tcp_input.c 178 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Implementation of the Transmission Control Protocol(TCP).
  7. *
  8. * Authors: Ross Biro
  9. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10. * Mark Evans, <evansmp@uhura.aston.ac.uk>
  11. * Corey Minyard <wf-rch!minyard@relay.EU.net>
  12. * Florian La Roche, <flla@stud.uni-sb.de>
  13. * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14. * Linus Torvalds, <torvalds@cs.helsinki.fi>
  15. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  16. * Matthew Dillon, <dillon@apollo.west.oic.com>
  17. * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18. * Jorge Cwik, <jorge@laser.satlink.net>
  19. */
  20. /*
  21. * Changes:
  22. * Pedro Roque : Fast Retransmit/Recovery.
  23. * Two receive queues.
  24. * Retransmit queue handled by TCP.
  25. * Better retransmit timer handling.
  26. * New congestion avoidance.
  27. * Header prediction.
  28. * Variable renaming.
  29. *
  30. * Eric : Fast Retransmit.
  31. * Randy Scott : MSS option defines.
  32. * Eric Schenk : Fixes to slow start algorithm.
  33. * Eric Schenk : Yet another double ACK bug.
  34. * Eric Schenk : Delayed ACK bug fixes.
  35. * Eric Schenk : Floyd style fast retrans war avoidance.
  36. * David S. Miller : Don't allow zero congestion window.
  37. * Eric Schenk : Fix retransmitter so that it sends
  38. * next packet on ack of previous packet.
  39. * Andi Kleen : Moved open_request checking here
  40. * and process RSTs for open_requests.
  41. * Andi Kleen : Better prune_queue, and other fixes.
  42. * Andrey Savochkin: Fix RTT measurements in the presence of
  43. * timestamps.
  44. * Andrey Savochkin: Check sequence numbers correctly when
  45. * removing SACKs due to in sequence incoming
  46. * data segments.
  47. * Andi Kleen: Make sure we never ack data there is not
  48. * enough room for. Also make this condition
  49. * a fatal error if it might still happen.
  50. * Andi Kleen: Add tcp_measure_rcv_mss to make
  51. * connections with MSS<min(MTU,ann. MSS)
  52. * work without delayed acks.
  53. * Andi Kleen: Process packets with PSH set in the
  54. * fast path.
  55. * J Hadi Salim: ECN support
  56. * Andrei Gurtov,
  57. * Pasi Sarolahti,
  58. * Panu Kuhlberg: Experimental audit of TCP (re)transmission
  59. * engine. Lots of bugs are found.
  60. * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
  61. */
  62. #define pr_fmt(fmt) "TCP: " fmt
  63. #include <linux/mm.h>
  64. #include <linux/slab.h>
  65. #include <linux/module.h>
  66. #include <linux/sysctl.h>
  67. #include <linux/kernel.h>
  68. #include <net/dst.h>
  69. #include <net/tcp.h>
  70. #include <net/inet_common.h>
  71. #include <linux/ipsec.h>
  72. #include <asm/unaligned.h>
  73. #include <net/netdma.h>
  74. int sysctl_tcp_timestamps __read_mostly = 1;
  75. int sysctl_tcp_window_scaling __read_mostly = 1;
  76. int sysctl_tcp_sack __read_mostly = 1;
  77. int sysctl_tcp_fack __read_mostly = 1;
  78. int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
  79. EXPORT_SYMBOL(sysctl_tcp_reordering);
  80. int sysctl_tcp_ecn __read_mostly = 2;
  81. EXPORT_SYMBOL(sysctl_tcp_ecn);
  82. int sysctl_tcp_dsack __read_mostly = 1;
  83. int sysctl_tcp_app_win __read_mostly = 31;
  84. int sysctl_tcp_adv_win_scale __read_mostly = 1;
  85. EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
  86. int sysctl_tcp_stdurg __read_mostly;
  87. int sysctl_tcp_rfc1337 __read_mostly;
  88. int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
  89. int sysctl_tcp_frto __read_mostly = 2;
  90. int sysctl_tcp_frto_response __read_mostly;
  91. int sysctl_tcp_nometrics_save __read_mostly;
  92. int sysctl_tcp_thin_dupack __read_mostly;
  93. int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
  94. int sysctl_tcp_abc __read_mostly;
  95. int sysctl_tcp_early_retrans __read_mostly = 2;
  96. #define FLAG_DATA 0x01 /* Incoming frame contained data. */
  97. #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
  98. #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
  99. #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
  100. #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
  101. #define FLAG_DATA_SACKED 0x20 /* New SACK. */
  102. #define FLAG_ECE 0x40 /* ECE in this ACK */
  103. #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
  104. #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
  105. #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
  106. #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
  107. #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
  108. #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
  109. #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
  110. #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
  111. #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
  112. #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
  113. #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
  114. #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
  115. #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
  116. /* Adapt the MSS value used to make delayed ack decision to the
  117. * real world.
  118. */
  119. static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
  120. {
  121. struct inet_connection_sock *icsk = inet_csk(sk);
  122. const unsigned int lss = icsk->icsk_ack.last_seg_size;
  123. unsigned int len;
  124. icsk->icsk_ack.last_seg_size = 0;
  125. /* skb->len may jitter because of SACKs, even if peer
  126. * sends good full-sized frames.
  127. */
  128. len = skb_shinfo(skb)->gso_size ? : skb->len;
  129. if (len >= icsk->icsk_ack.rcv_mss) {
  130. icsk->icsk_ack.rcv_mss = len;
  131. } else {
  132. /* Otherwise, we make more careful check taking into account,
  133. * that SACKs block is variable.
  134. *
  135. * "len" is invariant segment length, including TCP header.
  136. */
  137. len += skb->data - skb_transport_header(skb);
  138. if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
  139. /* If PSH is not set, packet should be
  140. * full sized, provided peer TCP is not badly broken.
  141. * This observation (if it is correct 8)) allows
  142. * to handle super-low mtu links fairly.
  143. */
  144. (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
  145. !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
  146. /* Subtract also invariant (if peer is RFC compliant),
  147. * tcp header plus fixed timestamp option length.
  148. * Resulting "len" is MSS free of SACK jitter.
  149. */
  150. len -= tcp_sk(sk)->tcp_header_len;
  151. icsk->icsk_ack.last_seg_size = len;
  152. if (len == lss) {
  153. icsk->icsk_ack.rcv_mss = len;
  154. return;
  155. }
  156. }
  157. if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
  158. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
  159. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
  160. }
  161. }
  162. static void tcp_incr_quickack(struct sock *sk)
  163. {
  164. struct inet_connection_sock *icsk = inet_csk(sk);
  165. unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
  166. if (quickacks == 0)
  167. quickacks = 2;
  168. if (quickacks > icsk->icsk_ack.quick)
  169. icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
  170. }
  171. static void tcp_enter_quickack_mode(struct sock *sk)
  172. {
  173. struct inet_connection_sock *icsk = inet_csk(sk);
  174. tcp_incr_quickack(sk);
  175. icsk->icsk_ack.pingpong = 0;
  176. icsk->icsk_ack.ato = TCP_ATO_MIN;
  177. }
  178. /* Send ACKs quickly, if "quick" count is not exhausted
  179. * and the session is not interactive.
  180. */
  181. static inline int tcp_in_quickack_mode(const struct sock *sk)
  182. {
  183. const struct inet_connection_sock *icsk = inet_csk(sk);
  184. return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
  185. }
  186. static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
  187. {
  188. if (tp->ecn_flags & TCP_ECN_OK)
  189. tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
  190. }
  191. static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
  192. {
  193. if (tcp_hdr(skb)->cwr)
  194. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  195. }
  196. static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
  197. {
  198. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  199. }
  200. static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
  201. {
  202. if (!(tp->ecn_flags & TCP_ECN_OK))
  203. return;
  204. switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
  205. case INET_ECN_NOT_ECT:
  206. /* Funny extension: if ECT is not set on a segment,
  207. * and we already seen ECT on a previous segment,
  208. * it is probably a retransmit.
  209. */
  210. if (tp->ecn_flags & TCP_ECN_SEEN)
  211. tcp_enter_quickack_mode((struct sock *)tp);
  212. break;
  213. case INET_ECN_CE:
  214. tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
  215. /* fallinto */
  216. default:
  217. tp->ecn_flags |= TCP_ECN_SEEN;
  218. }
  219. }
  220. static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
  221. {
  222. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
  223. tp->ecn_flags &= ~TCP_ECN_OK;
  224. }
  225. static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
  226. {
  227. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
  228. tp->ecn_flags &= ~TCP_ECN_OK;
  229. }
  230. static inline int TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
  231. {
  232. if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
  233. return 1;
  234. return 0;
  235. }
  236. /* Buffer size and advertised window tuning.
  237. *
  238. * 1. Tuning sk->sk_sndbuf, when connection enters established state.
  239. */
  240. static void tcp_fixup_sndbuf(struct sock *sk)
  241. {
  242. int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
  243. sndmem *= TCP_INIT_CWND;
  244. if (sk->sk_sndbuf < sndmem)
  245. sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
  246. }
  247. /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
  248. *
  249. * All tcp_full_space() is split to two parts: "network" buffer, allocated
  250. * forward and advertised in receiver window (tp->rcv_wnd) and
  251. * "application buffer", required to isolate scheduling/application
  252. * latencies from network.
  253. * window_clamp is maximal advertised window. It can be less than
  254. * tcp_full_space(), in this case tcp_full_space() - window_clamp
  255. * is reserved for "application" buffer. The less window_clamp is
  256. * the smoother our behaviour from viewpoint of network, but the lower
  257. * throughput and the higher sensitivity of the connection to losses. 8)
  258. *
  259. * rcv_ssthresh is more strict window_clamp used at "slow start"
  260. * phase to predict further behaviour of this connection.
  261. * It is used for two goals:
  262. * - to enforce header prediction at sender, even when application
  263. * requires some significant "application buffer". It is check #1.
  264. * - to prevent pruning of receive queue because of misprediction
  265. * of receiver window. Check #2.
  266. *
  267. * The scheme does not work when sender sends good segments opening
  268. * window and then starts to feed us spaghetti. But it should work
  269. * in common situations. Otherwise, we have to rely on queue collapsing.
  270. */
  271. /* Slow part of check#2. */
  272. static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
  273. {
  274. struct tcp_sock *tp = tcp_sk(sk);
  275. /* Optimize this! */
  276. int truesize = tcp_win_from_space(skb->truesize) >> 1;
  277. int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
  278. while (tp->rcv_ssthresh <= window) {
  279. if (truesize <= skb->len)
  280. return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
  281. truesize >>= 1;
  282. window >>= 1;
  283. }
  284. return 0;
  285. }
  286. static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
  287. {
  288. struct tcp_sock *tp = tcp_sk(sk);
  289. /* Check #1 */
  290. if (tp->rcv_ssthresh < tp->window_clamp &&
  291. (int)tp->rcv_ssthresh < tcp_space(sk) &&
  292. !sk_under_memory_pressure(sk)) {
  293. int incr;
  294. /* Check #2. Increase window, if skb with such overhead
  295. * will fit to rcvbuf in future.
  296. */
  297. if (tcp_win_from_space(skb->truesize) <= skb->len)
  298. incr = 2 * tp->advmss;
  299. else
  300. incr = __tcp_grow_window(sk, skb);
  301. if (incr) {
  302. incr = max_t(int, incr, 2 * skb->len);
  303. tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
  304. tp->window_clamp);
  305. inet_csk(sk)->icsk_ack.quick |= 1;
  306. }
  307. }
  308. }
  309. /* 3. Tuning rcvbuf, when connection enters established state. */
  310. static void tcp_fixup_rcvbuf(struct sock *sk)
  311. {
  312. u32 mss = tcp_sk(sk)->advmss;
  313. u32 icwnd = TCP_DEFAULT_INIT_RCVWND;
  314. int rcvmem;
  315. /* Limit to 10 segments if mss <= 1460,
  316. * or 14600/mss segments, with a minimum of two segments.
  317. */
  318. if (mss > 1460)
  319. icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
  320. rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER);
  321. while (tcp_win_from_space(rcvmem) < mss)
  322. rcvmem += 128;
  323. rcvmem *= icwnd;
  324. if (sk->sk_rcvbuf < rcvmem)
  325. sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
  326. }
  327. /* 4. Try to fixup all. It is made immediately after connection enters
  328. * established state.
  329. */
  330. static void tcp_init_buffer_space(struct sock *sk)
  331. {
  332. struct tcp_sock *tp = tcp_sk(sk);
  333. int maxwin;
  334. if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
  335. tcp_fixup_rcvbuf(sk);
  336. if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
  337. tcp_fixup_sndbuf(sk);
  338. tp->rcvq_space.space = tp->rcv_wnd;
  339. maxwin = tcp_full_space(sk);
  340. if (tp->window_clamp >= maxwin) {
  341. tp->window_clamp = maxwin;
  342. if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
  343. tp->window_clamp = max(maxwin -
  344. (maxwin >> sysctl_tcp_app_win),
  345. 4 * tp->advmss);
  346. }
  347. /* Force reservation of one segment. */
  348. if (sysctl_tcp_app_win &&
  349. tp->window_clamp > 2 * tp->advmss &&
  350. tp->window_clamp + tp->advmss > maxwin)
  351. tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
  352. tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
  353. tp->snd_cwnd_stamp = tcp_time_stamp;
  354. }
  355. /* 5. Recalculate window clamp after socket hit its memory bounds. */
  356. static void tcp_clamp_window(struct sock *sk)
  357. {
  358. struct tcp_sock *tp = tcp_sk(sk);
  359. struct inet_connection_sock *icsk = inet_csk(sk);
  360. icsk->icsk_ack.quick = 0;
  361. if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
  362. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
  363. !sk_under_memory_pressure(sk) &&
  364. sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
  365. sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
  366. sysctl_tcp_rmem[2]);
  367. }
  368. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
  369. tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
  370. }
  371. /* Initialize RCV_MSS value.
  372. * RCV_MSS is an our guess about MSS used by the peer.
  373. * We haven't any direct information about the MSS.
  374. * It's better to underestimate the RCV_MSS rather than overestimate.
  375. * Overestimations make us ACKing less frequently than needed.
  376. * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
  377. */
  378. void tcp_initialize_rcv_mss(struct sock *sk)
  379. {
  380. const struct tcp_sock *tp = tcp_sk(sk);
  381. unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
  382. hint = min(hint, tp->rcv_wnd / 2);
  383. hint = min(hint, TCP_MSS_DEFAULT);
  384. hint = max(hint, TCP_MIN_MSS);
  385. inet_csk(sk)->icsk_ack.rcv_mss = hint;
  386. }
  387. EXPORT_SYMBOL(tcp_initialize_rcv_mss);
  388. /* Receiver "autotuning" code.
  389. *
  390. * The algorithm for RTT estimation w/o timestamps is based on
  391. * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
  392. * <http://public.lanl.gov/radiant/pubs.html#DRS>
  393. *
  394. * More detail on this code can be found at
  395. * <http://staff.psc.edu/jheffner/>,
  396. * though this reference is out of date. A new paper
  397. * is pending.
  398. */
  399. static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
  400. {
  401. u32 new_sample = tp->rcv_rtt_est.rtt;
  402. long m = sample;
  403. if (m == 0)
  404. m = 1;
  405. if (new_sample != 0) {
  406. /* If we sample in larger samples in the non-timestamp
  407. * case, we could grossly overestimate the RTT especially
  408. * with chatty applications or bulk transfer apps which
  409. * are stalled on filesystem I/O.
  410. *
  411. * Also, since we are only going for a minimum in the
  412. * non-timestamp case, we do not smooth things out
  413. * else with timestamps disabled convergence takes too
  414. * long.
  415. */
  416. if (!win_dep) {
  417. m -= (new_sample >> 3);
  418. new_sample += m;
  419. } else {
  420. m <<= 3;
  421. if (m < new_sample)
  422. new_sample = m;
  423. }
  424. } else {
  425. /* No previous measure. */
  426. new_sample = m << 3;
  427. }
  428. if (tp->rcv_rtt_est.rtt != new_sample)
  429. tp->rcv_rtt_est.rtt = new_sample;
  430. }
  431. static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
  432. {
  433. if (tp->rcv_rtt_est.time == 0)
  434. goto new_measure;
  435. if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
  436. return;
  437. tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
  438. new_measure:
  439. tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
  440. tp->rcv_rtt_est.time = tcp_time_stamp;
  441. }
  442. static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
  443. const struct sk_buff *skb)
  444. {
  445. struct tcp_sock *tp = tcp_sk(sk);
  446. if (tp->rx_opt.rcv_tsecr &&
  447. (TCP_SKB_CB(skb)->end_seq -
  448. TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
  449. tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
  450. }
  451. /*
  452. * This function should be called every time data is copied to user space.
  453. * It calculates the appropriate TCP receive buffer space.
  454. */
  455. void tcp_rcv_space_adjust(struct sock *sk)
  456. {
  457. struct tcp_sock *tp = tcp_sk(sk);
  458. int time;
  459. int space;
  460. if (tp->rcvq_space.time == 0)
  461. goto new_measure;
  462. time = tcp_time_stamp - tp->rcvq_space.time;
  463. if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
  464. return;
  465. space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
  466. space = max(tp->rcvq_space.space, space);
  467. if (tp->rcvq_space.space != space) {
  468. int rcvmem;
  469. tp->rcvq_space.space = space;
  470. if (sysctl_tcp_moderate_rcvbuf &&
  471. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
  472. int new_clamp = space;
  473. /* Receive space grows, normalize in order to
  474. * take into account packet headers and sk_buff
  475. * structure overhead.
  476. */
  477. space /= tp->advmss;
  478. if (!space)
  479. space = 1;
  480. rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
  481. while (tcp_win_from_space(rcvmem) < tp->advmss)
  482. rcvmem += 128;
  483. space *= rcvmem;
  484. space = min(space, sysctl_tcp_rmem[2]);
  485. if (space > sk->sk_rcvbuf) {
  486. sk->sk_rcvbuf = space;
  487. /* Make the window clamp follow along. */
  488. tp->window_clamp = new_clamp;
  489. }
  490. }
  491. }
  492. new_measure:
  493. tp->rcvq_space.seq = tp->copied_seq;
  494. tp->rcvq_space.time = tcp_time_stamp;
  495. }
  496. /* There is something which you must keep in mind when you analyze the
  497. * behavior of the tp->ato delayed ack timeout interval. When a
  498. * connection starts up, we want to ack as quickly as possible. The
  499. * problem is that "good" TCP's do slow start at the beginning of data
  500. * transmission. The means that until we send the first few ACK's the
  501. * sender will sit on his end and only queue most of his data, because
  502. * he can only send snd_cwnd unacked packets at any given time. For
  503. * each ACK we send, he increments snd_cwnd and transmits more of his
  504. * queue. -DaveM
  505. */
  506. static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
  507. {
  508. struct tcp_sock *tp = tcp_sk(sk);
  509. struct inet_connection_sock *icsk = inet_csk(sk);
  510. u32 now;
  511. inet_csk_schedule_ack(sk);
  512. tcp_measure_rcv_mss(sk, skb);
  513. tcp_rcv_rtt_measure(tp);
  514. now = tcp_time_stamp;
  515. if (!icsk->icsk_ack.ato) {
  516. /* The _first_ data packet received, initialize
  517. * delayed ACK engine.
  518. */
  519. tcp_incr_quickack(sk);
  520. icsk->icsk_ack.ato = TCP_ATO_MIN;
  521. } else {
  522. int m = now - icsk->icsk_ack.lrcvtime;
  523. if (m <= TCP_ATO_MIN / 2) {
  524. /* The fastest case is the first. */
  525. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
  526. } else if (m < icsk->icsk_ack.ato) {
  527. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
  528. if (icsk->icsk_ack.ato > icsk->icsk_rto)
  529. icsk->icsk_ack.ato = icsk->icsk_rto;
  530. } else if (m > icsk->icsk_rto) {
  531. /* Too long gap. Apparently sender failed to
  532. * restart window, so that we send ACKs quickly.
  533. */
  534. tcp_incr_quickack(sk);
  535. sk_mem_reclaim(sk);
  536. }
  537. }
  538. icsk->icsk_ack.lrcvtime = now;
  539. TCP_ECN_check_ce(tp, skb);
  540. if (skb->len >= 128)
  541. tcp_grow_window(sk, skb);
  542. }
  543. /* Called to compute a smoothed rtt estimate. The data fed to this
  544. * routine either comes from timestamps, or from segments that were
  545. * known _not_ to have been retransmitted [see Karn/Partridge
  546. * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
  547. * piece by Van Jacobson.
  548. * NOTE: the next three routines used to be one big routine.
  549. * To save cycles in the RFC 1323 implementation it was better to break
  550. * it up into three procedures. -- erics
  551. */
  552. static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
  553. {
  554. struct tcp_sock *tp = tcp_sk(sk);
  555. long m = mrtt; /* RTT */
  556. /* The following amusing code comes from Jacobson's
  557. * article in SIGCOMM '88. Note that rtt and mdev
  558. * are scaled versions of rtt and mean deviation.
  559. * This is designed to be as fast as possible
  560. * m stands for "measurement".
  561. *
  562. * On a 1990 paper the rto value is changed to:
  563. * RTO = rtt + 4 * mdev
  564. *
  565. * Funny. This algorithm seems to be very broken.
  566. * These formulae increase RTO, when it should be decreased, increase
  567. * too slowly, when it should be increased quickly, decrease too quickly
  568. * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
  569. * does not matter how to _calculate_ it. Seems, it was trap
  570. * that VJ failed to avoid. 8)
  571. */
  572. if (m == 0)
  573. m = 1;
  574. if (tp->srtt != 0) {
  575. m -= (tp->srtt >> 3); /* m is now error in rtt est */
  576. tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
  577. if (m < 0) {
  578. m = -m; /* m is now abs(error) */
  579. m -= (tp->mdev >> 2); /* similar update on mdev */
  580. /* This is similar to one of Eifel findings.
  581. * Eifel blocks mdev updates when rtt decreases.
  582. * This solution is a bit different: we use finer gain
  583. * for mdev in this case (alpha*beta).
  584. * Like Eifel it also prevents growth of rto,
  585. * but also it limits too fast rto decreases,
  586. * happening in pure Eifel.
  587. */
  588. if (m > 0)
  589. m >>= 3;
  590. } else {
  591. m -= (tp->mdev >> 2); /* similar update on mdev */
  592. }
  593. tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
  594. if (tp->mdev > tp->mdev_max) {
  595. tp->mdev_max = tp->mdev;
  596. if (tp->mdev_max > tp->rttvar)
  597. tp->rttvar = tp->mdev_max;
  598. }
  599. if (after(tp->snd_una, tp->rtt_seq)) {
  600. if (tp->mdev_max < tp->rttvar)
  601. tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
  602. tp->rtt_seq = tp->snd_nxt;
  603. tp->mdev_max = tcp_rto_min(sk);
  604. }
  605. } else {
  606. /* no previous measure. */
  607. tp->srtt = m << 3; /* take the measured time to be rtt */
  608. tp->mdev = m << 1; /* make sure rto = 3*rtt */
  609. tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
  610. tp->rtt_seq = tp->snd_nxt;
  611. }
  612. }
  613. /* Calculate rto without backoff. This is the second half of Van Jacobson's
  614. * routine referred to above.
  615. */
  616. static inline void tcp_set_rto(struct sock *sk)
  617. {
  618. const struct tcp_sock *tp = tcp_sk(sk);
  619. /* Old crap is replaced with new one. 8)
  620. *
  621. * More seriously:
  622. * 1. If rtt variance happened to be less 50msec, it is hallucination.
  623. * It cannot be less due to utterly erratic ACK generation made
  624. * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
  625. * to do with delayed acks, because at cwnd>2 true delack timeout
  626. * is invisible. Actually, Linux-2.4 also generates erratic
  627. * ACKs in some circumstances.
  628. */
  629. inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
  630. /* 2. Fixups made earlier cannot be right.
  631. * If we do not estimate RTO correctly without them,
  632. * all the algo is pure shit and should be replaced
  633. * with correct one. It is exactly, which we pretend to do.
  634. */
  635. /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
  636. * guarantees that rto is higher.
  637. */
  638. tcp_bound_rto(sk);
  639. }
  640. /* Save metrics learned by this TCP session.
  641. This function is called only, when TCP finishes successfully
  642. i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
  643. */
  644. void tcp_update_metrics(struct sock *sk)
  645. {
  646. struct tcp_sock *tp = tcp_sk(sk);
  647. struct dst_entry *dst = __sk_dst_get(sk);
  648. if (sysctl_tcp_nometrics_save)
  649. return;
  650. dst_confirm(dst);
  651. if (dst && (dst->flags & DST_HOST)) {
  652. const struct inet_connection_sock *icsk = inet_csk(sk);
  653. int m;
  654. unsigned long rtt;
  655. if (icsk->icsk_backoff || !tp->srtt) {
  656. /* This session failed to estimate rtt. Why?
  657. * Probably, no packets returned in time.
  658. * Reset our results.
  659. */
  660. if (!(dst_metric_locked(dst, RTAX_RTT)))
  661. dst_metric_set(dst, RTAX_RTT, 0);
  662. return;
  663. }
  664. rtt = dst_metric_rtt(dst, RTAX_RTT);
  665. m = rtt - tp->srtt;
  666. /* If newly calculated rtt larger than stored one,
  667. * store new one. Otherwise, use EWMA. Remember,
  668. * rtt overestimation is always better than underestimation.
  669. */
  670. if (!(dst_metric_locked(dst, RTAX_RTT))) {
  671. if (m <= 0)
  672. set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
  673. else
  674. set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
  675. }
  676. if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
  677. unsigned long var;
  678. if (m < 0)
  679. m = -m;
  680. /* Scale deviation to rttvar fixed point */
  681. m >>= 1;
  682. if (m < tp->mdev)
  683. m = tp->mdev;
  684. var = dst_metric_rtt(dst, RTAX_RTTVAR);
  685. if (m >= var)
  686. var = m;
  687. else
  688. var -= (var - m) >> 2;
  689. set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
  690. }
  691. if (tcp_in_initial_slowstart(tp)) {
  692. /* Slow start still did not finish. */
  693. if (dst_metric(dst, RTAX_SSTHRESH) &&
  694. !dst_metric_locked(dst, RTAX_SSTHRESH) &&
  695. (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
  696. dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_cwnd >> 1);
  697. if (!dst_metric_locked(dst, RTAX_CWND) &&
  698. tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
  699. dst_metric_set(dst, RTAX_CWND, tp->snd_cwnd);
  700. } else if (tp->snd_cwnd > tp->snd_ssthresh &&
  701. icsk->icsk_ca_state == TCP_CA_Open) {
  702. /* Cong. avoidance phase, cwnd is reliable. */
  703. if (!dst_metric_locked(dst, RTAX_SSTHRESH))
  704. dst_metric_set(dst, RTAX_SSTHRESH,
  705. max(tp->snd_cwnd >> 1, tp->snd_ssthresh));
  706. if (!dst_metric_locked(dst, RTAX_CWND))
  707. dst_metric_set(dst, RTAX_CWND,
  708. (dst_metric(dst, RTAX_CWND) +
  709. tp->snd_cwnd) >> 1);
  710. } else {
  711. /* Else slow start did not finish, cwnd is non-sense,
  712. ssthresh may be also invalid.
  713. */
  714. if (!dst_metric_locked(dst, RTAX_CWND))
  715. dst_metric_set(dst, RTAX_CWND,
  716. (dst_metric(dst, RTAX_CWND) +
  717. tp->snd_ssthresh) >> 1);
  718. if (dst_metric(dst, RTAX_SSTHRESH) &&
  719. !dst_metric_locked(dst, RTAX_SSTHRESH) &&
  720. tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
  721. dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_ssthresh);
  722. }
  723. if (!dst_metric_locked(dst, RTAX_REORDERING)) {
  724. if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
  725. tp->reordering != sysctl_tcp_reordering)
  726. dst_metric_set(dst, RTAX_REORDERING, tp->reordering);
  727. }
  728. }
  729. }
  730. __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
  731. {
  732. __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
  733. if (!cwnd)
  734. cwnd = TCP_INIT_CWND;
  735. return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
  736. }
  737. /* Set slow start threshold and cwnd not falling to slow start */
  738. void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
  739. {
  740. struct tcp_sock *tp = tcp_sk(sk);
  741. const struct inet_connection_sock *icsk = inet_csk(sk);
  742. tp->prior_ssthresh = 0;
  743. tp->bytes_acked = 0;
  744. if (icsk->icsk_ca_state < TCP_CA_CWR) {
  745. tp->undo_marker = 0;
  746. if (set_ssthresh)
  747. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  748. tp->snd_cwnd = min(tp->snd_cwnd,
  749. tcp_packets_in_flight(tp) + 1U);
  750. tp->snd_cwnd_cnt = 0;
  751. tp->high_seq = tp->snd_nxt;
  752. tp->snd_cwnd_stamp = tcp_time_stamp;
  753. TCP_ECN_queue_cwr(tp);
  754. tcp_set_ca_state(sk, TCP_CA_CWR);
  755. }
  756. }
  757. /*
  758. * Packet counting of FACK is based on in-order assumptions, therefore TCP
  759. * disables it when reordering is detected
  760. */
  761. static void tcp_disable_fack(struct tcp_sock *tp)
  762. {
  763. /* RFC3517 uses different metric in lost marker => reset on change */
  764. if (tcp_is_fack(tp))
  765. tp->lost_skb_hint = NULL;
  766. tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
  767. }
  768. /* Take a notice that peer is sending D-SACKs */
  769. static void tcp_dsack_seen(struct tcp_sock *tp)
  770. {
  771. tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
  772. }
  773. /* Initialize metrics on socket. */
  774. static void tcp_init_metrics(struct sock *sk)
  775. {
  776. struct tcp_sock *tp = tcp_sk(sk);
  777. struct dst_entry *dst = __sk_dst_get(sk);
  778. if (dst == NULL)
  779. goto reset;
  780. dst_confirm(dst);
  781. if (dst_metric_locked(dst, RTAX_CWND))
  782. tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
  783. if (dst_metric(dst, RTAX_SSTHRESH)) {
  784. tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
  785. if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
  786. tp->snd_ssthresh = tp->snd_cwnd_clamp;
  787. } else {
  788. /* ssthresh may have been reduced unnecessarily during.
  789. * 3WHS. Restore it back to its initial default.
  790. */
  791. tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
  792. }
  793. if (dst_metric(dst, RTAX_REORDERING) &&
  794. tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
  795. tcp_disable_fack(tp);
  796. tcp_disable_early_retrans(tp);
  797. tp->reordering = dst_metric(dst, RTAX_REORDERING);
  798. }
  799. if (dst_metric(dst, RTAX_RTT) == 0 || tp->srtt == 0)
  800. goto reset;
  801. /* Initial rtt is determined from SYN,SYN-ACK.
  802. * The segment is small and rtt may appear much
  803. * less than real one. Use per-dst memory
  804. * to make it more realistic.
  805. *
  806. * A bit of theory. RTT is time passed after "normal" sized packet
  807. * is sent until it is ACKed. In normal circumstances sending small
  808. * packets force peer to delay ACKs and calculation is correct too.
  809. * The algorithm is adaptive and, provided we follow specs, it
  810. * NEVER underestimate RTT. BUT! If peer tries to make some clever
  811. * tricks sort of "quick acks" for time long enough to decrease RTT
  812. * to low value, and then abruptly stops to do it and starts to delay
  813. * ACKs, wait for troubles.
  814. */
  815. if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
  816. tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
  817. tp->rtt_seq = tp->snd_nxt;
  818. }
  819. if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
  820. tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
  821. tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
  822. }
  823. tcp_set_rto(sk);
  824. reset:
  825. if (tp->srtt == 0) {
  826. /* RFC6298: 5.7 We've failed to get a valid RTT sample from
  827. * 3WHS. This is most likely due to retransmission,
  828. * including spurious one. Reset the RTO back to 3secs
  829. * from the more aggressive 1sec to avoid more spurious
  830. * retransmission.
  831. */
  832. tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_FALLBACK;
  833. inet_csk(sk)->icsk_rto = TCP_TIMEOUT_FALLBACK;
  834. }
  835. /* Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
  836. * retransmitted. In light of RFC6298 more aggressive 1sec
  837. * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
  838. * retransmission has occurred.
  839. */
  840. if (tp->total_retrans > 1)
  841. tp->snd_cwnd = 1;
  842. else
  843. tp->snd_cwnd = tcp_init_cwnd(tp, dst);
  844. tp->snd_cwnd_stamp = tcp_time_stamp;
  845. }
  846. static void tcp_update_reordering(struct sock *sk, const int metric,
  847. const int ts)
  848. {
  849. struct tcp_sock *tp = tcp_sk(sk);
  850. if (metric > tp->reordering) {
  851. int mib_idx;
  852. tp->reordering = min(TCP_MAX_REORDERING, metric);
  853. /* This exciting event is worth to be remembered. 8) */
  854. if (ts)
  855. mib_idx = LINUX_MIB_TCPTSREORDER;
  856. else if (tcp_is_reno(tp))
  857. mib_idx = LINUX_MIB_TCPRENOREORDER;
  858. else if (tcp_is_fack(tp))
  859. mib_idx = LINUX_MIB_TCPFACKREORDER;
  860. else
  861. mib_idx = LINUX_MIB_TCPSACKREORDER;
  862. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  863. #if FASTRETRANS_DEBUG > 1
  864. pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
  865. tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
  866. tp->reordering,
  867. tp->fackets_out,
  868. tp->sacked_out,
  869. tp->undo_marker ? tp->undo_retrans : 0);
  870. #endif
  871. tcp_disable_fack(tp);
  872. }
  873. if (metric > 0)
  874. tcp_disable_early_retrans(tp);
  875. }
  876. /* This must be called before lost_out is incremented */
  877. static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
  878. {
  879. if ((tp->retransmit_skb_hint == NULL) ||
  880. before(TCP_SKB_CB(skb)->seq,
  881. TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
  882. tp->retransmit_skb_hint = skb;
  883. if (!tp->lost_out ||
  884. after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
  885. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  886. }
  887. static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
  888. {
  889. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  890. tcp_verify_retransmit_hint(tp, skb);
  891. tp->lost_out += tcp_skb_pcount(skb);
  892. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  893. }
  894. }
  895. static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
  896. struct sk_buff *skb)
  897. {
  898. tcp_verify_retransmit_hint(tp, skb);
  899. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  900. tp->lost_out += tcp_skb_pcount(skb);
  901. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  902. }
  903. }
  904. /* This procedure tags the retransmission queue when SACKs arrive.
  905. *
  906. * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
  907. * Packets in queue with these bits set are counted in variables
  908. * sacked_out, retrans_out and lost_out, correspondingly.
  909. *
  910. * Valid combinations are:
  911. * Tag InFlight Description
  912. * 0 1 - orig segment is in flight.
  913. * S 0 - nothing flies, orig reached receiver.
  914. * L 0 - nothing flies, orig lost by net.
  915. * R 2 - both orig and retransmit are in flight.
  916. * L|R 1 - orig is lost, retransmit is in flight.
  917. * S|R 1 - orig reached receiver, retrans is still in flight.
  918. * (L|S|R is logically valid, it could occur when L|R is sacked,
  919. * but it is equivalent to plain S and code short-curcuits it to S.
  920. * L|S is logically invalid, it would mean -1 packet in flight 8))
  921. *
  922. * These 6 states form finite state machine, controlled by the following events:
  923. * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
  924. * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
  925. * 3. Loss detection event of two flavors:
  926. * A. Scoreboard estimator decided the packet is lost.
  927. * A'. Reno "three dupacks" marks head of queue lost.
  928. * A''. Its FACK modification, head until snd.fack is lost.
  929. * B. SACK arrives sacking SND.NXT at the moment, when the
  930. * segment was retransmitted.
  931. * 4. D-SACK added new rule: D-SACK changes any tag to S.
  932. *
  933. * It is pleasant to note, that state diagram turns out to be commutative,
  934. * so that we are allowed not to be bothered by order of our actions,
  935. * when multiple events arrive simultaneously. (see the function below).
  936. *
  937. * Reordering detection.
  938. * --------------------
  939. * Reordering metric is maximal distance, which a packet can be displaced
  940. * in packet stream. With SACKs we can estimate it:
  941. *
  942. * 1. SACK fills old hole and the corresponding segment was not
  943. * ever retransmitted -> reordering. Alas, we cannot use it
  944. * when segment was retransmitted.
  945. * 2. The last flaw is solved with D-SACK. D-SACK arrives
  946. * for retransmitted and already SACKed segment -> reordering..
  947. * Both of these heuristics are not used in Loss state, when we cannot
  948. * account for retransmits accurately.
  949. *
  950. * SACK block validation.
  951. * ----------------------
  952. *
  953. * SACK block range validation checks that the received SACK block fits to
  954. * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
  955. * Note that SND.UNA is not included to the range though being valid because
  956. * it means that the receiver is rather inconsistent with itself reporting
  957. * SACK reneging when it should advance SND.UNA. Such SACK block this is
  958. * perfectly valid, however, in light of RFC2018 which explicitly states
  959. * that "SACK block MUST reflect the newest segment. Even if the newest
  960. * segment is going to be discarded ...", not that it looks very clever
  961. * in case of head skb. Due to potentional receiver driven attacks, we
  962. * choose to avoid immediate execution of a walk in write queue due to
  963. * reneging and defer head skb's loss recovery to standard loss recovery
  964. * procedure that will eventually trigger (nothing forbids us doing this).
  965. *
  966. * Implements also blockage to start_seq wrap-around. Problem lies in the
  967. * fact that though start_seq (s) is before end_seq (i.e., not reversed),
  968. * there's no guarantee that it will be before snd_nxt (n). The problem
  969. * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
  970. * wrap (s_w):
  971. *
  972. * <- outs wnd -> <- wrapzone ->
  973. * u e n u_w e_w s n_w
  974. * | | | | | | |
  975. * |<------------+------+----- TCP seqno space --------------+---------->|
  976. * ...-- <2^31 ->| |<--------...
  977. * ...---- >2^31 ------>| |<--------...
  978. *
  979. * Current code wouldn't be vulnerable but it's better still to discard such
  980. * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
  981. * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
  982. * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
  983. * equal to the ideal case (infinite seqno space without wrap caused issues).
  984. *
  985. * With D-SACK the lower bound is extended to cover sequence space below
  986. * SND.UNA down to undo_marker, which is the last point of interest. Yet
  987. * again, D-SACK block must not to go across snd_una (for the same reason as
  988. * for the normal SACK blocks, explained above). But there all simplicity
  989. * ends, TCP might receive valid D-SACKs below that. As long as they reside
  990. * fully below undo_marker they do not affect behavior in anyway and can
  991. * therefore be safely ignored. In rare cases (which are more or less
  992. * theoretical ones), the D-SACK will nicely cross that boundary due to skb
  993. * fragmentation and packet reordering past skb's retransmission. To consider
  994. * them correctly, the acceptable range must be extended even more though
  995. * the exact amount is rather hard to quantify. However, tp->max_window can
  996. * be used as an exaggerated estimate.
  997. */
  998. static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
  999. u32 start_seq, u32 end_seq)
  1000. {
  1001. /* Too far in future, or reversed (interpretation is ambiguous) */
  1002. if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
  1003. return 0;
  1004. /* Nasty start_seq wrap-around check (see comments above) */
  1005. if (!before(start_seq, tp->snd_nxt))
  1006. return 0;
  1007. /* In outstanding window? ...This is valid exit for D-SACKs too.
  1008. * start_seq == snd_una is non-sensical (see comments above)
  1009. */
  1010. if (after(start_seq, tp->snd_una))
  1011. return 1;
  1012. if (!is_dsack || !tp->undo_marker)
  1013. return 0;
  1014. /* ...Then it's D-SACK, and must reside below snd_una completely */
  1015. if (after(end_seq, tp->snd_una))
  1016. return 0;
  1017. if (!before(start_seq, tp->undo_marker))
  1018. return 1;
  1019. /* Too old */
  1020. if (!after(end_seq, tp->undo_marker))
  1021. return 0;
  1022. /* Undo_marker boundary crossing (overestimates a lot). Known already:
  1023. * start_seq < undo_marker and end_seq >= undo_marker.
  1024. */
  1025. return !before(start_seq, end_seq - tp->max_window);
  1026. }
  1027. /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
  1028. * Event "B". Later note: FACK people cheated me again 8), we have to account
  1029. * for reordering! Ugly, but should help.
  1030. *
  1031. * Search retransmitted skbs from write_queue that were sent when snd_nxt was
  1032. * less than what is now known to be received by the other end (derived from
  1033. * highest SACK block). Also calculate the lowest snd_nxt among the remaining
  1034. * retransmitted skbs to avoid some costly processing per ACKs.
  1035. */
  1036. static void tcp_mark_lost_retrans(struct sock *sk)
  1037. {
  1038. const struct inet_connection_sock *icsk = inet_csk(sk);
  1039. struct tcp_sock *tp = tcp_sk(sk);
  1040. struct sk_buff *skb;
  1041. int cnt = 0;
  1042. u32 new_low_seq = tp->snd_nxt;
  1043. u32 received_upto = tcp_highest_sack_seq(tp);
  1044. if (!tcp_is_fack(tp) || !tp->retrans_out ||
  1045. !after(received_upto, tp->lost_retrans_low) ||
  1046. icsk->icsk_ca_state != TCP_CA_Recovery)
  1047. return;
  1048. tcp_for_write_queue(skb, sk) {
  1049. u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
  1050. if (skb == tcp_send_head(sk))
  1051. break;
  1052. if (cnt == tp->retrans_out)
  1053. break;
  1054. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  1055. continue;
  1056. if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
  1057. continue;
  1058. /* TODO: We would like to get rid of tcp_is_fack(tp) only
  1059. * constraint here (see above) but figuring out that at
  1060. * least tp->reordering SACK blocks reside between ack_seq
  1061. * and received_upto is not easy task to do cheaply with
  1062. * the available datastructures.
  1063. *
  1064. * Whether FACK should check here for tp->reordering segs
  1065. * in-between one could argue for either way (it would be
  1066. * rather simple to implement as we could count fack_count
  1067. * during the walk and do tp->fackets_out - fack_count).
  1068. */
  1069. if (after(received_upto, ack_seq)) {
  1070. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  1071. tp->retrans_out -= tcp_skb_pcount(skb);
  1072. tcp_skb_mark_lost_uncond_verify(tp, skb);
  1073. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
  1074. } else {
  1075. if (before(ack_seq, new_low_seq))
  1076. new_low_seq = ack_seq;
  1077. cnt += tcp_skb_pcount(skb);
  1078. }
  1079. }
  1080. if (tp->retrans_out)
  1081. tp->lost_retrans_low = new_low_seq;
  1082. }
  1083. static int tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
  1084. struct tcp_sack_block_wire *sp, int num_sacks,
  1085. u32 prior_snd_una)
  1086. {
  1087. struct tcp_sock *tp = tcp_sk(sk);
  1088. u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
  1089. u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
  1090. int dup_sack = 0;
  1091. if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
  1092. dup_sack = 1;
  1093. tcp_dsack_seen(tp);
  1094. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
  1095. } else if (num_sacks > 1) {
  1096. u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
  1097. u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
  1098. if (!after(end_seq_0, end_seq_1) &&
  1099. !before(start_seq_0, start_seq_1)) {
  1100. dup_sack = 1;
  1101. tcp_dsack_seen(tp);
  1102. NET_INC_STATS_BH(sock_net(sk),
  1103. LINUX_MIB_TCPDSACKOFORECV);
  1104. }
  1105. }
  1106. /* D-SACK for already forgotten data... Do dumb counting. */
  1107. if (dup_sack && tp->undo_marker && tp->undo_retrans &&
  1108. !after(end_seq_0, prior_snd_una) &&
  1109. after(end_seq_0, tp->undo_marker))
  1110. tp->undo_retrans--;
  1111. return dup_sack;
  1112. }
  1113. struct tcp_sacktag_state {
  1114. int reord;
  1115. int fack_count;
  1116. int flag;
  1117. };
  1118. /* Check if skb is fully within the SACK block. In presence of GSO skbs,
  1119. * the incoming SACK may not exactly match but we can find smaller MSS
  1120. * aligned portion of it that matches. Therefore we might need to fragment
  1121. * which may fail and creates some hassle (caller must handle error case
  1122. * returns).
  1123. *
  1124. * FIXME: this could be merged to shift decision code
  1125. */
  1126. static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
  1127. u32 start_seq, u32 end_seq)
  1128. {
  1129. int in_sack, err;
  1130. unsigned int pkt_len;
  1131. unsigned int mss;
  1132. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  1133. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  1134. if (tcp_skb_pcount(skb) > 1 && !in_sack &&
  1135. after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
  1136. mss = tcp_skb_mss(skb);
  1137. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  1138. if (!in_sack) {
  1139. pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
  1140. if (pkt_len < mss)
  1141. pkt_len = mss;
  1142. } else {
  1143. pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
  1144. if (pkt_len < mss)
  1145. return -EINVAL;
  1146. }
  1147. /* Round if necessary so that SACKs cover only full MSSes
  1148. * and/or the remaining small portion (if present)
  1149. */
  1150. if (pkt_len > mss) {
  1151. unsigned int new_len = (pkt_len / mss) * mss;
  1152. if (!in_sack && new_len < pkt_len) {
  1153. new_len += mss;
  1154. if (new_len > skb->len)
  1155. return 0;
  1156. }
  1157. pkt_len = new_len;
  1158. }
  1159. err = tcp_fragment(sk, skb, pkt_len, mss);
  1160. if (err < 0)
  1161. return err;
  1162. }
  1163. return in_sack;
  1164. }
  1165. /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
  1166. static u8 tcp_sacktag_one(struct sock *sk,
  1167. struct tcp_sacktag_state *state, u8 sacked,
  1168. u32 start_seq, u32 end_seq,
  1169. int dup_sack, int pcount)
  1170. {
  1171. struct tcp_sock *tp = tcp_sk(sk);
  1172. int fack_count = state->fack_count;
  1173. /* Account D-SACK for retransmitted packet. */
  1174. if (dup_sack && (sacked & TCPCB_RETRANS)) {
  1175. if (tp->undo_marker && tp->undo_retrans &&
  1176. after(end_seq, tp->undo_marker))
  1177. tp->undo_retrans--;
  1178. if (sacked & TCPCB_SACKED_ACKED)
  1179. state->reord = min(fack_count, state->reord);
  1180. }
  1181. /* Nothing to do; acked frame is about to be dropped (was ACKed). */
  1182. if (!after(end_seq, tp->snd_una))
  1183. return sacked;
  1184. if (!(sacked & TCPCB_SACKED_ACKED)) {
  1185. if (sacked & TCPCB_SACKED_RETRANS) {
  1186. /* If the segment is not tagged as lost,
  1187. * we do not clear RETRANS, believing
  1188. * that retransmission is still in flight.
  1189. */
  1190. if (sacked & TCPCB_LOST) {
  1191. sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
  1192. tp->lost_out -= pcount;
  1193. tp->retrans_out -= pcount;
  1194. }
  1195. } else {
  1196. if (!(sacked & TCPCB_RETRANS)) {
  1197. /* New sack for not retransmitted frame,
  1198. * which was in hole. It is reordering.
  1199. */
  1200. if (before(start_seq,
  1201. tcp_highest_sack_seq(tp)))
  1202. state->reord = min(fack_count,
  1203. state->reord);
  1204. /* SACK enhanced F-RTO (RFC4138; Appendix B) */
  1205. if (!after(end_seq, tp->frto_highmark))
  1206. state->flag |= FLAG_ONLY_ORIG_SACKED;
  1207. }
  1208. if (sacked & TCPCB_LOST) {
  1209. sacked &= ~TCPCB_LOST;
  1210. tp->lost_out -= pcount;
  1211. }
  1212. }
  1213. sacked |= TCPCB_SACKED_ACKED;
  1214. state->flag |= FLAG_DATA_SACKED;
  1215. tp->sacked_out += pcount;
  1216. fack_count += pcount;
  1217. /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
  1218. if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
  1219. before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
  1220. tp->lost_cnt_hint += pcount;
  1221. if (fack_count > tp->fackets_out)
  1222. tp->fackets_out = fack_count;
  1223. }
  1224. /* D-SACK. We can detect redundant retransmission in S|R and plain R
  1225. * frames and clear it. undo_retrans is decreased above, L|R frames
  1226. * are accounted above as well.
  1227. */
  1228. if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
  1229. sacked &= ~TCPCB_SACKED_RETRANS;
  1230. tp->retrans_out -= pcount;
  1231. }
  1232. return sacked;
  1233. }
  1234. /* Shift newly-SACKed bytes from this skb to the immediately previous
  1235. * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
  1236. */
  1237. static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
  1238. struct tcp_sacktag_state *state,
  1239. unsigned int pcount, int shifted, int mss,
  1240. int dup_sack)
  1241. {
  1242. struct tcp_sock *tp = tcp_sk(sk);
  1243. struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
  1244. u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
  1245. u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
  1246. BUG_ON(!pcount);
  1247. /* Adjust counters and hints for the newly sacked sequence
  1248. * range but discard the return value since prev is already
  1249. * marked. We must tag the range first because the seq
  1250. * advancement below implicitly advances
  1251. * tcp_highest_sack_seq() when skb is highest_sack.
  1252. */
  1253. tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
  1254. start_seq, end_seq, dup_sack, pcount);
  1255. if (skb == tp->lost_skb_hint)
  1256. tp->lost_cnt_hint += pcount;
  1257. TCP_SKB_CB(prev)->end_seq += shifted;
  1258. TCP_SKB_CB(skb)->seq += shifted;
  1259. skb_shinfo(prev)->gso_segs += pcount;
  1260. BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
  1261. skb_shinfo(skb)->gso_segs -= pcount;
  1262. /* When we're adding to gso_segs == 1, gso_size will be zero,
  1263. * in theory this shouldn't be necessary but as long as DSACK
  1264. * code can come after this skb later on it's better to keep
  1265. * setting gso_size to something.
  1266. */
  1267. if (!skb_shinfo(prev)->gso_size) {
  1268. skb_shinfo(prev)->gso_size = mss;
  1269. skb_shinfo(prev)->gso_type = sk->sk_gso_type;
  1270. }
  1271. /* CHECKME: To clear or not to clear? Mimics normal skb currently */
  1272. if (skb_shinfo(skb)->gso_segs <= 1) {
  1273. skb_shinfo(skb)->gso_size = 0;
  1274. skb_shinfo(skb)->gso_type = 0;
  1275. }
  1276. /* Difference in this won't matter, both ACKed by the same cumul. ACK */
  1277. TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
  1278. if (skb->len > 0) {
  1279. BUG_ON(!tcp_skb_pcount(skb));
  1280. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
  1281. return 0;
  1282. }
  1283. /* Whole SKB was eaten :-) */
  1284. if (skb == tp->retransmit_skb_hint)
  1285. tp->retransmit_skb_hint = prev;
  1286. if (skb == tp->scoreboard_skb_hint)
  1287. tp->scoreboard_skb_hint = prev;
  1288. if (skb == tp->lost_skb_hint) {
  1289. tp->lost_skb_hint = prev;
  1290. tp->lost_cnt_hint -= tcp_skb_pcount(prev);
  1291. }
  1292. TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags;
  1293. if (skb == tcp_highest_sack(sk))
  1294. tcp_advance_highest_sack(sk, skb);
  1295. tcp_unlink_write_queue(skb, sk);
  1296. sk_wmem_free_skb(sk, skb);
  1297. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
  1298. return 1;
  1299. }
  1300. /* I wish gso_size would have a bit more sane initialization than
  1301. * something-or-zero which complicates things
  1302. */
  1303. static int tcp_skb_seglen(const struct sk_buff *skb)
  1304. {
  1305. return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
  1306. }
  1307. /* Shifting pages past head area doesn't work */
  1308. static int skb_can_shift(const struct sk_buff *skb)
  1309. {
  1310. return !skb_headlen(skb) && skb_is_nonlinear(skb);
  1311. }
  1312. /* Try collapsing SACK blocks spanning across multiple skbs to a single
  1313. * skb.
  1314. */
  1315. static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
  1316. struct tcp_sacktag_state *state,
  1317. u32 start_seq, u32 end_seq,
  1318. int dup_sack)
  1319. {
  1320. struct tcp_sock *tp = tcp_sk(sk);
  1321. struct sk_buff *prev;
  1322. int mss;
  1323. int pcount = 0;
  1324. int len;
  1325. int in_sack;
  1326. if (!sk_can_gso(sk))
  1327. goto fallback;
  1328. /* Normally R but no L won't result in plain S */
  1329. if (!dup_sack &&
  1330. (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
  1331. goto fallback;
  1332. if (!skb_can_shift(skb))
  1333. goto fallback;
  1334. /* This frame is about to be dropped (was ACKed). */
  1335. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  1336. goto fallback;
  1337. /* Can only happen with delayed DSACK + discard craziness */
  1338. if (unlikely(skb == tcp_write_queue_head(sk)))
  1339. goto fallback;
  1340. prev = tcp_write_queue_prev(sk, skb);
  1341. if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
  1342. goto fallback;
  1343. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  1344. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  1345. if (in_sack) {
  1346. len = skb->len;
  1347. pcount = tcp_skb_pcount(skb);
  1348. mss = tcp_skb_seglen(skb);
  1349. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1350. * drop this restriction as unnecessary
  1351. */
  1352. if (mss != tcp_skb_seglen(prev))
  1353. goto fallback;
  1354. } else {
  1355. if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
  1356. goto noop;
  1357. /* CHECKME: This is non-MSS split case only?, this will
  1358. * cause skipped skbs due to advancing loop btw, original
  1359. * has that feature too
  1360. */
  1361. if (tcp_skb_pcount(skb) <= 1)
  1362. goto noop;
  1363. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  1364. if (!in_sack) {
  1365. /* TODO: head merge to next could be attempted here
  1366. * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
  1367. * though it might not be worth of the additional hassle
  1368. *
  1369. * ...we can probably just fallback to what was done
  1370. * previously. We could try merging non-SACKed ones
  1371. * as well but it probably isn't going to buy off
  1372. * because later SACKs might again split them, and
  1373. * it would make skb timestamp tracking considerably
  1374. * harder problem.
  1375. */
  1376. goto fallback;
  1377. }
  1378. len = end_seq - TCP_SKB_CB(skb)->seq;
  1379. BUG_ON(len < 0);
  1380. BUG_ON(len > skb->len);
  1381. /* MSS boundaries should be honoured or else pcount will
  1382. * severely break even though it makes things bit trickier.
  1383. * Optimize common case to avoid most of the divides
  1384. */
  1385. mss = tcp_skb_mss(skb);
  1386. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1387. * drop this restriction as unnecessary
  1388. */
  1389. if (mss != tcp_skb_seglen(prev))
  1390. goto fallback;
  1391. if (len == mss) {
  1392. pcount = 1;
  1393. } else if (len < mss) {
  1394. goto noop;
  1395. } else {
  1396. pcount = len / mss;
  1397. len = pcount * mss;
  1398. }
  1399. }
  1400. /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
  1401. if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
  1402. goto fallback;
  1403. if (!skb_shift(prev, skb, len))
  1404. goto fallback;
  1405. if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
  1406. goto out;
  1407. /* Hole filled allows collapsing with the next as well, this is very
  1408. * useful when hole on every nth skb pattern happens
  1409. */
  1410. if (prev == tcp_write_queue_tail(sk))
  1411. goto out;
  1412. skb = tcp_write_queue_next(sk, prev);
  1413. if (!skb_can_shift(skb) ||
  1414. (skb == tcp_send_head(sk)) ||
  1415. ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
  1416. (mss != tcp_skb_seglen(skb)))
  1417. goto out;
  1418. len = skb->len;
  1419. if (skb_shift(prev, skb, len)) {
  1420. pcount += tcp_skb_pcount(skb);
  1421. tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
  1422. }
  1423. out:
  1424. state->fack_count += pcount;
  1425. return prev;
  1426. noop:
  1427. return skb;
  1428. fallback:
  1429. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
  1430. return NULL;
  1431. }
  1432. static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
  1433. struct tcp_sack_block *next_dup,
  1434. struct tcp_sacktag_state *state,
  1435. u32 start_seq, u32 end_seq,
  1436. int dup_sack_in)
  1437. {
  1438. struct tcp_sock *tp = tcp_sk(sk);
  1439. struct sk_buff *tmp;
  1440. tcp_for_write_queue_from(skb, sk) {
  1441. int in_sack = 0;
  1442. int dup_sack = dup_sack_in;
  1443. if (skb == tcp_send_head(sk))
  1444. break;
  1445. /* queue is in-order => we can short-circuit the walk early */
  1446. if (!before(TCP_SKB_CB(skb)->seq, end_seq))
  1447. break;
  1448. if ((next_dup != NULL) &&
  1449. before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
  1450. in_sack = tcp_match_skb_to_sack(sk, skb,
  1451. next_dup->start_seq,
  1452. next_dup->end_seq);
  1453. if (in_sack > 0)
  1454. dup_sack = 1;
  1455. }
  1456. /* skb reference here is a bit tricky to get right, since
  1457. * shifting can eat and free both this skb and the next,
  1458. * so not even _safe variant of the loop is enough.
  1459. */
  1460. if (in_sack <= 0) {
  1461. tmp = tcp_shift_skb_data(sk, skb, state,
  1462. start_seq, end_seq, dup_sack);
  1463. if (tmp != NULL) {
  1464. if (tmp != skb) {
  1465. skb = tmp;
  1466. continue;
  1467. }
  1468. in_sack = 0;
  1469. } else {
  1470. in_sack = tcp_match_skb_to_sack(sk, skb,
  1471. start_seq,
  1472. end_seq);
  1473. }
  1474. }
  1475. if (unlikely(in_sack < 0))
  1476. break;
  1477. if (in_sack) {
  1478. TCP_SKB_CB(skb)->sacked =
  1479. tcp_sacktag_one(sk,
  1480. state,
  1481. TCP_SKB_CB(skb)->sacked,
  1482. TCP_SKB_CB(skb)->seq,
  1483. TCP_SKB_CB(skb)->end_seq,
  1484. dup_sack,
  1485. tcp_skb_pcount(skb));
  1486. if (!before(TCP_SKB_CB(skb)->seq,
  1487. tcp_highest_sack_seq(tp)))
  1488. tcp_advance_highest_sack(sk, skb);
  1489. }
  1490. state->fack_count += tcp_skb_pcount(skb);
  1491. }
  1492. return skb;
  1493. }
  1494. /* Avoid all extra work that is being done by sacktag while walking in
  1495. * a normal way
  1496. */
  1497. static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
  1498. struct tcp_sacktag_state *state,
  1499. u32 skip_to_seq)
  1500. {
  1501. tcp_for_write_queue_from(skb, sk) {
  1502. if (skb == tcp_send_head(sk))
  1503. break;
  1504. if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
  1505. break;
  1506. state->fack_count += tcp_skb_pcount(skb);
  1507. }
  1508. return skb;
  1509. }
  1510. static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
  1511. struct sock *sk,
  1512. struct tcp_sack_block *next_dup,
  1513. struct tcp_sacktag_state *state,
  1514. u32 skip_to_seq)
  1515. {
  1516. if (next_dup == NULL)
  1517. return skb;
  1518. if (before(next_dup->start_seq, skip_to_seq)) {
  1519. skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
  1520. skb = tcp_sacktag_walk(skb, sk, NULL, state,
  1521. next_dup->start_seq, next_dup->end_seq,
  1522. 1);
  1523. }
  1524. return skb;
  1525. }
  1526. static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
  1527. {
  1528. return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1529. }
  1530. static int
  1531. tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
  1532. u32 prior_snd_una)
  1533. {
  1534. const struct inet_connection_sock *icsk = inet_csk(sk);
  1535. struct tcp_sock *tp = tcp_sk(sk);
  1536. const unsigned char *ptr = (skb_transport_header(ack_skb) +
  1537. TCP_SKB_CB(ack_skb)->sacked);
  1538. struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
  1539. struct tcp_sack_block sp[TCP_NUM_SACKS];
  1540. struct tcp_sack_block *cache;
  1541. struct tcp_sacktag_state state;
  1542. struct sk_buff *skb;
  1543. int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
  1544. int used_sacks;
  1545. int found_dup_sack = 0;
  1546. int i, j;
  1547. int first_sack_index;
  1548. state.flag = 0;
  1549. state.reord = tp->packets_out;
  1550. if (!tp->sacked_out) {
  1551. if (WARN_ON(tp->fackets_out))
  1552. tp->fackets_out = 0;
  1553. tcp_highest_sack_reset(sk);
  1554. }
  1555. found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
  1556. num_sacks, prior_snd_una);
  1557. if (found_dup_sack)
  1558. state.flag |= FLAG_DSACKING_ACK;
  1559. /* Eliminate too old ACKs, but take into
  1560. * account more or less fresh ones, they can
  1561. * contain valid SACK info.
  1562. */
  1563. if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
  1564. return 0;
  1565. if (!tp->packets_out)
  1566. goto out;
  1567. used_sacks = 0;
  1568. first_sack_index = 0;
  1569. for (i = 0; i < num_sacks; i++) {
  1570. int dup_sack = !i && found_dup_sack;
  1571. sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
  1572. sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
  1573. if (!tcp_is_sackblock_valid(tp, dup_sack,
  1574. sp[used_sacks].start_seq,
  1575. sp[used_sacks].end_seq)) {
  1576. int mib_idx;
  1577. if (dup_sack) {
  1578. if (!tp->undo_marker)
  1579. mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
  1580. else
  1581. mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
  1582. } else {
  1583. /* Don't count olds caused by ACK reordering */
  1584. if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
  1585. !after(sp[used_sacks].end_seq, tp->snd_una))
  1586. continue;
  1587. mib_idx = LINUX_MIB_TCPSACKDISCARD;
  1588. }
  1589. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  1590. if (i == 0)
  1591. first_sack_index = -1;
  1592. continue;
  1593. }
  1594. /* Ignore very old stuff early */
  1595. if (!after(sp[used_sacks].end_seq, prior_snd_una))
  1596. continue;
  1597. used_sacks++;
  1598. }
  1599. /* order SACK blocks to allow in order walk of the retrans queue */
  1600. for (i = used_sacks - 1; i > 0; i--) {
  1601. for (j = 0; j < i; j++) {
  1602. if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
  1603. swap(sp[j], sp[j + 1]);
  1604. /* Track where the first SACK block goes to */
  1605. if (j == first_sack_index)
  1606. first_sack_index = j + 1;
  1607. }
  1608. }
  1609. }
  1610. skb = tcp_write_queue_head(sk);
  1611. state.fack_count = 0;
  1612. i = 0;
  1613. if (!tp->sacked_out) {
  1614. /* It's already past, so skip checking against it */
  1615. cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1616. } else {
  1617. cache = tp->recv_sack_cache;
  1618. /* Skip empty blocks in at head of the cache */
  1619. while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
  1620. !cache->end_seq)
  1621. cache++;
  1622. }
  1623. while (i < used_sacks) {
  1624. u32 start_seq = sp[i].start_seq;
  1625. u32 end_seq = sp[i].end_seq;
  1626. int dup_sack = (found_dup_sack && (i == first_sack_index));
  1627. struct tcp_sack_block *next_dup = NULL;
  1628. if (found_dup_sack && ((i + 1) == first_sack_index))
  1629. next_dup = &sp[i + 1];
  1630. /* Skip too early cached blocks */
  1631. while (tcp_sack_cache_ok(tp, cache) &&
  1632. !before(start_seq, cache->end_seq))
  1633. cache++;
  1634. /* Can skip some work by looking recv_sack_cache? */
  1635. if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
  1636. after(end_seq, cache->start_seq)) {
  1637. /* Head todo? */
  1638. if (before(start_seq, cache->start_seq)) {
  1639. skb = tcp_sacktag_skip(skb, sk, &state,
  1640. start_seq);
  1641. skb = tcp_sacktag_walk(skb, sk, next_dup,
  1642. &state,
  1643. start_seq,
  1644. cache->start_seq,
  1645. dup_sack);
  1646. }
  1647. /* Rest of the block already fully processed? */
  1648. if (!after(end_seq, cache->end_seq))
  1649. goto advance_sp;
  1650. skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
  1651. &state,
  1652. cache->end_seq);
  1653. /* ...tail remains todo... */
  1654. if (tcp_highest_sack_seq(tp) == cache->end_seq) {
  1655. /* ...but better entrypoint exists! */
  1656. skb = tcp_highest_sack(sk);
  1657. if (skb == NULL)
  1658. break;
  1659. state.fack_count = tp->fackets_out;
  1660. cache++;
  1661. goto walk;
  1662. }
  1663. skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
  1664. /* Check overlap against next cached too (past this one already) */
  1665. cache++;
  1666. continue;
  1667. }
  1668. if (!before(start_seq, tcp_highest_sack_seq(tp))) {
  1669. skb = tcp_highest_sack(sk);
  1670. if (skb == NULL)
  1671. break;
  1672. state.fack_count = tp->fackets_out;
  1673. }
  1674. skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
  1675. walk:
  1676. skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
  1677. start_seq, end_seq, dup_sack);
  1678. advance_sp:
  1679. /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
  1680. * due to in-order walk
  1681. */
  1682. if (after(end_seq, tp->frto_highmark))
  1683. state.flag &= ~FLAG_ONLY_ORIG_SACKED;
  1684. i++;
  1685. }
  1686. /* Clear the head of the cache sack blocks so we can skip it next time */
  1687. for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
  1688. tp->recv_sack_cache[i].start_seq = 0;
  1689. tp->recv_sack_cache[i].end_seq = 0;
  1690. }
  1691. for (j = 0; j < used_sacks; j++)
  1692. tp->recv_sack_cache[i++] = sp[j];
  1693. tcp_mark_lost_retrans(sk);
  1694. tcp_verify_left_out(tp);
  1695. if ((state.reord < tp->fackets_out) &&
  1696. ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
  1697. (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
  1698. tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
  1699. out:
  1700. #if FASTRETRANS_DEBUG > 0
  1701. WARN_ON((int)tp->sacked_out < 0);
  1702. WARN_ON((int)tp->lost_out < 0);
  1703. WARN_ON((int)tp->retrans_out < 0);
  1704. WARN_ON((int)tcp_packets_in_flight(tp) < 0);
  1705. #endif
  1706. return state.flag;
  1707. }
  1708. /* Limits sacked_out so that sum with lost_out isn't ever larger than
  1709. * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
  1710. */
  1711. static int tcp_limit_reno_sacked(struct tcp_sock *tp)
  1712. {
  1713. u32 holes;
  1714. holes = max(tp->lost_out, 1U);
  1715. holes = min(holes, tp->packets_out);
  1716. if ((tp->sacked_out + holes) > tp->packets_out) {
  1717. tp->sacked_out = tp->packets_out - holes;
  1718. return 1;
  1719. }
  1720. return 0;
  1721. }
  1722. /* If we receive more dupacks than we expected counting segments
  1723. * in assumption of absent reordering, interpret this as reordering.
  1724. * The only another reason could be bug in receiver TCP.
  1725. */
  1726. static void tcp_check_reno_reordering(struct sock *sk, const int addend)
  1727. {
  1728. struct tcp_sock *tp = tcp_sk(sk);
  1729. if (tcp_limit_reno_sacked(tp))
  1730. tcp_update_reordering(sk, tp->packets_out + addend, 0);
  1731. }
  1732. /* Emulate SACKs for SACKless connection: account for a new dupack. */
  1733. static void tcp_add_reno_sack(struct sock *sk)
  1734. {
  1735. struct tcp_sock *tp = tcp_sk(sk);
  1736. tp->sacked_out++;
  1737. tcp_check_reno_reordering(sk, 0);
  1738. tcp_verify_left_out(tp);
  1739. }
  1740. /* Account for ACK, ACKing some data in Reno Recovery phase. */
  1741. static void tcp_remove_reno_sacks(struct sock *sk, int acked)
  1742. {
  1743. struct tcp_sock *tp = tcp_sk(sk);
  1744. if (acked > 0) {
  1745. /* One ACK acked hole. The rest eat duplicate ACKs. */
  1746. if (acked - 1 >= tp->sacked_out)
  1747. tp->sacked_out = 0;
  1748. else
  1749. tp->sacked_out -= acked - 1;
  1750. }
  1751. tcp_check_reno_reordering(sk, acked);
  1752. tcp_verify_left_out(tp);
  1753. }
  1754. static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
  1755. {
  1756. tp->sacked_out = 0;
  1757. }
  1758. static int tcp_is_sackfrto(const struct tcp_sock *tp)
  1759. {
  1760. return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
  1761. }
  1762. /* F-RTO can only be used if TCP has never retransmitted anything other than
  1763. * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
  1764. */
  1765. int tcp_use_frto(struct sock *sk)
  1766. {
  1767. const struct tcp_sock *tp = tcp_sk(sk);
  1768. const struct inet_connection_sock *icsk = inet_csk(sk);
  1769. struct sk_buff *skb;
  1770. if (!sysctl_tcp_frto)
  1771. return 0;
  1772. /* MTU probe and F-RTO won't really play nicely along currently */
  1773. if (icsk->icsk_mtup.probe_size)
  1774. return 0;
  1775. if (tcp_is_sackfrto(tp))
  1776. return 1;
  1777. /* Avoid expensive walking of rexmit queue if possible */
  1778. if (tp->retrans_out > 1)
  1779. return 0;
  1780. skb = tcp_write_queue_head(sk);
  1781. if (tcp_skb_is_last(sk, skb))
  1782. return 1;
  1783. skb = tcp_write_queue_next(sk, skb); /* Skips head */
  1784. tcp_for_write_queue_from(skb, sk) {
  1785. if (skb == tcp_send_head(sk))
  1786. break;
  1787. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1788. return 0;
  1789. /* Short-circuit when first non-SACKed skb has been checked */
  1790. if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  1791. break;
  1792. }
  1793. return 1;
  1794. }
  1795. /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
  1796. * recovery a bit and use heuristics in tcp_process_frto() to detect if
  1797. * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
  1798. * keep retrans_out counting accurate (with SACK F-RTO, other than head
  1799. * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
  1800. * bits are handled if the Loss state is really to be entered (in
  1801. * tcp_enter_frto_loss).
  1802. *
  1803. * Do like tcp_enter_loss() would; when RTO expires the second time it
  1804. * does:
  1805. * "Reduce ssthresh if it has not yet been made inside this window."
  1806. */
  1807. void tcp_enter_frto(struct sock *sk)
  1808. {
  1809. const struct inet_connection_sock *icsk = inet_csk(sk);
  1810. struct tcp_sock *tp = tcp_sk(sk);
  1811. struct sk_buff *skb;
  1812. if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
  1813. tp->snd_una == tp->high_seq ||
  1814. ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
  1815. !icsk->icsk_retransmits)) {
  1816. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  1817. /* Our state is too optimistic in ssthresh() call because cwnd
  1818. * is not reduced until tcp_enter_frto_loss() when previous F-RTO
  1819. * recovery has not yet completed. Pattern would be this: RTO,
  1820. * Cumulative ACK, RTO (2xRTO for the same segment does not end
  1821. * up here twice).
  1822. * RFC4138 should be more specific on what to do, even though
  1823. * RTO is quite unlikely to occur after the first Cumulative ACK
  1824. * due to back-off and complexity of triggering events ...
  1825. */
  1826. if (tp->frto_counter) {
  1827. u32 stored_cwnd;
  1828. stored_cwnd = tp->snd_cwnd;
  1829. tp->snd_cwnd = 2;
  1830. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1831. tp->snd_cwnd = stored_cwnd;
  1832. } else {
  1833. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1834. }
  1835. /* ... in theory, cong.control module could do "any tricks" in
  1836. * ssthresh(), which means that ca_state, lost bits and lost_out
  1837. * counter would have to be faked before the call occurs. We
  1838. * consider that too expensive, unlikely and hacky, so modules
  1839. * using these in ssthresh() must deal these incompatibility
  1840. * issues if they receives CA_EVENT_FRTO and frto_counter != 0
  1841. */
  1842. tcp_ca_event(sk, CA_EVENT_FRTO);
  1843. }
  1844. tp->undo_marker = tp->snd_una;
  1845. tp->undo_retrans = 0;
  1846. skb = tcp_write_queue_head(sk);
  1847. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1848. tp->undo_marker = 0;
  1849. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
  1850. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  1851. tp->retrans_out -= tcp_skb_pcount(skb);
  1852. }
  1853. tcp_verify_left_out(tp);
  1854. /* Too bad if TCP was application limited */
  1855. tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
  1856. /* Earlier loss recovery underway (see RFC4138; Appendix B).
  1857. * The last condition is necessary at least in tp->frto_counter case.
  1858. */
  1859. if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
  1860. ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
  1861. after(tp->high_seq, tp->snd_una)) {
  1862. tp->frto_highmark = tp->high_seq;
  1863. } else {
  1864. tp->frto_highmark = tp->snd_nxt;
  1865. }
  1866. tcp_set_ca_state(sk, TCP_CA_Disorder);
  1867. tp->high_seq = tp->snd_nxt;
  1868. tp->frto_counter = 1;
  1869. }
  1870. /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
  1871. * which indicates that we should follow the traditional RTO recovery,
  1872. * i.e. mark everything lost and do go-back-N retransmission.
  1873. */
  1874. static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
  1875. {
  1876. struct tcp_sock *tp = tcp_sk(sk);
  1877. struct sk_buff *skb;
  1878. tp->lost_out = 0;
  1879. tp->retrans_out = 0;
  1880. if (tcp_is_reno(tp))
  1881. tcp_reset_reno_sack(tp);
  1882. tcp_for_write_queue(skb, sk) {
  1883. if (skb == tcp_send_head(sk))
  1884. break;
  1885. TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
  1886. /*
  1887. * Count the retransmission made on RTO correctly (only when
  1888. * waiting for the first ACK and did not get it)...
  1889. */
  1890. if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
  1891. /* For some reason this R-bit might get cleared? */
  1892. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
  1893. tp->retrans_out += tcp_skb_pcount(skb);
  1894. /* ...enter this if branch just for the first segment */
  1895. flag |= FLAG_DATA_ACKED;
  1896. } else {
  1897. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1898. tp->undo_marker = 0;
  1899. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  1900. }
  1901. /* Marking forward transmissions that were made after RTO lost
  1902. * can cause unnecessary retransmissions in some scenarios,
  1903. * SACK blocks will mitigate that in some but not in all cases.
  1904. * We used to not mark them but it was causing break-ups with
  1905. * receivers that do only in-order receival.
  1906. *
  1907. * TODO: we could detect presence of such receiver and select
  1908. * different behavior per flow.
  1909. */
  1910. if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
  1911. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1912. tp->lost_out += tcp_skb_pcount(skb);
  1913. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  1914. }
  1915. }
  1916. tcp_verify_left_out(tp);
  1917. tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
  1918. tp->snd_cwnd_cnt = 0;
  1919. tp->snd_cwnd_stamp = tcp_time_stamp;
  1920. tp->frto_counter = 0;
  1921. tp->bytes_acked = 0;
  1922. tp->reordering = min_t(unsigned int, tp->reordering,
  1923. sysctl_tcp_reordering);
  1924. tcp_set_ca_state(sk, TCP_CA_Loss);
  1925. tp->high_seq = tp->snd_nxt;
  1926. TCP_ECN_queue_cwr(tp);
  1927. tcp_clear_all_retrans_hints(tp);
  1928. }
  1929. static void tcp_clear_retrans_partial(struct tcp_sock *tp)
  1930. {
  1931. tp->retrans_out = 0;
  1932. tp->lost_out = 0;
  1933. tp->undo_marker = 0;
  1934. tp->undo_retrans = 0;
  1935. }
  1936. void tcp_clear_retrans(struct tcp_sock *tp)
  1937. {
  1938. tcp_clear_retrans_partial(tp);
  1939. tp->fackets_out = 0;
  1940. tp->sacked_out = 0;
  1941. }
  1942. /* Enter Loss state. If "how" is not zero, forget all SACK information
  1943. * and reset tags completely, otherwise preserve SACKs. If receiver
  1944. * dropped its ofo queue, we will know this due to reneging detection.
  1945. */
  1946. void tcp_enter_loss(struct sock *sk, int how)
  1947. {
  1948. const struct inet_connection_sock *icsk = inet_csk(sk);
  1949. struct tcp_sock *tp = tcp_sk(sk);
  1950. struct sk_buff *skb;
  1951. /* Reduce ssthresh if it has not yet been made inside this window. */
  1952. if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
  1953. (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
  1954. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  1955. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1956. tcp_ca_event(sk, CA_EVENT_LOSS);
  1957. }
  1958. tp->snd_cwnd = 1;
  1959. tp->snd_cwnd_cnt = 0;
  1960. tp->snd_cwnd_stamp = tcp_time_stamp;
  1961. tp->bytes_acked = 0;
  1962. tcp_clear_retrans_partial(tp);
  1963. if (tcp_is_reno(tp))
  1964. tcp_reset_reno_sack(tp);
  1965. if (!how) {
  1966. /* Push undo marker, if it was plain RTO and nothing
  1967. * was retransmitted. */
  1968. tp->undo_marker = tp->snd_una;
  1969. } else {
  1970. tp->sacked_out = 0;
  1971. tp->fackets_out = 0;
  1972. }
  1973. tcp_clear_all_retrans_hints(tp);
  1974. tcp_for_write_queue(skb, sk) {
  1975. if (skb == tcp_send_head(sk))
  1976. break;
  1977. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1978. tp->undo_marker = 0;
  1979. TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
  1980. if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
  1981. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
  1982. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1983. tp->lost_out += tcp_skb_pcount(skb);
  1984. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  1985. }
  1986. }
  1987. tcp_verify_left_out(tp);
  1988. tp->reordering = min_t(unsigned int, tp->reordering,
  1989. sysctl_tcp_reordering);
  1990. tcp_set_ca_state(sk, TCP_CA_Loss);
  1991. tp->high_seq = tp->snd_nxt;
  1992. TCP_ECN_queue_cwr(tp);
  1993. /* Abort F-RTO algorithm if one is in progress */
  1994. tp->frto_counter = 0;
  1995. }
  1996. /* If ACK arrived pointing to a remembered SACK, it means that our
  1997. * remembered SACKs do not reflect real state of receiver i.e.
  1998. * receiver _host_ is heavily congested (or buggy).
  1999. *
  2000. * Do processing similar to RTO timeout.
  2001. */
  2002. static int tcp_check_sack_reneging(struct sock *sk, int flag)
  2003. {
  2004. if (flag & FLAG_SACK_RENEGING) {
  2005. struct inet_connection_sock *icsk = inet_csk(sk);
  2006. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
  2007. tcp_enter_loss(sk, 1);
  2008. icsk->icsk_retransmits++;
  2009. tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
  2010. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  2011. icsk->icsk_rto, TCP_RTO_MAX);
  2012. return 1;
  2013. }
  2014. return 0;
  2015. }
  2016. static inline int tcp_fackets_out(const struct tcp_sock *tp)
  2017. {
  2018. return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
  2019. }
  2020. /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
  2021. * counter when SACK is enabled (without SACK, sacked_out is used for
  2022. * that purpose).
  2023. *
  2024. * Instead, with FACK TCP uses fackets_out that includes both SACKed
  2025. * segments up to the highest received SACK block so far and holes in
  2026. * between them.
  2027. *
  2028. * With reordering, holes may still be in flight, so RFC3517 recovery
  2029. * uses pure sacked_out (total number of SACKed segments) even though
  2030. * it violates the RFC that uses duplicate ACKs, often these are equal
  2031. * but when e.g. out-of-window ACKs or packet duplication occurs,
  2032. * they differ. Since neither occurs due to loss, TCP should really
  2033. * ignore them.
  2034. */
  2035. static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
  2036. {
  2037. return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
  2038. }
  2039. static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
  2040. {
  2041. struct tcp_sock *tp = tcp_sk(sk);
  2042. unsigned long delay;
  2043. /* Delay early retransmit and entering fast recovery for
  2044. * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
  2045. * available, or RTO is scheduled to fire first.
  2046. */
  2047. if (sysctl_tcp_early_retrans < 2 || (flag & FLAG_ECE) || !tp->srtt)
  2048. return false;
  2049. delay = max_t(unsigned long, (tp->srtt >> 5), msecs_to_jiffies(2));
  2050. if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
  2051. return false;
  2052. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, delay, TCP_RTO_MAX);
  2053. tp->early_retrans_delayed = 1;
  2054. return true;
  2055. }
  2056. static inline int tcp_skb_timedout(const struct sock *sk,
  2057. const struct sk_buff *skb)
  2058. {
  2059. return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
  2060. }
  2061. static inline int tcp_head_timedout(const struct sock *sk)
  2062. {
  2063. const struct tcp_sock *tp = tcp_sk(sk);
  2064. return tp->packets_out &&
  2065. tcp_skb_timedout(sk, tcp_write_queue_head(sk));
  2066. }
  2067. /* Linux NewReno/SACK/FACK/ECN state machine.
  2068. * --------------------------------------
  2069. *
  2070. * "Open" Normal state, no dubious events, fast path.
  2071. * "Disorder" In all the respects it is "Open",
  2072. * but requires a bit more attention. It is entered when
  2073. * we see some SACKs or dupacks. It is split of "Open"
  2074. * mainly to move some processing from fast path to slow one.
  2075. * "CWR" CWND was reduced due to some Congestion Notification event.
  2076. * It can be ECN, ICMP source quench, local device congestion.
  2077. * "Recovery" CWND was reduced, we are fast-retransmitting.
  2078. * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
  2079. *
  2080. * tcp_fastretrans_alert() is entered:
  2081. * - each incoming ACK, if state is not "Open"
  2082. * - when arrived ACK is unusual, namely:
  2083. * * SACK
  2084. * * Duplicate ACK.
  2085. * * ECN ECE.
  2086. *
  2087. * Counting packets in flight is pretty simple.
  2088. *
  2089. * in_flight = packets_out - left_out + retrans_out
  2090. *
  2091. * packets_out is SND.NXT-SND.UNA counted in packets.
  2092. *
  2093. * retrans_out is number of retransmitted segments.
  2094. *
  2095. * left_out is number of segments left network, but not ACKed yet.
  2096. *
  2097. * left_out = sacked_out + lost_out
  2098. *
  2099. * sacked_out: Packets, which arrived to receiver out of order
  2100. * and hence not ACKed. With SACKs this number is simply
  2101. * amount of SACKed data. Even without SACKs
  2102. * it is easy to give pretty reliable estimate of this number,
  2103. * counting duplicate ACKs.
  2104. *
  2105. * lost_out: Packets lost by network. TCP has no explicit
  2106. * "loss notification" feedback from network (for now).
  2107. * It means that this number can be only _guessed_.
  2108. * Actually, it is the heuristics to predict lossage that
  2109. * distinguishes different algorithms.
  2110. *
  2111. * F.e. after RTO, when all the queue is considered as lost,
  2112. * lost_out = packets_out and in_flight = retrans_out.
  2113. *
  2114. * Essentially, we have now two algorithms counting
  2115. * lost packets.
  2116. *
  2117. * FACK: It is the simplest heuristics. As soon as we decided
  2118. * that something is lost, we decide that _all_ not SACKed
  2119. * packets until the most forward SACK are lost. I.e.
  2120. * lost_out = fackets_out - sacked_out and left_out = fackets_out.
  2121. * It is absolutely correct estimate, if network does not reorder
  2122. * packets. And it loses any connection to reality when reordering
  2123. * takes place. We use FACK by default until reordering
  2124. * is suspected on the path to this destination.
  2125. *
  2126. * NewReno: when Recovery is entered, we assume that one segment
  2127. * is lost (classic Reno). While we are in Recovery and
  2128. * a partial ACK arrives, we assume that one more packet
  2129. * is lost (NewReno). This heuristics are the same in NewReno
  2130. * and SACK.
  2131. *
  2132. * Imagine, that's all! Forget about all this shamanism about CWND inflation
  2133. * deflation etc. CWND is real congestion window, never inflated, changes
  2134. * only according to classic VJ rules.
  2135. *
  2136. * Really tricky (and requiring careful tuning) part of algorithm
  2137. * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
  2138. * The first determines the moment _when_ we should reduce CWND and,
  2139. * hence, slow down forward transmission. In fact, it determines the moment
  2140. * when we decide that hole is caused by loss, rather than by a reorder.
  2141. *
  2142. * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
  2143. * holes, caused by lost packets.
  2144. *
  2145. * And the most logically complicated part of algorithm is undo
  2146. * heuristics. We detect false retransmits due to both too early
  2147. * fast retransmit (reordering) and underestimated RTO, analyzing
  2148. * timestamps and D-SACKs. When we detect that some segments were
  2149. * retransmitted by mistake and CWND reduction was wrong, we undo
  2150. * window reduction and abort recovery phase. This logic is hidden
  2151. * inside several functions named tcp_try_undo_<something>.
  2152. */
  2153. /* This function decides, when we should leave Disordered state
  2154. * and enter Recovery phase, reducing congestion window.
  2155. *
  2156. * Main question: may we further continue forward transmission
  2157. * with the same cwnd?
  2158. */
  2159. static int tcp_time_to_recover(struct sock *sk, int flag)
  2160. {
  2161. struct tcp_sock *tp = tcp_sk(sk);
  2162. __u32 packets_out;
  2163. /* Do not perform any recovery during F-RTO algorithm */
  2164. if (tp->frto_counter)
  2165. return 0;
  2166. /* Trick#1: The loss is proven. */
  2167. if (tp->lost_out)
  2168. return 1;
  2169. /* Not-A-Trick#2 : Classic rule... */
  2170. if (tcp_dupack_heuristics(tp) > tp->reordering)
  2171. return 1;
  2172. /* Trick#3 : when we use RFC2988 timer restart, fast
  2173. * retransmit can be triggered by timeout of queue head.
  2174. */
  2175. if (tcp_is_fack(tp) && tcp_head_timedout(sk))
  2176. return 1;
  2177. /* Trick#4: It is still not OK... But will it be useful to delay
  2178. * recovery more?
  2179. */
  2180. packets_out = tp->packets_out;
  2181. if (packets_out <= tp->reordering &&
  2182. tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
  2183. !tcp_may_send_now(sk)) {
  2184. /* We have nothing to send. This connection is limited
  2185. * either by receiver window or by application.
  2186. */
  2187. return 1;
  2188. }
  2189. /* If a thin stream is detected, retransmit after first
  2190. * received dupack. Employ only if SACK is supported in order
  2191. * to avoid possible corner-case series of spurious retransmissions
  2192. * Use only if there are no unsent data.
  2193. */
  2194. if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
  2195. tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
  2196. tcp_is_sack(tp) && !tcp_send_head(sk))
  2197. return 1;
  2198. /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious
  2199. * retransmissions due to small network reorderings, we implement
  2200. * Mitigation A.3 in the RFC and delay the retransmission for a short
  2201. * interval if appropriate.
  2202. */
  2203. if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
  2204. (tp->packets_out == (tp->sacked_out + 1) && tp->packets_out < 4) &&
  2205. !tcp_may_send_now(sk))
  2206. return !tcp_pause_early_retransmit(sk, flag);
  2207. return 0;
  2208. }
  2209. /* New heuristics: it is possible only after we switched to restart timer
  2210. * each time when something is ACKed. Hence, we can detect timed out packets
  2211. * during fast retransmit without falling to slow start.
  2212. *
  2213. * Usefulness of this as is very questionable, since we should know which of
  2214. * the segments is the next to timeout which is relatively expensive to find
  2215. * in general case unless we add some data structure just for that. The
  2216. * current approach certainly won't find the right one too often and when it
  2217. * finally does find _something_ it usually marks large part of the window
  2218. * right away (because a retransmission with a larger timestamp blocks the
  2219. * loop from advancing). -ij
  2220. */
  2221. static void tcp_timeout_skbs(struct sock *sk)
  2222. {
  2223. struct tcp_sock *tp = tcp_sk(sk);
  2224. struct sk_buff *skb;
  2225. if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
  2226. return;
  2227. skb = tp->scoreboard_skb_hint;
  2228. if (tp->scoreboard_skb_hint == NULL)
  2229. skb = tcp_write_queue_head(sk);
  2230. tcp_for_write_queue_from(skb, sk) {
  2231. if (skb == tcp_send_head(sk))
  2232. break;
  2233. if (!tcp_skb_timedout(sk, skb))
  2234. break;
  2235. tcp_skb_mark_lost(tp, skb);
  2236. }
  2237. tp->scoreboard_skb_hint = skb;
  2238. tcp_verify_left_out(tp);
  2239. }
  2240. /* Detect loss in event "A" above by marking head of queue up as lost.
  2241. * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
  2242. * are considered lost. For RFC3517 SACK, a segment is considered lost if it
  2243. * has at least tp->reordering SACKed seqments above it; "packets" refers to
  2244. * the maximum SACKed segments to pass before reaching this limit.
  2245. */
  2246. static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
  2247. {
  2248. struct tcp_sock *tp = tcp_sk(sk);
  2249. struct sk_buff *skb;
  2250. int cnt, oldcnt;
  2251. int err;
  2252. unsigned int mss;
  2253. /* Use SACK to deduce losses of new sequences sent during recovery */
  2254. const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
  2255. WARN_ON(packets > tp->packets_out);
  2256. if (tp->lost_skb_hint) {
  2257. skb = tp->lost_skb_hint;
  2258. cnt = tp->lost_cnt_hint;
  2259. /* Head already handled? */
  2260. if (mark_head && skb != tcp_write_queue_head(sk))
  2261. return;
  2262. } else {
  2263. skb = tcp_write_queue_head(sk);
  2264. cnt = 0;
  2265. }
  2266. tcp_for_write_queue_from(skb, sk) {
  2267. if (skb == tcp_send_head(sk))
  2268. break;
  2269. /* TODO: do this better */
  2270. /* this is not the most efficient way to do this... */
  2271. tp->lost_skb_hint = skb;
  2272. tp->lost_cnt_hint = cnt;
  2273. if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
  2274. break;
  2275. oldcnt = cnt;
  2276. if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
  2277. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  2278. cnt += tcp_skb_pcount(skb);
  2279. if (cnt > packets) {
  2280. if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
  2281. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
  2282. (oldcnt >= packets))
  2283. break;
  2284. mss = skb_shinfo(skb)->gso_size;
  2285. err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
  2286. if (err < 0)
  2287. break;
  2288. cnt = packets;
  2289. }
  2290. tcp_skb_mark_lost(tp, skb);
  2291. if (mark_head)
  2292. break;
  2293. }
  2294. tcp_verify_left_out(tp);
  2295. }
  2296. /* Account newly detected lost packet(s) */
  2297. static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
  2298. {
  2299. struct tcp_sock *tp = tcp_sk(sk);
  2300. if (tcp_is_reno(tp)) {
  2301. tcp_mark_head_lost(sk, 1, 1);
  2302. } else if (tcp_is_fack(tp)) {
  2303. int lost = tp->fackets_out - tp->reordering;
  2304. if (lost <= 0)
  2305. lost = 1;
  2306. tcp_mark_head_lost(sk, lost, 0);
  2307. } else {
  2308. int sacked_upto = tp->sacked_out - tp->reordering;
  2309. if (sacked_upto >= 0)
  2310. tcp_mark_head_lost(sk, sacked_upto, 0);
  2311. else if (fast_rexmit)
  2312. tcp_mark_head_lost(sk, 1, 1);
  2313. }
  2314. tcp_timeout_skbs(sk);
  2315. }
  2316. /* CWND moderation, preventing bursts due to too big ACKs
  2317. * in dubious situations.
  2318. */
  2319. static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
  2320. {
  2321. tp->snd_cwnd = min(tp->snd_cwnd,
  2322. tcp_packets_in_flight(tp) + tcp_max_burst(tp));
  2323. tp->snd_cwnd_stamp = tcp_time_stamp;
  2324. }
  2325. /* Lower bound on congestion window is slow start threshold
  2326. * unless congestion avoidance choice decides to overide it.
  2327. */
  2328. static inline u32 tcp_cwnd_min(const struct sock *sk)
  2329. {
  2330. const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
  2331. return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
  2332. }
  2333. /* Decrease cwnd each second ack. */
  2334. static void tcp_cwnd_down(struct sock *sk, int flag)
  2335. {
  2336. struct tcp_sock *tp = tcp_sk(sk);
  2337. int decr = tp->snd_cwnd_cnt + 1;
  2338. if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
  2339. (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
  2340. tp->snd_cwnd_cnt = decr & 1;
  2341. decr >>= 1;
  2342. if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
  2343. tp->snd_cwnd -= decr;
  2344. tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
  2345. tp->snd_cwnd_stamp = tcp_time_stamp;
  2346. }
  2347. }
  2348. /* Nothing was retransmitted or returned timestamp is less
  2349. * than timestamp of the first retransmission.
  2350. */
  2351. static inline int tcp_packet_delayed(const struct tcp_sock *tp)
  2352. {
  2353. return !tp->retrans_stamp ||
  2354. (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  2355. before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
  2356. }
  2357. /* Undo procedures. */
  2358. #if FASTRETRANS_DEBUG > 1
  2359. static void DBGUNDO(struct sock *sk, const char *msg)
  2360. {
  2361. struct tcp_sock *tp = tcp_sk(sk);
  2362. struct inet_sock *inet = inet_sk(sk);
  2363. if (sk->sk_family == AF_INET) {
  2364. pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
  2365. msg,
  2366. &inet->inet_daddr, ntohs(inet->inet_dport),
  2367. tp->snd_cwnd, tcp_left_out(tp),
  2368. tp->snd_ssthresh, tp->prior_ssthresh,
  2369. tp->packets_out);
  2370. }
  2371. #if IS_ENABLED(CONFIG_IPV6)
  2372. else if (sk->sk_family == AF_INET6) {
  2373. struct ipv6_pinfo *np = inet6_sk(sk);
  2374. pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
  2375. msg,
  2376. &np->daddr, ntohs(inet->inet_dport),
  2377. tp->snd_cwnd, tcp_left_out(tp),
  2378. tp->snd_ssthresh, tp->prior_ssthresh,
  2379. tp->packets_out);
  2380. }
  2381. #endif
  2382. }
  2383. #else
  2384. #define DBGUNDO(x...) do { } while (0)
  2385. #endif
  2386. static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
  2387. {
  2388. struct tcp_sock *tp = tcp_sk(sk);
  2389. if (tp->prior_ssthresh) {
  2390. const struct inet_connection_sock *icsk = inet_csk(sk);
  2391. if (icsk->icsk_ca_ops->undo_cwnd)
  2392. tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
  2393. else
  2394. tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
  2395. if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
  2396. tp->snd_ssthresh = tp->prior_ssthresh;
  2397. TCP_ECN_withdraw_cwr(tp);
  2398. }
  2399. } else {
  2400. tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
  2401. }
  2402. tp->snd_cwnd_stamp = tcp_time_stamp;
  2403. }
  2404. static inline int tcp_may_undo(const struct tcp_sock *tp)
  2405. {
  2406. return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
  2407. }
  2408. /* People celebrate: "We love our President!" */
  2409. static int tcp_try_undo_recovery(struct sock *sk)
  2410. {
  2411. struct tcp_sock *tp = tcp_sk(sk);
  2412. if (tcp_may_undo(tp)) {
  2413. int mib_idx;
  2414. /* Happy end! We did not retransmit anything
  2415. * or our original transmission succeeded.
  2416. */
  2417. DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
  2418. tcp_undo_cwr(sk, true);
  2419. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
  2420. mib_idx = LINUX_MIB_TCPLOSSUNDO;
  2421. else
  2422. mib_idx = LINUX_MIB_TCPFULLUNDO;
  2423. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  2424. tp->undo_marker = 0;
  2425. }
  2426. if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
  2427. /* Hold old state until something *above* high_seq
  2428. * is ACKed. For Reno it is MUST to prevent false
  2429. * fast retransmits (RFC2582). SACK TCP is safe. */
  2430. tcp_moderate_cwnd(tp);
  2431. return 1;
  2432. }
  2433. tcp_set_ca_state(sk, TCP_CA_Open);
  2434. return 0;
  2435. }
  2436. /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
  2437. static void tcp_try_undo_dsack(struct sock *sk)
  2438. {
  2439. struct tcp_sock *tp = tcp_sk(sk);
  2440. if (tp->undo_marker && !tp->undo_retrans) {
  2441. DBGUNDO(sk, "D-SACK");
  2442. tcp_undo_cwr(sk, true);
  2443. tp->undo_marker = 0;
  2444. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
  2445. }
  2446. }
  2447. /* We can clear retrans_stamp when there are no retransmissions in the
  2448. * window. It would seem that it is trivially available for us in
  2449. * tp->retrans_out, however, that kind of assumptions doesn't consider
  2450. * what will happen if errors occur when sending retransmission for the
  2451. * second time. ...It could the that such segment has only
  2452. * TCPCB_EVER_RETRANS set at the present time. It seems that checking
  2453. * the head skb is enough except for some reneging corner cases that
  2454. * are not worth the effort.
  2455. *
  2456. * Main reason for all this complexity is the fact that connection dying
  2457. * time now depends on the validity of the retrans_stamp, in particular,
  2458. * that successive retransmissions of a segment must not advance
  2459. * retrans_stamp under any conditions.
  2460. */
  2461. static int tcp_any_retrans_done(const struct sock *sk)
  2462. {
  2463. const struct tcp_sock *tp = tcp_sk(sk);
  2464. struct sk_buff *skb;
  2465. if (tp->retrans_out)
  2466. return 1;
  2467. skb = tcp_write_queue_head(sk);
  2468. if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
  2469. return 1;
  2470. return 0;
  2471. }
  2472. /* Undo during fast recovery after partial ACK. */
  2473. static int tcp_try_undo_partial(struct sock *sk, int acked)
  2474. {
  2475. struct tcp_sock *tp = tcp_sk(sk);
  2476. /* Partial ACK arrived. Force Hoe's retransmit. */
  2477. int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
  2478. if (tcp_may_undo(tp)) {
  2479. /* Plain luck! Hole if filled with delayed
  2480. * packet, rather than with a retransmit.
  2481. */
  2482. if (!tcp_any_retrans_done(sk))
  2483. tp->retrans_stamp = 0;
  2484. tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
  2485. DBGUNDO(sk, "Hoe");
  2486. tcp_undo_cwr(sk, false);
  2487. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
  2488. /* So... Do not make Hoe's retransmit yet.
  2489. * If the first packet was delayed, the rest
  2490. * ones are most probably delayed as well.
  2491. */
  2492. failed = 0;
  2493. }
  2494. return failed;
  2495. }
  2496. /* Undo during loss recovery after partial ACK. */
  2497. static int tcp_try_undo_loss(struct sock *sk)
  2498. {
  2499. struct tcp_sock *tp = tcp_sk(sk);
  2500. if (tcp_may_undo(tp)) {
  2501. struct sk_buff *skb;
  2502. tcp_for_write_queue(skb, sk) {
  2503. if (skb == tcp_send_head(sk))
  2504. break;
  2505. TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
  2506. }
  2507. tcp_clear_all_retrans_hints(tp);
  2508. DBGUNDO(sk, "partial loss");
  2509. tp->lost_out = 0;
  2510. tcp_undo_cwr(sk, true);
  2511. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
  2512. inet_csk(sk)->icsk_retransmits = 0;
  2513. tp->undo_marker = 0;
  2514. if (tcp_is_sack(tp))
  2515. tcp_set_ca_state(sk, TCP_CA_Open);
  2516. return 1;
  2517. }
  2518. return 0;
  2519. }
  2520. static inline void tcp_complete_cwr(struct sock *sk)
  2521. {
  2522. struct tcp_sock *tp = tcp_sk(sk);
  2523. /* Do not moderate cwnd if it's already undone in cwr or recovery. */
  2524. if (tp->undo_marker) {
  2525. if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR) {
  2526. tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
  2527. tp->snd_cwnd_stamp = tcp_time_stamp;
  2528. } else if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH) {
  2529. /* PRR algorithm. */
  2530. tp->snd_cwnd = tp->snd_ssthresh;
  2531. tp->snd_cwnd_stamp = tcp_time_stamp;
  2532. }
  2533. }
  2534. tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
  2535. }
  2536. static void tcp_try_keep_open(struct sock *sk)
  2537. {
  2538. struct tcp_sock *tp = tcp_sk(sk);
  2539. int state = TCP_CA_Open;
  2540. if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
  2541. state = TCP_CA_Disorder;
  2542. if (inet_csk(sk)->icsk_ca_state != state) {
  2543. tcp_set_ca_state(sk, state);
  2544. tp->high_seq = tp->snd_nxt;
  2545. }
  2546. }
  2547. static void tcp_try_to_open(struct sock *sk, int flag)
  2548. {
  2549. struct tcp_sock *tp = tcp_sk(sk);
  2550. tcp_verify_left_out(tp);
  2551. if (!tp->frto_counter && !tcp_any_retrans_done(sk))
  2552. tp->retrans_stamp = 0;
  2553. if (flag & FLAG_ECE)
  2554. tcp_enter_cwr(sk, 1);
  2555. if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
  2556. tcp_try_keep_open(sk);
  2557. if (inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
  2558. tcp_moderate_cwnd(tp);
  2559. } else {
  2560. tcp_cwnd_down(sk, flag);
  2561. }
  2562. }
  2563. static void tcp_mtup_probe_failed(struct sock *sk)
  2564. {
  2565. struct inet_connection_sock *icsk = inet_csk(sk);
  2566. icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
  2567. icsk->icsk_mtup.probe_size = 0;
  2568. }
  2569. static void tcp_mtup_probe_success(struct sock *sk)
  2570. {
  2571. struct tcp_sock *tp = tcp_sk(sk);
  2572. struct inet_connection_sock *icsk = inet_csk(sk);
  2573. /* FIXME: breaks with very large cwnd */
  2574. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2575. tp->snd_cwnd = tp->snd_cwnd *
  2576. tcp_mss_to_mtu(sk, tp->mss_cache) /
  2577. icsk->icsk_mtup.probe_size;
  2578. tp->snd_cwnd_cnt = 0;
  2579. tp->snd_cwnd_stamp = tcp_time_stamp;
  2580. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2581. icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
  2582. icsk->icsk_mtup.probe_size = 0;
  2583. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  2584. }
  2585. /* Do a simple retransmit without using the backoff mechanisms in
  2586. * tcp_timer. This is used for path mtu discovery.
  2587. * The socket is already locked here.
  2588. */
  2589. void tcp_simple_retransmit(struct sock *sk)
  2590. {
  2591. const struct inet_connection_sock *icsk = inet_csk(sk);
  2592. struct tcp_sock *tp = tcp_sk(sk);
  2593. struct sk_buff *skb;
  2594. unsigned int mss = tcp_current_mss(sk);
  2595. u32 prior_lost = tp->lost_out;
  2596. tcp_for_write_queue(skb, sk) {
  2597. if (skb == tcp_send_head(sk))
  2598. break;
  2599. if (tcp_skb_seglen(skb) > mss &&
  2600. !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
  2601. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
  2602. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  2603. tp->retrans_out -= tcp_skb_pcount(skb);
  2604. }
  2605. tcp_skb_mark_lost_uncond_verify(tp, skb);
  2606. }
  2607. }
  2608. tcp_clear_retrans_hints_partial(tp);
  2609. if (prior_lost == tp->lost_out)
  2610. return;
  2611. if (tcp_is_reno(tp))
  2612. tcp_limit_reno_sacked(tp);
  2613. tcp_verify_left_out(tp);
  2614. /* Don't muck with the congestion window here.
  2615. * Reason is that we do not increase amount of _data_
  2616. * in network, but units changed and effective
  2617. * cwnd/ssthresh really reduced now.
  2618. */
  2619. if (icsk->icsk_ca_state != TCP_CA_Loss) {
  2620. tp->high_seq = tp->snd_nxt;
  2621. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2622. tp->prior_ssthresh = 0;
  2623. tp->undo_marker = 0;
  2624. tcp_set_ca_state(sk, TCP_CA_Loss);
  2625. }
  2626. tcp_xmit_retransmit_queue(sk);
  2627. }
  2628. EXPORT_SYMBOL(tcp_simple_retransmit);
  2629. /* This function implements the PRR algorithm, specifcally the PRR-SSRB
  2630. * (proportional rate reduction with slow start reduction bound) as described in
  2631. * http://www.ietf.org/id/draft-mathis-tcpm-proportional-rate-reduction-01.txt.
  2632. * It computes the number of packets to send (sndcnt) based on packets newly
  2633. * delivered:
  2634. * 1) If the packets in flight is larger than ssthresh, PRR spreads the
  2635. * cwnd reductions across a full RTT.
  2636. * 2) If packets in flight is lower than ssthresh (such as due to excess
  2637. * losses and/or application stalls), do not perform any further cwnd
  2638. * reductions, but instead slow start up to ssthresh.
  2639. */
  2640. static void tcp_update_cwnd_in_recovery(struct sock *sk, int newly_acked_sacked,
  2641. int fast_rexmit, int flag)
  2642. {
  2643. struct tcp_sock *tp = tcp_sk(sk);
  2644. int sndcnt = 0;
  2645. int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
  2646. if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
  2647. u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
  2648. tp->prior_cwnd - 1;
  2649. sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
  2650. } else {
  2651. sndcnt = min_t(int, delta,
  2652. max_t(int, tp->prr_delivered - tp->prr_out,
  2653. newly_acked_sacked) + 1);
  2654. }
  2655. sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
  2656. tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
  2657. }
  2658. static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
  2659. {
  2660. struct tcp_sock *tp = tcp_sk(sk);
  2661. int mib_idx;
  2662. if (tcp_is_reno(tp))
  2663. mib_idx = LINUX_MIB_TCPRENORECOVERY;
  2664. else
  2665. mib_idx = LINUX_MIB_TCPSACKRECOVERY;
  2666. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  2667. tp->high_seq = tp->snd_nxt;
  2668. tp->prior_ssthresh = 0;
  2669. tp->undo_marker = tp->snd_una;
  2670. tp->undo_retrans = tp->retrans_out;
  2671. if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
  2672. if (!ece_ack)
  2673. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2674. tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
  2675. TCP_ECN_queue_cwr(tp);
  2676. }
  2677. tp->bytes_acked = 0;
  2678. tp->snd_cwnd_cnt = 0;
  2679. tp->prior_cwnd = tp->snd_cwnd;
  2680. tp->prr_delivered = 0;
  2681. tp->prr_out = 0;
  2682. tcp_set_ca_state(sk, TCP_CA_Recovery);
  2683. }
  2684. /* Process an event, which can update packets-in-flight not trivially.
  2685. * Main goal of this function is to calculate new estimate for left_out,
  2686. * taking into account both packets sitting in receiver's buffer and
  2687. * packets lost by network.
  2688. *
  2689. * Besides that it does CWND reduction, when packet loss is detected
  2690. * and changes state of machine.
  2691. *
  2692. * It does _not_ decide what to send, it is made in function
  2693. * tcp_xmit_retransmit_queue().
  2694. */
  2695. static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked,
  2696. int newly_acked_sacked, bool is_dupack,
  2697. int flag)
  2698. {
  2699. struct inet_connection_sock *icsk = inet_csk(sk);
  2700. struct tcp_sock *tp = tcp_sk(sk);
  2701. int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
  2702. (tcp_fackets_out(tp) > tp->reordering));
  2703. int fast_rexmit = 0;
  2704. if (WARN_ON(!tp->packets_out && tp->sacked_out))
  2705. tp->sacked_out = 0;
  2706. if (WARN_ON(!tp->sacked_out && tp->fackets_out))
  2707. tp->fackets_out = 0;
  2708. /* Now state machine starts.
  2709. * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
  2710. if (flag & FLAG_ECE)
  2711. tp->prior_ssthresh = 0;
  2712. /* B. In all the states check for reneging SACKs. */
  2713. if (tcp_check_sack_reneging(sk, flag))
  2714. return;
  2715. /* C. Check consistency of the current state. */
  2716. tcp_verify_left_out(tp);
  2717. /* D. Check state exit conditions. State can be terminated
  2718. * when high_seq is ACKed. */
  2719. if (icsk->icsk_ca_state == TCP_CA_Open) {
  2720. WARN_ON(tp->retrans_out != 0);
  2721. tp->retrans_stamp = 0;
  2722. } else if (!before(tp->snd_una, tp->high_seq)) {
  2723. switch (icsk->icsk_ca_state) {
  2724. case TCP_CA_Loss:
  2725. icsk->icsk_retransmits = 0;
  2726. if (tcp_try_undo_recovery(sk))
  2727. return;
  2728. break;
  2729. case TCP_CA_CWR:
  2730. /* CWR is to be held something *above* high_seq
  2731. * is ACKed for CWR bit to reach receiver. */
  2732. if (tp->snd_una != tp->high_seq) {
  2733. tcp_complete_cwr(sk);
  2734. tcp_set_ca_state(sk, TCP_CA_Open);
  2735. }
  2736. break;
  2737. case TCP_CA_Recovery:
  2738. if (tcp_is_reno(tp))
  2739. tcp_reset_reno_sack(tp);
  2740. if (tcp_try_undo_recovery(sk))
  2741. return;
  2742. tcp_complete_cwr(sk);
  2743. break;
  2744. }
  2745. }
  2746. /* E. Process state. */
  2747. switch (icsk->icsk_ca_state) {
  2748. case TCP_CA_Recovery:
  2749. if (!(flag & FLAG_SND_UNA_ADVANCED)) {
  2750. if (tcp_is_reno(tp) && is_dupack)
  2751. tcp_add_reno_sack(sk);
  2752. } else
  2753. do_lost = tcp_try_undo_partial(sk, pkts_acked);
  2754. break;
  2755. case TCP_CA_Loss:
  2756. if (flag & FLAG_DATA_ACKED)
  2757. icsk->icsk_retransmits = 0;
  2758. if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
  2759. tcp_reset_reno_sack(tp);
  2760. if (!tcp_try_undo_loss(sk)) {
  2761. tcp_moderate_cwnd(tp);
  2762. tcp_xmit_retransmit_queue(sk);
  2763. return;
  2764. }
  2765. if (icsk->icsk_ca_state != TCP_CA_Open)
  2766. return;
  2767. /* Loss is undone; fall through to processing in Open state. */
  2768. default:
  2769. if (tcp_is_reno(tp)) {
  2770. if (flag & FLAG_SND_UNA_ADVANCED)
  2771. tcp_reset_reno_sack(tp);
  2772. if (is_dupack)
  2773. tcp_add_reno_sack(sk);
  2774. }
  2775. if (icsk->icsk_ca_state <= TCP_CA_Disorder)
  2776. tcp_try_undo_dsack(sk);
  2777. if (!tcp_time_to_recover(sk, flag)) {
  2778. tcp_try_to_open(sk, flag);
  2779. return;
  2780. }
  2781. /* MTU probe failure: don't reduce cwnd */
  2782. if (icsk->icsk_ca_state < TCP_CA_CWR &&
  2783. icsk->icsk_mtup.probe_size &&
  2784. tp->snd_una == tp->mtu_probe.probe_seq_start) {
  2785. tcp_mtup_probe_failed(sk);
  2786. /* Restores the reduction we did in tcp_mtup_probe() */
  2787. tp->snd_cwnd++;
  2788. tcp_simple_retransmit(sk);
  2789. return;
  2790. }
  2791. /* Otherwise enter Recovery state */
  2792. tcp_enter_recovery(sk, (flag & FLAG_ECE));
  2793. fast_rexmit = 1;
  2794. }
  2795. if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
  2796. tcp_update_scoreboard(sk, fast_rexmit);
  2797. tp->prr_delivered += newly_acked_sacked;
  2798. tcp_update_cwnd_in_recovery(sk, newly_acked_sacked, fast_rexmit, flag);
  2799. tcp_xmit_retransmit_queue(sk);
  2800. }
  2801. void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
  2802. {
  2803. tcp_rtt_estimator(sk, seq_rtt);
  2804. tcp_set_rto(sk);
  2805. inet_csk(sk)->icsk_backoff = 0;
  2806. }
  2807. EXPORT_SYMBOL(tcp_valid_rtt_meas);
  2808. /* Read draft-ietf-tcplw-high-performance before mucking
  2809. * with this code. (Supersedes RFC1323)
  2810. */
  2811. static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
  2812. {
  2813. /* RTTM Rule: A TSecr value received in a segment is used to
  2814. * update the averaged RTT measurement only if the segment
  2815. * acknowledges some new data, i.e., only if it advances the
  2816. * left edge of the send window.
  2817. *
  2818. * See draft-ietf-tcplw-high-performance-00, section 3.3.
  2819. * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
  2820. *
  2821. * Changed: reset backoff as soon as we see the first valid sample.
  2822. * If we do not, we get strongly overestimated rto. With timestamps
  2823. * samples are accepted even from very old segments: f.e., when rtt=1
  2824. * increases to 8, we retransmit 5 times and after 8 seconds delayed
  2825. * answer arrives rto becomes 120 seconds! If at least one of segments
  2826. * in window is lost... Voila. --ANK (010210)
  2827. */
  2828. struct tcp_sock *tp = tcp_sk(sk);
  2829. tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
  2830. }
  2831. static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
  2832. {
  2833. /* We don't have a timestamp. Can only use
  2834. * packets that are not retransmitted to determine
  2835. * rtt estimates. Also, we must not reset the
  2836. * backoff for rto until we get a non-retransmitted
  2837. * packet. This allows us to deal with a situation
  2838. * where the network delay has increased suddenly.
  2839. * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
  2840. */
  2841. if (flag & FLAG_RETRANS_DATA_ACKED)
  2842. return;
  2843. tcp_valid_rtt_meas(sk, seq_rtt);
  2844. }
  2845. static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
  2846. const s32 seq_rtt)
  2847. {
  2848. const struct tcp_sock *tp = tcp_sk(sk);
  2849. /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
  2850. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
  2851. tcp_ack_saw_tstamp(sk, flag);
  2852. else if (seq_rtt >= 0)
  2853. tcp_ack_no_tstamp(sk, seq_rtt, flag);
  2854. }
  2855. static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
  2856. {
  2857. const struct inet_connection_sock *icsk = inet_csk(sk);
  2858. icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
  2859. tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
  2860. }
  2861. /* Restart timer after forward progress on connection.
  2862. * RFC2988 recommends to restart timer to now+rto.
  2863. */
  2864. void tcp_rearm_rto(struct sock *sk)
  2865. {
  2866. struct tcp_sock *tp = tcp_sk(sk);
  2867. if (!tp->packets_out) {
  2868. inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
  2869. } else {
  2870. u32 rto = inet_csk(sk)->icsk_rto;
  2871. /* Offset the time elapsed after installing regular RTO */
  2872. if (tp->early_retrans_delayed) {
  2873. struct sk_buff *skb = tcp_write_queue_head(sk);
  2874. const u32 rto_time_stamp = TCP_SKB_CB(skb)->when + rto;
  2875. s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
  2876. /* delta may not be positive if the socket is locked
  2877. * when the delayed ER timer fires and is rescheduled.
  2878. */
  2879. if (delta > 0)
  2880. rto = delta;
  2881. }
  2882. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
  2883. TCP_RTO_MAX);
  2884. }
  2885. tp->early_retrans_delayed = 0;
  2886. }
  2887. /* This function is called when the delayed ER timer fires. TCP enters
  2888. * fast recovery and performs fast-retransmit.
  2889. */
  2890. void tcp_resume_early_retransmit(struct sock *sk)
  2891. {
  2892. struct tcp_sock *tp = tcp_sk(sk);
  2893. tcp_rearm_rto(sk);
  2894. /* Stop if ER is disabled after the delayed ER timer is scheduled */
  2895. if (!tp->do_early_retrans)
  2896. return;
  2897. tcp_enter_recovery(sk, false);
  2898. tcp_update_scoreboard(sk, 1);
  2899. tcp_xmit_retransmit_queue(sk);
  2900. }
  2901. /* If we get here, the whole TSO packet has not been acked. */
  2902. static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
  2903. {
  2904. struct tcp_sock *tp = tcp_sk(sk);
  2905. u32 packets_acked;
  2906. BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
  2907. packets_acked = tcp_skb_pcount(skb);
  2908. if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
  2909. return 0;
  2910. packets_acked -= tcp_skb_pcount(skb);
  2911. if (packets_acked) {
  2912. BUG_ON(tcp_skb_pcount(skb) == 0);
  2913. BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
  2914. }
  2915. return packets_acked;
  2916. }
  2917. /* Remove acknowledged frames from the retransmission queue. If our packet
  2918. * is before the ack sequence we can discard it as it's confirmed to have
  2919. * arrived at the other end.
  2920. */
  2921. static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
  2922. u32 prior_snd_una)
  2923. {
  2924. struct tcp_sock *tp = tcp_sk(sk);
  2925. const struct inet_connection_sock *icsk = inet_csk(sk);
  2926. struct sk_buff *skb;
  2927. u32 now = tcp_time_stamp;
  2928. int fully_acked = 1;
  2929. int flag = 0;
  2930. u32 pkts_acked = 0;
  2931. u32 reord = tp->packets_out;
  2932. u32 prior_sacked = tp->sacked_out;
  2933. s32 seq_rtt = -1;
  2934. s32 ca_seq_rtt = -1;
  2935. ktime_t last_ackt = net_invalid_timestamp();
  2936. while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
  2937. struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
  2938. u32 acked_pcount;
  2939. u8 sacked = scb->sacked;
  2940. /* Determine how many packets and what bytes were acked, tso and else */
  2941. if (after(scb->end_seq, tp->snd_una)) {
  2942. if (tcp_skb_pcount(skb) == 1 ||
  2943. !after(tp->snd_una, scb->seq))
  2944. break;
  2945. acked_pcount = tcp_tso_acked(sk, skb);
  2946. if (!acked_pcount)
  2947. break;
  2948. fully_acked = 0;
  2949. } else {
  2950. acked_pcount = tcp_skb_pcount(skb);
  2951. }
  2952. if (sacked & TCPCB_RETRANS) {
  2953. if (sacked & TCPCB_SACKED_RETRANS)
  2954. tp->retrans_out -= acked_pcount;
  2955. flag |= FLAG_RETRANS_DATA_ACKED;
  2956. ca_seq_rtt = -1;
  2957. seq_rtt = -1;
  2958. if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
  2959. flag |= FLAG_NONHEAD_RETRANS_ACKED;
  2960. } else {
  2961. ca_seq_rtt = now - scb->when;
  2962. last_ackt = skb->tstamp;
  2963. if (seq_rtt < 0) {
  2964. seq_rtt = ca_seq_rtt;
  2965. }
  2966. if (!(sacked & TCPCB_SACKED_ACKED))
  2967. reord = min(pkts_acked, reord);
  2968. }
  2969. if (sacked & TCPCB_SACKED_ACKED)
  2970. tp->sacked_out -= acked_pcount;
  2971. if (sacked & TCPCB_LOST)
  2972. tp->lost_out -= acked_pcount;
  2973. tp->packets_out -= acked_pcount;
  2974. pkts_acked += acked_pcount;
  2975. /* Initial outgoing SYN's get put onto the write_queue
  2976. * just like anything else we transmit. It is not
  2977. * true data, and if we misinform our callers that
  2978. * this ACK acks real data, we will erroneously exit
  2979. * connection startup slow start one packet too
  2980. * quickly. This is severely frowned upon behavior.
  2981. */
  2982. if (!(scb->tcp_flags & TCPHDR_SYN)) {
  2983. flag |= FLAG_DATA_ACKED;
  2984. } else {
  2985. flag |= FLAG_SYN_ACKED;
  2986. tp->retrans_stamp = 0;
  2987. }
  2988. if (!fully_acked)
  2989. break;
  2990. tcp_unlink_write_queue(skb, sk);
  2991. sk_wmem_free_skb(sk, skb);
  2992. tp->scoreboard_skb_hint = NULL;
  2993. if (skb == tp->retransmit_skb_hint)
  2994. tp->retransmit_skb_hint = NULL;
  2995. if (skb == tp->lost_skb_hint)
  2996. tp->lost_skb_hint = NULL;
  2997. }
  2998. if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
  2999. tp->snd_up = tp->snd_una;
  3000. if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  3001. flag |= FLAG_SACK_RENEGING;
  3002. if (flag & FLAG_ACKED) {
  3003. const struct tcp_congestion_ops *ca_ops
  3004. = inet_csk(sk)->icsk_ca_ops;
  3005. if (unlikely(icsk->icsk_mtup.probe_size &&
  3006. !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
  3007. tcp_mtup_probe_success(sk);
  3008. }
  3009. tcp_ack_update_rtt(sk, flag, seq_rtt);
  3010. tcp_rearm_rto(sk);
  3011. if (tcp_is_reno(tp)) {
  3012. tcp_remove_reno_sacks(sk, pkts_acked);
  3013. } else {
  3014. int delta;
  3015. /* Non-retransmitted hole got filled? That's reordering */
  3016. if (reord < prior_fackets)
  3017. tcp_update_reordering(sk, tp->fackets_out - reord, 0);
  3018. delta = tcp_is_fack(tp) ? pkts_acked :
  3019. prior_sacked - tp->sacked_out;
  3020. tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
  3021. }
  3022. tp->fackets_out -= min(pkts_acked, tp->fackets_out);
  3023. if (ca_ops->pkts_acked) {
  3024. s32 rtt_us = -1;
  3025. /* Is the ACK triggering packet unambiguous? */
  3026. if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
  3027. /* High resolution needed and available? */
  3028. if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
  3029. !ktime_equal(last_ackt,
  3030. net_invalid_timestamp()))
  3031. rtt_us = ktime_us_delta(ktime_get_real(),
  3032. last_ackt);
  3033. else if (ca_seq_rtt >= 0)
  3034. rtt_us = jiffies_to_usecs(ca_seq_rtt);
  3035. }
  3036. ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
  3037. }
  3038. }
  3039. #if FASTRETRANS_DEBUG > 0
  3040. WARN_ON((int)tp->sacked_out < 0);
  3041. WARN_ON((int)tp->lost_out < 0);
  3042. WARN_ON((int)tp->retrans_out < 0);
  3043. if (!tp->packets_out && tcp_is_sack(tp)) {
  3044. icsk = inet_csk(sk);
  3045. if (tp->lost_out) {
  3046. pr_debug("Leak l=%u %d\n",
  3047. tp->lost_out, icsk->icsk_ca_state);
  3048. tp->lost_out = 0;
  3049. }
  3050. if (tp->sacked_out) {
  3051. pr_debug("Leak s=%u %d\n",
  3052. tp->sacked_out, icsk->icsk_ca_state);
  3053. tp->sacked_out = 0;
  3054. }
  3055. if (tp->retrans_out) {
  3056. pr_debug("Leak r=%u %d\n",
  3057. tp->retrans_out, icsk->icsk_ca_state);
  3058. tp->retrans_out = 0;
  3059. }
  3060. }
  3061. #endif
  3062. return flag;
  3063. }
  3064. static void tcp_ack_probe(struct sock *sk)
  3065. {
  3066. const struct tcp_sock *tp = tcp_sk(sk);
  3067. struct inet_connection_sock *icsk = inet_csk(sk);
  3068. /* Was it a usable window open? */
  3069. if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
  3070. icsk->icsk_backoff = 0;
  3071. inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
  3072. /* Socket must be waked up by subsequent tcp_data_snd_check().
  3073. * This function is not for random using!
  3074. */
  3075. } else {
  3076. inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
  3077. min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
  3078. TCP_RTO_MAX);
  3079. }
  3080. }
  3081. static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
  3082. {
  3083. return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
  3084. inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
  3085. }
  3086. static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
  3087. {
  3088. const struct tcp_sock *tp = tcp_sk(sk);
  3089. return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
  3090. !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
  3091. }
  3092. /* Check that window update is acceptable.
  3093. * The function assumes that snd_una<=ack<=snd_next.
  3094. */
  3095. static inline int tcp_may_update_window(const struct tcp_sock *tp,
  3096. const u32 ack, const u32 ack_seq,
  3097. const u32 nwin)
  3098. {
  3099. return after(ack, tp->snd_una) ||
  3100. after(ack_seq, tp->snd_wl1) ||
  3101. (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
  3102. }
  3103. /* Update our send window.
  3104. *
  3105. * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
  3106. * and in FreeBSD. NetBSD's one is even worse.) is wrong.
  3107. */
  3108. static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
  3109. u32 ack_seq)
  3110. {
  3111. struct tcp_sock *tp = tcp_sk(sk);
  3112. int flag = 0;
  3113. u32 nwin = ntohs(tcp_hdr(skb)->window);
  3114. if (likely(!tcp_hdr(skb)->syn))
  3115. nwin <<= tp->rx_opt.snd_wscale;
  3116. if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
  3117. flag |= FLAG_WIN_UPDATE;
  3118. tcp_update_wl(tp, ack_seq);
  3119. if (tp->snd_wnd != nwin) {
  3120. tp->snd_wnd = nwin;
  3121. /* Note, it is the only place, where
  3122. * fast path is recovered for sending TCP.
  3123. */
  3124. tp->pred_flags = 0;
  3125. tcp_fast_path_check(sk);
  3126. if (nwin > tp->max_window) {
  3127. tp->max_window = nwin;
  3128. tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
  3129. }
  3130. }
  3131. }
  3132. tp->snd_una = ack;
  3133. return flag;
  3134. }
  3135. /* A very conservative spurious RTO response algorithm: reduce cwnd and
  3136. * continue in congestion avoidance.
  3137. */
  3138. static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
  3139. {
  3140. tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
  3141. tp->snd_cwnd_cnt = 0;
  3142. tp->bytes_acked = 0;
  3143. TCP_ECN_queue_cwr(tp);
  3144. tcp_moderate_cwnd(tp);
  3145. }
  3146. /* A conservative spurious RTO response algorithm: reduce cwnd using
  3147. * rate halving and continue in congestion avoidance.
  3148. */
  3149. static void tcp_ratehalving_spur_to_response(struct sock *sk)
  3150. {
  3151. tcp_enter_cwr(sk, 0);
  3152. }
  3153. static void tcp_undo_spur_to_response(struct sock *sk, int flag)
  3154. {
  3155. if (flag & FLAG_ECE)
  3156. tcp_ratehalving_spur_to_response(sk);
  3157. else
  3158. tcp_undo_cwr(sk, true);
  3159. }
  3160. /* F-RTO spurious RTO detection algorithm (RFC4138)
  3161. *
  3162. * F-RTO affects during two new ACKs following RTO (well, almost, see inline
  3163. * comments). State (ACK number) is kept in frto_counter. When ACK advances
  3164. * window (but not to or beyond highest sequence sent before RTO):
  3165. * On First ACK, send two new segments out.
  3166. * On Second ACK, RTO was likely spurious. Do spurious response (response
  3167. * algorithm is not part of the F-RTO detection algorithm
  3168. * given in RFC4138 but can be selected separately).
  3169. * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
  3170. * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
  3171. * of Nagle, this is done using frto_counter states 2 and 3, when a new data
  3172. * segment of any size sent during F-RTO, state 2 is upgraded to 3.
  3173. *
  3174. * Rationale: if the RTO was spurious, new ACKs should arrive from the
  3175. * original window even after we transmit two new data segments.
  3176. *
  3177. * SACK version:
  3178. * on first step, wait until first cumulative ACK arrives, then move to
  3179. * the second step. In second step, the next ACK decides.
  3180. *
  3181. * F-RTO is implemented (mainly) in four functions:
  3182. * - tcp_use_frto() is used to determine if TCP is can use F-RTO
  3183. * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
  3184. * called when tcp_use_frto() showed green light
  3185. * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
  3186. * - tcp_enter_frto_loss() is called if there is not enough evidence
  3187. * to prove that the RTO is indeed spurious. It transfers the control
  3188. * from F-RTO to the conventional RTO recovery
  3189. */
  3190. static int tcp_process_frto(struct sock *sk, int flag)
  3191. {
  3192. struct tcp_sock *tp = tcp_sk(sk);
  3193. tcp_verify_left_out(tp);
  3194. /* Duplicate the behavior from Loss state (fastretrans_alert) */
  3195. if (flag & FLAG_DATA_ACKED)
  3196. inet_csk(sk)->icsk_retransmits = 0;
  3197. if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
  3198. ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
  3199. tp->undo_marker = 0;
  3200. if (!before(tp->snd_una, tp->frto_highmark)) {
  3201. tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
  3202. return 1;
  3203. }
  3204. if (!tcp_is_sackfrto(tp)) {
  3205. /* RFC4138 shortcoming in step 2; should also have case c):
  3206. * ACK isn't duplicate nor advances window, e.g., opposite dir
  3207. * data, winupdate
  3208. */
  3209. if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
  3210. return 1;
  3211. if (!(flag & FLAG_DATA_ACKED)) {
  3212. tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
  3213. flag);
  3214. return 1;
  3215. }
  3216. } else {
  3217. if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
  3218. /* Prevent sending of new data. */
  3219. tp->snd_cwnd = min(tp->snd_cwnd,
  3220. tcp_packets_in_flight(tp));
  3221. return 1;
  3222. }
  3223. if ((tp->frto_counter >= 2) &&
  3224. (!(flag & FLAG_FORWARD_PROGRESS) ||
  3225. ((flag & FLAG_DATA_SACKED) &&
  3226. !(flag & FLAG_ONLY_ORIG_SACKED)))) {
  3227. /* RFC4138 shortcoming (see comment above) */
  3228. if (!(flag & FLAG_FORWARD_PROGRESS) &&
  3229. (flag & FLAG_NOT_DUP))
  3230. return 1;
  3231. tcp_enter_frto_loss(sk, 3, flag);
  3232. return 1;
  3233. }
  3234. }
  3235. if (tp->frto_counter == 1) {
  3236. /* tcp_may_send_now needs to see updated state */
  3237. tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
  3238. tp->frto_counter = 2;
  3239. if (!tcp_may_send_now(sk))
  3240. tcp_enter_frto_loss(sk, 2, flag);
  3241. return 1;
  3242. } else {
  3243. switch (sysctl_tcp_frto_response) {
  3244. case 2:
  3245. tcp_undo_spur_to_response(sk, flag);
  3246. break;
  3247. case 1:
  3248. tcp_conservative_spur_to_response(tp);
  3249. break;
  3250. default:
  3251. tcp_ratehalving_spur_to_response(sk);
  3252. break;
  3253. }
  3254. tp->frto_counter = 0;
  3255. tp->undo_marker = 0;
  3256. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
  3257. }
  3258. return 0;
  3259. }
  3260. /* This routine deals with incoming acks, but not outgoing ones. */
  3261. static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
  3262. {
  3263. struct inet_connection_sock *icsk = inet_csk(sk);
  3264. struct tcp_sock *tp = tcp_sk(sk);
  3265. u32 prior_snd_una = tp->snd_una;
  3266. u32 ack_seq = TCP_SKB_CB(skb)->seq;
  3267. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3268. bool is_dupack = false;
  3269. u32 prior_in_flight;
  3270. u32 prior_fackets;
  3271. int prior_packets;
  3272. int prior_sacked = tp->sacked_out;
  3273. int pkts_acked = 0;
  3274. int newly_acked_sacked = 0;
  3275. int frto_cwnd = 0;
  3276. /* If the ack is older than previous acks
  3277. * then we can probably ignore it.
  3278. */
  3279. if (before(ack, prior_snd_una))
  3280. goto old_ack;
  3281. /* If the ack includes data we haven't sent yet, discard
  3282. * this segment (RFC793 Section 3.9).
  3283. */
  3284. if (after(ack, tp->snd_nxt))
  3285. goto invalid_ack;
  3286. if (tp->early_retrans_delayed)
  3287. tcp_rearm_rto(sk);
  3288. if (after(ack, prior_snd_una))
  3289. flag |= FLAG_SND_UNA_ADVANCED;
  3290. if (sysctl_tcp_abc) {
  3291. if (icsk->icsk_ca_state < TCP_CA_CWR)
  3292. tp->bytes_acked += ack - prior_snd_una;
  3293. else if (icsk->icsk_ca_state == TCP_CA_Loss)
  3294. /* we assume just one segment left network */
  3295. tp->bytes_acked += min(ack - prior_snd_una,
  3296. tp->mss_cache);
  3297. }
  3298. prior_fackets = tp->fackets_out;
  3299. prior_in_flight = tcp_packets_in_flight(tp);
  3300. if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
  3301. /* Window is constant, pure forward advance.
  3302. * No more checks are required.
  3303. * Note, we use the fact that SND.UNA>=SND.WL2.
  3304. */
  3305. tcp_update_wl(tp, ack_seq);
  3306. tp->snd_una = ack;
  3307. flag |= FLAG_WIN_UPDATE;
  3308. tcp_ca_event(sk, CA_EVENT_FAST_ACK);
  3309. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
  3310. } else {
  3311. if (ack_seq != TCP_SKB_CB(skb)->end_seq)
  3312. flag |= FLAG_DATA;
  3313. else
  3314. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
  3315. flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
  3316. if (TCP_SKB_CB(skb)->sacked)
  3317. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
  3318. if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
  3319. flag |= FLAG_ECE;
  3320. tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
  3321. }
  3322. /* We passed data and got it acked, remove any soft error
  3323. * log. Something worked...
  3324. */
  3325. sk->sk_err_soft = 0;
  3326. icsk->icsk_probes_out = 0;
  3327. tp->rcv_tstamp = tcp_time_stamp;
  3328. prior_packets = tp->packets_out;
  3329. if (!prior_packets)
  3330. goto no_queue;
  3331. /* See if we can take anything off of the retransmit queue. */
  3332. flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
  3333. pkts_acked = prior_packets - tp->packets_out;
  3334. newly_acked_sacked = (prior_packets - prior_sacked) -
  3335. (tp->packets_out - tp->sacked_out);
  3336. if (tp->frto_counter)
  3337. frto_cwnd = tcp_process_frto(sk, flag);
  3338. /* Guarantee sacktag reordering detection against wrap-arounds */
  3339. if (before(tp->frto_highmark, tp->snd_una))
  3340. tp->frto_highmark = 0;
  3341. if (tcp_ack_is_dubious(sk, flag)) {
  3342. /* Advance CWND, if state allows this. */
  3343. if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
  3344. tcp_may_raise_cwnd(sk, flag))
  3345. tcp_cong_avoid(sk, ack, prior_in_flight);
  3346. is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
  3347. tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
  3348. is_dupack, flag);
  3349. } else {
  3350. if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
  3351. tcp_cong_avoid(sk, ack, prior_in_flight);
  3352. }
  3353. if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
  3354. dst_confirm(__sk_dst_get(sk));
  3355. return 1;
  3356. no_queue:
  3357. /* If data was DSACKed, see if we can undo a cwnd reduction. */
  3358. if (flag & FLAG_DSACKING_ACK)
  3359. tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
  3360. is_dupack, flag);
  3361. /* If this ack opens up a zero window, clear backoff. It was
  3362. * being used to time the probes, and is probably far higher than
  3363. * it needs to be for normal retransmission.
  3364. */
  3365. if (tcp_send_head(sk))
  3366. tcp_ack_probe(sk);
  3367. return 1;
  3368. invalid_ack:
  3369. SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  3370. return -1;
  3371. old_ack:
  3372. /* If data was SACKed, tag it and see if we should send more data.
  3373. * If data was DSACKed, see if we can undo a cwnd reduction.
  3374. */
  3375. if (TCP_SKB_CB(skb)->sacked) {
  3376. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
  3377. newly_acked_sacked = tp->sacked_out - prior_sacked;
  3378. tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
  3379. is_dupack, flag);
  3380. }
  3381. SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  3382. return 0;
  3383. }
  3384. /* Look for tcp options. Normally only called on SYN and SYNACK packets.
  3385. * But, this can also be called on packets in the established flow when
  3386. * the fast version below fails.
  3387. */
  3388. void tcp_parse_options(const struct sk_buff *skb, struct tcp_options_received *opt_rx,
  3389. const u8 **hvpp, int estab)
  3390. {
  3391. const unsigned char *ptr;
  3392. const struct tcphdr *th = tcp_hdr(skb);
  3393. int length = (th->doff * 4) - sizeof(struct tcphdr);
  3394. ptr = (const unsigned char *)(th + 1);
  3395. opt_rx->saw_tstamp = 0;
  3396. while (length > 0) {
  3397. int opcode = *ptr++;
  3398. int opsize;
  3399. switch (opcode) {
  3400. case TCPOPT_EOL:
  3401. return;
  3402. case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
  3403. length--;
  3404. continue;
  3405. default:
  3406. opsize = *ptr++;
  3407. if (opsize < 2) /* "silly options" */
  3408. return;
  3409. if (opsize > length)
  3410. return; /* don't parse partial options */
  3411. switch (opcode) {
  3412. case TCPOPT_MSS:
  3413. if (opsize == TCPOLEN_MSS && th->syn && !estab) {
  3414. u16 in_mss = get_unaligned_be16(ptr);
  3415. if (in_mss) {
  3416. if (opt_rx->user_mss &&
  3417. opt_rx->user_mss < in_mss)
  3418. in_mss = opt_rx->user_mss;
  3419. opt_rx->mss_clamp = in_mss;
  3420. }
  3421. }
  3422. break;
  3423. case TCPOPT_WINDOW:
  3424. if (opsize == TCPOLEN_WINDOW && th->syn &&
  3425. !estab && sysctl_tcp_window_scaling) {
  3426. __u8 snd_wscale = *(__u8 *)ptr;
  3427. opt_rx->wscale_ok = 1;
  3428. if (snd_wscale > 14) {
  3429. net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
  3430. __func__,
  3431. snd_wscale);
  3432. snd_wscale = 14;
  3433. }
  3434. opt_rx->snd_wscale = snd_wscale;
  3435. }
  3436. break;
  3437. case TCPOPT_TIMESTAMP:
  3438. if ((opsize == TCPOLEN_TIMESTAMP) &&
  3439. ((estab && opt_rx->tstamp_ok) ||
  3440. (!estab && sysctl_tcp_timestamps))) {
  3441. opt_rx->saw_tstamp = 1;
  3442. opt_rx->rcv_tsval = get_unaligned_be32(ptr);
  3443. opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
  3444. }
  3445. break;
  3446. case TCPOPT_SACK_PERM:
  3447. if (opsize == TCPOLEN_SACK_PERM && th->syn &&
  3448. !estab && sysctl_tcp_sack) {
  3449. opt_rx->sack_ok = TCP_SACK_SEEN;
  3450. tcp_sack_reset(opt_rx);
  3451. }
  3452. break;
  3453. case TCPOPT_SACK:
  3454. if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
  3455. !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
  3456. opt_rx->sack_ok) {
  3457. TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
  3458. }
  3459. break;
  3460. #ifdef CONFIG_TCP_MD5SIG
  3461. case TCPOPT_MD5SIG:
  3462. /*
  3463. * The MD5 Hash has already been
  3464. * checked (see tcp_v{4,6}_do_rcv()).
  3465. */
  3466. break;
  3467. #endif
  3468. case TCPOPT_COOKIE:
  3469. /* This option is variable length.
  3470. */
  3471. switch (opsize) {
  3472. case TCPOLEN_COOKIE_BASE:
  3473. /* not yet implemented */
  3474. break;
  3475. case TCPOLEN_COOKIE_PAIR:
  3476. /* not yet implemented */
  3477. break;
  3478. case TCPOLEN_COOKIE_MIN+0:
  3479. case TCPOLEN_COOKIE_MIN+2:
  3480. case TCPOLEN_COOKIE_MIN+4:
  3481. case TCPOLEN_COOKIE_MIN+6:
  3482. case TCPOLEN_COOKIE_MAX:
  3483. /* 16-bit multiple */
  3484. opt_rx->cookie_plus = opsize;
  3485. *hvpp = ptr;
  3486. break;
  3487. default:
  3488. /* ignore option */
  3489. break;
  3490. }
  3491. break;
  3492. }
  3493. ptr += opsize-2;
  3494. length -= opsize;
  3495. }
  3496. }
  3497. }
  3498. EXPORT_SYMBOL(tcp_parse_options);
  3499. static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
  3500. {
  3501. const __be32 *ptr = (const __be32 *)(th + 1);
  3502. if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
  3503. | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
  3504. tp->rx_opt.saw_tstamp = 1;
  3505. ++ptr;
  3506. tp->rx_opt.rcv_tsval = ntohl(*ptr);
  3507. ++ptr;
  3508. tp->rx_opt.rcv_tsecr = ntohl(*ptr);
  3509. return 1;
  3510. }
  3511. return 0;
  3512. }
  3513. /* Fast parse options. This hopes to only see timestamps.
  3514. * If it is wrong it falls back on tcp_parse_options().
  3515. */
  3516. static int tcp_fast_parse_options(const struct sk_buff *skb,
  3517. const struct tcphdr *th,
  3518. struct tcp_sock *tp, const u8 **hvpp)
  3519. {
  3520. /* In the spirit of fast parsing, compare doff directly to constant
  3521. * values. Because equality is used, short doff can be ignored here.
  3522. */
  3523. if (th->doff == (sizeof(*th) / 4)) {
  3524. tp->rx_opt.saw_tstamp = 0;
  3525. return 0;
  3526. } else if (tp->rx_opt.tstamp_ok &&
  3527. th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
  3528. if (tcp_parse_aligned_timestamp(tp, th))
  3529. return 1;
  3530. }
  3531. tcp_parse_options(skb, &tp->rx_opt, hvpp, 1);
  3532. return 1;
  3533. }
  3534. #ifdef CONFIG_TCP_MD5SIG
  3535. /*
  3536. * Parse MD5 Signature option
  3537. */
  3538. const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
  3539. {
  3540. int length = (th->doff << 2) - sizeof(*th);
  3541. const u8 *ptr = (const u8 *)(th + 1);
  3542. /* If the TCP option is too short, we can short cut */
  3543. if (length < TCPOLEN_MD5SIG)
  3544. return NULL;
  3545. while (length > 0) {
  3546. int opcode = *ptr++;
  3547. int opsize;
  3548. switch(opcode) {
  3549. case TCPOPT_EOL:
  3550. return NULL;
  3551. case TCPOPT_NOP:
  3552. length--;
  3553. continue;
  3554. default:
  3555. opsize = *ptr++;
  3556. if (opsize < 2 || opsize > length)
  3557. return NULL;
  3558. if (opcode == TCPOPT_MD5SIG)
  3559. return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
  3560. }
  3561. ptr += opsize - 2;
  3562. length -= opsize;
  3563. }
  3564. return NULL;
  3565. }
  3566. EXPORT_SYMBOL(tcp_parse_md5sig_option);
  3567. #endif
  3568. static inline void tcp_store_ts_recent(struct tcp_sock *tp)
  3569. {
  3570. tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
  3571. tp->rx_opt.ts_recent_stamp = get_seconds();
  3572. }
  3573. static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
  3574. {
  3575. if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
  3576. /* PAWS bug workaround wrt. ACK frames, the PAWS discard
  3577. * extra check below makes sure this can only happen
  3578. * for pure ACK frames. -DaveM
  3579. *
  3580. * Not only, also it occurs for expired timestamps.
  3581. */
  3582. if (tcp_paws_check(&tp->rx_opt, 0))
  3583. tcp_store_ts_recent(tp);
  3584. }
  3585. }
  3586. /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
  3587. *
  3588. * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
  3589. * it can pass through stack. So, the following predicate verifies that
  3590. * this segment is not used for anything but congestion avoidance or
  3591. * fast retransmit. Moreover, we even are able to eliminate most of such
  3592. * second order effects, if we apply some small "replay" window (~RTO)
  3593. * to timestamp space.
  3594. *
  3595. * All these measures still do not guarantee that we reject wrapped ACKs
  3596. * on networks with high bandwidth, when sequence space is recycled fastly,
  3597. * but it guarantees that such events will be very rare and do not affect
  3598. * connection seriously. This doesn't look nice, but alas, PAWS is really
  3599. * buggy extension.
  3600. *
  3601. * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
  3602. * states that events when retransmit arrives after original data are rare.
  3603. * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
  3604. * the biggest problem on large power networks even with minor reordering.
  3605. * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
  3606. * up to bandwidth of 18Gigabit/sec. 8) ]
  3607. */
  3608. static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
  3609. {
  3610. const struct tcp_sock *tp = tcp_sk(sk);
  3611. const struct tcphdr *th = tcp_hdr(skb);
  3612. u32 seq = TCP_SKB_CB(skb)->seq;
  3613. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3614. return (/* 1. Pure ACK with correct sequence number. */
  3615. (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
  3616. /* 2. ... and duplicate ACK. */
  3617. ack == tp->snd_una &&
  3618. /* 3. ... and does not update window. */
  3619. !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
  3620. /* 4. ... and sits in replay window. */
  3621. (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
  3622. }
  3623. static inline int tcp_paws_discard(const struct sock *sk,
  3624. const struct sk_buff *skb)
  3625. {
  3626. const struct tcp_sock *tp = tcp_sk(sk);
  3627. return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
  3628. !tcp_disordered_ack(sk, skb);
  3629. }
  3630. /* Check segment sequence number for validity.
  3631. *
  3632. * Segment controls are considered valid, if the segment
  3633. * fits to the window after truncation to the window. Acceptability
  3634. * of data (and SYN, FIN, of course) is checked separately.
  3635. * See tcp_data_queue(), for example.
  3636. *
  3637. * Also, controls (RST is main one) are accepted using RCV.WUP instead
  3638. * of RCV.NXT. Peer still did not advance his SND.UNA when we
  3639. * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
  3640. * (borrowed from freebsd)
  3641. */
  3642. static inline int tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
  3643. {
  3644. return !before(end_seq, tp->rcv_wup) &&
  3645. !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
  3646. }
  3647. /* When we get a reset we do this. */
  3648. static void tcp_reset(struct sock *sk)
  3649. {
  3650. /* We want the right error as BSD sees it (and indeed as we do). */
  3651. switch (sk->sk_state) {
  3652. case TCP_SYN_SENT:
  3653. sk->sk_err = ECONNREFUSED;
  3654. break;
  3655. case TCP_CLOSE_WAIT:
  3656. sk->sk_err = EPIPE;
  3657. break;
  3658. case TCP_CLOSE:
  3659. return;
  3660. default:
  3661. sk->sk_err = ECONNRESET;
  3662. }
  3663. /* This barrier is coupled with smp_rmb() in tcp_poll() */
  3664. smp_wmb();
  3665. if (!sock_flag(sk, SOCK_DEAD))
  3666. sk->sk_error_report(sk);
  3667. tcp_done(sk);
  3668. }
  3669. /*
  3670. * Process the FIN bit. This now behaves as it is supposed to work
  3671. * and the FIN takes effect when it is validly part of sequence
  3672. * space. Not before when we get holes.
  3673. *
  3674. * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
  3675. * (and thence onto LAST-ACK and finally, CLOSE, we never enter
  3676. * TIME-WAIT)
  3677. *
  3678. * If we are in FINWAIT-1, a received FIN indicates simultaneous
  3679. * close and we go into CLOSING (and later onto TIME-WAIT)
  3680. *
  3681. * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
  3682. */
  3683. static void tcp_fin(struct sock *sk)
  3684. {
  3685. struct tcp_sock *tp = tcp_sk(sk);
  3686. inet_csk_schedule_ack(sk);
  3687. sk->sk_shutdown |= RCV_SHUTDOWN;
  3688. sock_set_flag(sk, SOCK_DONE);
  3689. switch (sk->sk_state) {
  3690. case TCP_SYN_RECV:
  3691. case TCP_ESTABLISHED:
  3692. /* Move to CLOSE_WAIT */
  3693. tcp_set_state(sk, TCP_CLOSE_WAIT);
  3694. inet_csk(sk)->icsk_ack.pingpong = 1;
  3695. break;
  3696. case TCP_CLOSE_WAIT:
  3697. case TCP_CLOSING:
  3698. /* Received a retransmission of the FIN, do
  3699. * nothing.
  3700. */
  3701. break;
  3702. case TCP_LAST_ACK:
  3703. /* RFC793: Remain in the LAST-ACK state. */
  3704. break;
  3705. case TCP_FIN_WAIT1:
  3706. /* This case occurs when a simultaneous close
  3707. * happens, we must ack the received FIN and
  3708. * enter the CLOSING state.
  3709. */
  3710. tcp_send_ack(sk);
  3711. tcp_set_state(sk, TCP_CLOSING);
  3712. break;
  3713. case TCP_FIN_WAIT2:
  3714. /* Received a FIN -- send ACK and enter TIME_WAIT. */
  3715. tcp_send_ack(sk);
  3716. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  3717. break;
  3718. default:
  3719. /* Only TCP_LISTEN and TCP_CLOSE are left, in these
  3720. * cases we should never reach this piece of code.
  3721. */
  3722. pr_err("%s: Impossible, sk->sk_state=%d\n",
  3723. __func__, sk->sk_state);
  3724. break;
  3725. }
  3726. /* It _is_ possible, that we have something out-of-order _after_ FIN.
  3727. * Probably, we should reset in this case. For now drop them.
  3728. */
  3729. __skb_queue_purge(&tp->out_of_order_queue);
  3730. if (tcp_is_sack(tp))
  3731. tcp_sack_reset(&tp->rx_opt);
  3732. sk_mem_reclaim(sk);
  3733. if (!sock_flag(sk, SOCK_DEAD)) {
  3734. sk->sk_state_change(sk);
  3735. /* Do not send POLL_HUP for half duplex close. */
  3736. if (sk->sk_shutdown == SHUTDOWN_MASK ||
  3737. sk->sk_state == TCP_CLOSE)
  3738. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
  3739. else
  3740. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
  3741. }
  3742. }
  3743. static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
  3744. u32 end_seq)
  3745. {
  3746. if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
  3747. if (before(seq, sp->start_seq))
  3748. sp->start_seq = seq;
  3749. if (after(end_seq, sp->end_seq))
  3750. sp->end_seq = end_seq;
  3751. return 1;
  3752. }
  3753. return 0;
  3754. }
  3755. static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
  3756. {
  3757. struct tcp_sock *tp = tcp_sk(sk);
  3758. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3759. int mib_idx;
  3760. if (before(seq, tp->rcv_nxt))
  3761. mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
  3762. else
  3763. mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
  3764. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  3765. tp->rx_opt.dsack = 1;
  3766. tp->duplicate_sack[0].start_seq = seq;
  3767. tp->duplicate_sack[0].end_seq = end_seq;
  3768. }
  3769. }
  3770. static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
  3771. {
  3772. struct tcp_sock *tp = tcp_sk(sk);
  3773. if (!tp->rx_opt.dsack)
  3774. tcp_dsack_set(sk, seq, end_seq);
  3775. else
  3776. tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
  3777. }
  3778. static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
  3779. {
  3780. struct tcp_sock *tp = tcp_sk(sk);
  3781. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  3782. before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  3783. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  3784. tcp_enter_quickack_mode(sk);
  3785. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3786. u32 end_seq = TCP_SKB_CB(skb)->end_seq;
  3787. if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
  3788. end_seq = tp->rcv_nxt;
  3789. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
  3790. }
  3791. }
  3792. tcp_send_ack(sk);
  3793. }
  3794. /* These routines update the SACK block as out-of-order packets arrive or
  3795. * in-order packets close up the sequence space.
  3796. */
  3797. static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
  3798. {
  3799. int this_sack;
  3800. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3801. struct tcp_sack_block *swalk = sp + 1;
  3802. /* See if the recent change to the first SACK eats into
  3803. * or hits the sequence space of other SACK blocks, if so coalesce.
  3804. */
  3805. for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
  3806. if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
  3807. int i;
  3808. /* Zap SWALK, by moving every further SACK up by one slot.
  3809. * Decrease num_sacks.
  3810. */
  3811. tp->rx_opt.num_sacks--;
  3812. for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
  3813. sp[i] = sp[i + 1];
  3814. continue;
  3815. }
  3816. this_sack++, swalk++;
  3817. }
  3818. }
  3819. static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
  3820. {
  3821. struct tcp_sock *tp = tcp_sk(sk);
  3822. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3823. int cur_sacks = tp->rx_opt.num_sacks;
  3824. int this_sack;
  3825. if (!cur_sacks)
  3826. goto new_sack;
  3827. for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
  3828. if (tcp_sack_extend(sp, seq, end_seq)) {
  3829. /* Rotate this_sack to the first one. */
  3830. for (; this_sack > 0; this_sack--, sp--)
  3831. swap(*sp, *(sp - 1));
  3832. if (cur_sacks > 1)
  3833. tcp_sack_maybe_coalesce(tp);
  3834. return;
  3835. }
  3836. }
  3837. /* Could not find an adjacent existing SACK, build a new one,
  3838. * put it at the front, and shift everyone else down. We
  3839. * always know there is at least one SACK present already here.
  3840. *
  3841. * If the sack array is full, forget about the last one.
  3842. */
  3843. if (this_sack >= TCP_NUM_SACKS) {
  3844. this_sack--;
  3845. tp->rx_opt.num_sacks--;
  3846. sp--;
  3847. }
  3848. for (; this_sack > 0; this_sack--, sp--)
  3849. *sp = *(sp - 1);
  3850. new_sack:
  3851. /* Build the new head SACK, and we're done. */
  3852. sp->start_seq = seq;
  3853. sp->end_seq = end_seq;
  3854. tp->rx_opt.num_sacks++;
  3855. }
  3856. /* RCV.NXT advances, some SACKs should be eaten. */
  3857. static void tcp_sack_remove(struct tcp_sock *tp)
  3858. {
  3859. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3860. int num_sacks = tp->rx_opt.num_sacks;
  3861. int this_sack;
  3862. /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
  3863. if (skb_queue_empty(&tp->out_of_order_queue)) {
  3864. tp->rx_opt.num_sacks = 0;
  3865. return;
  3866. }
  3867. for (this_sack = 0; this_sack < num_sacks;) {
  3868. /* Check if the start of the sack is covered by RCV.NXT. */
  3869. if (!before(tp->rcv_nxt, sp->start_seq)) {
  3870. int i;
  3871. /* RCV.NXT must cover all the block! */
  3872. WARN_ON(before(tp->rcv_nxt, sp->end_seq));
  3873. /* Zap this SACK, by moving forward any other SACKS. */
  3874. for (i=this_sack+1; i < num_sacks; i++)
  3875. tp->selective_acks[i-1] = tp->selective_acks[i];
  3876. num_sacks--;
  3877. continue;
  3878. }
  3879. this_sack++;
  3880. sp++;
  3881. }
  3882. tp->rx_opt.num_sacks = num_sacks;
  3883. }
  3884. /* This one checks to see if we can put data from the
  3885. * out_of_order queue into the receive_queue.
  3886. */
  3887. static void tcp_ofo_queue(struct sock *sk)
  3888. {
  3889. struct tcp_sock *tp = tcp_sk(sk);
  3890. __u32 dsack_high = tp->rcv_nxt;
  3891. struct sk_buff *skb;
  3892. while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
  3893. if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  3894. break;
  3895. if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
  3896. __u32 dsack = dsack_high;
  3897. if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
  3898. dsack_high = TCP_SKB_CB(skb)->end_seq;
  3899. tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
  3900. }
  3901. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  3902. SOCK_DEBUG(sk, "ofo packet was already received\n");
  3903. __skb_unlink(skb, &tp->out_of_order_queue);
  3904. __kfree_skb(skb);
  3905. continue;
  3906. }
  3907. SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
  3908. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  3909. TCP_SKB_CB(skb)->end_seq);
  3910. __skb_unlink(skb, &tp->out_of_order_queue);
  3911. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3912. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  3913. if (tcp_hdr(skb)->fin)
  3914. tcp_fin(sk);
  3915. }
  3916. }
  3917. static int tcp_prune_ofo_queue(struct sock *sk);
  3918. static int tcp_prune_queue(struct sock *sk);
  3919. static int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
  3920. {
  3921. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
  3922. !sk_rmem_schedule(sk, size)) {
  3923. if (tcp_prune_queue(sk) < 0)
  3924. return -1;
  3925. if (!sk_rmem_schedule(sk, size)) {
  3926. if (!tcp_prune_ofo_queue(sk))
  3927. return -1;
  3928. if (!sk_rmem_schedule(sk, size))
  3929. return -1;
  3930. }
  3931. }
  3932. return 0;
  3933. }
  3934. /**
  3935. * tcp_try_coalesce - try to merge skb to prior one
  3936. * @sk: socket
  3937. * @to: prior buffer
  3938. * @from: buffer to add in queue
  3939. * @fragstolen: pointer to boolean
  3940. *
  3941. * Before queueing skb @from after @to, try to merge them
  3942. * to reduce overall memory use and queue lengths, if cost is small.
  3943. * Packets in ofo or receive queues can stay a long time.
  3944. * Better try to coalesce them right now to avoid future collapses.
  3945. * Returns true if caller should free @from instead of queueing it
  3946. */
  3947. static bool tcp_try_coalesce(struct sock *sk,
  3948. struct sk_buff *to,
  3949. struct sk_buff *from,
  3950. bool *fragstolen)
  3951. {
  3952. int i, delta, len = from->len;
  3953. *fragstolen = false;
  3954. if (tcp_hdr(from)->fin || skb_cloned(to))
  3955. return false;
  3956. if (len <= skb_tailroom(to)) {
  3957. BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
  3958. goto merge;
  3959. }
  3960. if (skb_has_frag_list(to) || skb_has_frag_list(from))
  3961. return false;
  3962. if (skb_headlen(from) != 0) {
  3963. struct page *page;
  3964. unsigned int offset;
  3965. if (skb_shinfo(to)->nr_frags +
  3966. skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
  3967. return false;
  3968. if (skb_head_is_locked(from))
  3969. return false;
  3970. delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
  3971. page = virt_to_head_page(from->head);
  3972. offset = from->data - (unsigned char *)page_address(page);
  3973. skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
  3974. page, offset, skb_headlen(from));
  3975. *fragstolen = true;
  3976. } else {
  3977. if (skb_shinfo(to)->nr_frags +
  3978. skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS)
  3979. return false;
  3980. delta = from->truesize -
  3981. SKB_TRUESIZE(skb_end_pointer(from) - from->head);
  3982. }
  3983. WARN_ON_ONCE(delta < len);
  3984. memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
  3985. skb_shinfo(from)->frags,
  3986. skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
  3987. skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
  3988. if (!skb_cloned(from))
  3989. skb_shinfo(from)->nr_frags = 0;
  3990. /* if the skb is cloned this does nothing since we set nr_frags to 0 */
  3991. for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
  3992. skb_frag_ref(from, i);
  3993. to->truesize += delta;
  3994. atomic_add(delta, &sk->sk_rmem_alloc);
  3995. sk_mem_charge(sk, delta);
  3996. to->len += len;
  3997. to->data_len += len;
  3998. merge:
  3999. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
  4000. TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
  4001. TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
  4002. return true;
  4003. }
  4004. static void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
  4005. {
  4006. if (head_stolen)
  4007. kmem_cache_free(skbuff_head_cache, skb);
  4008. else
  4009. __kfree_skb(skb);
  4010. }
  4011. static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
  4012. {
  4013. struct tcp_sock *tp = tcp_sk(sk);
  4014. struct sk_buff *skb1;
  4015. u32 seq, end_seq;
  4016. TCP_ECN_check_ce(tp, skb);
  4017. if (tcp_try_rmem_schedule(sk, skb->truesize)) {
  4018. /* TODO: should increment a counter */
  4019. __kfree_skb(skb);
  4020. return;
  4021. }
  4022. /* Disable header prediction. */
  4023. tp->pred_flags = 0;
  4024. inet_csk_schedule_ack(sk);
  4025. SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
  4026. tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  4027. skb1 = skb_peek_tail(&tp->out_of_order_queue);
  4028. if (!skb1) {
  4029. /* Initial out of order segment, build 1 SACK. */
  4030. if (tcp_is_sack(tp)) {
  4031. tp->rx_opt.num_sacks = 1;
  4032. tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
  4033. tp->selective_acks[0].end_seq =
  4034. TCP_SKB_CB(skb)->end_seq;
  4035. }
  4036. __skb_queue_head(&tp->out_of_order_queue, skb);
  4037. goto end;
  4038. }
  4039. seq = TCP_SKB_CB(skb)->seq;
  4040. end_seq = TCP_SKB_CB(skb)->end_seq;
  4041. if (seq == TCP_SKB_CB(skb1)->end_seq) {
  4042. bool fragstolen;
  4043. if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
  4044. __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
  4045. } else {
  4046. kfree_skb_partial(skb, fragstolen);
  4047. skb = NULL;
  4048. }
  4049. if (!tp->rx_opt.num_sacks ||
  4050. tp->selective_acks[0].end_seq != seq)
  4051. goto add_sack;
  4052. /* Common case: data arrive in order after hole. */
  4053. tp->selective_acks[0].end_seq = end_seq;
  4054. goto end;
  4055. }
  4056. /* Find place to insert this segment. */
  4057. while (1) {
  4058. if (!after(TCP_SKB_CB(skb1)->seq, seq))
  4059. break;
  4060. if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
  4061. skb1 = NULL;
  4062. break;
  4063. }
  4064. skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
  4065. }
  4066. /* Do skb overlap to previous one? */
  4067. if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
  4068. if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  4069. /* All the bits are present. Drop. */
  4070. __kfree_skb(skb);
  4071. skb = NULL;
  4072. tcp_dsack_set(sk, seq, end_seq);
  4073. goto add_sack;
  4074. }
  4075. if (after(seq, TCP_SKB_CB(skb1)->seq)) {
  4076. /* Partial overlap. */
  4077. tcp_dsack_set(sk, seq,
  4078. TCP_SKB_CB(skb1)->end_seq);
  4079. } else {
  4080. if (skb_queue_is_first(&tp->out_of_order_queue,
  4081. skb1))
  4082. skb1 = NULL;
  4083. else
  4084. skb1 = skb_queue_prev(
  4085. &tp->out_of_order_queue,
  4086. skb1);
  4087. }
  4088. }
  4089. if (!skb1)
  4090. __skb_queue_head(&tp->out_of_order_queue, skb);
  4091. else
  4092. __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
  4093. /* And clean segments covered by new one as whole. */
  4094. while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
  4095. skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
  4096. if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
  4097. break;
  4098. if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  4099. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  4100. end_seq);
  4101. break;
  4102. }
  4103. __skb_unlink(skb1, &tp->out_of_order_queue);
  4104. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  4105. TCP_SKB_CB(skb1)->end_seq);
  4106. __kfree_skb(skb1);
  4107. }
  4108. add_sack:
  4109. if (tcp_is_sack(tp))
  4110. tcp_sack_new_ofo_skb(sk, seq, end_seq);
  4111. end:
  4112. if (skb)
  4113. skb_set_owner_r(skb, sk);
  4114. }
  4115. static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
  4116. bool *fragstolen)
  4117. {
  4118. int eaten;
  4119. struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
  4120. __skb_pull(skb, hdrlen);
  4121. eaten = (tail &&
  4122. tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
  4123. tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  4124. if (!eaten) {
  4125. __skb_queue_tail(&sk->sk_receive_queue, skb);
  4126. skb_set_owner_r(skb, sk);
  4127. }
  4128. return eaten;
  4129. }
  4130. int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
  4131. {
  4132. struct sk_buff *skb;
  4133. struct tcphdr *th;
  4134. bool fragstolen;
  4135. if (tcp_try_rmem_schedule(sk, size + sizeof(*th)))
  4136. goto err;
  4137. skb = alloc_skb(size + sizeof(*th), sk->sk_allocation);
  4138. if (!skb)
  4139. goto err;
  4140. th = (struct tcphdr *)skb_put(skb, sizeof(*th));
  4141. skb_reset_transport_header(skb);
  4142. memset(th, 0, sizeof(*th));
  4143. if (memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size))
  4144. goto err_free;
  4145. TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
  4146. TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
  4147. TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
  4148. if (tcp_queue_rcv(sk, skb, sizeof(*th), &fragstolen)) {
  4149. WARN_ON_ONCE(fragstolen); /* should not happen */
  4150. __kfree_skb(skb);
  4151. }
  4152. return size;
  4153. err_free:
  4154. kfree_skb(skb);
  4155. err:
  4156. return -ENOMEM;
  4157. }
  4158. static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
  4159. {
  4160. const struct tcphdr *th = tcp_hdr(skb);
  4161. struct tcp_sock *tp = tcp_sk(sk);
  4162. int eaten = -1;
  4163. bool fragstolen = false;
  4164. if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
  4165. goto drop;
  4166. skb_dst_drop(skb);
  4167. __skb_pull(skb, th->doff * 4);
  4168. TCP_ECN_accept_cwr(tp, skb);
  4169. tp->rx_opt.dsack = 0;
  4170. /* Queue data for delivery to the user.
  4171. * Packets in sequence go to the receive queue.
  4172. * Out of sequence packets to the out_of_order_queue.
  4173. */
  4174. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
  4175. if (tcp_receive_window(tp) == 0)
  4176. goto out_of_window;
  4177. /* Ok. In sequence. In window. */
  4178. if (tp->ucopy.task == current &&
  4179. tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
  4180. sock_owned_by_user(sk) && !tp->urg_data) {
  4181. int chunk = min_t(unsigned int, skb->len,
  4182. tp->ucopy.len);
  4183. __set_current_state(TASK_RUNNING);
  4184. local_bh_enable();
  4185. if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
  4186. tp->ucopy.len -= chunk;
  4187. tp->copied_seq += chunk;
  4188. eaten = (chunk == skb->len);
  4189. tcp_rcv_space_adjust(sk);
  4190. }
  4191. local_bh_disable();
  4192. }
  4193. if (eaten <= 0) {
  4194. queue_and_out:
  4195. if (eaten < 0 &&
  4196. tcp_try_rmem_schedule(sk, skb->truesize))
  4197. goto drop;
  4198. eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
  4199. }
  4200. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  4201. if (skb->len)
  4202. tcp_event_data_recv(sk, skb);
  4203. if (th->fin)
  4204. tcp_fin(sk);
  4205. if (!skb_queue_empty(&tp->out_of_order_queue)) {
  4206. tcp_ofo_queue(sk);
  4207. /* RFC2581. 4.2. SHOULD send immediate ACK, when
  4208. * gap in queue is filled.
  4209. */
  4210. if (skb_queue_empty(&tp->out_of_order_queue))
  4211. inet_csk(sk)->icsk_ack.pingpong = 0;
  4212. }
  4213. if (tp->rx_opt.num_sacks)
  4214. tcp_sack_remove(tp);
  4215. tcp_fast_path_check(sk);
  4216. if (eaten > 0)
  4217. kfree_skb_partial(skb, fragstolen);
  4218. else if (!sock_flag(sk, SOCK_DEAD))
  4219. sk->sk_data_ready(sk, 0);
  4220. return;
  4221. }
  4222. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  4223. /* A retransmit, 2nd most common case. Force an immediate ack. */
  4224. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  4225. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  4226. out_of_window:
  4227. tcp_enter_quickack_mode(sk);
  4228. inet_csk_schedule_ack(sk);
  4229. drop:
  4230. __kfree_skb(skb);
  4231. return;
  4232. }
  4233. /* Out of window. F.e. zero window probe. */
  4234. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
  4235. goto out_of_window;
  4236. tcp_enter_quickack_mode(sk);
  4237. if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  4238. /* Partial packet, seq < rcv_next < end_seq */
  4239. SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
  4240. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  4241. TCP_SKB_CB(skb)->end_seq);
  4242. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
  4243. /* If window is closed, drop tail of packet. But after
  4244. * remembering D-SACK for its head made in previous line.
  4245. */
  4246. if (!tcp_receive_window(tp))
  4247. goto out_of_window;
  4248. goto queue_and_out;
  4249. }
  4250. tcp_data_queue_ofo(sk, skb);
  4251. }
  4252. static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
  4253. struct sk_buff_head *list)
  4254. {
  4255. struct sk_buff *next = NULL;
  4256. if (!skb_queue_is_last(list, skb))
  4257. next = skb_queue_next(list, skb);
  4258. __skb_unlink(skb, list);
  4259. __kfree_skb(skb);
  4260. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
  4261. return next;
  4262. }
  4263. /* Collapse contiguous sequence of skbs head..tail with
  4264. * sequence numbers start..end.
  4265. *
  4266. * If tail is NULL, this means until the end of the list.
  4267. *
  4268. * Segments with FIN/SYN are not collapsed (only because this
  4269. * simplifies code)
  4270. */
  4271. static void
  4272. tcp_collapse(struct sock *sk, struct sk_buff_head *list,
  4273. struct sk_buff *head, struct sk_buff *tail,
  4274. u32 start, u32 end)
  4275. {
  4276. struct sk_buff *skb, *n;
  4277. bool end_of_skbs;
  4278. /* First, check that queue is collapsible and find
  4279. * the point where collapsing can be useful. */
  4280. skb = head;
  4281. restart:
  4282. end_of_skbs = true;
  4283. skb_queue_walk_from_safe(list, skb, n) {
  4284. if (skb == tail)
  4285. break;
  4286. /* No new bits? It is possible on ofo queue. */
  4287. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  4288. skb = tcp_collapse_one(sk, skb, list);
  4289. if (!skb)
  4290. break;
  4291. goto restart;
  4292. }
  4293. /* The first skb to collapse is:
  4294. * - not SYN/FIN and
  4295. * - bloated or contains data before "start" or
  4296. * overlaps to the next one.
  4297. */
  4298. if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
  4299. (tcp_win_from_space(skb->truesize) > skb->len ||
  4300. before(TCP_SKB_CB(skb)->seq, start))) {
  4301. end_of_skbs = false;
  4302. break;
  4303. }
  4304. if (!skb_queue_is_last(list, skb)) {
  4305. struct sk_buff *next = skb_queue_next(list, skb);
  4306. if (next != tail &&
  4307. TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
  4308. end_of_skbs = false;
  4309. break;
  4310. }
  4311. }
  4312. /* Decided to skip this, advance start seq. */
  4313. start = TCP_SKB_CB(skb)->end_seq;
  4314. }
  4315. if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
  4316. return;
  4317. while (before(start, end)) {
  4318. struct sk_buff *nskb;
  4319. unsigned int header = skb_headroom(skb);
  4320. int copy = SKB_MAX_ORDER(header, 0);
  4321. /* Too big header? This can happen with IPv6. */
  4322. if (copy < 0)
  4323. return;
  4324. if (end - start < copy)
  4325. copy = end - start;
  4326. nskb = alloc_skb(copy + header, GFP_ATOMIC);
  4327. if (!nskb)
  4328. return;
  4329. skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
  4330. skb_set_network_header(nskb, (skb_network_header(skb) -
  4331. skb->head));
  4332. skb_set_transport_header(nskb, (skb_transport_header(skb) -
  4333. skb->head));
  4334. skb_reserve(nskb, header);
  4335. memcpy(nskb->head, skb->head, header);
  4336. memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
  4337. TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
  4338. __skb_queue_before(list, skb, nskb);
  4339. skb_set_owner_r(nskb, sk);
  4340. /* Copy data, releasing collapsed skbs. */
  4341. while (copy > 0) {
  4342. int offset = start - TCP_SKB_CB(skb)->seq;
  4343. int size = TCP_SKB_CB(skb)->end_seq - start;
  4344. BUG_ON(offset < 0);
  4345. if (size > 0) {
  4346. size = min(copy, size);
  4347. if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
  4348. BUG();
  4349. TCP_SKB_CB(nskb)->end_seq += size;
  4350. copy -= size;
  4351. start += size;
  4352. }
  4353. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  4354. skb = tcp_collapse_one(sk, skb, list);
  4355. if (!skb ||
  4356. skb == tail ||
  4357. tcp_hdr(skb)->syn ||
  4358. tcp_hdr(skb)->fin)
  4359. return;
  4360. }
  4361. }
  4362. }
  4363. }
  4364. /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
  4365. * and tcp_collapse() them until all the queue is collapsed.
  4366. */
  4367. static void tcp_collapse_ofo_queue(struct sock *sk)
  4368. {
  4369. struct tcp_sock *tp = tcp_sk(sk);
  4370. struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
  4371. struct sk_buff *head;
  4372. u32 start, end;
  4373. if (skb == NULL)
  4374. return;
  4375. start = TCP_SKB_CB(skb)->seq;
  4376. end = TCP_SKB_CB(skb)->end_seq;
  4377. head = skb;
  4378. for (;;) {
  4379. struct sk_buff *next = NULL;
  4380. if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
  4381. next = skb_queue_next(&tp->out_of_order_queue, skb);
  4382. skb = next;
  4383. /* Segment is terminated when we see gap or when
  4384. * we are at the end of all the queue. */
  4385. if (!skb ||
  4386. after(TCP_SKB_CB(skb)->seq, end) ||
  4387. before(TCP_SKB_CB(skb)->end_seq, start)) {
  4388. tcp_collapse(sk, &tp->out_of_order_queue,
  4389. head, skb, start, end);
  4390. head = skb;
  4391. if (!skb)
  4392. break;
  4393. /* Start new segment */
  4394. start = TCP_SKB_CB(skb)->seq;
  4395. end = TCP_SKB_CB(skb)->end_seq;
  4396. } else {
  4397. if (before(TCP_SKB_CB(skb)->seq, start))
  4398. start = TCP_SKB_CB(skb)->seq;
  4399. if (after(TCP_SKB_CB(skb)->end_seq, end))
  4400. end = TCP_SKB_CB(skb)->end_seq;
  4401. }
  4402. }
  4403. }
  4404. /*
  4405. * Purge the out-of-order queue.
  4406. * Return true if queue was pruned.
  4407. */
  4408. static int tcp_prune_ofo_queue(struct sock *sk)
  4409. {
  4410. struct tcp_sock *tp = tcp_sk(sk);
  4411. int res = 0;
  4412. if (!skb_queue_empty(&tp->out_of_order_queue)) {
  4413. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
  4414. __skb_queue_purge(&tp->out_of_order_queue);
  4415. /* Reset SACK state. A conforming SACK implementation will
  4416. * do the same at a timeout based retransmit. When a connection
  4417. * is in a sad state like this, we care only about integrity
  4418. * of the connection not performance.
  4419. */
  4420. if (tp->rx_opt.sack_ok)
  4421. tcp_sack_reset(&tp->rx_opt);
  4422. sk_mem_reclaim(sk);
  4423. res = 1;
  4424. }
  4425. return res;
  4426. }
  4427. /* Reduce allocated memory if we can, trying to get
  4428. * the socket within its memory limits again.
  4429. *
  4430. * Return less than zero if we should start dropping frames
  4431. * until the socket owning process reads some of the data
  4432. * to stabilize the situation.
  4433. */
  4434. static int tcp_prune_queue(struct sock *sk)
  4435. {
  4436. struct tcp_sock *tp = tcp_sk(sk);
  4437. SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
  4438. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
  4439. if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
  4440. tcp_clamp_window(sk);
  4441. else if (sk_under_memory_pressure(sk))
  4442. tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
  4443. tcp_collapse_ofo_queue(sk);
  4444. if (!skb_queue_empty(&sk->sk_receive_queue))
  4445. tcp_collapse(sk, &sk->sk_receive_queue,
  4446. skb_peek(&sk->sk_receive_queue),
  4447. NULL,
  4448. tp->copied_seq, tp->rcv_nxt);
  4449. sk_mem_reclaim(sk);
  4450. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4451. return 0;
  4452. /* Collapsing did not help, destructive actions follow.
  4453. * This must not ever occur. */
  4454. tcp_prune_ofo_queue(sk);
  4455. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4456. return 0;
  4457. /* If we are really being abused, tell the caller to silently
  4458. * drop receive data on the floor. It will get retransmitted
  4459. * and hopefully then we'll have sufficient space.
  4460. */
  4461. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
  4462. /* Massive buffer overcommit. */
  4463. tp->pred_flags = 0;
  4464. return -1;
  4465. }
  4466. /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
  4467. * As additional protections, we do not touch cwnd in retransmission phases,
  4468. * and if application hit its sndbuf limit recently.
  4469. */
  4470. void tcp_cwnd_application_limited(struct sock *sk)
  4471. {
  4472. struct tcp_sock *tp = tcp_sk(sk);
  4473. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
  4474. sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
  4475. /* Limited by application or receiver window. */
  4476. u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
  4477. u32 win_used = max(tp->snd_cwnd_used, init_win);
  4478. if (win_used < tp->snd_cwnd) {
  4479. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  4480. tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
  4481. }
  4482. tp->snd_cwnd_used = 0;
  4483. }
  4484. tp->snd_cwnd_stamp = tcp_time_stamp;
  4485. }
  4486. static int tcp_should_expand_sndbuf(const struct sock *sk)
  4487. {
  4488. const struct tcp_sock *tp = tcp_sk(sk);
  4489. /* If the user specified a specific send buffer setting, do
  4490. * not modify it.
  4491. */
  4492. if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
  4493. return 0;
  4494. /* If we are under global TCP memory pressure, do not expand. */
  4495. if (sk_under_memory_pressure(sk))
  4496. return 0;
  4497. /* If we are under soft global TCP memory pressure, do not expand. */
  4498. if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
  4499. return 0;
  4500. /* If we filled the congestion window, do not expand. */
  4501. if (tp->packets_out >= tp->snd_cwnd)
  4502. return 0;
  4503. return 1;
  4504. }
  4505. /* When incoming ACK allowed to free some skb from write_queue,
  4506. * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
  4507. * on the exit from tcp input handler.
  4508. *
  4509. * PROBLEM: sndbuf expansion does not work well with largesend.
  4510. */
  4511. static void tcp_new_space(struct sock *sk)
  4512. {
  4513. struct tcp_sock *tp = tcp_sk(sk);
  4514. if (tcp_should_expand_sndbuf(sk)) {
  4515. int sndmem = SKB_TRUESIZE(max_t(u32,
  4516. tp->rx_opt.mss_clamp,
  4517. tp->mss_cache) +
  4518. MAX_TCP_HEADER);
  4519. int demanded = max_t(unsigned int, tp->snd_cwnd,
  4520. tp->reordering + 1);
  4521. sndmem *= 2 * demanded;
  4522. if (sndmem > sk->sk_sndbuf)
  4523. sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
  4524. tp->snd_cwnd_stamp = tcp_time_stamp;
  4525. }
  4526. sk->sk_write_space(sk);
  4527. }
  4528. static void tcp_check_space(struct sock *sk)
  4529. {
  4530. if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
  4531. sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
  4532. if (sk->sk_socket &&
  4533. test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
  4534. tcp_new_space(sk);
  4535. }
  4536. }
  4537. static inline void tcp_data_snd_check(struct sock *sk)
  4538. {
  4539. tcp_push_pending_frames(sk);
  4540. tcp_check_space(sk);
  4541. }
  4542. /*
  4543. * Check if sending an ack is needed.
  4544. */
  4545. static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
  4546. {
  4547. struct tcp_sock *tp = tcp_sk(sk);
  4548. /* More than one full frame received... */
  4549. if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
  4550. /* ... and right edge of window advances far enough.
  4551. * (tcp_recvmsg() will send ACK otherwise). Or...
  4552. */
  4553. __tcp_select_window(sk) >= tp->rcv_wnd) ||
  4554. /* We ACK each frame or... */
  4555. tcp_in_quickack_mode(sk) ||
  4556. /* We have out of order data. */
  4557. (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
  4558. /* Then ack it now */
  4559. tcp_send_ack(sk);
  4560. } else {
  4561. /* Else, send delayed ack. */
  4562. tcp_send_delayed_ack(sk);
  4563. }
  4564. }
  4565. static inline void tcp_ack_snd_check(struct sock *sk)
  4566. {
  4567. if (!inet_csk_ack_scheduled(sk)) {
  4568. /* We sent a data segment already. */
  4569. return;
  4570. }
  4571. __tcp_ack_snd_check(sk, 1);
  4572. }
  4573. /*
  4574. * This routine is only called when we have urgent data
  4575. * signaled. Its the 'slow' part of tcp_urg. It could be
  4576. * moved inline now as tcp_urg is only called from one
  4577. * place. We handle URGent data wrong. We have to - as
  4578. * BSD still doesn't use the correction from RFC961.
  4579. * For 1003.1g we should support a new option TCP_STDURG to permit
  4580. * either form (or just set the sysctl tcp_stdurg).
  4581. */
  4582. static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
  4583. {
  4584. struct tcp_sock *tp = tcp_sk(sk);
  4585. u32 ptr = ntohs(th->urg_ptr);
  4586. if (ptr && !sysctl_tcp_stdurg)
  4587. ptr--;
  4588. ptr += ntohl(th->seq);
  4589. /* Ignore urgent data that we've already seen and read. */
  4590. if (after(tp->copied_seq, ptr))
  4591. return;
  4592. /* Do not replay urg ptr.
  4593. *
  4594. * NOTE: interesting situation not covered by specs.
  4595. * Misbehaving sender may send urg ptr, pointing to segment,
  4596. * which we already have in ofo queue. We are not able to fetch
  4597. * such data and will stay in TCP_URG_NOTYET until will be eaten
  4598. * by recvmsg(). Seems, we are not obliged to handle such wicked
  4599. * situations. But it is worth to think about possibility of some
  4600. * DoSes using some hypothetical application level deadlock.
  4601. */
  4602. if (before(ptr, tp->rcv_nxt))
  4603. return;
  4604. /* Do we already have a newer (or duplicate) urgent pointer? */
  4605. if (tp->urg_data && !after(ptr, tp->urg_seq))
  4606. return;
  4607. /* Tell the world about our new urgent pointer. */
  4608. sk_send_sigurg(sk);
  4609. /* We may be adding urgent data when the last byte read was
  4610. * urgent. To do this requires some care. We cannot just ignore
  4611. * tp->copied_seq since we would read the last urgent byte again
  4612. * as data, nor can we alter copied_seq until this data arrives
  4613. * or we break the semantics of SIOCATMARK (and thus sockatmark())
  4614. *
  4615. * NOTE. Double Dutch. Rendering to plain English: author of comment
  4616. * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
  4617. * and expect that both A and B disappear from stream. This is _wrong_.
  4618. * Though this happens in BSD with high probability, this is occasional.
  4619. * Any application relying on this is buggy. Note also, that fix "works"
  4620. * only in this artificial test. Insert some normal data between A and B and we will
  4621. * decline of BSD again. Verdict: it is better to remove to trap
  4622. * buggy users.
  4623. */
  4624. if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
  4625. !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
  4626. struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
  4627. tp->copied_seq++;
  4628. if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
  4629. __skb_unlink(skb, &sk->sk_receive_queue);
  4630. __kfree_skb(skb);
  4631. }
  4632. }
  4633. tp->urg_data = TCP_URG_NOTYET;
  4634. tp->urg_seq = ptr;
  4635. /* Disable header prediction. */
  4636. tp->pred_flags = 0;
  4637. }
  4638. /* This is the 'fast' part of urgent handling. */
  4639. static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
  4640. {
  4641. struct tcp_sock *tp = tcp_sk(sk);
  4642. /* Check if we get a new urgent pointer - normally not. */
  4643. if (th->urg)
  4644. tcp_check_urg(sk, th);
  4645. /* Do we wait for any urgent data? - normally not... */
  4646. if (tp->urg_data == TCP_URG_NOTYET) {
  4647. u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
  4648. th->syn;
  4649. /* Is the urgent pointer pointing into this packet? */
  4650. if (ptr < skb->len) {
  4651. u8 tmp;
  4652. if (skb_copy_bits(skb, ptr, &tmp, 1))
  4653. BUG();
  4654. tp->urg_data = TCP_URG_VALID | tmp;
  4655. if (!sock_flag(sk, SOCK_DEAD))
  4656. sk->sk_data_ready(sk, 0);
  4657. }
  4658. }
  4659. }
  4660. static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
  4661. {
  4662. struct tcp_sock *tp = tcp_sk(sk);
  4663. int chunk = skb->len - hlen;
  4664. int err;
  4665. local_bh_enable();
  4666. if (skb_csum_unnecessary(skb))
  4667. err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
  4668. else
  4669. err = skb_copy_and_csum_datagram_iovec(skb, hlen,
  4670. tp->ucopy.iov);
  4671. if (!err) {
  4672. tp->ucopy.len -= chunk;
  4673. tp->copied_seq += chunk;
  4674. tcp_rcv_space_adjust(sk);
  4675. }
  4676. local_bh_disable();
  4677. return err;
  4678. }
  4679. static __sum16 __tcp_checksum_complete_user(struct sock *sk,
  4680. struct sk_buff *skb)
  4681. {
  4682. __sum16 result;
  4683. if (sock_owned_by_user(sk)) {
  4684. local_bh_enable();
  4685. result = __tcp_checksum_complete(skb);
  4686. local_bh_disable();
  4687. } else {
  4688. result = __tcp_checksum_complete(skb);
  4689. }
  4690. return result;
  4691. }
  4692. static inline int tcp_checksum_complete_user(struct sock *sk,
  4693. struct sk_buff *skb)
  4694. {
  4695. return !skb_csum_unnecessary(skb) &&
  4696. __tcp_checksum_complete_user(sk, skb);
  4697. }
  4698. #ifdef CONFIG_NET_DMA
  4699. static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
  4700. int hlen)
  4701. {
  4702. struct tcp_sock *tp = tcp_sk(sk);
  4703. int chunk = skb->len - hlen;
  4704. int dma_cookie;
  4705. int copied_early = 0;
  4706. if (tp->ucopy.wakeup)
  4707. return 0;
  4708. if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
  4709. tp->ucopy.dma_chan = net_dma_find_channel();
  4710. if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
  4711. dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
  4712. skb, hlen,
  4713. tp->ucopy.iov, chunk,
  4714. tp->ucopy.pinned_list);
  4715. if (dma_cookie < 0)
  4716. goto out;
  4717. tp->ucopy.dma_cookie = dma_cookie;
  4718. copied_early = 1;
  4719. tp->ucopy.len -= chunk;
  4720. tp->copied_seq += chunk;
  4721. tcp_rcv_space_adjust(sk);
  4722. if ((tp->ucopy.len == 0) ||
  4723. (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
  4724. (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
  4725. tp->ucopy.wakeup = 1;
  4726. sk->sk_data_ready(sk, 0);
  4727. }
  4728. } else if (chunk > 0) {
  4729. tp->ucopy.wakeup = 1;
  4730. sk->sk_data_ready(sk, 0);
  4731. }
  4732. out:
  4733. return copied_early;
  4734. }
  4735. #endif /* CONFIG_NET_DMA */
  4736. /* Does PAWS and seqno based validation of an incoming segment, flags will
  4737. * play significant role here.
  4738. */
  4739. static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
  4740. const struct tcphdr *th, int syn_inerr)
  4741. {
  4742. const u8 *hash_location;
  4743. struct tcp_sock *tp = tcp_sk(sk);
  4744. /* RFC1323: H1. Apply PAWS check first. */
  4745. if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
  4746. tp->rx_opt.saw_tstamp &&
  4747. tcp_paws_discard(sk, skb)) {
  4748. if (!th->rst) {
  4749. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
  4750. tcp_send_dupack(sk, skb);
  4751. goto discard;
  4752. }
  4753. /* Reset is accepted even if it did not pass PAWS. */
  4754. }
  4755. /* Step 1: check sequence number */
  4756. if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
  4757. /* RFC793, page 37: "In all states except SYN-SENT, all reset
  4758. * (RST) segments are validated by checking their SEQ-fields."
  4759. * And page 69: "If an incoming segment is not acceptable,
  4760. * an acknowledgment should be sent in reply (unless the RST
  4761. * bit is set, if so drop the segment and return)".
  4762. */
  4763. if (!th->rst)
  4764. tcp_send_dupack(sk, skb);
  4765. goto discard;
  4766. }
  4767. /* Step 2: check RST bit */
  4768. if (th->rst) {
  4769. tcp_reset(sk);
  4770. goto discard;
  4771. }
  4772. /* ts_recent update must be made after we are sure that the packet
  4773. * is in window.
  4774. */
  4775. tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
  4776. /* step 3: check security and precedence [ignored] */
  4777. /* step 4: Check for a SYN in window. */
  4778. if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  4779. if (syn_inerr)
  4780. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4781. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
  4782. tcp_reset(sk);
  4783. return -1;
  4784. }
  4785. return 1;
  4786. discard:
  4787. __kfree_skb(skb);
  4788. return 0;
  4789. }
  4790. /*
  4791. * TCP receive function for the ESTABLISHED state.
  4792. *
  4793. * It is split into a fast path and a slow path. The fast path is
  4794. * disabled when:
  4795. * - A zero window was announced from us - zero window probing
  4796. * is only handled properly in the slow path.
  4797. * - Out of order segments arrived.
  4798. * - Urgent data is expected.
  4799. * - There is no buffer space left
  4800. * - Unexpected TCP flags/window values/header lengths are received
  4801. * (detected by checking the TCP header against pred_flags)
  4802. * - Data is sent in both directions. Fast path only supports pure senders
  4803. * or pure receivers (this means either the sequence number or the ack
  4804. * value must stay constant)
  4805. * - Unexpected TCP option.
  4806. *
  4807. * When these conditions are not satisfied it drops into a standard
  4808. * receive procedure patterned after RFC793 to handle all cases.
  4809. * The first three cases are guaranteed by proper pred_flags setting,
  4810. * the rest is checked inline. Fast processing is turned on in
  4811. * tcp_data_queue when everything is OK.
  4812. */
  4813. int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
  4814. const struct tcphdr *th, unsigned int len)
  4815. {
  4816. struct tcp_sock *tp = tcp_sk(sk);
  4817. int res;
  4818. /*
  4819. * Header prediction.
  4820. * The code loosely follows the one in the famous
  4821. * "30 instruction TCP receive" Van Jacobson mail.
  4822. *
  4823. * Van's trick is to deposit buffers into socket queue
  4824. * on a device interrupt, to call tcp_recv function
  4825. * on the receive process context and checksum and copy
  4826. * the buffer to user space. smart...
  4827. *
  4828. * Our current scheme is not silly either but we take the
  4829. * extra cost of the net_bh soft interrupt processing...
  4830. * We do checksum and copy also but from device to kernel.
  4831. */
  4832. tp->rx_opt.saw_tstamp = 0;
  4833. /* pred_flags is 0xS?10 << 16 + snd_wnd
  4834. * if header_prediction is to be made
  4835. * 'S' will always be tp->tcp_header_len >> 2
  4836. * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
  4837. * turn it off (when there are holes in the receive
  4838. * space for instance)
  4839. * PSH flag is ignored.
  4840. */
  4841. if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
  4842. TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
  4843. !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
  4844. int tcp_header_len = tp->tcp_header_len;
  4845. /* Timestamp header prediction: tcp_header_len
  4846. * is automatically equal to th->doff*4 due to pred_flags
  4847. * match.
  4848. */
  4849. /* Check timestamp */
  4850. if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
  4851. /* No? Slow path! */
  4852. if (!tcp_parse_aligned_timestamp(tp, th))
  4853. goto slow_path;
  4854. /* If PAWS failed, check it more carefully in slow path */
  4855. if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
  4856. goto slow_path;
  4857. /* DO NOT update ts_recent here, if checksum fails
  4858. * and timestamp was corrupted part, it will result
  4859. * in a hung connection since we will drop all
  4860. * future packets due to the PAWS test.
  4861. */
  4862. }
  4863. if (len <= tcp_header_len) {
  4864. /* Bulk data transfer: sender */
  4865. if (len == tcp_header_len) {
  4866. /* Predicted packet is in window by definition.
  4867. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4868. * Hence, check seq<=rcv_wup reduces to:
  4869. */
  4870. if (tcp_header_len ==
  4871. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4872. tp->rcv_nxt == tp->rcv_wup)
  4873. tcp_store_ts_recent(tp);
  4874. /* We know that such packets are checksummed
  4875. * on entry.
  4876. */
  4877. tcp_ack(sk, skb, 0);
  4878. __kfree_skb(skb);
  4879. tcp_data_snd_check(sk);
  4880. return 0;
  4881. } else { /* Header too small */
  4882. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4883. goto discard;
  4884. }
  4885. } else {
  4886. int eaten = 0;
  4887. int copied_early = 0;
  4888. bool fragstolen = false;
  4889. if (tp->copied_seq == tp->rcv_nxt &&
  4890. len - tcp_header_len <= tp->ucopy.len) {
  4891. #ifdef CONFIG_NET_DMA
  4892. if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
  4893. copied_early = 1;
  4894. eaten = 1;
  4895. }
  4896. #endif
  4897. if (tp->ucopy.task == current &&
  4898. sock_owned_by_user(sk) && !copied_early) {
  4899. __set_current_state(TASK_RUNNING);
  4900. if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
  4901. eaten = 1;
  4902. }
  4903. if (eaten) {
  4904. /* Predicted packet is in window by definition.
  4905. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4906. * Hence, check seq<=rcv_wup reduces to:
  4907. */
  4908. if (tcp_header_len ==
  4909. (sizeof(struct tcphdr) +
  4910. TCPOLEN_TSTAMP_ALIGNED) &&
  4911. tp->rcv_nxt == tp->rcv_wup)
  4912. tcp_store_ts_recent(tp);
  4913. tcp_rcv_rtt_measure_ts(sk, skb);
  4914. __skb_pull(skb, tcp_header_len);
  4915. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  4916. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
  4917. }
  4918. if (copied_early)
  4919. tcp_cleanup_rbuf(sk, skb->len);
  4920. }
  4921. if (!eaten) {
  4922. if (tcp_checksum_complete_user(sk, skb))
  4923. goto csum_error;
  4924. /* Predicted packet is in window by definition.
  4925. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4926. * Hence, check seq<=rcv_wup reduces to:
  4927. */
  4928. if (tcp_header_len ==
  4929. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4930. tp->rcv_nxt == tp->rcv_wup)
  4931. tcp_store_ts_recent(tp);
  4932. tcp_rcv_rtt_measure_ts(sk, skb);
  4933. if ((int)skb->truesize > sk->sk_forward_alloc)
  4934. goto step5;
  4935. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
  4936. /* Bulk data transfer: receiver */
  4937. eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
  4938. &fragstolen);
  4939. }
  4940. tcp_event_data_recv(sk, skb);
  4941. if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
  4942. /* Well, only one small jumplet in fast path... */
  4943. tcp_ack(sk, skb, FLAG_DATA);
  4944. tcp_data_snd_check(sk);
  4945. if (!inet_csk_ack_scheduled(sk))
  4946. goto no_ack;
  4947. }
  4948. if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
  4949. __tcp_ack_snd_check(sk, 0);
  4950. no_ack:
  4951. #ifdef CONFIG_NET_DMA
  4952. if (copied_early)
  4953. __skb_queue_tail(&sk->sk_async_wait_queue, skb);
  4954. else
  4955. #endif
  4956. if (eaten)
  4957. kfree_skb_partial(skb, fragstolen);
  4958. else
  4959. sk->sk_data_ready(sk, 0);
  4960. return 0;
  4961. }
  4962. }
  4963. slow_path:
  4964. if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
  4965. goto csum_error;
  4966. /*
  4967. * Standard slow path.
  4968. */
  4969. res = tcp_validate_incoming(sk, skb, th, 1);
  4970. if (res <= 0)
  4971. return -res;
  4972. step5:
  4973. if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
  4974. goto discard;
  4975. tcp_rcv_rtt_measure_ts(sk, skb);
  4976. /* Process urgent data. */
  4977. tcp_urg(sk, skb, th);
  4978. /* step 7: process the segment text */
  4979. tcp_data_queue(sk, skb);
  4980. tcp_data_snd_check(sk);
  4981. tcp_ack_snd_check(sk);
  4982. return 0;
  4983. csum_error:
  4984. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4985. discard:
  4986. __kfree_skb(skb);
  4987. return 0;
  4988. }
  4989. EXPORT_SYMBOL(tcp_rcv_established);
  4990. void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
  4991. {
  4992. struct tcp_sock *tp = tcp_sk(sk);
  4993. struct inet_connection_sock *icsk = inet_csk(sk);
  4994. tcp_set_state(sk, TCP_ESTABLISHED);
  4995. if (skb != NULL)
  4996. security_inet_conn_established(sk, skb);
  4997. /* Make sure socket is routed, for correct metrics. */
  4998. icsk->icsk_af_ops->rebuild_header(sk);
  4999. tcp_init_metrics(sk);
  5000. tcp_init_congestion_control(sk);
  5001. /* Prevent spurious tcp_cwnd_restart() on first data
  5002. * packet.
  5003. */
  5004. tp->lsndtime = tcp_time_stamp;
  5005. tcp_init_buffer_space(sk);
  5006. if (sock_flag(sk, SOCK_KEEPOPEN))
  5007. inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
  5008. if (!tp->rx_opt.snd_wscale)
  5009. __tcp_fast_path_on(tp, tp->snd_wnd);
  5010. else
  5011. tp->pred_flags = 0;
  5012. if (!sock_flag(sk, SOCK_DEAD)) {
  5013. sk->sk_state_change(sk);
  5014. sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
  5015. }
  5016. }
  5017. static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
  5018. const struct tcphdr *th, unsigned int len)
  5019. {
  5020. const u8 *hash_location;
  5021. struct inet_connection_sock *icsk = inet_csk(sk);
  5022. struct tcp_sock *tp = tcp_sk(sk);
  5023. struct tcp_cookie_values *cvp = tp->cookie_values;
  5024. int saved_clamp = tp->rx_opt.mss_clamp;
  5025. tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0);
  5026. if (th->ack) {
  5027. /* rfc793:
  5028. * "If the state is SYN-SENT then
  5029. * first check the ACK bit
  5030. * If the ACK bit is set
  5031. * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
  5032. * a reset (unless the RST bit is set, if so drop
  5033. * the segment and return)"
  5034. *
  5035. * We do not send data with SYN, so that RFC-correct
  5036. * test reduces to:
  5037. */
  5038. if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
  5039. goto reset_and_undo;
  5040. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  5041. !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
  5042. tcp_time_stamp)) {
  5043. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
  5044. goto reset_and_undo;
  5045. }
  5046. /* Now ACK is acceptable.
  5047. *
  5048. * "If the RST bit is set
  5049. * If the ACK was acceptable then signal the user "error:
  5050. * connection reset", drop the segment, enter CLOSED state,
  5051. * delete TCB, and return."
  5052. */
  5053. if (th->rst) {
  5054. tcp_reset(sk);
  5055. goto discard;
  5056. }
  5057. /* rfc793:
  5058. * "fifth, if neither of the SYN or RST bits is set then
  5059. * drop the segment and return."
  5060. *
  5061. * See note below!
  5062. * --ANK(990513)
  5063. */
  5064. if (!th->syn)
  5065. goto discard_and_undo;
  5066. /* rfc793:
  5067. * "If the SYN bit is on ...
  5068. * are acceptable then ...
  5069. * (our SYN has been ACKed), change the connection
  5070. * state to ESTABLISHED..."
  5071. */
  5072. TCP_ECN_rcv_synack(tp, th);
  5073. tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
  5074. tcp_ack(sk, skb, FLAG_SLOWPATH);
  5075. /* Ok.. it's good. Set up sequence numbers and
  5076. * move to established.
  5077. */
  5078. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  5079. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  5080. /* RFC1323: The window in SYN & SYN/ACK segments is
  5081. * never scaled.
  5082. */
  5083. tp->snd_wnd = ntohs(th->window);
  5084. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  5085. if (!tp->rx_opt.wscale_ok) {
  5086. tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
  5087. tp->window_clamp = min(tp->window_clamp, 65535U);
  5088. }
  5089. if (tp->rx_opt.saw_tstamp) {
  5090. tp->rx_opt.tstamp_ok = 1;
  5091. tp->tcp_header_len =
  5092. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  5093. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  5094. tcp_store_ts_recent(tp);
  5095. } else {
  5096. tp->tcp_header_len = sizeof(struct tcphdr);
  5097. }
  5098. if (tcp_is_sack(tp) && sysctl_tcp_fack)
  5099. tcp_enable_fack(tp);
  5100. tcp_mtup_init(sk);
  5101. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  5102. tcp_initialize_rcv_mss(sk);
  5103. /* Remember, tcp_poll() does not lock socket!
  5104. * Change state from SYN-SENT only after copied_seq
  5105. * is initialized. */
  5106. tp->copied_seq = tp->rcv_nxt;
  5107. if (cvp != NULL &&
  5108. cvp->cookie_pair_size > 0 &&
  5109. tp->rx_opt.cookie_plus > 0) {
  5110. int cookie_size = tp->rx_opt.cookie_plus
  5111. - TCPOLEN_COOKIE_BASE;
  5112. int cookie_pair_size = cookie_size
  5113. + cvp->cookie_desired;
  5114. /* A cookie extension option was sent and returned.
  5115. * Note that each incoming SYNACK replaces the
  5116. * Responder cookie. The initial exchange is most
  5117. * fragile, as protection against spoofing relies
  5118. * entirely upon the sequence and timestamp (above).
  5119. * This replacement strategy allows the correct pair to
  5120. * pass through, while any others will be filtered via
  5121. * Responder verification later.
  5122. */
  5123. if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
  5124. memcpy(&cvp->cookie_pair[cvp->cookie_desired],
  5125. hash_location, cookie_size);
  5126. cvp->cookie_pair_size = cookie_pair_size;
  5127. }
  5128. }
  5129. smp_mb();
  5130. tcp_finish_connect(sk, skb);
  5131. if (sk->sk_write_pending ||
  5132. icsk->icsk_accept_queue.rskq_defer_accept ||
  5133. icsk->icsk_ack.pingpong) {
  5134. /* Save one ACK. Data will be ready after
  5135. * several ticks, if write_pending is set.
  5136. *
  5137. * It may be deleted, but with this feature tcpdumps
  5138. * look so _wonderfully_ clever, that I was not able
  5139. * to stand against the temptation 8) --ANK
  5140. */
  5141. inet_csk_schedule_ack(sk);
  5142. icsk->icsk_ack.lrcvtime = tcp_time_stamp;
  5143. tcp_enter_quickack_mode(sk);
  5144. inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
  5145. TCP_DELACK_MAX, TCP_RTO_MAX);
  5146. discard:
  5147. __kfree_skb(skb);
  5148. return 0;
  5149. } else {
  5150. tcp_send_ack(sk);
  5151. }
  5152. return -1;
  5153. }
  5154. /* No ACK in the segment */
  5155. if (th->rst) {
  5156. /* rfc793:
  5157. * "If the RST bit is set
  5158. *
  5159. * Otherwise (no ACK) drop the segment and return."
  5160. */
  5161. goto discard_and_undo;
  5162. }
  5163. /* PAWS check. */
  5164. if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
  5165. tcp_paws_reject(&tp->rx_opt, 0))
  5166. goto discard_and_undo;
  5167. if (th->syn) {
  5168. /* We see SYN without ACK. It is attempt of
  5169. * simultaneous connect with crossed SYNs.
  5170. * Particularly, it can be connect to self.
  5171. */
  5172. tcp_set_state(sk, TCP_SYN_RECV);
  5173. if (tp->rx_opt.saw_tstamp) {
  5174. tp->rx_opt.tstamp_ok = 1;
  5175. tcp_store_ts_recent(tp);
  5176. tp->tcp_header_len =
  5177. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  5178. } else {
  5179. tp->tcp_header_len = sizeof(struct tcphdr);
  5180. }
  5181. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  5182. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  5183. /* RFC1323: The window in SYN & SYN/ACK segments is
  5184. * never scaled.
  5185. */
  5186. tp->snd_wnd = ntohs(th->window);
  5187. tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
  5188. tp->max_window = tp->snd_wnd;
  5189. TCP_ECN_rcv_syn(tp, th);
  5190. tcp_mtup_init(sk);
  5191. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  5192. tcp_initialize_rcv_mss(sk);
  5193. tcp_send_synack(sk);
  5194. #if 0
  5195. /* Note, we could accept data and URG from this segment.
  5196. * There are no obstacles to make this.
  5197. *
  5198. * However, if we ignore data in ACKless segments sometimes,
  5199. * we have no reasons to accept it sometimes.
  5200. * Also, seems the code doing it in step6 of tcp_rcv_state_process
  5201. * is not flawless. So, discard packet for sanity.
  5202. * Uncomment this return to process the data.
  5203. */
  5204. return -1;
  5205. #else
  5206. goto discard;
  5207. #endif
  5208. }
  5209. /* "fifth, if neither of the SYN or RST bits is set then
  5210. * drop the segment and return."
  5211. */
  5212. discard_and_undo:
  5213. tcp_clear_options(&tp->rx_opt);
  5214. tp->rx_opt.mss_clamp = saved_clamp;
  5215. goto discard;
  5216. reset_and_undo:
  5217. tcp_clear_options(&tp->rx_opt);
  5218. tp->rx_opt.mss_clamp = saved_clamp;
  5219. return 1;
  5220. }
  5221. /*
  5222. * This function implements the receiving procedure of RFC 793 for
  5223. * all states except ESTABLISHED and TIME_WAIT.
  5224. * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
  5225. * address independent.
  5226. */
  5227. int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
  5228. const struct tcphdr *th, unsigned int len)
  5229. {
  5230. struct tcp_sock *tp = tcp_sk(sk);
  5231. struct inet_connection_sock *icsk = inet_csk(sk);
  5232. int queued = 0;
  5233. int res;
  5234. tp->rx_opt.saw_tstamp = 0;
  5235. switch (sk->sk_state) {
  5236. case TCP_CLOSE:
  5237. goto discard;
  5238. case TCP_LISTEN:
  5239. if (th->ack)
  5240. return 1;
  5241. if (th->rst)
  5242. goto discard;
  5243. if (th->syn) {
  5244. if (th->fin)
  5245. goto discard;
  5246. if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
  5247. return 1;
  5248. /* Now we have several options: In theory there is
  5249. * nothing else in the frame. KA9Q has an option to
  5250. * send data with the syn, BSD accepts data with the
  5251. * syn up to the [to be] advertised window and
  5252. * Solaris 2.1 gives you a protocol error. For now
  5253. * we just ignore it, that fits the spec precisely
  5254. * and avoids incompatibilities. It would be nice in
  5255. * future to drop through and process the data.
  5256. *
  5257. * Now that TTCP is starting to be used we ought to
  5258. * queue this data.
  5259. * But, this leaves one open to an easy denial of
  5260. * service attack, and SYN cookies can't defend
  5261. * against this problem. So, we drop the data
  5262. * in the interest of security over speed unless
  5263. * it's still in use.
  5264. */
  5265. kfree_skb(skb);
  5266. return 0;
  5267. }
  5268. goto discard;
  5269. case TCP_SYN_SENT:
  5270. queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
  5271. if (queued >= 0)
  5272. return queued;
  5273. /* Do step6 onward by hand. */
  5274. tcp_urg(sk, skb, th);
  5275. __kfree_skb(skb);
  5276. tcp_data_snd_check(sk);
  5277. return 0;
  5278. }
  5279. res = tcp_validate_incoming(sk, skb, th, 0);
  5280. if (res <= 0)
  5281. return -res;
  5282. /* step 5: check the ACK field */
  5283. if (th->ack) {
  5284. int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
  5285. switch (sk->sk_state) {
  5286. case TCP_SYN_RECV:
  5287. if (acceptable) {
  5288. tp->copied_seq = tp->rcv_nxt;
  5289. smp_mb();
  5290. tcp_set_state(sk, TCP_ESTABLISHED);
  5291. sk->sk_state_change(sk);
  5292. /* Note, that this wakeup is only for marginal
  5293. * crossed SYN case. Passively open sockets
  5294. * are not waked up, because sk->sk_sleep ==
  5295. * NULL and sk->sk_socket == NULL.
  5296. */
  5297. if (sk->sk_socket)
  5298. sk_wake_async(sk,
  5299. SOCK_WAKE_IO, POLL_OUT);
  5300. tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
  5301. tp->snd_wnd = ntohs(th->window) <<
  5302. tp->rx_opt.snd_wscale;
  5303. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  5304. if (tp->rx_opt.tstamp_ok)
  5305. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  5306. /* Make sure socket is routed, for
  5307. * correct metrics.
  5308. */
  5309. icsk->icsk_af_ops->rebuild_header(sk);
  5310. tcp_init_metrics(sk);
  5311. tcp_init_congestion_control(sk);
  5312. /* Prevent spurious tcp_cwnd_restart() on
  5313. * first data packet.
  5314. */
  5315. tp->lsndtime = tcp_time_stamp;
  5316. tcp_mtup_init(sk);
  5317. tcp_initialize_rcv_mss(sk);
  5318. tcp_init_buffer_space(sk);
  5319. tcp_fast_path_on(tp);
  5320. } else {
  5321. return 1;
  5322. }
  5323. break;
  5324. case TCP_FIN_WAIT1:
  5325. if (tp->snd_una == tp->write_seq) {
  5326. tcp_set_state(sk, TCP_FIN_WAIT2);
  5327. sk->sk_shutdown |= SEND_SHUTDOWN;
  5328. dst_confirm(__sk_dst_get(sk));
  5329. if (!sock_flag(sk, SOCK_DEAD))
  5330. /* Wake up lingering close() */
  5331. sk->sk_state_change(sk);
  5332. else {
  5333. int tmo;
  5334. if (tp->linger2 < 0 ||
  5335. (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  5336. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
  5337. tcp_done(sk);
  5338. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5339. return 1;
  5340. }
  5341. tmo = tcp_fin_time(sk);
  5342. if (tmo > TCP_TIMEWAIT_LEN) {
  5343. inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
  5344. } else if (th->fin || sock_owned_by_user(sk)) {
  5345. /* Bad case. We could lose such FIN otherwise.
  5346. * It is not a big problem, but it looks confusing
  5347. * and not so rare event. We still can lose it now,
  5348. * if it spins in bh_lock_sock(), but it is really
  5349. * marginal case.
  5350. */
  5351. inet_csk_reset_keepalive_timer(sk, tmo);
  5352. } else {
  5353. tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
  5354. goto discard;
  5355. }
  5356. }
  5357. }
  5358. break;
  5359. case TCP_CLOSING:
  5360. if (tp->snd_una == tp->write_seq) {
  5361. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  5362. goto discard;
  5363. }
  5364. break;
  5365. case TCP_LAST_ACK:
  5366. if (tp->snd_una == tp->write_seq) {
  5367. tcp_update_metrics(sk);
  5368. tcp_done(sk);
  5369. goto discard;
  5370. }
  5371. break;
  5372. }
  5373. } else
  5374. goto discard;
  5375. /* step 6: check the URG bit */
  5376. tcp_urg(sk, skb, th);
  5377. /* step 7: process the segment text */
  5378. switch (sk->sk_state) {
  5379. case TCP_CLOSE_WAIT:
  5380. case TCP_CLOSING:
  5381. case TCP_LAST_ACK:
  5382. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  5383. break;
  5384. case TCP_FIN_WAIT1:
  5385. case TCP_FIN_WAIT2:
  5386. /* RFC 793 says to queue data in these states,
  5387. * RFC 1122 says we MUST send a reset.
  5388. * BSD 4.4 also does reset.
  5389. */
  5390. if (sk->sk_shutdown & RCV_SHUTDOWN) {
  5391. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  5392. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
  5393. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5394. tcp_reset(sk);
  5395. return 1;
  5396. }
  5397. }
  5398. /* Fall through */
  5399. case TCP_ESTABLISHED:
  5400. tcp_data_queue(sk, skb);
  5401. queued = 1;
  5402. break;
  5403. }
  5404. /* tcp_data could move socket to TIME-WAIT */
  5405. if (sk->sk_state != TCP_CLOSE) {
  5406. tcp_data_snd_check(sk);
  5407. tcp_ack_snd_check(sk);
  5408. }
  5409. if (!queued) {
  5410. discard:
  5411. __kfree_skb(skb);
  5412. }
  5413. return 0;
  5414. }
  5415. EXPORT_SYMBOL(tcp_rcv_state_process);