irq.c 7.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315
  1. /*
  2. * linux/arch/i386/kernel/irq.c
  3. *
  4. * Copyright (C) 1992, 1998 Linus Torvalds, Ingo Molnar
  5. *
  6. * This file contains the lowest level x86-specific interrupt
  7. * entry, irq-stacks and irq statistics code. All the remaining
  8. * irq logic is done by the generic kernel/irq/ code and
  9. * by the x86-specific irq controller code. (e.g. i8259.c and
  10. * io_apic.c.)
  11. */
  12. #include <asm/uaccess.h>
  13. #include <linux/module.h>
  14. #include <linux/seq_file.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/kernel_stat.h>
  17. #include <linux/notifier.h>
  18. #include <linux/cpu.h>
  19. #include <linux/delay.h>
  20. DEFINE_PER_CPU(irq_cpustat_t, irq_stat) ____cacheline_internodealigned_in_smp;
  21. EXPORT_PER_CPU_SYMBOL(irq_stat);
  22. #ifndef CONFIG_X86_LOCAL_APIC
  23. /*
  24. * 'what should we do if we get a hw irq event on an illegal vector'.
  25. * each architecture has to answer this themselves.
  26. */
  27. void ack_bad_irq(unsigned int irq)
  28. {
  29. printk("unexpected IRQ trap at vector %02x\n", irq);
  30. }
  31. #endif
  32. #ifdef CONFIG_4KSTACKS
  33. /*
  34. * per-CPU IRQ handling contexts (thread information and stack)
  35. */
  36. union irq_ctx {
  37. struct thread_info tinfo;
  38. u32 stack[THREAD_SIZE/sizeof(u32)];
  39. };
  40. static union irq_ctx *hardirq_ctx[NR_CPUS] __read_mostly;
  41. static union irq_ctx *softirq_ctx[NR_CPUS] __read_mostly;
  42. #endif
  43. /*
  44. * do_IRQ handles all normal device IRQ's (the special
  45. * SMP cross-CPU interrupts have their own specific
  46. * handlers).
  47. */
  48. fastcall unsigned int do_IRQ(struct pt_regs *regs)
  49. {
  50. /* high bit used in ret_from_ code */
  51. int irq = ~regs->orig_eax;
  52. #ifdef CONFIG_4KSTACKS
  53. union irq_ctx *curctx, *irqctx;
  54. u32 *isp;
  55. #endif
  56. irq_enter();
  57. #ifdef CONFIG_DEBUG_STACKOVERFLOW
  58. /* Debugging check for stack overflow: is there less than 1KB free? */
  59. {
  60. long esp;
  61. __asm__ __volatile__("andl %%esp,%0" :
  62. "=r" (esp) : "0" (THREAD_SIZE - 1));
  63. if (unlikely(esp < (sizeof(struct thread_info) + STACK_WARN))) {
  64. printk("do_IRQ: stack overflow: %ld\n",
  65. esp - sizeof(struct thread_info));
  66. dump_stack();
  67. }
  68. }
  69. #endif
  70. #ifdef CONFIG_4KSTACKS
  71. curctx = (union irq_ctx *) current_thread_info();
  72. irqctx = hardirq_ctx[smp_processor_id()];
  73. /*
  74. * this is where we switch to the IRQ stack. However, if we are
  75. * already using the IRQ stack (because we interrupted a hardirq
  76. * handler) we can't do that and just have to keep using the
  77. * current stack (which is the irq stack already after all)
  78. */
  79. if (curctx != irqctx) {
  80. int arg1, arg2, ebx;
  81. /* build the stack frame on the IRQ stack */
  82. isp = (u32*) ((char*)irqctx + sizeof(*irqctx));
  83. irqctx->tinfo.task = curctx->tinfo.task;
  84. irqctx->tinfo.previous_esp = current_stack_pointer;
  85. /*
  86. * Copy the softirq bits in preempt_count so that the
  87. * softirq checks work in the hardirq context.
  88. */
  89. irqctx->tinfo.preempt_count =
  90. (irqctx->tinfo.preempt_count & ~SOFTIRQ_MASK) |
  91. (curctx->tinfo.preempt_count & SOFTIRQ_MASK);
  92. asm volatile(
  93. " xchgl %%ebx,%%esp \n"
  94. " call __do_IRQ \n"
  95. " movl %%ebx,%%esp \n"
  96. : "=a" (arg1), "=d" (arg2), "=b" (ebx)
  97. : "0" (irq), "1" (regs), "2" (isp)
  98. : "memory", "cc", "ecx"
  99. );
  100. } else
  101. #endif
  102. __do_IRQ(irq, regs);
  103. irq_exit();
  104. return 1;
  105. }
  106. #ifdef CONFIG_4KSTACKS
  107. /*
  108. * These should really be __section__(".bss.page_aligned") as well, but
  109. * gcc's 3.0 and earlier don't handle that correctly.
  110. */
  111. static char softirq_stack[NR_CPUS * THREAD_SIZE]
  112. __attribute__((__aligned__(THREAD_SIZE)));
  113. static char hardirq_stack[NR_CPUS * THREAD_SIZE]
  114. __attribute__((__aligned__(THREAD_SIZE)));
  115. /*
  116. * allocate per-cpu stacks for hardirq and for softirq processing
  117. */
  118. void irq_ctx_init(int cpu)
  119. {
  120. union irq_ctx *irqctx;
  121. if (hardirq_ctx[cpu])
  122. return;
  123. irqctx = (union irq_ctx*) &hardirq_stack[cpu*THREAD_SIZE];
  124. irqctx->tinfo.task = NULL;
  125. irqctx->tinfo.exec_domain = NULL;
  126. irqctx->tinfo.cpu = cpu;
  127. irqctx->tinfo.preempt_count = HARDIRQ_OFFSET;
  128. irqctx->tinfo.addr_limit = MAKE_MM_SEG(0);
  129. hardirq_ctx[cpu] = irqctx;
  130. irqctx = (union irq_ctx*) &softirq_stack[cpu*THREAD_SIZE];
  131. irqctx->tinfo.task = NULL;
  132. irqctx->tinfo.exec_domain = NULL;
  133. irqctx->tinfo.cpu = cpu;
  134. irqctx->tinfo.preempt_count = SOFTIRQ_OFFSET;
  135. irqctx->tinfo.addr_limit = MAKE_MM_SEG(0);
  136. softirq_ctx[cpu] = irqctx;
  137. printk("CPU %u irqstacks, hard=%p soft=%p\n",
  138. cpu,hardirq_ctx[cpu],softirq_ctx[cpu]);
  139. }
  140. void irq_ctx_exit(int cpu)
  141. {
  142. hardirq_ctx[cpu] = NULL;
  143. }
  144. extern asmlinkage void __do_softirq(void);
  145. asmlinkage void do_softirq(void)
  146. {
  147. unsigned long flags;
  148. struct thread_info *curctx;
  149. union irq_ctx *irqctx;
  150. u32 *isp;
  151. if (in_interrupt())
  152. return;
  153. local_irq_save(flags);
  154. if (local_softirq_pending()) {
  155. curctx = current_thread_info();
  156. irqctx = softirq_ctx[smp_processor_id()];
  157. irqctx->tinfo.task = curctx->task;
  158. irqctx->tinfo.previous_esp = current_stack_pointer;
  159. /* build the stack frame on the softirq stack */
  160. isp = (u32*) ((char*)irqctx + sizeof(*irqctx));
  161. asm volatile(
  162. " xchgl %%ebx,%%esp \n"
  163. " call __do_softirq \n"
  164. " movl %%ebx,%%esp \n"
  165. : "=b"(isp)
  166. : "0"(isp)
  167. : "memory", "cc", "edx", "ecx", "eax"
  168. );
  169. }
  170. local_irq_restore(flags);
  171. }
  172. EXPORT_SYMBOL(do_softirq);
  173. #endif
  174. /*
  175. * Interrupt statistics:
  176. */
  177. atomic_t irq_err_count;
  178. /*
  179. * /proc/interrupts printing:
  180. */
  181. int show_interrupts(struct seq_file *p, void *v)
  182. {
  183. int i = *(loff_t *) v, j;
  184. struct irqaction * action;
  185. unsigned long flags;
  186. if (i == 0) {
  187. seq_printf(p, " ");
  188. for_each_online_cpu(j)
  189. seq_printf(p, "CPU%-8d",j);
  190. seq_putc(p, '\n');
  191. }
  192. if (i < NR_IRQS) {
  193. spin_lock_irqsave(&irq_desc[i].lock, flags);
  194. action = irq_desc[i].action;
  195. if (!action)
  196. goto skip;
  197. seq_printf(p, "%3d: ",i);
  198. #ifndef CONFIG_SMP
  199. seq_printf(p, "%10u ", kstat_irqs(i));
  200. #else
  201. for_each_online_cpu(j)
  202. seq_printf(p, "%10u ", kstat_cpu(j).irqs[i]);
  203. #endif
  204. seq_printf(p, " %14s", irq_desc[i].handler->typename);
  205. seq_printf(p, " %s", action->name);
  206. for (action=action->next; action; action = action->next)
  207. seq_printf(p, ", %s", action->name);
  208. seq_putc(p, '\n');
  209. skip:
  210. spin_unlock_irqrestore(&irq_desc[i].lock, flags);
  211. } else if (i == NR_IRQS) {
  212. seq_printf(p, "NMI: ");
  213. for_each_online_cpu(j)
  214. seq_printf(p, "%10u ", nmi_count(j));
  215. seq_putc(p, '\n');
  216. #ifdef CONFIG_X86_LOCAL_APIC
  217. seq_printf(p, "LOC: ");
  218. for_each_online_cpu(j)
  219. seq_printf(p, "%10u ",
  220. per_cpu(irq_stat,j).apic_timer_irqs);
  221. seq_putc(p, '\n');
  222. #endif
  223. seq_printf(p, "ERR: %10u\n", atomic_read(&irq_err_count));
  224. #if defined(CONFIG_X86_IO_APIC)
  225. seq_printf(p, "MIS: %10u\n", atomic_read(&irq_mis_count));
  226. #endif
  227. }
  228. return 0;
  229. }
  230. #ifdef CONFIG_HOTPLUG_CPU
  231. #include <mach_apic.h>
  232. void fixup_irqs(cpumask_t map)
  233. {
  234. unsigned int irq;
  235. static int warned;
  236. for (irq = 0; irq < NR_IRQS; irq++) {
  237. cpumask_t mask;
  238. if (irq == 2)
  239. continue;
  240. cpus_and(mask, irq_affinity[irq], map);
  241. if (any_online_cpu(mask) == NR_CPUS) {
  242. printk("Breaking affinity for irq %i\n", irq);
  243. mask = map;
  244. }
  245. if (irq_desc[irq].handler->set_affinity)
  246. irq_desc[irq].handler->set_affinity(irq, mask);
  247. else if (irq_desc[irq].action && !(warned++))
  248. printk("Cannot set affinity for irq %i\n", irq);
  249. }
  250. #if 0
  251. barrier();
  252. /* Ingo Molnar says: "after the IO-APIC masks have been redirected
  253. [note the nop - the interrupt-enable boundary on x86 is two
  254. instructions from sti] - to flush out pending hardirqs and
  255. IPIs. After this point nothing is supposed to reach this CPU." */
  256. __asm__ __volatile__("sti; nop; cli");
  257. barrier();
  258. #else
  259. /* That doesn't seem sufficient. Give it 1ms. */
  260. local_irq_enable();
  261. mdelay(1);
  262. local_irq_disable();
  263. #endif
  264. }
  265. #endif