ctree.c 112 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391
  1. /*
  2. * Copyright (C) 2007,2008 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/sched.h>
  19. #include "ctree.h"
  20. #include "disk-io.h"
  21. #include "transaction.h"
  22. #include "print-tree.h"
  23. #include "locking.h"
  24. static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  25. *root, struct btrfs_path *path, int level);
  26. static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
  27. *root, struct btrfs_key *ins_key,
  28. struct btrfs_path *path, int data_size, int extend);
  29. static int push_node_left(struct btrfs_trans_handle *trans,
  30. struct btrfs_root *root, struct extent_buffer *dst,
  31. struct extent_buffer *src, int empty);
  32. static int balance_node_right(struct btrfs_trans_handle *trans,
  33. struct btrfs_root *root,
  34. struct extent_buffer *dst_buf,
  35. struct extent_buffer *src_buf);
  36. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  37. struct btrfs_path *path, int level, int slot);
  38. static int setup_items_for_insert(struct btrfs_trans_handle *trans,
  39. struct btrfs_root *root, struct btrfs_path *path,
  40. struct btrfs_key *cpu_key, u32 *data_size,
  41. u32 total_data, u32 total_size, int nr);
  42. struct btrfs_path *btrfs_alloc_path(void)
  43. {
  44. struct btrfs_path *path;
  45. path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
  46. if (path)
  47. path->reada = 1;
  48. return path;
  49. }
  50. /*
  51. * set all locked nodes in the path to blocking locks. This should
  52. * be done before scheduling
  53. */
  54. noinline void btrfs_set_path_blocking(struct btrfs_path *p)
  55. {
  56. int i;
  57. for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  58. if (p->nodes[i] && p->locks[i])
  59. btrfs_set_lock_blocking(p->nodes[i]);
  60. }
  61. }
  62. /*
  63. * reset all the locked nodes in the patch to spinning locks.
  64. *
  65. * held is used to keep lockdep happy, when lockdep is enabled
  66. * we set held to a blocking lock before we go around and
  67. * retake all the spinlocks in the path. You can safely use NULL
  68. * for held
  69. */
  70. noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
  71. struct extent_buffer *held)
  72. {
  73. int i;
  74. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  75. /* lockdep really cares that we take all of these spinlocks
  76. * in the right order. If any of the locks in the path are not
  77. * currently blocking, it is going to complain. So, make really
  78. * really sure by forcing the path to blocking before we clear
  79. * the path blocking.
  80. */
  81. if (held)
  82. btrfs_set_lock_blocking(held);
  83. btrfs_set_path_blocking(p);
  84. #endif
  85. for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
  86. if (p->nodes[i] && p->locks[i])
  87. btrfs_clear_lock_blocking(p->nodes[i]);
  88. }
  89. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  90. if (held)
  91. btrfs_clear_lock_blocking(held);
  92. #endif
  93. }
  94. /* this also releases the path */
  95. void btrfs_free_path(struct btrfs_path *p)
  96. {
  97. btrfs_release_path(NULL, p);
  98. kmem_cache_free(btrfs_path_cachep, p);
  99. }
  100. /*
  101. * path release drops references on the extent buffers in the path
  102. * and it drops any locks held by this path
  103. *
  104. * It is safe to call this on paths that no locks or extent buffers held.
  105. */
  106. noinline void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
  107. {
  108. int i;
  109. for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  110. p->slots[i] = 0;
  111. if (!p->nodes[i])
  112. continue;
  113. if (p->locks[i]) {
  114. btrfs_tree_unlock(p->nodes[i]);
  115. p->locks[i] = 0;
  116. }
  117. free_extent_buffer(p->nodes[i]);
  118. p->nodes[i] = NULL;
  119. }
  120. }
  121. /*
  122. * safely gets a reference on the root node of a tree. A lock
  123. * is not taken, so a concurrent writer may put a different node
  124. * at the root of the tree. See btrfs_lock_root_node for the
  125. * looping required.
  126. *
  127. * The extent buffer returned by this has a reference taken, so
  128. * it won't disappear. It may stop being the root of the tree
  129. * at any time because there are no locks held.
  130. */
  131. struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
  132. {
  133. struct extent_buffer *eb;
  134. spin_lock(&root->node_lock);
  135. eb = root->node;
  136. extent_buffer_get(eb);
  137. spin_unlock(&root->node_lock);
  138. return eb;
  139. }
  140. /* loop around taking references on and locking the root node of the
  141. * tree until you end up with a lock on the root. A locked buffer
  142. * is returned, with a reference held.
  143. */
  144. struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
  145. {
  146. struct extent_buffer *eb;
  147. while (1) {
  148. eb = btrfs_root_node(root);
  149. btrfs_tree_lock(eb);
  150. spin_lock(&root->node_lock);
  151. if (eb == root->node) {
  152. spin_unlock(&root->node_lock);
  153. break;
  154. }
  155. spin_unlock(&root->node_lock);
  156. btrfs_tree_unlock(eb);
  157. free_extent_buffer(eb);
  158. }
  159. return eb;
  160. }
  161. /* cowonly root (everything not a reference counted cow subvolume), just get
  162. * put onto a simple dirty list. transaction.c walks this to make sure they
  163. * get properly updated on disk.
  164. */
  165. static void add_root_to_dirty_list(struct btrfs_root *root)
  166. {
  167. if (root->track_dirty && list_empty(&root->dirty_list)) {
  168. list_add(&root->dirty_list,
  169. &root->fs_info->dirty_cowonly_roots);
  170. }
  171. }
  172. /*
  173. * used by snapshot creation to make a copy of a root for a tree with
  174. * a given objectid. The buffer with the new root node is returned in
  175. * cow_ret, and this func returns zero on success or a negative error code.
  176. */
  177. int btrfs_copy_root(struct btrfs_trans_handle *trans,
  178. struct btrfs_root *root,
  179. struct extent_buffer *buf,
  180. struct extent_buffer **cow_ret, u64 new_root_objectid)
  181. {
  182. struct extent_buffer *cow;
  183. u32 nritems;
  184. int ret = 0;
  185. int level;
  186. struct btrfs_disk_key disk_key;
  187. WARN_ON(root->ref_cows && trans->transid !=
  188. root->fs_info->running_transaction->transid);
  189. WARN_ON(root->ref_cows && trans->transid != root->last_trans);
  190. level = btrfs_header_level(buf);
  191. nritems = btrfs_header_nritems(buf);
  192. if (level == 0)
  193. btrfs_item_key(buf, &disk_key, 0);
  194. else
  195. btrfs_node_key(buf, &disk_key, 0);
  196. cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
  197. new_root_objectid, &disk_key, level,
  198. buf->start, 0);
  199. if (IS_ERR(cow))
  200. return PTR_ERR(cow);
  201. copy_extent_buffer(cow, buf, 0, 0, cow->len);
  202. btrfs_set_header_bytenr(cow, cow->start);
  203. btrfs_set_header_generation(cow, trans->transid);
  204. btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
  205. btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
  206. BTRFS_HEADER_FLAG_RELOC);
  207. if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
  208. btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
  209. else
  210. btrfs_set_header_owner(cow, new_root_objectid);
  211. write_extent_buffer(cow, root->fs_info->fsid,
  212. (unsigned long)btrfs_header_fsid(cow),
  213. BTRFS_FSID_SIZE);
  214. WARN_ON(btrfs_header_generation(buf) > trans->transid);
  215. if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
  216. ret = btrfs_inc_ref(trans, root, cow, 1);
  217. else
  218. ret = btrfs_inc_ref(trans, root, cow, 0);
  219. if (ret)
  220. return ret;
  221. btrfs_mark_buffer_dirty(cow);
  222. *cow_ret = cow;
  223. return 0;
  224. }
  225. /*
  226. * check if the tree block can be shared by multiple trees
  227. */
  228. int btrfs_block_can_be_shared(struct btrfs_root *root,
  229. struct extent_buffer *buf)
  230. {
  231. /*
  232. * Tree blocks not in refernece counted trees and tree roots
  233. * are never shared. If a block was allocated after the last
  234. * snapshot and the block was not allocated by tree relocation,
  235. * we know the block is not shared.
  236. */
  237. if (root->ref_cows &&
  238. buf != root->node && buf != root->commit_root &&
  239. (btrfs_header_generation(buf) <=
  240. btrfs_root_last_snapshot(&root->root_item) ||
  241. btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
  242. return 1;
  243. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  244. if (root->ref_cows &&
  245. btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
  246. return 1;
  247. #endif
  248. return 0;
  249. }
  250. static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
  251. struct btrfs_root *root,
  252. struct extent_buffer *buf,
  253. struct extent_buffer *cow)
  254. {
  255. u64 refs;
  256. u64 owner;
  257. u64 flags;
  258. u64 new_flags = 0;
  259. int ret;
  260. /*
  261. * Backrefs update rules:
  262. *
  263. * Always use full backrefs for extent pointers in tree block
  264. * allocated by tree relocation.
  265. *
  266. * If a shared tree block is no longer referenced by its owner
  267. * tree (btrfs_header_owner(buf) == root->root_key.objectid),
  268. * use full backrefs for extent pointers in tree block.
  269. *
  270. * If a tree block is been relocating
  271. * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
  272. * use full backrefs for extent pointers in tree block.
  273. * The reason for this is some operations (such as drop tree)
  274. * are only allowed for blocks use full backrefs.
  275. */
  276. if (btrfs_block_can_be_shared(root, buf)) {
  277. ret = btrfs_lookup_extent_info(trans, root, buf->start,
  278. buf->len, &refs, &flags);
  279. BUG_ON(ret);
  280. BUG_ON(refs == 0);
  281. } else {
  282. refs = 1;
  283. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
  284. btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
  285. flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
  286. else
  287. flags = 0;
  288. }
  289. owner = btrfs_header_owner(buf);
  290. BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
  291. !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
  292. if (refs > 1) {
  293. if ((owner == root->root_key.objectid ||
  294. root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
  295. !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
  296. ret = btrfs_inc_ref(trans, root, buf, 1);
  297. BUG_ON(ret);
  298. if (root->root_key.objectid ==
  299. BTRFS_TREE_RELOC_OBJECTID) {
  300. ret = btrfs_dec_ref(trans, root, buf, 0);
  301. BUG_ON(ret);
  302. ret = btrfs_inc_ref(trans, root, cow, 1);
  303. BUG_ON(ret);
  304. }
  305. new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
  306. } else {
  307. if (root->root_key.objectid ==
  308. BTRFS_TREE_RELOC_OBJECTID)
  309. ret = btrfs_inc_ref(trans, root, cow, 1);
  310. else
  311. ret = btrfs_inc_ref(trans, root, cow, 0);
  312. BUG_ON(ret);
  313. }
  314. if (new_flags != 0) {
  315. ret = btrfs_set_disk_extent_flags(trans, root,
  316. buf->start,
  317. buf->len,
  318. new_flags, 0);
  319. BUG_ON(ret);
  320. }
  321. } else {
  322. if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
  323. if (root->root_key.objectid ==
  324. BTRFS_TREE_RELOC_OBJECTID)
  325. ret = btrfs_inc_ref(trans, root, cow, 1);
  326. else
  327. ret = btrfs_inc_ref(trans, root, cow, 0);
  328. BUG_ON(ret);
  329. ret = btrfs_dec_ref(trans, root, buf, 1);
  330. BUG_ON(ret);
  331. }
  332. clean_tree_block(trans, root, buf);
  333. }
  334. return 0;
  335. }
  336. /*
  337. * does the dirty work in cow of a single block. The parent block (if
  338. * supplied) is updated to point to the new cow copy. The new buffer is marked
  339. * dirty and returned locked. If you modify the block it needs to be marked
  340. * dirty again.
  341. *
  342. * search_start -- an allocation hint for the new block
  343. *
  344. * empty_size -- a hint that you plan on doing more cow. This is the size in
  345. * bytes the allocator should try to find free next to the block it returns.
  346. * This is just a hint and may be ignored by the allocator.
  347. */
  348. static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
  349. struct btrfs_root *root,
  350. struct extent_buffer *buf,
  351. struct extent_buffer *parent, int parent_slot,
  352. struct extent_buffer **cow_ret,
  353. u64 search_start, u64 empty_size)
  354. {
  355. struct btrfs_disk_key disk_key;
  356. struct extent_buffer *cow;
  357. int level;
  358. int unlock_orig = 0;
  359. u64 parent_start;
  360. if (*cow_ret == buf)
  361. unlock_orig = 1;
  362. btrfs_assert_tree_locked(buf);
  363. WARN_ON(root->ref_cows && trans->transid !=
  364. root->fs_info->running_transaction->transid);
  365. WARN_ON(root->ref_cows && trans->transid != root->last_trans);
  366. level = btrfs_header_level(buf);
  367. if (level == 0)
  368. btrfs_item_key(buf, &disk_key, 0);
  369. else
  370. btrfs_node_key(buf, &disk_key, 0);
  371. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
  372. if (parent)
  373. parent_start = parent->start;
  374. else
  375. parent_start = 0;
  376. } else
  377. parent_start = 0;
  378. cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
  379. root->root_key.objectid, &disk_key,
  380. level, search_start, empty_size);
  381. if (IS_ERR(cow))
  382. return PTR_ERR(cow);
  383. /* cow is set to blocking by btrfs_init_new_buffer */
  384. copy_extent_buffer(cow, buf, 0, 0, cow->len);
  385. btrfs_set_header_bytenr(cow, cow->start);
  386. btrfs_set_header_generation(cow, trans->transid);
  387. btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
  388. btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
  389. BTRFS_HEADER_FLAG_RELOC);
  390. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
  391. btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
  392. else
  393. btrfs_set_header_owner(cow, root->root_key.objectid);
  394. write_extent_buffer(cow, root->fs_info->fsid,
  395. (unsigned long)btrfs_header_fsid(cow),
  396. BTRFS_FSID_SIZE);
  397. update_ref_for_cow(trans, root, buf, cow);
  398. if (buf == root->node) {
  399. WARN_ON(parent && parent != buf);
  400. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
  401. btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
  402. parent_start = buf->start;
  403. else
  404. parent_start = 0;
  405. spin_lock(&root->node_lock);
  406. root->node = cow;
  407. extent_buffer_get(cow);
  408. spin_unlock(&root->node_lock);
  409. btrfs_free_extent(trans, root, buf->start, buf->len,
  410. parent_start, root->root_key.objectid,
  411. level, 0);
  412. free_extent_buffer(buf);
  413. add_root_to_dirty_list(root);
  414. } else {
  415. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
  416. parent_start = parent->start;
  417. else
  418. parent_start = 0;
  419. WARN_ON(trans->transid != btrfs_header_generation(parent));
  420. btrfs_set_node_blockptr(parent, parent_slot,
  421. cow->start);
  422. btrfs_set_node_ptr_generation(parent, parent_slot,
  423. trans->transid);
  424. btrfs_mark_buffer_dirty(parent);
  425. btrfs_free_extent(trans, root, buf->start, buf->len,
  426. parent_start, root->root_key.objectid,
  427. level, 0);
  428. }
  429. if (unlock_orig)
  430. btrfs_tree_unlock(buf);
  431. free_extent_buffer(buf);
  432. btrfs_mark_buffer_dirty(cow);
  433. *cow_ret = cow;
  434. return 0;
  435. }
  436. static inline int should_cow_block(struct btrfs_trans_handle *trans,
  437. struct btrfs_root *root,
  438. struct extent_buffer *buf)
  439. {
  440. if (btrfs_header_generation(buf) == trans->transid &&
  441. !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
  442. !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
  443. btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
  444. return 0;
  445. return 1;
  446. }
  447. /*
  448. * cows a single block, see __btrfs_cow_block for the real work.
  449. * This version of it has extra checks so that a block isn't cow'd more than
  450. * once per transaction, as long as it hasn't been written yet
  451. */
  452. noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
  453. struct btrfs_root *root, struct extent_buffer *buf,
  454. struct extent_buffer *parent, int parent_slot,
  455. struct extent_buffer **cow_ret)
  456. {
  457. u64 search_start;
  458. int ret;
  459. if (trans->transaction != root->fs_info->running_transaction) {
  460. printk(KERN_CRIT "trans %llu running %llu\n",
  461. (unsigned long long)trans->transid,
  462. (unsigned long long)
  463. root->fs_info->running_transaction->transid);
  464. WARN_ON(1);
  465. }
  466. if (trans->transid != root->fs_info->generation) {
  467. printk(KERN_CRIT "trans %llu running %llu\n",
  468. (unsigned long long)trans->transid,
  469. (unsigned long long)root->fs_info->generation);
  470. WARN_ON(1);
  471. }
  472. if (!should_cow_block(trans, root, buf)) {
  473. *cow_ret = buf;
  474. return 0;
  475. }
  476. search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
  477. if (parent)
  478. btrfs_set_lock_blocking(parent);
  479. btrfs_set_lock_blocking(buf);
  480. ret = __btrfs_cow_block(trans, root, buf, parent,
  481. parent_slot, cow_ret, search_start, 0);
  482. return ret;
  483. }
  484. /*
  485. * helper function for defrag to decide if two blocks pointed to by a
  486. * node are actually close by
  487. */
  488. static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
  489. {
  490. if (blocknr < other && other - (blocknr + blocksize) < 32768)
  491. return 1;
  492. if (blocknr > other && blocknr - (other + blocksize) < 32768)
  493. return 1;
  494. return 0;
  495. }
  496. /*
  497. * compare two keys in a memcmp fashion
  498. */
  499. static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
  500. {
  501. struct btrfs_key k1;
  502. btrfs_disk_key_to_cpu(&k1, disk);
  503. return btrfs_comp_cpu_keys(&k1, k2);
  504. }
  505. /*
  506. * same as comp_keys only with two btrfs_key's
  507. */
  508. int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
  509. {
  510. if (k1->objectid > k2->objectid)
  511. return 1;
  512. if (k1->objectid < k2->objectid)
  513. return -1;
  514. if (k1->type > k2->type)
  515. return 1;
  516. if (k1->type < k2->type)
  517. return -1;
  518. if (k1->offset > k2->offset)
  519. return 1;
  520. if (k1->offset < k2->offset)
  521. return -1;
  522. return 0;
  523. }
  524. /*
  525. * this is used by the defrag code to go through all the
  526. * leaves pointed to by a node and reallocate them so that
  527. * disk order is close to key order
  528. */
  529. int btrfs_realloc_node(struct btrfs_trans_handle *trans,
  530. struct btrfs_root *root, struct extent_buffer *parent,
  531. int start_slot, int cache_only, u64 *last_ret,
  532. struct btrfs_key *progress)
  533. {
  534. struct extent_buffer *cur;
  535. u64 blocknr;
  536. u64 gen;
  537. u64 search_start = *last_ret;
  538. u64 last_block = 0;
  539. u64 other;
  540. u32 parent_nritems;
  541. int end_slot;
  542. int i;
  543. int err = 0;
  544. int parent_level;
  545. int uptodate;
  546. u32 blocksize;
  547. int progress_passed = 0;
  548. struct btrfs_disk_key disk_key;
  549. parent_level = btrfs_header_level(parent);
  550. if (cache_only && parent_level != 1)
  551. return 0;
  552. if (trans->transaction != root->fs_info->running_transaction)
  553. WARN_ON(1);
  554. if (trans->transid != root->fs_info->generation)
  555. WARN_ON(1);
  556. parent_nritems = btrfs_header_nritems(parent);
  557. blocksize = btrfs_level_size(root, parent_level - 1);
  558. end_slot = parent_nritems;
  559. if (parent_nritems == 1)
  560. return 0;
  561. btrfs_set_lock_blocking(parent);
  562. for (i = start_slot; i < end_slot; i++) {
  563. int close = 1;
  564. if (!parent->map_token) {
  565. map_extent_buffer(parent,
  566. btrfs_node_key_ptr_offset(i),
  567. sizeof(struct btrfs_key_ptr),
  568. &parent->map_token, &parent->kaddr,
  569. &parent->map_start, &parent->map_len,
  570. KM_USER1);
  571. }
  572. btrfs_node_key(parent, &disk_key, i);
  573. if (!progress_passed && comp_keys(&disk_key, progress) < 0)
  574. continue;
  575. progress_passed = 1;
  576. blocknr = btrfs_node_blockptr(parent, i);
  577. gen = btrfs_node_ptr_generation(parent, i);
  578. if (last_block == 0)
  579. last_block = blocknr;
  580. if (i > 0) {
  581. other = btrfs_node_blockptr(parent, i - 1);
  582. close = close_blocks(blocknr, other, blocksize);
  583. }
  584. if (!close && i < end_slot - 2) {
  585. other = btrfs_node_blockptr(parent, i + 1);
  586. close = close_blocks(blocknr, other, blocksize);
  587. }
  588. if (close) {
  589. last_block = blocknr;
  590. continue;
  591. }
  592. if (parent->map_token) {
  593. unmap_extent_buffer(parent, parent->map_token,
  594. KM_USER1);
  595. parent->map_token = NULL;
  596. }
  597. cur = btrfs_find_tree_block(root, blocknr, blocksize);
  598. if (cur)
  599. uptodate = btrfs_buffer_uptodate(cur, gen);
  600. else
  601. uptodate = 0;
  602. if (!cur || !uptodate) {
  603. if (cache_only) {
  604. free_extent_buffer(cur);
  605. continue;
  606. }
  607. if (!cur) {
  608. cur = read_tree_block(root, blocknr,
  609. blocksize, gen);
  610. } else if (!uptodate) {
  611. btrfs_read_buffer(cur, gen);
  612. }
  613. }
  614. if (search_start == 0)
  615. search_start = last_block;
  616. btrfs_tree_lock(cur);
  617. btrfs_set_lock_blocking(cur);
  618. err = __btrfs_cow_block(trans, root, cur, parent, i,
  619. &cur, search_start,
  620. min(16 * blocksize,
  621. (end_slot - i) * blocksize));
  622. if (err) {
  623. btrfs_tree_unlock(cur);
  624. free_extent_buffer(cur);
  625. break;
  626. }
  627. search_start = cur->start;
  628. last_block = cur->start;
  629. *last_ret = search_start;
  630. btrfs_tree_unlock(cur);
  631. free_extent_buffer(cur);
  632. }
  633. if (parent->map_token) {
  634. unmap_extent_buffer(parent, parent->map_token,
  635. KM_USER1);
  636. parent->map_token = NULL;
  637. }
  638. return err;
  639. }
  640. /*
  641. * The leaf data grows from end-to-front in the node.
  642. * this returns the address of the start of the last item,
  643. * which is the stop of the leaf data stack
  644. */
  645. static inline unsigned int leaf_data_end(struct btrfs_root *root,
  646. struct extent_buffer *leaf)
  647. {
  648. u32 nr = btrfs_header_nritems(leaf);
  649. if (nr == 0)
  650. return BTRFS_LEAF_DATA_SIZE(root);
  651. return btrfs_item_offset_nr(leaf, nr - 1);
  652. }
  653. /*
  654. * extra debugging checks to make sure all the items in a key are
  655. * well formed and in the proper order
  656. */
  657. static int check_node(struct btrfs_root *root, struct btrfs_path *path,
  658. int level)
  659. {
  660. struct extent_buffer *parent = NULL;
  661. struct extent_buffer *node = path->nodes[level];
  662. struct btrfs_disk_key parent_key;
  663. struct btrfs_disk_key node_key;
  664. int parent_slot;
  665. int slot;
  666. struct btrfs_key cpukey;
  667. u32 nritems = btrfs_header_nritems(node);
  668. if (path->nodes[level + 1])
  669. parent = path->nodes[level + 1];
  670. slot = path->slots[level];
  671. BUG_ON(nritems == 0);
  672. if (parent) {
  673. parent_slot = path->slots[level + 1];
  674. btrfs_node_key(parent, &parent_key, parent_slot);
  675. btrfs_node_key(node, &node_key, 0);
  676. BUG_ON(memcmp(&parent_key, &node_key,
  677. sizeof(struct btrfs_disk_key)));
  678. BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
  679. btrfs_header_bytenr(node));
  680. }
  681. BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root));
  682. if (slot != 0) {
  683. btrfs_node_key_to_cpu(node, &cpukey, slot - 1);
  684. btrfs_node_key(node, &node_key, slot);
  685. BUG_ON(comp_keys(&node_key, &cpukey) <= 0);
  686. }
  687. if (slot < nritems - 1) {
  688. btrfs_node_key_to_cpu(node, &cpukey, slot + 1);
  689. btrfs_node_key(node, &node_key, slot);
  690. BUG_ON(comp_keys(&node_key, &cpukey) >= 0);
  691. }
  692. return 0;
  693. }
  694. /*
  695. * extra checking to make sure all the items in a leaf are
  696. * well formed and in the proper order
  697. */
  698. static int check_leaf(struct btrfs_root *root, struct btrfs_path *path,
  699. int level)
  700. {
  701. struct extent_buffer *leaf = path->nodes[level];
  702. struct extent_buffer *parent = NULL;
  703. int parent_slot;
  704. struct btrfs_key cpukey;
  705. struct btrfs_disk_key parent_key;
  706. struct btrfs_disk_key leaf_key;
  707. int slot = path->slots[0];
  708. u32 nritems = btrfs_header_nritems(leaf);
  709. if (path->nodes[level + 1])
  710. parent = path->nodes[level + 1];
  711. if (nritems == 0)
  712. return 0;
  713. if (parent) {
  714. parent_slot = path->slots[level + 1];
  715. btrfs_node_key(parent, &parent_key, parent_slot);
  716. btrfs_item_key(leaf, &leaf_key, 0);
  717. BUG_ON(memcmp(&parent_key, &leaf_key,
  718. sizeof(struct btrfs_disk_key)));
  719. BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
  720. btrfs_header_bytenr(leaf));
  721. }
  722. if (slot != 0 && slot < nritems - 1) {
  723. btrfs_item_key(leaf, &leaf_key, slot);
  724. btrfs_item_key_to_cpu(leaf, &cpukey, slot - 1);
  725. if (comp_keys(&leaf_key, &cpukey) <= 0) {
  726. btrfs_print_leaf(root, leaf);
  727. printk(KERN_CRIT "slot %d offset bad key\n", slot);
  728. BUG_ON(1);
  729. }
  730. if (btrfs_item_offset_nr(leaf, slot - 1) !=
  731. btrfs_item_end_nr(leaf, slot)) {
  732. btrfs_print_leaf(root, leaf);
  733. printk(KERN_CRIT "slot %d offset bad\n", slot);
  734. BUG_ON(1);
  735. }
  736. }
  737. if (slot < nritems - 1) {
  738. btrfs_item_key(leaf, &leaf_key, slot);
  739. btrfs_item_key_to_cpu(leaf, &cpukey, slot + 1);
  740. BUG_ON(comp_keys(&leaf_key, &cpukey) >= 0);
  741. if (btrfs_item_offset_nr(leaf, slot) !=
  742. btrfs_item_end_nr(leaf, slot + 1)) {
  743. btrfs_print_leaf(root, leaf);
  744. printk(KERN_CRIT "slot %d offset bad\n", slot);
  745. BUG_ON(1);
  746. }
  747. }
  748. BUG_ON(btrfs_item_offset_nr(leaf, 0) +
  749. btrfs_item_size_nr(leaf, 0) != BTRFS_LEAF_DATA_SIZE(root));
  750. return 0;
  751. }
  752. static noinline int check_block(struct btrfs_root *root,
  753. struct btrfs_path *path, int level)
  754. {
  755. return 0;
  756. if (level == 0)
  757. return check_leaf(root, path, level);
  758. return check_node(root, path, level);
  759. }
  760. /*
  761. * search for key in the extent_buffer. The items start at offset p,
  762. * and they are item_size apart. There are 'max' items in p.
  763. *
  764. * the slot in the array is returned via slot, and it points to
  765. * the place where you would insert key if it is not found in
  766. * the array.
  767. *
  768. * slot may point to max if the key is bigger than all of the keys
  769. */
  770. static noinline int generic_bin_search(struct extent_buffer *eb,
  771. unsigned long p,
  772. int item_size, struct btrfs_key *key,
  773. int max, int *slot)
  774. {
  775. int low = 0;
  776. int high = max;
  777. int mid;
  778. int ret;
  779. struct btrfs_disk_key *tmp = NULL;
  780. struct btrfs_disk_key unaligned;
  781. unsigned long offset;
  782. char *map_token = NULL;
  783. char *kaddr = NULL;
  784. unsigned long map_start = 0;
  785. unsigned long map_len = 0;
  786. int err;
  787. while (low < high) {
  788. mid = (low + high) / 2;
  789. offset = p + mid * item_size;
  790. if (!map_token || offset < map_start ||
  791. (offset + sizeof(struct btrfs_disk_key)) >
  792. map_start + map_len) {
  793. if (map_token) {
  794. unmap_extent_buffer(eb, map_token, KM_USER0);
  795. map_token = NULL;
  796. }
  797. err = map_private_extent_buffer(eb, offset,
  798. sizeof(struct btrfs_disk_key),
  799. &map_token, &kaddr,
  800. &map_start, &map_len, KM_USER0);
  801. if (!err) {
  802. tmp = (struct btrfs_disk_key *)(kaddr + offset -
  803. map_start);
  804. } else {
  805. read_extent_buffer(eb, &unaligned,
  806. offset, sizeof(unaligned));
  807. tmp = &unaligned;
  808. }
  809. } else {
  810. tmp = (struct btrfs_disk_key *)(kaddr + offset -
  811. map_start);
  812. }
  813. ret = comp_keys(tmp, key);
  814. if (ret < 0)
  815. low = mid + 1;
  816. else if (ret > 0)
  817. high = mid;
  818. else {
  819. *slot = mid;
  820. if (map_token)
  821. unmap_extent_buffer(eb, map_token, KM_USER0);
  822. return 0;
  823. }
  824. }
  825. *slot = low;
  826. if (map_token)
  827. unmap_extent_buffer(eb, map_token, KM_USER0);
  828. return 1;
  829. }
  830. /*
  831. * simple bin_search frontend that does the right thing for
  832. * leaves vs nodes
  833. */
  834. static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
  835. int level, int *slot)
  836. {
  837. if (level == 0) {
  838. return generic_bin_search(eb,
  839. offsetof(struct btrfs_leaf, items),
  840. sizeof(struct btrfs_item),
  841. key, btrfs_header_nritems(eb),
  842. slot);
  843. } else {
  844. return generic_bin_search(eb,
  845. offsetof(struct btrfs_node, ptrs),
  846. sizeof(struct btrfs_key_ptr),
  847. key, btrfs_header_nritems(eb),
  848. slot);
  849. }
  850. return -1;
  851. }
  852. int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
  853. int level, int *slot)
  854. {
  855. return bin_search(eb, key, level, slot);
  856. }
  857. /* given a node and slot number, this reads the blocks it points to. The
  858. * extent buffer is returned with a reference taken (but unlocked).
  859. * NULL is returned on error.
  860. */
  861. static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
  862. struct extent_buffer *parent, int slot)
  863. {
  864. int level = btrfs_header_level(parent);
  865. if (slot < 0)
  866. return NULL;
  867. if (slot >= btrfs_header_nritems(parent))
  868. return NULL;
  869. BUG_ON(level == 0);
  870. return read_tree_block(root, btrfs_node_blockptr(parent, slot),
  871. btrfs_level_size(root, level - 1),
  872. btrfs_node_ptr_generation(parent, slot));
  873. }
  874. /*
  875. * node level balancing, used to make sure nodes are in proper order for
  876. * item deletion. We balance from the top down, so we have to make sure
  877. * that a deletion won't leave an node completely empty later on.
  878. */
  879. static noinline int balance_level(struct btrfs_trans_handle *trans,
  880. struct btrfs_root *root,
  881. struct btrfs_path *path, int level)
  882. {
  883. struct extent_buffer *right = NULL;
  884. struct extent_buffer *mid;
  885. struct extent_buffer *left = NULL;
  886. struct extent_buffer *parent = NULL;
  887. int ret = 0;
  888. int wret;
  889. int pslot;
  890. int orig_slot = path->slots[level];
  891. int err_on_enospc = 0;
  892. u64 orig_ptr;
  893. if (level == 0)
  894. return 0;
  895. mid = path->nodes[level];
  896. WARN_ON(!path->locks[level]);
  897. WARN_ON(btrfs_header_generation(mid) != trans->transid);
  898. orig_ptr = btrfs_node_blockptr(mid, orig_slot);
  899. if (level < BTRFS_MAX_LEVEL - 1)
  900. parent = path->nodes[level + 1];
  901. pslot = path->slots[level + 1];
  902. /*
  903. * deal with the case where there is only one pointer in the root
  904. * by promoting the node below to a root
  905. */
  906. if (!parent) {
  907. struct extent_buffer *child;
  908. if (btrfs_header_nritems(mid) != 1)
  909. return 0;
  910. /* promote the child to a root */
  911. child = read_node_slot(root, mid, 0);
  912. BUG_ON(!child);
  913. btrfs_tree_lock(child);
  914. btrfs_set_lock_blocking(child);
  915. ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
  916. BUG_ON(ret);
  917. spin_lock(&root->node_lock);
  918. root->node = child;
  919. spin_unlock(&root->node_lock);
  920. add_root_to_dirty_list(root);
  921. btrfs_tree_unlock(child);
  922. path->locks[level] = 0;
  923. path->nodes[level] = NULL;
  924. clean_tree_block(trans, root, mid);
  925. btrfs_tree_unlock(mid);
  926. /* once for the path */
  927. free_extent_buffer(mid);
  928. ret = btrfs_free_extent(trans, root, mid->start, mid->len,
  929. 0, root->root_key.objectid, level, 1);
  930. /* once for the root ptr */
  931. free_extent_buffer(mid);
  932. return ret;
  933. }
  934. if (btrfs_header_nritems(mid) >
  935. BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
  936. return 0;
  937. if (btrfs_header_nritems(mid) < 2)
  938. err_on_enospc = 1;
  939. left = read_node_slot(root, parent, pslot - 1);
  940. if (left) {
  941. btrfs_tree_lock(left);
  942. btrfs_set_lock_blocking(left);
  943. wret = btrfs_cow_block(trans, root, left,
  944. parent, pslot - 1, &left);
  945. if (wret) {
  946. ret = wret;
  947. goto enospc;
  948. }
  949. }
  950. right = read_node_slot(root, parent, pslot + 1);
  951. if (right) {
  952. btrfs_tree_lock(right);
  953. btrfs_set_lock_blocking(right);
  954. wret = btrfs_cow_block(trans, root, right,
  955. parent, pslot + 1, &right);
  956. if (wret) {
  957. ret = wret;
  958. goto enospc;
  959. }
  960. }
  961. /* first, try to make some room in the middle buffer */
  962. if (left) {
  963. orig_slot += btrfs_header_nritems(left);
  964. wret = push_node_left(trans, root, left, mid, 1);
  965. if (wret < 0)
  966. ret = wret;
  967. if (btrfs_header_nritems(mid) < 2)
  968. err_on_enospc = 1;
  969. }
  970. /*
  971. * then try to empty the right most buffer into the middle
  972. */
  973. if (right) {
  974. wret = push_node_left(trans, root, mid, right, 1);
  975. if (wret < 0 && wret != -ENOSPC)
  976. ret = wret;
  977. if (btrfs_header_nritems(right) == 0) {
  978. u64 bytenr = right->start;
  979. u32 blocksize = right->len;
  980. clean_tree_block(trans, root, right);
  981. btrfs_tree_unlock(right);
  982. free_extent_buffer(right);
  983. right = NULL;
  984. wret = del_ptr(trans, root, path, level + 1, pslot +
  985. 1);
  986. if (wret)
  987. ret = wret;
  988. wret = btrfs_free_extent(trans, root, bytenr,
  989. blocksize, 0,
  990. root->root_key.objectid,
  991. level, 0);
  992. if (wret)
  993. ret = wret;
  994. } else {
  995. struct btrfs_disk_key right_key;
  996. btrfs_node_key(right, &right_key, 0);
  997. btrfs_set_node_key(parent, &right_key, pslot + 1);
  998. btrfs_mark_buffer_dirty(parent);
  999. }
  1000. }
  1001. if (btrfs_header_nritems(mid) == 1) {
  1002. /*
  1003. * we're not allowed to leave a node with one item in the
  1004. * tree during a delete. A deletion from lower in the tree
  1005. * could try to delete the only pointer in this node.
  1006. * So, pull some keys from the left.
  1007. * There has to be a left pointer at this point because
  1008. * otherwise we would have pulled some pointers from the
  1009. * right
  1010. */
  1011. BUG_ON(!left);
  1012. wret = balance_node_right(trans, root, mid, left);
  1013. if (wret < 0) {
  1014. ret = wret;
  1015. goto enospc;
  1016. }
  1017. if (wret == 1) {
  1018. wret = push_node_left(trans, root, left, mid, 1);
  1019. if (wret < 0)
  1020. ret = wret;
  1021. }
  1022. BUG_ON(wret == 1);
  1023. }
  1024. if (btrfs_header_nritems(mid) == 0) {
  1025. /* we've managed to empty the middle node, drop it */
  1026. u64 bytenr = mid->start;
  1027. u32 blocksize = mid->len;
  1028. clean_tree_block(trans, root, mid);
  1029. btrfs_tree_unlock(mid);
  1030. free_extent_buffer(mid);
  1031. mid = NULL;
  1032. wret = del_ptr(trans, root, path, level + 1, pslot);
  1033. if (wret)
  1034. ret = wret;
  1035. wret = btrfs_free_extent(trans, root, bytenr, blocksize,
  1036. 0, root->root_key.objectid,
  1037. level, 0);
  1038. if (wret)
  1039. ret = wret;
  1040. } else {
  1041. /* update the parent key to reflect our changes */
  1042. struct btrfs_disk_key mid_key;
  1043. btrfs_node_key(mid, &mid_key, 0);
  1044. btrfs_set_node_key(parent, &mid_key, pslot);
  1045. btrfs_mark_buffer_dirty(parent);
  1046. }
  1047. /* update the path */
  1048. if (left) {
  1049. if (btrfs_header_nritems(left) > orig_slot) {
  1050. extent_buffer_get(left);
  1051. /* left was locked after cow */
  1052. path->nodes[level] = left;
  1053. path->slots[level + 1] -= 1;
  1054. path->slots[level] = orig_slot;
  1055. if (mid) {
  1056. btrfs_tree_unlock(mid);
  1057. free_extent_buffer(mid);
  1058. }
  1059. } else {
  1060. orig_slot -= btrfs_header_nritems(left);
  1061. path->slots[level] = orig_slot;
  1062. }
  1063. }
  1064. /* double check we haven't messed things up */
  1065. check_block(root, path, level);
  1066. if (orig_ptr !=
  1067. btrfs_node_blockptr(path->nodes[level], path->slots[level]))
  1068. BUG();
  1069. enospc:
  1070. if (right) {
  1071. btrfs_tree_unlock(right);
  1072. free_extent_buffer(right);
  1073. }
  1074. if (left) {
  1075. if (path->nodes[level] != left)
  1076. btrfs_tree_unlock(left);
  1077. free_extent_buffer(left);
  1078. }
  1079. return ret;
  1080. }
  1081. /* Node balancing for insertion. Here we only split or push nodes around
  1082. * when they are completely full. This is also done top down, so we
  1083. * have to be pessimistic.
  1084. */
  1085. static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
  1086. struct btrfs_root *root,
  1087. struct btrfs_path *path, int level)
  1088. {
  1089. struct extent_buffer *right = NULL;
  1090. struct extent_buffer *mid;
  1091. struct extent_buffer *left = NULL;
  1092. struct extent_buffer *parent = NULL;
  1093. int ret = 0;
  1094. int wret;
  1095. int pslot;
  1096. int orig_slot = path->slots[level];
  1097. u64 orig_ptr;
  1098. if (level == 0)
  1099. return 1;
  1100. mid = path->nodes[level];
  1101. WARN_ON(btrfs_header_generation(mid) != trans->transid);
  1102. orig_ptr = btrfs_node_blockptr(mid, orig_slot);
  1103. if (level < BTRFS_MAX_LEVEL - 1)
  1104. parent = path->nodes[level + 1];
  1105. pslot = path->slots[level + 1];
  1106. if (!parent)
  1107. return 1;
  1108. left = read_node_slot(root, parent, pslot - 1);
  1109. /* first, try to make some room in the middle buffer */
  1110. if (left) {
  1111. u32 left_nr;
  1112. btrfs_tree_lock(left);
  1113. btrfs_set_lock_blocking(left);
  1114. left_nr = btrfs_header_nritems(left);
  1115. if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  1116. wret = 1;
  1117. } else {
  1118. ret = btrfs_cow_block(trans, root, left, parent,
  1119. pslot - 1, &left);
  1120. if (ret)
  1121. wret = 1;
  1122. else {
  1123. wret = push_node_left(trans, root,
  1124. left, mid, 0);
  1125. }
  1126. }
  1127. if (wret < 0)
  1128. ret = wret;
  1129. if (wret == 0) {
  1130. struct btrfs_disk_key disk_key;
  1131. orig_slot += left_nr;
  1132. btrfs_node_key(mid, &disk_key, 0);
  1133. btrfs_set_node_key(parent, &disk_key, pslot);
  1134. btrfs_mark_buffer_dirty(parent);
  1135. if (btrfs_header_nritems(left) > orig_slot) {
  1136. path->nodes[level] = left;
  1137. path->slots[level + 1] -= 1;
  1138. path->slots[level] = orig_slot;
  1139. btrfs_tree_unlock(mid);
  1140. free_extent_buffer(mid);
  1141. } else {
  1142. orig_slot -=
  1143. btrfs_header_nritems(left);
  1144. path->slots[level] = orig_slot;
  1145. btrfs_tree_unlock(left);
  1146. free_extent_buffer(left);
  1147. }
  1148. return 0;
  1149. }
  1150. btrfs_tree_unlock(left);
  1151. free_extent_buffer(left);
  1152. }
  1153. right = read_node_slot(root, parent, pslot + 1);
  1154. /*
  1155. * then try to empty the right most buffer into the middle
  1156. */
  1157. if (right) {
  1158. u32 right_nr;
  1159. btrfs_tree_lock(right);
  1160. btrfs_set_lock_blocking(right);
  1161. right_nr = btrfs_header_nritems(right);
  1162. if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  1163. wret = 1;
  1164. } else {
  1165. ret = btrfs_cow_block(trans, root, right,
  1166. parent, pslot + 1,
  1167. &right);
  1168. if (ret)
  1169. wret = 1;
  1170. else {
  1171. wret = balance_node_right(trans, root,
  1172. right, mid);
  1173. }
  1174. }
  1175. if (wret < 0)
  1176. ret = wret;
  1177. if (wret == 0) {
  1178. struct btrfs_disk_key disk_key;
  1179. btrfs_node_key(right, &disk_key, 0);
  1180. btrfs_set_node_key(parent, &disk_key, pslot + 1);
  1181. btrfs_mark_buffer_dirty(parent);
  1182. if (btrfs_header_nritems(mid) <= orig_slot) {
  1183. path->nodes[level] = right;
  1184. path->slots[level + 1] += 1;
  1185. path->slots[level] = orig_slot -
  1186. btrfs_header_nritems(mid);
  1187. btrfs_tree_unlock(mid);
  1188. free_extent_buffer(mid);
  1189. } else {
  1190. btrfs_tree_unlock(right);
  1191. free_extent_buffer(right);
  1192. }
  1193. return 0;
  1194. }
  1195. btrfs_tree_unlock(right);
  1196. free_extent_buffer(right);
  1197. }
  1198. return 1;
  1199. }
  1200. /*
  1201. * readahead one full node of leaves, finding things that are close
  1202. * to the block in 'slot', and triggering ra on them.
  1203. */
  1204. static void reada_for_search(struct btrfs_root *root,
  1205. struct btrfs_path *path,
  1206. int level, int slot, u64 objectid)
  1207. {
  1208. struct extent_buffer *node;
  1209. struct btrfs_disk_key disk_key;
  1210. u32 nritems;
  1211. u64 search;
  1212. u64 target;
  1213. u64 nread = 0;
  1214. int direction = path->reada;
  1215. struct extent_buffer *eb;
  1216. u32 nr;
  1217. u32 blocksize;
  1218. u32 nscan = 0;
  1219. if (level != 1)
  1220. return;
  1221. if (!path->nodes[level])
  1222. return;
  1223. node = path->nodes[level];
  1224. search = btrfs_node_blockptr(node, slot);
  1225. blocksize = btrfs_level_size(root, level - 1);
  1226. eb = btrfs_find_tree_block(root, search, blocksize);
  1227. if (eb) {
  1228. free_extent_buffer(eb);
  1229. return;
  1230. }
  1231. target = search;
  1232. nritems = btrfs_header_nritems(node);
  1233. nr = slot;
  1234. while (1) {
  1235. if (direction < 0) {
  1236. if (nr == 0)
  1237. break;
  1238. nr--;
  1239. } else if (direction > 0) {
  1240. nr++;
  1241. if (nr >= nritems)
  1242. break;
  1243. }
  1244. if (path->reada < 0 && objectid) {
  1245. btrfs_node_key(node, &disk_key, nr);
  1246. if (btrfs_disk_key_objectid(&disk_key) != objectid)
  1247. break;
  1248. }
  1249. search = btrfs_node_blockptr(node, nr);
  1250. if ((search <= target && target - search <= 65536) ||
  1251. (search > target && search - target <= 65536)) {
  1252. readahead_tree_block(root, search, blocksize,
  1253. btrfs_node_ptr_generation(node, nr));
  1254. nread += blocksize;
  1255. }
  1256. nscan++;
  1257. if ((nread > 65536 || nscan > 32))
  1258. break;
  1259. }
  1260. }
  1261. /*
  1262. * returns -EAGAIN if it had to drop the path, or zero if everything was in
  1263. * cache
  1264. */
  1265. static noinline int reada_for_balance(struct btrfs_root *root,
  1266. struct btrfs_path *path, int level)
  1267. {
  1268. int slot;
  1269. int nritems;
  1270. struct extent_buffer *parent;
  1271. struct extent_buffer *eb;
  1272. u64 gen;
  1273. u64 block1 = 0;
  1274. u64 block2 = 0;
  1275. int ret = 0;
  1276. int blocksize;
  1277. parent = path->nodes[level + 1];
  1278. if (!parent)
  1279. return 0;
  1280. nritems = btrfs_header_nritems(parent);
  1281. slot = path->slots[level + 1];
  1282. blocksize = btrfs_level_size(root, level);
  1283. if (slot > 0) {
  1284. block1 = btrfs_node_blockptr(parent, slot - 1);
  1285. gen = btrfs_node_ptr_generation(parent, slot - 1);
  1286. eb = btrfs_find_tree_block(root, block1, blocksize);
  1287. if (eb && btrfs_buffer_uptodate(eb, gen))
  1288. block1 = 0;
  1289. free_extent_buffer(eb);
  1290. }
  1291. if (slot + 1 < nritems) {
  1292. block2 = btrfs_node_blockptr(parent, slot + 1);
  1293. gen = btrfs_node_ptr_generation(parent, slot + 1);
  1294. eb = btrfs_find_tree_block(root, block2, blocksize);
  1295. if (eb && btrfs_buffer_uptodate(eb, gen))
  1296. block2 = 0;
  1297. free_extent_buffer(eb);
  1298. }
  1299. if (block1 || block2) {
  1300. ret = -EAGAIN;
  1301. /* release the whole path */
  1302. btrfs_release_path(root, path);
  1303. /* read the blocks */
  1304. if (block1)
  1305. readahead_tree_block(root, block1, blocksize, 0);
  1306. if (block2)
  1307. readahead_tree_block(root, block2, blocksize, 0);
  1308. if (block1) {
  1309. eb = read_tree_block(root, block1, blocksize, 0);
  1310. free_extent_buffer(eb);
  1311. }
  1312. if (block2) {
  1313. eb = read_tree_block(root, block2, blocksize, 0);
  1314. free_extent_buffer(eb);
  1315. }
  1316. }
  1317. return ret;
  1318. }
  1319. /*
  1320. * when we walk down the tree, it is usually safe to unlock the higher layers
  1321. * in the tree. The exceptions are when our path goes through slot 0, because
  1322. * operations on the tree might require changing key pointers higher up in the
  1323. * tree.
  1324. *
  1325. * callers might also have set path->keep_locks, which tells this code to keep
  1326. * the lock if the path points to the last slot in the block. This is part of
  1327. * walking through the tree, and selecting the next slot in the higher block.
  1328. *
  1329. * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
  1330. * if lowest_unlock is 1, level 0 won't be unlocked
  1331. */
  1332. static noinline void unlock_up(struct btrfs_path *path, int level,
  1333. int lowest_unlock)
  1334. {
  1335. int i;
  1336. int skip_level = level;
  1337. int no_skips = 0;
  1338. struct extent_buffer *t;
  1339. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1340. if (!path->nodes[i])
  1341. break;
  1342. if (!path->locks[i])
  1343. break;
  1344. if (!no_skips && path->slots[i] == 0) {
  1345. skip_level = i + 1;
  1346. continue;
  1347. }
  1348. if (!no_skips && path->keep_locks) {
  1349. u32 nritems;
  1350. t = path->nodes[i];
  1351. nritems = btrfs_header_nritems(t);
  1352. if (nritems < 1 || path->slots[i] >= nritems - 1) {
  1353. skip_level = i + 1;
  1354. continue;
  1355. }
  1356. }
  1357. if (skip_level < i && i >= lowest_unlock)
  1358. no_skips = 1;
  1359. t = path->nodes[i];
  1360. if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
  1361. btrfs_tree_unlock(t);
  1362. path->locks[i] = 0;
  1363. }
  1364. }
  1365. }
  1366. /*
  1367. * This releases any locks held in the path starting at level and
  1368. * going all the way up to the root.
  1369. *
  1370. * btrfs_search_slot will keep the lock held on higher nodes in a few
  1371. * corner cases, such as COW of the block at slot zero in the node. This
  1372. * ignores those rules, and it should only be called when there are no
  1373. * more updates to be done higher up in the tree.
  1374. */
  1375. noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
  1376. {
  1377. int i;
  1378. if (path->keep_locks)
  1379. return;
  1380. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1381. if (!path->nodes[i])
  1382. continue;
  1383. if (!path->locks[i])
  1384. continue;
  1385. btrfs_tree_unlock(path->nodes[i]);
  1386. path->locks[i] = 0;
  1387. }
  1388. }
  1389. /*
  1390. * helper function for btrfs_search_slot. The goal is to find a block
  1391. * in cache without setting the path to blocking. If we find the block
  1392. * we return zero and the path is unchanged.
  1393. *
  1394. * If we can't find the block, we set the path blocking and do some
  1395. * reada. -EAGAIN is returned and the search must be repeated.
  1396. */
  1397. static int
  1398. read_block_for_search(struct btrfs_trans_handle *trans,
  1399. struct btrfs_root *root, struct btrfs_path *p,
  1400. struct extent_buffer **eb_ret, int level, int slot,
  1401. struct btrfs_key *key)
  1402. {
  1403. u64 blocknr;
  1404. u64 gen;
  1405. u32 blocksize;
  1406. struct extent_buffer *b = *eb_ret;
  1407. struct extent_buffer *tmp;
  1408. int ret;
  1409. blocknr = btrfs_node_blockptr(b, slot);
  1410. gen = btrfs_node_ptr_generation(b, slot);
  1411. blocksize = btrfs_level_size(root, level - 1);
  1412. tmp = btrfs_find_tree_block(root, blocknr, blocksize);
  1413. if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
  1414. /*
  1415. * we found an up to date block without sleeping, return
  1416. * right away
  1417. */
  1418. *eb_ret = tmp;
  1419. return 0;
  1420. }
  1421. /*
  1422. * reduce lock contention at high levels
  1423. * of the btree by dropping locks before
  1424. * we read. Don't release the lock on the current
  1425. * level because we need to walk this node to figure
  1426. * out which blocks to read.
  1427. */
  1428. btrfs_unlock_up_safe(p, level + 1);
  1429. btrfs_set_path_blocking(p);
  1430. if (tmp)
  1431. free_extent_buffer(tmp);
  1432. if (p->reada)
  1433. reada_for_search(root, p, level, slot, key->objectid);
  1434. btrfs_release_path(NULL, p);
  1435. ret = -EAGAIN;
  1436. tmp = read_tree_block(root, blocknr, blocksize, gen);
  1437. if (tmp) {
  1438. /*
  1439. * If the read above didn't mark this buffer up to date,
  1440. * it will never end up being up to date. Set ret to EIO now
  1441. * and give up so that our caller doesn't loop forever
  1442. * on our EAGAINs.
  1443. */
  1444. if (!btrfs_buffer_uptodate(tmp, 0))
  1445. ret = -EIO;
  1446. free_extent_buffer(tmp);
  1447. }
  1448. return ret;
  1449. }
  1450. /*
  1451. * helper function for btrfs_search_slot. This does all of the checks
  1452. * for node-level blocks and does any balancing required based on
  1453. * the ins_len.
  1454. *
  1455. * If no extra work was required, zero is returned. If we had to
  1456. * drop the path, -EAGAIN is returned and btrfs_search_slot must
  1457. * start over
  1458. */
  1459. static int
  1460. setup_nodes_for_search(struct btrfs_trans_handle *trans,
  1461. struct btrfs_root *root, struct btrfs_path *p,
  1462. struct extent_buffer *b, int level, int ins_len)
  1463. {
  1464. int ret;
  1465. if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
  1466. BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
  1467. int sret;
  1468. sret = reada_for_balance(root, p, level);
  1469. if (sret)
  1470. goto again;
  1471. btrfs_set_path_blocking(p);
  1472. sret = split_node(trans, root, p, level);
  1473. btrfs_clear_path_blocking(p, NULL);
  1474. BUG_ON(sret > 0);
  1475. if (sret) {
  1476. ret = sret;
  1477. goto done;
  1478. }
  1479. b = p->nodes[level];
  1480. } else if (ins_len < 0 && btrfs_header_nritems(b) <
  1481. BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
  1482. int sret;
  1483. sret = reada_for_balance(root, p, level);
  1484. if (sret)
  1485. goto again;
  1486. btrfs_set_path_blocking(p);
  1487. sret = balance_level(trans, root, p, level);
  1488. btrfs_clear_path_blocking(p, NULL);
  1489. if (sret) {
  1490. ret = sret;
  1491. goto done;
  1492. }
  1493. b = p->nodes[level];
  1494. if (!b) {
  1495. btrfs_release_path(NULL, p);
  1496. goto again;
  1497. }
  1498. BUG_ON(btrfs_header_nritems(b) == 1);
  1499. }
  1500. return 0;
  1501. again:
  1502. ret = -EAGAIN;
  1503. done:
  1504. return ret;
  1505. }
  1506. /*
  1507. * look for key in the tree. path is filled in with nodes along the way
  1508. * if key is found, we return zero and you can find the item in the leaf
  1509. * level of the path (level 0)
  1510. *
  1511. * If the key isn't found, the path points to the slot where it should
  1512. * be inserted, and 1 is returned. If there are other errors during the
  1513. * search a negative error number is returned.
  1514. *
  1515. * if ins_len > 0, nodes and leaves will be split as we walk down the
  1516. * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
  1517. * possible)
  1518. */
  1519. int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
  1520. *root, struct btrfs_key *key, struct btrfs_path *p, int
  1521. ins_len, int cow)
  1522. {
  1523. struct extent_buffer *b;
  1524. int slot;
  1525. int ret;
  1526. int err;
  1527. int level;
  1528. int lowest_unlock = 1;
  1529. u8 lowest_level = 0;
  1530. lowest_level = p->lowest_level;
  1531. WARN_ON(lowest_level && ins_len > 0);
  1532. WARN_ON(p->nodes[0] != NULL);
  1533. if (ins_len < 0)
  1534. lowest_unlock = 2;
  1535. again:
  1536. if (p->search_commit_root) {
  1537. b = root->commit_root;
  1538. extent_buffer_get(b);
  1539. if (!p->skip_locking)
  1540. btrfs_tree_lock(b);
  1541. } else {
  1542. if (p->skip_locking)
  1543. b = btrfs_root_node(root);
  1544. else
  1545. b = btrfs_lock_root_node(root);
  1546. }
  1547. while (b) {
  1548. level = btrfs_header_level(b);
  1549. /*
  1550. * setup the path here so we can release it under lock
  1551. * contention with the cow code
  1552. */
  1553. p->nodes[level] = b;
  1554. if (!p->skip_locking)
  1555. p->locks[level] = 1;
  1556. if (cow) {
  1557. /*
  1558. * if we don't really need to cow this block
  1559. * then we don't want to set the path blocking,
  1560. * so we test it here
  1561. */
  1562. if (!should_cow_block(trans, root, b))
  1563. goto cow_done;
  1564. btrfs_set_path_blocking(p);
  1565. err = btrfs_cow_block(trans, root, b,
  1566. p->nodes[level + 1],
  1567. p->slots[level + 1], &b);
  1568. if (err) {
  1569. free_extent_buffer(b);
  1570. ret = err;
  1571. goto done;
  1572. }
  1573. }
  1574. cow_done:
  1575. BUG_ON(!cow && ins_len);
  1576. if (level != btrfs_header_level(b))
  1577. WARN_ON(1);
  1578. level = btrfs_header_level(b);
  1579. p->nodes[level] = b;
  1580. if (!p->skip_locking)
  1581. p->locks[level] = 1;
  1582. btrfs_clear_path_blocking(p, NULL);
  1583. /*
  1584. * we have a lock on b and as long as we aren't changing
  1585. * the tree, there is no way to for the items in b to change.
  1586. * It is safe to drop the lock on our parent before we
  1587. * go through the expensive btree search on b.
  1588. *
  1589. * If cow is true, then we might be changing slot zero,
  1590. * which may require changing the parent. So, we can't
  1591. * drop the lock until after we know which slot we're
  1592. * operating on.
  1593. */
  1594. if (!cow)
  1595. btrfs_unlock_up_safe(p, level + 1);
  1596. ret = check_block(root, p, level);
  1597. if (ret) {
  1598. ret = -1;
  1599. goto done;
  1600. }
  1601. ret = bin_search(b, key, level, &slot);
  1602. if (level != 0) {
  1603. int dec = 0;
  1604. if (ret && slot > 0) {
  1605. dec = 1;
  1606. slot -= 1;
  1607. }
  1608. p->slots[level] = slot;
  1609. err = setup_nodes_for_search(trans, root, p, b, level,
  1610. ins_len);
  1611. if (err == -EAGAIN)
  1612. goto again;
  1613. if (err) {
  1614. ret = err;
  1615. goto done;
  1616. }
  1617. b = p->nodes[level];
  1618. slot = p->slots[level];
  1619. unlock_up(p, level, lowest_unlock);
  1620. if (level == lowest_level) {
  1621. if (dec)
  1622. p->slots[level]++;
  1623. goto done;
  1624. }
  1625. err = read_block_for_search(trans, root, p,
  1626. &b, level, slot, key);
  1627. if (err == -EAGAIN)
  1628. goto again;
  1629. if (err) {
  1630. ret = err;
  1631. goto done;
  1632. }
  1633. if (!p->skip_locking) {
  1634. btrfs_clear_path_blocking(p, NULL);
  1635. err = btrfs_try_spin_lock(b);
  1636. if (!err) {
  1637. btrfs_set_path_blocking(p);
  1638. btrfs_tree_lock(b);
  1639. btrfs_clear_path_blocking(p, b);
  1640. }
  1641. }
  1642. } else {
  1643. p->slots[level] = slot;
  1644. if (ins_len > 0 &&
  1645. btrfs_leaf_free_space(root, b) < ins_len) {
  1646. btrfs_set_path_blocking(p);
  1647. err = split_leaf(trans, root, key,
  1648. p, ins_len, ret == 0);
  1649. btrfs_clear_path_blocking(p, NULL);
  1650. BUG_ON(err > 0);
  1651. if (err) {
  1652. ret = err;
  1653. goto done;
  1654. }
  1655. }
  1656. if (!p->search_for_split)
  1657. unlock_up(p, level, lowest_unlock);
  1658. goto done;
  1659. }
  1660. }
  1661. ret = 1;
  1662. done:
  1663. /*
  1664. * we don't really know what they plan on doing with the path
  1665. * from here on, so for now just mark it as blocking
  1666. */
  1667. if (!p->leave_spinning)
  1668. btrfs_set_path_blocking(p);
  1669. if (ret < 0)
  1670. btrfs_release_path(root, p);
  1671. return ret;
  1672. }
  1673. /*
  1674. * adjust the pointers going up the tree, starting at level
  1675. * making sure the right key of each node is points to 'key'.
  1676. * This is used after shifting pointers to the left, so it stops
  1677. * fixing up pointers when a given leaf/node is not in slot 0 of the
  1678. * higher levels
  1679. *
  1680. * If this fails to write a tree block, it returns -1, but continues
  1681. * fixing up the blocks in ram so the tree is consistent.
  1682. */
  1683. static int fixup_low_keys(struct btrfs_trans_handle *trans,
  1684. struct btrfs_root *root, struct btrfs_path *path,
  1685. struct btrfs_disk_key *key, int level)
  1686. {
  1687. int i;
  1688. int ret = 0;
  1689. struct extent_buffer *t;
  1690. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1691. int tslot = path->slots[i];
  1692. if (!path->nodes[i])
  1693. break;
  1694. t = path->nodes[i];
  1695. btrfs_set_node_key(t, key, tslot);
  1696. btrfs_mark_buffer_dirty(path->nodes[i]);
  1697. if (tslot != 0)
  1698. break;
  1699. }
  1700. return ret;
  1701. }
  1702. /*
  1703. * update item key.
  1704. *
  1705. * This function isn't completely safe. It's the caller's responsibility
  1706. * that the new key won't break the order
  1707. */
  1708. int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
  1709. struct btrfs_root *root, struct btrfs_path *path,
  1710. struct btrfs_key *new_key)
  1711. {
  1712. struct btrfs_disk_key disk_key;
  1713. struct extent_buffer *eb;
  1714. int slot;
  1715. eb = path->nodes[0];
  1716. slot = path->slots[0];
  1717. if (slot > 0) {
  1718. btrfs_item_key(eb, &disk_key, slot - 1);
  1719. if (comp_keys(&disk_key, new_key) >= 0)
  1720. return -1;
  1721. }
  1722. if (slot < btrfs_header_nritems(eb) - 1) {
  1723. btrfs_item_key(eb, &disk_key, slot + 1);
  1724. if (comp_keys(&disk_key, new_key) <= 0)
  1725. return -1;
  1726. }
  1727. btrfs_cpu_key_to_disk(&disk_key, new_key);
  1728. btrfs_set_item_key(eb, &disk_key, slot);
  1729. btrfs_mark_buffer_dirty(eb);
  1730. if (slot == 0)
  1731. fixup_low_keys(trans, root, path, &disk_key, 1);
  1732. return 0;
  1733. }
  1734. /*
  1735. * try to push data from one node into the next node left in the
  1736. * tree.
  1737. *
  1738. * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
  1739. * error, and > 0 if there was no room in the left hand block.
  1740. */
  1741. static int push_node_left(struct btrfs_trans_handle *trans,
  1742. struct btrfs_root *root, struct extent_buffer *dst,
  1743. struct extent_buffer *src, int empty)
  1744. {
  1745. int push_items = 0;
  1746. int src_nritems;
  1747. int dst_nritems;
  1748. int ret = 0;
  1749. src_nritems = btrfs_header_nritems(src);
  1750. dst_nritems = btrfs_header_nritems(dst);
  1751. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  1752. WARN_ON(btrfs_header_generation(src) != trans->transid);
  1753. WARN_ON(btrfs_header_generation(dst) != trans->transid);
  1754. if (!empty && src_nritems <= 8)
  1755. return 1;
  1756. if (push_items <= 0)
  1757. return 1;
  1758. if (empty) {
  1759. push_items = min(src_nritems, push_items);
  1760. if (push_items < src_nritems) {
  1761. /* leave at least 8 pointers in the node if
  1762. * we aren't going to empty it
  1763. */
  1764. if (src_nritems - push_items < 8) {
  1765. if (push_items <= 8)
  1766. return 1;
  1767. push_items -= 8;
  1768. }
  1769. }
  1770. } else
  1771. push_items = min(src_nritems - 8, push_items);
  1772. copy_extent_buffer(dst, src,
  1773. btrfs_node_key_ptr_offset(dst_nritems),
  1774. btrfs_node_key_ptr_offset(0),
  1775. push_items * sizeof(struct btrfs_key_ptr));
  1776. if (push_items < src_nritems) {
  1777. memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
  1778. btrfs_node_key_ptr_offset(push_items),
  1779. (src_nritems - push_items) *
  1780. sizeof(struct btrfs_key_ptr));
  1781. }
  1782. btrfs_set_header_nritems(src, src_nritems - push_items);
  1783. btrfs_set_header_nritems(dst, dst_nritems + push_items);
  1784. btrfs_mark_buffer_dirty(src);
  1785. btrfs_mark_buffer_dirty(dst);
  1786. return ret;
  1787. }
  1788. /*
  1789. * try to push data from one node into the next node right in the
  1790. * tree.
  1791. *
  1792. * returns 0 if some ptrs were pushed, < 0 if there was some horrible
  1793. * error, and > 0 if there was no room in the right hand block.
  1794. *
  1795. * this will only push up to 1/2 the contents of the left node over
  1796. */
  1797. static int balance_node_right(struct btrfs_trans_handle *trans,
  1798. struct btrfs_root *root,
  1799. struct extent_buffer *dst,
  1800. struct extent_buffer *src)
  1801. {
  1802. int push_items = 0;
  1803. int max_push;
  1804. int src_nritems;
  1805. int dst_nritems;
  1806. int ret = 0;
  1807. WARN_ON(btrfs_header_generation(src) != trans->transid);
  1808. WARN_ON(btrfs_header_generation(dst) != trans->transid);
  1809. src_nritems = btrfs_header_nritems(src);
  1810. dst_nritems = btrfs_header_nritems(dst);
  1811. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  1812. if (push_items <= 0)
  1813. return 1;
  1814. if (src_nritems < 4)
  1815. return 1;
  1816. max_push = src_nritems / 2 + 1;
  1817. /* don't try to empty the node */
  1818. if (max_push >= src_nritems)
  1819. return 1;
  1820. if (max_push < push_items)
  1821. push_items = max_push;
  1822. memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
  1823. btrfs_node_key_ptr_offset(0),
  1824. (dst_nritems) *
  1825. sizeof(struct btrfs_key_ptr));
  1826. copy_extent_buffer(dst, src,
  1827. btrfs_node_key_ptr_offset(0),
  1828. btrfs_node_key_ptr_offset(src_nritems - push_items),
  1829. push_items * sizeof(struct btrfs_key_ptr));
  1830. btrfs_set_header_nritems(src, src_nritems - push_items);
  1831. btrfs_set_header_nritems(dst, dst_nritems + push_items);
  1832. btrfs_mark_buffer_dirty(src);
  1833. btrfs_mark_buffer_dirty(dst);
  1834. return ret;
  1835. }
  1836. /*
  1837. * helper function to insert a new root level in the tree.
  1838. * A new node is allocated, and a single item is inserted to
  1839. * point to the existing root
  1840. *
  1841. * returns zero on success or < 0 on failure.
  1842. */
  1843. static noinline int insert_new_root(struct btrfs_trans_handle *trans,
  1844. struct btrfs_root *root,
  1845. struct btrfs_path *path, int level)
  1846. {
  1847. u64 lower_gen;
  1848. struct extent_buffer *lower;
  1849. struct extent_buffer *c;
  1850. struct extent_buffer *old;
  1851. struct btrfs_disk_key lower_key;
  1852. BUG_ON(path->nodes[level]);
  1853. BUG_ON(path->nodes[level-1] != root->node);
  1854. lower = path->nodes[level-1];
  1855. if (level == 1)
  1856. btrfs_item_key(lower, &lower_key, 0);
  1857. else
  1858. btrfs_node_key(lower, &lower_key, 0);
  1859. c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
  1860. root->root_key.objectid, &lower_key,
  1861. level, root->node->start, 0);
  1862. if (IS_ERR(c))
  1863. return PTR_ERR(c);
  1864. memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
  1865. btrfs_set_header_nritems(c, 1);
  1866. btrfs_set_header_level(c, level);
  1867. btrfs_set_header_bytenr(c, c->start);
  1868. btrfs_set_header_generation(c, trans->transid);
  1869. btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
  1870. btrfs_set_header_owner(c, root->root_key.objectid);
  1871. write_extent_buffer(c, root->fs_info->fsid,
  1872. (unsigned long)btrfs_header_fsid(c),
  1873. BTRFS_FSID_SIZE);
  1874. write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
  1875. (unsigned long)btrfs_header_chunk_tree_uuid(c),
  1876. BTRFS_UUID_SIZE);
  1877. btrfs_set_node_key(c, &lower_key, 0);
  1878. btrfs_set_node_blockptr(c, 0, lower->start);
  1879. lower_gen = btrfs_header_generation(lower);
  1880. WARN_ON(lower_gen != trans->transid);
  1881. btrfs_set_node_ptr_generation(c, 0, lower_gen);
  1882. btrfs_mark_buffer_dirty(c);
  1883. spin_lock(&root->node_lock);
  1884. old = root->node;
  1885. root->node = c;
  1886. spin_unlock(&root->node_lock);
  1887. /* the super has an extra ref to root->node */
  1888. free_extent_buffer(old);
  1889. add_root_to_dirty_list(root);
  1890. extent_buffer_get(c);
  1891. path->nodes[level] = c;
  1892. path->locks[level] = 1;
  1893. path->slots[level] = 0;
  1894. return 0;
  1895. }
  1896. /*
  1897. * worker function to insert a single pointer in a node.
  1898. * the node should have enough room for the pointer already
  1899. *
  1900. * slot and level indicate where you want the key to go, and
  1901. * blocknr is the block the key points to.
  1902. *
  1903. * returns zero on success and < 0 on any error
  1904. */
  1905. static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
  1906. *root, struct btrfs_path *path, struct btrfs_disk_key
  1907. *key, u64 bytenr, int slot, int level)
  1908. {
  1909. struct extent_buffer *lower;
  1910. int nritems;
  1911. BUG_ON(!path->nodes[level]);
  1912. lower = path->nodes[level];
  1913. nritems = btrfs_header_nritems(lower);
  1914. BUG_ON(slot > nritems);
  1915. if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
  1916. BUG();
  1917. if (slot != nritems) {
  1918. memmove_extent_buffer(lower,
  1919. btrfs_node_key_ptr_offset(slot + 1),
  1920. btrfs_node_key_ptr_offset(slot),
  1921. (nritems - slot) * sizeof(struct btrfs_key_ptr));
  1922. }
  1923. btrfs_set_node_key(lower, key, slot);
  1924. btrfs_set_node_blockptr(lower, slot, bytenr);
  1925. WARN_ON(trans->transid == 0);
  1926. btrfs_set_node_ptr_generation(lower, slot, trans->transid);
  1927. btrfs_set_header_nritems(lower, nritems + 1);
  1928. btrfs_mark_buffer_dirty(lower);
  1929. return 0;
  1930. }
  1931. /*
  1932. * split the node at the specified level in path in two.
  1933. * The path is corrected to point to the appropriate node after the split
  1934. *
  1935. * Before splitting this tries to make some room in the node by pushing
  1936. * left and right, if either one works, it returns right away.
  1937. *
  1938. * returns 0 on success and < 0 on failure
  1939. */
  1940. static noinline int split_node(struct btrfs_trans_handle *trans,
  1941. struct btrfs_root *root,
  1942. struct btrfs_path *path, int level)
  1943. {
  1944. struct extent_buffer *c;
  1945. struct extent_buffer *split;
  1946. struct btrfs_disk_key disk_key;
  1947. int mid;
  1948. int ret;
  1949. int wret;
  1950. u32 c_nritems;
  1951. c = path->nodes[level];
  1952. WARN_ON(btrfs_header_generation(c) != trans->transid);
  1953. if (c == root->node) {
  1954. /* trying to split the root, lets make a new one */
  1955. ret = insert_new_root(trans, root, path, level + 1);
  1956. if (ret)
  1957. return ret;
  1958. } else {
  1959. ret = push_nodes_for_insert(trans, root, path, level);
  1960. c = path->nodes[level];
  1961. if (!ret && btrfs_header_nritems(c) <
  1962. BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
  1963. return 0;
  1964. if (ret < 0)
  1965. return ret;
  1966. }
  1967. c_nritems = btrfs_header_nritems(c);
  1968. mid = (c_nritems + 1) / 2;
  1969. btrfs_node_key(c, &disk_key, mid);
  1970. split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
  1971. root->root_key.objectid,
  1972. &disk_key, level, c->start, 0);
  1973. if (IS_ERR(split))
  1974. return PTR_ERR(split);
  1975. memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
  1976. btrfs_set_header_level(split, btrfs_header_level(c));
  1977. btrfs_set_header_bytenr(split, split->start);
  1978. btrfs_set_header_generation(split, trans->transid);
  1979. btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
  1980. btrfs_set_header_owner(split, root->root_key.objectid);
  1981. write_extent_buffer(split, root->fs_info->fsid,
  1982. (unsigned long)btrfs_header_fsid(split),
  1983. BTRFS_FSID_SIZE);
  1984. write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
  1985. (unsigned long)btrfs_header_chunk_tree_uuid(split),
  1986. BTRFS_UUID_SIZE);
  1987. copy_extent_buffer(split, c,
  1988. btrfs_node_key_ptr_offset(0),
  1989. btrfs_node_key_ptr_offset(mid),
  1990. (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
  1991. btrfs_set_header_nritems(split, c_nritems - mid);
  1992. btrfs_set_header_nritems(c, mid);
  1993. ret = 0;
  1994. btrfs_mark_buffer_dirty(c);
  1995. btrfs_mark_buffer_dirty(split);
  1996. wret = insert_ptr(trans, root, path, &disk_key, split->start,
  1997. path->slots[level + 1] + 1,
  1998. level + 1);
  1999. if (wret)
  2000. ret = wret;
  2001. if (path->slots[level] >= mid) {
  2002. path->slots[level] -= mid;
  2003. btrfs_tree_unlock(c);
  2004. free_extent_buffer(c);
  2005. path->nodes[level] = split;
  2006. path->slots[level + 1] += 1;
  2007. } else {
  2008. btrfs_tree_unlock(split);
  2009. free_extent_buffer(split);
  2010. }
  2011. return ret;
  2012. }
  2013. /*
  2014. * how many bytes are required to store the items in a leaf. start
  2015. * and nr indicate which items in the leaf to check. This totals up the
  2016. * space used both by the item structs and the item data
  2017. */
  2018. static int leaf_space_used(struct extent_buffer *l, int start, int nr)
  2019. {
  2020. int data_len;
  2021. int nritems = btrfs_header_nritems(l);
  2022. int end = min(nritems, start + nr) - 1;
  2023. if (!nr)
  2024. return 0;
  2025. data_len = btrfs_item_end_nr(l, start);
  2026. data_len = data_len - btrfs_item_offset_nr(l, end);
  2027. data_len += sizeof(struct btrfs_item) * nr;
  2028. WARN_ON(data_len < 0);
  2029. return data_len;
  2030. }
  2031. /*
  2032. * The space between the end of the leaf items and
  2033. * the start of the leaf data. IOW, how much room
  2034. * the leaf has left for both items and data
  2035. */
  2036. noinline int btrfs_leaf_free_space(struct btrfs_root *root,
  2037. struct extent_buffer *leaf)
  2038. {
  2039. int nritems = btrfs_header_nritems(leaf);
  2040. int ret;
  2041. ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
  2042. if (ret < 0) {
  2043. printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
  2044. "used %d nritems %d\n",
  2045. ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
  2046. leaf_space_used(leaf, 0, nritems), nritems);
  2047. }
  2048. return ret;
  2049. }
  2050. static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
  2051. struct btrfs_root *root,
  2052. struct btrfs_path *path,
  2053. int data_size, int empty,
  2054. struct extent_buffer *right,
  2055. int free_space, u32 left_nritems)
  2056. {
  2057. struct extent_buffer *left = path->nodes[0];
  2058. struct extent_buffer *upper = path->nodes[1];
  2059. struct btrfs_disk_key disk_key;
  2060. int slot;
  2061. u32 i;
  2062. int push_space = 0;
  2063. int push_items = 0;
  2064. struct btrfs_item *item;
  2065. u32 nr;
  2066. u32 right_nritems;
  2067. u32 data_end;
  2068. u32 this_item_size;
  2069. if (empty)
  2070. nr = 0;
  2071. else
  2072. nr = 1;
  2073. if (path->slots[0] >= left_nritems)
  2074. push_space += data_size;
  2075. slot = path->slots[1];
  2076. i = left_nritems - 1;
  2077. while (i >= nr) {
  2078. item = btrfs_item_nr(left, i);
  2079. if (!empty && push_items > 0) {
  2080. if (path->slots[0] > i)
  2081. break;
  2082. if (path->slots[0] == i) {
  2083. int space = btrfs_leaf_free_space(root, left);
  2084. if (space + push_space * 2 > free_space)
  2085. break;
  2086. }
  2087. }
  2088. if (path->slots[0] == i)
  2089. push_space += data_size;
  2090. if (!left->map_token) {
  2091. map_extent_buffer(left, (unsigned long)item,
  2092. sizeof(struct btrfs_item),
  2093. &left->map_token, &left->kaddr,
  2094. &left->map_start, &left->map_len,
  2095. KM_USER1);
  2096. }
  2097. this_item_size = btrfs_item_size(left, item);
  2098. if (this_item_size + sizeof(*item) + push_space > free_space)
  2099. break;
  2100. push_items++;
  2101. push_space += this_item_size + sizeof(*item);
  2102. if (i == 0)
  2103. break;
  2104. i--;
  2105. }
  2106. if (left->map_token) {
  2107. unmap_extent_buffer(left, left->map_token, KM_USER1);
  2108. left->map_token = NULL;
  2109. }
  2110. if (push_items == 0)
  2111. goto out_unlock;
  2112. if (!empty && push_items == left_nritems)
  2113. WARN_ON(1);
  2114. /* push left to right */
  2115. right_nritems = btrfs_header_nritems(right);
  2116. push_space = btrfs_item_end_nr(left, left_nritems - push_items);
  2117. push_space -= leaf_data_end(root, left);
  2118. /* make room in the right data area */
  2119. data_end = leaf_data_end(root, right);
  2120. memmove_extent_buffer(right,
  2121. btrfs_leaf_data(right) + data_end - push_space,
  2122. btrfs_leaf_data(right) + data_end,
  2123. BTRFS_LEAF_DATA_SIZE(root) - data_end);
  2124. /* copy from the left data area */
  2125. copy_extent_buffer(right, left, btrfs_leaf_data(right) +
  2126. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  2127. btrfs_leaf_data(left) + leaf_data_end(root, left),
  2128. push_space);
  2129. memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
  2130. btrfs_item_nr_offset(0),
  2131. right_nritems * sizeof(struct btrfs_item));
  2132. /* copy the items from left to right */
  2133. copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
  2134. btrfs_item_nr_offset(left_nritems - push_items),
  2135. push_items * sizeof(struct btrfs_item));
  2136. /* update the item pointers */
  2137. right_nritems += push_items;
  2138. btrfs_set_header_nritems(right, right_nritems);
  2139. push_space = BTRFS_LEAF_DATA_SIZE(root);
  2140. for (i = 0; i < right_nritems; i++) {
  2141. item = btrfs_item_nr(right, i);
  2142. if (!right->map_token) {
  2143. map_extent_buffer(right, (unsigned long)item,
  2144. sizeof(struct btrfs_item),
  2145. &right->map_token, &right->kaddr,
  2146. &right->map_start, &right->map_len,
  2147. KM_USER1);
  2148. }
  2149. push_space -= btrfs_item_size(right, item);
  2150. btrfs_set_item_offset(right, item, push_space);
  2151. }
  2152. if (right->map_token) {
  2153. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2154. right->map_token = NULL;
  2155. }
  2156. left_nritems -= push_items;
  2157. btrfs_set_header_nritems(left, left_nritems);
  2158. if (left_nritems)
  2159. btrfs_mark_buffer_dirty(left);
  2160. btrfs_mark_buffer_dirty(right);
  2161. btrfs_item_key(right, &disk_key, 0);
  2162. btrfs_set_node_key(upper, &disk_key, slot + 1);
  2163. btrfs_mark_buffer_dirty(upper);
  2164. /* then fixup the leaf pointer in the path */
  2165. if (path->slots[0] >= left_nritems) {
  2166. path->slots[0] -= left_nritems;
  2167. if (btrfs_header_nritems(path->nodes[0]) == 0)
  2168. clean_tree_block(trans, root, path->nodes[0]);
  2169. btrfs_tree_unlock(path->nodes[0]);
  2170. free_extent_buffer(path->nodes[0]);
  2171. path->nodes[0] = right;
  2172. path->slots[1] += 1;
  2173. } else {
  2174. btrfs_tree_unlock(right);
  2175. free_extent_buffer(right);
  2176. }
  2177. return 0;
  2178. out_unlock:
  2179. btrfs_tree_unlock(right);
  2180. free_extent_buffer(right);
  2181. return 1;
  2182. }
  2183. /*
  2184. * push some data in the path leaf to the right, trying to free up at
  2185. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  2186. *
  2187. * returns 1 if the push failed because the other node didn't have enough
  2188. * room, 0 if everything worked out and < 0 if there were major errors.
  2189. */
  2190. static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
  2191. *root, struct btrfs_path *path, int data_size,
  2192. int empty)
  2193. {
  2194. struct extent_buffer *left = path->nodes[0];
  2195. struct extent_buffer *right;
  2196. struct extent_buffer *upper;
  2197. int slot;
  2198. int free_space;
  2199. u32 left_nritems;
  2200. int ret;
  2201. if (!path->nodes[1])
  2202. return 1;
  2203. slot = path->slots[1];
  2204. upper = path->nodes[1];
  2205. if (slot >= btrfs_header_nritems(upper) - 1)
  2206. return 1;
  2207. btrfs_assert_tree_locked(path->nodes[1]);
  2208. right = read_node_slot(root, upper, slot + 1);
  2209. btrfs_tree_lock(right);
  2210. btrfs_set_lock_blocking(right);
  2211. free_space = btrfs_leaf_free_space(root, right);
  2212. if (free_space < data_size)
  2213. goto out_unlock;
  2214. /* cow and double check */
  2215. ret = btrfs_cow_block(trans, root, right, upper,
  2216. slot + 1, &right);
  2217. if (ret)
  2218. goto out_unlock;
  2219. free_space = btrfs_leaf_free_space(root, right);
  2220. if (free_space < data_size)
  2221. goto out_unlock;
  2222. left_nritems = btrfs_header_nritems(left);
  2223. if (left_nritems == 0)
  2224. goto out_unlock;
  2225. return __push_leaf_right(trans, root, path, data_size, empty,
  2226. right, free_space, left_nritems);
  2227. out_unlock:
  2228. btrfs_tree_unlock(right);
  2229. free_extent_buffer(right);
  2230. return 1;
  2231. }
  2232. /*
  2233. * push some data in the path leaf to the left, trying to free up at
  2234. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  2235. */
  2236. static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
  2237. struct btrfs_root *root,
  2238. struct btrfs_path *path, int data_size,
  2239. int empty, struct extent_buffer *left,
  2240. int free_space, int right_nritems)
  2241. {
  2242. struct btrfs_disk_key disk_key;
  2243. struct extent_buffer *right = path->nodes[0];
  2244. int slot;
  2245. int i;
  2246. int push_space = 0;
  2247. int push_items = 0;
  2248. struct btrfs_item *item;
  2249. u32 old_left_nritems;
  2250. u32 nr;
  2251. int ret = 0;
  2252. int wret;
  2253. u32 this_item_size;
  2254. u32 old_left_item_size;
  2255. slot = path->slots[1];
  2256. if (empty)
  2257. nr = right_nritems;
  2258. else
  2259. nr = right_nritems - 1;
  2260. for (i = 0; i < nr; i++) {
  2261. item = btrfs_item_nr(right, i);
  2262. if (!right->map_token) {
  2263. map_extent_buffer(right, (unsigned long)item,
  2264. sizeof(struct btrfs_item),
  2265. &right->map_token, &right->kaddr,
  2266. &right->map_start, &right->map_len,
  2267. KM_USER1);
  2268. }
  2269. if (!empty && push_items > 0) {
  2270. if (path->slots[0] < i)
  2271. break;
  2272. if (path->slots[0] == i) {
  2273. int space = btrfs_leaf_free_space(root, right);
  2274. if (space + push_space * 2 > free_space)
  2275. break;
  2276. }
  2277. }
  2278. if (path->slots[0] == i)
  2279. push_space += data_size;
  2280. this_item_size = btrfs_item_size(right, item);
  2281. if (this_item_size + sizeof(*item) + push_space > free_space)
  2282. break;
  2283. push_items++;
  2284. push_space += this_item_size + sizeof(*item);
  2285. }
  2286. if (right->map_token) {
  2287. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2288. right->map_token = NULL;
  2289. }
  2290. if (push_items == 0) {
  2291. ret = 1;
  2292. goto out;
  2293. }
  2294. if (!empty && push_items == btrfs_header_nritems(right))
  2295. WARN_ON(1);
  2296. /* push data from right to left */
  2297. copy_extent_buffer(left, right,
  2298. btrfs_item_nr_offset(btrfs_header_nritems(left)),
  2299. btrfs_item_nr_offset(0),
  2300. push_items * sizeof(struct btrfs_item));
  2301. push_space = BTRFS_LEAF_DATA_SIZE(root) -
  2302. btrfs_item_offset_nr(right, push_items - 1);
  2303. copy_extent_buffer(left, right, btrfs_leaf_data(left) +
  2304. leaf_data_end(root, left) - push_space,
  2305. btrfs_leaf_data(right) +
  2306. btrfs_item_offset_nr(right, push_items - 1),
  2307. push_space);
  2308. old_left_nritems = btrfs_header_nritems(left);
  2309. BUG_ON(old_left_nritems <= 0);
  2310. old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
  2311. for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
  2312. u32 ioff;
  2313. item = btrfs_item_nr(left, i);
  2314. if (!left->map_token) {
  2315. map_extent_buffer(left, (unsigned long)item,
  2316. sizeof(struct btrfs_item),
  2317. &left->map_token, &left->kaddr,
  2318. &left->map_start, &left->map_len,
  2319. KM_USER1);
  2320. }
  2321. ioff = btrfs_item_offset(left, item);
  2322. btrfs_set_item_offset(left, item,
  2323. ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size));
  2324. }
  2325. btrfs_set_header_nritems(left, old_left_nritems + push_items);
  2326. if (left->map_token) {
  2327. unmap_extent_buffer(left, left->map_token, KM_USER1);
  2328. left->map_token = NULL;
  2329. }
  2330. /* fixup right node */
  2331. if (push_items > right_nritems) {
  2332. printk(KERN_CRIT "push items %d nr %u\n", push_items,
  2333. right_nritems);
  2334. WARN_ON(1);
  2335. }
  2336. if (push_items < right_nritems) {
  2337. push_space = btrfs_item_offset_nr(right, push_items - 1) -
  2338. leaf_data_end(root, right);
  2339. memmove_extent_buffer(right, btrfs_leaf_data(right) +
  2340. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  2341. btrfs_leaf_data(right) +
  2342. leaf_data_end(root, right), push_space);
  2343. memmove_extent_buffer(right, btrfs_item_nr_offset(0),
  2344. btrfs_item_nr_offset(push_items),
  2345. (btrfs_header_nritems(right) - push_items) *
  2346. sizeof(struct btrfs_item));
  2347. }
  2348. right_nritems -= push_items;
  2349. btrfs_set_header_nritems(right, right_nritems);
  2350. push_space = BTRFS_LEAF_DATA_SIZE(root);
  2351. for (i = 0; i < right_nritems; i++) {
  2352. item = btrfs_item_nr(right, i);
  2353. if (!right->map_token) {
  2354. map_extent_buffer(right, (unsigned long)item,
  2355. sizeof(struct btrfs_item),
  2356. &right->map_token, &right->kaddr,
  2357. &right->map_start, &right->map_len,
  2358. KM_USER1);
  2359. }
  2360. push_space = push_space - btrfs_item_size(right, item);
  2361. btrfs_set_item_offset(right, item, push_space);
  2362. }
  2363. if (right->map_token) {
  2364. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2365. right->map_token = NULL;
  2366. }
  2367. btrfs_mark_buffer_dirty(left);
  2368. if (right_nritems)
  2369. btrfs_mark_buffer_dirty(right);
  2370. btrfs_item_key(right, &disk_key, 0);
  2371. wret = fixup_low_keys(trans, root, path, &disk_key, 1);
  2372. if (wret)
  2373. ret = wret;
  2374. /* then fixup the leaf pointer in the path */
  2375. if (path->slots[0] < push_items) {
  2376. path->slots[0] += old_left_nritems;
  2377. if (btrfs_header_nritems(path->nodes[0]) == 0)
  2378. clean_tree_block(trans, root, path->nodes[0]);
  2379. btrfs_tree_unlock(path->nodes[0]);
  2380. free_extent_buffer(path->nodes[0]);
  2381. path->nodes[0] = left;
  2382. path->slots[1] -= 1;
  2383. } else {
  2384. btrfs_tree_unlock(left);
  2385. free_extent_buffer(left);
  2386. path->slots[0] -= push_items;
  2387. }
  2388. BUG_ON(path->slots[0] < 0);
  2389. return ret;
  2390. out:
  2391. btrfs_tree_unlock(left);
  2392. free_extent_buffer(left);
  2393. return ret;
  2394. }
  2395. /*
  2396. * push some data in the path leaf to the left, trying to free up at
  2397. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  2398. */
  2399. static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
  2400. *root, struct btrfs_path *path, int data_size,
  2401. int empty)
  2402. {
  2403. struct extent_buffer *right = path->nodes[0];
  2404. struct extent_buffer *left;
  2405. int slot;
  2406. int free_space;
  2407. u32 right_nritems;
  2408. int ret = 0;
  2409. slot = path->slots[1];
  2410. if (slot == 0)
  2411. return 1;
  2412. if (!path->nodes[1])
  2413. return 1;
  2414. right_nritems = btrfs_header_nritems(right);
  2415. if (right_nritems == 0)
  2416. return 1;
  2417. btrfs_assert_tree_locked(path->nodes[1]);
  2418. left = read_node_slot(root, path->nodes[1], slot - 1);
  2419. btrfs_tree_lock(left);
  2420. btrfs_set_lock_blocking(left);
  2421. free_space = btrfs_leaf_free_space(root, left);
  2422. if (free_space < data_size) {
  2423. ret = 1;
  2424. goto out;
  2425. }
  2426. /* cow and double check */
  2427. ret = btrfs_cow_block(trans, root, left,
  2428. path->nodes[1], slot - 1, &left);
  2429. if (ret) {
  2430. /* we hit -ENOSPC, but it isn't fatal here */
  2431. ret = 1;
  2432. goto out;
  2433. }
  2434. free_space = btrfs_leaf_free_space(root, left);
  2435. if (free_space < data_size) {
  2436. ret = 1;
  2437. goto out;
  2438. }
  2439. return __push_leaf_left(trans, root, path, data_size,
  2440. empty, left, free_space, right_nritems);
  2441. out:
  2442. btrfs_tree_unlock(left);
  2443. free_extent_buffer(left);
  2444. return ret;
  2445. }
  2446. /*
  2447. * split the path's leaf in two, making sure there is at least data_size
  2448. * available for the resulting leaf level of the path.
  2449. *
  2450. * returns 0 if all went well and < 0 on failure.
  2451. */
  2452. static noinline int copy_for_split(struct btrfs_trans_handle *trans,
  2453. struct btrfs_root *root,
  2454. struct btrfs_path *path,
  2455. struct extent_buffer *l,
  2456. struct extent_buffer *right,
  2457. int slot, int mid, int nritems)
  2458. {
  2459. int data_copy_size;
  2460. int rt_data_off;
  2461. int i;
  2462. int ret = 0;
  2463. int wret;
  2464. struct btrfs_disk_key disk_key;
  2465. nritems = nritems - mid;
  2466. btrfs_set_header_nritems(right, nritems);
  2467. data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
  2468. copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
  2469. btrfs_item_nr_offset(mid),
  2470. nritems * sizeof(struct btrfs_item));
  2471. copy_extent_buffer(right, l,
  2472. btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
  2473. data_copy_size, btrfs_leaf_data(l) +
  2474. leaf_data_end(root, l), data_copy_size);
  2475. rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
  2476. btrfs_item_end_nr(l, mid);
  2477. for (i = 0; i < nritems; i++) {
  2478. struct btrfs_item *item = btrfs_item_nr(right, i);
  2479. u32 ioff;
  2480. if (!right->map_token) {
  2481. map_extent_buffer(right, (unsigned long)item,
  2482. sizeof(struct btrfs_item),
  2483. &right->map_token, &right->kaddr,
  2484. &right->map_start, &right->map_len,
  2485. KM_USER1);
  2486. }
  2487. ioff = btrfs_item_offset(right, item);
  2488. btrfs_set_item_offset(right, item, ioff + rt_data_off);
  2489. }
  2490. if (right->map_token) {
  2491. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2492. right->map_token = NULL;
  2493. }
  2494. btrfs_set_header_nritems(l, mid);
  2495. ret = 0;
  2496. btrfs_item_key(right, &disk_key, 0);
  2497. wret = insert_ptr(trans, root, path, &disk_key, right->start,
  2498. path->slots[1] + 1, 1);
  2499. if (wret)
  2500. ret = wret;
  2501. btrfs_mark_buffer_dirty(right);
  2502. btrfs_mark_buffer_dirty(l);
  2503. BUG_ON(path->slots[0] != slot);
  2504. if (mid <= slot) {
  2505. btrfs_tree_unlock(path->nodes[0]);
  2506. free_extent_buffer(path->nodes[0]);
  2507. path->nodes[0] = right;
  2508. path->slots[0] -= mid;
  2509. path->slots[1] += 1;
  2510. } else {
  2511. btrfs_tree_unlock(right);
  2512. free_extent_buffer(right);
  2513. }
  2514. BUG_ON(path->slots[0] < 0);
  2515. return ret;
  2516. }
  2517. /*
  2518. * split the path's leaf in two, making sure there is at least data_size
  2519. * available for the resulting leaf level of the path.
  2520. *
  2521. * returns 0 if all went well and < 0 on failure.
  2522. */
  2523. static noinline int split_leaf(struct btrfs_trans_handle *trans,
  2524. struct btrfs_root *root,
  2525. struct btrfs_key *ins_key,
  2526. struct btrfs_path *path, int data_size,
  2527. int extend)
  2528. {
  2529. struct btrfs_disk_key disk_key;
  2530. struct extent_buffer *l;
  2531. u32 nritems;
  2532. int mid;
  2533. int slot;
  2534. struct extent_buffer *right;
  2535. int ret = 0;
  2536. int wret;
  2537. int split;
  2538. int num_doubles = 0;
  2539. l = path->nodes[0];
  2540. slot = path->slots[0];
  2541. if (extend && data_size + btrfs_item_size_nr(l, slot) +
  2542. sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
  2543. return -EOVERFLOW;
  2544. /* first try to make some room by pushing left and right */
  2545. if (data_size && ins_key->type != BTRFS_DIR_ITEM_KEY) {
  2546. wret = push_leaf_right(trans, root, path, data_size, 0);
  2547. if (wret < 0)
  2548. return wret;
  2549. if (wret) {
  2550. wret = push_leaf_left(trans, root, path, data_size, 0);
  2551. if (wret < 0)
  2552. return wret;
  2553. }
  2554. l = path->nodes[0];
  2555. /* did the pushes work? */
  2556. if (btrfs_leaf_free_space(root, l) >= data_size)
  2557. return 0;
  2558. }
  2559. if (!path->nodes[1]) {
  2560. ret = insert_new_root(trans, root, path, 1);
  2561. if (ret)
  2562. return ret;
  2563. }
  2564. again:
  2565. split = 1;
  2566. l = path->nodes[0];
  2567. slot = path->slots[0];
  2568. nritems = btrfs_header_nritems(l);
  2569. mid = (nritems + 1) / 2;
  2570. if (mid <= slot) {
  2571. if (nritems == 1 ||
  2572. leaf_space_used(l, mid, nritems - mid) + data_size >
  2573. BTRFS_LEAF_DATA_SIZE(root)) {
  2574. if (slot >= nritems) {
  2575. split = 0;
  2576. } else {
  2577. mid = slot;
  2578. if (mid != nritems &&
  2579. leaf_space_used(l, mid, nritems - mid) +
  2580. data_size > BTRFS_LEAF_DATA_SIZE(root)) {
  2581. split = 2;
  2582. }
  2583. }
  2584. }
  2585. } else {
  2586. if (leaf_space_used(l, 0, mid) + data_size >
  2587. BTRFS_LEAF_DATA_SIZE(root)) {
  2588. if (!extend && data_size && slot == 0) {
  2589. split = 0;
  2590. } else if ((extend || !data_size) && slot == 0) {
  2591. mid = 1;
  2592. } else {
  2593. mid = slot;
  2594. if (mid != nritems &&
  2595. leaf_space_used(l, mid, nritems - mid) +
  2596. data_size > BTRFS_LEAF_DATA_SIZE(root)) {
  2597. split = 2 ;
  2598. }
  2599. }
  2600. }
  2601. }
  2602. if (split == 0)
  2603. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  2604. else
  2605. btrfs_item_key(l, &disk_key, mid);
  2606. right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
  2607. root->root_key.objectid,
  2608. &disk_key, 0, l->start, 0);
  2609. if (IS_ERR(right)) {
  2610. BUG_ON(1);
  2611. return PTR_ERR(right);
  2612. }
  2613. memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
  2614. btrfs_set_header_bytenr(right, right->start);
  2615. btrfs_set_header_generation(right, trans->transid);
  2616. btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
  2617. btrfs_set_header_owner(right, root->root_key.objectid);
  2618. btrfs_set_header_level(right, 0);
  2619. write_extent_buffer(right, root->fs_info->fsid,
  2620. (unsigned long)btrfs_header_fsid(right),
  2621. BTRFS_FSID_SIZE);
  2622. write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
  2623. (unsigned long)btrfs_header_chunk_tree_uuid(right),
  2624. BTRFS_UUID_SIZE);
  2625. if (split == 0) {
  2626. if (mid <= slot) {
  2627. btrfs_set_header_nritems(right, 0);
  2628. wret = insert_ptr(trans, root, path,
  2629. &disk_key, right->start,
  2630. path->slots[1] + 1, 1);
  2631. if (wret)
  2632. ret = wret;
  2633. btrfs_tree_unlock(path->nodes[0]);
  2634. free_extent_buffer(path->nodes[0]);
  2635. path->nodes[0] = right;
  2636. path->slots[0] = 0;
  2637. path->slots[1] += 1;
  2638. } else {
  2639. btrfs_set_header_nritems(right, 0);
  2640. wret = insert_ptr(trans, root, path,
  2641. &disk_key,
  2642. right->start,
  2643. path->slots[1], 1);
  2644. if (wret)
  2645. ret = wret;
  2646. btrfs_tree_unlock(path->nodes[0]);
  2647. free_extent_buffer(path->nodes[0]);
  2648. path->nodes[0] = right;
  2649. path->slots[0] = 0;
  2650. if (path->slots[1] == 0) {
  2651. wret = fixup_low_keys(trans, root,
  2652. path, &disk_key, 1);
  2653. if (wret)
  2654. ret = wret;
  2655. }
  2656. }
  2657. btrfs_mark_buffer_dirty(right);
  2658. return ret;
  2659. }
  2660. ret = copy_for_split(trans, root, path, l, right, slot, mid, nritems);
  2661. BUG_ON(ret);
  2662. if (split == 2) {
  2663. BUG_ON(num_doubles != 0);
  2664. num_doubles++;
  2665. goto again;
  2666. }
  2667. return ret;
  2668. }
  2669. static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
  2670. struct btrfs_root *root,
  2671. struct btrfs_path *path, int ins_len)
  2672. {
  2673. struct btrfs_key key;
  2674. struct extent_buffer *leaf;
  2675. struct btrfs_file_extent_item *fi;
  2676. u64 extent_len = 0;
  2677. u32 item_size;
  2678. int ret;
  2679. leaf = path->nodes[0];
  2680. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  2681. BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
  2682. key.type != BTRFS_EXTENT_CSUM_KEY);
  2683. if (btrfs_leaf_free_space(root, leaf) >= ins_len)
  2684. return 0;
  2685. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  2686. if (key.type == BTRFS_EXTENT_DATA_KEY) {
  2687. fi = btrfs_item_ptr(leaf, path->slots[0],
  2688. struct btrfs_file_extent_item);
  2689. extent_len = btrfs_file_extent_num_bytes(leaf, fi);
  2690. }
  2691. btrfs_release_path(root, path);
  2692. path->keep_locks = 1;
  2693. path->search_for_split = 1;
  2694. ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
  2695. path->search_for_split = 0;
  2696. if (ret < 0)
  2697. goto err;
  2698. ret = -EAGAIN;
  2699. leaf = path->nodes[0];
  2700. /* if our item isn't there or got smaller, return now */
  2701. if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
  2702. goto err;
  2703. if (key.type == BTRFS_EXTENT_DATA_KEY) {
  2704. fi = btrfs_item_ptr(leaf, path->slots[0],
  2705. struct btrfs_file_extent_item);
  2706. if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
  2707. goto err;
  2708. }
  2709. btrfs_set_path_blocking(path);
  2710. ret = split_leaf(trans, root, &key, path, ins_len, 1);
  2711. BUG_ON(ret);
  2712. path->keep_locks = 0;
  2713. btrfs_unlock_up_safe(path, 1);
  2714. return 0;
  2715. err:
  2716. path->keep_locks = 0;
  2717. return ret;
  2718. }
  2719. static noinline int split_item(struct btrfs_trans_handle *trans,
  2720. struct btrfs_root *root,
  2721. struct btrfs_path *path,
  2722. struct btrfs_key *new_key,
  2723. unsigned long split_offset)
  2724. {
  2725. struct extent_buffer *leaf;
  2726. struct btrfs_item *item;
  2727. struct btrfs_item *new_item;
  2728. int slot;
  2729. char *buf;
  2730. u32 nritems;
  2731. u32 item_size;
  2732. u32 orig_offset;
  2733. struct btrfs_disk_key disk_key;
  2734. leaf = path->nodes[0];
  2735. BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
  2736. btrfs_set_path_blocking(path);
  2737. item = btrfs_item_nr(leaf, path->slots[0]);
  2738. orig_offset = btrfs_item_offset(leaf, item);
  2739. item_size = btrfs_item_size(leaf, item);
  2740. buf = kmalloc(item_size, GFP_NOFS);
  2741. if (!buf)
  2742. return -ENOMEM;
  2743. read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
  2744. path->slots[0]), item_size);
  2745. slot = path->slots[0] + 1;
  2746. nritems = btrfs_header_nritems(leaf);
  2747. if (slot != nritems) {
  2748. /* shift the items */
  2749. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
  2750. btrfs_item_nr_offset(slot),
  2751. (nritems - slot) * sizeof(struct btrfs_item));
  2752. }
  2753. btrfs_cpu_key_to_disk(&disk_key, new_key);
  2754. btrfs_set_item_key(leaf, &disk_key, slot);
  2755. new_item = btrfs_item_nr(leaf, slot);
  2756. btrfs_set_item_offset(leaf, new_item, orig_offset);
  2757. btrfs_set_item_size(leaf, new_item, item_size - split_offset);
  2758. btrfs_set_item_offset(leaf, item,
  2759. orig_offset + item_size - split_offset);
  2760. btrfs_set_item_size(leaf, item, split_offset);
  2761. btrfs_set_header_nritems(leaf, nritems + 1);
  2762. /* write the data for the start of the original item */
  2763. write_extent_buffer(leaf, buf,
  2764. btrfs_item_ptr_offset(leaf, path->slots[0]),
  2765. split_offset);
  2766. /* write the data for the new item */
  2767. write_extent_buffer(leaf, buf + split_offset,
  2768. btrfs_item_ptr_offset(leaf, slot),
  2769. item_size - split_offset);
  2770. btrfs_mark_buffer_dirty(leaf);
  2771. BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
  2772. kfree(buf);
  2773. return 0;
  2774. }
  2775. /*
  2776. * This function splits a single item into two items,
  2777. * giving 'new_key' to the new item and splitting the
  2778. * old one at split_offset (from the start of the item).
  2779. *
  2780. * The path may be released by this operation. After
  2781. * the split, the path is pointing to the old item. The
  2782. * new item is going to be in the same node as the old one.
  2783. *
  2784. * Note, the item being split must be smaller enough to live alone on
  2785. * a tree block with room for one extra struct btrfs_item
  2786. *
  2787. * This allows us to split the item in place, keeping a lock on the
  2788. * leaf the entire time.
  2789. */
  2790. int btrfs_split_item(struct btrfs_trans_handle *trans,
  2791. struct btrfs_root *root,
  2792. struct btrfs_path *path,
  2793. struct btrfs_key *new_key,
  2794. unsigned long split_offset)
  2795. {
  2796. int ret;
  2797. ret = setup_leaf_for_split(trans, root, path,
  2798. sizeof(struct btrfs_item));
  2799. if (ret)
  2800. return ret;
  2801. ret = split_item(trans, root, path, new_key, split_offset);
  2802. return ret;
  2803. }
  2804. /*
  2805. * This function duplicate a item, giving 'new_key' to the new item.
  2806. * It guarantees both items live in the same tree leaf and the new item
  2807. * is contiguous with the original item.
  2808. *
  2809. * This allows us to split file extent in place, keeping a lock on the
  2810. * leaf the entire time.
  2811. */
  2812. int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
  2813. struct btrfs_root *root,
  2814. struct btrfs_path *path,
  2815. struct btrfs_key *new_key)
  2816. {
  2817. struct extent_buffer *leaf;
  2818. int ret;
  2819. u32 item_size;
  2820. leaf = path->nodes[0];
  2821. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  2822. ret = setup_leaf_for_split(trans, root, path,
  2823. item_size + sizeof(struct btrfs_item));
  2824. if (ret)
  2825. return ret;
  2826. path->slots[0]++;
  2827. ret = setup_items_for_insert(trans, root, path, new_key, &item_size,
  2828. item_size, item_size +
  2829. sizeof(struct btrfs_item), 1);
  2830. BUG_ON(ret);
  2831. leaf = path->nodes[0];
  2832. memcpy_extent_buffer(leaf,
  2833. btrfs_item_ptr_offset(leaf, path->slots[0]),
  2834. btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
  2835. item_size);
  2836. return 0;
  2837. }
  2838. /*
  2839. * make the item pointed to by the path smaller. new_size indicates
  2840. * how small to make it, and from_end tells us if we just chop bytes
  2841. * off the end of the item or if we shift the item to chop bytes off
  2842. * the front.
  2843. */
  2844. int btrfs_truncate_item(struct btrfs_trans_handle *trans,
  2845. struct btrfs_root *root,
  2846. struct btrfs_path *path,
  2847. u32 new_size, int from_end)
  2848. {
  2849. int ret = 0;
  2850. int slot;
  2851. int slot_orig;
  2852. struct extent_buffer *leaf;
  2853. struct btrfs_item *item;
  2854. u32 nritems;
  2855. unsigned int data_end;
  2856. unsigned int old_data_start;
  2857. unsigned int old_size;
  2858. unsigned int size_diff;
  2859. int i;
  2860. slot_orig = path->slots[0];
  2861. leaf = path->nodes[0];
  2862. slot = path->slots[0];
  2863. old_size = btrfs_item_size_nr(leaf, slot);
  2864. if (old_size == new_size)
  2865. return 0;
  2866. nritems = btrfs_header_nritems(leaf);
  2867. data_end = leaf_data_end(root, leaf);
  2868. old_data_start = btrfs_item_offset_nr(leaf, slot);
  2869. size_diff = old_size - new_size;
  2870. BUG_ON(slot < 0);
  2871. BUG_ON(slot >= nritems);
  2872. /*
  2873. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  2874. */
  2875. /* first correct the data pointers */
  2876. for (i = slot; i < nritems; i++) {
  2877. u32 ioff;
  2878. item = btrfs_item_nr(leaf, i);
  2879. if (!leaf->map_token) {
  2880. map_extent_buffer(leaf, (unsigned long)item,
  2881. sizeof(struct btrfs_item),
  2882. &leaf->map_token, &leaf->kaddr,
  2883. &leaf->map_start, &leaf->map_len,
  2884. KM_USER1);
  2885. }
  2886. ioff = btrfs_item_offset(leaf, item);
  2887. btrfs_set_item_offset(leaf, item, ioff + size_diff);
  2888. }
  2889. if (leaf->map_token) {
  2890. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  2891. leaf->map_token = NULL;
  2892. }
  2893. /* shift the data */
  2894. if (from_end) {
  2895. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2896. data_end + size_diff, btrfs_leaf_data(leaf) +
  2897. data_end, old_data_start + new_size - data_end);
  2898. } else {
  2899. struct btrfs_disk_key disk_key;
  2900. u64 offset;
  2901. btrfs_item_key(leaf, &disk_key, slot);
  2902. if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
  2903. unsigned long ptr;
  2904. struct btrfs_file_extent_item *fi;
  2905. fi = btrfs_item_ptr(leaf, slot,
  2906. struct btrfs_file_extent_item);
  2907. fi = (struct btrfs_file_extent_item *)(
  2908. (unsigned long)fi - size_diff);
  2909. if (btrfs_file_extent_type(leaf, fi) ==
  2910. BTRFS_FILE_EXTENT_INLINE) {
  2911. ptr = btrfs_item_ptr_offset(leaf, slot);
  2912. memmove_extent_buffer(leaf, ptr,
  2913. (unsigned long)fi,
  2914. offsetof(struct btrfs_file_extent_item,
  2915. disk_bytenr));
  2916. }
  2917. }
  2918. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2919. data_end + size_diff, btrfs_leaf_data(leaf) +
  2920. data_end, old_data_start - data_end);
  2921. offset = btrfs_disk_key_offset(&disk_key);
  2922. btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
  2923. btrfs_set_item_key(leaf, &disk_key, slot);
  2924. if (slot == 0)
  2925. fixup_low_keys(trans, root, path, &disk_key, 1);
  2926. }
  2927. item = btrfs_item_nr(leaf, slot);
  2928. btrfs_set_item_size(leaf, item, new_size);
  2929. btrfs_mark_buffer_dirty(leaf);
  2930. ret = 0;
  2931. if (btrfs_leaf_free_space(root, leaf) < 0) {
  2932. btrfs_print_leaf(root, leaf);
  2933. BUG();
  2934. }
  2935. return ret;
  2936. }
  2937. /*
  2938. * make the item pointed to by the path bigger, data_size is the new size.
  2939. */
  2940. int btrfs_extend_item(struct btrfs_trans_handle *trans,
  2941. struct btrfs_root *root, struct btrfs_path *path,
  2942. u32 data_size)
  2943. {
  2944. int ret = 0;
  2945. int slot;
  2946. int slot_orig;
  2947. struct extent_buffer *leaf;
  2948. struct btrfs_item *item;
  2949. u32 nritems;
  2950. unsigned int data_end;
  2951. unsigned int old_data;
  2952. unsigned int old_size;
  2953. int i;
  2954. slot_orig = path->slots[0];
  2955. leaf = path->nodes[0];
  2956. nritems = btrfs_header_nritems(leaf);
  2957. data_end = leaf_data_end(root, leaf);
  2958. if (btrfs_leaf_free_space(root, leaf) < data_size) {
  2959. btrfs_print_leaf(root, leaf);
  2960. BUG();
  2961. }
  2962. slot = path->slots[0];
  2963. old_data = btrfs_item_end_nr(leaf, slot);
  2964. BUG_ON(slot < 0);
  2965. if (slot >= nritems) {
  2966. btrfs_print_leaf(root, leaf);
  2967. printk(KERN_CRIT "slot %d too large, nritems %d\n",
  2968. slot, nritems);
  2969. BUG_ON(1);
  2970. }
  2971. /*
  2972. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  2973. */
  2974. /* first correct the data pointers */
  2975. for (i = slot; i < nritems; i++) {
  2976. u32 ioff;
  2977. item = btrfs_item_nr(leaf, i);
  2978. if (!leaf->map_token) {
  2979. map_extent_buffer(leaf, (unsigned long)item,
  2980. sizeof(struct btrfs_item),
  2981. &leaf->map_token, &leaf->kaddr,
  2982. &leaf->map_start, &leaf->map_len,
  2983. KM_USER1);
  2984. }
  2985. ioff = btrfs_item_offset(leaf, item);
  2986. btrfs_set_item_offset(leaf, item, ioff - data_size);
  2987. }
  2988. if (leaf->map_token) {
  2989. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  2990. leaf->map_token = NULL;
  2991. }
  2992. /* shift the data */
  2993. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2994. data_end - data_size, btrfs_leaf_data(leaf) +
  2995. data_end, old_data - data_end);
  2996. data_end = old_data;
  2997. old_size = btrfs_item_size_nr(leaf, slot);
  2998. item = btrfs_item_nr(leaf, slot);
  2999. btrfs_set_item_size(leaf, item, old_size + data_size);
  3000. btrfs_mark_buffer_dirty(leaf);
  3001. ret = 0;
  3002. if (btrfs_leaf_free_space(root, leaf) < 0) {
  3003. btrfs_print_leaf(root, leaf);
  3004. BUG();
  3005. }
  3006. return ret;
  3007. }
  3008. /*
  3009. * Given a key and some data, insert items into the tree.
  3010. * This does all the path init required, making room in the tree if needed.
  3011. * Returns the number of keys that were inserted.
  3012. */
  3013. int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
  3014. struct btrfs_root *root,
  3015. struct btrfs_path *path,
  3016. struct btrfs_key *cpu_key, u32 *data_size,
  3017. int nr)
  3018. {
  3019. struct extent_buffer *leaf;
  3020. struct btrfs_item *item;
  3021. int ret = 0;
  3022. int slot;
  3023. int i;
  3024. u32 nritems;
  3025. u32 total_data = 0;
  3026. u32 total_size = 0;
  3027. unsigned int data_end;
  3028. struct btrfs_disk_key disk_key;
  3029. struct btrfs_key found_key;
  3030. for (i = 0; i < nr; i++) {
  3031. if (total_size + data_size[i] + sizeof(struct btrfs_item) >
  3032. BTRFS_LEAF_DATA_SIZE(root)) {
  3033. break;
  3034. nr = i;
  3035. }
  3036. total_data += data_size[i];
  3037. total_size += data_size[i] + sizeof(struct btrfs_item);
  3038. }
  3039. BUG_ON(nr == 0);
  3040. ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
  3041. if (ret == 0)
  3042. return -EEXIST;
  3043. if (ret < 0)
  3044. goto out;
  3045. leaf = path->nodes[0];
  3046. nritems = btrfs_header_nritems(leaf);
  3047. data_end = leaf_data_end(root, leaf);
  3048. if (btrfs_leaf_free_space(root, leaf) < total_size) {
  3049. for (i = nr; i >= 0; i--) {
  3050. total_data -= data_size[i];
  3051. total_size -= data_size[i] + sizeof(struct btrfs_item);
  3052. if (total_size < btrfs_leaf_free_space(root, leaf))
  3053. break;
  3054. }
  3055. nr = i;
  3056. }
  3057. slot = path->slots[0];
  3058. BUG_ON(slot < 0);
  3059. if (slot != nritems) {
  3060. unsigned int old_data = btrfs_item_end_nr(leaf, slot);
  3061. item = btrfs_item_nr(leaf, slot);
  3062. btrfs_item_key_to_cpu(leaf, &found_key, slot);
  3063. /* figure out how many keys we can insert in here */
  3064. total_data = data_size[0];
  3065. for (i = 1; i < nr; i++) {
  3066. if (btrfs_comp_cpu_keys(&found_key, cpu_key + i) <= 0)
  3067. break;
  3068. total_data += data_size[i];
  3069. }
  3070. nr = i;
  3071. if (old_data < data_end) {
  3072. btrfs_print_leaf(root, leaf);
  3073. printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
  3074. slot, old_data, data_end);
  3075. BUG_ON(1);
  3076. }
  3077. /*
  3078. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  3079. */
  3080. /* first correct the data pointers */
  3081. WARN_ON(leaf->map_token);
  3082. for (i = slot; i < nritems; i++) {
  3083. u32 ioff;
  3084. item = btrfs_item_nr(leaf, i);
  3085. if (!leaf->map_token) {
  3086. map_extent_buffer(leaf, (unsigned long)item,
  3087. sizeof(struct btrfs_item),
  3088. &leaf->map_token, &leaf->kaddr,
  3089. &leaf->map_start, &leaf->map_len,
  3090. KM_USER1);
  3091. }
  3092. ioff = btrfs_item_offset(leaf, item);
  3093. btrfs_set_item_offset(leaf, item, ioff - total_data);
  3094. }
  3095. if (leaf->map_token) {
  3096. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  3097. leaf->map_token = NULL;
  3098. }
  3099. /* shift the items */
  3100. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
  3101. btrfs_item_nr_offset(slot),
  3102. (nritems - slot) * sizeof(struct btrfs_item));
  3103. /* shift the data */
  3104. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3105. data_end - total_data, btrfs_leaf_data(leaf) +
  3106. data_end, old_data - data_end);
  3107. data_end = old_data;
  3108. } else {
  3109. /*
  3110. * this sucks but it has to be done, if we are inserting at
  3111. * the end of the leaf only insert 1 of the items, since we
  3112. * have no way of knowing whats on the next leaf and we'd have
  3113. * to drop our current locks to figure it out
  3114. */
  3115. nr = 1;
  3116. }
  3117. /* setup the item for the new data */
  3118. for (i = 0; i < nr; i++) {
  3119. btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
  3120. btrfs_set_item_key(leaf, &disk_key, slot + i);
  3121. item = btrfs_item_nr(leaf, slot + i);
  3122. btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
  3123. data_end -= data_size[i];
  3124. btrfs_set_item_size(leaf, item, data_size[i]);
  3125. }
  3126. btrfs_set_header_nritems(leaf, nritems + nr);
  3127. btrfs_mark_buffer_dirty(leaf);
  3128. ret = 0;
  3129. if (slot == 0) {
  3130. btrfs_cpu_key_to_disk(&disk_key, cpu_key);
  3131. ret = fixup_low_keys(trans, root, path, &disk_key, 1);
  3132. }
  3133. if (btrfs_leaf_free_space(root, leaf) < 0) {
  3134. btrfs_print_leaf(root, leaf);
  3135. BUG();
  3136. }
  3137. out:
  3138. if (!ret)
  3139. ret = nr;
  3140. return ret;
  3141. }
  3142. /*
  3143. * this is a helper for btrfs_insert_empty_items, the main goal here is
  3144. * to save stack depth by doing the bulk of the work in a function
  3145. * that doesn't call btrfs_search_slot
  3146. */
  3147. static noinline_for_stack int
  3148. setup_items_for_insert(struct btrfs_trans_handle *trans,
  3149. struct btrfs_root *root, struct btrfs_path *path,
  3150. struct btrfs_key *cpu_key, u32 *data_size,
  3151. u32 total_data, u32 total_size, int nr)
  3152. {
  3153. struct btrfs_item *item;
  3154. int i;
  3155. u32 nritems;
  3156. unsigned int data_end;
  3157. struct btrfs_disk_key disk_key;
  3158. int ret;
  3159. struct extent_buffer *leaf;
  3160. int slot;
  3161. leaf = path->nodes[0];
  3162. slot = path->slots[0];
  3163. nritems = btrfs_header_nritems(leaf);
  3164. data_end = leaf_data_end(root, leaf);
  3165. if (btrfs_leaf_free_space(root, leaf) < total_size) {
  3166. btrfs_print_leaf(root, leaf);
  3167. printk(KERN_CRIT "not enough freespace need %u have %d\n",
  3168. total_size, btrfs_leaf_free_space(root, leaf));
  3169. BUG();
  3170. }
  3171. if (slot != nritems) {
  3172. unsigned int old_data = btrfs_item_end_nr(leaf, slot);
  3173. if (old_data < data_end) {
  3174. btrfs_print_leaf(root, leaf);
  3175. printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
  3176. slot, old_data, data_end);
  3177. BUG_ON(1);
  3178. }
  3179. /*
  3180. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  3181. */
  3182. /* first correct the data pointers */
  3183. WARN_ON(leaf->map_token);
  3184. for (i = slot; i < nritems; i++) {
  3185. u32 ioff;
  3186. item = btrfs_item_nr(leaf, i);
  3187. if (!leaf->map_token) {
  3188. map_extent_buffer(leaf, (unsigned long)item,
  3189. sizeof(struct btrfs_item),
  3190. &leaf->map_token, &leaf->kaddr,
  3191. &leaf->map_start, &leaf->map_len,
  3192. KM_USER1);
  3193. }
  3194. ioff = btrfs_item_offset(leaf, item);
  3195. btrfs_set_item_offset(leaf, item, ioff - total_data);
  3196. }
  3197. if (leaf->map_token) {
  3198. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  3199. leaf->map_token = NULL;
  3200. }
  3201. /* shift the items */
  3202. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
  3203. btrfs_item_nr_offset(slot),
  3204. (nritems - slot) * sizeof(struct btrfs_item));
  3205. /* shift the data */
  3206. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3207. data_end - total_data, btrfs_leaf_data(leaf) +
  3208. data_end, old_data - data_end);
  3209. data_end = old_data;
  3210. }
  3211. /* setup the item for the new data */
  3212. for (i = 0; i < nr; i++) {
  3213. btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
  3214. btrfs_set_item_key(leaf, &disk_key, slot + i);
  3215. item = btrfs_item_nr(leaf, slot + i);
  3216. btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
  3217. data_end -= data_size[i];
  3218. btrfs_set_item_size(leaf, item, data_size[i]);
  3219. }
  3220. btrfs_set_header_nritems(leaf, nritems + nr);
  3221. ret = 0;
  3222. if (slot == 0) {
  3223. struct btrfs_disk_key disk_key;
  3224. btrfs_cpu_key_to_disk(&disk_key, cpu_key);
  3225. ret = fixup_low_keys(trans, root, path, &disk_key, 1);
  3226. }
  3227. btrfs_unlock_up_safe(path, 1);
  3228. btrfs_mark_buffer_dirty(leaf);
  3229. if (btrfs_leaf_free_space(root, leaf) < 0) {
  3230. btrfs_print_leaf(root, leaf);
  3231. BUG();
  3232. }
  3233. return ret;
  3234. }
  3235. /*
  3236. * Given a key and some data, insert items into the tree.
  3237. * This does all the path init required, making room in the tree if needed.
  3238. */
  3239. int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
  3240. struct btrfs_root *root,
  3241. struct btrfs_path *path,
  3242. struct btrfs_key *cpu_key, u32 *data_size,
  3243. int nr)
  3244. {
  3245. struct extent_buffer *leaf;
  3246. int ret = 0;
  3247. int slot;
  3248. int i;
  3249. u32 total_size = 0;
  3250. u32 total_data = 0;
  3251. for (i = 0; i < nr; i++)
  3252. total_data += data_size[i];
  3253. total_size = total_data + (nr * sizeof(struct btrfs_item));
  3254. ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
  3255. if (ret == 0)
  3256. return -EEXIST;
  3257. if (ret < 0)
  3258. goto out;
  3259. leaf = path->nodes[0];
  3260. slot = path->slots[0];
  3261. BUG_ON(slot < 0);
  3262. ret = setup_items_for_insert(trans, root, path, cpu_key, data_size,
  3263. total_data, total_size, nr);
  3264. out:
  3265. return ret;
  3266. }
  3267. /*
  3268. * Given a key and some data, insert an item into the tree.
  3269. * This does all the path init required, making room in the tree if needed.
  3270. */
  3271. int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
  3272. *root, struct btrfs_key *cpu_key, void *data, u32
  3273. data_size)
  3274. {
  3275. int ret = 0;
  3276. struct btrfs_path *path;
  3277. struct extent_buffer *leaf;
  3278. unsigned long ptr;
  3279. path = btrfs_alloc_path();
  3280. BUG_ON(!path);
  3281. ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
  3282. if (!ret) {
  3283. leaf = path->nodes[0];
  3284. ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
  3285. write_extent_buffer(leaf, data, ptr, data_size);
  3286. btrfs_mark_buffer_dirty(leaf);
  3287. }
  3288. btrfs_free_path(path);
  3289. return ret;
  3290. }
  3291. /*
  3292. * delete the pointer from a given node.
  3293. *
  3294. * the tree should have been previously balanced so the deletion does not
  3295. * empty a node.
  3296. */
  3297. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  3298. struct btrfs_path *path, int level, int slot)
  3299. {
  3300. struct extent_buffer *parent = path->nodes[level];
  3301. u32 nritems;
  3302. int ret = 0;
  3303. int wret;
  3304. nritems = btrfs_header_nritems(parent);
  3305. if (slot != nritems - 1) {
  3306. memmove_extent_buffer(parent,
  3307. btrfs_node_key_ptr_offset(slot),
  3308. btrfs_node_key_ptr_offset(slot + 1),
  3309. sizeof(struct btrfs_key_ptr) *
  3310. (nritems - slot - 1));
  3311. }
  3312. nritems--;
  3313. btrfs_set_header_nritems(parent, nritems);
  3314. if (nritems == 0 && parent == root->node) {
  3315. BUG_ON(btrfs_header_level(root->node) != 1);
  3316. /* just turn the root into a leaf and break */
  3317. btrfs_set_header_level(root->node, 0);
  3318. } else if (slot == 0) {
  3319. struct btrfs_disk_key disk_key;
  3320. btrfs_node_key(parent, &disk_key, 0);
  3321. wret = fixup_low_keys(trans, root, path, &disk_key, level + 1);
  3322. if (wret)
  3323. ret = wret;
  3324. }
  3325. btrfs_mark_buffer_dirty(parent);
  3326. return ret;
  3327. }
  3328. /*
  3329. * a helper function to delete the leaf pointed to by path->slots[1] and
  3330. * path->nodes[1].
  3331. *
  3332. * This deletes the pointer in path->nodes[1] and frees the leaf
  3333. * block extent. zero is returned if it all worked out, < 0 otherwise.
  3334. *
  3335. * The path must have already been setup for deleting the leaf, including
  3336. * all the proper balancing. path->nodes[1] must be locked.
  3337. */
  3338. static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
  3339. struct btrfs_root *root,
  3340. struct btrfs_path *path,
  3341. struct extent_buffer *leaf)
  3342. {
  3343. int ret;
  3344. WARN_ON(btrfs_header_generation(leaf) != trans->transid);
  3345. ret = del_ptr(trans, root, path, 1, path->slots[1]);
  3346. if (ret)
  3347. return ret;
  3348. /*
  3349. * btrfs_free_extent is expensive, we want to make sure we
  3350. * aren't holding any locks when we call it
  3351. */
  3352. btrfs_unlock_up_safe(path, 0);
  3353. ret = btrfs_free_extent(trans, root, leaf->start, leaf->len,
  3354. 0, root->root_key.objectid, 0, 0);
  3355. return ret;
  3356. }
  3357. /*
  3358. * delete the item at the leaf level in path. If that empties
  3359. * the leaf, remove it from the tree
  3360. */
  3361. int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  3362. struct btrfs_path *path, int slot, int nr)
  3363. {
  3364. struct extent_buffer *leaf;
  3365. struct btrfs_item *item;
  3366. int last_off;
  3367. int dsize = 0;
  3368. int ret = 0;
  3369. int wret;
  3370. int i;
  3371. u32 nritems;
  3372. leaf = path->nodes[0];
  3373. last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
  3374. for (i = 0; i < nr; i++)
  3375. dsize += btrfs_item_size_nr(leaf, slot + i);
  3376. nritems = btrfs_header_nritems(leaf);
  3377. if (slot + nr != nritems) {
  3378. int data_end = leaf_data_end(root, leaf);
  3379. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3380. data_end + dsize,
  3381. btrfs_leaf_data(leaf) + data_end,
  3382. last_off - data_end);
  3383. for (i = slot + nr; i < nritems; i++) {
  3384. u32 ioff;
  3385. item = btrfs_item_nr(leaf, i);
  3386. if (!leaf->map_token) {
  3387. map_extent_buffer(leaf, (unsigned long)item,
  3388. sizeof(struct btrfs_item),
  3389. &leaf->map_token, &leaf->kaddr,
  3390. &leaf->map_start, &leaf->map_len,
  3391. KM_USER1);
  3392. }
  3393. ioff = btrfs_item_offset(leaf, item);
  3394. btrfs_set_item_offset(leaf, item, ioff + dsize);
  3395. }
  3396. if (leaf->map_token) {
  3397. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  3398. leaf->map_token = NULL;
  3399. }
  3400. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
  3401. btrfs_item_nr_offset(slot + nr),
  3402. sizeof(struct btrfs_item) *
  3403. (nritems - slot - nr));
  3404. }
  3405. btrfs_set_header_nritems(leaf, nritems - nr);
  3406. nritems -= nr;
  3407. /* delete the leaf if we've emptied it */
  3408. if (nritems == 0) {
  3409. if (leaf == root->node) {
  3410. btrfs_set_header_level(leaf, 0);
  3411. } else {
  3412. ret = btrfs_del_leaf(trans, root, path, leaf);
  3413. BUG_ON(ret);
  3414. }
  3415. } else {
  3416. int used = leaf_space_used(leaf, 0, nritems);
  3417. if (slot == 0) {
  3418. struct btrfs_disk_key disk_key;
  3419. btrfs_item_key(leaf, &disk_key, 0);
  3420. wret = fixup_low_keys(trans, root, path,
  3421. &disk_key, 1);
  3422. if (wret)
  3423. ret = wret;
  3424. }
  3425. /* delete the leaf if it is mostly empty */
  3426. if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
  3427. /* push_leaf_left fixes the path.
  3428. * make sure the path still points to our leaf
  3429. * for possible call to del_ptr below
  3430. */
  3431. slot = path->slots[1];
  3432. extent_buffer_get(leaf);
  3433. btrfs_set_path_blocking(path);
  3434. wret = push_leaf_left(trans, root, path, 1, 1);
  3435. if (wret < 0 && wret != -ENOSPC)
  3436. ret = wret;
  3437. if (path->nodes[0] == leaf &&
  3438. btrfs_header_nritems(leaf)) {
  3439. wret = push_leaf_right(trans, root, path, 1, 1);
  3440. if (wret < 0 && wret != -ENOSPC)
  3441. ret = wret;
  3442. }
  3443. if (btrfs_header_nritems(leaf) == 0) {
  3444. path->slots[1] = slot;
  3445. ret = btrfs_del_leaf(trans, root, path, leaf);
  3446. BUG_ON(ret);
  3447. free_extent_buffer(leaf);
  3448. } else {
  3449. /* if we're still in the path, make sure
  3450. * we're dirty. Otherwise, one of the
  3451. * push_leaf functions must have already
  3452. * dirtied this buffer
  3453. */
  3454. if (path->nodes[0] == leaf)
  3455. btrfs_mark_buffer_dirty(leaf);
  3456. free_extent_buffer(leaf);
  3457. }
  3458. } else {
  3459. btrfs_mark_buffer_dirty(leaf);
  3460. }
  3461. }
  3462. return ret;
  3463. }
  3464. /*
  3465. * search the tree again to find a leaf with lesser keys
  3466. * returns 0 if it found something or 1 if there are no lesser leaves.
  3467. * returns < 0 on io errors.
  3468. *
  3469. * This may release the path, and so you may lose any locks held at the
  3470. * time you call it.
  3471. */
  3472. int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
  3473. {
  3474. struct btrfs_key key;
  3475. struct btrfs_disk_key found_key;
  3476. int ret;
  3477. btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
  3478. if (key.offset > 0)
  3479. key.offset--;
  3480. else if (key.type > 0)
  3481. key.type--;
  3482. else if (key.objectid > 0)
  3483. key.objectid--;
  3484. else
  3485. return 1;
  3486. btrfs_release_path(root, path);
  3487. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  3488. if (ret < 0)
  3489. return ret;
  3490. btrfs_item_key(path->nodes[0], &found_key, 0);
  3491. ret = comp_keys(&found_key, &key);
  3492. if (ret < 0)
  3493. return 0;
  3494. return 1;
  3495. }
  3496. /*
  3497. * A helper function to walk down the tree starting at min_key, and looking
  3498. * for nodes or leaves that are either in cache or have a minimum
  3499. * transaction id. This is used by the btree defrag code, and tree logging
  3500. *
  3501. * This does not cow, but it does stuff the starting key it finds back
  3502. * into min_key, so you can call btrfs_search_slot with cow=1 on the
  3503. * key and get a writable path.
  3504. *
  3505. * This does lock as it descends, and path->keep_locks should be set
  3506. * to 1 by the caller.
  3507. *
  3508. * This honors path->lowest_level to prevent descent past a given level
  3509. * of the tree.
  3510. *
  3511. * min_trans indicates the oldest transaction that you are interested
  3512. * in walking through. Any nodes or leaves older than min_trans are
  3513. * skipped over (without reading them).
  3514. *
  3515. * returns zero if something useful was found, < 0 on error and 1 if there
  3516. * was nothing in the tree that matched the search criteria.
  3517. */
  3518. int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
  3519. struct btrfs_key *max_key,
  3520. struct btrfs_path *path, int cache_only,
  3521. u64 min_trans)
  3522. {
  3523. struct extent_buffer *cur;
  3524. struct btrfs_key found_key;
  3525. int slot;
  3526. int sret;
  3527. u32 nritems;
  3528. int level;
  3529. int ret = 1;
  3530. WARN_ON(!path->keep_locks);
  3531. again:
  3532. cur = btrfs_lock_root_node(root);
  3533. level = btrfs_header_level(cur);
  3534. WARN_ON(path->nodes[level]);
  3535. path->nodes[level] = cur;
  3536. path->locks[level] = 1;
  3537. if (btrfs_header_generation(cur) < min_trans) {
  3538. ret = 1;
  3539. goto out;
  3540. }
  3541. while (1) {
  3542. nritems = btrfs_header_nritems(cur);
  3543. level = btrfs_header_level(cur);
  3544. sret = bin_search(cur, min_key, level, &slot);
  3545. /* at the lowest level, we're done, setup the path and exit */
  3546. if (level == path->lowest_level) {
  3547. if (slot >= nritems)
  3548. goto find_next_key;
  3549. ret = 0;
  3550. path->slots[level] = slot;
  3551. btrfs_item_key_to_cpu(cur, &found_key, slot);
  3552. goto out;
  3553. }
  3554. if (sret && slot > 0)
  3555. slot--;
  3556. /*
  3557. * check this node pointer against the cache_only and
  3558. * min_trans parameters. If it isn't in cache or is too
  3559. * old, skip to the next one.
  3560. */
  3561. while (slot < nritems) {
  3562. u64 blockptr;
  3563. u64 gen;
  3564. struct extent_buffer *tmp;
  3565. struct btrfs_disk_key disk_key;
  3566. blockptr = btrfs_node_blockptr(cur, slot);
  3567. gen = btrfs_node_ptr_generation(cur, slot);
  3568. if (gen < min_trans) {
  3569. slot++;
  3570. continue;
  3571. }
  3572. if (!cache_only)
  3573. break;
  3574. if (max_key) {
  3575. btrfs_node_key(cur, &disk_key, slot);
  3576. if (comp_keys(&disk_key, max_key) >= 0) {
  3577. ret = 1;
  3578. goto out;
  3579. }
  3580. }
  3581. tmp = btrfs_find_tree_block(root, blockptr,
  3582. btrfs_level_size(root, level - 1));
  3583. if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
  3584. free_extent_buffer(tmp);
  3585. break;
  3586. }
  3587. if (tmp)
  3588. free_extent_buffer(tmp);
  3589. slot++;
  3590. }
  3591. find_next_key:
  3592. /*
  3593. * we didn't find a candidate key in this node, walk forward
  3594. * and find another one
  3595. */
  3596. if (slot >= nritems) {
  3597. path->slots[level] = slot;
  3598. btrfs_set_path_blocking(path);
  3599. sret = btrfs_find_next_key(root, path, min_key, level,
  3600. cache_only, min_trans);
  3601. if (sret == 0) {
  3602. btrfs_release_path(root, path);
  3603. goto again;
  3604. } else {
  3605. goto out;
  3606. }
  3607. }
  3608. /* save our key for returning back */
  3609. btrfs_node_key_to_cpu(cur, &found_key, slot);
  3610. path->slots[level] = slot;
  3611. if (level == path->lowest_level) {
  3612. ret = 0;
  3613. unlock_up(path, level, 1);
  3614. goto out;
  3615. }
  3616. btrfs_set_path_blocking(path);
  3617. cur = read_node_slot(root, cur, slot);
  3618. btrfs_tree_lock(cur);
  3619. path->locks[level - 1] = 1;
  3620. path->nodes[level - 1] = cur;
  3621. unlock_up(path, level, 1);
  3622. btrfs_clear_path_blocking(path, NULL);
  3623. }
  3624. out:
  3625. if (ret == 0)
  3626. memcpy(min_key, &found_key, sizeof(found_key));
  3627. btrfs_set_path_blocking(path);
  3628. return ret;
  3629. }
  3630. /*
  3631. * this is similar to btrfs_next_leaf, but does not try to preserve
  3632. * and fixup the path. It looks for and returns the next key in the
  3633. * tree based on the current path and the cache_only and min_trans
  3634. * parameters.
  3635. *
  3636. * 0 is returned if another key is found, < 0 if there are any errors
  3637. * and 1 is returned if there are no higher keys in the tree
  3638. *
  3639. * path->keep_locks should be set to 1 on the search made before
  3640. * calling this function.
  3641. */
  3642. int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
  3643. struct btrfs_key *key, int level,
  3644. int cache_only, u64 min_trans)
  3645. {
  3646. int slot;
  3647. struct extent_buffer *c;
  3648. WARN_ON(!path->keep_locks);
  3649. while (level < BTRFS_MAX_LEVEL) {
  3650. if (!path->nodes[level])
  3651. return 1;
  3652. slot = path->slots[level] + 1;
  3653. c = path->nodes[level];
  3654. next:
  3655. if (slot >= btrfs_header_nritems(c)) {
  3656. int ret;
  3657. int orig_lowest;
  3658. struct btrfs_key cur_key;
  3659. if (level + 1 >= BTRFS_MAX_LEVEL ||
  3660. !path->nodes[level + 1])
  3661. return 1;
  3662. if (path->locks[level + 1]) {
  3663. level++;
  3664. continue;
  3665. }
  3666. slot = btrfs_header_nritems(c) - 1;
  3667. if (level == 0)
  3668. btrfs_item_key_to_cpu(c, &cur_key, slot);
  3669. else
  3670. btrfs_node_key_to_cpu(c, &cur_key, slot);
  3671. orig_lowest = path->lowest_level;
  3672. btrfs_release_path(root, path);
  3673. path->lowest_level = level;
  3674. ret = btrfs_search_slot(NULL, root, &cur_key, path,
  3675. 0, 0);
  3676. path->lowest_level = orig_lowest;
  3677. if (ret < 0)
  3678. return ret;
  3679. c = path->nodes[level];
  3680. slot = path->slots[level];
  3681. if (ret == 0)
  3682. slot++;
  3683. goto next;
  3684. }
  3685. if (level == 0)
  3686. btrfs_item_key_to_cpu(c, key, slot);
  3687. else {
  3688. u64 blockptr = btrfs_node_blockptr(c, slot);
  3689. u64 gen = btrfs_node_ptr_generation(c, slot);
  3690. if (cache_only) {
  3691. struct extent_buffer *cur;
  3692. cur = btrfs_find_tree_block(root, blockptr,
  3693. btrfs_level_size(root, level - 1));
  3694. if (!cur || !btrfs_buffer_uptodate(cur, gen)) {
  3695. slot++;
  3696. if (cur)
  3697. free_extent_buffer(cur);
  3698. goto next;
  3699. }
  3700. free_extent_buffer(cur);
  3701. }
  3702. if (gen < min_trans) {
  3703. slot++;
  3704. goto next;
  3705. }
  3706. btrfs_node_key_to_cpu(c, key, slot);
  3707. }
  3708. return 0;
  3709. }
  3710. return 1;
  3711. }
  3712. /*
  3713. * search the tree again to find a leaf with greater keys
  3714. * returns 0 if it found something or 1 if there are no greater leaves.
  3715. * returns < 0 on io errors.
  3716. */
  3717. int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
  3718. {
  3719. int slot;
  3720. int level;
  3721. struct extent_buffer *c;
  3722. struct extent_buffer *next;
  3723. struct btrfs_key key;
  3724. u32 nritems;
  3725. int ret;
  3726. int old_spinning = path->leave_spinning;
  3727. int force_blocking = 0;
  3728. nritems = btrfs_header_nritems(path->nodes[0]);
  3729. if (nritems == 0)
  3730. return 1;
  3731. /*
  3732. * we take the blocks in an order that upsets lockdep. Using
  3733. * blocking mode is the only way around it.
  3734. */
  3735. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  3736. force_blocking = 1;
  3737. #endif
  3738. btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
  3739. again:
  3740. level = 1;
  3741. next = NULL;
  3742. btrfs_release_path(root, path);
  3743. path->keep_locks = 1;
  3744. if (!force_blocking)
  3745. path->leave_spinning = 1;
  3746. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  3747. path->keep_locks = 0;
  3748. if (ret < 0)
  3749. return ret;
  3750. nritems = btrfs_header_nritems(path->nodes[0]);
  3751. /*
  3752. * by releasing the path above we dropped all our locks. A balance
  3753. * could have added more items next to the key that used to be
  3754. * at the very end of the block. So, check again here and
  3755. * advance the path if there are now more items available.
  3756. */
  3757. if (nritems > 0 && path->slots[0] < nritems - 1) {
  3758. if (ret == 0)
  3759. path->slots[0]++;
  3760. ret = 0;
  3761. goto done;
  3762. }
  3763. while (level < BTRFS_MAX_LEVEL) {
  3764. if (!path->nodes[level]) {
  3765. ret = 1;
  3766. goto done;
  3767. }
  3768. slot = path->slots[level] + 1;
  3769. c = path->nodes[level];
  3770. if (slot >= btrfs_header_nritems(c)) {
  3771. level++;
  3772. if (level == BTRFS_MAX_LEVEL) {
  3773. ret = 1;
  3774. goto done;
  3775. }
  3776. continue;
  3777. }
  3778. if (next) {
  3779. btrfs_tree_unlock(next);
  3780. free_extent_buffer(next);
  3781. }
  3782. next = c;
  3783. ret = read_block_for_search(NULL, root, path, &next, level,
  3784. slot, &key);
  3785. if (ret == -EAGAIN)
  3786. goto again;
  3787. if (ret < 0) {
  3788. btrfs_release_path(root, path);
  3789. goto done;
  3790. }
  3791. if (!path->skip_locking) {
  3792. ret = btrfs_try_spin_lock(next);
  3793. if (!ret) {
  3794. btrfs_set_path_blocking(path);
  3795. btrfs_tree_lock(next);
  3796. if (!force_blocking)
  3797. btrfs_clear_path_blocking(path, next);
  3798. }
  3799. if (force_blocking)
  3800. btrfs_set_lock_blocking(next);
  3801. }
  3802. break;
  3803. }
  3804. path->slots[level] = slot;
  3805. while (1) {
  3806. level--;
  3807. c = path->nodes[level];
  3808. if (path->locks[level])
  3809. btrfs_tree_unlock(c);
  3810. free_extent_buffer(c);
  3811. path->nodes[level] = next;
  3812. path->slots[level] = 0;
  3813. if (!path->skip_locking)
  3814. path->locks[level] = 1;
  3815. if (!level)
  3816. break;
  3817. ret = read_block_for_search(NULL, root, path, &next, level,
  3818. 0, &key);
  3819. if (ret == -EAGAIN)
  3820. goto again;
  3821. if (ret < 0) {
  3822. btrfs_release_path(root, path);
  3823. goto done;
  3824. }
  3825. if (!path->skip_locking) {
  3826. btrfs_assert_tree_locked(path->nodes[level]);
  3827. ret = btrfs_try_spin_lock(next);
  3828. if (!ret) {
  3829. btrfs_set_path_blocking(path);
  3830. btrfs_tree_lock(next);
  3831. if (!force_blocking)
  3832. btrfs_clear_path_blocking(path, next);
  3833. }
  3834. if (force_blocking)
  3835. btrfs_set_lock_blocking(next);
  3836. }
  3837. }
  3838. ret = 0;
  3839. done:
  3840. unlock_up(path, 0, 1);
  3841. path->leave_spinning = old_spinning;
  3842. if (!old_spinning)
  3843. btrfs_set_path_blocking(path);
  3844. return ret;
  3845. }
  3846. /*
  3847. * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
  3848. * searching until it gets past min_objectid or finds an item of 'type'
  3849. *
  3850. * returns 0 if something is found, 1 if nothing was found and < 0 on error
  3851. */
  3852. int btrfs_previous_item(struct btrfs_root *root,
  3853. struct btrfs_path *path, u64 min_objectid,
  3854. int type)
  3855. {
  3856. struct btrfs_key found_key;
  3857. struct extent_buffer *leaf;
  3858. u32 nritems;
  3859. int ret;
  3860. while (1) {
  3861. if (path->slots[0] == 0) {
  3862. btrfs_set_path_blocking(path);
  3863. ret = btrfs_prev_leaf(root, path);
  3864. if (ret != 0)
  3865. return ret;
  3866. } else {
  3867. path->slots[0]--;
  3868. }
  3869. leaf = path->nodes[0];
  3870. nritems = btrfs_header_nritems(leaf);
  3871. if (nritems == 0)
  3872. return 1;
  3873. if (path->slots[0] == nritems)
  3874. path->slots[0]--;
  3875. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  3876. if (found_key.objectid < min_objectid)
  3877. break;
  3878. if (found_key.type == type)
  3879. return 0;
  3880. if (found_key.objectid == min_objectid &&
  3881. found_key.type < type)
  3882. break;
  3883. }
  3884. return 1;
  3885. }