC] = pfkey_promisc,
  2310. [SADB_X_PCHANGE] = NULL,
  2311. [SADB_X_SPDUPDATE] = pfkey_spdadd,
  2312. [SADB_X_SPDADD] = pfkey_spdadd,
  2313. [SADB_X_SPDDELETE] = pfkey_spddelete,
  2314. [SADB_X_SPDGET] = pfkey_spdget,
  2315. [SADB_X_SPDACQUIRE] = NULL,
  2316. [SADB_X_SPDDUMP] = pfkey_spddump,
  2317. [SADB_X_SPDFLUSH] = pfkey_spdflush,
  2318. [SADB_X_SPDSETIDX] = pfkey_spdadd,
  2319. [SADB_X_SPDDELETE2] = pfkey_spdget,
  2320. [SADB_X_MIGRATE] = pfkey_migrate,
  2321. };
  2322. static int pfkey_process(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr)
  2323. {
  2324. void *ext_hdrs[SADB_EXT_MAX];
  2325. int err;
  2326. pfkey_broadcast(skb_clone(skb, GFP_KERNEL), GFP_KERNEL,
  2327. BROADCAST_PROMISC_ONLY, NULL);
  2328. memset(ext_hdrs, 0, sizeof(ext_hdrs));
  2329. err = parse_exthdrs(skb, hdr, ext_hdrs);
  2330. if (!err) {
  2331. err = -EOPNOTSUPP;
  2332. if (pfkey_funcs[hdr->sadb_msg_type])
  2333. err = pfkey_funcs[hdr->sadb_msg_type](sk, skb, hdr, ext_hdrs);
  2334. }
  2335. return err;
  2336. }
  2337. static struct sadb_msg *pfkey_get_base_msg(struct sk_buff *skb, int *errp)
  2338. {
  2339. struct sadb_msg *hdr = NULL;
  2340. if (skb->len < sizeof(*hdr)) {
  2341. *errp = -EMSGSIZE;
  2342. } else {
  2343. hdr = (struct sadb_msg *) skb->data;
  2344. if (hdr->sadb_msg_version != PF_KEY_V2 ||
  2345. hdr->sadb_msg_reserved != 0 ||
  2346. (hdr->sadb_msg_type <= SADB_RESERVED ||
  2347. hdr->sadb_msg_type > SADB_MAX)) {
  2348. hdr = NULL;
  2349. *errp = -EINVAL;
  2350. } else if (hdr->sadb_msg_len != (skb->len /
  2351. sizeof(uint64_t)) ||
  2352. hdr->sadb_msg_len < (sizeof(struct sadb_msg) /
  2353. sizeof(uint64_t))) {
  2354. hdr = NULL;
  2355. *errp = -EMSGSIZE;
  2356. } else {
  2357. *errp = 0;
  2358. }
  2359. }
  2360. return hdr;
  2361. }
  2362. static inline int aalg_tmpl_set(struct xfrm_tmpl *t, struct xfrm_algo_desc *d)
  2363. {
  2364. unsigned int id = d->desc.sadb_alg_id;
  2365. if (id >= sizeof(t->aalgos) * 8)
  2366. return 0;
  2367. return (t->aalgos >> id) & 1;
  2368. }
  2369. static inline int ealg_tmpl_set(struct xfrm_tmpl *t, struct xfrm_algo_desc *d)
  2370. {
  2371. unsigned int id = d->desc.sadb_alg_id;
  2372. if (id >= sizeof(t->ealgos) * 8)
  2373. return 0;
  2374. return (t->ealgos >> id) & 1;
  2375. }
  2376. static int count_ah_combs(struct xfrm_tmpl *t)
  2377. {
  2378. int i, sz = 0;
  2379. for (i = 0; ; i++) {
  2380. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  2381. if (!aalg)
  2382. break;
  2383. if (aalg_tmpl_set(t, aalg) && aalg->available)
  2384. sz += sizeof(struct sadb_comb);
  2385. }
  2386. return sz + sizeof(struct sadb_prop);
  2387. }
  2388. static int count_esp_combs(struct xfrm_tmpl *t)
  2389. {
  2390. int i, k, sz = 0;
  2391. for (i = 0; ; i++) {
  2392. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  2393. if (!ealg)
  2394. break;
  2395. if (!(ealg_tmpl_set(t, ealg) && ealg->available))
  2396. continue;
  2397. for (k = 1; ; k++) {
  2398. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k);
  2399. if (!aalg)
  2400. break;
  2401. if (aalg_tmpl_set(t, aalg) && aalg->available)
  2402. sz += sizeof(struct sadb_comb);
  2403. }
  2404. }
  2405. return sz + sizeof(struct sadb_prop);
  2406. }
  2407. static void dump_ah_combs(struct sk_buff *skb, struct xfrm_tmpl *t)
  2408. {
  2409. struct sadb_prop *p;
  2410. int i;
  2411. p = (struct sadb_prop*)skb_put(skb, sizeof(struct sadb_prop));
  2412. p->sadb_prop_len = sizeof(struct sadb_prop)/8;
  2413. p->sadb_prop_exttype = SADB_EXT_PROPOSAL;
  2414. p->sadb_prop_replay = 32;
  2415. memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved));
  2416. for (i = 0; ; i++) {
  2417. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  2418. if (!aalg)
  2419. break;
  2420. if (aalg_tmpl_set(t, aalg) && aalg->available) {
  2421. struct sadb_comb *c;
  2422. c = (struct sadb_comb*)skb_put(skb, sizeof(struct sadb_comb));
  2423. memset(c, 0, sizeof(*c));
  2424. p->sadb_prop_len += sizeof(struct sadb_comb)/8;
  2425. c->sadb_comb_auth = aalg->desc.sadb_alg_id;
  2426. c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits;
  2427. c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits;
  2428. c->sadb_comb_hard_addtime = 24*60*60;
  2429. c->sadb_comb_soft_addtime = 20*60*60;
  2430. c->sadb_comb_hard_usetime = 8*60*60;
  2431. c->sadb_comb_soft_usetime = 7*60*60;
  2432. }
  2433. }
  2434. }
  2435. static void dump_esp_combs(struct sk_buff *skb, struct xfrm_tmpl *t)
  2436. {
  2437. struct sadb_prop *p;
  2438. int i, k;
  2439. p = (struct sadb_prop*)skb_put(skb, sizeof(struct sadb_prop));
  2440. p->sadb_prop_len = sizeof(struct sadb_prop)/8;
  2441. p->sadb_prop_exttype = SADB_EXT_PROPOSAL;
  2442. p->sadb_prop_replay = 32;
  2443. memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved));
  2444. for (i=0; ; i++) {
  2445. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  2446. if (!ealg)
  2447. break;
  2448. if (!(ealg_tmpl_set(t, ealg) && ealg->available))
  2449. continue;
  2450. for (k = 1; ; k++) {
  2451. struct sadb_comb *c;
  2452. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k);
  2453. if (!aalg)
  2454. break;
  2455. if (!(aalg_tmpl_set(t, aalg) && aalg->available))
  2456. continue;
  2457. c = (struct sadb_comb*)skb_put(skb, sizeof(struct sadb_comb));
  2458. memset(c, 0, sizeof(*c));
  2459. p->sadb_prop_len += sizeof(struct sadb_comb)/8;
  2460. c->sadb_comb_auth = aalg->desc.sadb_alg_id;
  2461. c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits;
  2462. c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits;
  2463. c->sadb_comb_encrypt = ealg->desc.sadb_alg_id;
  2464. c->sadb_comb_encrypt_minbits = ealg->desc.sadb_alg_minbits;
  2465. c->sadb_comb_encrypt_maxbits = ealg->desc.sadb_alg_maxbits;
  2466. c->sadb_comb_hard_addtime = 24*60*60;
  2467. c->sadb_comb_soft_addtime = 20*60*60;
  2468. c->sadb_comb_hard_usetime = 8*60*60;
  2469. c->sadb_comb_soft_usetime = 7*60*60;
  2470. }
  2471. }
  2472. }
  2473. static int key_notify_policy_expire(struct xfrm_policy *xp, struct km_event *c)
  2474. {
  2475. return 0;
  2476. }
  2477. static int key_notify_sa_expire(struct xfrm_state *x, struct km_event *c)
  2478. {
  2479. struct sk_buff *out_skb;
  2480. struct sadb_msg *out_hdr;
  2481. int hard;
  2482. int hsc;
  2483. hard = c->data.hard;
  2484. if (hard)
  2485. hsc = 2;
  2486. else
  2487. hsc = 1;
  2488. out_skb = pfkey_xfrm_state2msg_expire(x, hsc);
  2489. if (IS_ERR(out_skb))
  2490. return PTR_ERR(out_skb);
  2491. out_hdr = (struct sadb_msg *) out_skb->data;
  2492. out_hdr->sadb_msg_version = PF_KEY_V2;
  2493. out_hdr->sadb_msg_type = SADB_EXPIRE;
  2494. out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  2495. out_hdr->sadb_msg_errno = 0;
  2496. out_hdr->sadb_msg_reserved = 0;
  2497. out_hdr->sadb_msg_seq = 0;
  2498. out_hdr->sadb_msg_pid = 0;
  2499. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL);
  2500. return 0;
  2501. }
  2502. static int pfkey_send_notify(struct xfrm_state *x, struct km_event *c)
  2503. {
  2504. if (atomic_read(&pfkey_socks_nr) == 0)
  2505. return 0;
  2506. switch (c->event) {
  2507. case XFRM_MSG_EXPIRE:
  2508. return key_notify_sa_expire(x, c);
  2509. case XFRM_MSG_DELSA:
  2510. case XFRM_MSG_NEWSA:
  2511. case XFRM_MSG_UPDSA:
  2512. return key_notify_sa(x, c);
  2513. case XFRM_MSG_FLUSHSA:
  2514. return key_notify_sa_flush(c);
  2515. case XFRM_MSG_NEWAE: /* not yet supported */
  2516. break;
  2517. default:
  2518. printk("pfkey: Unknown SA event %d\n", c->event);
  2519. break;
  2520. }
  2521. return 0;
  2522. }
  2523. static int pfkey_send_policy_notify(struct xfrm_policy *xp, int dir, struct km_event *c)
  2524. {
  2525. if (xp && xp->type != XFRM_POLICY_TYPE_MAIN)
  2526. return 0;
  2527. switch (c->event) {
  2528. case XFRM_MSG_POLEXPIRE:
  2529. return key_notify_policy_expire(xp, c);
  2530. case XFRM_MSG_DELPOLICY:
  2531. case XFRM_MSG_NEWPOLICY:
  2532. case XFRM_MSG_UPDPOLICY:
  2533. return key_notify_policy(xp, dir, c);
  2534. case XFRM_MSG_FLUSHPOLICY:
  2535. if (c->data.type != XFRM_POLICY_TYPE_MAIN)
  2536. break;
  2537. return key_notify_policy_flush(c);
  2538. default:
  2539. printk("pfkey: Unknown policy event %d\n", c->event);
  2540. break;
  2541. }
  2542. return 0;
  2543. }
  2544. static u32 get_acqseq(void)
  2545. {
  2546. u32 res;
  2547. static u32 acqseq;
  2548. static DEFINE_SPINLOCK(acqseq_lock);
  2549. spin_lock_bh(&acqseq_lock);
  2550. res = (++acqseq ? : ++acqseq);
  2551. spin_unlock_bh(&acqseq_lock);
  2552. return res;
  2553. }
  2554. static int pfkey_send_acquire(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *xp, int dir)
  2555. {
  2556. struct sk_buff *skb;
  2557. struct sadb_msg *hdr;
  2558. struct sadb_address *addr;
  2559. struct sadb_x_policy *pol;
  2560. int sockaddr_size;
  2561. int size;
  2562. struct sadb_x_sec_ctx *sec_ctx;
  2563. struct xfrm_sec_ctx *xfrm_ctx;
  2564. int ctx_size = 0;
  2565. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  2566. if (!sockaddr_size)
  2567. return -EINVAL;
  2568. size = sizeof(struct sadb_msg) +
  2569. (sizeof(struct sadb_address) * 2) +
  2570. (sockaddr_size * 2) +
  2571. sizeof(struct sadb_x_policy);
  2572. if (x->id.proto == IPPROTO_AH)
  2573. size += count_ah_combs(t);
  2574. else if (x->id.proto == IPPROTO_ESP)
  2575. size += count_esp_combs(t);
  2576. if ((xfrm_ctx = x->security)) {
  2577. ctx_size = PFKEY_ALIGN8(xfrm_ctx->ctx_len);
  2578. size += sizeof(struct sadb_x_sec_ctx) + ctx_size;
  2579. }
  2580. skb = alloc_skb(size + 16, GFP_ATOMIC);
  2581. if (skb == NULL)
  2582. return -ENOMEM;
  2583. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  2584. hdr->sadb_msg_version = PF_KEY_V2;
  2585. hdr->sadb_msg_type = SADB_ACQUIRE;
  2586. hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  2587. hdr->sadb_msg_len = size / sizeof(uint64_t);
  2588. hdr->sadb_msg_errno = 0;
  2589. hdr->sadb_msg_reserved = 0;
  2590. hdr->sadb_msg_seq = x->km.seq = get_acqseq();
  2591. hdr->sadb_msg_pid = 0;
  2592. /* src address */
  2593. addr = (struct sadb_address*) skb_put(skb,
  2594. sizeof(struct sadb_address)+sockaddr_size);
  2595. addr->sadb_address_len =
  2596. (sizeof(struct sadb_address)+sockaddr_size)/
  2597. sizeof(uint64_t);
  2598. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  2599. addr->sadb_address_proto = 0;
  2600. addr->sadb_address_reserved = 0;
  2601. addr->sadb_address_prefixlen =
  2602. pfkey_sockaddr_fill(&x->props.saddr, 0,
  2603. (struct sockaddr *) (addr + 1),
  2604. x->props.family);
  2605. if (!addr->sadb_address_prefixlen)
  2606. BUG();
  2607. /* dst address */
  2608. addr = (struct sadb_address*) skb_put(skb,
  2609. sizeof(struct sadb_address)+sockaddr_size);
  2610. addr->sadb_address_len =
  2611. (sizeof(struct sadb_address)+sockaddr_size)/
  2612. sizeof(uint64_t);
  2613. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  2614. addr->sadb_address_proto = 0;
  2615. addr->sadb_address_reserved = 0;
  2616. addr->sadb_address_prefixlen =
  2617. pfkey_sockaddr_fill(&x->id.daddr, 0,
  2618. (struct sockaddr *) (addr + 1),
  2619. x->props.family);
  2620. if (!addr->sadb_address_prefixlen)
  2621. BUG();
  2622. pol = (struct sadb_x_policy *) skb_put(skb, sizeof(struct sadb_x_policy));
  2623. pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t);
  2624. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  2625. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  2626. pol->sadb_x_policy_dir = dir+1;
  2627. pol->sadb_x_policy_id = xp->index;
  2628. /* Set sadb_comb's. */
  2629. if (x->id.proto == IPPROTO_AH)
  2630. dump_ah_combs(skb, t);
  2631. else if (x->id.proto == IPPROTO_ESP)
  2632. dump_esp_combs(skb, t);
  2633. /* security context */
  2634. if (xfrm_ctx) {
  2635. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb,
  2636. sizeof(struct sadb_x_sec_ctx) + ctx_size);
  2637. sec_ctx->sadb_x_sec_len =
  2638. (sizeof(struct sadb_x_sec_ctx) + ctx_size) / sizeof(uint64_t);
  2639. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  2640. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  2641. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  2642. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  2643. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  2644. xfrm_ctx->ctx_len);
  2645. }
  2646. return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL);
  2647. }
  2648. static struct xfrm_policy *pfkey_compile_policy(struct sock *sk, int opt,
  2649. u8 *data, int len, int *dir)
  2650. {
  2651. struct xfrm_policy *xp;
  2652. struct sadb_x_policy *pol = (struct sadb_x_policy*)data;
  2653. struct sadb_x_sec_ctx *sec_ctx;
  2654. switch (sk->sk_family) {
  2655. case AF_INET:
  2656. if (opt != IP_IPSEC_POLICY) {
  2657. *dir = -EOPNOTSUPP;
  2658. return NULL;
  2659. }
  2660. break;
  2661. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2662. case AF_INET6:
  2663. if (opt != IPV6_IPSEC_POLICY) {
  2664. *dir = -EOPNOTSUPP;
  2665. return NULL;
  2666. }
  2667. break;
  2668. #endif
  2669. default:
  2670. *dir = -EINVAL;
  2671. return NULL;
  2672. }
  2673. *dir = -EINVAL;
  2674. if (len < sizeof(struct sadb_x_policy) ||
  2675. pol->sadb_x_policy_len*8 > len ||
  2676. pol->sadb_x_policy_type > IPSEC_POLICY_BYPASS ||
  2677. (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir > IPSEC_DIR_OUTBOUND))
  2678. return NULL;
  2679. xp = xfrm_policy_alloc(GFP_ATOMIC);
  2680. if (xp == NULL) {
  2681. *dir = -ENOBUFS;
  2682. return NULL;
  2683. }
  2684. xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ?
  2685. XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW);
  2686. xp->lft.soft_byte_limit = XFRM_INF;
  2687. xp->lft.hard_byte_limit = XFRM_INF;
  2688. xp->lft.soft_packet_limit = XFRM_INF;
  2689. xp->lft.hard_packet_limit = XFRM_INF;
  2690. xp->family = sk->sk_family;
  2691. xp->xfrm_nr = 0;
  2692. if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
  2693. (*dir = parse_ipsecrequests(xp, pol)) < 0)
  2694. goto out;
  2695. /* security context too */
  2696. if (len >= (pol->sadb_x_policy_len*8 +
  2697. sizeof(struct sadb_x_sec_ctx))) {
  2698. char *p = (char *)pol;
  2699. struct xfrm_user_sec_ctx *uctx;
  2700. p += pol->sadb_x_policy_len*8;
  2701. sec_ctx = (struct sadb_x_sec_ctx *)p;
  2702. if (len < pol->sadb_x_policy_len*8 +
  2703. sec_ctx->sadb_x_sec_len) {
  2704. *dir = -EINVAL;
  2705. goto out;
  2706. }
  2707. if ((*dir = verify_sec_ctx_len(p)))
  2708. goto out;
  2709. uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  2710. *dir = security_xfrm_policy_alloc(&xp->security, uctx);
  2711. kfree(uctx);
  2712. if (*dir)
  2713. goto out;
  2714. }
  2715. *dir = pol->sadb_x_policy_dir-1;
  2716. return xp;
  2717. out:
  2718. xfrm_policy_destroy(xp);
  2719. return NULL;
  2720. }
  2721. static int pfkey_send_new_mapping(struct xfrm_state *x, xfrm_address_t *ipaddr, __be16 sport)
  2722. {
  2723. struct sk_buff *skb;
  2724. struct sadb_msg *hdr;
  2725. struct sadb_sa *sa;
  2726. struct sadb_address *addr;
  2727. struct sadb_x_nat_t_port *n_port;
  2728. int sockaddr_size;
  2729. int size;
  2730. __u8 satype = (x->id.proto == IPPROTO_ESP ? SADB_SATYPE_ESP : 0);
  2731. struct xfrm_encap_tmpl *natt = NULL;
  2732. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  2733. if (!sockaddr_size)
  2734. return -EINVAL;
  2735. if (!satype)
  2736. return -EINVAL;
  2737. if (!x->encap)
  2738. return -EINVAL;
  2739. natt = x->encap;
  2740. /* Build an SADB_X_NAT_T_NEW_MAPPING message:
  2741. *
  2742. * HDR | SA | ADDRESS_SRC (old addr) | NAT_T_SPORT (old port) |
  2743. * ADDRESS_DST (new addr) | NAT_T_DPORT (new port)
  2744. */
  2745. size = sizeof(struct sadb_msg) +
  2746. sizeof(struct sadb_sa) +
  2747. (sizeof(struct sadb_address) * 2) +
  2748. (sockaddr_size * 2) +
  2749. (sizeof(struct sadb_x_nat_t_port) * 2);
  2750. skb = alloc_skb(size + 16, GFP_ATOMIC);
  2751. if (skb == NULL)
  2752. return -ENOMEM;
  2753. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  2754. hdr->sadb_msg_version = PF_KEY_V2;
  2755. hdr->sadb_msg_type = SADB_X_NAT_T_NEW_MAPPING;
  2756. hdr->sadb_msg_satype = satype;
  2757. hdr->sadb_msg_len = size / sizeof(uint64_t);
  2758. hdr->sadb_msg_errno = 0;
  2759. hdr->sadb_msg_reserved = 0;
  2760. hdr->sadb_msg_seq = x->km.seq = get_acqseq();
  2761. hdr->sadb_msg_pid = 0;
  2762. /* SA */
  2763. sa = (struct sadb_sa *) skb_put(skb, sizeof(struct sadb_sa));
  2764. sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t);
  2765. sa->sadb_sa_exttype = SADB_EXT_SA;
  2766. sa->sadb_sa_spi = x->id.spi;
  2767. sa->sadb_sa_replay = 0;
  2768. sa->sadb_sa_state = 0;
  2769. sa->sadb_sa_auth = 0;
  2770. sa->sadb_sa_encrypt = 0;
  2771. sa->sadb_sa_flags = 0;
  2772. /* ADDRESS_SRC (old addr) */
  2773. addr = (struct sadb_address*)
  2774. skb_put(skb, sizeof(struct sadb_address)+sockaddr_size);
  2775. addr->sadb_address_len =
  2776. (sizeof(struct sadb_address)+sockaddr_size)/
  2777. sizeof(uint64_t);
  2778. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  2779. addr->sadb_address_proto = 0;
  2780. addr->sadb_address_reserved = 0;
  2781. addr->sadb_address_prefixlen =
  2782. pfkey_sockaddr_fill(&x->props.saddr, 0,
  2783. (struct sockaddr *) (addr + 1),
  2784. x->props.family);
  2785. if (!addr->sadb_address_prefixlen)
  2786. BUG();
  2787. /* NAT_T_SPORT (old port) */
  2788. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  2789. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  2790. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
  2791. n_port->sadb_x_nat_t_port_port = natt->encap_sport;
  2792. n_port->sadb_x_nat_t_port_reserved = 0;
  2793. /* ADDRESS_DST (new addr) */
  2794. addr = (struct sadb_address*)
  2795. skb_put(skb, sizeof(struct sadb_address)+sockaddr_size);
  2796. addr->sadb_address_len =
  2797. (sizeof(struct sadb_address)+sockaddr_size)/
  2798. sizeof(uint64_t);
  2799. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  2800. addr->sadb_address_proto = 0;
  2801. addr->sadb_address_reserved = 0;
  2802. addr->sadb_address_prefixlen =
  2803. pfkey_sockaddr_fill(ipaddr, 0,
  2804. (struct sockaddr *) (addr + 1),
  2805. x->props.family);
  2806. if (!addr->sadb_address_prefixlen)
  2807. BUG();
  2808. /* NAT_T_DPORT (new port) */
  2809. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  2810. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  2811. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
  2812. n_port->sadb_x_nat_t_port_port = sport;
  2813. n_port->sadb_x_nat_t_port_reserved = 0;
  2814. return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL);
  2815. }
  2816. #ifdef CONFIG_NET_KEY_MIGRATE
  2817. static int set_sadb_address(struct sk_buff *skb, int sasize, int type,
  2818. struct xfrm_selector *sel)
  2819. {
  2820. struct sadb_address *addr;
  2821. addr = (struct sadb_address *)skb_put(skb, sizeof(struct sadb_address) + sasize);
  2822. addr->sadb_address_len = (sizeof(struct sadb_address) + sasize)/8;
  2823. addr->sadb_address_exttype = type;
  2824. addr->sadb_address_proto = sel->proto;
  2825. addr->sadb_address_reserved = 0;
  2826. switch (type) {
  2827. case SADB_EXT_ADDRESS_SRC:
  2828. addr->sadb_address_prefixlen = sel->prefixlen_s;
  2829. pfkey_sockaddr_fill(&sel->saddr, 0,
  2830. (struct sockaddr *)(addr + 1),
  2831. sel->family);
  2832. break;
  2833. case SADB_EXT_ADDRESS_DST:
  2834. addr->sadb_address_prefixlen = sel->prefixlen_d;
  2835. pfkey_sockaddr_fill(&sel->daddr, 0,
  2836. (struct sockaddr *)(addr + 1),
  2837. sel->family);
  2838. break;
  2839. default:
  2840. return -EINVAL;
  2841. }
  2842. return 0;
  2843. }
  2844. static int set_sadb_kmaddress(struct sk_buff *skb, struct xfrm_kmaddress *k)
  2845. {
  2846. struct sadb_x_kmaddress *kma;
  2847. u8 *sa;
  2848. int family = k->family;
  2849. int socklen = pfkey_sockaddr_len(family);
  2850. int size_req;
  2851. size_req = (sizeof(struct sadb_x_kmaddress) +
  2852. pfkey_sockaddr_pair_size(family));
  2853. kma = (struct sadb_x_kmaddress *)skb_put(skb, size_req);
  2854. memset(kma, 0, size_req);
  2855. kma->sadb_x_kmaddress_len = size_req / 8;
  2856. kma->sadb_x_kmaddress_exttype = SADB_X_EXT_KMADDRESS;
  2857. kma->sadb_x_kmaddress_reserved = k->reserved;
  2858. sa = (u8 *)(kma + 1);
  2859. if (!pfkey_sockaddr_fill(&k->local, 0, (struct sockaddr *)sa, family) ||
  2860. !pfkey_sockaddr_fill(&k->remote, 0, (struct sockaddr *)(sa+socklen), family))
  2861. return -EINVAL;
  2862. return 0;
  2863. }
  2864. static int set_ipsecrequest(struct sk_buff *skb,
  2865. uint8_t proto, uint8_t mode, int level,
  2866. uint32_t reqid, uint8_t family,
  2867. xfrm_address_t *src, xfrm_address_t *dst)
  2868. {
  2869. struct sadb_x_ipsecrequest *rq;
  2870. u8 *sa;
  2871. int socklen = pfkey_sockaddr_len(family);
  2872. int size_req;
  2873. size_req = sizeof(struct sadb_x_ipsecrequest) +
  2874. pfkey_sockaddr_pair_size(family);
  2875. rq = (struct sadb_x_ipsecrequest *)skb_put(skb, size_req);
  2876. memset(rq, 0, size_req);
  2877. rq->sadb_x_ipsecrequest_len = size_req;
  2878. rq->sadb_x_ipsecrequest_proto = proto;
  2879. rq->sadb_x_ipsecrequest_mode = mode;
  2880. rq->sadb_x_ipsecrequest_level = level;
  2881. rq->sadb_x_ipsecrequest_reqid = reqid;
  2882. sa = (u8 *) (rq + 1);
  2883. if (!pfkey_sockaddr_fill(src, 0, (struct sockaddr *)sa, family) ||
  2884. !pfkey_sockaddr_fill(dst, 0, (struct sockaddr *)(sa + socklen), family))
  2885. return -EINVAL;
  2886. return 0;
  2887. }
  2888. #endif
  2889. #ifdef CONFIG_NET_KEY_MIGRATE
  2890. static int pfkey_send_migrate(struct xfrm_selector *sel, u8 dir, u8 type,
  2891. struct xfrm_migrate *m, int num_bundles,
  2892. struct xfrm_kmaddress *k)
  2893. {
  2894. int i;
  2895. int sasize_sel;
  2896. int size = 0;
  2897. int size_pol = 0;
  2898. struct sk_buff *skb;
  2899. struct sadb_msg *hdr;
  2900. struct sadb_x_policy *pol;
  2901. struct xfrm_migrate *mp;
  2902. if (type != XFRM_POLICY_TYPE_MAIN)
  2903. return 0;
  2904. if (num_bundles <= 0 || num_bundles > XFRM_MAX_DEPTH)
  2905. return -EINVAL;
  2906. if (k != NULL) {
  2907. /* addresses for KM */
  2908. size += PFKEY_ALIGN8(sizeof(struct sadb_x_kmaddress) +
  2909. pfkey_sockaddr_pair_size(k->family));
  2910. }
  2911. /* selector */
  2912. sasize_sel = pfkey_sockaddr_size(sel->family);
  2913. if (!sasize_sel)
  2914. return -EINVAL;
  2915. size += (sizeof(struct sadb_address) + sasize_sel) * 2;
  2916. /* policy info */
  2917. size_pol += sizeof(struct sadb_x_policy);
  2918. /* ipsecrequests */
  2919. for (i = 0, mp = m; i < num_bundles; i++, mp++) {
  2920. /* old locator pair */
  2921. size_pol += sizeof(struct sadb_x_ipsecrequest) +
  2922. pfkey_sockaddr_pair_size(mp->old_family);
  2923. /* new locator pair */
  2924. size_pol += sizeof(struct sadb_x_ipsecrequest) +
  2925. pfkey_sockaddr_pair_size(mp->new_family);
  2926. }
  2927. size += sizeof(struct sadb_msg) + size_pol;
  2928. /* alloc buffer */
  2929. skb = alloc_skb(size, GFP_ATOMIC);
  2930. if (skb == NULL)
  2931. return -ENOMEM;
  2932. hdr = (struct sadb_msg *)skb_put(skb, sizeof(struct sadb_msg));
  2933. hdr->sadb_msg_version = PF_KEY_V2;
  2934. hdr->sadb_msg_type = SADB_X_MIGRATE;
  2935. hdr->sadb_msg_satype = pfkey_proto2satype(m->proto);
  2936. hdr->sadb_msg_len = size / 8;
  2937. hdr->sadb_msg_errno = 0;
  2938. hdr->sadb_msg_reserved = 0;
  2939. hdr->sadb_msg_seq = 0;
  2940. hdr->sadb_msg_pid = 0;
  2941. /* Addresses to be used by KM for negotiation, if ext is available */
  2942. if (k != NULL && (set_sadb_kmaddress(skb, k) < 0))
  2943. return -EINVAL;
  2944. /* selector src */
  2945. set_sadb_address(skb, sasize_sel, SADB_EXT_ADDRESS_SRC, sel);
  2946. /* selector dst */
  2947. set_sadb_address(skb, sasize_sel, SADB_EXT_ADDRESS_DST, sel);
  2948. /* policy information */
  2949. pol = (struct sadb_x_policy *)skb_put(skb, sizeof(struct sadb_x_policy));
  2950. pol->sadb_x_policy_len = size_pol / 8;
  2951. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  2952. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  2953. pol->sadb_x_policy_dir = dir + 1;
  2954. pol->sadb_x_policy_id = 0;
  2955. pol->sadb_x_policy_priority = 0;
  2956. for (i = 0, mp = m; i < num_bundles; i++, mp++) {
  2957. /* old ipsecrequest */
  2958. int mode = pfkey_mode_from_xfrm(mp->mode);
  2959. if (mode < 0)
  2960. goto err;
  2961. if (set_ipsecrequest(skb, mp->proto, mode,
  2962. (mp->reqid ? IPSEC_LEVEL_UNIQUE : IPSEC_LEVEL_REQUIRE),
  2963. mp->reqid, mp->old_family,
  2964. &mp->old_saddr, &mp->old_daddr) < 0)
  2965. goto err;
  2966. /* new ipsecrequest */
  2967. if (set_ipsecrequest(skb, mp->proto, mode,
  2968. (mp->reqid ? IPSEC_LEVEL_UNIQUE : IPSEC_LEVEL_REQUIRE),
  2969. mp->reqid, mp->new_family,
  2970. &mp->new_saddr, &mp->new_daddr) < 0)
  2971. goto err;
  2972. }
  2973. /* broadcast migrate message to sockets */
  2974. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
  2975. return 0;
  2976. err:
  2977. kfree_skb(skb);
  2978. return -EINVAL;
  2979. }
  2980. #else
  2981. static int pfkey_send_migrate(struct xfrm_selector *sel, u8 dir, u8 type,
  2982. struct xfrm_migrate *m, int num_bundles,
  2983. struct xfrm_kmaddress *k)
  2984. {
  2985. return -ENOPROTOOPT;
  2986. }
  2987. #endif
  2988. static int pfkey_sendmsg(struct kiocb *kiocb,
  2989. struct socket *sock, struct msghdr *msg, size_t len)
  2990. {
  2991. struct sock *sk = sock->sk;
  2992. struct sk_buff *skb = NULL;
  2993. struct sadb_msg *hdr = NULL;
  2994. int err;
  2995. err = -EOPNOTSUPP;
  2996. if (msg->msg_flags & MSG_OOB)
  2997. goto out;
  2998. err = -EMSGSIZE;
  2999. if ((unsigned)len > sk->sk_sndbuf - 32)
  3000. goto out;
  3001. err = -ENOBUFS;
  3002. skb = alloc_skb(len, GFP_KERNEL);
  3003. if (skb == NULL)
  3004. goto out;
  3005. err = -EFAULT;
  3006. if (memcpy_fromiovec(skb_put(skb,len), msg->msg_iov, len))
  3007. goto out;
  3008. hdr = pfkey_get_base_msg(skb, &err);
  3009. if (!hdr)
  3010. goto out;
  3011. mutex_lock(&xfrm_cfg_mutex);
  3012. err = pfkey_process(sk, skb, hdr);
  3013. mutex_unlock(&xfrm_cfg_mutex);
  3014. out:
  3015. if (err && hdr && pfkey_error(hdr, err, sk) == 0)
  3016. err = 0;
  3017. if (skb)
  3018. kfree_skb(skb);
  3019. return err ? : len;
  3020. }
  3021. static int pfkey_recvmsg(struct kiocb *kiocb,
  3022. struct socket *sock, struct msghdr *msg, size_t len,
  3023. int flags)
  3024. {
  3025. struct sock *sk = sock->sk;
  3026. struct pfkey_sock *pfk = pfkey_sk(sk);
  3027. struct sk_buff *skb;
  3028. int copied, err;
  3029. err = -EINVAL;
  3030. if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT))
  3031. goto out;
  3032. msg->msg_namelen = 0;
  3033. skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err);
  3034. if (skb == NULL)
  3035. goto out;
  3036. copied = skb->len;
  3037. if (copied > len) {
  3038. msg->msg_flags |= MSG_TRUNC;
  3039. copied = len;
  3040. }
  3041. skb_reset_transport_header(skb);
  3042. err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
  3043. if (err)
  3044. goto out_free;
  3045. sock_recv_timestamp(msg, sk, skb);
  3046. err = (flags & MSG_TRUNC) ? skb->len : copied;
  3047. if (pfk->dump.dump != NULL &&
  3048. 3 * atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  3049. pfkey_do_dump(pfk);
  3050. out_free:
  3051. skb_free_datagram(sk, skb);
  3052. out:
  3053. return err;
  3054. }
  3055. static const struct proto_ops pfkey_ops = {
  3056. .family = PF_KEY,
  3057. .owner = THIS_MODULE,
  3058. /* Operations that make no sense on pfkey sockets. */
  3059. .bind = sock_no_bind,
  3060. .connect = sock_no_connect,
  3061. .socketpair = sock_no_socketpair,
  3062. .accept = sock_no_accept,
  3063. .getname = sock_no_getname,
  3064. .ioctl = sock_no_ioctl,
  3065. .listen = sock_no_listen,
  3066. .shutdown = sock_no_shutdown,
  3067. .setsockopt = sock_no_setsockopt,
  3068. .getsockopt = sock_no_getsockopt,
  3069. .mmap = sock_no_mmap,
  3070. .sendpage = sock_no_sendpage,
  3071. /* Now the operations that really occur. */
  3072. .release = pfkey_release,
  3073. .poll = datagram_poll,
  3074. .sendmsg = pfkey_sendmsg,
  3075. .recvmsg = pfkey_recvmsg,
  3076. };
  3077. static struct net_proto_family pfkey_family_ops = {
  3078. .family = PF_KEY,
  3079. .create = pfkey_create,
  3080. .owner = THIS_MODULE,
  3081. };
  3082. #ifdef CONFIG_PROC_FS
  3083. static int pfkey_seq_show(struct seq_file *f, void *v)
  3084. {
  3085. struct sock *s;
  3086. s = (struct sock *)v;
  3087. if (v == SEQ_START_TOKEN)
  3088. seq_printf(f ,"sk RefCnt Rmem Wmem User Inode\n");
  3089. else
  3090. seq_printf(f ,"%p %-6d %-6u %-6u %-6u %-6lu\n",
  3091. s,
  3092. atomic_read(&s->sk_refcnt),
  3093. atomic_read(&s->sk_rmem_alloc),
  3094. atomic_read(&s->sk_wmem_alloc),
  3095. sock_i_uid(s),
  3096. sock_i_ino(s)
  3097. );
  3098. return 0;
  3099. }
  3100. static void *pfkey_seq_start(struct seq_file *f, loff_t *ppos)
  3101. {
  3102. struct sock *s;
  3103. struct hlist_node *node;
  3104. loff_t pos = *ppos;
  3105. read_lock(&pfkey_table_lock);
  3106. if (pos == 0)
  3107. return SEQ_START_TOKEN;
  3108. sk_for_each(s, node, &pfkey_table)
  3109. if (pos-- == 1)
  3110. return s;
  3111. return NULL;
  3112. }
  3113. static void *pfkey_seq_next(struct seq_file *f, void *v, loff_t *ppos)
  3114. {
  3115. ++*ppos;
  3116. return (v == SEQ_START_TOKEN) ?
  3117. sk_head(&pfkey_table) :
  3118. sk_next((struct sock *)v);
  3119. }
  3120. static void pfkey_seq_stop(struct seq_file *f, void *v)
  3121. {
  3122. read_unlock(&pfkey_table_lock);
  3123. }
  3124. static struct seq_operations pfkey_seq_ops = {
  3125. .start = pfkey_seq_start,
  3126. .next = pfkey_seq_next,
  3127. .stop = pfkey_seq_stop,
  3128. .show = pfkey_seq_show,
  3129. };
  3130. static int pfkey_seq_open(struct inode *inode, struct file *file)
  3131. {
  3132. return seq_open(file, &pfkey_seq_ops);
  3133. }
  3134. static struct file_operations pfkey_proc_ops = {
  3135. .open = pfkey_seq_open,
  3136. .read = seq_read,
  3137. .llseek = seq_lseek,
  3138. .release = seq_release,
  3139. };
  3140. static int pfkey_init_proc(void)
  3141. {
  3142. struct proc_dir_entry *e;
  3143. e = proc_net_fops_create(&init_net, "pfkey", 0, &pfkey_proc_ops);
  3144. if (e == NULL)
  3145. return -ENOMEM;
  3146. return 0;
  3147. }
  3148. static void pfkey_exit_proc(void)
  3149. {
  3150. proc_net_remove(&init_net, "pfkey");
  3151. }
  3152. #else
  3153. static inline int pfkey_init_proc(void)
  3154. {
  3155. return 0;
  3156. }
  3157. static inline void pfkey_exit_proc(void)
  3158. {
  3159. }
  3160. #endif
  3161. static struct xfrm_mgr pfkeyv2_mgr =
  3162. {
  3163. .id = "pfkeyv2",
  3164. .notify = pfkey_send_notify,
  3165. .acquire = pfkey_send_acquire,
  3166. .compile_policy = pfkey_compile_policy,
  3167. .new_mapping = pfkey_send_new_mapping,
  3168. .notify_policy = pfkey_send_policy_notify,
  3169. .migrate = pfkey_send_migrate,
  3170. };
  3171. static void __exit ipsec_pfkey_exit(void)
  3172. {
  3173. xfrm_unregister_km(&pfkeyv2_mgr);
  3174. pfkey_exit_proc();
  3175. sock_unregister(PF_KEY);
  3176. proto_unregister(&key_proto);
  3177. }
  3178. static int __init ipsec_pfkey_init(void)
  3179. {
  3180. int err = proto_register(&key_proto, 0);
  3181. if (err != 0)
  3182. goto out;
  3183. err = sock_register(&pfkey_family_ops);
  3184. if (err != 0)
  3185. goto out_unregister_key_proto;
  3186. err = pfkey_init_proc();
  3187. if (err != 0)
  3188. goto out_sock_unregister;
  3189. err = xfrm_register_km(&pfkeyv2_mgr);
  3190. if (err != 0)
  3191. goto out_remove_proc_entry;
  3192. out:
  3193. return err;
  3194. out_remove_proc_entry:
  3195. pfkey_exit_proc();
  3196. out_sock_unregister:
  3197. sock_unregister(PF_KEY);
  3198. out_unregister_key_proto:
  3199. proto_unregister(&key_proto);
  3200. goto out;
  3201. }
  3202. module_init(ipsec_pfkey_init);
  3203. module_exit(ipsec_pfkey_exit);
  3204. MODULE_LICENSE("GPL");
  3205. MODULE_ALIAS_NETPROTO(PF_KEY);