sh_eth.c 59 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464
  1. /*
  2. * SuperH Ethernet device driver
  3. *
  4. * Copyright (C) 2006-2012 Nobuhiro Iwamatsu
  5. * Copyright (C) 2008-2012 Renesas Solutions Corp.
  6. *
  7. * This program is free software; you can redistribute it and/or modify it
  8. * under the terms and conditions of the GNU General Public License,
  9. * version 2, as published by the Free Software Foundation.
  10. *
  11. * This program is distributed in the hope it will be useful, but WITHOUT
  12. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  14. * more details.
  15. * You should have received a copy of the GNU General Public License along with
  16. * this program; if not, write to the Free Software Foundation, Inc.,
  17. * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18. *
  19. * The full GNU General Public License is included in this distribution in
  20. * the file called "COPYING".
  21. */
  22. #include <linux/init.h>
  23. #include <linux/module.h>
  24. #include <linux/kernel.h>
  25. #include <linux/spinlock.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/dma-mapping.h>
  28. #include <linux/etherdevice.h>
  29. #include <linux/delay.h>
  30. #include <linux/platform_device.h>
  31. #include <linux/mdio-bitbang.h>
  32. #include <linux/netdevice.h>
  33. #include <linux/phy.h>
  34. #include <linux/cache.h>
  35. #include <linux/io.h>
  36. #include <linux/pm_runtime.h>
  37. #include <linux/slab.h>
  38. #include <linux/ethtool.h>
  39. #include <linux/if_vlan.h>
  40. #include <linux/clk.h>
  41. #include <linux/sh_eth.h>
  42. #include "sh_eth.h"
  43. #define SH_ETH_DEF_MSG_ENABLE \
  44. (NETIF_MSG_LINK | \
  45. NETIF_MSG_TIMER | \
  46. NETIF_MSG_RX_ERR| \
  47. NETIF_MSG_TX_ERR)
  48. #if defined(CONFIG_CPU_SUBTYPE_SH7734) || \
  49. defined(CONFIG_CPU_SUBTYPE_SH7763) || \
  50. defined(CONFIG_ARCH_R8A7740)
  51. static void sh_eth_select_mii(struct net_device *ndev)
  52. {
  53. u32 value = 0x0;
  54. struct sh_eth_private *mdp = netdev_priv(ndev);
  55. switch (mdp->phy_interface) {
  56. case PHY_INTERFACE_MODE_GMII:
  57. value = 0x2;
  58. break;
  59. case PHY_INTERFACE_MODE_MII:
  60. value = 0x1;
  61. break;
  62. case PHY_INTERFACE_MODE_RMII:
  63. value = 0x0;
  64. break;
  65. default:
  66. pr_warn("PHY interface mode was not setup. Set to MII.\n");
  67. value = 0x1;
  68. break;
  69. }
  70. sh_eth_write(ndev, value, RMII_MII);
  71. }
  72. #endif
  73. /* There is CPU dependent code */
  74. #if defined(CONFIG_CPU_SUBTYPE_SH7724)
  75. #define SH_ETH_RESET_DEFAULT 1
  76. static void sh_eth_set_duplex(struct net_device *ndev)
  77. {
  78. struct sh_eth_private *mdp = netdev_priv(ndev);
  79. if (mdp->duplex) /* Full */
  80. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
  81. else /* Half */
  82. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
  83. }
  84. static void sh_eth_set_rate(struct net_device *ndev)
  85. {
  86. struct sh_eth_private *mdp = netdev_priv(ndev);
  87. switch (mdp->speed) {
  88. case 10: /* 10BASE */
  89. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_RTM, ECMR);
  90. break;
  91. case 100:/* 100BASE */
  92. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_RTM, ECMR);
  93. break;
  94. default:
  95. break;
  96. }
  97. }
  98. /* SH7724 */
  99. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  100. .set_duplex = sh_eth_set_duplex,
  101. .set_rate = sh_eth_set_rate,
  102. .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
  103. .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
  104. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x01ff009f,
  105. .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
  106. .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RDE |
  107. EESR_RFRMER | EESR_TFE | EESR_TDE | EESR_ECI,
  108. .tx_error_check = EESR_TWB | EESR_TABT | EESR_TDE | EESR_TFE,
  109. .apr = 1,
  110. .mpr = 1,
  111. .tpauser = 1,
  112. .hw_swap = 1,
  113. .rpadir = 1,
  114. .rpadir_value = 0x00020000, /* NET_IP_ALIGN assumed to be 2 */
  115. };
  116. #elif defined(CONFIG_CPU_SUBTYPE_SH7757)
  117. #define SH_ETH_HAS_BOTH_MODULES 1
  118. #define SH_ETH_HAS_TSU 1
  119. static int sh_eth_check_reset(struct net_device *ndev);
  120. static void sh_eth_set_duplex(struct net_device *ndev)
  121. {
  122. struct sh_eth_private *mdp = netdev_priv(ndev);
  123. if (mdp->duplex) /* Full */
  124. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
  125. else /* Half */
  126. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
  127. }
  128. static void sh_eth_set_rate(struct net_device *ndev)
  129. {
  130. struct sh_eth_private *mdp = netdev_priv(ndev);
  131. switch (mdp->speed) {
  132. case 10: /* 10BASE */
  133. sh_eth_write(ndev, 0, RTRATE);
  134. break;
  135. case 100:/* 100BASE */
  136. sh_eth_write(ndev, 1, RTRATE);
  137. break;
  138. default:
  139. break;
  140. }
  141. }
  142. /* SH7757 */
  143. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  144. .set_duplex = sh_eth_set_duplex,
  145. .set_rate = sh_eth_set_rate,
  146. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  147. .rmcr_value = 0x00000001,
  148. .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
  149. .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RDE |
  150. EESR_RFRMER | EESR_TFE | EESR_TDE | EESR_ECI,
  151. .tx_error_check = EESR_TWB | EESR_TABT | EESR_TDE | EESR_TFE,
  152. .apr = 1,
  153. .mpr = 1,
  154. .tpauser = 1,
  155. .hw_swap = 1,
  156. .no_ade = 1,
  157. .rpadir = 1,
  158. .rpadir_value = 2 << 16,
  159. };
  160. #define SH_GIGA_ETH_BASE 0xfee00000
  161. #define GIGA_MALR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
  162. #define GIGA_MAHR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
  163. static void sh_eth_chip_reset_giga(struct net_device *ndev)
  164. {
  165. int i;
  166. unsigned long mahr[2], malr[2];
  167. /* save MAHR and MALR */
  168. for (i = 0; i < 2; i++) {
  169. malr[i] = ioread32((void *)GIGA_MALR(i));
  170. mahr[i] = ioread32((void *)GIGA_MAHR(i));
  171. }
  172. /* reset device */
  173. iowrite32(ARSTR_ARSTR, (void *)(SH_GIGA_ETH_BASE + 0x1800));
  174. mdelay(1);
  175. /* restore MAHR and MALR */
  176. for (i = 0; i < 2; i++) {
  177. iowrite32(malr[i], (void *)GIGA_MALR(i));
  178. iowrite32(mahr[i], (void *)GIGA_MAHR(i));
  179. }
  180. }
  181. static int sh_eth_is_gether(struct sh_eth_private *mdp);
  182. static int sh_eth_reset(struct net_device *ndev)
  183. {
  184. struct sh_eth_private *mdp = netdev_priv(ndev);
  185. int ret = 0;
  186. if (sh_eth_is_gether(mdp)) {
  187. sh_eth_write(ndev, 0x03, EDSR);
  188. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER,
  189. EDMR);
  190. ret = sh_eth_check_reset(ndev);
  191. if (ret)
  192. goto out;
  193. /* Table Init */
  194. sh_eth_write(ndev, 0x0, TDLAR);
  195. sh_eth_write(ndev, 0x0, TDFAR);
  196. sh_eth_write(ndev, 0x0, TDFXR);
  197. sh_eth_write(ndev, 0x0, TDFFR);
  198. sh_eth_write(ndev, 0x0, RDLAR);
  199. sh_eth_write(ndev, 0x0, RDFAR);
  200. sh_eth_write(ndev, 0x0, RDFXR);
  201. sh_eth_write(ndev, 0x0, RDFFR);
  202. } else {
  203. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER,
  204. EDMR);
  205. mdelay(3);
  206. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER,
  207. EDMR);
  208. }
  209. out:
  210. return ret;
  211. }
  212. static void sh_eth_set_duplex_giga(struct net_device *ndev)
  213. {
  214. struct sh_eth_private *mdp = netdev_priv(ndev);
  215. if (mdp->duplex) /* Full */
  216. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
  217. else /* Half */
  218. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
  219. }
  220. static void sh_eth_set_rate_giga(struct net_device *ndev)
  221. {
  222. struct sh_eth_private *mdp = netdev_priv(ndev);
  223. switch (mdp->speed) {
  224. case 10: /* 10BASE */
  225. sh_eth_write(ndev, 0x00000000, GECMR);
  226. break;
  227. case 100:/* 100BASE */
  228. sh_eth_write(ndev, 0x00000010, GECMR);
  229. break;
  230. case 1000: /* 1000BASE */
  231. sh_eth_write(ndev, 0x00000020, GECMR);
  232. break;
  233. default:
  234. break;
  235. }
  236. }
  237. /* SH7757(GETHERC) */
  238. static struct sh_eth_cpu_data sh_eth_my_cpu_data_giga = {
  239. .chip_reset = sh_eth_chip_reset_giga,
  240. .set_duplex = sh_eth_set_duplex_giga,
  241. .set_rate = sh_eth_set_rate_giga,
  242. .ecsr_value = ECSR_ICD | ECSR_MPD,
  243. .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
  244. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  245. .tx_check = EESR_TC1 | EESR_FTC,
  246. .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
  247. EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
  248. EESR_ECI,
  249. .tx_error_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
  250. EESR_TFE,
  251. .fdr_value = 0x0000072f,
  252. .rmcr_value = 0x00000001,
  253. .apr = 1,
  254. .mpr = 1,
  255. .tpauser = 1,
  256. .bculr = 1,
  257. .hw_swap = 1,
  258. .rpadir = 1,
  259. .rpadir_value = 2 << 16,
  260. .no_trimd = 1,
  261. .no_ade = 1,
  262. .tsu = 1,
  263. };
  264. static struct sh_eth_cpu_data *sh_eth_get_cpu_data(struct sh_eth_private *mdp)
  265. {
  266. if (sh_eth_is_gether(mdp))
  267. return &sh_eth_my_cpu_data_giga;
  268. else
  269. return &sh_eth_my_cpu_data;
  270. }
  271. #elif defined(CONFIG_CPU_SUBTYPE_SH7734) || defined(CONFIG_CPU_SUBTYPE_SH7763)
  272. #define SH_ETH_HAS_TSU 1
  273. static int sh_eth_check_reset(struct net_device *ndev);
  274. static void sh_eth_reset_hw_crc(struct net_device *ndev);
  275. static void sh_eth_chip_reset(struct net_device *ndev)
  276. {
  277. struct sh_eth_private *mdp = netdev_priv(ndev);
  278. /* reset device */
  279. sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
  280. mdelay(1);
  281. }
  282. static void sh_eth_set_duplex(struct net_device *ndev)
  283. {
  284. struct sh_eth_private *mdp = netdev_priv(ndev);
  285. if (mdp->duplex) /* Full */
  286. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
  287. else /* Half */
  288. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
  289. }
  290. static void sh_eth_set_rate(struct net_device *ndev)
  291. {
  292. struct sh_eth_private *mdp = netdev_priv(ndev);
  293. switch (mdp->speed) {
  294. case 10: /* 10BASE */
  295. sh_eth_write(ndev, GECMR_10, GECMR);
  296. break;
  297. case 100:/* 100BASE */
  298. sh_eth_write(ndev, GECMR_100, GECMR);
  299. break;
  300. case 1000: /* 1000BASE */
  301. sh_eth_write(ndev, GECMR_1000, GECMR);
  302. break;
  303. default:
  304. break;
  305. }
  306. }
  307. /* sh7763 */
  308. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  309. .chip_reset = sh_eth_chip_reset,
  310. .set_duplex = sh_eth_set_duplex,
  311. .set_rate = sh_eth_set_rate,
  312. .ecsr_value = ECSR_ICD | ECSR_MPD,
  313. .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
  314. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  315. .tx_check = EESR_TC1 | EESR_FTC,
  316. .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
  317. EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
  318. EESR_ECI,
  319. .tx_error_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
  320. EESR_TFE,
  321. .apr = 1,
  322. .mpr = 1,
  323. .tpauser = 1,
  324. .bculr = 1,
  325. .hw_swap = 1,
  326. .no_trimd = 1,
  327. .no_ade = 1,
  328. .tsu = 1,
  329. #if defined(CONFIG_CPU_SUBTYPE_SH7734)
  330. .hw_crc = 1,
  331. .select_mii = 1,
  332. #endif
  333. };
  334. static int sh_eth_reset(struct net_device *ndev)
  335. {
  336. int ret = 0;
  337. sh_eth_write(ndev, EDSR_ENALL, EDSR);
  338. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER, EDMR);
  339. ret = sh_eth_check_reset(ndev);
  340. if (ret)
  341. goto out;
  342. /* Table Init */
  343. sh_eth_write(ndev, 0x0, TDLAR);
  344. sh_eth_write(ndev, 0x0, TDFAR);
  345. sh_eth_write(ndev, 0x0, TDFXR);
  346. sh_eth_write(ndev, 0x0, TDFFR);
  347. sh_eth_write(ndev, 0x0, RDLAR);
  348. sh_eth_write(ndev, 0x0, RDFAR);
  349. sh_eth_write(ndev, 0x0, RDFXR);
  350. sh_eth_write(ndev, 0x0, RDFFR);
  351. /* Reset HW CRC register */
  352. sh_eth_reset_hw_crc(ndev);
  353. /* Select MII mode */
  354. if (sh_eth_my_cpu_data.select_mii)
  355. sh_eth_select_mii(ndev);
  356. out:
  357. return ret;
  358. }
  359. static void sh_eth_reset_hw_crc(struct net_device *ndev)
  360. {
  361. if (sh_eth_my_cpu_data.hw_crc)
  362. sh_eth_write(ndev, 0x0, CSMR);
  363. }
  364. #elif defined(CONFIG_ARCH_R8A7740)
  365. #define SH_ETH_HAS_TSU 1
  366. static int sh_eth_check_reset(struct net_device *ndev);
  367. static void sh_eth_chip_reset(struct net_device *ndev)
  368. {
  369. struct sh_eth_private *mdp = netdev_priv(ndev);
  370. /* reset device */
  371. sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
  372. mdelay(1);
  373. sh_eth_select_mii(ndev);
  374. }
  375. static int sh_eth_reset(struct net_device *ndev)
  376. {
  377. int ret = 0;
  378. sh_eth_write(ndev, EDSR_ENALL, EDSR);
  379. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER, EDMR);
  380. ret = sh_eth_check_reset(ndev);
  381. if (ret)
  382. goto out;
  383. /* Table Init */
  384. sh_eth_write(ndev, 0x0, TDLAR);
  385. sh_eth_write(ndev, 0x0, TDFAR);
  386. sh_eth_write(ndev, 0x0, TDFXR);
  387. sh_eth_write(ndev, 0x0, TDFFR);
  388. sh_eth_write(ndev, 0x0, RDLAR);
  389. sh_eth_write(ndev, 0x0, RDFAR);
  390. sh_eth_write(ndev, 0x0, RDFXR);
  391. sh_eth_write(ndev, 0x0, RDFFR);
  392. out:
  393. return ret;
  394. }
  395. static void sh_eth_set_duplex(struct net_device *ndev)
  396. {
  397. struct sh_eth_private *mdp = netdev_priv(ndev);
  398. if (mdp->duplex) /* Full */
  399. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
  400. else /* Half */
  401. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
  402. }
  403. static void sh_eth_set_rate(struct net_device *ndev)
  404. {
  405. struct sh_eth_private *mdp = netdev_priv(ndev);
  406. switch (mdp->speed) {
  407. case 10: /* 10BASE */
  408. sh_eth_write(ndev, GECMR_10, GECMR);
  409. break;
  410. case 100:/* 100BASE */
  411. sh_eth_write(ndev, GECMR_100, GECMR);
  412. break;
  413. case 1000: /* 1000BASE */
  414. sh_eth_write(ndev, GECMR_1000, GECMR);
  415. break;
  416. default:
  417. break;
  418. }
  419. }
  420. /* R8A7740 */
  421. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  422. .chip_reset = sh_eth_chip_reset,
  423. .set_duplex = sh_eth_set_duplex,
  424. .set_rate = sh_eth_set_rate,
  425. .ecsr_value = ECSR_ICD | ECSR_MPD,
  426. .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
  427. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  428. .tx_check = EESR_TC1 | EESR_FTC,
  429. .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
  430. EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
  431. EESR_ECI,
  432. .tx_error_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
  433. EESR_TFE,
  434. .apr = 1,
  435. .mpr = 1,
  436. .tpauser = 1,
  437. .bculr = 1,
  438. .hw_swap = 1,
  439. .no_trimd = 1,
  440. .no_ade = 1,
  441. .tsu = 1,
  442. .select_mii = 1,
  443. };
  444. #elif defined(CONFIG_CPU_SUBTYPE_SH7619)
  445. #define SH_ETH_RESET_DEFAULT 1
  446. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  447. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  448. .apr = 1,
  449. .mpr = 1,
  450. .tpauser = 1,
  451. .hw_swap = 1,
  452. };
  453. #elif defined(CONFIG_CPU_SUBTYPE_SH7710) || defined(CONFIG_CPU_SUBTYPE_SH7712)
  454. #define SH_ETH_RESET_DEFAULT 1
  455. #define SH_ETH_HAS_TSU 1
  456. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  457. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  458. .tsu = 1,
  459. };
  460. #endif
  461. static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
  462. {
  463. if (!cd->ecsr_value)
  464. cd->ecsr_value = DEFAULT_ECSR_INIT;
  465. if (!cd->ecsipr_value)
  466. cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
  467. if (!cd->fcftr_value)
  468. cd->fcftr_value = DEFAULT_FIFO_F_D_RFF | \
  469. DEFAULT_FIFO_F_D_RFD;
  470. if (!cd->fdr_value)
  471. cd->fdr_value = DEFAULT_FDR_INIT;
  472. if (!cd->rmcr_value)
  473. cd->rmcr_value = DEFAULT_RMCR_VALUE;
  474. if (!cd->tx_check)
  475. cd->tx_check = DEFAULT_TX_CHECK;
  476. if (!cd->eesr_err_check)
  477. cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
  478. if (!cd->tx_error_check)
  479. cd->tx_error_check = DEFAULT_TX_ERROR_CHECK;
  480. }
  481. #if defined(SH_ETH_RESET_DEFAULT)
  482. /* Chip Reset */
  483. static int sh_eth_reset(struct net_device *ndev)
  484. {
  485. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER, EDMR);
  486. mdelay(3);
  487. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER, EDMR);
  488. return 0;
  489. }
  490. #else
  491. static int sh_eth_check_reset(struct net_device *ndev)
  492. {
  493. int ret = 0;
  494. int cnt = 100;
  495. while (cnt > 0) {
  496. if (!(sh_eth_read(ndev, EDMR) & 0x3))
  497. break;
  498. mdelay(1);
  499. cnt--;
  500. }
  501. if (cnt < 0) {
  502. printk(KERN_ERR "Device reset fail\n");
  503. ret = -ETIMEDOUT;
  504. }
  505. return ret;
  506. }
  507. #endif
  508. #if defined(CONFIG_CPU_SH4) || defined(CONFIG_ARCH_SHMOBILE)
  509. static void sh_eth_set_receive_align(struct sk_buff *skb)
  510. {
  511. int reserve;
  512. reserve = SH4_SKB_RX_ALIGN - ((u32)skb->data & (SH4_SKB_RX_ALIGN - 1));
  513. if (reserve)
  514. skb_reserve(skb, reserve);
  515. }
  516. #else
  517. static void sh_eth_set_receive_align(struct sk_buff *skb)
  518. {
  519. skb_reserve(skb, SH2_SH3_SKB_RX_ALIGN);
  520. }
  521. #endif
  522. /* CPU <-> EDMAC endian convert */
  523. static inline __u32 cpu_to_edmac(struct sh_eth_private *mdp, u32 x)
  524. {
  525. switch (mdp->edmac_endian) {
  526. case EDMAC_LITTLE_ENDIAN:
  527. return cpu_to_le32(x);
  528. case EDMAC_BIG_ENDIAN:
  529. return cpu_to_be32(x);
  530. }
  531. return x;
  532. }
  533. static inline __u32 edmac_to_cpu(struct sh_eth_private *mdp, u32 x)
  534. {
  535. switch (mdp->edmac_endian) {
  536. case EDMAC_LITTLE_ENDIAN:
  537. return le32_to_cpu(x);
  538. case EDMAC_BIG_ENDIAN:
  539. return be32_to_cpu(x);
  540. }
  541. return x;
  542. }
  543. /*
  544. * Program the hardware MAC address from dev->dev_addr.
  545. */
  546. static void update_mac_address(struct net_device *ndev)
  547. {
  548. sh_eth_write(ndev,
  549. (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
  550. (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
  551. sh_eth_write(ndev,
  552. (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
  553. }
  554. /*
  555. * Get MAC address from SuperH MAC address register
  556. *
  557. * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
  558. * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
  559. * When you want use this device, you must set MAC address in bootloader.
  560. *
  561. */
  562. static void read_mac_address(struct net_device *ndev, unsigned char *mac)
  563. {
  564. if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
  565. memcpy(ndev->dev_addr, mac, 6);
  566. } else {
  567. ndev->dev_addr[0] = (sh_eth_read(ndev, MAHR) >> 24);
  568. ndev->dev_addr[1] = (sh_eth_read(ndev, MAHR) >> 16) & 0xFF;
  569. ndev->dev_addr[2] = (sh_eth_read(ndev, MAHR) >> 8) & 0xFF;
  570. ndev->dev_addr[3] = (sh_eth_read(ndev, MAHR) & 0xFF);
  571. ndev->dev_addr[4] = (sh_eth_read(ndev, MALR) >> 8) & 0xFF;
  572. ndev->dev_addr[5] = (sh_eth_read(ndev, MALR) & 0xFF);
  573. }
  574. }
  575. static int sh_eth_is_gether(struct sh_eth_private *mdp)
  576. {
  577. if (mdp->reg_offset == sh_eth_offset_gigabit)
  578. return 1;
  579. else
  580. return 0;
  581. }
  582. static unsigned long sh_eth_get_edtrr_trns(struct sh_eth_private *mdp)
  583. {
  584. if (sh_eth_is_gether(mdp))
  585. return EDTRR_TRNS_GETHER;
  586. else
  587. return EDTRR_TRNS_ETHER;
  588. }
  589. struct bb_info {
  590. void (*set_gate)(void *addr);
  591. struct mdiobb_ctrl ctrl;
  592. void *addr;
  593. u32 mmd_msk;/* MMD */
  594. u32 mdo_msk;
  595. u32 mdi_msk;
  596. u32 mdc_msk;
  597. };
  598. /* PHY bit set */
  599. static void bb_set(void *addr, u32 msk)
  600. {
  601. iowrite32(ioread32(addr) | msk, addr);
  602. }
  603. /* PHY bit clear */
  604. static void bb_clr(void *addr, u32 msk)
  605. {
  606. iowrite32((ioread32(addr) & ~msk), addr);
  607. }
  608. /* PHY bit read */
  609. static int bb_read(void *addr, u32 msk)
  610. {
  611. return (ioread32(addr) & msk) != 0;
  612. }
  613. /* Data I/O pin control */
  614. static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
  615. {
  616. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  617. if (bitbang->set_gate)
  618. bitbang->set_gate(bitbang->addr);
  619. if (bit)
  620. bb_set(bitbang->addr, bitbang->mmd_msk);
  621. else
  622. bb_clr(bitbang->addr, bitbang->mmd_msk);
  623. }
  624. /* Set bit data*/
  625. static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
  626. {
  627. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  628. if (bitbang->set_gate)
  629. bitbang->set_gate(bitbang->addr);
  630. if (bit)
  631. bb_set(bitbang->addr, bitbang->mdo_msk);
  632. else
  633. bb_clr(bitbang->addr, bitbang->mdo_msk);
  634. }
  635. /* Get bit data*/
  636. static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
  637. {
  638. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  639. if (bitbang->set_gate)
  640. bitbang->set_gate(bitbang->addr);
  641. return bb_read(bitbang->addr, bitbang->mdi_msk);
  642. }
  643. /* MDC pin control */
  644. static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
  645. {
  646. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  647. if (bitbang->set_gate)
  648. bitbang->set_gate(bitbang->addr);
  649. if (bit)
  650. bb_set(bitbang->addr, bitbang->mdc_msk);
  651. else
  652. bb_clr(bitbang->addr, bitbang->mdc_msk);
  653. }
  654. /* mdio bus control struct */
  655. static struct mdiobb_ops bb_ops = {
  656. .owner = THIS_MODULE,
  657. .set_mdc = sh_mdc_ctrl,
  658. .set_mdio_dir = sh_mmd_ctrl,
  659. .set_mdio_data = sh_set_mdio,
  660. .get_mdio_data = sh_get_mdio,
  661. };
  662. /* free skb and descriptor buffer */
  663. static void sh_eth_ring_free(struct net_device *ndev)
  664. {
  665. struct sh_eth_private *mdp = netdev_priv(ndev);
  666. int i;
  667. /* Free Rx skb ringbuffer */
  668. if (mdp->rx_skbuff) {
  669. for (i = 0; i < RX_RING_SIZE; i++) {
  670. if (mdp->rx_skbuff[i])
  671. dev_kfree_skb(mdp->rx_skbuff[i]);
  672. }
  673. }
  674. kfree(mdp->rx_skbuff);
  675. mdp->rx_skbuff = NULL;
  676. /* Free Tx skb ringbuffer */
  677. if (mdp->tx_skbuff) {
  678. for (i = 0; i < TX_RING_SIZE; i++) {
  679. if (mdp->tx_skbuff[i])
  680. dev_kfree_skb(mdp->tx_skbuff[i]);
  681. }
  682. }
  683. kfree(mdp->tx_skbuff);
  684. mdp->tx_skbuff = NULL;
  685. }
  686. /* format skb and descriptor buffer */
  687. static void sh_eth_ring_format(struct net_device *ndev)
  688. {
  689. struct sh_eth_private *mdp = netdev_priv(ndev);
  690. int i;
  691. struct sk_buff *skb;
  692. struct sh_eth_rxdesc *rxdesc = NULL;
  693. struct sh_eth_txdesc *txdesc = NULL;
  694. int rx_ringsize = sizeof(*rxdesc) * RX_RING_SIZE;
  695. int tx_ringsize = sizeof(*txdesc) * TX_RING_SIZE;
  696. mdp->cur_rx = mdp->cur_tx = 0;
  697. mdp->dirty_rx = mdp->dirty_tx = 0;
  698. memset(mdp->rx_ring, 0, rx_ringsize);
  699. /* build Rx ring buffer */
  700. for (i = 0; i < RX_RING_SIZE; i++) {
  701. /* skb */
  702. mdp->rx_skbuff[i] = NULL;
  703. skb = netdev_alloc_skb(ndev, mdp->rx_buf_sz);
  704. mdp->rx_skbuff[i] = skb;
  705. if (skb == NULL)
  706. break;
  707. dma_map_single(&ndev->dev, skb->data, mdp->rx_buf_sz,
  708. DMA_FROM_DEVICE);
  709. sh_eth_set_receive_align(skb);
  710. /* RX descriptor */
  711. rxdesc = &mdp->rx_ring[i];
  712. rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
  713. rxdesc->status = cpu_to_edmac(mdp, RD_RACT | RD_RFP);
  714. /* The size of the buffer is 16 byte boundary. */
  715. rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
  716. /* Rx descriptor address set */
  717. if (i == 0) {
  718. sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
  719. if (sh_eth_is_gether(mdp))
  720. sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
  721. }
  722. }
  723. mdp->dirty_rx = (u32) (i - RX_RING_SIZE);
  724. /* Mark the last entry as wrapping the ring. */
  725. rxdesc->status |= cpu_to_edmac(mdp, RD_RDEL);
  726. memset(mdp->tx_ring, 0, tx_ringsize);
  727. /* build Tx ring buffer */
  728. for (i = 0; i < TX_RING_SIZE; i++) {
  729. mdp->tx_skbuff[i] = NULL;
  730. txdesc = &mdp->tx_ring[i];
  731. txdesc->status = cpu_to_edmac(mdp, TD_TFP);
  732. txdesc->buffer_length = 0;
  733. if (i == 0) {
  734. /* Tx descriptor address set */
  735. sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
  736. if (sh_eth_is_gether(mdp))
  737. sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
  738. }
  739. }
  740. txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
  741. }
  742. /* Get skb and descriptor buffer */
  743. static int sh_eth_ring_init(struct net_device *ndev)
  744. {
  745. struct sh_eth_private *mdp = netdev_priv(ndev);
  746. int rx_ringsize, tx_ringsize, ret = 0;
  747. /*
  748. * +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
  749. * card needs room to do 8 byte alignment, +2 so we can reserve
  750. * the first 2 bytes, and +16 gets room for the status word from the
  751. * card.
  752. */
  753. mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
  754. (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
  755. if (mdp->cd->rpadir)
  756. mdp->rx_buf_sz += NET_IP_ALIGN;
  757. /* Allocate RX and TX skb rings */
  758. mdp->rx_skbuff = kmalloc(sizeof(*mdp->rx_skbuff) * RX_RING_SIZE,
  759. GFP_KERNEL);
  760. if (!mdp->rx_skbuff) {
  761. dev_err(&ndev->dev, "Cannot allocate Rx skb\n");
  762. ret = -ENOMEM;
  763. return ret;
  764. }
  765. mdp->tx_skbuff = kmalloc(sizeof(*mdp->tx_skbuff) * TX_RING_SIZE,
  766. GFP_KERNEL);
  767. if (!mdp->tx_skbuff) {
  768. dev_err(&ndev->dev, "Cannot allocate Tx skb\n");
  769. ret = -ENOMEM;
  770. goto skb_ring_free;
  771. }
  772. /* Allocate all Rx descriptors. */
  773. rx_ringsize = sizeof(struct sh_eth_rxdesc) * RX_RING_SIZE;
  774. mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma,
  775. GFP_KERNEL);
  776. if (!mdp->rx_ring) {
  777. dev_err(&ndev->dev, "Cannot allocate Rx Ring (size %d bytes)\n",
  778. rx_ringsize);
  779. ret = -ENOMEM;
  780. goto desc_ring_free;
  781. }
  782. mdp->dirty_rx = 0;
  783. /* Allocate all Tx descriptors. */
  784. tx_ringsize = sizeof(struct sh_eth_txdesc) * TX_RING_SIZE;
  785. mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma,
  786. GFP_KERNEL);
  787. if (!mdp->tx_ring) {
  788. dev_err(&ndev->dev, "Cannot allocate Tx Ring (size %d bytes)\n",
  789. tx_ringsize);
  790. ret = -ENOMEM;
  791. goto desc_ring_free;
  792. }
  793. return ret;
  794. desc_ring_free:
  795. /* free DMA buffer */
  796. dma_free_coherent(NULL, rx_ringsize, mdp->rx_ring, mdp->rx_desc_dma);
  797. skb_ring_free:
  798. /* Free Rx and Tx skb ring buffer */
  799. sh_eth_ring_free(ndev);
  800. mdp->tx_ring = NULL;
  801. mdp->rx_ring = NULL;
  802. return ret;
  803. }
  804. static void sh_eth_free_dma_buffer(struct sh_eth_private *mdp)
  805. {
  806. int ringsize;
  807. if (mdp->rx_ring) {
  808. ringsize = sizeof(struct sh_eth_rxdesc) * RX_RING_SIZE;
  809. dma_free_coherent(NULL, ringsize, mdp->rx_ring,
  810. mdp->rx_desc_dma);
  811. mdp->rx_ring = NULL;
  812. }
  813. if (mdp->tx_ring) {
  814. ringsize = sizeof(struct sh_eth_txdesc) * TX_RING_SIZE;
  815. dma_free_coherent(NULL, ringsize, mdp->tx_ring,
  816. mdp->tx_desc_dma);
  817. mdp->tx_ring = NULL;
  818. }
  819. }
  820. static int sh_eth_dev_init(struct net_device *ndev)
  821. {
  822. int ret = 0;
  823. struct sh_eth_private *mdp = netdev_priv(ndev);
  824. u32 val;
  825. /* Soft Reset */
  826. ret = sh_eth_reset(ndev);
  827. if (ret)
  828. goto out;
  829. /* Descriptor format */
  830. sh_eth_ring_format(ndev);
  831. if (mdp->cd->rpadir)
  832. sh_eth_write(ndev, mdp->cd->rpadir_value, RPADIR);
  833. /* all sh_eth int mask */
  834. sh_eth_write(ndev, 0, EESIPR);
  835. #if defined(__LITTLE_ENDIAN)
  836. if (mdp->cd->hw_swap)
  837. sh_eth_write(ndev, EDMR_EL, EDMR);
  838. else
  839. #endif
  840. sh_eth_write(ndev, 0, EDMR);
  841. /* FIFO size set */
  842. sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
  843. sh_eth_write(ndev, 0, TFTR);
  844. /* Frame recv control */
  845. sh_eth_write(ndev, mdp->cd->rmcr_value, RMCR);
  846. sh_eth_write(ndev, DESC_I_RINT8 | DESC_I_RINT5 | DESC_I_TINT2, TRSCER);
  847. if (mdp->cd->bculr)
  848. sh_eth_write(ndev, 0x800, BCULR); /* Burst sycle set */
  849. sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
  850. if (!mdp->cd->no_trimd)
  851. sh_eth_write(ndev, 0, TRIMD);
  852. /* Recv frame limit set register */
  853. sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
  854. RFLR);
  855. sh_eth_write(ndev, sh_eth_read(ndev, EESR), EESR);
  856. sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
  857. /* PAUSE Prohibition */
  858. val = (sh_eth_read(ndev, ECMR) & ECMR_DM) |
  859. ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) | ECMR_TE | ECMR_RE;
  860. sh_eth_write(ndev, val, ECMR);
  861. if (mdp->cd->set_rate)
  862. mdp->cd->set_rate(ndev);
  863. /* E-MAC Status Register clear */
  864. sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
  865. /* E-MAC Interrupt Enable register */
  866. sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
  867. /* Set MAC address */
  868. update_mac_address(ndev);
  869. /* mask reset */
  870. if (mdp->cd->apr)
  871. sh_eth_write(ndev, APR_AP, APR);
  872. if (mdp->cd->mpr)
  873. sh_eth_write(ndev, MPR_MP, MPR);
  874. if (mdp->cd->tpauser)
  875. sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
  876. /* Setting the Rx mode will start the Rx process. */
  877. sh_eth_write(ndev, EDRRR_R, EDRRR);
  878. netif_start_queue(ndev);
  879. out:
  880. return ret;
  881. }
  882. /* free Tx skb function */
  883. static int sh_eth_txfree(struct net_device *ndev)
  884. {
  885. struct sh_eth_private *mdp = netdev_priv(ndev);
  886. struct sh_eth_txdesc *txdesc;
  887. int freeNum = 0;
  888. int entry = 0;
  889. for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
  890. entry = mdp->dirty_tx % TX_RING_SIZE;
  891. txdesc = &mdp->tx_ring[entry];
  892. if (txdesc->status & cpu_to_edmac(mdp, TD_TACT))
  893. break;
  894. /* Free the original skb. */
  895. if (mdp->tx_skbuff[entry]) {
  896. dma_unmap_single(&ndev->dev, txdesc->addr,
  897. txdesc->buffer_length, DMA_TO_DEVICE);
  898. dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
  899. mdp->tx_skbuff[entry] = NULL;
  900. freeNum++;
  901. }
  902. txdesc->status = cpu_to_edmac(mdp, TD_TFP);
  903. if (entry >= TX_RING_SIZE - 1)
  904. txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
  905. ndev->stats.tx_packets++;
  906. ndev->stats.tx_bytes += txdesc->buffer_length;
  907. }
  908. return freeNum;
  909. }
  910. /* Packet receive function */
  911. static int sh_eth_rx(struct net_device *ndev, u32 intr_status)
  912. {
  913. struct sh_eth_private *mdp = netdev_priv(ndev);
  914. struct sh_eth_rxdesc *rxdesc;
  915. int entry = mdp->cur_rx % RX_RING_SIZE;
  916. int boguscnt = (mdp->dirty_rx + RX_RING_SIZE) - mdp->cur_rx;
  917. struct sk_buff *skb;
  918. u16 pkt_len = 0;
  919. u32 desc_status;
  920. rxdesc = &mdp->rx_ring[entry];
  921. while (!(rxdesc->status & cpu_to_edmac(mdp, RD_RACT))) {
  922. desc_status = edmac_to_cpu(mdp, rxdesc->status);
  923. pkt_len = rxdesc->frame_length;
  924. #if defined(CONFIG_ARCH_R8A7740)
  925. desc_status >>= 16;
  926. #endif
  927. if (--boguscnt < 0)
  928. break;
  929. if (!(desc_status & RDFEND))
  930. ndev->stats.rx_length_errors++;
  931. if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
  932. RD_RFS5 | RD_RFS6 | RD_RFS10)) {
  933. ndev->stats.rx_errors++;
  934. if (desc_status & RD_RFS1)
  935. ndev->stats.rx_crc_errors++;
  936. if (desc_status & RD_RFS2)
  937. ndev->stats.rx_frame_errors++;
  938. if (desc_status & RD_RFS3)
  939. ndev->stats.rx_length_errors++;
  940. if (desc_status & RD_RFS4)
  941. ndev->stats.rx_length_errors++;
  942. if (desc_status & RD_RFS6)
  943. ndev->stats.rx_missed_errors++;
  944. if (desc_status & RD_RFS10)
  945. ndev->stats.rx_over_errors++;
  946. } else {
  947. if (!mdp->cd->hw_swap)
  948. sh_eth_soft_swap(
  949. phys_to_virt(ALIGN(rxdesc->addr, 4)),
  950. pkt_len + 2);
  951. skb = mdp->rx_skbuff[entry];
  952. mdp->rx_skbuff[entry] = NULL;
  953. if (mdp->cd->rpadir)
  954. skb_reserve(skb, NET_IP_ALIGN);
  955. skb_put(skb, pkt_len);
  956. skb->protocol = eth_type_trans(skb, ndev);
  957. netif_rx(skb);
  958. ndev->stats.rx_packets++;
  959. ndev->stats.rx_bytes += pkt_len;
  960. }
  961. rxdesc->status |= cpu_to_edmac(mdp, RD_RACT);
  962. entry = (++mdp->cur_rx) % RX_RING_SIZE;
  963. rxdesc = &mdp->rx_ring[entry];
  964. }
  965. /* Refill the Rx ring buffers. */
  966. for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
  967. entry = mdp->dirty_rx % RX_RING_SIZE;
  968. rxdesc = &mdp->rx_ring[entry];
  969. /* The size of the buffer is 16 byte boundary. */
  970. rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
  971. if (mdp->rx_skbuff[entry] == NULL) {
  972. skb = netdev_alloc_skb(ndev, mdp->rx_buf_sz);
  973. mdp->rx_skbuff[entry] = skb;
  974. if (skb == NULL)
  975. break; /* Better luck next round. */
  976. dma_map_single(&ndev->dev, skb->data, mdp->rx_buf_sz,
  977. DMA_FROM_DEVICE);
  978. sh_eth_set_receive_align(skb);
  979. skb_checksum_none_assert(skb);
  980. rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
  981. }
  982. if (entry >= RX_RING_SIZE - 1)
  983. rxdesc->status |=
  984. cpu_to_edmac(mdp, RD_RACT | RD_RFP | RD_RDEL);
  985. else
  986. rxdesc->status |=
  987. cpu_to_edmac(mdp, RD_RACT | RD_RFP);
  988. }
  989. /* Restart Rx engine if stopped. */
  990. /* If we don't need to check status, don't. -KDU */
  991. if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) {
  992. /* fix the values for the next receiving if RDE is set */
  993. if (intr_status & EESR_RDE)
  994. mdp->cur_rx = mdp->dirty_rx =
  995. (sh_eth_read(ndev, RDFAR) -
  996. sh_eth_read(ndev, RDLAR)) >> 4;
  997. sh_eth_write(ndev, EDRRR_R, EDRRR);
  998. }
  999. return 0;
  1000. }
  1001. static void sh_eth_rcv_snd_disable(struct net_device *ndev)
  1002. {
  1003. /* disable tx and rx */
  1004. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) &
  1005. ~(ECMR_RE | ECMR_TE), ECMR);
  1006. }
  1007. static void sh_eth_rcv_snd_enable(struct net_device *ndev)
  1008. {
  1009. /* enable tx and rx */
  1010. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) |
  1011. (ECMR_RE | ECMR_TE), ECMR);
  1012. }
  1013. /* error control function */
  1014. static void sh_eth_error(struct net_device *ndev, int intr_status)
  1015. {
  1016. struct sh_eth_private *mdp = netdev_priv(ndev);
  1017. u32 felic_stat;
  1018. u32 link_stat;
  1019. u32 mask;
  1020. if (intr_status & EESR_ECI) {
  1021. felic_stat = sh_eth_read(ndev, ECSR);
  1022. sh_eth_write(ndev, felic_stat, ECSR); /* clear int */
  1023. if (felic_stat & ECSR_ICD)
  1024. ndev->stats.tx_carrier_errors++;
  1025. if (felic_stat & ECSR_LCHNG) {
  1026. /* Link Changed */
  1027. if (mdp->cd->no_psr || mdp->no_ether_link) {
  1028. if (mdp->link == PHY_DOWN)
  1029. link_stat = 0;
  1030. else
  1031. link_stat = PHY_ST_LINK;
  1032. } else {
  1033. link_stat = (sh_eth_read(ndev, PSR));
  1034. if (mdp->ether_link_active_low)
  1035. link_stat = ~link_stat;
  1036. }
  1037. if (!(link_stat & PHY_ST_LINK))
  1038. sh_eth_rcv_snd_disable(ndev);
  1039. else {
  1040. /* Link Up */
  1041. sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) &
  1042. ~DMAC_M_ECI, EESIPR);
  1043. /*clear int */
  1044. sh_eth_write(ndev, sh_eth_read(ndev, ECSR),
  1045. ECSR);
  1046. sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) |
  1047. DMAC_M_ECI, EESIPR);
  1048. /* enable tx and rx */
  1049. sh_eth_rcv_snd_enable(ndev);
  1050. }
  1051. }
  1052. }
  1053. if (intr_status & EESR_TWB) {
  1054. /* Write buck end. unused write back interrupt */
  1055. if (intr_status & EESR_TABT) /* Transmit Abort int */
  1056. ndev->stats.tx_aborted_errors++;
  1057. if (netif_msg_tx_err(mdp))
  1058. dev_err(&ndev->dev, "Transmit Abort\n");
  1059. }
  1060. if (intr_status & EESR_RABT) {
  1061. /* Receive Abort int */
  1062. if (intr_status & EESR_RFRMER) {
  1063. /* Receive Frame Overflow int */
  1064. ndev->stats.rx_frame_errors++;
  1065. if (netif_msg_rx_err(mdp))
  1066. dev_err(&ndev->dev, "Receive Abort\n");
  1067. }
  1068. }
  1069. if (intr_status & EESR_TDE) {
  1070. /* Transmit Descriptor Empty int */
  1071. ndev->stats.tx_fifo_errors++;
  1072. if (netif_msg_tx_err(mdp))
  1073. dev_err(&ndev->dev, "Transmit Descriptor Empty\n");
  1074. }
  1075. if (intr_status & EESR_TFE) {
  1076. /* FIFO under flow */
  1077. ndev->stats.tx_fifo_errors++;
  1078. if (netif_msg_tx_err(mdp))
  1079. dev_err(&ndev->dev, "Transmit FIFO Under flow\n");
  1080. }
  1081. if (intr_status & EESR_RDE) {
  1082. /* Receive Descriptor Empty int */
  1083. ndev->stats.rx_over_errors++;
  1084. if (netif_msg_rx_err(mdp))
  1085. dev_err(&ndev->dev, "Receive Descriptor Empty\n");
  1086. }
  1087. if (intr_status & EESR_RFE) {
  1088. /* Receive FIFO Overflow int */
  1089. ndev->stats.rx_fifo_errors++;
  1090. if (netif_msg_rx_err(mdp))
  1091. dev_err(&ndev->dev, "Receive FIFO Overflow\n");
  1092. }
  1093. if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
  1094. /* Address Error */
  1095. ndev->stats.tx_fifo_errors++;
  1096. if (netif_msg_tx_err(mdp))
  1097. dev_err(&ndev->dev, "Address Error\n");
  1098. }
  1099. mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
  1100. if (mdp->cd->no_ade)
  1101. mask &= ~EESR_ADE;
  1102. if (intr_status & mask) {
  1103. /* Tx error */
  1104. u32 edtrr = sh_eth_read(ndev, EDTRR);
  1105. /* dmesg */
  1106. dev_err(&ndev->dev, "TX error. status=%8.8x cur_tx=%8.8x ",
  1107. intr_status, mdp->cur_tx);
  1108. dev_err(&ndev->dev, "dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
  1109. mdp->dirty_tx, (u32) ndev->state, edtrr);
  1110. /* dirty buffer free */
  1111. sh_eth_txfree(ndev);
  1112. /* SH7712 BUG */
  1113. if (edtrr ^ sh_eth_get_edtrr_trns(mdp)) {
  1114. /* tx dma start */
  1115. sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
  1116. }
  1117. /* wakeup */
  1118. netif_wake_queue(ndev);
  1119. }
  1120. }
  1121. static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
  1122. {
  1123. struct net_device *ndev = netdev;
  1124. struct sh_eth_private *mdp = netdev_priv(ndev);
  1125. struct sh_eth_cpu_data *cd = mdp->cd;
  1126. irqreturn_t ret = IRQ_NONE;
  1127. u32 intr_status = 0;
  1128. spin_lock(&mdp->lock);
  1129. /* Get interrpt stat */
  1130. intr_status = sh_eth_read(ndev, EESR);
  1131. /* Clear interrupt */
  1132. if (intr_status & (EESR_FRC | EESR_RMAF | EESR_RRF |
  1133. EESR_RTLF | EESR_RTSF | EESR_PRE | EESR_CERF |
  1134. cd->tx_check | cd->eesr_err_check)) {
  1135. sh_eth_write(ndev, intr_status, EESR);
  1136. ret = IRQ_HANDLED;
  1137. } else
  1138. goto other_irq;
  1139. if (intr_status & (EESR_FRC | /* Frame recv*/
  1140. EESR_RMAF | /* Multi cast address recv*/
  1141. EESR_RRF | /* Bit frame recv */
  1142. EESR_RTLF | /* Long frame recv*/
  1143. EESR_RTSF | /* short frame recv */
  1144. EESR_PRE | /* PHY-LSI recv error */
  1145. EESR_CERF)){ /* recv frame CRC error */
  1146. sh_eth_rx(ndev, intr_status);
  1147. }
  1148. /* Tx Check */
  1149. if (intr_status & cd->tx_check) {
  1150. sh_eth_txfree(ndev);
  1151. netif_wake_queue(ndev);
  1152. }
  1153. if (intr_status & cd->eesr_err_check)
  1154. sh_eth_error(ndev, intr_status);
  1155. other_irq:
  1156. spin_unlock(&mdp->lock);
  1157. return ret;
  1158. }
  1159. /* PHY state control function */
  1160. static void sh_eth_adjust_link(struct net_device *ndev)
  1161. {
  1162. struct sh_eth_private *mdp = netdev_priv(ndev);
  1163. struct phy_device *phydev = mdp->phydev;
  1164. int new_state = 0;
  1165. if (phydev->link != PHY_DOWN) {
  1166. if (phydev->duplex != mdp->duplex) {
  1167. new_state = 1;
  1168. mdp->duplex = phydev->duplex;
  1169. if (mdp->cd->set_duplex)
  1170. mdp->cd->set_duplex(ndev);
  1171. }
  1172. if (phydev->speed != mdp->speed) {
  1173. new_state = 1;
  1174. mdp->speed = phydev->speed;
  1175. if (mdp->cd->set_rate)
  1176. mdp->cd->set_rate(ndev);
  1177. }
  1178. if (mdp->link == PHY_DOWN) {
  1179. sh_eth_write(ndev,
  1180. (sh_eth_read(ndev, ECMR) & ~ECMR_TXF), ECMR);
  1181. new_state = 1;
  1182. mdp->link = phydev->link;
  1183. }
  1184. } else if (mdp->link) {
  1185. new_state = 1;
  1186. mdp->link = PHY_DOWN;
  1187. mdp->speed = 0;
  1188. mdp->duplex = -1;
  1189. }
  1190. if (new_state && netif_msg_link(mdp))
  1191. phy_print_status(phydev);
  1192. }
  1193. /* PHY init function */
  1194. static int sh_eth_phy_init(struct net_device *ndev)
  1195. {
  1196. struct sh_eth_private *mdp = netdev_priv(ndev);
  1197. char phy_id[MII_BUS_ID_SIZE + 3];
  1198. struct phy_device *phydev = NULL;
  1199. snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
  1200. mdp->mii_bus->id , mdp->phy_id);
  1201. mdp->link = PHY_DOWN;
  1202. mdp->speed = 0;
  1203. mdp->duplex = -1;
  1204. /* Try connect to PHY */
  1205. phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
  1206. 0, mdp->phy_interface);
  1207. if (IS_ERR(phydev)) {
  1208. dev_err(&ndev->dev, "phy_connect failed\n");
  1209. return PTR_ERR(phydev);
  1210. }
  1211. dev_info(&ndev->dev, "attached phy %i to driver %s\n",
  1212. phydev->addr, phydev->drv->name);
  1213. mdp->phydev = phydev;
  1214. return 0;
  1215. }
  1216. /* PHY control start function */
  1217. static int sh_eth_phy_start(struct net_device *ndev)
  1218. {
  1219. struct sh_eth_private *mdp = netdev_priv(ndev);
  1220. int ret;
  1221. ret = sh_eth_phy_init(ndev);
  1222. if (ret)
  1223. return ret;
  1224. /* reset phy - this also wakes it from PDOWN */
  1225. phy_write(mdp->phydev, MII_BMCR, BMCR_RESET);
  1226. phy_start(mdp->phydev);
  1227. return 0;
  1228. }
  1229. static int sh_eth_get_settings(struct net_device *ndev,
  1230. struct ethtool_cmd *ecmd)
  1231. {
  1232. struct sh_eth_private *mdp = netdev_priv(ndev);
  1233. unsigned long flags;
  1234. int ret;
  1235. spin_lock_irqsave(&mdp->lock, flags);
  1236. ret = phy_ethtool_gset(mdp->phydev, ecmd);
  1237. spin_unlock_irqrestore(&mdp->lock, flags);
  1238. return ret;
  1239. }
  1240. static int sh_eth_set_settings(struct net_device *ndev,
  1241. struct ethtool_cmd *ecmd)
  1242. {
  1243. struct sh_eth_private *mdp = netdev_priv(ndev);
  1244. unsigned long flags;
  1245. int ret;
  1246. spin_lock_irqsave(&mdp->lock, flags);
  1247. /* disable tx and rx */
  1248. sh_eth_rcv_snd_disable(ndev);
  1249. ret = phy_ethtool_sset(mdp->phydev, ecmd);
  1250. if (ret)
  1251. goto error_exit;
  1252. if (ecmd->duplex == DUPLEX_FULL)
  1253. mdp->duplex = 1;
  1254. else
  1255. mdp->duplex = 0;
  1256. if (mdp->cd->set_duplex)
  1257. mdp->cd->set_duplex(ndev);
  1258. error_exit:
  1259. mdelay(1);
  1260. /* enable tx and rx */
  1261. sh_eth_rcv_snd_enable(ndev);
  1262. spin_unlock_irqrestore(&mdp->lock, flags);
  1263. return ret;
  1264. }
  1265. static int sh_eth_nway_reset(struct net_device *ndev)
  1266. {
  1267. struct sh_eth_private *mdp = netdev_priv(ndev);
  1268. unsigned long flags;
  1269. int ret;
  1270. spin_lock_irqsave(&mdp->lock, flags);
  1271. ret = phy_start_aneg(mdp->phydev);
  1272. spin_unlock_irqrestore(&mdp->lock, flags);
  1273. return ret;
  1274. }
  1275. static u32 sh_eth_get_msglevel(struct net_device *ndev)
  1276. {
  1277. struct sh_eth_private *mdp = netdev_priv(ndev);
  1278. return mdp->msg_enable;
  1279. }
  1280. static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
  1281. {
  1282. struct sh_eth_private *mdp = netdev_priv(ndev);
  1283. mdp->msg_enable = value;
  1284. }
  1285. static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
  1286. "rx_current", "tx_current",
  1287. "rx_dirty", "tx_dirty",
  1288. };
  1289. #define SH_ETH_STATS_LEN ARRAY_SIZE(sh_eth_gstrings_stats)
  1290. static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
  1291. {
  1292. switch (sset) {
  1293. case ETH_SS_STATS:
  1294. return SH_ETH_STATS_LEN;
  1295. default:
  1296. return -EOPNOTSUPP;
  1297. }
  1298. }
  1299. static void sh_eth_get_ethtool_stats(struct net_device *ndev,
  1300. struct ethtool_stats *stats, u64 *data)
  1301. {
  1302. struct sh_eth_private *mdp = netdev_priv(ndev);
  1303. int i = 0;
  1304. /* device-specific stats */
  1305. data[i++] = mdp->cur_rx;
  1306. data[i++] = mdp->cur_tx;
  1307. data[i++] = mdp->dirty_rx;
  1308. data[i++] = mdp->dirty_tx;
  1309. }
  1310. static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
  1311. {
  1312. switch (stringset) {
  1313. case ETH_SS_STATS:
  1314. memcpy(data, *sh_eth_gstrings_stats,
  1315. sizeof(sh_eth_gstrings_stats));
  1316. break;
  1317. }
  1318. }
  1319. static const struct ethtool_ops sh_eth_ethtool_ops = {
  1320. .get_settings = sh_eth_get_settings,
  1321. .set_settings = sh_eth_set_settings,
  1322. .nway_reset = sh_eth_nway_reset,
  1323. .get_msglevel = sh_eth_get_msglevel,
  1324. .set_msglevel = sh_eth_set_msglevel,
  1325. .get_link = ethtool_op_get_link,
  1326. .get_strings = sh_eth_get_strings,
  1327. .get_ethtool_stats = sh_eth_get_ethtool_stats,
  1328. .get_sset_count = sh_eth_get_sset_count,
  1329. };
  1330. /* network device open function */
  1331. static int sh_eth_open(struct net_device *ndev)
  1332. {
  1333. int ret = 0;
  1334. struct sh_eth_private *mdp = netdev_priv(ndev);
  1335. pm_runtime_get_sync(&mdp->pdev->dev);
  1336. ret = request_irq(ndev->irq, sh_eth_interrupt,
  1337. #if defined(CONFIG_CPU_SUBTYPE_SH7763) || \
  1338. defined(CONFIG_CPU_SUBTYPE_SH7764) || \
  1339. defined(CONFIG_CPU_SUBTYPE_SH7757)
  1340. IRQF_SHARED,
  1341. #else
  1342. 0,
  1343. #endif
  1344. ndev->name, ndev);
  1345. if (ret) {
  1346. dev_err(&ndev->dev, "Can not assign IRQ number\n");
  1347. return ret;
  1348. }
  1349. /* Descriptor set */
  1350. ret = sh_eth_ring_init(ndev);
  1351. if (ret)
  1352. goto out_free_irq;
  1353. /* device init */
  1354. ret = sh_eth_dev_init(ndev);
  1355. if (ret)
  1356. goto out_free_irq;
  1357. /* PHY control start*/
  1358. ret = sh_eth_phy_start(ndev);
  1359. if (ret)
  1360. goto out_free_irq;
  1361. return ret;
  1362. out_free_irq:
  1363. free_irq(ndev->irq, ndev);
  1364. pm_runtime_put_sync(&mdp->pdev->dev);
  1365. return ret;
  1366. }
  1367. /* Timeout function */
  1368. static void sh_eth_tx_timeout(struct net_device *ndev)
  1369. {
  1370. struct sh_eth_private *mdp = netdev_priv(ndev);
  1371. struct sh_eth_rxdesc *rxdesc;
  1372. int i;
  1373. netif_stop_queue(ndev);
  1374. if (netif_msg_timer(mdp))
  1375. dev_err(&ndev->dev, "%s: transmit timed out, status %8.8x,"
  1376. " resetting...\n", ndev->name, (int)sh_eth_read(ndev, EESR));
  1377. /* tx_errors count up */
  1378. ndev->stats.tx_errors++;
  1379. /* Free all the skbuffs in the Rx queue. */
  1380. for (i = 0; i < RX_RING_SIZE; i++) {
  1381. rxdesc = &mdp->rx_ring[i];
  1382. rxdesc->status = 0;
  1383. rxdesc->addr = 0xBADF00D0;
  1384. if (mdp->rx_skbuff[i])
  1385. dev_kfree_skb(mdp->rx_skbuff[i]);
  1386. mdp->rx_skbuff[i] = NULL;
  1387. }
  1388. for (i = 0; i < TX_RING_SIZE; i++) {
  1389. if (mdp->tx_skbuff[i])
  1390. dev_kfree_skb(mdp->tx_skbuff[i]);
  1391. mdp->tx_skbuff[i] = NULL;
  1392. }
  1393. /* device init */
  1394. sh_eth_dev_init(ndev);
  1395. }
  1396. /* Packet transmit function */
  1397. static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
  1398. {
  1399. struct sh_eth_private *mdp = netdev_priv(ndev);
  1400. struct sh_eth_txdesc *txdesc;
  1401. u32 entry;
  1402. unsigned long flags;
  1403. spin_lock_irqsave(&mdp->lock, flags);
  1404. if ((mdp->cur_tx - mdp->dirty_tx) >= (TX_RING_SIZE - 4)) {
  1405. if (!sh_eth_txfree(ndev)) {
  1406. if (netif_msg_tx_queued(mdp))
  1407. dev_warn(&ndev->dev, "TxFD exhausted.\n");
  1408. netif_stop_queue(ndev);
  1409. spin_unlock_irqrestore(&mdp->lock, flags);
  1410. return NETDEV_TX_BUSY;
  1411. }
  1412. }
  1413. spin_unlock_irqrestore(&mdp->lock, flags);
  1414. entry = mdp->cur_tx % TX_RING_SIZE;
  1415. mdp->tx_skbuff[entry] = skb;
  1416. txdesc = &mdp->tx_ring[entry];
  1417. /* soft swap. */
  1418. if (!mdp->cd->hw_swap)
  1419. sh_eth_soft_swap(phys_to_virt(ALIGN(txdesc->addr, 4)),
  1420. skb->len + 2);
  1421. txdesc->addr = dma_map_single(&ndev->dev, skb->data, skb->len,
  1422. DMA_TO_DEVICE);
  1423. if (skb->len < ETHERSMALL)
  1424. txdesc->buffer_length = ETHERSMALL;
  1425. else
  1426. txdesc->buffer_length = skb->len;
  1427. if (entry >= TX_RING_SIZE - 1)
  1428. txdesc->status |= cpu_to_edmac(mdp, TD_TACT | TD_TDLE);
  1429. else
  1430. txdesc->status |= cpu_to_edmac(mdp, TD_TACT);
  1431. mdp->cur_tx++;
  1432. if (!(sh_eth_read(ndev, EDTRR) & sh_eth_get_edtrr_trns(mdp)))
  1433. sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
  1434. return NETDEV_TX_OK;
  1435. }
  1436. /* device close function */
  1437. static int sh_eth_close(struct net_device *ndev)
  1438. {
  1439. struct sh_eth_private *mdp = netdev_priv(ndev);
  1440. netif_stop_queue(ndev);
  1441. /* Disable interrupts by clearing the interrupt mask. */
  1442. sh_eth_write(ndev, 0x0000, EESIPR);
  1443. /* Stop the chip's Tx and Rx processes. */
  1444. sh_eth_write(ndev, 0, EDTRR);
  1445. sh_eth_write(ndev, 0, EDRRR);
  1446. /* PHY Disconnect */
  1447. if (mdp->phydev) {
  1448. phy_stop(mdp->phydev);
  1449. phy_disconnect(mdp->phydev);
  1450. }
  1451. free_irq(ndev->irq, ndev);
  1452. /* Free all the skbuffs in the Rx queue. */
  1453. sh_eth_ring_free(ndev);
  1454. /* free DMA buffer */
  1455. sh_eth_free_dma_buffer(mdp);
  1456. pm_runtime_put_sync(&mdp->pdev->dev);
  1457. return 0;
  1458. }
  1459. static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
  1460. {
  1461. struct sh_eth_private *mdp = netdev_priv(ndev);
  1462. pm_runtime_get_sync(&mdp->pdev->dev);
  1463. ndev->stats.tx_dropped += sh_eth_read(ndev, TROCR);
  1464. sh_eth_write(ndev, 0, TROCR); /* (write clear) */
  1465. ndev->stats.collisions += sh_eth_read(ndev, CDCR);
  1466. sh_eth_write(ndev, 0, CDCR); /* (write clear) */
  1467. ndev->stats.tx_carrier_errors += sh_eth_read(ndev, LCCR);
  1468. sh_eth_write(ndev, 0, LCCR); /* (write clear) */
  1469. if (sh_eth_is_gether(mdp)) {
  1470. ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CERCR);
  1471. sh_eth_write(ndev, 0, CERCR); /* (write clear) */
  1472. ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CEECR);
  1473. sh_eth_write(ndev, 0, CEECR); /* (write clear) */
  1474. } else {
  1475. ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CNDCR);
  1476. sh_eth_write(ndev, 0, CNDCR); /* (write clear) */
  1477. }
  1478. pm_runtime_put_sync(&mdp->pdev->dev);
  1479. return &ndev->stats;
  1480. }
  1481. /* ioctl to device function */
  1482. static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq,
  1483. int cmd)
  1484. {
  1485. struct sh_eth_private *mdp = netdev_priv(ndev);
  1486. struct phy_device *phydev = mdp->phydev;
  1487. if (!netif_running(ndev))
  1488. return -EINVAL;
  1489. if (!phydev)
  1490. return -ENODEV;
  1491. return phy_mii_ioctl(phydev, rq, cmd);
  1492. }
  1493. #if defined(SH_ETH_HAS_TSU)
  1494. /* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */
  1495. static void *sh_eth_tsu_get_post_reg_offset(struct sh_eth_private *mdp,
  1496. int entry)
  1497. {
  1498. return sh_eth_tsu_get_offset(mdp, TSU_POST1) + (entry / 8 * 4);
  1499. }
  1500. static u32 sh_eth_tsu_get_post_mask(int entry)
  1501. {
  1502. return 0x0f << (28 - ((entry % 8) * 4));
  1503. }
  1504. static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry)
  1505. {
  1506. return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4));
  1507. }
  1508. static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev,
  1509. int entry)
  1510. {
  1511. struct sh_eth_private *mdp = netdev_priv(ndev);
  1512. u32 tmp;
  1513. void *reg_offset;
  1514. reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
  1515. tmp = ioread32(reg_offset);
  1516. iowrite32(tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg_offset);
  1517. }
  1518. static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev,
  1519. int entry)
  1520. {
  1521. struct sh_eth_private *mdp = netdev_priv(ndev);
  1522. u32 post_mask, ref_mask, tmp;
  1523. void *reg_offset;
  1524. reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
  1525. post_mask = sh_eth_tsu_get_post_mask(entry);
  1526. ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask;
  1527. tmp = ioread32(reg_offset);
  1528. iowrite32(tmp & ~post_mask, reg_offset);
  1529. /* If other port enables, the function returns "true" */
  1530. return tmp & ref_mask;
  1531. }
  1532. static int sh_eth_tsu_busy(struct net_device *ndev)
  1533. {
  1534. int timeout = SH_ETH_TSU_TIMEOUT_MS * 100;
  1535. struct sh_eth_private *mdp = netdev_priv(ndev);
  1536. while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) {
  1537. udelay(10);
  1538. timeout--;
  1539. if (timeout <= 0) {
  1540. dev_err(&ndev->dev, "%s: timeout\n", __func__);
  1541. return -ETIMEDOUT;
  1542. }
  1543. }
  1544. return 0;
  1545. }
  1546. static int sh_eth_tsu_write_entry(struct net_device *ndev, void *reg,
  1547. const u8 *addr)
  1548. {
  1549. u32 val;
  1550. val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3];
  1551. iowrite32(val, reg);
  1552. if (sh_eth_tsu_busy(ndev) < 0)
  1553. return -EBUSY;
  1554. val = addr[4] << 8 | addr[5];
  1555. iowrite32(val, reg + 4);
  1556. if (sh_eth_tsu_busy(ndev) < 0)
  1557. return -EBUSY;
  1558. return 0;
  1559. }
  1560. static void sh_eth_tsu_read_entry(void *reg, u8 *addr)
  1561. {
  1562. u32 val;
  1563. val = ioread32(reg);
  1564. addr[0] = (val >> 24) & 0xff;
  1565. addr[1] = (val >> 16) & 0xff;
  1566. addr[2] = (val >> 8) & 0xff;
  1567. addr[3] = val & 0xff;
  1568. val = ioread32(reg + 4);
  1569. addr[4] = (val >> 8) & 0xff;
  1570. addr[5] = val & 0xff;
  1571. }
  1572. static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr)
  1573. {
  1574. struct sh_eth_private *mdp = netdev_priv(ndev);
  1575. void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
  1576. int i;
  1577. u8 c_addr[ETH_ALEN];
  1578. for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
  1579. sh_eth_tsu_read_entry(reg_offset, c_addr);
  1580. if (memcmp(addr, c_addr, ETH_ALEN) == 0)
  1581. return i;
  1582. }
  1583. return -ENOENT;
  1584. }
  1585. static int sh_eth_tsu_find_empty(struct net_device *ndev)
  1586. {
  1587. u8 blank[ETH_ALEN];
  1588. int entry;
  1589. memset(blank, 0, sizeof(blank));
  1590. entry = sh_eth_tsu_find_entry(ndev, blank);
  1591. return (entry < 0) ? -ENOMEM : entry;
  1592. }
  1593. static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev,
  1594. int entry)
  1595. {
  1596. struct sh_eth_private *mdp = netdev_priv(ndev);
  1597. void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
  1598. int ret;
  1599. u8 blank[ETH_ALEN];
  1600. sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) &
  1601. ~(1 << (31 - entry)), TSU_TEN);
  1602. memset(blank, 0, sizeof(blank));
  1603. ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank);
  1604. if (ret < 0)
  1605. return ret;
  1606. return 0;
  1607. }
  1608. static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr)
  1609. {
  1610. struct sh_eth_private *mdp = netdev_priv(ndev);
  1611. void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
  1612. int i, ret;
  1613. if (!mdp->cd->tsu)
  1614. return 0;
  1615. i = sh_eth_tsu_find_entry(ndev, addr);
  1616. if (i < 0) {
  1617. /* No entry found, create one */
  1618. i = sh_eth_tsu_find_empty(ndev);
  1619. if (i < 0)
  1620. return -ENOMEM;
  1621. ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr);
  1622. if (ret < 0)
  1623. return ret;
  1624. /* Enable the entry */
  1625. sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) |
  1626. (1 << (31 - i)), TSU_TEN);
  1627. }
  1628. /* Entry found or created, enable POST */
  1629. sh_eth_tsu_enable_cam_entry_post(ndev, i);
  1630. return 0;
  1631. }
  1632. static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr)
  1633. {
  1634. struct sh_eth_private *mdp = netdev_priv(ndev);
  1635. int i, ret;
  1636. if (!mdp->cd->tsu)
  1637. return 0;
  1638. i = sh_eth_tsu_find_entry(ndev, addr);
  1639. if (i) {
  1640. /* Entry found */
  1641. if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
  1642. goto done;
  1643. /* Disable the entry if both ports was disabled */
  1644. ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
  1645. if (ret < 0)
  1646. return ret;
  1647. }
  1648. done:
  1649. return 0;
  1650. }
  1651. static int sh_eth_tsu_purge_all(struct net_device *ndev)
  1652. {
  1653. struct sh_eth_private *mdp = netdev_priv(ndev);
  1654. int i, ret;
  1655. if (unlikely(!mdp->cd->tsu))
  1656. return 0;
  1657. for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) {
  1658. if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
  1659. continue;
  1660. /* Disable the entry if both ports was disabled */
  1661. ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
  1662. if (ret < 0)
  1663. return ret;
  1664. }
  1665. return 0;
  1666. }
  1667. static void sh_eth_tsu_purge_mcast(struct net_device *ndev)
  1668. {
  1669. struct sh_eth_private *mdp = netdev_priv(ndev);
  1670. u8 addr[ETH_ALEN];
  1671. void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
  1672. int i;
  1673. if (unlikely(!mdp->cd->tsu))
  1674. return;
  1675. for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
  1676. sh_eth_tsu_read_entry(reg_offset, addr);
  1677. if (is_multicast_ether_addr(addr))
  1678. sh_eth_tsu_del_entry(ndev, addr);
  1679. }
  1680. }
  1681. /* Multicast reception directions set */
  1682. static void sh_eth_set_multicast_list(struct net_device *ndev)
  1683. {
  1684. struct sh_eth_private *mdp = netdev_priv(ndev);
  1685. u32 ecmr_bits;
  1686. int mcast_all = 0;
  1687. unsigned long flags;
  1688. spin_lock_irqsave(&mdp->lock, flags);
  1689. /*
  1690. * Initial condition is MCT = 1, PRM = 0.
  1691. * Depending on ndev->flags, set PRM or clear MCT
  1692. */
  1693. ecmr_bits = (sh_eth_read(ndev, ECMR) & ~ECMR_PRM) | ECMR_MCT;
  1694. if (!(ndev->flags & IFF_MULTICAST)) {
  1695. sh_eth_tsu_purge_mcast(ndev);
  1696. mcast_all = 1;
  1697. }
  1698. if (ndev->flags & IFF_ALLMULTI) {
  1699. sh_eth_tsu_purge_mcast(ndev);
  1700. ecmr_bits &= ~ECMR_MCT;
  1701. mcast_all = 1;
  1702. }
  1703. if (ndev->flags & IFF_PROMISC) {
  1704. sh_eth_tsu_purge_all(ndev);
  1705. ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM;
  1706. } else if (mdp->cd->tsu) {
  1707. struct netdev_hw_addr *ha;
  1708. netdev_for_each_mc_addr(ha, ndev) {
  1709. if (mcast_all && is_multicast_ether_addr(ha->addr))
  1710. continue;
  1711. if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) {
  1712. if (!mcast_all) {
  1713. sh_eth_tsu_purge_mcast(ndev);
  1714. ecmr_bits &= ~ECMR_MCT;
  1715. mcast_all = 1;
  1716. }
  1717. }
  1718. }
  1719. } else {
  1720. /* Normal, unicast/broadcast-only mode. */
  1721. ecmr_bits = (ecmr_bits & ~ECMR_PRM) | ECMR_MCT;
  1722. }
  1723. /* update the ethernet mode */
  1724. sh_eth_write(ndev, ecmr_bits, ECMR);
  1725. spin_unlock_irqrestore(&mdp->lock, flags);
  1726. }
  1727. static int sh_eth_get_vtag_index(struct sh_eth_private *mdp)
  1728. {
  1729. if (!mdp->port)
  1730. return TSU_VTAG0;
  1731. else
  1732. return TSU_VTAG1;
  1733. }
  1734. static int sh_eth_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
  1735. {
  1736. struct sh_eth_private *mdp = netdev_priv(ndev);
  1737. int vtag_reg_index = sh_eth_get_vtag_index(mdp);
  1738. if (unlikely(!mdp->cd->tsu))
  1739. return -EPERM;
  1740. /* No filtering if vid = 0 */
  1741. if (!vid)
  1742. return 0;
  1743. mdp->vlan_num_ids++;
  1744. /*
  1745. * The controller has one VLAN tag HW filter. So, if the filter is
  1746. * already enabled, the driver disables it and the filte
  1747. */
  1748. if (mdp->vlan_num_ids > 1) {
  1749. /* disable VLAN filter */
  1750. sh_eth_tsu_write(mdp, 0, vtag_reg_index);
  1751. return 0;
  1752. }
  1753. sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK),
  1754. vtag_reg_index);
  1755. return 0;
  1756. }
  1757. static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
  1758. {
  1759. struct sh_eth_private *mdp = netdev_priv(ndev);
  1760. int vtag_reg_index = sh_eth_get_vtag_index(mdp);
  1761. if (unlikely(!mdp->cd->tsu))
  1762. return -EPERM;
  1763. /* No filtering if vid = 0 */
  1764. if (!vid)
  1765. return 0;
  1766. mdp->vlan_num_ids--;
  1767. sh_eth_tsu_write(mdp, 0, vtag_reg_index);
  1768. return 0;
  1769. }
  1770. #endif /* SH_ETH_HAS_TSU */
  1771. /* SuperH's TSU register init function */
  1772. static void sh_eth_tsu_init(struct sh_eth_private *mdp)
  1773. {
  1774. sh_eth_tsu_write(mdp, 0, TSU_FWEN0); /* Disable forward(0->1) */
  1775. sh_eth_tsu_write(mdp, 0, TSU_FWEN1); /* Disable forward(1->0) */
  1776. sh_eth_tsu_write(mdp, 0, TSU_FCM); /* forward fifo 3k-3k */
  1777. sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
  1778. sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
  1779. sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
  1780. sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
  1781. sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
  1782. sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
  1783. sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
  1784. if (sh_eth_is_gether(mdp)) {
  1785. sh_eth_tsu_write(mdp, 0, TSU_QTAG0); /* Disable QTAG(0->1) */
  1786. sh_eth_tsu_write(mdp, 0, TSU_QTAG1); /* Disable QTAG(1->0) */
  1787. } else {
  1788. sh_eth_tsu_write(mdp, 0, TSU_QTAGM0); /* Disable QTAG(0->1) */
  1789. sh_eth_tsu_write(mdp, 0, TSU_QTAGM1); /* Disable QTAG(1->0) */
  1790. }
  1791. sh_eth_tsu_write(mdp, 0, TSU_FWSR); /* all interrupt status clear */
  1792. sh_eth_tsu_write(mdp, 0, TSU_FWINMK); /* Disable all interrupt */
  1793. sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
  1794. sh_eth_tsu_write(mdp, 0, TSU_POST1); /* Disable CAM entry [ 0- 7] */
  1795. sh_eth_tsu_write(mdp, 0, TSU_POST2); /* Disable CAM entry [ 8-15] */
  1796. sh_eth_tsu_write(mdp, 0, TSU_POST3); /* Disable CAM entry [16-23] */
  1797. sh_eth_tsu_write(mdp, 0, TSU_POST4); /* Disable CAM entry [24-31] */
  1798. }
  1799. /* MDIO bus release function */
  1800. static int sh_mdio_release(struct net_device *ndev)
  1801. {
  1802. struct mii_bus *bus = dev_get_drvdata(&ndev->dev);
  1803. /* unregister mdio bus */
  1804. mdiobus_unregister(bus);
  1805. /* remove mdio bus info from net_device */
  1806. dev_set_drvdata(&ndev->dev, NULL);
  1807. /* free interrupts memory */
  1808. kfree(bus->irq);
  1809. /* free bitbang info */
  1810. free_mdio_bitbang(bus);
  1811. return 0;
  1812. }
  1813. /* MDIO bus init function */
  1814. static int sh_mdio_init(struct net_device *ndev, int id,
  1815. struct sh_eth_plat_data *pd)
  1816. {
  1817. int ret, i;
  1818. struct bb_info *bitbang;
  1819. struct sh_eth_private *mdp = netdev_priv(ndev);
  1820. /* create bit control struct for PHY */
  1821. bitbang = kzalloc(sizeof(struct bb_info), GFP_KERNEL);
  1822. if (!bitbang) {
  1823. ret = -ENOMEM;
  1824. goto out;
  1825. }
  1826. /* bitbang init */
  1827. bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
  1828. bitbang->set_gate = pd->set_mdio_gate;
  1829. bitbang->mdi_msk = 0x08;
  1830. bitbang->mdo_msk = 0x04;
  1831. bitbang->mmd_msk = 0x02;/* MMD */
  1832. bitbang->mdc_msk = 0x01;
  1833. bitbang->ctrl.ops = &bb_ops;
  1834. /* MII controller setting */
  1835. mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
  1836. if (!mdp->mii_bus) {
  1837. ret = -ENOMEM;
  1838. goto out_free_bitbang;
  1839. }
  1840. /* Hook up MII support for ethtool */
  1841. mdp->mii_bus->name = "sh_mii";
  1842. mdp->mii_bus->parent = &ndev->dev;
  1843. snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
  1844. mdp->pdev->name, id);
  1845. /* PHY IRQ */
  1846. mdp->mii_bus->irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL);
  1847. if (!mdp->mii_bus->irq) {
  1848. ret = -ENOMEM;
  1849. goto out_free_bus;
  1850. }
  1851. for (i = 0; i < PHY_MAX_ADDR; i++)
  1852. mdp->mii_bus->irq[i] = PHY_POLL;
  1853. /* regist mdio bus */
  1854. ret = mdiobus_register(mdp->mii_bus);
  1855. if (ret)
  1856. goto out_free_irq;
  1857. dev_set_drvdata(&ndev->dev, mdp->mii_bus);
  1858. return 0;
  1859. out_free_irq:
  1860. kfree(mdp->mii_bus->irq);
  1861. out_free_bus:
  1862. free_mdio_bitbang(mdp->mii_bus);
  1863. out_free_bitbang:
  1864. kfree(bitbang);
  1865. out:
  1866. return ret;
  1867. }
  1868. static const u16 *sh_eth_get_register_offset(int register_type)
  1869. {
  1870. const u16 *reg_offset = NULL;
  1871. switch (register_type) {
  1872. case SH_ETH_REG_GIGABIT:
  1873. reg_offset = sh_eth_offset_gigabit;
  1874. break;
  1875. case SH_ETH_REG_FAST_SH4:
  1876. reg_offset = sh_eth_offset_fast_sh4;
  1877. break;
  1878. case SH_ETH_REG_FAST_SH3_SH2:
  1879. reg_offset = sh_eth_offset_fast_sh3_sh2;
  1880. break;
  1881. default:
  1882. printk(KERN_ERR "Unknown register type (%d)\n", register_type);
  1883. break;
  1884. }
  1885. return reg_offset;
  1886. }
  1887. static const struct net_device_ops sh_eth_netdev_ops = {
  1888. .ndo_open = sh_eth_open,
  1889. .ndo_stop = sh_eth_close,
  1890. .ndo_start_xmit = sh_eth_start_xmit,
  1891. .ndo_get_stats = sh_eth_get_stats,
  1892. #if defined(SH_ETH_HAS_TSU)
  1893. .ndo_set_rx_mode = sh_eth_set_multicast_list,
  1894. .ndo_vlan_rx_add_vid = sh_eth_vlan_rx_add_vid,
  1895. .ndo_vlan_rx_kill_vid = sh_eth_vlan_rx_kill_vid,
  1896. #endif
  1897. .ndo_tx_timeout = sh_eth_tx_timeout,
  1898. .ndo_do_ioctl = sh_eth_do_ioctl,
  1899. .ndo_validate_addr = eth_validate_addr,
  1900. .ndo_set_mac_address = eth_mac_addr,
  1901. .ndo_change_mtu = eth_change_mtu,
  1902. };
  1903. static int sh_eth_drv_probe(struct platform_device *pdev)
  1904. {
  1905. int ret, devno = 0;
  1906. struct resource *res;
  1907. struct net_device *ndev = NULL;
  1908. struct sh_eth_private *mdp = NULL;
  1909. struct sh_eth_plat_data *pd;
  1910. /* get base addr */
  1911. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1912. if (unlikely(res == NULL)) {
  1913. dev_err(&pdev->dev, "invalid resource\n");
  1914. ret = -EINVAL;
  1915. goto out;
  1916. }
  1917. ndev = alloc_etherdev(sizeof(struct sh_eth_private));
  1918. if (!ndev) {
  1919. ret = -ENOMEM;
  1920. goto out;
  1921. }
  1922. /* The sh Ether-specific entries in the device structure. */
  1923. ndev->base_addr = res->start;
  1924. devno = pdev->id;
  1925. if (devno < 0)
  1926. devno = 0;
  1927. ndev->dma = -1;
  1928. ret = platform_get_irq(pdev, 0);
  1929. if (ret < 0) {
  1930. ret = -ENODEV;
  1931. goto out_release;
  1932. }
  1933. ndev->irq = ret;
  1934. SET_NETDEV_DEV(ndev, &pdev->dev);
  1935. /* Fill in the fields of the device structure with ethernet values. */
  1936. ether_setup(ndev);
  1937. mdp = netdev_priv(ndev);
  1938. mdp->addr = ioremap(res->start, resource_size(res));
  1939. if (mdp->addr == NULL) {
  1940. ret = -ENOMEM;
  1941. dev_err(&pdev->dev, "ioremap failed.\n");
  1942. goto out_release;
  1943. }
  1944. spin_lock_init(&mdp->lock);
  1945. mdp->pdev = pdev;
  1946. pm_runtime_enable(&pdev->dev);
  1947. pm_runtime_resume(&pdev->dev);
  1948. pd = (struct sh_eth_plat_data *)(pdev->dev.platform_data);
  1949. /* get PHY ID */
  1950. mdp->phy_id = pd->phy;
  1951. mdp->phy_interface = pd->phy_interface;
  1952. /* EDMAC endian */
  1953. mdp->edmac_endian = pd->edmac_endian;
  1954. mdp->no_ether_link = pd->no_ether_link;
  1955. mdp->ether_link_active_low = pd->ether_link_active_low;
  1956. mdp->reg_offset = sh_eth_get_register_offset(pd->register_type);
  1957. /* set cpu data */
  1958. #if defined(SH_ETH_HAS_BOTH_MODULES)
  1959. mdp->cd = sh_eth_get_cpu_data(mdp);
  1960. #else
  1961. mdp->cd = &sh_eth_my_cpu_data;
  1962. #endif
  1963. sh_eth_set_default_cpu_data(mdp->cd);
  1964. /* set function */
  1965. ndev->netdev_ops = &sh_eth_netdev_ops;
  1966. SET_ETHTOOL_OPS(ndev, &sh_eth_ethtool_ops);
  1967. ndev->watchdog_timeo = TX_TIMEOUT;
  1968. /* debug message level */
  1969. mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
  1970. /* read and set MAC address */
  1971. read_mac_address(ndev, pd->mac_addr);
  1972. /* ioremap the TSU registers */
  1973. if (mdp->cd->tsu) {
  1974. struct resource *rtsu;
  1975. rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
  1976. if (!rtsu) {
  1977. dev_err(&pdev->dev, "Not found TSU resource\n");
  1978. goto out_release;
  1979. }
  1980. mdp->tsu_addr = ioremap(rtsu->start,
  1981. resource_size(rtsu));
  1982. mdp->port = devno % 2;
  1983. ndev->features = NETIF_F_HW_VLAN_FILTER;
  1984. }
  1985. /* initialize first or needed device */
  1986. if (!devno || pd->needs_init) {
  1987. if (mdp->cd->chip_reset)
  1988. mdp->cd->chip_reset(ndev);
  1989. if (mdp->cd->tsu) {
  1990. /* TSU init (Init only)*/
  1991. sh_eth_tsu_init(mdp);
  1992. }
  1993. }
  1994. /* network device register */
  1995. ret = register_netdev(ndev);
  1996. if (ret)
  1997. goto out_release;
  1998. /* mdio bus init */
  1999. ret = sh_mdio_init(ndev, pdev->id, pd);
  2000. if (ret)
  2001. goto out_unregister;
  2002. /* print device information */
  2003. pr_info("Base address at 0x%x, %pM, IRQ %d.\n",
  2004. (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
  2005. platform_set_drvdata(pdev, ndev);
  2006. return ret;
  2007. out_unregister:
  2008. unregister_netdev(ndev);
  2009. out_release:
  2010. /* net_dev free */
  2011. if (mdp && mdp->addr)
  2012. iounmap(mdp->addr);
  2013. if (mdp && mdp->tsu_addr)
  2014. iounmap(mdp->tsu_addr);
  2015. if (ndev)
  2016. free_netdev(ndev);
  2017. out:
  2018. return ret;
  2019. }
  2020. static int sh_eth_drv_remove(struct platform_device *pdev)
  2021. {
  2022. struct net_device *ndev = platform_get_drvdata(pdev);
  2023. struct sh_eth_private *mdp = netdev_priv(ndev);
  2024. if (mdp->cd->tsu)
  2025. iounmap(mdp->tsu_addr);
  2026. sh_mdio_release(ndev);
  2027. unregister_netdev(ndev);
  2028. pm_runtime_disable(&pdev->dev);
  2029. iounmap(mdp->addr);
  2030. free_netdev(ndev);
  2031. platform_set_drvdata(pdev, NULL);
  2032. return 0;
  2033. }
  2034. static int sh_eth_runtime_nop(struct device *dev)
  2035. {
  2036. /*
  2037. * Runtime PM callback shared between ->runtime_suspend()
  2038. * and ->runtime_resume(). Simply returns success.
  2039. *
  2040. * This driver re-initializes all registers after
  2041. * pm_runtime_get_sync() anyway so there is no need
  2042. * to save and restore registers here.
  2043. */
  2044. return 0;
  2045. }
  2046. static struct dev_pm_ops sh_eth_dev_pm_ops = {
  2047. .runtime_suspend = sh_eth_runtime_nop,
  2048. .runtime_resume = sh_eth_runtime_nop,
  2049. };
  2050. static struct platform_driver sh_eth_driver = {
  2051. .probe = sh_eth_drv_probe,
  2052. .remove = sh_eth_drv_remove,
  2053. .driver = {
  2054. .name = CARDNAME,
  2055. .pm = &sh_eth_dev_pm_ops,
  2056. },
  2057. };
  2058. module_platform_driver(sh_eth_driver);
  2059. MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
  2060. MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
  2061. MODULE_LICENSE("GPL v2");