i915_gem.c 130 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include "i915_trace.h"
  32. #include "intel_drv.h"
  33. #include <linux/slab.h>
  34. #include <linux/swap.h>
  35. #include <linux/pci.h>
  36. #include <linux/intel-gtt.h>
  37. static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
  38. static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
  39. bool pipelined);
  40. static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
  41. static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
  42. static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
  43. int write);
  44. static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  45. uint64_t offset,
  46. uint64_t size);
  47. static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
  48. static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
  49. bool interruptible);
  50. static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
  51. unsigned alignment, bool mappable);
  52. static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
  53. static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  54. struct drm_i915_gem_pwrite *args,
  55. struct drm_file *file_priv);
  56. static void i915_gem_free_object_tail(struct drm_gem_object *obj);
  57. static int
  58. i915_gem_object_get_pages(struct drm_gem_object *obj,
  59. gfp_t gfpmask);
  60. static void
  61. i915_gem_object_put_pages(struct drm_gem_object *obj);
  62. static LIST_HEAD(shrink_list);
  63. static DEFINE_SPINLOCK(shrink_list_lock);
  64. /* some bookkeeping */
  65. static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  66. size_t size)
  67. {
  68. dev_priv->mm.object_count++;
  69. dev_priv->mm.object_memory += size;
  70. }
  71. static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  72. size_t size)
  73. {
  74. dev_priv->mm.object_count--;
  75. dev_priv->mm.object_memory -= size;
  76. }
  77. static void i915_gem_info_add_gtt(struct drm_i915_private *dev_priv,
  78. size_t size)
  79. {
  80. dev_priv->mm.gtt_count++;
  81. dev_priv->mm.gtt_memory += size;
  82. }
  83. static void i915_gem_info_remove_gtt(struct drm_i915_private *dev_priv,
  84. size_t size)
  85. {
  86. dev_priv->mm.gtt_count--;
  87. dev_priv->mm.gtt_memory -= size;
  88. }
  89. static void i915_gem_info_add_pin(struct drm_i915_private *dev_priv,
  90. size_t size)
  91. {
  92. dev_priv->mm.pin_count++;
  93. dev_priv->mm.pin_memory += size;
  94. }
  95. static void i915_gem_info_remove_pin(struct drm_i915_private *dev_priv,
  96. size_t size)
  97. {
  98. dev_priv->mm.pin_count--;
  99. dev_priv->mm.pin_memory -= size;
  100. }
  101. int
  102. i915_gem_check_is_wedged(struct drm_device *dev)
  103. {
  104. struct drm_i915_private *dev_priv = dev->dev_private;
  105. struct completion *x = &dev_priv->error_completion;
  106. unsigned long flags;
  107. int ret;
  108. if (!atomic_read(&dev_priv->mm.wedged))
  109. return 0;
  110. ret = wait_for_completion_interruptible(x);
  111. if (ret)
  112. return ret;
  113. /* Success, we reset the GPU! */
  114. if (!atomic_read(&dev_priv->mm.wedged))
  115. return 0;
  116. /* GPU is hung, bump the completion count to account for
  117. * the token we just consumed so that we never hit zero and
  118. * end up waiting upon a subsequent completion event that
  119. * will never happen.
  120. */
  121. spin_lock_irqsave(&x->wait.lock, flags);
  122. x->done++;
  123. spin_unlock_irqrestore(&x->wait.lock, flags);
  124. return -EIO;
  125. }
  126. static int i915_mutex_lock_interruptible(struct drm_device *dev)
  127. {
  128. struct drm_i915_private *dev_priv = dev->dev_private;
  129. int ret;
  130. ret = i915_gem_check_is_wedged(dev);
  131. if (ret)
  132. return ret;
  133. ret = mutex_lock_interruptible(&dev->struct_mutex);
  134. if (ret)
  135. return ret;
  136. if (atomic_read(&dev_priv->mm.wedged)) {
  137. mutex_unlock(&dev->struct_mutex);
  138. return -EAGAIN;
  139. }
  140. WARN_ON(i915_verify_lists(dev));
  141. return 0;
  142. }
  143. static inline bool
  144. i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
  145. {
  146. return obj_priv->gtt_space &&
  147. !obj_priv->active &&
  148. obj_priv->pin_count == 0;
  149. }
  150. int i915_gem_do_init(struct drm_device *dev,
  151. unsigned long start,
  152. unsigned long end)
  153. {
  154. drm_i915_private_t *dev_priv = dev->dev_private;
  155. if (start >= end ||
  156. (start & (PAGE_SIZE - 1)) != 0 ||
  157. (end & (PAGE_SIZE - 1)) != 0) {
  158. return -EINVAL;
  159. }
  160. drm_mm_init(&dev_priv->mm.gtt_space, start,
  161. end - start);
  162. dev_priv->mm.gtt_total = end - start;
  163. dev_priv->mm.gtt_mappable_end = end;
  164. return 0;
  165. }
  166. int
  167. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  168. struct drm_file *file_priv)
  169. {
  170. struct drm_i915_gem_init *args = data;
  171. int ret;
  172. mutex_lock(&dev->struct_mutex);
  173. ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
  174. mutex_unlock(&dev->struct_mutex);
  175. return ret;
  176. }
  177. int
  178. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  179. struct drm_file *file_priv)
  180. {
  181. struct drm_i915_private *dev_priv = dev->dev_private;
  182. struct drm_i915_gem_get_aperture *args = data;
  183. if (!(dev->driver->driver_features & DRIVER_GEM))
  184. return -ENODEV;
  185. mutex_lock(&dev->struct_mutex);
  186. args->aper_size = dev_priv->mm.gtt_total;
  187. args->aper_available_size = args->aper_size - dev_priv->mm.pin_memory;
  188. mutex_unlock(&dev->struct_mutex);
  189. return 0;
  190. }
  191. /**
  192. * Creates a new mm object and returns a handle to it.
  193. */
  194. int
  195. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  196. struct drm_file *file_priv)
  197. {
  198. struct drm_i915_gem_create *args = data;
  199. struct drm_gem_object *obj;
  200. int ret;
  201. u32 handle;
  202. args->size = roundup(args->size, PAGE_SIZE);
  203. /* Allocate the new object */
  204. obj = i915_gem_alloc_object(dev, args->size);
  205. if (obj == NULL)
  206. return -ENOMEM;
  207. ret = drm_gem_handle_create(file_priv, obj, &handle);
  208. if (ret) {
  209. drm_gem_object_release(obj);
  210. i915_gem_info_remove_obj(dev->dev_private, obj->size);
  211. kfree(obj);
  212. return ret;
  213. }
  214. /* drop reference from allocate - handle holds it now */
  215. drm_gem_object_unreference(obj);
  216. trace_i915_gem_object_create(obj);
  217. args->handle = handle;
  218. return 0;
  219. }
  220. static inline int
  221. fast_shmem_read(struct page **pages,
  222. loff_t page_base, int page_offset,
  223. char __user *data,
  224. int length)
  225. {
  226. char *vaddr;
  227. int ret;
  228. vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT]);
  229. ret = __copy_to_user_inatomic(data, vaddr + page_offset, length);
  230. kunmap_atomic(vaddr);
  231. return ret;
  232. }
  233. static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
  234. {
  235. drm_i915_private_t *dev_priv = obj->dev->dev_private;
  236. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  237. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  238. obj_priv->tiling_mode != I915_TILING_NONE;
  239. }
  240. static inline void
  241. slow_shmem_copy(struct page *dst_page,
  242. int dst_offset,
  243. struct page *src_page,
  244. int src_offset,
  245. int length)
  246. {
  247. char *dst_vaddr, *src_vaddr;
  248. dst_vaddr = kmap(dst_page);
  249. src_vaddr = kmap(src_page);
  250. memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
  251. kunmap(src_page);
  252. kunmap(dst_page);
  253. }
  254. static inline void
  255. slow_shmem_bit17_copy(struct page *gpu_page,
  256. int gpu_offset,
  257. struct page *cpu_page,
  258. int cpu_offset,
  259. int length,
  260. int is_read)
  261. {
  262. char *gpu_vaddr, *cpu_vaddr;
  263. /* Use the unswizzled path if this page isn't affected. */
  264. if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
  265. if (is_read)
  266. return slow_shmem_copy(cpu_page, cpu_offset,
  267. gpu_page, gpu_offset, length);
  268. else
  269. return slow_shmem_copy(gpu_page, gpu_offset,
  270. cpu_page, cpu_offset, length);
  271. }
  272. gpu_vaddr = kmap(gpu_page);
  273. cpu_vaddr = kmap(cpu_page);
  274. /* Copy the data, XORing A6 with A17 (1). The user already knows he's
  275. * XORing with the other bits (A9 for Y, A9 and A10 for X)
  276. */
  277. while (length > 0) {
  278. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  279. int this_length = min(cacheline_end - gpu_offset, length);
  280. int swizzled_gpu_offset = gpu_offset ^ 64;
  281. if (is_read) {
  282. memcpy(cpu_vaddr + cpu_offset,
  283. gpu_vaddr + swizzled_gpu_offset,
  284. this_length);
  285. } else {
  286. memcpy(gpu_vaddr + swizzled_gpu_offset,
  287. cpu_vaddr + cpu_offset,
  288. this_length);
  289. }
  290. cpu_offset += this_length;
  291. gpu_offset += this_length;
  292. length -= this_length;
  293. }
  294. kunmap(cpu_page);
  295. kunmap(gpu_page);
  296. }
  297. /**
  298. * This is the fast shmem pread path, which attempts to copy_from_user directly
  299. * from the backing pages of the object to the user's address space. On a
  300. * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
  301. */
  302. static int
  303. i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
  304. struct drm_i915_gem_pread *args,
  305. struct drm_file *file_priv)
  306. {
  307. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  308. ssize_t remain;
  309. loff_t offset, page_base;
  310. char __user *user_data;
  311. int page_offset, page_length;
  312. user_data = (char __user *) (uintptr_t) args->data_ptr;
  313. remain = args->size;
  314. obj_priv = to_intel_bo(obj);
  315. offset = args->offset;
  316. while (remain > 0) {
  317. /* Operation in this page
  318. *
  319. * page_base = page offset within aperture
  320. * page_offset = offset within page
  321. * page_length = bytes to copy for this page
  322. */
  323. page_base = (offset & ~(PAGE_SIZE-1));
  324. page_offset = offset & (PAGE_SIZE-1);
  325. page_length = remain;
  326. if ((page_offset + remain) > PAGE_SIZE)
  327. page_length = PAGE_SIZE - page_offset;
  328. if (fast_shmem_read(obj_priv->pages,
  329. page_base, page_offset,
  330. user_data, page_length))
  331. return -EFAULT;
  332. remain -= page_length;
  333. user_data += page_length;
  334. offset += page_length;
  335. }
  336. return 0;
  337. }
  338. static int
  339. i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
  340. {
  341. int ret;
  342. ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
  343. /* If we've insufficient memory to map in the pages, attempt
  344. * to make some space by throwing out some old buffers.
  345. */
  346. if (ret == -ENOMEM) {
  347. struct drm_device *dev = obj->dev;
  348. ret = i915_gem_evict_something(dev, obj->size,
  349. i915_gem_get_gtt_alignment(obj),
  350. false);
  351. if (ret)
  352. return ret;
  353. ret = i915_gem_object_get_pages(obj, 0);
  354. }
  355. return ret;
  356. }
  357. /**
  358. * This is the fallback shmem pread path, which allocates temporary storage
  359. * in kernel space to copy_to_user into outside of the struct_mutex, so we
  360. * can copy out of the object's backing pages while holding the struct mutex
  361. * and not take page faults.
  362. */
  363. static int
  364. i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
  365. struct drm_i915_gem_pread *args,
  366. struct drm_file *file_priv)
  367. {
  368. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  369. struct mm_struct *mm = current->mm;
  370. struct page **user_pages;
  371. ssize_t remain;
  372. loff_t offset, pinned_pages, i;
  373. loff_t first_data_page, last_data_page, num_pages;
  374. int shmem_page_index, shmem_page_offset;
  375. int data_page_index, data_page_offset;
  376. int page_length;
  377. int ret;
  378. uint64_t data_ptr = args->data_ptr;
  379. int do_bit17_swizzling;
  380. remain = args->size;
  381. /* Pin the user pages containing the data. We can't fault while
  382. * holding the struct mutex, yet we want to hold it while
  383. * dereferencing the user data.
  384. */
  385. first_data_page = data_ptr / PAGE_SIZE;
  386. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  387. num_pages = last_data_page - first_data_page + 1;
  388. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  389. if (user_pages == NULL)
  390. return -ENOMEM;
  391. mutex_unlock(&dev->struct_mutex);
  392. down_read(&mm->mmap_sem);
  393. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  394. num_pages, 1, 0, user_pages, NULL);
  395. up_read(&mm->mmap_sem);
  396. mutex_lock(&dev->struct_mutex);
  397. if (pinned_pages < num_pages) {
  398. ret = -EFAULT;
  399. goto out;
  400. }
  401. ret = i915_gem_object_set_cpu_read_domain_range(obj,
  402. args->offset,
  403. args->size);
  404. if (ret)
  405. goto out;
  406. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  407. obj_priv = to_intel_bo(obj);
  408. offset = args->offset;
  409. while (remain > 0) {
  410. /* Operation in this page
  411. *
  412. * shmem_page_index = page number within shmem file
  413. * shmem_page_offset = offset within page in shmem file
  414. * data_page_index = page number in get_user_pages return
  415. * data_page_offset = offset with data_page_index page.
  416. * page_length = bytes to copy for this page
  417. */
  418. shmem_page_index = offset / PAGE_SIZE;
  419. shmem_page_offset = offset & ~PAGE_MASK;
  420. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  421. data_page_offset = data_ptr & ~PAGE_MASK;
  422. page_length = remain;
  423. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  424. page_length = PAGE_SIZE - shmem_page_offset;
  425. if ((data_page_offset + page_length) > PAGE_SIZE)
  426. page_length = PAGE_SIZE - data_page_offset;
  427. if (do_bit17_swizzling) {
  428. slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
  429. shmem_page_offset,
  430. user_pages[data_page_index],
  431. data_page_offset,
  432. page_length,
  433. 1);
  434. } else {
  435. slow_shmem_copy(user_pages[data_page_index],
  436. data_page_offset,
  437. obj_priv->pages[shmem_page_index],
  438. shmem_page_offset,
  439. page_length);
  440. }
  441. remain -= page_length;
  442. data_ptr += page_length;
  443. offset += page_length;
  444. }
  445. out:
  446. for (i = 0; i < pinned_pages; i++) {
  447. SetPageDirty(user_pages[i]);
  448. page_cache_release(user_pages[i]);
  449. }
  450. drm_free_large(user_pages);
  451. return ret;
  452. }
  453. /**
  454. * Reads data from the object referenced by handle.
  455. *
  456. * On error, the contents of *data are undefined.
  457. */
  458. int
  459. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  460. struct drm_file *file_priv)
  461. {
  462. struct drm_i915_gem_pread *args = data;
  463. struct drm_gem_object *obj;
  464. struct drm_i915_gem_object *obj_priv;
  465. int ret = 0;
  466. ret = i915_mutex_lock_interruptible(dev);
  467. if (ret)
  468. return ret;
  469. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  470. if (obj == NULL) {
  471. ret = -ENOENT;
  472. goto unlock;
  473. }
  474. obj_priv = to_intel_bo(obj);
  475. /* Bounds check source. */
  476. if (args->offset > obj->size || args->size > obj->size - args->offset) {
  477. ret = -EINVAL;
  478. goto out;
  479. }
  480. if (args->size == 0)
  481. goto out;
  482. if (!access_ok(VERIFY_WRITE,
  483. (char __user *)(uintptr_t)args->data_ptr,
  484. args->size)) {
  485. ret = -EFAULT;
  486. goto out;
  487. }
  488. ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
  489. args->size);
  490. if (ret) {
  491. ret = -EFAULT;
  492. goto out;
  493. }
  494. ret = i915_gem_object_get_pages_or_evict(obj);
  495. if (ret)
  496. goto out;
  497. ret = i915_gem_object_set_cpu_read_domain_range(obj,
  498. args->offset,
  499. args->size);
  500. if (ret)
  501. goto out_put;
  502. ret = -EFAULT;
  503. if (!i915_gem_object_needs_bit17_swizzle(obj))
  504. ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
  505. if (ret == -EFAULT)
  506. ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
  507. out_put:
  508. i915_gem_object_put_pages(obj);
  509. out:
  510. drm_gem_object_unreference(obj);
  511. unlock:
  512. mutex_unlock(&dev->struct_mutex);
  513. return ret;
  514. }
  515. /* This is the fast write path which cannot handle
  516. * page faults in the source data
  517. */
  518. static inline int
  519. fast_user_write(struct io_mapping *mapping,
  520. loff_t page_base, int page_offset,
  521. char __user *user_data,
  522. int length)
  523. {
  524. char *vaddr_atomic;
  525. unsigned long unwritten;
  526. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  527. unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
  528. user_data, length);
  529. io_mapping_unmap_atomic(vaddr_atomic);
  530. return unwritten;
  531. }
  532. /* Here's the write path which can sleep for
  533. * page faults
  534. */
  535. static inline void
  536. slow_kernel_write(struct io_mapping *mapping,
  537. loff_t gtt_base, int gtt_offset,
  538. struct page *user_page, int user_offset,
  539. int length)
  540. {
  541. char __iomem *dst_vaddr;
  542. char *src_vaddr;
  543. dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
  544. src_vaddr = kmap(user_page);
  545. memcpy_toio(dst_vaddr + gtt_offset,
  546. src_vaddr + user_offset,
  547. length);
  548. kunmap(user_page);
  549. io_mapping_unmap(dst_vaddr);
  550. }
  551. static inline int
  552. fast_shmem_write(struct page **pages,
  553. loff_t page_base, int page_offset,
  554. char __user *data,
  555. int length)
  556. {
  557. char *vaddr;
  558. int ret;
  559. vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT]);
  560. ret = __copy_from_user_inatomic(vaddr + page_offset, data, length);
  561. kunmap_atomic(vaddr);
  562. return ret;
  563. }
  564. /**
  565. * This is the fast pwrite path, where we copy the data directly from the
  566. * user into the GTT, uncached.
  567. */
  568. static int
  569. i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  570. struct drm_i915_gem_pwrite *args,
  571. struct drm_file *file_priv)
  572. {
  573. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  574. drm_i915_private_t *dev_priv = dev->dev_private;
  575. ssize_t remain;
  576. loff_t offset, page_base;
  577. char __user *user_data;
  578. int page_offset, page_length;
  579. user_data = (char __user *) (uintptr_t) args->data_ptr;
  580. remain = args->size;
  581. obj_priv = to_intel_bo(obj);
  582. offset = obj_priv->gtt_offset + args->offset;
  583. while (remain > 0) {
  584. /* Operation in this page
  585. *
  586. * page_base = page offset within aperture
  587. * page_offset = offset within page
  588. * page_length = bytes to copy for this page
  589. */
  590. page_base = (offset & ~(PAGE_SIZE-1));
  591. page_offset = offset & (PAGE_SIZE-1);
  592. page_length = remain;
  593. if ((page_offset + remain) > PAGE_SIZE)
  594. page_length = PAGE_SIZE - page_offset;
  595. /* If we get a fault while copying data, then (presumably) our
  596. * source page isn't available. Return the error and we'll
  597. * retry in the slow path.
  598. */
  599. if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
  600. page_offset, user_data, page_length))
  601. return -EFAULT;
  602. remain -= page_length;
  603. user_data += page_length;
  604. offset += page_length;
  605. }
  606. return 0;
  607. }
  608. /**
  609. * This is the fallback GTT pwrite path, which uses get_user_pages to pin
  610. * the memory and maps it using kmap_atomic for copying.
  611. *
  612. * This code resulted in x11perf -rgb10text consuming about 10% more CPU
  613. * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
  614. */
  615. static int
  616. i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  617. struct drm_i915_gem_pwrite *args,
  618. struct drm_file *file_priv)
  619. {
  620. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  621. drm_i915_private_t *dev_priv = dev->dev_private;
  622. ssize_t remain;
  623. loff_t gtt_page_base, offset;
  624. loff_t first_data_page, last_data_page, num_pages;
  625. loff_t pinned_pages, i;
  626. struct page **user_pages;
  627. struct mm_struct *mm = current->mm;
  628. int gtt_page_offset, data_page_offset, data_page_index, page_length;
  629. int ret;
  630. uint64_t data_ptr = args->data_ptr;
  631. remain = args->size;
  632. /* Pin the user pages containing the data. We can't fault while
  633. * holding the struct mutex, and all of the pwrite implementations
  634. * want to hold it while dereferencing the user data.
  635. */
  636. first_data_page = data_ptr / PAGE_SIZE;
  637. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  638. num_pages = last_data_page - first_data_page + 1;
  639. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  640. if (user_pages == NULL)
  641. return -ENOMEM;
  642. mutex_unlock(&dev->struct_mutex);
  643. down_read(&mm->mmap_sem);
  644. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  645. num_pages, 0, 0, user_pages, NULL);
  646. up_read(&mm->mmap_sem);
  647. mutex_lock(&dev->struct_mutex);
  648. if (pinned_pages < num_pages) {
  649. ret = -EFAULT;
  650. goto out_unpin_pages;
  651. }
  652. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  653. if (ret)
  654. goto out_unpin_pages;
  655. obj_priv = to_intel_bo(obj);
  656. offset = obj_priv->gtt_offset + args->offset;
  657. while (remain > 0) {
  658. /* Operation in this page
  659. *
  660. * gtt_page_base = page offset within aperture
  661. * gtt_page_offset = offset within page in aperture
  662. * data_page_index = page number in get_user_pages return
  663. * data_page_offset = offset with data_page_index page.
  664. * page_length = bytes to copy for this page
  665. */
  666. gtt_page_base = offset & PAGE_MASK;
  667. gtt_page_offset = offset & ~PAGE_MASK;
  668. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  669. data_page_offset = data_ptr & ~PAGE_MASK;
  670. page_length = remain;
  671. if ((gtt_page_offset + page_length) > PAGE_SIZE)
  672. page_length = PAGE_SIZE - gtt_page_offset;
  673. if ((data_page_offset + page_length) > PAGE_SIZE)
  674. page_length = PAGE_SIZE - data_page_offset;
  675. slow_kernel_write(dev_priv->mm.gtt_mapping,
  676. gtt_page_base, gtt_page_offset,
  677. user_pages[data_page_index],
  678. data_page_offset,
  679. page_length);
  680. remain -= page_length;
  681. offset += page_length;
  682. data_ptr += page_length;
  683. }
  684. out_unpin_pages:
  685. for (i = 0; i < pinned_pages; i++)
  686. page_cache_release(user_pages[i]);
  687. drm_free_large(user_pages);
  688. return ret;
  689. }
  690. /**
  691. * This is the fast shmem pwrite path, which attempts to directly
  692. * copy_from_user into the kmapped pages backing the object.
  693. */
  694. static int
  695. i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  696. struct drm_i915_gem_pwrite *args,
  697. struct drm_file *file_priv)
  698. {
  699. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  700. ssize_t remain;
  701. loff_t offset, page_base;
  702. char __user *user_data;
  703. int page_offset, page_length;
  704. user_data = (char __user *) (uintptr_t) args->data_ptr;
  705. remain = args->size;
  706. obj_priv = to_intel_bo(obj);
  707. offset = args->offset;
  708. obj_priv->dirty = 1;
  709. while (remain > 0) {
  710. /* Operation in this page
  711. *
  712. * page_base = page offset within aperture
  713. * page_offset = offset within page
  714. * page_length = bytes to copy for this page
  715. */
  716. page_base = (offset & ~(PAGE_SIZE-1));
  717. page_offset = offset & (PAGE_SIZE-1);
  718. page_length = remain;
  719. if ((page_offset + remain) > PAGE_SIZE)
  720. page_length = PAGE_SIZE - page_offset;
  721. if (fast_shmem_write(obj_priv->pages,
  722. page_base, page_offset,
  723. user_data, page_length))
  724. return -EFAULT;
  725. remain -= page_length;
  726. user_data += page_length;
  727. offset += page_length;
  728. }
  729. return 0;
  730. }
  731. /**
  732. * This is the fallback shmem pwrite path, which uses get_user_pages to pin
  733. * the memory and maps it using kmap_atomic for copying.
  734. *
  735. * This avoids taking mmap_sem for faulting on the user's address while the
  736. * struct_mutex is held.
  737. */
  738. static int
  739. i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  740. struct drm_i915_gem_pwrite *args,
  741. struct drm_file *file_priv)
  742. {
  743. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  744. struct mm_struct *mm = current->mm;
  745. struct page **user_pages;
  746. ssize_t remain;
  747. loff_t offset, pinned_pages, i;
  748. loff_t first_data_page, last_data_page, num_pages;
  749. int shmem_page_index, shmem_page_offset;
  750. int data_page_index, data_page_offset;
  751. int page_length;
  752. int ret;
  753. uint64_t data_ptr = args->data_ptr;
  754. int do_bit17_swizzling;
  755. remain = args->size;
  756. /* Pin the user pages containing the data. We can't fault while
  757. * holding the struct mutex, and all of the pwrite implementations
  758. * want to hold it while dereferencing the user data.
  759. */
  760. first_data_page = data_ptr / PAGE_SIZE;
  761. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  762. num_pages = last_data_page - first_data_page + 1;
  763. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  764. if (user_pages == NULL)
  765. return -ENOMEM;
  766. mutex_unlock(&dev->struct_mutex);
  767. down_read(&mm->mmap_sem);
  768. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  769. num_pages, 0, 0, user_pages, NULL);
  770. up_read(&mm->mmap_sem);
  771. mutex_lock(&dev->struct_mutex);
  772. if (pinned_pages < num_pages) {
  773. ret = -EFAULT;
  774. goto out;
  775. }
  776. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  777. if (ret)
  778. goto out;
  779. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  780. obj_priv = to_intel_bo(obj);
  781. offset = args->offset;
  782. obj_priv->dirty = 1;
  783. while (remain > 0) {
  784. /* Operation in this page
  785. *
  786. * shmem_page_index = page number within shmem file
  787. * shmem_page_offset = offset within page in shmem file
  788. * data_page_index = page number in get_user_pages return
  789. * data_page_offset = offset with data_page_index page.
  790. * page_length = bytes to copy for this page
  791. */
  792. shmem_page_index = offset / PAGE_SIZE;
  793. shmem_page_offset = offset & ~PAGE_MASK;
  794. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  795. data_page_offset = data_ptr & ~PAGE_MASK;
  796. page_length = remain;
  797. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  798. page_length = PAGE_SIZE - shmem_page_offset;
  799. if ((data_page_offset + page_length) > PAGE_SIZE)
  800. page_length = PAGE_SIZE - data_page_offset;
  801. if (do_bit17_swizzling) {
  802. slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
  803. shmem_page_offset,
  804. user_pages[data_page_index],
  805. data_page_offset,
  806. page_length,
  807. 0);
  808. } else {
  809. slow_shmem_copy(obj_priv->pages[shmem_page_index],
  810. shmem_page_offset,
  811. user_pages[data_page_index],
  812. data_page_offset,
  813. page_length);
  814. }
  815. remain -= page_length;
  816. data_ptr += page_length;
  817. offset += page_length;
  818. }
  819. out:
  820. for (i = 0; i < pinned_pages; i++)
  821. page_cache_release(user_pages[i]);
  822. drm_free_large(user_pages);
  823. return ret;
  824. }
  825. /**
  826. * Writes data to the object referenced by handle.
  827. *
  828. * On error, the contents of the buffer that were to be modified are undefined.
  829. */
  830. int
  831. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  832. struct drm_file *file)
  833. {
  834. struct drm_i915_gem_pwrite *args = data;
  835. struct drm_gem_object *obj;
  836. struct drm_i915_gem_object *obj_priv;
  837. int ret = 0;
  838. ret = i915_mutex_lock_interruptible(dev);
  839. if (ret)
  840. return ret;
  841. obj = drm_gem_object_lookup(dev, file, args->handle);
  842. if (obj == NULL) {
  843. ret = -ENOENT;
  844. goto unlock;
  845. }
  846. obj_priv = to_intel_bo(obj);
  847. /* Bounds check destination. */
  848. if (args->offset > obj->size || args->size > obj->size - args->offset) {
  849. ret = -EINVAL;
  850. goto out;
  851. }
  852. if (args->size == 0)
  853. goto out;
  854. if (!access_ok(VERIFY_READ,
  855. (char __user *)(uintptr_t)args->data_ptr,
  856. args->size)) {
  857. ret = -EFAULT;
  858. goto out;
  859. }
  860. ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
  861. args->size);
  862. if (ret) {
  863. ret = -EFAULT;
  864. goto out;
  865. }
  866. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  867. * it would end up going through the fenced access, and we'll get
  868. * different detiling behavior between reading and writing.
  869. * pread/pwrite currently are reading and writing from the CPU
  870. * perspective, requiring manual detiling by the client.
  871. */
  872. if (obj_priv->phys_obj)
  873. ret = i915_gem_phys_pwrite(dev, obj, args, file);
  874. else if (obj_priv->tiling_mode == I915_TILING_NONE &&
  875. obj_priv->gtt_space &&
  876. obj->write_domain != I915_GEM_DOMAIN_CPU) {
  877. ret = i915_gem_object_pin(obj, 0, true);
  878. if (ret)
  879. goto out;
  880. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  881. if (ret)
  882. goto out_unpin;
  883. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
  884. if (ret == -EFAULT)
  885. ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
  886. out_unpin:
  887. i915_gem_object_unpin(obj);
  888. } else {
  889. ret = i915_gem_object_get_pages_or_evict(obj);
  890. if (ret)
  891. goto out;
  892. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  893. if (ret)
  894. goto out_put;
  895. ret = -EFAULT;
  896. if (!i915_gem_object_needs_bit17_swizzle(obj))
  897. ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
  898. if (ret == -EFAULT)
  899. ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
  900. out_put:
  901. i915_gem_object_put_pages(obj);
  902. }
  903. out:
  904. drm_gem_object_unreference(obj);
  905. unlock:
  906. mutex_unlock(&dev->struct_mutex);
  907. return ret;
  908. }
  909. /**
  910. * Called when user space prepares to use an object with the CPU, either
  911. * through the mmap ioctl's mapping or a GTT mapping.
  912. */
  913. int
  914. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  915. struct drm_file *file_priv)
  916. {
  917. struct drm_i915_private *dev_priv = dev->dev_private;
  918. struct drm_i915_gem_set_domain *args = data;
  919. struct drm_gem_object *obj;
  920. struct drm_i915_gem_object *obj_priv;
  921. uint32_t read_domains = args->read_domains;
  922. uint32_t write_domain = args->write_domain;
  923. int ret;
  924. if (!(dev->driver->driver_features & DRIVER_GEM))
  925. return -ENODEV;
  926. /* Only handle setting domains to types used by the CPU. */
  927. if (write_domain & I915_GEM_GPU_DOMAINS)
  928. return -EINVAL;
  929. if (read_domains & I915_GEM_GPU_DOMAINS)
  930. return -EINVAL;
  931. /* Having something in the write domain implies it's in the read
  932. * domain, and only that read domain. Enforce that in the request.
  933. */
  934. if (write_domain != 0 && read_domains != write_domain)
  935. return -EINVAL;
  936. ret = i915_mutex_lock_interruptible(dev);
  937. if (ret)
  938. return ret;
  939. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  940. if (obj == NULL) {
  941. ret = -ENOENT;
  942. goto unlock;
  943. }
  944. obj_priv = to_intel_bo(obj);
  945. intel_mark_busy(dev, obj);
  946. if (read_domains & I915_GEM_DOMAIN_GTT) {
  947. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  948. /* Update the LRU on the fence for the CPU access that's
  949. * about to occur.
  950. */
  951. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  952. struct drm_i915_fence_reg *reg =
  953. &dev_priv->fence_regs[obj_priv->fence_reg];
  954. list_move_tail(&reg->lru_list,
  955. &dev_priv->mm.fence_list);
  956. }
  957. /* Silently promote "you're not bound, there was nothing to do"
  958. * to success, since the client was just asking us to
  959. * make sure everything was done.
  960. */
  961. if (ret == -EINVAL)
  962. ret = 0;
  963. } else {
  964. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  965. }
  966. /* Maintain LRU order of "inactive" objects */
  967. if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
  968. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
  969. drm_gem_object_unreference(obj);
  970. unlock:
  971. mutex_unlock(&dev->struct_mutex);
  972. return ret;
  973. }
  974. /**
  975. * Called when user space has done writes to this buffer
  976. */
  977. int
  978. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  979. struct drm_file *file_priv)
  980. {
  981. struct drm_i915_gem_sw_finish *args = data;
  982. struct drm_gem_object *obj;
  983. int ret = 0;
  984. if (!(dev->driver->driver_features & DRIVER_GEM))
  985. return -ENODEV;
  986. ret = i915_mutex_lock_interruptible(dev);
  987. if (ret)
  988. return ret;
  989. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  990. if (obj == NULL) {
  991. ret = -ENOENT;
  992. goto unlock;
  993. }
  994. /* Pinned buffers may be scanout, so flush the cache */
  995. if (to_intel_bo(obj)->pin_count)
  996. i915_gem_object_flush_cpu_write_domain(obj);
  997. drm_gem_object_unreference(obj);
  998. unlock:
  999. mutex_unlock(&dev->struct_mutex);
  1000. return ret;
  1001. }
  1002. /**
  1003. * Maps the contents of an object, returning the address it is mapped
  1004. * into.
  1005. *
  1006. * While the mapping holds a reference on the contents of the object, it doesn't
  1007. * imply a ref on the object itself.
  1008. */
  1009. int
  1010. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  1011. struct drm_file *file_priv)
  1012. {
  1013. struct drm_i915_gem_mmap *args = data;
  1014. struct drm_gem_object *obj;
  1015. loff_t offset;
  1016. unsigned long addr;
  1017. if (!(dev->driver->driver_features & DRIVER_GEM))
  1018. return -ENODEV;
  1019. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  1020. if (obj == NULL)
  1021. return -ENOENT;
  1022. offset = args->offset;
  1023. down_write(&current->mm->mmap_sem);
  1024. addr = do_mmap(obj->filp, 0, args->size,
  1025. PROT_READ | PROT_WRITE, MAP_SHARED,
  1026. args->offset);
  1027. up_write(&current->mm->mmap_sem);
  1028. drm_gem_object_unreference_unlocked(obj);
  1029. if (IS_ERR((void *)addr))
  1030. return addr;
  1031. args->addr_ptr = (uint64_t) addr;
  1032. return 0;
  1033. }
  1034. /**
  1035. * i915_gem_fault - fault a page into the GTT
  1036. * vma: VMA in question
  1037. * vmf: fault info
  1038. *
  1039. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  1040. * from userspace. The fault handler takes care of binding the object to
  1041. * the GTT (if needed), allocating and programming a fence register (again,
  1042. * only if needed based on whether the old reg is still valid or the object
  1043. * is tiled) and inserting a new PTE into the faulting process.
  1044. *
  1045. * Note that the faulting process may involve evicting existing objects
  1046. * from the GTT and/or fence registers to make room. So performance may
  1047. * suffer if the GTT working set is large or there are few fence registers
  1048. * left.
  1049. */
  1050. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1051. {
  1052. struct drm_gem_object *obj = vma->vm_private_data;
  1053. struct drm_device *dev = obj->dev;
  1054. drm_i915_private_t *dev_priv = dev->dev_private;
  1055. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1056. pgoff_t page_offset;
  1057. unsigned long pfn;
  1058. int ret = 0;
  1059. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  1060. /* We don't use vmf->pgoff since that has the fake offset */
  1061. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  1062. PAGE_SHIFT;
  1063. /* Now bind it into the GTT if needed */
  1064. mutex_lock(&dev->struct_mutex);
  1065. if (!obj_priv->gtt_space) {
  1066. ret = i915_gem_object_bind_to_gtt(obj, 0, true);
  1067. if (ret)
  1068. goto unlock;
  1069. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  1070. if (ret)
  1071. goto unlock;
  1072. }
  1073. /* Need a new fence register? */
  1074. if (obj_priv->tiling_mode != I915_TILING_NONE) {
  1075. ret = i915_gem_object_get_fence_reg(obj, true);
  1076. if (ret)
  1077. goto unlock;
  1078. }
  1079. if (i915_gem_object_is_inactive(obj_priv))
  1080. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
  1081. pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
  1082. page_offset;
  1083. /* Finally, remap it using the new GTT offset */
  1084. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  1085. unlock:
  1086. mutex_unlock(&dev->struct_mutex);
  1087. switch (ret) {
  1088. case 0:
  1089. case -ERESTARTSYS:
  1090. return VM_FAULT_NOPAGE;
  1091. case -ENOMEM:
  1092. case -EAGAIN:
  1093. return VM_FAULT_OOM;
  1094. default:
  1095. return VM_FAULT_SIGBUS;
  1096. }
  1097. }
  1098. /**
  1099. * i915_gem_create_mmap_offset - create a fake mmap offset for an object
  1100. * @obj: obj in question
  1101. *
  1102. * GEM memory mapping works by handing back to userspace a fake mmap offset
  1103. * it can use in a subsequent mmap(2) call. The DRM core code then looks
  1104. * up the object based on the offset and sets up the various memory mapping
  1105. * structures.
  1106. *
  1107. * This routine allocates and attaches a fake offset for @obj.
  1108. */
  1109. static int
  1110. i915_gem_create_mmap_offset(struct drm_gem_object *obj)
  1111. {
  1112. struct drm_device *dev = obj->dev;
  1113. struct drm_gem_mm *mm = dev->mm_private;
  1114. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1115. struct drm_map_list *list;
  1116. struct drm_local_map *map;
  1117. int ret = 0;
  1118. /* Set the object up for mmap'ing */
  1119. list = &obj->map_list;
  1120. list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
  1121. if (!list->map)
  1122. return -ENOMEM;
  1123. map = list->map;
  1124. map->type = _DRM_GEM;
  1125. map->size = obj->size;
  1126. map->handle = obj;
  1127. /* Get a DRM GEM mmap offset allocated... */
  1128. list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
  1129. obj->size / PAGE_SIZE, 0, 0);
  1130. if (!list->file_offset_node) {
  1131. DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
  1132. ret = -ENOSPC;
  1133. goto out_free_list;
  1134. }
  1135. list->file_offset_node = drm_mm_get_block(list->file_offset_node,
  1136. obj->size / PAGE_SIZE, 0);
  1137. if (!list->file_offset_node) {
  1138. ret = -ENOMEM;
  1139. goto out_free_list;
  1140. }
  1141. list->hash.key = list->file_offset_node->start;
  1142. ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
  1143. if (ret) {
  1144. DRM_ERROR("failed to add to map hash\n");
  1145. goto out_free_mm;
  1146. }
  1147. /* By now we should be all set, any drm_mmap request on the offset
  1148. * below will get to our mmap & fault handler */
  1149. obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
  1150. return 0;
  1151. out_free_mm:
  1152. drm_mm_put_block(list->file_offset_node);
  1153. out_free_list:
  1154. kfree(list->map);
  1155. return ret;
  1156. }
  1157. /**
  1158. * i915_gem_release_mmap - remove physical page mappings
  1159. * @obj: obj in question
  1160. *
  1161. * Preserve the reservation of the mmapping with the DRM core code, but
  1162. * relinquish ownership of the pages back to the system.
  1163. *
  1164. * It is vital that we remove the page mapping if we have mapped a tiled
  1165. * object through the GTT and then lose the fence register due to
  1166. * resource pressure. Similarly if the object has been moved out of the
  1167. * aperture, than pages mapped into userspace must be revoked. Removing the
  1168. * mapping will then trigger a page fault on the next user access, allowing
  1169. * fixup by i915_gem_fault().
  1170. */
  1171. void
  1172. i915_gem_release_mmap(struct drm_gem_object *obj)
  1173. {
  1174. struct drm_device *dev = obj->dev;
  1175. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1176. if (dev->dev_mapping)
  1177. unmap_mapping_range(dev->dev_mapping,
  1178. obj_priv->mmap_offset, obj->size, 1);
  1179. }
  1180. static void
  1181. i915_gem_free_mmap_offset(struct drm_gem_object *obj)
  1182. {
  1183. struct drm_device *dev = obj->dev;
  1184. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1185. struct drm_gem_mm *mm = dev->mm_private;
  1186. struct drm_map_list *list;
  1187. list = &obj->map_list;
  1188. drm_ht_remove_item(&mm->offset_hash, &list->hash);
  1189. if (list->file_offset_node) {
  1190. drm_mm_put_block(list->file_offset_node);
  1191. list->file_offset_node = NULL;
  1192. }
  1193. if (list->map) {
  1194. kfree(list->map);
  1195. list->map = NULL;
  1196. }
  1197. obj_priv->mmap_offset = 0;
  1198. }
  1199. /**
  1200. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1201. * @obj: object to check
  1202. *
  1203. * Return the required GTT alignment for an object, taking into account
  1204. * potential fence register mapping if needed.
  1205. */
  1206. static uint32_t
  1207. i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
  1208. {
  1209. struct drm_device *dev = obj->dev;
  1210. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1211. int start, i;
  1212. /*
  1213. * Minimum alignment is 4k (GTT page size), but might be greater
  1214. * if a fence register is needed for the object.
  1215. */
  1216. if (INTEL_INFO(dev)->gen >= 4 || obj_priv->tiling_mode == I915_TILING_NONE)
  1217. return 4096;
  1218. /*
  1219. * Previous chips need to be aligned to the size of the smallest
  1220. * fence register that can contain the object.
  1221. */
  1222. if (INTEL_INFO(dev)->gen == 3)
  1223. start = 1024*1024;
  1224. else
  1225. start = 512*1024;
  1226. for (i = start; i < obj->size; i <<= 1)
  1227. ;
  1228. return i;
  1229. }
  1230. /**
  1231. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1232. * @dev: DRM device
  1233. * @data: GTT mapping ioctl data
  1234. * @file_priv: GEM object info
  1235. *
  1236. * Simply returns the fake offset to userspace so it can mmap it.
  1237. * The mmap call will end up in drm_gem_mmap(), which will set things
  1238. * up so we can get faults in the handler above.
  1239. *
  1240. * The fault handler will take care of binding the object into the GTT
  1241. * (since it may have been evicted to make room for something), allocating
  1242. * a fence register, and mapping the appropriate aperture address into
  1243. * userspace.
  1244. */
  1245. int
  1246. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1247. struct drm_file *file_priv)
  1248. {
  1249. struct drm_i915_gem_mmap_gtt *args = data;
  1250. struct drm_gem_object *obj;
  1251. struct drm_i915_gem_object *obj_priv;
  1252. int ret;
  1253. if (!(dev->driver->driver_features & DRIVER_GEM))
  1254. return -ENODEV;
  1255. ret = i915_mutex_lock_interruptible(dev);
  1256. if (ret)
  1257. return ret;
  1258. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  1259. if (obj == NULL) {
  1260. ret = -ENOENT;
  1261. goto unlock;
  1262. }
  1263. obj_priv = to_intel_bo(obj);
  1264. if (obj_priv->madv != I915_MADV_WILLNEED) {
  1265. DRM_ERROR("Attempting to mmap a purgeable buffer\n");
  1266. ret = -EINVAL;
  1267. goto out;
  1268. }
  1269. if (!obj_priv->mmap_offset) {
  1270. ret = i915_gem_create_mmap_offset(obj);
  1271. if (ret)
  1272. goto out;
  1273. }
  1274. args->offset = obj_priv->mmap_offset;
  1275. /*
  1276. * Pull it into the GTT so that we have a page list (makes the
  1277. * initial fault faster and any subsequent flushing possible).
  1278. */
  1279. if (!obj_priv->agp_mem) {
  1280. ret = i915_gem_object_bind_to_gtt(obj, 0, true);
  1281. if (ret)
  1282. goto out;
  1283. }
  1284. out:
  1285. drm_gem_object_unreference(obj);
  1286. unlock:
  1287. mutex_unlock(&dev->struct_mutex);
  1288. return ret;
  1289. }
  1290. static void
  1291. i915_gem_object_put_pages(struct drm_gem_object *obj)
  1292. {
  1293. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1294. int page_count = obj->size / PAGE_SIZE;
  1295. int i;
  1296. BUG_ON(obj_priv->pages_refcount == 0);
  1297. BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
  1298. if (--obj_priv->pages_refcount != 0)
  1299. return;
  1300. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1301. i915_gem_object_save_bit_17_swizzle(obj);
  1302. if (obj_priv->madv == I915_MADV_DONTNEED)
  1303. obj_priv->dirty = 0;
  1304. for (i = 0; i < page_count; i++) {
  1305. if (obj_priv->dirty)
  1306. set_page_dirty(obj_priv->pages[i]);
  1307. if (obj_priv->madv == I915_MADV_WILLNEED)
  1308. mark_page_accessed(obj_priv->pages[i]);
  1309. page_cache_release(obj_priv->pages[i]);
  1310. }
  1311. obj_priv->dirty = 0;
  1312. drm_free_large(obj_priv->pages);
  1313. obj_priv->pages = NULL;
  1314. }
  1315. static uint32_t
  1316. i915_gem_next_request_seqno(struct drm_device *dev,
  1317. struct intel_ring_buffer *ring)
  1318. {
  1319. drm_i915_private_t *dev_priv = dev->dev_private;
  1320. ring->outstanding_lazy_request = true;
  1321. return dev_priv->next_seqno;
  1322. }
  1323. static void
  1324. i915_gem_object_move_to_active(struct drm_gem_object *obj,
  1325. struct intel_ring_buffer *ring)
  1326. {
  1327. struct drm_device *dev = obj->dev;
  1328. struct drm_i915_private *dev_priv = dev->dev_private;
  1329. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1330. uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
  1331. BUG_ON(ring == NULL);
  1332. obj_priv->ring = ring;
  1333. /* Add a reference if we're newly entering the active list. */
  1334. if (!obj_priv->active) {
  1335. drm_gem_object_reference(obj);
  1336. obj_priv->active = 1;
  1337. }
  1338. /* Move from whatever list we were on to the tail of execution. */
  1339. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.active_list);
  1340. list_move_tail(&obj_priv->ring_list, &ring->active_list);
  1341. obj_priv->last_rendering_seqno = seqno;
  1342. }
  1343. static void
  1344. i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
  1345. {
  1346. struct drm_device *dev = obj->dev;
  1347. drm_i915_private_t *dev_priv = dev->dev_private;
  1348. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1349. BUG_ON(!obj_priv->active);
  1350. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.flushing_list);
  1351. list_del_init(&obj_priv->ring_list);
  1352. obj_priv->last_rendering_seqno = 0;
  1353. }
  1354. /* Immediately discard the backing storage */
  1355. static void
  1356. i915_gem_object_truncate(struct drm_gem_object *obj)
  1357. {
  1358. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1359. struct inode *inode;
  1360. /* Our goal here is to return as much of the memory as
  1361. * is possible back to the system as we are called from OOM.
  1362. * To do this we must instruct the shmfs to drop all of its
  1363. * backing pages, *now*. Here we mirror the actions taken
  1364. * when by shmem_delete_inode() to release the backing store.
  1365. */
  1366. inode = obj->filp->f_path.dentry->d_inode;
  1367. truncate_inode_pages(inode->i_mapping, 0);
  1368. if (inode->i_op->truncate_range)
  1369. inode->i_op->truncate_range(inode, 0, (loff_t)-1);
  1370. obj_priv->madv = __I915_MADV_PURGED;
  1371. }
  1372. static inline int
  1373. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
  1374. {
  1375. return obj_priv->madv == I915_MADV_DONTNEED;
  1376. }
  1377. static void
  1378. i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
  1379. {
  1380. struct drm_device *dev = obj->dev;
  1381. drm_i915_private_t *dev_priv = dev->dev_private;
  1382. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1383. if (obj_priv->pin_count != 0)
  1384. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.pinned_list);
  1385. else
  1386. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
  1387. list_del_init(&obj_priv->ring_list);
  1388. BUG_ON(!list_empty(&obj_priv->gpu_write_list));
  1389. obj_priv->last_rendering_seqno = 0;
  1390. obj_priv->ring = NULL;
  1391. if (obj_priv->active) {
  1392. obj_priv->active = 0;
  1393. drm_gem_object_unreference(obj);
  1394. }
  1395. WARN_ON(i915_verify_lists(dev));
  1396. }
  1397. static void
  1398. i915_gem_process_flushing_list(struct drm_device *dev,
  1399. uint32_t flush_domains,
  1400. struct intel_ring_buffer *ring)
  1401. {
  1402. drm_i915_private_t *dev_priv = dev->dev_private;
  1403. struct drm_i915_gem_object *obj_priv, *next;
  1404. list_for_each_entry_safe(obj_priv, next,
  1405. &ring->gpu_write_list,
  1406. gpu_write_list) {
  1407. struct drm_gem_object *obj = &obj_priv->base;
  1408. if (obj->write_domain & flush_domains) {
  1409. uint32_t old_write_domain = obj->write_domain;
  1410. obj->write_domain = 0;
  1411. list_del_init(&obj_priv->gpu_write_list);
  1412. i915_gem_object_move_to_active(obj, ring);
  1413. /* update the fence lru list */
  1414. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  1415. struct drm_i915_fence_reg *reg =
  1416. &dev_priv->fence_regs[obj_priv->fence_reg];
  1417. list_move_tail(&reg->lru_list,
  1418. &dev_priv->mm.fence_list);
  1419. }
  1420. trace_i915_gem_object_change_domain(obj,
  1421. obj->read_domains,
  1422. old_write_domain);
  1423. }
  1424. }
  1425. }
  1426. int
  1427. i915_add_request(struct drm_device *dev,
  1428. struct drm_file *file,
  1429. struct drm_i915_gem_request *request,
  1430. struct intel_ring_buffer *ring)
  1431. {
  1432. drm_i915_private_t *dev_priv = dev->dev_private;
  1433. struct drm_i915_file_private *file_priv = NULL;
  1434. uint32_t seqno;
  1435. int was_empty;
  1436. int ret;
  1437. BUG_ON(request == NULL);
  1438. if (file != NULL)
  1439. file_priv = file->driver_priv;
  1440. ret = ring->add_request(ring, &seqno);
  1441. if (ret)
  1442. return ret;
  1443. ring->outstanding_lazy_request = false;
  1444. request->seqno = seqno;
  1445. request->ring = ring;
  1446. request->emitted_jiffies = jiffies;
  1447. was_empty = list_empty(&ring->request_list);
  1448. list_add_tail(&request->list, &ring->request_list);
  1449. if (file_priv) {
  1450. spin_lock(&file_priv->mm.lock);
  1451. request->file_priv = file_priv;
  1452. list_add_tail(&request->client_list,
  1453. &file_priv->mm.request_list);
  1454. spin_unlock(&file_priv->mm.lock);
  1455. }
  1456. if (!dev_priv->mm.suspended) {
  1457. mod_timer(&dev_priv->hangcheck_timer,
  1458. jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
  1459. if (was_empty)
  1460. queue_delayed_work(dev_priv->wq,
  1461. &dev_priv->mm.retire_work, HZ);
  1462. }
  1463. return 0;
  1464. }
  1465. /**
  1466. * Command execution barrier
  1467. *
  1468. * Ensures that all commands in the ring are finished
  1469. * before signalling the CPU
  1470. */
  1471. static void
  1472. i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
  1473. {
  1474. uint32_t flush_domains = 0;
  1475. /* The sampler always gets flushed on i965 (sigh) */
  1476. if (INTEL_INFO(dev)->gen >= 4)
  1477. flush_domains |= I915_GEM_DOMAIN_SAMPLER;
  1478. ring->flush(ring, I915_GEM_DOMAIN_COMMAND, flush_domains);
  1479. }
  1480. static inline void
  1481. i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
  1482. {
  1483. struct drm_i915_file_private *file_priv = request->file_priv;
  1484. if (!file_priv)
  1485. return;
  1486. spin_lock(&file_priv->mm.lock);
  1487. list_del(&request->client_list);
  1488. request->file_priv = NULL;
  1489. spin_unlock(&file_priv->mm.lock);
  1490. }
  1491. static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
  1492. struct intel_ring_buffer *ring)
  1493. {
  1494. while (!list_empty(&ring->request_list)) {
  1495. struct drm_i915_gem_request *request;
  1496. request = list_first_entry(&ring->request_list,
  1497. struct drm_i915_gem_request,
  1498. list);
  1499. list_del(&request->list);
  1500. i915_gem_request_remove_from_client(request);
  1501. kfree(request);
  1502. }
  1503. while (!list_empty(&ring->active_list)) {
  1504. struct drm_i915_gem_object *obj_priv;
  1505. obj_priv = list_first_entry(&ring->active_list,
  1506. struct drm_i915_gem_object,
  1507. ring_list);
  1508. obj_priv->base.write_domain = 0;
  1509. list_del_init(&obj_priv->gpu_write_list);
  1510. i915_gem_object_move_to_inactive(&obj_priv->base);
  1511. }
  1512. }
  1513. void i915_gem_reset(struct drm_device *dev)
  1514. {
  1515. struct drm_i915_private *dev_priv = dev->dev_private;
  1516. struct drm_i915_gem_object *obj_priv;
  1517. int i;
  1518. i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
  1519. i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);
  1520. i915_gem_reset_ring_lists(dev_priv, &dev_priv->blt_ring);
  1521. /* Remove anything from the flushing lists. The GPU cache is likely
  1522. * to be lost on reset along with the data, so simply move the
  1523. * lost bo to the inactive list.
  1524. */
  1525. while (!list_empty(&dev_priv->mm.flushing_list)) {
  1526. obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
  1527. struct drm_i915_gem_object,
  1528. mm_list);
  1529. obj_priv->base.write_domain = 0;
  1530. list_del_init(&obj_priv->gpu_write_list);
  1531. i915_gem_object_move_to_inactive(&obj_priv->base);
  1532. }
  1533. /* Move everything out of the GPU domains to ensure we do any
  1534. * necessary invalidation upon reuse.
  1535. */
  1536. list_for_each_entry(obj_priv,
  1537. &dev_priv->mm.inactive_list,
  1538. mm_list)
  1539. {
  1540. obj_priv->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  1541. }
  1542. /* The fence registers are invalidated so clear them out */
  1543. for (i = 0; i < 16; i++) {
  1544. struct drm_i915_fence_reg *reg;
  1545. reg = &dev_priv->fence_regs[i];
  1546. if (!reg->obj)
  1547. continue;
  1548. i915_gem_clear_fence_reg(reg->obj);
  1549. }
  1550. }
  1551. /**
  1552. * This function clears the request list as sequence numbers are passed.
  1553. */
  1554. static void
  1555. i915_gem_retire_requests_ring(struct drm_device *dev,
  1556. struct intel_ring_buffer *ring)
  1557. {
  1558. drm_i915_private_t *dev_priv = dev->dev_private;
  1559. uint32_t seqno;
  1560. if (!ring->status_page.page_addr ||
  1561. list_empty(&ring->request_list))
  1562. return;
  1563. WARN_ON(i915_verify_lists(dev));
  1564. seqno = ring->get_seqno(ring);
  1565. while (!list_empty(&ring->request_list)) {
  1566. struct drm_i915_gem_request *request;
  1567. request = list_first_entry(&ring->request_list,
  1568. struct drm_i915_gem_request,
  1569. list);
  1570. if (!i915_seqno_passed(seqno, request->seqno))
  1571. break;
  1572. trace_i915_gem_request_retire(dev, request->seqno);
  1573. list_del(&request->list);
  1574. i915_gem_request_remove_from_client(request);
  1575. kfree(request);
  1576. }
  1577. /* Move any buffers on the active list that are no longer referenced
  1578. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1579. */
  1580. while (!list_empty(&ring->active_list)) {
  1581. struct drm_gem_object *obj;
  1582. struct drm_i915_gem_object *obj_priv;
  1583. obj_priv = list_first_entry(&ring->active_list,
  1584. struct drm_i915_gem_object,
  1585. ring_list);
  1586. if (!i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
  1587. break;
  1588. obj = &obj_priv->base;
  1589. if (obj->write_domain != 0)
  1590. i915_gem_object_move_to_flushing(obj);
  1591. else
  1592. i915_gem_object_move_to_inactive(obj);
  1593. }
  1594. if (unlikely (dev_priv->trace_irq_seqno &&
  1595. i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
  1596. ring->user_irq_put(ring);
  1597. dev_priv->trace_irq_seqno = 0;
  1598. }
  1599. WARN_ON(i915_verify_lists(dev));
  1600. }
  1601. void
  1602. i915_gem_retire_requests(struct drm_device *dev)
  1603. {
  1604. drm_i915_private_t *dev_priv = dev->dev_private;
  1605. if (!list_empty(&dev_priv->mm.deferred_free_list)) {
  1606. struct drm_i915_gem_object *obj_priv, *tmp;
  1607. /* We must be careful that during unbind() we do not
  1608. * accidentally infinitely recurse into retire requests.
  1609. * Currently:
  1610. * retire -> free -> unbind -> wait -> retire_ring
  1611. */
  1612. list_for_each_entry_safe(obj_priv, tmp,
  1613. &dev_priv->mm.deferred_free_list,
  1614. mm_list)
  1615. i915_gem_free_object_tail(&obj_priv->base);
  1616. }
  1617. i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
  1618. i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
  1619. i915_gem_retire_requests_ring(dev, &dev_priv->blt_ring);
  1620. }
  1621. static void
  1622. i915_gem_retire_work_handler(struct work_struct *work)
  1623. {
  1624. drm_i915_private_t *dev_priv;
  1625. struct drm_device *dev;
  1626. dev_priv = container_of(work, drm_i915_private_t,
  1627. mm.retire_work.work);
  1628. dev = dev_priv->dev;
  1629. /* Come back later if the device is busy... */
  1630. if (!mutex_trylock(&dev->struct_mutex)) {
  1631. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1632. return;
  1633. }
  1634. i915_gem_retire_requests(dev);
  1635. if (!dev_priv->mm.suspended &&
  1636. (!list_empty(&dev_priv->render_ring.request_list) ||
  1637. !list_empty(&dev_priv->bsd_ring.request_list) ||
  1638. !list_empty(&dev_priv->blt_ring.request_list)))
  1639. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1640. mutex_unlock(&dev->struct_mutex);
  1641. }
  1642. int
  1643. i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
  1644. bool interruptible, struct intel_ring_buffer *ring)
  1645. {
  1646. drm_i915_private_t *dev_priv = dev->dev_private;
  1647. u32 ier;
  1648. int ret = 0;
  1649. BUG_ON(seqno == 0);
  1650. if (atomic_read(&dev_priv->mm.wedged))
  1651. return -EAGAIN;
  1652. if (ring->outstanding_lazy_request) {
  1653. struct drm_i915_gem_request *request;
  1654. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1655. if (request == NULL)
  1656. return -ENOMEM;
  1657. ret = i915_add_request(dev, NULL, request, ring);
  1658. if (ret) {
  1659. kfree(request);
  1660. return ret;
  1661. }
  1662. seqno = request->seqno;
  1663. }
  1664. BUG_ON(seqno == dev_priv->next_seqno);
  1665. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  1666. if (HAS_PCH_SPLIT(dev))
  1667. ier = I915_READ(DEIER) | I915_READ(GTIER);
  1668. else
  1669. ier = I915_READ(IER);
  1670. if (!ier) {
  1671. DRM_ERROR("something (likely vbetool) disabled "
  1672. "interrupts, re-enabling\n");
  1673. i915_driver_irq_preinstall(dev);
  1674. i915_driver_irq_postinstall(dev);
  1675. }
  1676. trace_i915_gem_request_wait_begin(dev, seqno);
  1677. ring->waiting_seqno = seqno;
  1678. ring->user_irq_get(ring);
  1679. if (interruptible)
  1680. ret = wait_event_interruptible(ring->irq_queue,
  1681. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1682. || atomic_read(&dev_priv->mm.wedged));
  1683. else
  1684. wait_event(ring->irq_queue,
  1685. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1686. || atomic_read(&dev_priv->mm.wedged));
  1687. ring->user_irq_put(ring);
  1688. ring->waiting_seqno = 0;
  1689. trace_i915_gem_request_wait_end(dev, seqno);
  1690. }
  1691. if (atomic_read(&dev_priv->mm.wedged))
  1692. ret = -EAGAIN;
  1693. if (ret && ret != -ERESTARTSYS)
  1694. DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
  1695. __func__, ret, seqno, ring->get_seqno(ring),
  1696. dev_priv->next_seqno);
  1697. /* Directly dispatch request retiring. While we have the work queue
  1698. * to handle this, the waiter on a request often wants an associated
  1699. * buffer to have made it to the inactive list, and we would need
  1700. * a separate wait queue to handle that.
  1701. */
  1702. if (ret == 0)
  1703. i915_gem_retire_requests_ring(dev, ring);
  1704. return ret;
  1705. }
  1706. /**
  1707. * Waits for a sequence number to be signaled, and cleans up the
  1708. * request and object lists appropriately for that event.
  1709. */
  1710. static int
  1711. i915_wait_request(struct drm_device *dev, uint32_t seqno,
  1712. struct intel_ring_buffer *ring)
  1713. {
  1714. return i915_do_wait_request(dev, seqno, 1, ring);
  1715. }
  1716. static void
  1717. i915_gem_flush_ring(struct drm_device *dev,
  1718. struct drm_file *file_priv,
  1719. struct intel_ring_buffer *ring,
  1720. uint32_t invalidate_domains,
  1721. uint32_t flush_domains)
  1722. {
  1723. ring->flush(ring, invalidate_domains, flush_domains);
  1724. i915_gem_process_flushing_list(dev, flush_domains, ring);
  1725. }
  1726. static void
  1727. i915_gem_flush(struct drm_device *dev,
  1728. struct drm_file *file_priv,
  1729. uint32_t invalidate_domains,
  1730. uint32_t flush_domains,
  1731. uint32_t flush_rings)
  1732. {
  1733. drm_i915_private_t *dev_priv = dev->dev_private;
  1734. if (flush_domains & I915_GEM_DOMAIN_CPU)
  1735. drm_agp_chipset_flush(dev);
  1736. if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
  1737. if (flush_rings & RING_RENDER)
  1738. i915_gem_flush_ring(dev, file_priv,
  1739. &dev_priv->render_ring,
  1740. invalidate_domains, flush_domains);
  1741. if (flush_rings & RING_BSD)
  1742. i915_gem_flush_ring(dev, file_priv,
  1743. &dev_priv->bsd_ring,
  1744. invalidate_domains, flush_domains);
  1745. if (flush_rings & RING_BLT)
  1746. i915_gem_flush_ring(dev, file_priv,
  1747. &dev_priv->blt_ring,
  1748. invalidate_domains, flush_domains);
  1749. }
  1750. }
  1751. /**
  1752. * Ensures that all rendering to the object has completed and the object is
  1753. * safe to unbind from the GTT or access from the CPU.
  1754. */
  1755. static int
  1756. i915_gem_object_wait_rendering(struct drm_gem_object *obj,
  1757. bool interruptible)
  1758. {
  1759. struct drm_device *dev = obj->dev;
  1760. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1761. int ret;
  1762. /* This function only exists to support waiting for existing rendering,
  1763. * not for emitting required flushes.
  1764. */
  1765. BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1766. /* If there is rendering queued on the buffer being evicted, wait for
  1767. * it.
  1768. */
  1769. if (obj_priv->active) {
  1770. ret = i915_do_wait_request(dev,
  1771. obj_priv->last_rendering_seqno,
  1772. interruptible,
  1773. obj_priv->ring);
  1774. if (ret)
  1775. return ret;
  1776. }
  1777. return 0;
  1778. }
  1779. /**
  1780. * Unbinds an object from the GTT aperture.
  1781. */
  1782. int
  1783. i915_gem_object_unbind(struct drm_gem_object *obj)
  1784. {
  1785. struct drm_device *dev = obj->dev;
  1786. struct drm_i915_private *dev_priv = dev->dev_private;
  1787. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1788. int ret = 0;
  1789. if (obj_priv->gtt_space == NULL)
  1790. return 0;
  1791. if (obj_priv->pin_count != 0) {
  1792. DRM_ERROR("Attempting to unbind pinned buffer\n");
  1793. return -EINVAL;
  1794. }
  1795. /* blow away mappings if mapped through GTT */
  1796. i915_gem_release_mmap(obj);
  1797. /* Move the object to the CPU domain to ensure that
  1798. * any possible CPU writes while it's not in the GTT
  1799. * are flushed when we go to remap it. This will
  1800. * also ensure that all pending GPU writes are finished
  1801. * before we unbind.
  1802. */
  1803. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1804. if (ret == -ERESTARTSYS)
  1805. return ret;
  1806. /* Continue on if we fail due to EIO, the GPU is hung so we
  1807. * should be safe and we need to cleanup or else we might
  1808. * cause memory corruption through use-after-free.
  1809. */
  1810. if (ret) {
  1811. i915_gem_clflush_object(obj);
  1812. obj->read_domains = obj->write_domain = I915_GEM_DOMAIN_CPU;
  1813. }
  1814. /* release the fence reg _after_ flushing */
  1815. if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
  1816. i915_gem_clear_fence_reg(obj);
  1817. drm_unbind_agp(obj_priv->agp_mem);
  1818. drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
  1819. i915_gem_object_put_pages(obj);
  1820. BUG_ON(obj_priv->pages_refcount);
  1821. i915_gem_info_remove_gtt(dev_priv, obj->size);
  1822. list_del_init(&obj_priv->mm_list);
  1823. drm_mm_put_block(obj_priv->gtt_space);
  1824. obj_priv->gtt_space = NULL;
  1825. obj_priv->gtt_offset = 0;
  1826. if (i915_gem_object_is_purgeable(obj_priv))
  1827. i915_gem_object_truncate(obj);
  1828. trace_i915_gem_object_unbind(obj);
  1829. return ret;
  1830. }
  1831. static int i915_ring_idle(struct drm_device *dev,
  1832. struct intel_ring_buffer *ring)
  1833. {
  1834. if (list_empty(&ring->gpu_write_list))
  1835. return 0;
  1836. i915_gem_flush_ring(dev, NULL, ring,
  1837. I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  1838. return i915_wait_request(dev,
  1839. i915_gem_next_request_seqno(dev, ring),
  1840. ring);
  1841. }
  1842. int
  1843. i915_gpu_idle(struct drm_device *dev)
  1844. {
  1845. drm_i915_private_t *dev_priv = dev->dev_private;
  1846. bool lists_empty;
  1847. int ret;
  1848. lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
  1849. list_empty(&dev_priv->render_ring.active_list) &&
  1850. list_empty(&dev_priv->bsd_ring.active_list) &&
  1851. list_empty(&dev_priv->blt_ring.active_list));
  1852. if (lists_empty)
  1853. return 0;
  1854. /* Flush everything onto the inactive list. */
  1855. ret = i915_ring_idle(dev, &dev_priv->render_ring);
  1856. if (ret)
  1857. return ret;
  1858. ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
  1859. if (ret)
  1860. return ret;
  1861. ret = i915_ring_idle(dev, &dev_priv->blt_ring);
  1862. if (ret)
  1863. return ret;
  1864. return 0;
  1865. }
  1866. static int
  1867. i915_gem_object_get_pages(struct drm_gem_object *obj,
  1868. gfp_t gfpmask)
  1869. {
  1870. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1871. int page_count, i;
  1872. struct address_space *mapping;
  1873. struct inode *inode;
  1874. struct page *page;
  1875. BUG_ON(obj_priv->pages_refcount
  1876. == DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);
  1877. if (obj_priv->pages_refcount++ != 0)
  1878. return 0;
  1879. /* Get the list of pages out of our struct file. They'll be pinned
  1880. * at this point until we release them.
  1881. */
  1882. page_count = obj->size / PAGE_SIZE;
  1883. BUG_ON(obj_priv->pages != NULL);
  1884. obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
  1885. if (obj_priv->pages == NULL) {
  1886. obj_priv->pages_refcount--;
  1887. return -ENOMEM;
  1888. }
  1889. inode = obj->filp->f_path.dentry->d_inode;
  1890. mapping = inode->i_mapping;
  1891. for (i = 0; i < page_count; i++) {
  1892. page = read_cache_page_gfp(mapping, i,
  1893. GFP_HIGHUSER |
  1894. __GFP_COLD |
  1895. __GFP_RECLAIMABLE |
  1896. gfpmask);
  1897. if (IS_ERR(page))
  1898. goto err_pages;
  1899. obj_priv->pages[i] = page;
  1900. }
  1901. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1902. i915_gem_object_do_bit_17_swizzle(obj);
  1903. return 0;
  1904. err_pages:
  1905. while (i--)
  1906. page_cache_release(obj_priv->pages[i]);
  1907. drm_free_large(obj_priv->pages);
  1908. obj_priv->pages = NULL;
  1909. obj_priv->pages_refcount--;
  1910. return PTR_ERR(page);
  1911. }
  1912. static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
  1913. {
  1914. struct drm_gem_object *obj = reg->obj;
  1915. struct drm_device *dev = obj->dev;
  1916. drm_i915_private_t *dev_priv = dev->dev_private;
  1917. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1918. int regnum = obj_priv->fence_reg;
  1919. uint64_t val;
  1920. val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
  1921. 0xfffff000) << 32;
  1922. val |= obj_priv->gtt_offset & 0xfffff000;
  1923. val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
  1924. SANDYBRIDGE_FENCE_PITCH_SHIFT;
  1925. if (obj_priv->tiling_mode == I915_TILING_Y)
  1926. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1927. val |= I965_FENCE_REG_VALID;
  1928. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
  1929. }
  1930. static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
  1931. {
  1932. struct drm_gem_object *obj = reg->obj;
  1933. struct drm_device *dev = obj->dev;
  1934. drm_i915_private_t *dev_priv = dev->dev_private;
  1935. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1936. int regnum = obj_priv->fence_reg;
  1937. uint64_t val;
  1938. val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
  1939. 0xfffff000) << 32;
  1940. val |= obj_priv->gtt_offset & 0xfffff000;
  1941. val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  1942. if (obj_priv->tiling_mode == I915_TILING_Y)
  1943. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1944. val |= I965_FENCE_REG_VALID;
  1945. I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
  1946. }
  1947. static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
  1948. {
  1949. struct drm_gem_object *obj = reg->obj;
  1950. struct drm_device *dev = obj->dev;
  1951. drm_i915_private_t *dev_priv = dev->dev_private;
  1952. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1953. int regnum = obj_priv->fence_reg;
  1954. int tile_width;
  1955. uint32_t fence_reg, val;
  1956. uint32_t pitch_val;
  1957. if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
  1958. (obj_priv->gtt_offset & (obj->size - 1))) {
  1959. WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
  1960. __func__, obj_priv->gtt_offset, obj->size);
  1961. return;
  1962. }
  1963. if (obj_priv->tiling_mode == I915_TILING_Y &&
  1964. HAS_128_BYTE_Y_TILING(dev))
  1965. tile_width = 128;
  1966. else
  1967. tile_width = 512;
  1968. /* Note: pitch better be a power of two tile widths */
  1969. pitch_val = obj_priv->stride / tile_width;
  1970. pitch_val = ffs(pitch_val) - 1;
  1971. if (obj_priv->tiling_mode == I915_TILING_Y &&
  1972. HAS_128_BYTE_Y_TILING(dev))
  1973. WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
  1974. else
  1975. WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
  1976. val = obj_priv->gtt_offset;
  1977. if (obj_priv->tiling_mode == I915_TILING_Y)
  1978. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1979. val |= I915_FENCE_SIZE_BITS(obj->size);
  1980. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1981. val |= I830_FENCE_REG_VALID;
  1982. if (regnum < 8)
  1983. fence_reg = FENCE_REG_830_0 + (regnum * 4);
  1984. else
  1985. fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
  1986. I915_WRITE(fence_reg, val);
  1987. }
  1988. static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
  1989. {
  1990. struct drm_gem_object *obj = reg->obj;
  1991. struct drm_device *dev = obj->dev;
  1992. drm_i915_private_t *dev_priv = dev->dev_private;
  1993. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1994. int regnum = obj_priv->fence_reg;
  1995. uint32_t val;
  1996. uint32_t pitch_val;
  1997. uint32_t fence_size_bits;
  1998. if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
  1999. (obj_priv->gtt_offset & (obj->size - 1))) {
  2000. WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
  2001. __func__, obj_priv->gtt_offset);
  2002. return;
  2003. }
  2004. pitch_val = obj_priv->stride / 128;
  2005. pitch_val = ffs(pitch_val) - 1;
  2006. WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
  2007. val = obj_priv->gtt_offset;
  2008. if (obj_priv->tiling_mode == I915_TILING_Y)
  2009. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  2010. fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
  2011. WARN_ON(fence_size_bits & ~0x00000f00);
  2012. val |= fence_size_bits;
  2013. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  2014. val |= I830_FENCE_REG_VALID;
  2015. I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
  2016. }
  2017. static int i915_find_fence_reg(struct drm_device *dev,
  2018. bool interruptible)
  2019. {
  2020. struct drm_i915_fence_reg *reg = NULL;
  2021. struct drm_i915_gem_object *obj_priv = NULL;
  2022. struct drm_i915_private *dev_priv = dev->dev_private;
  2023. struct drm_gem_object *obj = NULL;
  2024. int i, avail, ret;
  2025. /* First try to find a free reg */
  2026. avail = 0;
  2027. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  2028. reg = &dev_priv->fence_regs[i];
  2029. if (!reg->obj)
  2030. return i;
  2031. obj_priv = to_intel_bo(reg->obj);
  2032. if (!obj_priv->pin_count)
  2033. avail++;
  2034. }
  2035. if (avail == 0)
  2036. return -ENOSPC;
  2037. /* None available, try to steal one or wait for a user to finish */
  2038. i = I915_FENCE_REG_NONE;
  2039. list_for_each_entry(reg, &dev_priv->mm.fence_list,
  2040. lru_list) {
  2041. obj = reg->obj;
  2042. obj_priv = to_intel_bo(obj);
  2043. if (obj_priv->pin_count)
  2044. continue;
  2045. /* found one! */
  2046. i = obj_priv->fence_reg;
  2047. break;
  2048. }
  2049. BUG_ON(i == I915_FENCE_REG_NONE);
  2050. /* We only have a reference on obj from the active list. put_fence_reg
  2051. * might drop that one, causing a use-after-free in it. So hold a
  2052. * private reference to obj like the other callers of put_fence_reg
  2053. * (set_tiling ioctl) do. */
  2054. drm_gem_object_reference(obj);
  2055. ret = i915_gem_object_put_fence_reg(obj, interruptible);
  2056. drm_gem_object_unreference(obj);
  2057. if (ret != 0)
  2058. return ret;
  2059. return i;
  2060. }
  2061. /**
  2062. * i915_gem_object_get_fence_reg - set up a fence reg for an object
  2063. * @obj: object to map through a fence reg
  2064. *
  2065. * When mapping objects through the GTT, userspace wants to be able to write
  2066. * to them without having to worry about swizzling if the object is tiled.
  2067. *
  2068. * This function walks the fence regs looking for a free one for @obj,
  2069. * stealing one if it can't find any.
  2070. *
  2071. * It then sets up the reg based on the object's properties: address, pitch
  2072. * and tiling format.
  2073. */
  2074. int
  2075. i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
  2076. bool interruptible)
  2077. {
  2078. struct drm_device *dev = obj->dev;
  2079. struct drm_i915_private *dev_priv = dev->dev_private;
  2080. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2081. struct drm_i915_fence_reg *reg = NULL;
  2082. int ret;
  2083. /* Just update our place in the LRU if our fence is getting used. */
  2084. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  2085. reg = &dev_priv->fence_regs[obj_priv->fence_reg];
  2086. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2087. return 0;
  2088. }
  2089. switch (obj_priv->tiling_mode) {
  2090. case I915_TILING_NONE:
  2091. WARN(1, "allocating a fence for non-tiled object?\n");
  2092. break;
  2093. case I915_TILING_X:
  2094. if (!obj_priv->stride)
  2095. return -EINVAL;
  2096. WARN((obj_priv->stride & (512 - 1)),
  2097. "object 0x%08x is X tiled but has non-512B pitch\n",
  2098. obj_priv->gtt_offset);
  2099. break;
  2100. case I915_TILING_Y:
  2101. if (!obj_priv->stride)
  2102. return -EINVAL;
  2103. WARN((obj_priv->stride & (128 - 1)),
  2104. "object 0x%08x is Y tiled but has non-128B pitch\n",
  2105. obj_priv->gtt_offset);
  2106. break;
  2107. }
  2108. ret = i915_find_fence_reg(dev, interruptible);
  2109. if (ret < 0)
  2110. return ret;
  2111. obj_priv->fence_reg = ret;
  2112. reg = &dev_priv->fence_regs[obj_priv->fence_reg];
  2113. list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2114. reg->obj = obj;
  2115. switch (INTEL_INFO(dev)->gen) {
  2116. case 6:
  2117. sandybridge_write_fence_reg(reg);
  2118. break;
  2119. case 5:
  2120. case 4:
  2121. i965_write_fence_reg(reg);
  2122. break;
  2123. case 3:
  2124. i915_write_fence_reg(reg);
  2125. break;
  2126. case 2:
  2127. i830_write_fence_reg(reg);
  2128. break;
  2129. }
  2130. trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
  2131. obj_priv->tiling_mode);
  2132. return 0;
  2133. }
  2134. /**
  2135. * i915_gem_clear_fence_reg - clear out fence register info
  2136. * @obj: object to clear
  2137. *
  2138. * Zeroes out the fence register itself and clears out the associated
  2139. * data structures in dev_priv and obj_priv.
  2140. */
  2141. static void
  2142. i915_gem_clear_fence_reg(struct drm_gem_object *obj)
  2143. {
  2144. struct drm_device *dev = obj->dev;
  2145. drm_i915_private_t *dev_priv = dev->dev_private;
  2146. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2147. struct drm_i915_fence_reg *reg =
  2148. &dev_priv->fence_regs[obj_priv->fence_reg];
  2149. uint32_t fence_reg;
  2150. switch (INTEL_INFO(dev)->gen) {
  2151. case 6:
  2152. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
  2153. (obj_priv->fence_reg * 8), 0);
  2154. break;
  2155. case 5:
  2156. case 4:
  2157. I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
  2158. break;
  2159. case 3:
  2160. if (obj_priv->fence_reg >= 8)
  2161. fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
  2162. else
  2163. case 2:
  2164. fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
  2165. I915_WRITE(fence_reg, 0);
  2166. break;
  2167. }
  2168. reg->obj = NULL;
  2169. obj_priv->fence_reg = I915_FENCE_REG_NONE;
  2170. list_del_init(&reg->lru_list);
  2171. }
  2172. /**
  2173. * i915_gem_object_put_fence_reg - waits on outstanding fenced access
  2174. * to the buffer to finish, and then resets the fence register.
  2175. * @obj: tiled object holding a fence register.
  2176. * @bool: whether the wait upon the fence is interruptible
  2177. *
  2178. * Zeroes out the fence register itself and clears out the associated
  2179. * data structures in dev_priv and obj_priv.
  2180. */
  2181. int
  2182. i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
  2183. bool interruptible)
  2184. {
  2185. struct drm_device *dev = obj->dev;
  2186. struct drm_i915_private *dev_priv = dev->dev_private;
  2187. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2188. struct drm_i915_fence_reg *reg;
  2189. if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
  2190. return 0;
  2191. /* If we've changed tiling, GTT-mappings of the object
  2192. * need to re-fault to ensure that the correct fence register
  2193. * setup is in place.
  2194. */
  2195. i915_gem_release_mmap(obj);
  2196. /* On the i915, GPU access to tiled buffers is via a fence,
  2197. * therefore we must wait for any outstanding access to complete
  2198. * before clearing the fence.
  2199. */
  2200. reg = &dev_priv->fence_regs[obj_priv->fence_reg];
  2201. if (reg->gpu) {
  2202. int ret;
  2203. ret = i915_gem_object_flush_gpu_write_domain(obj, true);
  2204. if (ret)
  2205. return ret;
  2206. ret = i915_gem_object_wait_rendering(obj, interruptible);
  2207. if (ret)
  2208. return ret;
  2209. reg->gpu = false;
  2210. }
  2211. i915_gem_object_flush_gtt_write_domain(obj);
  2212. i915_gem_clear_fence_reg(obj);
  2213. return 0;
  2214. }
  2215. /**
  2216. * Finds free space in the GTT aperture and binds the object there.
  2217. */
  2218. static int
  2219. i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
  2220. unsigned alignment,
  2221. bool mappable)
  2222. {
  2223. struct drm_device *dev = obj->dev;
  2224. drm_i915_private_t *dev_priv = dev->dev_private;
  2225. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2226. struct drm_mm_node *free_space;
  2227. gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
  2228. int ret;
  2229. if (obj_priv->madv != I915_MADV_WILLNEED) {
  2230. DRM_ERROR("Attempting to bind a purgeable object\n");
  2231. return -EINVAL;
  2232. }
  2233. if (alignment == 0)
  2234. alignment = i915_gem_get_gtt_alignment(obj);
  2235. if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
  2236. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2237. return -EINVAL;
  2238. }
  2239. /* If the object is bigger than the entire aperture, reject it early
  2240. * before evicting everything in a vain attempt to find space.
  2241. */
  2242. if (obj->size >
  2243. (mappable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
  2244. DRM_ERROR("Attempting to bind an object larger than the aperture\n");
  2245. return -E2BIG;
  2246. }
  2247. search_free:
  2248. if (mappable)
  2249. free_space =
  2250. drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
  2251. obj->size, alignment, 0,
  2252. dev_priv->mm.gtt_mappable_end,
  2253. 0);
  2254. else
  2255. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  2256. obj->size, alignment, 0);
  2257. if (free_space != NULL) {
  2258. if (mappable)
  2259. obj_priv->gtt_space =
  2260. drm_mm_get_block_range_generic(free_space,
  2261. obj->size,
  2262. alignment, 0,
  2263. dev_priv->mm.gtt_mappable_end,
  2264. 0);
  2265. else
  2266. obj_priv->gtt_space =
  2267. drm_mm_get_block(free_space, obj->size,
  2268. alignment);
  2269. }
  2270. if (obj_priv->gtt_space == NULL) {
  2271. /* If the gtt is empty and we're still having trouble
  2272. * fitting our object in, we're out of memory.
  2273. */
  2274. ret = i915_gem_evict_something(dev, obj->size, alignment,
  2275. mappable);
  2276. if (ret)
  2277. return ret;
  2278. goto search_free;
  2279. }
  2280. ret = i915_gem_object_get_pages(obj, gfpmask);
  2281. if (ret) {
  2282. drm_mm_put_block(obj_priv->gtt_space);
  2283. obj_priv->gtt_space = NULL;
  2284. if (ret == -ENOMEM) {
  2285. /* first try to clear up some space from the GTT */
  2286. ret = i915_gem_evict_something(dev, obj->size,
  2287. alignment, mappable);
  2288. if (ret) {
  2289. /* now try to shrink everyone else */
  2290. if (gfpmask) {
  2291. gfpmask = 0;
  2292. goto search_free;
  2293. }
  2294. return ret;
  2295. }
  2296. goto search_free;
  2297. }
  2298. return ret;
  2299. }
  2300. /* Create an AGP memory structure pointing at our pages, and bind it
  2301. * into the GTT.
  2302. */
  2303. obj_priv->agp_mem = drm_agp_bind_pages(dev,
  2304. obj_priv->pages,
  2305. obj->size >> PAGE_SHIFT,
  2306. obj_priv->gtt_space->start,
  2307. obj_priv->agp_type);
  2308. if (obj_priv->agp_mem == NULL) {
  2309. i915_gem_object_put_pages(obj);
  2310. drm_mm_put_block(obj_priv->gtt_space);
  2311. obj_priv->gtt_space = NULL;
  2312. ret = i915_gem_evict_something(dev, obj->size, alignment,
  2313. mappable);
  2314. if (ret)
  2315. return ret;
  2316. goto search_free;
  2317. }
  2318. /* keep track of bounds object by adding it to the inactive list */
  2319. list_add_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
  2320. i915_gem_info_add_gtt(dev_priv, obj->size);
  2321. /* Assert that the object is not currently in any GPU domain. As it
  2322. * wasn't in the GTT, there shouldn't be any way it could have been in
  2323. * a GPU cache
  2324. */
  2325. BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
  2326. BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
  2327. obj_priv->gtt_offset = obj_priv->gtt_space->start;
  2328. trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
  2329. return 0;
  2330. }
  2331. void
  2332. i915_gem_clflush_object(struct drm_gem_object *obj)
  2333. {
  2334. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2335. /* If we don't have a page list set up, then we're not pinned
  2336. * to GPU, and we can ignore the cache flush because it'll happen
  2337. * again at bind time.
  2338. */
  2339. if (obj_priv->pages == NULL)
  2340. return;
  2341. trace_i915_gem_object_clflush(obj);
  2342. drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
  2343. }
  2344. /** Flushes any GPU write domain for the object if it's dirty. */
  2345. static int
  2346. i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
  2347. bool pipelined)
  2348. {
  2349. struct drm_device *dev = obj->dev;
  2350. uint32_t old_write_domain;
  2351. if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
  2352. return 0;
  2353. /* Queue the GPU write cache flushing we need. */
  2354. old_write_domain = obj->write_domain;
  2355. i915_gem_flush_ring(dev, NULL,
  2356. to_intel_bo(obj)->ring,
  2357. 0, obj->write_domain);
  2358. BUG_ON(obj->write_domain);
  2359. trace_i915_gem_object_change_domain(obj,
  2360. obj->read_domains,
  2361. old_write_domain);
  2362. if (pipelined)
  2363. return 0;
  2364. return i915_gem_object_wait_rendering(obj, true);
  2365. }
  2366. /** Flushes the GTT write domain for the object if it's dirty. */
  2367. static void
  2368. i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
  2369. {
  2370. uint32_t old_write_domain;
  2371. if (obj->write_domain != I915_GEM_DOMAIN_GTT)
  2372. return;
  2373. /* No actual flushing is required for the GTT write domain. Writes
  2374. * to it immediately go to main memory as far as we know, so there's
  2375. * no chipset flush. It also doesn't land in render cache.
  2376. */
  2377. old_write_domain = obj->write_domain;
  2378. obj->write_domain = 0;
  2379. trace_i915_gem_object_change_domain(obj,
  2380. obj->read_domains,
  2381. old_write_domain);
  2382. }
  2383. /** Flushes the CPU write domain for the object if it's dirty. */
  2384. static void
  2385. i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
  2386. {
  2387. struct drm_device *dev = obj->dev;
  2388. uint32_t old_write_domain;
  2389. if (obj->write_domain != I915_GEM_DOMAIN_CPU)
  2390. return;
  2391. i915_gem_clflush_object(obj);
  2392. drm_agp_chipset_flush(dev);
  2393. old_write_domain = obj->write_domain;
  2394. obj->write_domain = 0;
  2395. trace_i915_gem_object_change_domain(obj,
  2396. obj->read_domains,
  2397. old_write_domain);
  2398. }
  2399. /**
  2400. * Moves a single object to the GTT read, and possibly write domain.
  2401. *
  2402. * This function returns when the move is complete, including waiting on
  2403. * flushes to occur.
  2404. */
  2405. int
  2406. i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
  2407. {
  2408. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2409. uint32_t old_write_domain, old_read_domains;
  2410. int ret;
  2411. /* Not valid to be called on unbound objects. */
  2412. if (obj_priv->gtt_space == NULL)
  2413. return -EINVAL;
  2414. ret = i915_gem_object_flush_gpu_write_domain(obj, false);
  2415. if (ret != 0)
  2416. return ret;
  2417. i915_gem_object_flush_cpu_write_domain(obj);
  2418. if (write) {
  2419. ret = i915_gem_object_wait_rendering(obj, true);
  2420. if (ret)
  2421. return ret;
  2422. }
  2423. old_write_domain = obj->write_domain;
  2424. old_read_domains = obj->read_domains;
  2425. /* It should now be out of any other write domains, and we can update
  2426. * the domain values for our changes.
  2427. */
  2428. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2429. obj->read_domains |= I915_GEM_DOMAIN_GTT;
  2430. if (write) {
  2431. obj->read_domains = I915_GEM_DOMAIN_GTT;
  2432. obj->write_domain = I915_GEM_DOMAIN_GTT;
  2433. obj_priv->dirty = 1;
  2434. }
  2435. trace_i915_gem_object_change_domain(obj,
  2436. old_read_domains,
  2437. old_write_domain);
  2438. return 0;
  2439. }
  2440. /*
  2441. * Prepare buffer for display plane. Use uninterruptible for possible flush
  2442. * wait, as in modesetting process we're not supposed to be interrupted.
  2443. */
  2444. int
  2445. i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
  2446. bool pipelined)
  2447. {
  2448. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2449. uint32_t old_read_domains;
  2450. int ret;
  2451. /* Not valid to be called on unbound objects. */
  2452. if (obj_priv->gtt_space == NULL)
  2453. return -EINVAL;
  2454. ret = i915_gem_object_flush_gpu_write_domain(obj, true);
  2455. if (ret)
  2456. return ret;
  2457. /* Currently, we are always called from an non-interruptible context. */
  2458. if (!pipelined) {
  2459. ret = i915_gem_object_wait_rendering(obj, false);
  2460. if (ret)
  2461. return ret;
  2462. }
  2463. i915_gem_object_flush_cpu_write_domain(obj);
  2464. old_read_domains = obj->read_domains;
  2465. obj->read_domains |= I915_GEM_DOMAIN_GTT;
  2466. trace_i915_gem_object_change_domain(obj,
  2467. old_read_domains,
  2468. obj->write_domain);
  2469. return 0;
  2470. }
  2471. /**
  2472. * Moves a single object to the CPU read, and possibly write domain.
  2473. *
  2474. * This function returns when the move is complete, including waiting on
  2475. * flushes to occur.
  2476. */
  2477. static int
  2478. i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
  2479. {
  2480. uint32_t old_write_domain, old_read_domains;
  2481. int ret;
  2482. ret = i915_gem_object_flush_gpu_write_domain(obj, false);
  2483. if (ret != 0)
  2484. return ret;
  2485. i915_gem_object_flush_gtt_write_domain(obj);
  2486. /* If we have a partially-valid cache of the object in the CPU,
  2487. * finish invalidating it and free the per-page flags.
  2488. */
  2489. i915_gem_object_set_to_full_cpu_read_domain(obj);
  2490. if (write) {
  2491. ret = i915_gem_object_wait_rendering(obj, true);
  2492. if (ret)
  2493. return ret;
  2494. }
  2495. old_write_domain = obj->write_domain;
  2496. old_read_domains = obj->read_domains;
  2497. /* Flush the CPU cache if it's still invalid. */
  2498. if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2499. i915_gem_clflush_object(obj);
  2500. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2501. }
  2502. /* It should now be out of any other write domains, and we can update
  2503. * the domain values for our changes.
  2504. */
  2505. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2506. /* If we're writing through the CPU, then the GPU read domains will
  2507. * need to be invalidated at next use.
  2508. */
  2509. if (write) {
  2510. obj->read_domains = I915_GEM_DOMAIN_CPU;
  2511. obj->write_domain = I915_GEM_DOMAIN_CPU;
  2512. }
  2513. trace_i915_gem_object_change_domain(obj,
  2514. old_read_domains,
  2515. old_write_domain);
  2516. return 0;
  2517. }
  2518. /*
  2519. * Set the next domain for the specified object. This
  2520. * may not actually perform the necessary flushing/invaliding though,
  2521. * as that may want to be batched with other set_domain operations
  2522. *
  2523. * This is (we hope) the only really tricky part of gem. The goal
  2524. * is fairly simple -- track which caches hold bits of the object
  2525. * and make sure they remain coherent. A few concrete examples may
  2526. * help to explain how it works. For shorthand, we use the notation
  2527. * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
  2528. * a pair of read and write domain masks.
  2529. *
  2530. * Case 1: the batch buffer
  2531. *
  2532. * 1. Allocated
  2533. * 2. Written by CPU
  2534. * 3. Mapped to GTT
  2535. * 4. Read by GPU
  2536. * 5. Unmapped from GTT
  2537. * 6. Freed
  2538. *
  2539. * Let's take these a step at a time
  2540. *
  2541. * 1. Allocated
  2542. * Pages allocated from the kernel may still have
  2543. * cache contents, so we set them to (CPU, CPU) always.
  2544. * 2. Written by CPU (using pwrite)
  2545. * The pwrite function calls set_domain (CPU, CPU) and
  2546. * this function does nothing (as nothing changes)
  2547. * 3. Mapped by GTT
  2548. * This function asserts that the object is not
  2549. * currently in any GPU-based read or write domains
  2550. * 4. Read by GPU
  2551. * i915_gem_execbuffer calls set_domain (COMMAND, 0).
  2552. * As write_domain is zero, this function adds in the
  2553. * current read domains (CPU+COMMAND, 0).
  2554. * flush_domains is set to CPU.
  2555. * invalidate_domains is set to COMMAND
  2556. * clflush is run to get data out of the CPU caches
  2557. * then i915_dev_set_domain calls i915_gem_flush to
  2558. * emit an MI_FLUSH and drm_agp_chipset_flush
  2559. * 5. Unmapped from GTT
  2560. * i915_gem_object_unbind calls set_domain (CPU, CPU)
  2561. * flush_domains and invalidate_domains end up both zero
  2562. * so no flushing/invalidating happens
  2563. * 6. Freed
  2564. * yay, done
  2565. *
  2566. * Case 2: The shared render buffer
  2567. *
  2568. * 1. Allocated
  2569. * 2. Mapped to GTT
  2570. * 3. Read/written by GPU
  2571. * 4. set_domain to (CPU,CPU)
  2572. * 5. Read/written by CPU
  2573. * 6. Read/written by GPU
  2574. *
  2575. * 1. Allocated
  2576. * Same as last example, (CPU, CPU)
  2577. * 2. Mapped to GTT
  2578. * Nothing changes (assertions find that it is not in the GPU)
  2579. * 3. Read/written by GPU
  2580. * execbuffer calls set_domain (RENDER, RENDER)
  2581. * flush_domains gets CPU
  2582. * invalidate_domains gets GPU
  2583. * clflush (obj)
  2584. * MI_FLUSH and drm_agp_chipset_flush
  2585. * 4. set_domain (CPU, CPU)
  2586. * flush_domains gets GPU
  2587. * invalidate_domains gets CPU
  2588. * wait_rendering (obj) to make sure all drawing is complete.
  2589. * This will include an MI_FLUSH to get the data from GPU
  2590. * to memory
  2591. * clflush (obj) to invalidate the CPU cache
  2592. * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
  2593. * 5. Read/written by CPU
  2594. * cache lines are loaded and dirtied
  2595. * 6. Read written by GPU
  2596. * Same as last GPU access
  2597. *
  2598. * Case 3: The constant buffer
  2599. *
  2600. * 1. Allocated
  2601. * 2. Written by CPU
  2602. * 3. Read by GPU
  2603. * 4. Updated (written) by CPU again
  2604. * 5. Read by GPU
  2605. *
  2606. * 1. Allocated
  2607. * (CPU, CPU)
  2608. * 2. Written by CPU
  2609. * (CPU, CPU)
  2610. * 3. Read by GPU
  2611. * (CPU+RENDER, 0)
  2612. * flush_domains = CPU
  2613. * invalidate_domains = RENDER
  2614. * clflush (obj)
  2615. * MI_FLUSH
  2616. * drm_agp_chipset_flush
  2617. * 4. Updated (written) by CPU again
  2618. * (CPU, CPU)
  2619. * flush_domains = 0 (no previous write domain)
  2620. * invalidate_domains = 0 (no new read domains)
  2621. * 5. Read by GPU
  2622. * (CPU+RENDER, 0)
  2623. * flush_domains = CPU
  2624. * invalidate_domains = RENDER
  2625. * clflush (obj)
  2626. * MI_FLUSH
  2627. * drm_agp_chipset_flush
  2628. */
  2629. static void
  2630. i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj,
  2631. struct intel_ring_buffer *ring)
  2632. {
  2633. struct drm_device *dev = obj->dev;
  2634. struct drm_i915_private *dev_priv = dev->dev_private;
  2635. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2636. uint32_t invalidate_domains = 0;
  2637. uint32_t flush_domains = 0;
  2638. /*
  2639. * If the object isn't moving to a new write domain,
  2640. * let the object stay in multiple read domains
  2641. */
  2642. if (obj->pending_write_domain == 0)
  2643. obj->pending_read_domains |= obj->read_domains;
  2644. /*
  2645. * Flush the current write domain if
  2646. * the new read domains don't match. Invalidate
  2647. * any read domains which differ from the old
  2648. * write domain
  2649. */
  2650. if (obj->write_domain &&
  2651. obj->write_domain != obj->pending_read_domains) {
  2652. flush_domains |= obj->write_domain;
  2653. invalidate_domains |=
  2654. obj->pending_read_domains & ~obj->write_domain;
  2655. }
  2656. /*
  2657. * Invalidate any read caches which may have
  2658. * stale data. That is, any new read domains.
  2659. */
  2660. invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
  2661. if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
  2662. i915_gem_clflush_object(obj);
  2663. /* The actual obj->write_domain will be updated with
  2664. * pending_write_domain after we emit the accumulated flush for all
  2665. * of our domain changes in execbuffers (which clears objects'
  2666. * write_domains). So if we have a current write domain that we
  2667. * aren't changing, set pending_write_domain to that.
  2668. */
  2669. if (flush_domains == 0 && obj->pending_write_domain == 0)
  2670. obj->pending_write_domain = obj->write_domain;
  2671. dev->invalidate_domains |= invalidate_domains;
  2672. dev->flush_domains |= flush_domains;
  2673. if (flush_domains & I915_GEM_GPU_DOMAINS)
  2674. dev_priv->mm.flush_rings |= obj_priv->ring->id;
  2675. if (invalidate_domains & I915_GEM_GPU_DOMAINS)
  2676. dev_priv->mm.flush_rings |= ring->id;
  2677. }
  2678. /**
  2679. * Moves the object from a partially CPU read to a full one.
  2680. *
  2681. * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
  2682. * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
  2683. */
  2684. static void
  2685. i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
  2686. {
  2687. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2688. if (!obj_priv->page_cpu_valid)
  2689. return;
  2690. /* If we're partially in the CPU read domain, finish moving it in.
  2691. */
  2692. if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
  2693. int i;
  2694. for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
  2695. if (obj_priv->page_cpu_valid[i])
  2696. continue;
  2697. drm_clflush_pages(obj_priv->pages + i, 1);
  2698. }
  2699. }
  2700. /* Free the page_cpu_valid mappings which are now stale, whether
  2701. * or not we've got I915_GEM_DOMAIN_CPU.
  2702. */
  2703. kfree(obj_priv->page_cpu_valid);
  2704. obj_priv->page_cpu_valid = NULL;
  2705. }
  2706. /**
  2707. * Set the CPU read domain on a range of the object.
  2708. *
  2709. * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
  2710. * not entirely valid. The page_cpu_valid member of the object flags which
  2711. * pages have been flushed, and will be respected by
  2712. * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
  2713. * of the whole object.
  2714. *
  2715. * This function returns when the move is complete, including waiting on
  2716. * flushes to occur.
  2717. */
  2718. static int
  2719. i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  2720. uint64_t offset, uint64_t size)
  2721. {
  2722. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2723. uint32_t old_read_domains;
  2724. int i, ret;
  2725. if (offset == 0 && size == obj->size)
  2726. return i915_gem_object_set_to_cpu_domain(obj, 0);
  2727. ret = i915_gem_object_flush_gpu_write_domain(obj, false);
  2728. if (ret != 0)
  2729. return ret;
  2730. i915_gem_object_flush_gtt_write_domain(obj);
  2731. /* If we're already fully in the CPU read domain, we're done. */
  2732. if (obj_priv->page_cpu_valid == NULL &&
  2733. (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
  2734. return 0;
  2735. /* Otherwise, create/clear the per-page CPU read domain flag if we're
  2736. * newly adding I915_GEM_DOMAIN_CPU
  2737. */
  2738. if (obj_priv->page_cpu_valid == NULL) {
  2739. obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
  2740. GFP_KERNEL);
  2741. if (obj_priv->page_cpu_valid == NULL)
  2742. return -ENOMEM;
  2743. } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
  2744. memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
  2745. /* Flush the cache on any pages that are still invalid from the CPU's
  2746. * perspective.
  2747. */
  2748. for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
  2749. i++) {
  2750. if (obj_priv->page_cpu_valid[i])
  2751. continue;
  2752. drm_clflush_pages(obj_priv->pages + i, 1);
  2753. obj_priv->page_cpu_valid[i] = 1;
  2754. }
  2755. /* It should now be out of any other write domains, and we can update
  2756. * the domain values for our changes.
  2757. */
  2758. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2759. old_read_domains = obj->read_domains;
  2760. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2761. trace_i915_gem_object_change_domain(obj,
  2762. old_read_domains,
  2763. obj->write_domain);
  2764. return 0;
  2765. }
  2766. /**
  2767. * Pin an object to the GTT and evaluate the relocations landing in it.
  2768. */
  2769. static int
  2770. i915_gem_execbuffer_relocate(struct drm_i915_gem_object *obj,
  2771. struct drm_file *file_priv,
  2772. struct drm_i915_gem_exec_object2 *entry)
  2773. {
  2774. struct drm_device *dev = obj->base.dev;
  2775. drm_i915_private_t *dev_priv = dev->dev_private;
  2776. struct drm_i915_gem_relocation_entry __user *user_relocs;
  2777. struct drm_gem_object *target_obj = NULL;
  2778. uint32_t target_handle = 0;
  2779. int i, ret = 0;
  2780. user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
  2781. for (i = 0; i < entry->relocation_count; i++) {
  2782. struct drm_i915_gem_relocation_entry reloc;
  2783. uint32_t target_offset;
  2784. if (__copy_from_user_inatomic(&reloc,
  2785. user_relocs+i,
  2786. sizeof(reloc))) {
  2787. ret = -EFAULT;
  2788. break;
  2789. }
  2790. if (reloc.target_handle != target_handle) {
  2791. drm_gem_object_unreference(target_obj);
  2792. target_obj = drm_gem_object_lookup(dev, file_priv,
  2793. reloc.target_handle);
  2794. if (target_obj == NULL) {
  2795. ret = -ENOENT;
  2796. break;
  2797. }
  2798. target_handle = reloc.target_handle;
  2799. }
  2800. target_offset = to_intel_bo(target_obj)->gtt_offset;
  2801. #if WATCH_RELOC
  2802. DRM_INFO("%s: obj %p offset %08x target %d "
  2803. "read %08x write %08x gtt %08x "
  2804. "presumed %08x delta %08x\n",
  2805. __func__,
  2806. obj,
  2807. (int) reloc.offset,
  2808. (int) reloc.target_handle,
  2809. (int) reloc.read_domains,
  2810. (int) reloc.write_domain,
  2811. (int) target_offset,
  2812. (int) reloc.presumed_offset,
  2813. reloc.delta);
  2814. #endif
  2815. /* The target buffer should have appeared before us in the
  2816. * exec_object list, so it should have a GTT space bound by now.
  2817. */
  2818. if (target_offset == 0) {
  2819. DRM_ERROR("No GTT space found for object %d\n",
  2820. reloc.target_handle);
  2821. ret = -EINVAL;
  2822. break;
  2823. }
  2824. /* Validate that the target is in a valid r/w GPU domain */
  2825. if (reloc.write_domain & (reloc.write_domain - 1)) {
  2826. DRM_ERROR("reloc with multiple write domains: "
  2827. "obj %p target %d offset %d "
  2828. "read %08x write %08x",
  2829. obj, reloc.target_handle,
  2830. (int) reloc.offset,
  2831. reloc.read_domains,
  2832. reloc.write_domain);
  2833. ret = -EINVAL;
  2834. break;
  2835. }
  2836. if (reloc.write_domain & I915_GEM_DOMAIN_CPU ||
  2837. reloc.read_domains & I915_GEM_DOMAIN_CPU) {
  2838. DRM_ERROR("reloc with read/write CPU domains: "
  2839. "obj %p target %d offset %d "
  2840. "read %08x write %08x",
  2841. obj, reloc.target_handle,
  2842. (int) reloc.offset,
  2843. reloc.read_domains,
  2844. reloc.write_domain);
  2845. ret = -EINVAL;
  2846. break;
  2847. }
  2848. if (reloc.write_domain && target_obj->pending_write_domain &&
  2849. reloc.write_domain != target_obj->pending_write_domain) {
  2850. DRM_ERROR("Write domain conflict: "
  2851. "obj %p target %d offset %d "
  2852. "new %08x old %08x\n",
  2853. obj, reloc.target_handle,
  2854. (int) reloc.offset,
  2855. reloc.write_domain,
  2856. target_obj->pending_write_domain);
  2857. ret = -EINVAL;
  2858. break;
  2859. }
  2860. target_obj->pending_read_domains |= reloc.read_domains;
  2861. target_obj->pending_write_domain |= reloc.write_domain;
  2862. /* If the relocation already has the right value in it, no
  2863. * more work needs to be done.
  2864. */
  2865. if (target_offset == reloc.presumed_offset)
  2866. continue;
  2867. /* Check that the relocation address is valid... */
  2868. if (reloc.offset > obj->base.size - 4) {
  2869. DRM_ERROR("Relocation beyond object bounds: "
  2870. "obj %p target %d offset %d size %d.\n",
  2871. obj, reloc.target_handle,
  2872. (int) reloc.offset, (int) obj->base.size);
  2873. ret = -EINVAL;
  2874. break;
  2875. }
  2876. if (reloc.offset & 3) {
  2877. DRM_ERROR("Relocation not 4-byte aligned: "
  2878. "obj %p target %d offset %d.\n",
  2879. obj, reloc.target_handle,
  2880. (int) reloc.offset);
  2881. ret = -EINVAL;
  2882. break;
  2883. }
  2884. /* and points to somewhere within the target object. */
  2885. if (reloc.delta >= target_obj->size) {
  2886. DRM_ERROR("Relocation beyond target object bounds: "
  2887. "obj %p target %d delta %d size %d.\n",
  2888. obj, reloc.target_handle,
  2889. (int) reloc.delta, (int) target_obj->size);
  2890. ret = -EINVAL;
  2891. break;
  2892. }
  2893. reloc.delta += target_offset;
  2894. if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
  2895. uint32_t page_offset = reloc.offset & ~PAGE_MASK;
  2896. char *vaddr;
  2897. vaddr = kmap_atomic(obj->pages[reloc.offset >> PAGE_SHIFT]);
  2898. *(uint32_t *)(vaddr + page_offset) = reloc.delta;
  2899. kunmap_atomic(vaddr);
  2900. } else {
  2901. uint32_t __iomem *reloc_entry;
  2902. void __iomem *reloc_page;
  2903. ret = i915_gem_object_set_to_gtt_domain(&obj->base, 1);
  2904. if (ret)
  2905. break;
  2906. /* Map the page containing the relocation we're going to perform. */
  2907. reloc.offset += obj->gtt_offset;
  2908. reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
  2909. reloc.offset & PAGE_MASK);
  2910. reloc_entry = (uint32_t __iomem *)
  2911. (reloc_page + (reloc.offset & ~PAGE_MASK));
  2912. iowrite32(reloc.delta, reloc_entry);
  2913. io_mapping_unmap_atomic(reloc_page);
  2914. }
  2915. /* and update the user's relocation entry */
  2916. reloc.presumed_offset = target_offset;
  2917. if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset,
  2918. &reloc.presumed_offset,
  2919. sizeof(reloc.presumed_offset))) {
  2920. ret = -EFAULT;
  2921. break;
  2922. }
  2923. }
  2924. drm_gem_object_unreference(target_obj);
  2925. return ret;
  2926. }
  2927. static int
  2928. i915_gem_execbuffer_pin(struct drm_device *dev,
  2929. struct drm_file *file,
  2930. struct drm_gem_object **object_list,
  2931. struct drm_i915_gem_exec_object2 *exec_list,
  2932. int count)
  2933. {
  2934. struct drm_i915_private *dev_priv = dev->dev_private;
  2935. int ret, i, retry;
  2936. /* attempt to pin all of the buffers into the GTT */
  2937. for (retry = 0; retry < 2; retry++) {
  2938. ret = 0;
  2939. for (i = 0; i < count; i++) {
  2940. struct drm_i915_gem_exec_object2 *entry = &exec_list[i];
  2941. struct drm_i915_gem_object *obj= to_intel_bo(object_list[i]);
  2942. bool need_fence =
  2943. entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
  2944. obj->tiling_mode != I915_TILING_NONE;
  2945. /* Check fence reg constraints and rebind if necessary */
  2946. if (need_fence &&
  2947. !i915_gem_object_fence_offset_ok(&obj->base,
  2948. obj->tiling_mode)) {
  2949. ret = i915_gem_object_unbind(&obj->base);
  2950. if (ret)
  2951. break;
  2952. }
  2953. ret = i915_gem_object_pin(&obj->base,
  2954. entry->alignment, true);
  2955. if (ret)
  2956. break;
  2957. /*
  2958. * Pre-965 chips need a fence register set up in order
  2959. * to properly handle blits to/from tiled surfaces.
  2960. */
  2961. if (need_fence) {
  2962. ret = i915_gem_object_get_fence_reg(&obj->base, true);
  2963. if (ret) {
  2964. i915_gem_object_unpin(&obj->base);
  2965. break;
  2966. }
  2967. dev_priv->fence_regs[obj->fence_reg].gpu = true;
  2968. }
  2969. entry->offset = obj->gtt_offset;
  2970. }
  2971. while (i--)
  2972. i915_gem_object_unpin(object_list[i]);
  2973. if (ret == 0)
  2974. break;
  2975. if (ret != -ENOSPC || retry)
  2976. return ret;
  2977. ret = i915_gem_evict_everything(dev);
  2978. if (ret)
  2979. return ret;
  2980. }
  2981. return 0;
  2982. }
  2983. /* Throttle our rendering by waiting until the ring has completed our requests
  2984. * emitted over 20 msec ago.
  2985. *
  2986. * Note that if we were to use the current jiffies each time around the loop,
  2987. * we wouldn't escape the function with any frames outstanding if the time to
  2988. * render a frame was over 20ms.
  2989. *
  2990. * This should get us reasonable parallelism between CPU and GPU but also
  2991. * relatively low latency when blocking on a particular request to finish.
  2992. */
  2993. static int
  2994. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
  2995. {
  2996. struct drm_i915_private *dev_priv = dev->dev_private;
  2997. struct drm_i915_file_private *file_priv = file->driver_priv;
  2998. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  2999. struct drm_i915_gem_request *request;
  3000. struct intel_ring_buffer *ring = NULL;
  3001. u32 seqno = 0;
  3002. int ret;
  3003. spin_lock(&file_priv->mm.lock);
  3004. list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
  3005. if (time_after_eq(request->emitted_jiffies, recent_enough))
  3006. break;
  3007. ring = request->ring;
  3008. seqno = request->seqno;
  3009. }
  3010. spin_unlock(&file_priv->mm.lock);
  3011. if (seqno == 0)
  3012. return 0;
  3013. ret = 0;
  3014. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  3015. /* And wait for the seqno passing without holding any locks and
  3016. * causing extra latency for others. This is safe as the irq
  3017. * generation is designed to be run atomically and so is
  3018. * lockless.
  3019. */
  3020. ring->user_irq_get(ring);
  3021. ret = wait_event_interruptible(ring->irq_queue,
  3022. i915_seqno_passed(ring->get_seqno(ring), seqno)
  3023. || atomic_read(&dev_priv->mm.wedged));
  3024. ring->user_irq_put(ring);
  3025. if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
  3026. ret = -EIO;
  3027. }
  3028. if (ret == 0)
  3029. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
  3030. return ret;
  3031. }
  3032. static int
  3033. i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec,
  3034. uint64_t exec_offset)
  3035. {
  3036. uint32_t exec_start, exec_len;
  3037. exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
  3038. exec_len = (uint32_t) exec->batch_len;
  3039. if ((exec_start | exec_len) & 0x7)
  3040. return -EINVAL;
  3041. if (!exec_start)
  3042. return -EINVAL;
  3043. return 0;
  3044. }
  3045. static int
  3046. validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
  3047. int count)
  3048. {
  3049. int i;
  3050. for (i = 0; i < count; i++) {
  3051. char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
  3052. size_t length = exec[i].relocation_count * sizeof(struct drm_i915_gem_relocation_entry);
  3053. if (!access_ok(VERIFY_READ, ptr, length))
  3054. return -EFAULT;
  3055. /* we may also need to update the presumed offsets */
  3056. if (!access_ok(VERIFY_WRITE, ptr, length))
  3057. return -EFAULT;
  3058. if (fault_in_pages_readable(ptr, length))
  3059. return -EFAULT;
  3060. }
  3061. return 0;
  3062. }
  3063. static int
  3064. i915_gem_do_execbuffer(struct drm_device *dev, void *data,
  3065. struct drm_file *file,
  3066. struct drm_i915_gem_execbuffer2 *args,
  3067. struct drm_i915_gem_exec_object2 *exec_list)
  3068. {
  3069. drm_i915_private_t *dev_priv = dev->dev_private;
  3070. struct drm_gem_object **object_list = NULL;
  3071. struct drm_gem_object *batch_obj;
  3072. struct drm_clip_rect *cliprects = NULL;
  3073. struct drm_i915_gem_request *request = NULL;
  3074. int ret, i, flips;
  3075. uint64_t exec_offset;
  3076. struct intel_ring_buffer *ring = NULL;
  3077. ret = i915_gem_check_is_wedged(dev);
  3078. if (ret)
  3079. return ret;
  3080. ret = validate_exec_list(exec_list, args->buffer_count);
  3081. if (ret)
  3082. return ret;
  3083. #if WATCH_EXEC
  3084. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3085. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3086. #endif
  3087. switch (args->flags & I915_EXEC_RING_MASK) {
  3088. case I915_EXEC_DEFAULT:
  3089. case I915_EXEC_RENDER:
  3090. ring = &dev_priv->render_ring;
  3091. break;
  3092. case I915_EXEC_BSD:
  3093. if (!HAS_BSD(dev)) {
  3094. DRM_ERROR("execbuf with invalid ring (BSD)\n");
  3095. return -EINVAL;
  3096. }
  3097. ring = &dev_priv->bsd_ring;
  3098. break;
  3099. case I915_EXEC_BLT:
  3100. if (!HAS_BLT(dev)) {
  3101. DRM_ERROR("execbuf with invalid ring (BLT)\n");
  3102. return -EINVAL;
  3103. }
  3104. ring = &dev_priv->blt_ring;
  3105. break;
  3106. default:
  3107. DRM_ERROR("execbuf with unknown ring: %d\n",
  3108. (int)(args->flags & I915_EXEC_RING_MASK));
  3109. return -EINVAL;
  3110. }
  3111. if (args->buffer_count < 1) {
  3112. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  3113. return -EINVAL;
  3114. }
  3115. object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
  3116. if (object_list == NULL) {
  3117. DRM_ERROR("Failed to allocate object list for %d buffers\n",
  3118. args->buffer_count);
  3119. ret = -ENOMEM;
  3120. goto pre_mutex_err;
  3121. }
  3122. if (args->num_cliprects != 0) {
  3123. cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
  3124. GFP_KERNEL);
  3125. if (cliprects == NULL) {
  3126. ret = -ENOMEM;
  3127. goto pre_mutex_err;
  3128. }
  3129. ret = copy_from_user(cliprects,
  3130. (struct drm_clip_rect __user *)
  3131. (uintptr_t) args->cliprects_ptr,
  3132. sizeof(*cliprects) * args->num_cliprects);
  3133. if (ret != 0) {
  3134. DRM_ERROR("copy %d cliprects failed: %d\n",
  3135. args->num_cliprects, ret);
  3136. ret = -EFAULT;
  3137. goto pre_mutex_err;
  3138. }
  3139. }
  3140. request = kzalloc(sizeof(*request), GFP_KERNEL);
  3141. if (request == NULL) {
  3142. ret = -ENOMEM;
  3143. goto pre_mutex_err;
  3144. }
  3145. ret = i915_mutex_lock_interruptible(dev);
  3146. if (ret)
  3147. goto pre_mutex_err;
  3148. if (dev_priv->mm.suspended) {
  3149. mutex_unlock(&dev->struct_mutex);
  3150. ret = -EBUSY;
  3151. goto pre_mutex_err;
  3152. }
  3153. /* Look up object handles */
  3154. for (i = 0; i < args->buffer_count; i++) {
  3155. struct drm_i915_gem_object *obj_priv;
  3156. object_list[i] = drm_gem_object_lookup(dev, file,
  3157. exec_list[i].handle);
  3158. if (object_list[i] == NULL) {
  3159. DRM_ERROR("Invalid object handle %d at index %d\n",
  3160. exec_list[i].handle, i);
  3161. /* prevent error path from reading uninitialized data */
  3162. args->buffer_count = i + 1;
  3163. ret = -ENOENT;
  3164. goto err;
  3165. }
  3166. obj_priv = to_intel_bo(object_list[i]);
  3167. if (obj_priv->in_execbuffer) {
  3168. DRM_ERROR("Object %p appears more than once in object list\n",
  3169. object_list[i]);
  3170. /* prevent error path from reading uninitialized data */
  3171. args->buffer_count = i + 1;
  3172. ret = -EINVAL;
  3173. goto err;
  3174. }
  3175. obj_priv->in_execbuffer = true;
  3176. }
  3177. /* Move the objects en-masse into the GTT, evicting if necessary. */
  3178. ret = i915_gem_execbuffer_pin(dev, file,
  3179. object_list, exec_list,
  3180. args->buffer_count);
  3181. if (ret)
  3182. goto err;
  3183. /* The objects are in their final locations, apply the relocations. */
  3184. for (i = 0; i < args->buffer_count; i++) {
  3185. struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
  3186. obj->base.pending_read_domains = 0;
  3187. obj->base.pending_write_domain = 0;
  3188. ret = i915_gem_execbuffer_relocate(obj, file, &exec_list[i]);
  3189. if (ret)
  3190. goto err;
  3191. }
  3192. /* Set the pending read domains for the batch buffer to COMMAND */
  3193. batch_obj = object_list[args->buffer_count-1];
  3194. if (batch_obj->pending_write_domain) {
  3195. DRM_ERROR("Attempting to use self-modifying batch buffer\n");
  3196. ret = -EINVAL;
  3197. goto err;
  3198. }
  3199. batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
  3200. /* Sanity check the batch buffer */
  3201. exec_offset = to_intel_bo(batch_obj)->gtt_offset;
  3202. ret = i915_gem_check_execbuffer(args, exec_offset);
  3203. if (ret != 0) {
  3204. DRM_ERROR("execbuf with invalid offset/length\n");
  3205. goto err;
  3206. }
  3207. /* Zero the global flush/invalidate flags. These
  3208. * will be modified as new domains are computed
  3209. * for each object
  3210. */
  3211. dev->invalidate_domains = 0;
  3212. dev->flush_domains = 0;
  3213. dev_priv->mm.flush_rings = 0;
  3214. for (i = 0; i < args->buffer_count; i++)
  3215. i915_gem_object_set_to_gpu_domain(object_list[i], ring);
  3216. if (dev->invalidate_domains | dev->flush_domains) {
  3217. #if WATCH_EXEC
  3218. DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
  3219. __func__,
  3220. dev->invalidate_domains,
  3221. dev->flush_domains);
  3222. #endif
  3223. i915_gem_flush(dev, file,
  3224. dev->invalidate_domains,
  3225. dev->flush_domains,
  3226. dev_priv->mm.flush_rings);
  3227. }
  3228. #if WATCH_COHERENCY
  3229. for (i = 0; i < args->buffer_count; i++) {
  3230. i915_gem_object_check_coherency(object_list[i],
  3231. exec_list[i].handle);
  3232. }
  3233. #endif
  3234. #if WATCH_EXEC
  3235. i915_gem_dump_object(batch_obj,
  3236. args->batch_len,
  3237. __func__,
  3238. ~0);
  3239. #endif
  3240. /* Check for any pending flips. As we only maintain a flip queue depth
  3241. * of 1, we can simply insert a WAIT for the next display flip prior
  3242. * to executing the batch and avoid stalling the CPU.
  3243. */
  3244. flips = 0;
  3245. for (i = 0; i < args->buffer_count; i++) {
  3246. if (object_list[i]->write_domain)
  3247. flips |= atomic_read(&to_intel_bo(object_list[i])->pending_flip);
  3248. }
  3249. if (flips) {
  3250. int plane, flip_mask;
  3251. for (plane = 0; flips >> plane; plane++) {
  3252. if (((flips >> plane) & 1) == 0)
  3253. continue;
  3254. if (plane)
  3255. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  3256. else
  3257. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  3258. ret = intel_ring_begin(ring, 2);
  3259. if (ret)
  3260. goto err;
  3261. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  3262. intel_ring_emit(ring, MI_NOOP);
  3263. intel_ring_advance(ring);
  3264. }
  3265. }
  3266. /* Exec the batchbuffer */
  3267. ret = ring->dispatch_execbuffer(ring, args, cliprects, exec_offset);
  3268. if (ret) {
  3269. DRM_ERROR("dispatch failed %d\n", ret);
  3270. goto err;
  3271. }
  3272. for (i = 0; i < args->buffer_count; i++) {
  3273. struct drm_gem_object *obj = object_list[i];
  3274. obj->read_domains = obj->pending_read_domains;
  3275. obj->write_domain = obj->pending_write_domain;
  3276. i915_gem_object_move_to_active(obj, ring);
  3277. if (obj->write_domain) {
  3278. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3279. obj_priv->dirty = 1;
  3280. list_move_tail(&obj_priv->gpu_write_list,
  3281. &ring->gpu_write_list);
  3282. intel_mark_busy(dev, obj);
  3283. }
  3284. trace_i915_gem_object_change_domain(obj,
  3285. obj->read_domains,
  3286. obj->write_domain);
  3287. }
  3288. /*
  3289. * Ensure that the commands in the batch buffer are
  3290. * finished before the interrupt fires
  3291. */
  3292. i915_retire_commands(dev, ring);
  3293. if (i915_add_request(dev, file, request, ring))
  3294. ring->outstanding_lazy_request = true;
  3295. else
  3296. request = NULL;
  3297. err:
  3298. for (i = 0; i < args->buffer_count; i++) {
  3299. if (object_list[i] == NULL)
  3300. break;
  3301. to_intel_bo(object_list[i])->in_execbuffer = false;
  3302. drm_gem_object_unreference(object_list[i]);
  3303. }
  3304. mutex_unlock(&dev->struct_mutex);
  3305. pre_mutex_err:
  3306. drm_free_large(object_list);
  3307. kfree(cliprects);
  3308. kfree(request);
  3309. return ret;
  3310. }
  3311. /*
  3312. * Legacy execbuffer just creates an exec2 list from the original exec object
  3313. * list array and passes it to the real function.
  3314. */
  3315. int
  3316. i915_gem_execbuffer(struct drm_device *dev, void *data,
  3317. struct drm_file *file_priv)
  3318. {
  3319. struct drm_i915_gem_execbuffer *args = data;
  3320. struct drm_i915_gem_execbuffer2 exec2;
  3321. struct drm_i915_gem_exec_object *exec_list = NULL;
  3322. struct drm_i915_gem_exec_object2 *exec2_list = NULL;
  3323. int ret, i;
  3324. #if WATCH_EXEC
  3325. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3326. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3327. #endif
  3328. if (args->buffer_count < 1) {
  3329. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  3330. return -EINVAL;
  3331. }
  3332. /* Copy in the exec list from userland */
  3333. exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
  3334. exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
  3335. if (exec_list == NULL || exec2_list == NULL) {
  3336. DRM_ERROR("Failed to allocate exec list for %d buffers\n",
  3337. args->buffer_count);
  3338. drm_free_large(exec_list);
  3339. drm_free_large(exec2_list);
  3340. return -ENOMEM;
  3341. }
  3342. ret = copy_from_user(exec_list,
  3343. (struct drm_i915_relocation_entry __user *)
  3344. (uintptr_t) args->buffers_ptr,
  3345. sizeof(*exec_list) * args->buffer_count);
  3346. if (ret != 0) {
  3347. DRM_ERROR("copy %d exec entries failed %d\n",
  3348. args->buffer_count, ret);
  3349. drm_free_large(exec_list);
  3350. drm_free_large(exec2_list);
  3351. return -EFAULT;
  3352. }
  3353. for (i = 0; i < args->buffer_count; i++) {
  3354. exec2_list[i].handle = exec_list[i].handle;
  3355. exec2_list[i].relocation_count = exec_list[i].relocation_count;
  3356. exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
  3357. exec2_list[i].alignment = exec_list[i].alignment;
  3358. exec2_list[i].offset = exec_list[i].offset;
  3359. if (INTEL_INFO(dev)->gen < 4)
  3360. exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
  3361. else
  3362. exec2_list[i].flags = 0;
  3363. }
  3364. exec2.buffers_ptr = args->buffers_ptr;
  3365. exec2.buffer_count = args->buffer_count;
  3366. exec2.batch_start_offset = args->batch_start_offset;
  3367. exec2.batch_len = args->batch_len;
  3368. exec2.DR1 = args->DR1;
  3369. exec2.DR4 = args->DR4;
  3370. exec2.num_cliprects = args->num_cliprects;
  3371. exec2.cliprects_ptr = args->cliprects_ptr;
  3372. exec2.flags = I915_EXEC_RENDER;
  3373. ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
  3374. if (!ret) {
  3375. /* Copy the new buffer offsets back to the user's exec list. */
  3376. for (i = 0; i < args->buffer_count; i++)
  3377. exec_list[i].offset = exec2_list[i].offset;
  3378. /* ... and back out to userspace */
  3379. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  3380. (uintptr_t) args->buffers_ptr,
  3381. exec_list,
  3382. sizeof(*exec_list) * args->buffer_count);
  3383. if (ret) {
  3384. ret = -EFAULT;
  3385. DRM_ERROR("failed to copy %d exec entries "
  3386. "back to user (%d)\n",
  3387. args->buffer_count, ret);
  3388. }
  3389. }
  3390. drm_free_large(exec_list);
  3391. drm_free_large(exec2_list);
  3392. return ret;
  3393. }
  3394. int
  3395. i915_gem_execbuffer2(struct drm_device *dev, void *data,
  3396. struct drm_file *file_priv)
  3397. {
  3398. struct drm_i915_gem_execbuffer2 *args = data;
  3399. struct drm_i915_gem_exec_object2 *exec2_list = NULL;
  3400. int ret;
  3401. #if WATCH_EXEC
  3402. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3403. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3404. #endif
  3405. if (args->buffer_count < 1) {
  3406. DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
  3407. return -EINVAL;
  3408. }
  3409. exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
  3410. if (exec2_list == NULL) {
  3411. DRM_ERROR("Failed to allocate exec list for %d buffers\n",
  3412. args->buffer_count);
  3413. return -ENOMEM;
  3414. }
  3415. ret = copy_from_user(exec2_list,
  3416. (struct drm_i915_relocation_entry __user *)
  3417. (uintptr_t) args->buffers_ptr,
  3418. sizeof(*exec2_list) * args->buffer_count);
  3419. if (ret != 0) {
  3420. DRM_ERROR("copy %d exec entries failed %d\n",
  3421. args->buffer_count, ret);
  3422. drm_free_large(exec2_list);
  3423. return -EFAULT;
  3424. }
  3425. ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
  3426. if (!ret) {
  3427. /* Copy the new buffer offsets back to the user's exec list. */
  3428. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  3429. (uintptr_t) args->buffers_ptr,
  3430. exec2_list,
  3431. sizeof(*exec2_list) * args->buffer_count);
  3432. if (ret) {
  3433. ret = -EFAULT;
  3434. DRM_ERROR("failed to copy %d exec entries "
  3435. "back to user (%d)\n",
  3436. args->buffer_count, ret);
  3437. }
  3438. }
  3439. drm_free_large(exec2_list);
  3440. return ret;
  3441. }
  3442. int
  3443. i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment,
  3444. bool mappable)
  3445. {
  3446. struct drm_device *dev = obj->dev;
  3447. struct drm_i915_private *dev_priv = dev->dev_private;
  3448. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3449. int ret;
  3450. BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
  3451. WARN_ON(i915_verify_lists(dev));
  3452. if (obj_priv->gtt_space != NULL) {
  3453. if (alignment == 0)
  3454. alignment = i915_gem_get_gtt_alignment(obj);
  3455. if (obj_priv->gtt_offset & (alignment - 1)) {
  3456. WARN(obj_priv->pin_count,
  3457. "bo is already pinned with incorrect alignment:"
  3458. " offset=%x, req.alignment=%x\n",
  3459. obj_priv->gtt_offset, alignment);
  3460. ret = i915_gem_object_unbind(obj);
  3461. if (ret)
  3462. return ret;
  3463. }
  3464. }
  3465. if (obj_priv->gtt_space == NULL) {
  3466. ret = i915_gem_object_bind_to_gtt(obj, alignment, mappable);
  3467. if (ret)
  3468. return ret;
  3469. }
  3470. obj_priv->pin_count++;
  3471. /* If the object is not active and not pending a flush,
  3472. * remove it from the inactive list
  3473. */
  3474. if (obj_priv->pin_count == 1) {
  3475. i915_gem_info_add_pin(dev_priv, obj->size);
  3476. if (!obj_priv->active)
  3477. list_move_tail(&obj_priv->mm_list,
  3478. &dev_priv->mm.pinned_list);
  3479. }
  3480. WARN_ON(i915_verify_lists(dev));
  3481. return 0;
  3482. }
  3483. void
  3484. i915_gem_object_unpin(struct drm_gem_object *obj)
  3485. {
  3486. struct drm_device *dev = obj->dev;
  3487. drm_i915_private_t *dev_priv = dev->dev_private;
  3488. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3489. WARN_ON(i915_verify_lists(dev));
  3490. obj_priv->pin_count--;
  3491. BUG_ON(obj_priv->pin_count < 0);
  3492. BUG_ON(obj_priv->gtt_space == NULL);
  3493. /* If the object is no longer pinned, and is
  3494. * neither active nor being flushed, then stick it on
  3495. * the inactive list
  3496. */
  3497. if (obj_priv->pin_count == 0) {
  3498. if (!obj_priv->active)
  3499. list_move_tail(&obj_priv->mm_list,
  3500. &dev_priv->mm.inactive_list);
  3501. i915_gem_info_remove_pin(dev_priv, obj->size);
  3502. }
  3503. WARN_ON(i915_verify_lists(dev));
  3504. }
  3505. int
  3506. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  3507. struct drm_file *file_priv)
  3508. {
  3509. struct drm_i915_gem_pin *args = data;
  3510. struct drm_gem_object *obj;
  3511. struct drm_i915_gem_object *obj_priv;
  3512. int ret;
  3513. ret = i915_mutex_lock_interruptible(dev);
  3514. if (ret)
  3515. return ret;
  3516. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3517. if (obj == NULL) {
  3518. ret = -ENOENT;
  3519. goto unlock;
  3520. }
  3521. obj_priv = to_intel_bo(obj);
  3522. if (obj_priv->madv != I915_MADV_WILLNEED) {
  3523. DRM_ERROR("Attempting to pin a purgeable buffer\n");
  3524. ret = -EINVAL;
  3525. goto out;
  3526. }
  3527. if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
  3528. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  3529. args->handle);
  3530. ret = -EINVAL;
  3531. goto out;
  3532. }
  3533. obj_priv->user_pin_count++;
  3534. obj_priv->pin_filp = file_priv;
  3535. if (obj_priv->user_pin_count == 1) {
  3536. ret = i915_gem_object_pin(obj, args->alignment, true);
  3537. if (ret)
  3538. goto out;
  3539. }
  3540. /* XXX - flush the CPU caches for pinned objects
  3541. * as the X server doesn't manage domains yet
  3542. */
  3543. i915_gem_object_flush_cpu_write_domain(obj);
  3544. args->offset = obj_priv->gtt_offset;
  3545. out:
  3546. drm_gem_object_unreference(obj);
  3547. unlock:
  3548. mutex_unlock(&dev->struct_mutex);
  3549. return ret;
  3550. }
  3551. int
  3552. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  3553. struct drm_file *file_priv)
  3554. {
  3555. struct drm_i915_gem_pin *args = data;
  3556. struct drm_gem_object *obj;
  3557. struct drm_i915_gem_object *obj_priv;
  3558. int ret;
  3559. ret = i915_mutex_lock_interruptible(dev);
  3560. if (ret)
  3561. return ret;
  3562. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3563. if (obj == NULL) {
  3564. ret = -ENOENT;
  3565. goto unlock;
  3566. }
  3567. obj_priv = to_intel_bo(obj);
  3568. if (obj_priv->pin_filp != file_priv) {
  3569. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  3570. args->handle);
  3571. ret = -EINVAL;
  3572. goto out;
  3573. }
  3574. obj_priv->user_pin_count--;
  3575. if (obj_priv->user_pin_count == 0) {
  3576. obj_priv->pin_filp = NULL;
  3577. i915_gem_object_unpin(obj);
  3578. }
  3579. out:
  3580. drm_gem_object_unreference(obj);
  3581. unlock:
  3582. mutex_unlock(&dev->struct_mutex);
  3583. return ret;
  3584. }
  3585. int
  3586. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  3587. struct drm_file *file_priv)
  3588. {
  3589. struct drm_i915_gem_busy *args = data;
  3590. struct drm_gem_object *obj;
  3591. struct drm_i915_gem_object *obj_priv;
  3592. int ret;
  3593. ret = i915_mutex_lock_interruptible(dev);
  3594. if (ret)
  3595. return ret;
  3596. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3597. if (obj == NULL) {
  3598. ret = -ENOENT;
  3599. goto unlock;
  3600. }
  3601. obj_priv = to_intel_bo(obj);
  3602. /* Count all active objects as busy, even if they are currently not used
  3603. * by the gpu. Users of this interface expect objects to eventually
  3604. * become non-busy without any further actions, therefore emit any
  3605. * necessary flushes here.
  3606. */
  3607. args->busy = obj_priv->active;
  3608. if (args->busy) {
  3609. /* Unconditionally flush objects, even when the gpu still uses this
  3610. * object. Userspace calling this function indicates that it wants to
  3611. * use this buffer rather sooner than later, so issuing the required
  3612. * flush earlier is beneficial.
  3613. */
  3614. if (obj->write_domain & I915_GEM_GPU_DOMAINS)
  3615. i915_gem_flush_ring(dev, file_priv,
  3616. obj_priv->ring,
  3617. 0, obj->write_domain);
  3618. /* Update the active list for the hardware's current position.
  3619. * Otherwise this only updates on a delayed timer or when irqs
  3620. * are actually unmasked, and our working set ends up being
  3621. * larger than required.
  3622. */
  3623. i915_gem_retire_requests_ring(dev, obj_priv->ring);
  3624. args->busy = obj_priv->active;
  3625. }
  3626. drm_gem_object_unreference(obj);
  3627. unlock:
  3628. mutex_unlock(&dev->struct_mutex);
  3629. return ret;
  3630. }
  3631. int
  3632. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  3633. struct drm_file *file_priv)
  3634. {
  3635. return i915_gem_ring_throttle(dev, file_priv);
  3636. }
  3637. int
  3638. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  3639. struct drm_file *file_priv)
  3640. {
  3641. struct drm_i915_gem_madvise *args = data;
  3642. struct drm_gem_object *obj;
  3643. struct drm_i915_gem_object *obj_priv;
  3644. int ret;
  3645. switch (args->madv) {
  3646. case I915_MADV_DONTNEED:
  3647. case I915_MADV_WILLNEED:
  3648. break;
  3649. default:
  3650. return -EINVAL;
  3651. }
  3652. ret = i915_mutex_lock_interruptible(dev);
  3653. if (ret)
  3654. return ret;
  3655. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3656. if (obj == NULL) {
  3657. ret = -ENOENT;
  3658. goto unlock;
  3659. }
  3660. obj_priv = to_intel_bo(obj);
  3661. if (obj_priv->pin_count) {
  3662. ret = -EINVAL;
  3663. goto out;
  3664. }
  3665. if (obj_priv->madv != __I915_MADV_PURGED)
  3666. obj_priv->madv = args->madv;
  3667. /* if the object is no longer bound, discard its backing storage */
  3668. if (i915_gem_object_is_purgeable(obj_priv) &&
  3669. obj_priv->gtt_space == NULL)
  3670. i915_gem_object_truncate(obj);
  3671. args->retained = obj_priv->madv != __I915_MADV_PURGED;
  3672. out:
  3673. drm_gem_object_unreference(obj);
  3674. unlock:
  3675. mutex_unlock(&dev->struct_mutex);
  3676. return ret;
  3677. }
  3678. struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
  3679. size_t size)
  3680. {
  3681. struct drm_i915_private *dev_priv = dev->dev_private;
  3682. struct drm_i915_gem_object *obj;
  3683. obj = kzalloc(sizeof(*obj), GFP_KERNEL);
  3684. if (obj == NULL)
  3685. return NULL;
  3686. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  3687. kfree(obj);
  3688. return NULL;
  3689. }
  3690. i915_gem_info_add_obj(dev_priv, size);
  3691. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  3692. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  3693. obj->agp_type = AGP_USER_MEMORY;
  3694. obj->base.driver_private = NULL;
  3695. obj->fence_reg = I915_FENCE_REG_NONE;
  3696. INIT_LIST_HEAD(&obj->mm_list);
  3697. INIT_LIST_HEAD(&obj->ring_list);
  3698. INIT_LIST_HEAD(&obj->gpu_write_list);
  3699. obj->madv = I915_MADV_WILLNEED;
  3700. return &obj->base;
  3701. }
  3702. int i915_gem_init_object(struct drm_gem_object *obj)
  3703. {
  3704. BUG();
  3705. return 0;
  3706. }
  3707. static void i915_gem_free_object_tail(struct drm_gem_object *obj)
  3708. {
  3709. struct drm_device *dev = obj->dev;
  3710. drm_i915_private_t *dev_priv = dev->dev_private;
  3711. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3712. int ret;
  3713. ret = i915_gem_object_unbind(obj);
  3714. if (ret == -ERESTARTSYS) {
  3715. list_move(&obj_priv->mm_list,
  3716. &dev_priv->mm.deferred_free_list);
  3717. return;
  3718. }
  3719. if (obj_priv->mmap_offset)
  3720. i915_gem_free_mmap_offset(obj);
  3721. drm_gem_object_release(obj);
  3722. i915_gem_info_remove_obj(dev_priv, obj->size);
  3723. kfree(obj_priv->page_cpu_valid);
  3724. kfree(obj_priv->bit_17);
  3725. kfree(obj_priv);
  3726. }
  3727. void i915_gem_free_object(struct drm_gem_object *obj)
  3728. {
  3729. struct drm_device *dev = obj->dev;
  3730. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3731. trace_i915_gem_object_destroy(obj);
  3732. while (obj_priv->pin_count > 0)
  3733. i915_gem_object_unpin(obj);
  3734. if (obj_priv->phys_obj)
  3735. i915_gem_detach_phys_object(dev, obj);
  3736. i915_gem_free_object_tail(obj);
  3737. }
  3738. int
  3739. i915_gem_idle(struct drm_device *dev)
  3740. {
  3741. drm_i915_private_t *dev_priv = dev->dev_private;
  3742. int ret;
  3743. mutex_lock(&dev->struct_mutex);
  3744. if (dev_priv->mm.suspended) {
  3745. mutex_unlock(&dev->struct_mutex);
  3746. return 0;
  3747. }
  3748. ret = i915_gpu_idle(dev);
  3749. if (ret) {
  3750. mutex_unlock(&dev->struct_mutex);
  3751. return ret;
  3752. }
  3753. /* Under UMS, be paranoid and evict. */
  3754. if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
  3755. ret = i915_gem_evict_inactive(dev);
  3756. if (ret) {
  3757. mutex_unlock(&dev->struct_mutex);
  3758. return ret;
  3759. }
  3760. }
  3761. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  3762. * We need to replace this with a semaphore, or something.
  3763. * And not confound mm.suspended!
  3764. */
  3765. dev_priv->mm.suspended = 1;
  3766. del_timer_sync(&dev_priv->hangcheck_timer);
  3767. i915_kernel_lost_context(dev);
  3768. i915_gem_cleanup_ringbuffer(dev);
  3769. mutex_unlock(&dev->struct_mutex);
  3770. /* Cancel the retire work handler, which should be idle now. */
  3771. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3772. return 0;
  3773. }
  3774. /*
  3775. * 965+ support PIPE_CONTROL commands, which provide finer grained control
  3776. * over cache flushing.
  3777. */
  3778. static int
  3779. i915_gem_init_pipe_control(struct drm_device *dev)
  3780. {
  3781. drm_i915_private_t *dev_priv = dev->dev_private;
  3782. struct drm_gem_object *obj;
  3783. struct drm_i915_gem_object *obj_priv;
  3784. int ret;
  3785. obj = i915_gem_alloc_object(dev, 4096);
  3786. if (obj == NULL) {
  3787. DRM_ERROR("Failed to allocate seqno page\n");
  3788. ret = -ENOMEM;
  3789. goto err;
  3790. }
  3791. obj_priv = to_intel_bo(obj);
  3792. obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
  3793. ret = i915_gem_object_pin(obj, 4096, true);
  3794. if (ret)
  3795. goto err_unref;
  3796. dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
  3797. dev_priv->seqno_page = kmap(obj_priv->pages[0]);
  3798. if (dev_priv->seqno_page == NULL)
  3799. goto err_unpin;
  3800. dev_priv->seqno_obj = obj;
  3801. memset(dev_priv->seqno_page, 0, PAGE_SIZE);
  3802. return 0;
  3803. err_unpin:
  3804. i915_gem_object_unpin(obj);
  3805. err_unref:
  3806. drm_gem_object_unreference(obj);
  3807. err:
  3808. return ret;
  3809. }
  3810. static void
  3811. i915_gem_cleanup_pipe_control(struct drm_device *dev)
  3812. {
  3813. drm_i915_private_t *dev_priv = dev->dev_private;
  3814. struct drm_gem_object *obj;
  3815. struct drm_i915_gem_object *obj_priv;
  3816. obj = dev_priv->seqno_obj;
  3817. obj_priv = to_intel_bo(obj);
  3818. kunmap(obj_priv->pages[0]);
  3819. i915_gem_object_unpin(obj);
  3820. drm_gem_object_unreference(obj);
  3821. dev_priv->seqno_obj = NULL;
  3822. dev_priv->seqno_page = NULL;
  3823. }
  3824. int
  3825. i915_gem_init_ringbuffer(struct drm_device *dev)
  3826. {
  3827. drm_i915_private_t *dev_priv = dev->dev_private;
  3828. int ret;
  3829. if (HAS_PIPE_CONTROL(dev)) {
  3830. ret = i915_gem_init_pipe_control(dev);
  3831. if (ret)
  3832. return ret;
  3833. }
  3834. ret = intel_init_render_ring_buffer(dev);
  3835. if (ret)
  3836. goto cleanup_pipe_control;
  3837. if (HAS_BSD(dev)) {
  3838. ret = intel_init_bsd_ring_buffer(dev);
  3839. if (ret)
  3840. goto cleanup_render_ring;
  3841. }
  3842. if (HAS_BLT(dev)) {
  3843. ret = intel_init_blt_ring_buffer(dev);
  3844. if (ret)
  3845. goto cleanup_bsd_ring;
  3846. }
  3847. dev_priv->next_seqno = 1;
  3848. return 0;
  3849. cleanup_bsd_ring:
  3850. intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
  3851. cleanup_render_ring:
  3852. intel_cleanup_ring_buffer(&dev_priv->render_ring);
  3853. cleanup_pipe_control:
  3854. if (HAS_PIPE_CONTROL(dev))
  3855. i915_gem_cleanup_pipe_control(dev);
  3856. return ret;
  3857. }
  3858. void
  3859. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3860. {
  3861. drm_i915_private_t *dev_priv = dev->dev_private;
  3862. intel_cleanup_ring_buffer(&dev_priv->render_ring);
  3863. intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
  3864. intel_cleanup_ring_buffer(&dev_priv->blt_ring);
  3865. if (HAS_PIPE_CONTROL(dev))
  3866. i915_gem_cleanup_pipe_control(dev);
  3867. }
  3868. int
  3869. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3870. struct drm_file *file_priv)
  3871. {
  3872. drm_i915_private_t *dev_priv = dev->dev_private;
  3873. int ret;
  3874. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3875. return 0;
  3876. if (atomic_read(&dev_priv->mm.wedged)) {
  3877. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3878. atomic_set(&dev_priv->mm.wedged, 0);
  3879. }
  3880. mutex_lock(&dev->struct_mutex);
  3881. dev_priv->mm.suspended = 0;
  3882. ret = i915_gem_init_ringbuffer(dev);
  3883. if (ret != 0) {
  3884. mutex_unlock(&dev->struct_mutex);
  3885. return ret;
  3886. }
  3887. BUG_ON(!list_empty(&dev_priv->mm.active_list));
  3888. BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
  3889. BUG_ON(!list_empty(&dev_priv->bsd_ring.active_list));
  3890. BUG_ON(!list_empty(&dev_priv->blt_ring.active_list));
  3891. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  3892. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  3893. BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
  3894. BUG_ON(!list_empty(&dev_priv->bsd_ring.request_list));
  3895. BUG_ON(!list_empty(&dev_priv->blt_ring.request_list));
  3896. mutex_unlock(&dev->struct_mutex);
  3897. ret = drm_irq_install(dev);
  3898. if (ret)
  3899. goto cleanup_ringbuffer;
  3900. return 0;
  3901. cleanup_ringbuffer:
  3902. mutex_lock(&dev->struct_mutex);
  3903. i915_gem_cleanup_ringbuffer(dev);
  3904. dev_priv->mm.suspended = 1;
  3905. mutex_unlock(&dev->struct_mutex);
  3906. return ret;
  3907. }
  3908. int
  3909. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3910. struct drm_file *file_priv)
  3911. {
  3912. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3913. return 0;
  3914. drm_irq_uninstall(dev);
  3915. return i915_gem_idle(dev);
  3916. }
  3917. void
  3918. i915_gem_lastclose(struct drm_device *dev)
  3919. {
  3920. int ret;
  3921. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3922. return;
  3923. ret = i915_gem_idle(dev);
  3924. if (ret)
  3925. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3926. }
  3927. static void
  3928. init_ring_lists(struct intel_ring_buffer *ring)
  3929. {
  3930. INIT_LIST_HEAD(&ring->active_list);
  3931. INIT_LIST_HEAD(&ring->request_list);
  3932. INIT_LIST_HEAD(&ring->gpu_write_list);
  3933. }
  3934. void
  3935. i915_gem_load(struct drm_device *dev)
  3936. {
  3937. int i;
  3938. drm_i915_private_t *dev_priv = dev->dev_private;
  3939. INIT_LIST_HEAD(&dev_priv->mm.active_list);
  3940. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  3941. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  3942. INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
  3943. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  3944. INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
  3945. init_ring_lists(&dev_priv->render_ring);
  3946. init_ring_lists(&dev_priv->bsd_ring);
  3947. init_ring_lists(&dev_priv->blt_ring);
  3948. for (i = 0; i < 16; i++)
  3949. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  3950. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  3951. i915_gem_retire_work_handler);
  3952. init_completion(&dev_priv->error_completion);
  3953. spin_lock(&shrink_list_lock);
  3954. list_add(&dev_priv->mm.shrink_list, &shrink_list);
  3955. spin_unlock(&shrink_list_lock);
  3956. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  3957. if (IS_GEN3(dev)) {
  3958. u32 tmp = I915_READ(MI_ARB_STATE);
  3959. if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
  3960. /* arb state is a masked write, so set bit + bit in mask */
  3961. tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
  3962. I915_WRITE(MI_ARB_STATE, tmp);
  3963. }
  3964. }
  3965. /* Old X drivers will take 0-2 for front, back, depth buffers */
  3966. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3967. dev_priv->fence_reg_start = 3;
  3968. if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3969. dev_priv->num_fence_regs = 16;
  3970. else
  3971. dev_priv->num_fence_regs = 8;
  3972. /* Initialize fence registers to zero */
  3973. switch (INTEL_INFO(dev)->gen) {
  3974. case 6:
  3975. for (i = 0; i < 16; i++)
  3976. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
  3977. break;
  3978. case 5:
  3979. case 4:
  3980. for (i = 0; i < 16; i++)
  3981. I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
  3982. break;
  3983. case 3:
  3984. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3985. for (i = 0; i < 8; i++)
  3986. I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
  3987. case 2:
  3988. for (i = 0; i < 8; i++)
  3989. I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
  3990. break;
  3991. }
  3992. i915_gem_detect_bit_6_swizzle(dev);
  3993. init_waitqueue_head(&dev_priv->pending_flip_queue);
  3994. }
  3995. /*
  3996. * Create a physically contiguous memory object for this object
  3997. * e.g. for cursor + overlay regs
  3998. */
  3999. static int i915_gem_init_phys_object(struct drm_device *dev,
  4000. int id, int size, int align)
  4001. {
  4002. drm_i915_private_t *dev_priv = dev->dev_private;
  4003. struct drm_i915_gem_phys_object *phys_obj;
  4004. int ret;
  4005. if (dev_priv->mm.phys_objs[id - 1] || !size)
  4006. return 0;
  4007. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  4008. if (!phys_obj)
  4009. return -ENOMEM;
  4010. phys_obj->id = id;
  4011. phys_obj->handle = drm_pci_alloc(dev, size, align);
  4012. if (!phys_obj->handle) {
  4013. ret = -ENOMEM;
  4014. goto kfree_obj;
  4015. }
  4016. #ifdef CONFIG_X86
  4017. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  4018. #endif
  4019. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  4020. return 0;
  4021. kfree_obj:
  4022. kfree(phys_obj);
  4023. return ret;
  4024. }
  4025. static void i915_gem_free_phys_object(struct drm_device *dev, int id)
  4026. {
  4027. drm_i915_private_t *dev_priv = dev->dev_private;
  4028. struct drm_i915_gem_phys_object *phys_obj;
  4029. if (!dev_priv->mm.phys_objs[id - 1])
  4030. return;
  4031. phys_obj = dev_priv->mm.phys_objs[id - 1];
  4032. if (phys_obj->cur_obj) {
  4033. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  4034. }
  4035. #ifdef CONFIG_X86
  4036. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  4037. #endif
  4038. drm_pci_free(dev, phys_obj->handle);
  4039. kfree(phys_obj);
  4040. dev_priv->mm.phys_objs[id - 1] = NULL;
  4041. }
  4042. void i915_gem_free_all_phys_object(struct drm_device *dev)
  4043. {
  4044. int i;
  4045. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  4046. i915_gem_free_phys_object(dev, i);
  4047. }
  4048. void i915_gem_detach_phys_object(struct drm_device *dev,
  4049. struct drm_gem_object *obj)
  4050. {
  4051. struct drm_i915_gem_object *obj_priv;
  4052. int i;
  4053. int ret;
  4054. int page_count;
  4055. obj_priv = to_intel_bo(obj);
  4056. if (!obj_priv->phys_obj)
  4057. return;
  4058. ret = i915_gem_object_get_pages(obj, 0);
  4059. if (ret)
  4060. goto out;
  4061. page_count = obj->size / PAGE_SIZE;
  4062. for (i = 0; i < page_count; i++) {
  4063. char *dst = kmap_atomic(obj_priv->pages[i]);
  4064. char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  4065. memcpy(dst, src, PAGE_SIZE);
  4066. kunmap_atomic(dst);
  4067. }
  4068. drm_clflush_pages(obj_priv->pages, page_count);
  4069. drm_agp_chipset_flush(dev);
  4070. i915_gem_object_put_pages(obj);
  4071. out:
  4072. obj_priv->phys_obj->cur_obj = NULL;
  4073. obj_priv->phys_obj = NULL;
  4074. }
  4075. int
  4076. i915_gem_attach_phys_object(struct drm_device *dev,
  4077. struct drm_gem_object *obj,
  4078. int id,
  4079. int align)
  4080. {
  4081. drm_i915_private_t *dev_priv = dev->dev_private;
  4082. struct drm_i915_gem_object *obj_priv;
  4083. int ret = 0;
  4084. int page_count;
  4085. int i;
  4086. if (id > I915_MAX_PHYS_OBJECT)
  4087. return -EINVAL;
  4088. obj_priv = to_intel_bo(obj);
  4089. if (obj_priv->phys_obj) {
  4090. if (obj_priv->phys_obj->id == id)
  4091. return 0;
  4092. i915_gem_detach_phys_object(dev, obj);
  4093. }
  4094. /* create a new object */
  4095. if (!dev_priv->mm.phys_objs[id - 1]) {
  4096. ret = i915_gem_init_phys_object(dev, id,
  4097. obj->size, align);
  4098. if (ret) {
  4099. DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
  4100. goto out;
  4101. }
  4102. }
  4103. /* bind to the object */
  4104. obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
  4105. obj_priv->phys_obj->cur_obj = obj;
  4106. ret = i915_gem_object_get_pages(obj, 0);
  4107. if (ret) {
  4108. DRM_ERROR("failed to get page list\n");
  4109. goto out;
  4110. }
  4111. page_count = obj->size / PAGE_SIZE;
  4112. for (i = 0; i < page_count; i++) {
  4113. char *src = kmap_atomic(obj_priv->pages[i]);
  4114. char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  4115. memcpy(dst, src, PAGE_SIZE);
  4116. kunmap_atomic(src);
  4117. }
  4118. i915_gem_object_put_pages(obj);
  4119. return 0;
  4120. out:
  4121. return ret;
  4122. }
  4123. static int
  4124. i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  4125. struct drm_i915_gem_pwrite *args,
  4126. struct drm_file *file_priv)
  4127. {
  4128. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  4129. void *obj_addr;
  4130. int ret;
  4131. char __user *user_data;
  4132. user_data = (char __user *) (uintptr_t) args->data_ptr;
  4133. obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
  4134. DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
  4135. ret = copy_from_user(obj_addr, user_data, args->size);
  4136. if (ret)
  4137. return -EFAULT;
  4138. drm_agp_chipset_flush(dev);
  4139. return 0;
  4140. }
  4141. void i915_gem_release(struct drm_device *dev, struct drm_file *file)
  4142. {
  4143. struct drm_i915_file_private *file_priv = file->driver_priv;
  4144. /* Clean up our request list when the client is going away, so that
  4145. * later retire_requests won't dereference our soon-to-be-gone
  4146. * file_priv.
  4147. */
  4148. spin_lock(&file_priv->mm.lock);
  4149. while (!list_empty(&file_priv->mm.request_list)) {
  4150. struct drm_i915_gem_request *request;
  4151. request = list_first_entry(&file_priv->mm.request_list,
  4152. struct drm_i915_gem_request,
  4153. client_list);
  4154. list_del(&request->client_list);
  4155. request->file_priv = NULL;
  4156. }
  4157. spin_unlock(&file_priv->mm.lock);
  4158. }
  4159. static int
  4160. i915_gpu_is_active(struct drm_device *dev)
  4161. {
  4162. drm_i915_private_t *dev_priv = dev->dev_private;
  4163. int lists_empty;
  4164. lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
  4165. list_empty(&dev_priv->render_ring.active_list) &&
  4166. list_empty(&dev_priv->bsd_ring.active_list) &&
  4167. list_empty(&dev_priv->blt_ring.active_list);
  4168. return !lists_empty;
  4169. }
  4170. static int
  4171. i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
  4172. {
  4173. drm_i915_private_t *dev_priv, *next_dev;
  4174. struct drm_i915_gem_object *obj_priv, *next_obj;
  4175. int cnt = 0;
  4176. int would_deadlock = 1;
  4177. /* "fast-path" to count number of available objects */
  4178. if (nr_to_scan == 0) {
  4179. spin_lock(&shrink_list_lock);
  4180. list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
  4181. struct drm_device *dev = dev_priv->dev;
  4182. if (mutex_trylock(&dev->struct_mutex)) {
  4183. list_for_each_entry(obj_priv,
  4184. &dev_priv->mm.inactive_list,
  4185. mm_list)
  4186. cnt++;
  4187. mutex_unlock(&dev->struct_mutex);
  4188. }
  4189. }
  4190. spin_unlock(&shrink_list_lock);
  4191. return (cnt / 100) * sysctl_vfs_cache_pressure;
  4192. }
  4193. spin_lock(&shrink_list_lock);
  4194. rescan:
  4195. /* first scan for clean buffers */
  4196. list_for_each_entry_safe(dev_priv, next_dev,
  4197. &shrink_list, mm.shrink_list) {
  4198. struct drm_device *dev = dev_priv->dev;
  4199. if (! mutex_trylock(&dev->struct_mutex))
  4200. continue;
  4201. spin_unlock(&shrink_list_lock);
  4202. i915_gem_retire_requests(dev);
  4203. list_for_each_entry_safe(obj_priv, next_obj,
  4204. &dev_priv->mm.inactive_list,
  4205. mm_list) {
  4206. if (i915_gem_object_is_purgeable(obj_priv)) {
  4207. i915_gem_object_unbind(&obj_priv->base);
  4208. if (--nr_to_scan <= 0)
  4209. break;
  4210. }
  4211. }
  4212. spin_lock(&shrink_list_lock);
  4213. mutex_unlock(&dev->struct_mutex);
  4214. would_deadlock = 0;
  4215. if (nr_to_scan <= 0)
  4216. break;
  4217. }
  4218. /* second pass, evict/count anything still on the inactive list */
  4219. list_for_each_entry_safe(dev_priv, next_dev,
  4220. &shrink_list, mm.shrink_list) {
  4221. struct drm_device *dev = dev_priv->dev;
  4222. if (! mutex_trylock(&dev->struct_mutex))
  4223. continue;
  4224. spin_unlock(&shrink_list_lock);
  4225. list_for_each_entry_safe(obj_priv, next_obj,
  4226. &dev_priv->mm.inactive_list,
  4227. mm_list) {
  4228. if (nr_to_scan > 0) {
  4229. i915_gem_object_unbind(&obj_priv->base);
  4230. nr_to_scan--;
  4231. } else
  4232. cnt++;
  4233. }
  4234. spin_lock(&shrink_list_lock);
  4235. mutex_unlock(&dev->struct_mutex);
  4236. would_deadlock = 0;
  4237. }
  4238. if (nr_to_scan) {
  4239. int active = 0;
  4240. /*
  4241. * We are desperate for pages, so as a last resort, wait
  4242. * for the GPU to finish and discard whatever we can.
  4243. * This has a dramatic impact to reduce the number of
  4244. * OOM-killer events whilst running the GPU aggressively.
  4245. */
  4246. list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
  4247. struct drm_device *dev = dev_priv->dev;
  4248. if (!mutex_trylock(&dev->struct_mutex))
  4249. continue;
  4250. spin_unlock(&shrink_list_lock);
  4251. if (i915_gpu_is_active(dev)) {
  4252. i915_gpu_idle(dev);
  4253. active++;
  4254. }
  4255. spin_lock(&shrink_list_lock);
  4256. mutex_unlock(&dev->struct_mutex);
  4257. }
  4258. if (active)
  4259. goto rescan;
  4260. }
  4261. spin_unlock(&shrink_list_lock);
  4262. if (would_deadlock)
  4263. return -1;
  4264. else if (cnt > 0)
  4265. return (cnt / 100) * sysctl_vfs_cache_pressure;
  4266. else
  4267. return 0;
  4268. }
  4269. static struct shrinker shrinker = {
  4270. .shrink = i915_gem_shrink,
  4271. .seeks = DEFAULT_SEEKS,
  4272. };
  4273. __init void
  4274. i915_gem_shrinker_init(void)
  4275. {
  4276. register_shrinker(&shrinker);
  4277. }
  4278. __exit void
  4279. i915_gem_shrinker_exit(void)
  4280. {
  4281. unregister_shrinker(&shrinker);
  4282. }