inode.c 100 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454
  1. /*
  2. * linux/fs/ext4/inode.c
  3. *
  4. * Copyright (C) 1992, 1993, 1994, 1995
  5. * Remy Card (card@masi.ibp.fr)
  6. * Laboratoire MASI - Institut Blaise Pascal
  7. * Universite Pierre et Marie Curie (Paris VI)
  8. *
  9. * from
  10. *
  11. * linux/fs/minix/inode.c
  12. *
  13. * Copyright (C) 1991, 1992 Linus Torvalds
  14. *
  15. * Goal-directed block allocation by Stephen Tweedie
  16. * (sct@redhat.com), 1993, 1998
  17. * Big-endian to little-endian byte-swapping/bitmaps by
  18. * David S. Miller (davem@caip.rutgers.edu), 1995
  19. * 64-bit file support on 64-bit platforms by Jakub Jelinek
  20. * (jj@sunsite.ms.mff.cuni.cz)
  21. *
  22. * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
  23. */
  24. #include <linux/module.h>
  25. #include <linux/fs.h>
  26. #include <linux/time.h>
  27. #include <linux/ext4_jbd2.h>
  28. #include <linux/jbd2.h>
  29. #include <linux/highuid.h>
  30. #include <linux/pagemap.h>
  31. #include <linux/quotaops.h>
  32. #include <linux/string.h>
  33. #include <linux/buffer_head.h>
  34. #include <linux/writeback.h>
  35. #include <linux/mpage.h>
  36. #include <linux/uio.h>
  37. #include <linux/bio.h>
  38. #include "xattr.h"
  39. #include "acl.h"
  40. /*
  41. * Test whether an inode is a fast symlink.
  42. */
  43. static int ext4_inode_is_fast_symlink(struct inode *inode)
  44. {
  45. int ea_blocks = EXT4_I(inode)->i_file_acl ?
  46. (inode->i_sb->s_blocksize >> 9) : 0;
  47. return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
  48. }
  49. /*
  50. * The ext4 forget function must perform a revoke if we are freeing data
  51. * which has been journaled. Metadata (eg. indirect blocks) must be
  52. * revoked in all cases.
  53. *
  54. * "bh" may be NULL: a metadata block may have been freed from memory
  55. * but there may still be a record of it in the journal, and that record
  56. * still needs to be revoked.
  57. */
  58. int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
  59. struct buffer_head *bh, ext4_fsblk_t blocknr)
  60. {
  61. int err;
  62. might_sleep();
  63. BUFFER_TRACE(bh, "enter");
  64. jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
  65. "data mode %lx\n",
  66. bh, is_metadata, inode->i_mode,
  67. test_opt(inode->i_sb, DATA_FLAGS));
  68. /* Never use the revoke function if we are doing full data
  69. * journaling: there is no need to, and a V1 superblock won't
  70. * support it. Otherwise, only skip the revoke on un-journaled
  71. * data blocks. */
  72. if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
  73. (!is_metadata && !ext4_should_journal_data(inode))) {
  74. if (bh) {
  75. BUFFER_TRACE(bh, "call jbd2_journal_forget");
  76. return ext4_journal_forget(handle, bh);
  77. }
  78. return 0;
  79. }
  80. /*
  81. * data!=journal && (is_metadata || should_journal_data(inode))
  82. */
  83. BUFFER_TRACE(bh, "call ext4_journal_revoke");
  84. err = ext4_journal_revoke(handle, blocknr, bh);
  85. if (err)
  86. ext4_abort(inode->i_sb, __FUNCTION__,
  87. "error %d when attempting revoke", err);
  88. BUFFER_TRACE(bh, "exit");
  89. return err;
  90. }
  91. /*
  92. * Work out how many blocks we need to proceed with the next chunk of a
  93. * truncate transaction.
  94. */
  95. static unsigned long blocks_for_truncate(struct inode *inode)
  96. {
  97. ext4_lblk_t needed;
  98. needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
  99. /* Give ourselves just enough room to cope with inodes in which
  100. * i_blocks is corrupt: we've seen disk corruptions in the past
  101. * which resulted in random data in an inode which looked enough
  102. * like a regular file for ext4 to try to delete it. Things
  103. * will go a bit crazy if that happens, but at least we should
  104. * try not to panic the whole kernel. */
  105. if (needed < 2)
  106. needed = 2;
  107. /* But we need to bound the transaction so we don't overflow the
  108. * journal. */
  109. if (needed > EXT4_MAX_TRANS_DATA)
  110. needed = EXT4_MAX_TRANS_DATA;
  111. return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
  112. }
  113. /*
  114. * Truncate transactions can be complex and absolutely huge. So we need to
  115. * be able to restart the transaction at a conventient checkpoint to make
  116. * sure we don't overflow the journal.
  117. *
  118. * start_transaction gets us a new handle for a truncate transaction,
  119. * and extend_transaction tries to extend the existing one a bit. If
  120. * extend fails, we need to propagate the failure up and restart the
  121. * transaction in the top-level truncate loop. --sct
  122. */
  123. static handle_t *start_transaction(struct inode *inode)
  124. {
  125. handle_t *result;
  126. result = ext4_journal_start(inode, blocks_for_truncate(inode));
  127. if (!IS_ERR(result))
  128. return result;
  129. ext4_std_error(inode->i_sb, PTR_ERR(result));
  130. return result;
  131. }
  132. /*
  133. * Try to extend this transaction for the purposes of truncation.
  134. *
  135. * Returns 0 if we managed to create more room. If we can't create more
  136. * room, and the transaction must be restarted we return 1.
  137. */
  138. static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
  139. {
  140. if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
  141. return 0;
  142. if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
  143. return 0;
  144. return 1;
  145. }
  146. /*
  147. * Restart the transaction associated with *handle. This does a commit,
  148. * so before we call here everything must be consistently dirtied against
  149. * this transaction.
  150. */
  151. static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
  152. {
  153. jbd_debug(2, "restarting handle %p\n", handle);
  154. return ext4_journal_restart(handle, blocks_for_truncate(inode));
  155. }
  156. /*
  157. * Called at the last iput() if i_nlink is zero.
  158. */
  159. void ext4_delete_inode (struct inode * inode)
  160. {
  161. handle_t *handle;
  162. truncate_inode_pages(&inode->i_data, 0);
  163. if (is_bad_inode(inode))
  164. goto no_delete;
  165. handle = start_transaction(inode);
  166. if (IS_ERR(handle)) {
  167. /*
  168. * If we're going to skip the normal cleanup, we still need to
  169. * make sure that the in-core orphan linked list is properly
  170. * cleaned up.
  171. */
  172. ext4_orphan_del(NULL, inode);
  173. goto no_delete;
  174. }
  175. if (IS_SYNC(inode))
  176. handle->h_sync = 1;
  177. inode->i_size = 0;
  178. if (inode->i_blocks)
  179. ext4_truncate(inode);
  180. /*
  181. * Kill off the orphan record which ext4_truncate created.
  182. * AKPM: I think this can be inside the above `if'.
  183. * Note that ext4_orphan_del() has to be able to cope with the
  184. * deletion of a non-existent orphan - this is because we don't
  185. * know if ext4_truncate() actually created an orphan record.
  186. * (Well, we could do this if we need to, but heck - it works)
  187. */
  188. ext4_orphan_del(handle, inode);
  189. EXT4_I(inode)->i_dtime = get_seconds();
  190. /*
  191. * One subtle ordering requirement: if anything has gone wrong
  192. * (transaction abort, IO errors, whatever), then we can still
  193. * do these next steps (the fs will already have been marked as
  194. * having errors), but we can't free the inode if the mark_dirty
  195. * fails.
  196. */
  197. if (ext4_mark_inode_dirty(handle, inode))
  198. /* If that failed, just do the required in-core inode clear. */
  199. clear_inode(inode);
  200. else
  201. ext4_free_inode(handle, inode);
  202. ext4_journal_stop(handle);
  203. return;
  204. no_delete:
  205. clear_inode(inode); /* We must guarantee clearing of inode... */
  206. }
  207. typedef struct {
  208. __le32 *p;
  209. __le32 key;
  210. struct buffer_head *bh;
  211. } Indirect;
  212. static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
  213. {
  214. p->key = *(p->p = v);
  215. p->bh = bh;
  216. }
  217. static int verify_chain(Indirect *from, Indirect *to)
  218. {
  219. while (from <= to && from->key == *from->p)
  220. from++;
  221. return (from > to);
  222. }
  223. /**
  224. * ext4_block_to_path - parse the block number into array of offsets
  225. * @inode: inode in question (we are only interested in its superblock)
  226. * @i_block: block number to be parsed
  227. * @offsets: array to store the offsets in
  228. * @boundary: set this non-zero if the referred-to block is likely to be
  229. * followed (on disk) by an indirect block.
  230. *
  231. * To store the locations of file's data ext4 uses a data structure common
  232. * for UNIX filesystems - tree of pointers anchored in the inode, with
  233. * data blocks at leaves and indirect blocks in intermediate nodes.
  234. * This function translates the block number into path in that tree -
  235. * return value is the path length and @offsets[n] is the offset of
  236. * pointer to (n+1)th node in the nth one. If @block is out of range
  237. * (negative or too large) warning is printed and zero returned.
  238. *
  239. * Note: function doesn't find node addresses, so no IO is needed. All
  240. * we need to know is the capacity of indirect blocks (taken from the
  241. * inode->i_sb).
  242. */
  243. /*
  244. * Portability note: the last comparison (check that we fit into triple
  245. * indirect block) is spelled differently, because otherwise on an
  246. * architecture with 32-bit longs and 8Kb pages we might get into trouble
  247. * if our filesystem had 8Kb blocks. We might use long long, but that would
  248. * kill us on x86. Oh, well, at least the sign propagation does not matter -
  249. * i_block would have to be negative in the very beginning, so we would not
  250. * get there at all.
  251. */
  252. static int ext4_block_to_path(struct inode *inode,
  253. ext4_lblk_t i_block,
  254. ext4_lblk_t offsets[4], int *boundary)
  255. {
  256. int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
  257. int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
  258. const long direct_blocks = EXT4_NDIR_BLOCKS,
  259. indirect_blocks = ptrs,
  260. double_blocks = (1 << (ptrs_bits * 2));
  261. int n = 0;
  262. int final = 0;
  263. if (i_block < 0) {
  264. ext4_warning (inode->i_sb, "ext4_block_to_path", "block < 0");
  265. } else if (i_block < direct_blocks) {
  266. offsets[n++] = i_block;
  267. final = direct_blocks;
  268. } else if ( (i_block -= direct_blocks) < indirect_blocks) {
  269. offsets[n++] = EXT4_IND_BLOCK;
  270. offsets[n++] = i_block;
  271. final = ptrs;
  272. } else if ((i_block -= indirect_blocks) < double_blocks) {
  273. offsets[n++] = EXT4_DIND_BLOCK;
  274. offsets[n++] = i_block >> ptrs_bits;
  275. offsets[n++] = i_block & (ptrs - 1);
  276. final = ptrs;
  277. } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
  278. offsets[n++] = EXT4_TIND_BLOCK;
  279. offsets[n++] = i_block >> (ptrs_bits * 2);
  280. offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
  281. offsets[n++] = i_block & (ptrs - 1);
  282. final = ptrs;
  283. } else {
  284. ext4_warning(inode->i_sb, "ext4_block_to_path",
  285. "block %u > max",
  286. i_block + direct_blocks +
  287. indirect_blocks + double_blocks);
  288. }
  289. if (boundary)
  290. *boundary = final - 1 - (i_block & (ptrs - 1));
  291. return n;
  292. }
  293. /**
  294. * ext4_get_branch - read the chain of indirect blocks leading to data
  295. * @inode: inode in question
  296. * @depth: depth of the chain (1 - direct pointer, etc.)
  297. * @offsets: offsets of pointers in inode/indirect blocks
  298. * @chain: place to store the result
  299. * @err: here we store the error value
  300. *
  301. * Function fills the array of triples <key, p, bh> and returns %NULL
  302. * if everything went OK or the pointer to the last filled triple
  303. * (incomplete one) otherwise. Upon the return chain[i].key contains
  304. * the number of (i+1)-th block in the chain (as it is stored in memory,
  305. * i.e. little-endian 32-bit), chain[i].p contains the address of that
  306. * number (it points into struct inode for i==0 and into the bh->b_data
  307. * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
  308. * block for i>0 and NULL for i==0. In other words, it holds the block
  309. * numbers of the chain, addresses they were taken from (and where we can
  310. * verify that chain did not change) and buffer_heads hosting these
  311. * numbers.
  312. *
  313. * Function stops when it stumbles upon zero pointer (absent block)
  314. * (pointer to last triple returned, *@err == 0)
  315. * or when it gets an IO error reading an indirect block
  316. * (ditto, *@err == -EIO)
  317. * or when it notices that chain had been changed while it was reading
  318. * (ditto, *@err == -EAGAIN)
  319. * or when it reads all @depth-1 indirect blocks successfully and finds
  320. * the whole chain, all way to the data (returns %NULL, *err == 0).
  321. */
  322. static Indirect *ext4_get_branch(struct inode *inode, int depth,
  323. ext4_lblk_t *offsets,
  324. Indirect chain[4], int *err)
  325. {
  326. struct super_block *sb = inode->i_sb;
  327. Indirect *p = chain;
  328. struct buffer_head *bh;
  329. *err = 0;
  330. /* i_data is not going away, no lock needed */
  331. add_chain (chain, NULL, EXT4_I(inode)->i_data + *offsets);
  332. if (!p->key)
  333. goto no_block;
  334. while (--depth) {
  335. bh = sb_bread(sb, le32_to_cpu(p->key));
  336. if (!bh)
  337. goto failure;
  338. /* Reader: pointers */
  339. if (!verify_chain(chain, p))
  340. goto changed;
  341. add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
  342. /* Reader: end */
  343. if (!p->key)
  344. goto no_block;
  345. }
  346. return NULL;
  347. changed:
  348. brelse(bh);
  349. *err = -EAGAIN;
  350. goto no_block;
  351. failure:
  352. *err = -EIO;
  353. no_block:
  354. return p;
  355. }
  356. /**
  357. * ext4_find_near - find a place for allocation with sufficient locality
  358. * @inode: owner
  359. * @ind: descriptor of indirect block.
  360. *
  361. * This function returns the prefered place for block allocation.
  362. * It is used when heuristic for sequential allocation fails.
  363. * Rules are:
  364. * + if there is a block to the left of our position - allocate near it.
  365. * + if pointer will live in indirect block - allocate near that block.
  366. * + if pointer will live in inode - allocate in the same
  367. * cylinder group.
  368. *
  369. * In the latter case we colour the starting block by the callers PID to
  370. * prevent it from clashing with concurrent allocations for a different inode
  371. * in the same block group. The PID is used here so that functionally related
  372. * files will be close-by on-disk.
  373. *
  374. * Caller must make sure that @ind is valid and will stay that way.
  375. */
  376. static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
  377. {
  378. struct ext4_inode_info *ei = EXT4_I(inode);
  379. __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
  380. __le32 *p;
  381. ext4_fsblk_t bg_start;
  382. ext4_grpblk_t colour;
  383. /* Try to find previous block */
  384. for (p = ind->p - 1; p >= start; p--) {
  385. if (*p)
  386. return le32_to_cpu(*p);
  387. }
  388. /* No such thing, so let's try location of indirect block */
  389. if (ind->bh)
  390. return ind->bh->b_blocknr;
  391. /*
  392. * It is going to be referred to from the inode itself? OK, just put it
  393. * into the same cylinder group then.
  394. */
  395. bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
  396. colour = (current->pid % 16) *
  397. (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
  398. return bg_start + colour;
  399. }
  400. /**
  401. * ext4_find_goal - find a prefered place for allocation.
  402. * @inode: owner
  403. * @block: block we want
  404. * @chain: chain of indirect blocks
  405. * @partial: pointer to the last triple within a chain
  406. * @goal: place to store the result.
  407. *
  408. * Normally this function find the prefered place for block allocation,
  409. * stores it in *@goal and returns zero.
  410. */
  411. static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
  412. Indirect chain[4], Indirect *partial)
  413. {
  414. struct ext4_block_alloc_info *block_i;
  415. block_i = EXT4_I(inode)->i_block_alloc_info;
  416. /*
  417. * try the heuristic for sequential allocation,
  418. * failing that at least try to get decent locality.
  419. */
  420. if (block_i && (block == block_i->last_alloc_logical_block + 1)
  421. && (block_i->last_alloc_physical_block != 0)) {
  422. return block_i->last_alloc_physical_block + 1;
  423. }
  424. return ext4_find_near(inode, partial);
  425. }
  426. /**
  427. * ext4_blks_to_allocate: Look up the block map and count the number
  428. * of direct blocks need to be allocated for the given branch.
  429. *
  430. * @branch: chain of indirect blocks
  431. * @k: number of blocks need for indirect blocks
  432. * @blks: number of data blocks to be mapped.
  433. * @blocks_to_boundary: the offset in the indirect block
  434. *
  435. * return the total number of blocks to be allocate, including the
  436. * direct and indirect blocks.
  437. */
  438. static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
  439. int blocks_to_boundary)
  440. {
  441. unsigned long count = 0;
  442. /*
  443. * Simple case, [t,d]Indirect block(s) has not allocated yet
  444. * then it's clear blocks on that path have not allocated
  445. */
  446. if (k > 0) {
  447. /* right now we don't handle cross boundary allocation */
  448. if (blks < blocks_to_boundary + 1)
  449. count += blks;
  450. else
  451. count += blocks_to_boundary + 1;
  452. return count;
  453. }
  454. count++;
  455. while (count < blks && count <= blocks_to_boundary &&
  456. le32_to_cpu(*(branch[0].p + count)) == 0) {
  457. count++;
  458. }
  459. return count;
  460. }
  461. /**
  462. * ext4_alloc_blocks: multiple allocate blocks needed for a branch
  463. * @indirect_blks: the number of blocks need to allocate for indirect
  464. * blocks
  465. *
  466. * @new_blocks: on return it will store the new block numbers for
  467. * the indirect blocks(if needed) and the first direct block,
  468. * @blks: on return it will store the total number of allocated
  469. * direct blocks
  470. */
  471. static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
  472. ext4_fsblk_t goal, int indirect_blks, int blks,
  473. ext4_fsblk_t new_blocks[4], int *err)
  474. {
  475. int target, i;
  476. unsigned long count = 0;
  477. int index = 0;
  478. ext4_fsblk_t current_block = 0;
  479. int ret = 0;
  480. /*
  481. * Here we try to allocate the requested multiple blocks at once,
  482. * on a best-effort basis.
  483. * To build a branch, we should allocate blocks for
  484. * the indirect blocks(if not allocated yet), and at least
  485. * the first direct block of this branch. That's the
  486. * minimum number of blocks need to allocate(required)
  487. */
  488. target = blks + indirect_blks;
  489. while (1) {
  490. count = target;
  491. /* allocating blocks for indirect blocks and direct blocks */
  492. current_block = ext4_new_blocks(handle,inode,goal,&count,err);
  493. if (*err)
  494. goto failed_out;
  495. target -= count;
  496. /* allocate blocks for indirect blocks */
  497. while (index < indirect_blks && count) {
  498. new_blocks[index++] = current_block++;
  499. count--;
  500. }
  501. if (count > 0)
  502. break;
  503. }
  504. /* save the new block number for the first direct block */
  505. new_blocks[index] = current_block;
  506. /* total number of blocks allocated for direct blocks */
  507. ret = count;
  508. *err = 0;
  509. return ret;
  510. failed_out:
  511. for (i = 0; i <index; i++)
  512. ext4_free_blocks(handle, inode, new_blocks[i], 1);
  513. return ret;
  514. }
  515. /**
  516. * ext4_alloc_branch - allocate and set up a chain of blocks.
  517. * @inode: owner
  518. * @indirect_blks: number of allocated indirect blocks
  519. * @blks: number of allocated direct blocks
  520. * @offsets: offsets (in the blocks) to store the pointers to next.
  521. * @branch: place to store the chain in.
  522. *
  523. * This function allocates blocks, zeroes out all but the last one,
  524. * links them into chain and (if we are synchronous) writes them to disk.
  525. * In other words, it prepares a branch that can be spliced onto the
  526. * inode. It stores the information about that chain in the branch[], in
  527. * the same format as ext4_get_branch() would do. We are calling it after
  528. * we had read the existing part of chain and partial points to the last
  529. * triple of that (one with zero ->key). Upon the exit we have the same
  530. * picture as after the successful ext4_get_block(), except that in one
  531. * place chain is disconnected - *branch->p is still zero (we did not
  532. * set the last link), but branch->key contains the number that should
  533. * be placed into *branch->p to fill that gap.
  534. *
  535. * If allocation fails we free all blocks we've allocated (and forget
  536. * their buffer_heads) and return the error value the from failed
  537. * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
  538. * as described above and return 0.
  539. */
  540. static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
  541. int indirect_blks, int *blks, ext4_fsblk_t goal,
  542. ext4_lblk_t *offsets, Indirect *branch)
  543. {
  544. int blocksize = inode->i_sb->s_blocksize;
  545. int i, n = 0;
  546. int err = 0;
  547. struct buffer_head *bh;
  548. int num;
  549. ext4_fsblk_t new_blocks[4];
  550. ext4_fsblk_t current_block;
  551. num = ext4_alloc_blocks(handle, inode, goal, indirect_blks,
  552. *blks, new_blocks, &err);
  553. if (err)
  554. return err;
  555. branch[0].key = cpu_to_le32(new_blocks[0]);
  556. /*
  557. * metadata blocks and data blocks are allocated.
  558. */
  559. for (n = 1; n <= indirect_blks; n++) {
  560. /*
  561. * Get buffer_head for parent block, zero it out
  562. * and set the pointer to new one, then send
  563. * parent to disk.
  564. */
  565. bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
  566. branch[n].bh = bh;
  567. lock_buffer(bh);
  568. BUFFER_TRACE(bh, "call get_create_access");
  569. err = ext4_journal_get_create_access(handle, bh);
  570. if (err) {
  571. unlock_buffer(bh);
  572. brelse(bh);
  573. goto failed;
  574. }
  575. memset(bh->b_data, 0, blocksize);
  576. branch[n].p = (__le32 *) bh->b_data + offsets[n];
  577. branch[n].key = cpu_to_le32(new_blocks[n]);
  578. *branch[n].p = branch[n].key;
  579. if ( n == indirect_blks) {
  580. current_block = new_blocks[n];
  581. /*
  582. * End of chain, update the last new metablock of
  583. * the chain to point to the new allocated
  584. * data blocks numbers
  585. */
  586. for (i=1; i < num; i++)
  587. *(branch[n].p + i) = cpu_to_le32(++current_block);
  588. }
  589. BUFFER_TRACE(bh, "marking uptodate");
  590. set_buffer_uptodate(bh);
  591. unlock_buffer(bh);
  592. BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
  593. err = ext4_journal_dirty_metadata(handle, bh);
  594. if (err)
  595. goto failed;
  596. }
  597. *blks = num;
  598. return err;
  599. failed:
  600. /* Allocation failed, free what we already allocated */
  601. for (i = 1; i <= n ; i++) {
  602. BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
  603. ext4_journal_forget(handle, branch[i].bh);
  604. }
  605. for (i = 0; i <indirect_blks; i++)
  606. ext4_free_blocks(handle, inode, new_blocks[i], 1);
  607. ext4_free_blocks(handle, inode, new_blocks[i], num);
  608. return err;
  609. }
  610. /**
  611. * ext4_splice_branch - splice the allocated branch onto inode.
  612. * @inode: owner
  613. * @block: (logical) number of block we are adding
  614. * @chain: chain of indirect blocks (with a missing link - see
  615. * ext4_alloc_branch)
  616. * @where: location of missing link
  617. * @num: number of indirect blocks we are adding
  618. * @blks: number of direct blocks we are adding
  619. *
  620. * This function fills the missing link and does all housekeeping needed in
  621. * inode (->i_blocks, etc.). In case of success we end up with the full
  622. * chain to new block and return 0.
  623. */
  624. static int ext4_splice_branch(handle_t *handle, struct inode *inode,
  625. ext4_lblk_t block, Indirect *where, int num, int blks)
  626. {
  627. int i;
  628. int err = 0;
  629. struct ext4_block_alloc_info *block_i;
  630. ext4_fsblk_t current_block;
  631. block_i = EXT4_I(inode)->i_block_alloc_info;
  632. /*
  633. * If we're splicing into a [td]indirect block (as opposed to the
  634. * inode) then we need to get write access to the [td]indirect block
  635. * before the splice.
  636. */
  637. if (where->bh) {
  638. BUFFER_TRACE(where->bh, "get_write_access");
  639. err = ext4_journal_get_write_access(handle, where->bh);
  640. if (err)
  641. goto err_out;
  642. }
  643. /* That's it */
  644. *where->p = where->key;
  645. /*
  646. * Update the host buffer_head or inode to point to more just allocated
  647. * direct blocks blocks
  648. */
  649. if (num == 0 && blks > 1) {
  650. current_block = le32_to_cpu(where->key) + 1;
  651. for (i = 1; i < blks; i++)
  652. *(where->p + i ) = cpu_to_le32(current_block++);
  653. }
  654. /*
  655. * update the most recently allocated logical & physical block
  656. * in i_block_alloc_info, to assist find the proper goal block for next
  657. * allocation
  658. */
  659. if (block_i) {
  660. block_i->last_alloc_logical_block = block + blks - 1;
  661. block_i->last_alloc_physical_block =
  662. le32_to_cpu(where[num].key) + blks - 1;
  663. }
  664. /* We are done with atomic stuff, now do the rest of housekeeping */
  665. inode->i_ctime = ext4_current_time(inode);
  666. ext4_mark_inode_dirty(handle, inode);
  667. /* had we spliced it onto indirect block? */
  668. if (where->bh) {
  669. /*
  670. * If we spliced it onto an indirect block, we haven't
  671. * altered the inode. Note however that if it is being spliced
  672. * onto an indirect block at the very end of the file (the
  673. * file is growing) then we *will* alter the inode to reflect
  674. * the new i_size. But that is not done here - it is done in
  675. * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
  676. */
  677. jbd_debug(5, "splicing indirect only\n");
  678. BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
  679. err = ext4_journal_dirty_metadata(handle, where->bh);
  680. if (err)
  681. goto err_out;
  682. } else {
  683. /*
  684. * OK, we spliced it into the inode itself on a direct block.
  685. * Inode was dirtied above.
  686. */
  687. jbd_debug(5, "splicing direct\n");
  688. }
  689. return err;
  690. err_out:
  691. for (i = 1; i <= num; i++) {
  692. BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
  693. ext4_journal_forget(handle, where[i].bh);
  694. ext4_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1);
  695. }
  696. ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks);
  697. return err;
  698. }
  699. /*
  700. * Allocation strategy is simple: if we have to allocate something, we will
  701. * have to go the whole way to leaf. So let's do it before attaching anything
  702. * to tree, set linkage between the newborn blocks, write them if sync is
  703. * required, recheck the path, free and repeat if check fails, otherwise
  704. * set the last missing link (that will protect us from any truncate-generated
  705. * removals - all blocks on the path are immune now) and possibly force the
  706. * write on the parent block.
  707. * That has a nice additional property: no special recovery from the failed
  708. * allocations is needed - we simply release blocks and do not touch anything
  709. * reachable from inode.
  710. *
  711. * `handle' can be NULL if create == 0.
  712. *
  713. * The BKL may not be held on entry here. Be sure to take it early.
  714. * return > 0, # of blocks mapped or allocated.
  715. * return = 0, if plain lookup failed.
  716. * return < 0, error case.
  717. */
  718. int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
  719. ext4_lblk_t iblock, unsigned long maxblocks,
  720. struct buffer_head *bh_result,
  721. int create, int extend_disksize)
  722. {
  723. int err = -EIO;
  724. ext4_lblk_t offsets[4];
  725. Indirect chain[4];
  726. Indirect *partial;
  727. ext4_fsblk_t goal;
  728. int indirect_blks;
  729. int blocks_to_boundary = 0;
  730. int depth;
  731. struct ext4_inode_info *ei = EXT4_I(inode);
  732. int count = 0;
  733. ext4_fsblk_t first_block = 0;
  734. J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
  735. J_ASSERT(handle != NULL || create == 0);
  736. depth = ext4_block_to_path(inode, iblock, offsets,
  737. &blocks_to_boundary);
  738. if (depth == 0)
  739. goto out;
  740. partial = ext4_get_branch(inode, depth, offsets, chain, &err);
  741. /* Simplest case - block found, no allocation needed */
  742. if (!partial) {
  743. first_block = le32_to_cpu(chain[depth - 1].key);
  744. clear_buffer_new(bh_result);
  745. count++;
  746. /*map more blocks*/
  747. while (count < maxblocks && count <= blocks_to_boundary) {
  748. ext4_fsblk_t blk;
  749. if (!verify_chain(chain, partial)) {
  750. /*
  751. * Indirect block might be removed by
  752. * truncate while we were reading it.
  753. * Handling of that case: forget what we've
  754. * got now. Flag the err as EAGAIN, so it
  755. * will reread.
  756. */
  757. err = -EAGAIN;
  758. count = 0;
  759. break;
  760. }
  761. blk = le32_to_cpu(*(chain[depth-1].p + count));
  762. if (blk == first_block + count)
  763. count++;
  764. else
  765. break;
  766. }
  767. if (err != -EAGAIN)
  768. goto got_it;
  769. }
  770. /* Next simple case - plain lookup or failed read of indirect block */
  771. if (!create || err == -EIO)
  772. goto cleanup;
  773. mutex_lock(&ei->truncate_mutex);
  774. /*
  775. * If the indirect block is missing while we are reading
  776. * the chain(ext4_get_branch() returns -EAGAIN err), or
  777. * if the chain has been changed after we grab the semaphore,
  778. * (either because another process truncated this branch, or
  779. * another get_block allocated this branch) re-grab the chain to see if
  780. * the request block has been allocated or not.
  781. *
  782. * Since we already block the truncate/other get_block
  783. * at this point, we will have the current copy of the chain when we
  784. * splice the branch into the tree.
  785. */
  786. if (err == -EAGAIN || !verify_chain(chain, partial)) {
  787. while (partial > chain) {
  788. brelse(partial->bh);
  789. partial--;
  790. }
  791. partial = ext4_get_branch(inode, depth, offsets, chain, &err);
  792. if (!partial) {
  793. count++;
  794. mutex_unlock(&ei->truncate_mutex);
  795. if (err)
  796. goto cleanup;
  797. clear_buffer_new(bh_result);
  798. goto got_it;
  799. }
  800. }
  801. /*
  802. * Okay, we need to do block allocation. Lazily initialize the block
  803. * allocation info here if necessary
  804. */
  805. if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
  806. ext4_init_block_alloc_info(inode);
  807. goal = ext4_find_goal(inode, iblock, chain, partial);
  808. /* the number of blocks need to allocate for [d,t]indirect blocks */
  809. indirect_blks = (chain + depth) - partial - 1;
  810. /*
  811. * Next look up the indirect map to count the totoal number of
  812. * direct blocks to allocate for this branch.
  813. */
  814. count = ext4_blks_to_allocate(partial, indirect_blks,
  815. maxblocks, blocks_to_boundary);
  816. /*
  817. * Block out ext4_truncate while we alter the tree
  818. */
  819. err = ext4_alloc_branch(handle, inode, indirect_blks, &count, goal,
  820. offsets + (partial - chain), partial);
  821. /*
  822. * The ext4_splice_branch call will free and forget any buffers
  823. * on the new chain if there is a failure, but that risks using
  824. * up transaction credits, especially for bitmaps where the
  825. * credits cannot be returned. Can we handle this somehow? We
  826. * may need to return -EAGAIN upwards in the worst case. --sct
  827. */
  828. if (!err)
  829. err = ext4_splice_branch(handle, inode, iblock,
  830. partial, indirect_blks, count);
  831. /*
  832. * i_disksize growing is protected by truncate_mutex. Don't forget to
  833. * protect it if you're about to implement concurrent
  834. * ext4_get_block() -bzzz
  835. */
  836. if (!err && extend_disksize && inode->i_size > ei->i_disksize)
  837. ei->i_disksize = inode->i_size;
  838. mutex_unlock(&ei->truncate_mutex);
  839. if (err)
  840. goto cleanup;
  841. set_buffer_new(bh_result);
  842. got_it:
  843. map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
  844. if (count > blocks_to_boundary)
  845. set_buffer_boundary(bh_result);
  846. err = count;
  847. /* Clean up and exit */
  848. partial = chain + depth - 1; /* the whole chain */
  849. cleanup:
  850. while (partial > chain) {
  851. BUFFER_TRACE(partial->bh, "call brelse");
  852. brelse(partial->bh);
  853. partial--;
  854. }
  855. BUFFER_TRACE(bh_result, "returned");
  856. out:
  857. return err;
  858. }
  859. #define DIO_CREDITS (EXT4_RESERVE_TRANS_BLOCKS + 32)
  860. static int ext4_get_block(struct inode *inode, sector_t iblock,
  861. struct buffer_head *bh_result, int create)
  862. {
  863. handle_t *handle = ext4_journal_current_handle();
  864. int ret = 0;
  865. unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
  866. if (!create)
  867. goto get_block; /* A read */
  868. if (max_blocks == 1)
  869. goto get_block; /* A single block get */
  870. if (handle->h_transaction->t_state == T_LOCKED) {
  871. /*
  872. * Huge direct-io writes can hold off commits for long
  873. * periods of time. Let this commit run.
  874. */
  875. ext4_journal_stop(handle);
  876. handle = ext4_journal_start(inode, DIO_CREDITS);
  877. if (IS_ERR(handle))
  878. ret = PTR_ERR(handle);
  879. goto get_block;
  880. }
  881. if (handle->h_buffer_credits <= EXT4_RESERVE_TRANS_BLOCKS) {
  882. /*
  883. * Getting low on buffer credits...
  884. */
  885. ret = ext4_journal_extend(handle, DIO_CREDITS);
  886. if (ret > 0) {
  887. /*
  888. * Couldn't extend the transaction. Start a new one.
  889. */
  890. ret = ext4_journal_restart(handle, DIO_CREDITS);
  891. }
  892. }
  893. get_block:
  894. if (ret == 0) {
  895. ret = ext4_get_blocks_wrap(handle, inode, iblock,
  896. max_blocks, bh_result, create, 0);
  897. if (ret > 0) {
  898. bh_result->b_size = (ret << inode->i_blkbits);
  899. ret = 0;
  900. }
  901. }
  902. return ret;
  903. }
  904. /*
  905. * `handle' can be NULL if create is zero
  906. */
  907. struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
  908. ext4_lblk_t block, int create, int *errp)
  909. {
  910. struct buffer_head dummy;
  911. int fatal = 0, err;
  912. J_ASSERT(handle != NULL || create == 0);
  913. dummy.b_state = 0;
  914. dummy.b_blocknr = -1000;
  915. buffer_trace_init(&dummy.b_history);
  916. err = ext4_get_blocks_wrap(handle, inode, block, 1,
  917. &dummy, create, 1);
  918. /*
  919. * ext4_get_blocks_handle() returns number of blocks
  920. * mapped. 0 in case of a HOLE.
  921. */
  922. if (err > 0) {
  923. if (err > 1)
  924. WARN_ON(1);
  925. err = 0;
  926. }
  927. *errp = err;
  928. if (!err && buffer_mapped(&dummy)) {
  929. struct buffer_head *bh;
  930. bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
  931. if (!bh) {
  932. *errp = -EIO;
  933. goto err;
  934. }
  935. if (buffer_new(&dummy)) {
  936. J_ASSERT(create != 0);
  937. J_ASSERT(handle != NULL);
  938. /*
  939. * Now that we do not always journal data, we should
  940. * keep in mind whether this should always journal the
  941. * new buffer as metadata. For now, regular file
  942. * writes use ext4_get_block instead, so it's not a
  943. * problem.
  944. */
  945. lock_buffer(bh);
  946. BUFFER_TRACE(bh, "call get_create_access");
  947. fatal = ext4_journal_get_create_access(handle, bh);
  948. if (!fatal && !buffer_uptodate(bh)) {
  949. memset(bh->b_data,0,inode->i_sb->s_blocksize);
  950. set_buffer_uptodate(bh);
  951. }
  952. unlock_buffer(bh);
  953. BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
  954. err = ext4_journal_dirty_metadata(handle, bh);
  955. if (!fatal)
  956. fatal = err;
  957. } else {
  958. BUFFER_TRACE(bh, "not a new buffer");
  959. }
  960. if (fatal) {
  961. *errp = fatal;
  962. brelse(bh);
  963. bh = NULL;
  964. }
  965. return bh;
  966. }
  967. err:
  968. return NULL;
  969. }
  970. struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
  971. ext4_lblk_t block, int create, int *err)
  972. {
  973. struct buffer_head * bh;
  974. bh = ext4_getblk(handle, inode, block, create, err);
  975. if (!bh)
  976. return bh;
  977. if (buffer_uptodate(bh))
  978. return bh;
  979. ll_rw_block(READ_META, 1, &bh);
  980. wait_on_buffer(bh);
  981. if (buffer_uptodate(bh))
  982. return bh;
  983. put_bh(bh);
  984. *err = -EIO;
  985. return NULL;
  986. }
  987. static int walk_page_buffers( handle_t *handle,
  988. struct buffer_head *head,
  989. unsigned from,
  990. unsigned to,
  991. int *partial,
  992. int (*fn)( handle_t *handle,
  993. struct buffer_head *bh))
  994. {
  995. struct buffer_head *bh;
  996. unsigned block_start, block_end;
  997. unsigned blocksize = head->b_size;
  998. int err, ret = 0;
  999. struct buffer_head *next;
  1000. for ( bh = head, block_start = 0;
  1001. ret == 0 && (bh != head || !block_start);
  1002. block_start = block_end, bh = next)
  1003. {
  1004. next = bh->b_this_page;
  1005. block_end = block_start + blocksize;
  1006. if (block_end <= from || block_start >= to) {
  1007. if (partial && !buffer_uptodate(bh))
  1008. *partial = 1;
  1009. continue;
  1010. }
  1011. err = (*fn)(handle, bh);
  1012. if (!ret)
  1013. ret = err;
  1014. }
  1015. return ret;
  1016. }
  1017. /*
  1018. * To preserve ordering, it is essential that the hole instantiation and
  1019. * the data write be encapsulated in a single transaction. We cannot
  1020. * close off a transaction and start a new one between the ext4_get_block()
  1021. * and the commit_write(). So doing the jbd2_journal_start at the start of
  1022. * prepare_write() is the right place.
  1023. *
  1024. * Also, this function can nest inside ext4_writepage() ->
  1025. * block_write_full_page(). In that case, we *know* that ext4_writepage()
  1026. * has generated enough buffer credits to do the whole page. So we won't
  1027. * block on the journal in that case, which is good, because the caller may
  1028. * be PF_MEMALLOC.
  1029. *
  1030. * By accident, ext4 can be reentered when a transaction is open via
  1031. * quota file writes. If we were to commit the transaction while thus
  1032. * reentered, there can be a deadlock - we would be holding a quota
  1033. * lock, and the commit would never complete if another thread had a
  1034. * transaction open and was blocking on the quota lock - a ranking
  1035. * violation.
  1036. *
  1037. * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
  1038. * will _not_ run commit under these circumstances because handle->h_ref
  1039. * is elevated. We'll still have enough credits for the tiny quotafile
  1040. * write.
  1041. */
  1042. static int do_journal_get_write_access(handle_t *handle,
  1043. struct buffer_head *bh)
  1044. {
  1045. if (!buffer_mapped(bh) || buffer_freed(bh))
  1046. return 0;
  1047. return ext4_journal_get_write_access(handle, bh);
  1048. }
  1049. static int ext4_write_begin(struct file *file, struct address_space *mapping,
  1050. loff_t pos, unsigned len, unsigned flags,
  1051. struct page **pagep, void **fsdata)
  1052. {
  1053. struct inode *inode = mapping->host;
  1054. int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
  1055. handle_t *handle;
  1056. int retries = 0;
  1057. struct page *page;
  1058. pgoff_t index;
  1059. unsigned from, to;
  1060. index = pos >> PAGE_CACHE_SHIFT;
  1061. from = pos & (PAGE_CACHE_SIZE - 1);
  1062. to = from + len;
  1063. retry:
  1064. page = __grab_cache_page(mapping, index);
  1065. if (!page)
  1066. return -ENOMEM;
  1067. *pagep = page;
  1068. handle = ext4_journal_start(inode, needed_blocks);
  1069. if (IS_ERR(handle)) {
  1070. unlock_page(page);
  1071. page_cache_release(page);
  1072. ret = PTR_ERR(handle);
  1073. goto out;
  1074. }
  1075. ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
  1076. ext4_get_block);
  1077. if (!ret && ext4_should_journal_data(inode)) {
  1078. ret = walk_page_buffers(handle, page_buffers(page),
  1079. from, to, NULL, do_journal_get_write_access);
  1080. }
  1081. if (ret) {
  1082. ext4_journal_stop(handle);
  1083. unlock_page(page);
  1084. page_cache_release(page);
  1085. }
  1086. if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
  1087. goto retry;
  1088. out:
  1089. return ret;
  1090. }
  1091. int ext4_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
  1092. {
  1093. int err = jbd2_journal_dirty_data(handle, bh);
  1094. if (err)
  1095. ext4_journal_abort_handle(__FUNCTION__, __FUNCTION__,
  1096. bh, handle, err);
  1097. return err;
  1098. }
  1099. /* For write_end() in data=journal mode */
  1100. static int write_end_fn(handle_t *handle, struct buffer_head *bh)
  1101. {
  1102. if (!buffer_mapped(bh) || buffer_freed(bh))
  1103. return 0;
  1104. set_buffer_uptodate(bh);
  1105. return ext4_journal_dirty_metadata(handle, bh);
  1106. }
  1107. /*
  1108. * Generic write_end handler for ordered and writeback ext4 journal modes.
  1109. * We can't use generic_write_end, because that unlocks the page and we need to
  1110. * unlock the page after ext4_journal_stop, but ext4_journal_stop must run
  1111. * after block_write_end.
  1112. */
  1113. static int ext4_generic_write_end(struct file *file,
  1114. struct address_space *mapping,
  1115. loff_t pos, unsigned len, unsigned copied,
  1116. struct page *page, void *fsdata)
  1117. {
  1118. struct inode *inode = file->f_mapping->host;
  1119. copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
  1120. if (pos+copied > inode->i_size) {
  1121. i_size_write(inode, pos+copied);
  1122. mark_inode_dirty(inode);
  1123. }
  1124. return copied;
  1125. }
  1126. /*
  1127. * We need to pick up the new inode size which generic_commit_write gave us
  1128. * `file' can be NULL - eg, when called from page_symlink().
  1129. *
  1130. * ext4 never places buffers on inode->i_mapping->private_list. metadata
  1131. * buffers are managed internally.
  1132. */
  1133. static int ext4_ordered_write_end(struct file *file,
  1134. struct address_space *mapping,
  1135. loff_t pos, unsigned len, unsigned copied,
  1136. struct page *page, void *fsdata)
  1137. {
  1138. handle_t *handle = ext4_journal_current_handle();
  1139. struct inode *inode = file->f_mapping->host;
  1140. unsigned from, to;
  1141. int ret = 0, ret2;
  1142. from = pos & (PAGE_CACHE_SIZE - 1);
  1143. to = from + len;
  1144. ret = walk_page_buffers(handle, page_buffers(page),
  1145. from, to, NULL, ext4_journal_dirty_data);
  1146. if (ret == 0) {
  1147. /*
  1148. * generic_write_end() will run mark_inode_dirty() if i_size
  1149. * changes. So let's piggyback the i_disksize mark_inode_dirty
  1150. * into that.
  1151. */
  1152. loff_t new_i_size;
  1153. new_i_size = pos + copied;
  1154. if (new_i_size > EXT4_I(inode)->i_disksize)
  1155. EXT4_I(inode)->i_disksize = new_i_size;
  1156. copied = ext4_generic_write_end(file, mapping, pos, len, copied,
  1157. page, fsdata);
  1158. if (copied < 0)
  1159. ret = copied;
  1160. }
  1161. ret2 = ext4_journal_stop(handle);
  1162. if (!ret)
  1163. ret = ret2;
  1164. unlock_page(page);
  1165. page_cache_release(page);
  1166. return ret ? ret : copied;
  1167. }
  1168. static int ext4_writeback_write_end(struct file *file,
  1169. struct address_space *mapping,
  1170. loff_t pos, unsigned len, unsigned copied,
  1171. struct page *page, void *fsdata)
  1172. {
  1173. handle_t *handle = ext4_journal_current_handle();
  1174. struct inode *inode = file->f_mapping->host;
  1175. int ret = 0, ret2;
  1176. loff_t new_i_size;
  1177. new_i_size = pos + copied;
  1178. if (new_i_size > EXT4_I(inode)->i_disksize)
  1179. EXT4_I(inode)->i_disksize = new_i_size;
  1180. copied = ext4_generic_write_end(file, mapping, pos, len, copied,
  1181. page, fsdata);
  1182. if (copied < 0)
  1183. ret = copied;
  1184. ret2 = ext4_journal_stop(handle);
  1185. if (!ret)
  1186. ret = ret2;
  1187. unlock_page(page);
  1188. page_cache_release(page);
  1189. return ret ? ret : copied;
  1190. }
  1191. static int ext4_journalled_write_end(struct file *file,
  1192. struct address_space *mapping,
  1193. loff_t pos, unsigned len, unsigned copied,
  1194. struct page *page, void *fsdata)
  1195. {
  1196. handle_t *handle = ext4_journal_current_handle();
  1197. struct inode *inode = mapping->host;
  1198. int ret = 0, ret2;
  1199. int partial = 0;
  1200. unsigned from, to;
  1201. from = pos & (PAGE_CACHE_SIZE - 1);
  1202. to = from + len;
  1203. if (copied < len) {
  1204. if (!PageUptodate(page))
  1205. copied = 0;
  1206. page_zero_new_buffers(page, from+copied, to);
  1207. }
  1208. ret = walk_page_buffers(handle, page_buffers(page), from,
  1209. to, &partial, write_end_fn);
  1210. if (!partial)
  1211. SetPageUptodate(page);
  1212. if (pos+copied > inode->i_size)
  1213. i_size_write(inode, pos+copied);
  1214. EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
  1215. if (inode->i_size > EXT4_I(inode)->i_disksize) {
  1216. EXT4_I(inode)->i_disksize = inode->i_size;
  1217. ret2 = ext4_mark_inode_dirty(handle, inode);
  1218. if (!ret)
  1219. ret = ret2;
  1220. }
  1221. ret2 = ext4_journal_stop(handle);
  1222. if (!ret)
  1223. ret = ret2;
  1224. unlock_page(page);
  1225. page_cache_release(page);
  1226. return ret ? ret : copied;
  1227. }
  1228. /*
  1229. * bmap() is special. It gets used by applications such as lilo and by
  1230. * the swapper to find the on-disk block of a specific piece of data.
  1231. *
  1232. * Naturally, this is dangerous if the block concerned is still in the
  1233. * journal. If somebody makes a swapfile on an ext4 data-journaling
  1234. * filesystem and enables swap, then they may get a nasty shock when the
  1235. * data getting swapped to that swapfile suddenly gets overwritten by
  1236. * the original zero's written out previously to the journal and
  1237. * awaiting writeback in the kernel's buffer cache.
  1238. *
  1239. * So, if we see any bmap calls here on a modified, data-journaled file,
  1240. * take extra steps to flush any blocks which might be in the cache.
  1241. */
  1242. static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
  1243. {
  1244. struct inode *inode = mapping->host;
  1245. journal_t *journal;
  1246. int err;
  1247. if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
  1248. /*
  1249. * This is a REALLY heavyweight approach, but the use of
  1250. * bmap on dirty files is expected to be extremely rare:
  1251. * only if we run lilo or swapon on a freshly made file
  1252. * do we expect this to happen.
  1253. *
  1254. * (bmap requires CAP_SYS_RAWIO so this does not
  1255. * represent an unprivileged user DOS attack --- we'd be
  1256. * in trouble if mortal users could trigger this path at
  1257. * will.)
  1258. *
  1259. * NB. EXT4_STATE_JDATA is not set on files other than
  1260. * regular files. If somebody wants to bmap a directory
  1261. * or symlink and gets confused because the buffer
  1262. * hasn't yet been flushed to disk, they deserve
  1263. * everything they get.
  1264. */
  1265. EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
  1266. journal = EXT4_JOURNAL(inode);
  1267. jbd2_journal_lock_updates(journal);
  1268. err = jbd2_journal_flush(journal);
  1269. jbd2_journal_unlock_updates(journal);
  1270. if (err)
  1271. return 0;
  1272. }
  1273. return generic_block_bmap(mapping,block,ext4_get_block);
  1274. }
  1275. static int bget_one(handle_t *handle, struct buffer_head *bh)
  1276. {
  1277. get_bh(bh);
  1278. return 0;
  1279. }
  1280. static int bput_one(handle_t *handle, struct buffer_head *bh)
  1281. {
  1282. put_bh(bh);
  1283. return 0;
  1284. }
  1285. static int jbd2_journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
  1286. {
  1287. if (buffer_mapped(bh))
  1288. return ext4_journal_dirty_data(handle, bh);
  1289. return 0;
  1290. }
  1291. /*
  1292. * Note that we always start a transaction even if we're not journalling
  1293. * data. This is to preserve ordering: any hole instantiation within
  1294. * __block_write_full_page -> ext4_get_block() should be journalled
  1295. * along with the data so we don't crash and then get metadata which
  1296. * refers to old data.
  1297. *
  1298. * In all journalling modes block_write_full_page() will start the I/O.
  1299. *
  1300. * Problem:
  1301. *
  1302. * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
  1303. * ext4_writepage()
  1304. *
  1305. * Similar for:
  1306. *
  1307. * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
  1308. *
  1309. * Same applies to ext4_get_block(). We will deadlock on various things like
  1310. * lock_journal and i_truncate_mutex.
  1311. *
  1312. * Setting PF_MEMALLOC here doesn't work - too many internal memory
  1313. * allocations fail.
  1314. *
  1315. * 16May01: If we're reentered then journal_current_handle() will be
  1316. * non-zero. We simply *return*.
  1317. *
  1318. * 1 July 2001: @@@ FIXME:
  1319. * In journalled data mode, a data buffer may be metadata against the
  1320. * current transaction. But the same file is part of a shared mapping
  1321. * and someone does a writepage() on it.
  1322. *
  1323. * We will move the buffer onto the async_data list, but *after* it has
  1324. * been dirtied. So there's a small window where we have dirty data on
  1325. * BJ_Metadata.
  1326. *
  1327. * Note that this only applies to the last partial page in the file. The
  1328. * bit which block_write_full_page() uses prepare/commit for. (That's
  1329. * broken code anyway: it's wrong for msync()).
  1330. *
  1331. * It's a rare case: affects the final partial page, for journalled data
  1332. * where the file is subject to bith write() and writepage() in the same
  1333. * transction. To fix it we'll need a custom block_write_full_page().
  1334. * We'll probably need that anyway for journalling writepage() output.
  1335. *
  1336. * We don't honour synchronous mounts for writepage(). That would be
  1337. * disastrous. Any write() or metadata operation will sync the fs for
  1338. * us.
  1339. *
  1340. * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
  1341. * we don't need to open a transaction here.
  1342. */
  1343. static int ext4_ordered_writepage(struct page *page,
  1344. struct writeback_control *wbc)
  1345. {
  1346. struct inode *inode = page->mapping->host;
  1347. struct buffer_head *page_bufs;
  1348. handle_t *handle = NULL;
  1349. int ret = 0;
  1350. int err;
  1351. J_ASSERT(PageLocked(page));
  1352. /*
  1353. * We give up here if we're reentered, because it might be for a
  1354. * different filesystem.
  1355. */
  1356. if (ext4_journal_current_handle())
  1357. goto out_fail;
  1358. handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
  1359. if (IS_ERR(handle)) {
  1360. ret = PTR_ERR(handle);
  1361. goto out_fail;
  1362. }
  1363. if (!page_has_buffers(page)) {
  1364. create_empty_buffers(page, inode->i_sb->s_blocksize,
  1365. (1 << BH_Dirty)|(1 << BH_Uptodate));
  1366. }
  1367. page_bufs = page_buffers(page);
  1368. walk_page_buffers(handle, page_bufs, 0,
  1369. PAGE_CACHE_SIZE, NULL, bget_one);
  1370. ret = block_write_full_page(page, ext4_get_block, wbc);
  1371. /*
  1372. * The page can become unlocked at any point now, and
  1373. * truncate can then come in and change things. So we
  1374. * can't touch *page from now on. But *page_bufs is
  1375. * safe due to elevated refcount.
  1376. */
  1377. /*
  1378. * And attach them to the current transaction. But only if
  1379. * block_write_full_page() succeeded. Otherwise they are unmapped,
  1380. * and generally junk.
  1381. */
  1382. if (ret == 0) {
  1383. err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
  1384. NULL, jbd2_journal_dirty_data_fn);
  1385. if (!ret)
  1386. ret = err;
  1387. }
  1388. walk_page_buffers(handle, page_bufs, 0,
  1389. PAGE_CACHE_SIZE, NULL, bput_one);
  1390. err = ext4_journal_stop(handle);
  1391. if (!ret)
  1392. ret = err;
  1393. return ret;
  1394. out_fail:
  1395. redirty_page_for_writepage(wbc, page);
  1396. unlock_page(page);
  1397. return ret;
  1398. }
  1399. static int ext4_writeback_writepage(struct page *page,
  1400. struct writeback_control *wbc)
  1401. {
  1402. struct inode *inode = page->mapping->host;
  1403. handle_t *handle = NULL;
  1404. int ret = 0;
  1405. int err;
  1406. if (ext4_journal_current_handle())
  1407. goto out_fail;
  1408. handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
  1409. if (IS_ERR(handle)) {
  1410. ret = PTR_ERR(handle);
  1411. goto out_fail;
  1412. }
  1413. if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
  1414. ret = nobh_writepage(page, ext4_get_block, wbc);
  1415. else
  1416. ret = block_write_full_page(page, ext4_get_block, wbc);
  1417. err = ext4_journal_stop(handle);
  1418. if (!ret)
  1419. ret = err;
  1420. return ret;
  1421. out_fail:
  1422. redirty_page_for_writepage(wbc, page);
  1423. unlock_page(page);
  1424. return ret;
  1425. }
  1426. static int ext4_journalled_writepage(struct page *page,
  1427. struct writeback_control *wbc)
  1428. {
  1429. struct inode *inode = page->mapping->host;
  1430. handle_t *handle = NULL;
  1431. int ret = 0;
  1432. int err;
  1433. if (ext4_journal_current_handle())
  1434. goto no_write;
  1435. handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
  1436. if (IS_ERR(handle)) {
  1437. ret = PTR_ERR(handle);
  1438. goto no_write;
  1439. }
  1440. if (!page_has_buffers(page) || PageChecked(page)) {
  1441. /*
  1442. * It's mmapped pagecache. Add buffers and journal it. There
  1443. * doesn't seem much point in redirtying the page here.
  1444. */
  1445. ClearPageChecked(page);
  1446. ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
  1447. ext4_get_block);
  1448. if (ret != 0) {
  1449. ext4_journal_stop(handle);
  1450. goto out_unlock;
  1451. }
  1452. ret = walk_page_buffers(handle, page_buffers(page), 0,
  1453. PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
  1454. err = walk_page_buffers(handle, page_buffers(page), 0,
  1455. PAGE_CACHE_SIZE, NULL, write_end_fn);
  1456. if (ret == 0)
  1457. ret = err;
  1458. EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
  1459. unlock_page(page);
  1460. } else {
  1461. /*
  1462. * It may be a page full of checkpoint-mode buffers. We don't
  1463. * really know unless we go poke around in the buffer_heads.
  1464. * But block_write_full_page will do the right thing.
  1465. */
  1466. ret = block_write_full_page(page, ext4_get_block, wbc);
  1467. }
  1468. err = ext4_journal_stop(handle);
  1469. if (!ret)
  1470. ret = err;
  1471. out:
  1472. return ret;
  1473. no_write:
  1474. redirty_page_for_writepage(wbc, page);
  1475. out_unlock:
  1476. unlock_page(page);
  1477. goto out;
  1478. }
  1479. static int ext4_readpage(struct file *file, struct page *page)
  1480. {
  1481. return mpage_readpage(page, ext4_get_block);
  1482. }
  1483. static int
  1484. ext4_readpages(struct file *file, struct address_space *mapping,
  1485. struct list_head *pages, unsigned nr_pages)
  1486. {
  1487. return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
  1488. }
  1489. static void ext4_invalidatepage(struct page *page, unsigned long offset)
  1490. {
  1491. journal_t *journal = EXT4_JOURNAL(page->mapping->host);
  1492. /*
  1493. * If it's a full truncate we just forget about the pending dirtying
  1494. */
  1495. if (offset == 0)
  1496. ClearPageChecked(page);
  1497. jbd2_journal_invalidatepage(journal, page, offset);
  1498. }
  1499. static int ext4_releasepage(struct page *page, gfp_t wait)
  1500. {
  1501. journal_t *journal = EXT4_JOURNAL(page->mapping->host);
  1502. WARN_ON(PageChecked(page));
  1503. if (!page_has_buffers(page))
  1504. return 0;
  1505. return jbd2_journal_try_to_free_buffers(journal, page, wait);
  1506. }
  1507. /*
  1508. * If the O_DIRECT write will extend the file then add this inode to the
  1509. * orphan list. So recovery will truncate it back to the original size
  1510. * if the machine crashes during the write.
  1511. *
  1512. * If the O_DIRECT write is intantiating holes inside i_size and the machine
  1513. * crashes then stale disk data _may_ be exposed inside the file.
  1514. */
  1515. static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
  1516. const struct iovec *iov, loff_t offset,
  1517. unsigned long nr_segs)
  1518. {
  1519. struct file *file = iocb->ki_filp;
  1520. struct inode *inode = file->f_mapping->host;
  1521. struct ext4_inode_info *ei = EXT4_I(inode);
  1522. handle_t *handle = NULL;
  1523. ssize_t ret;
  1524. int orphan = 0;
  1525. size_t count = iov_length(iov, nr_segs);
  1526. if (rw == WRITE) {
  1527. loff_t final_size = offset + count;
  1528. handle = ext4_journal_start(inode, DIO_CREDITS);
  1529. if (IS_ERR(handle)) {
  1530. ret = PTR_ERR(handle);
  1531. goto out;
  1532. }
  1533. if (final_size > inode->i_size) {
  1534. ret = ext4_orphan_add(handle, inode);
  1535. if (ret)
  1536. goto out_stop;
  1537. orphan = 1;
  1538. ei->i_disksize = inode->i_size;
  1539. }
  1540. }
  1541. ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
  1542. offset, nr_segs,
  1543. ext4_get_block, NULL);
  1544. /*
  1545. * Reacquire the handle: ext4_get_block() can restart the transaction
  1546. */
  1547. handle = ext4_journal_current_handle();
  1548. out_stop:
  1549. if (handle) {
  1550. int err;
  1551. if (orphan && inode->i_nlink)
  1552. ext4_orphan_del(handle, inode);
  1553. if (orphan && ret > 0) {
  1554. loff_t end = offset + ret;
  1555. if (end > inode->i_size) {
  1556. ei->i_disksize = end;
  1557. i_size_write(inode, end);
  1558. /*
  1559. * We're going to return a positive `ret'
  1560. * here due to non-zero-length I/O, so there's
  1561. * no way of reporting error returns from
  1562. * ext4_mark_inode_dirty() to userspace. So
  1563. * ignore it.
  1564. */
  1565. ext4_mark_inode_dirty(handle, inode);
  1566. }
  1567. }
  1568. err = ext4_journal_stop(handle);
  1569. if (ret == 0)
  1570. ret = err;
  1571. }
  1572. out:
  1573. return ret;
  1574. }
  1575. /*
  1576. * Pages can be marked dirty completely asynchronously from ext4's journalling
  1577. * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
  1578. * much here because ->set_page_dirty is called under VFS locks. The page is
  1579. * not necessarily locked.
  1580. *
  1581. * We cannot just dirty the page and leave attached buffers clean, because the
  1582. * buffers' dirty state is "definitive". We cannot just set the buffers dirty
  1583. * or jbddirty because all the journalling code will explode.
  1584. *
  1585. * So what we do is to mark the page "pending dirty" and next time writepage
  1586. * is called, propagate that into the buffers appropriately.
  1587. */
  1588. static int ext4_journalled_set_page_dirty(struct page *page)
  1589. {
  1590. SetPageChecked(page);
  1591. return __set_page_dirty_nobuffers(page);
  1592. }
  1593. static const struct address_space_operations ext4_ordered_aops = {
  1594. .readpage = ext4_readpage,
  1595. .readpages = ext4_readpages,
  1596. .writepage = ext4_ordered_writepage,
  1597. .sync_page = block_sync_page,
  1598. .write_begin = ext4_write_begin,
  1599. .write_end = ext4_ordered_write_end,
  1600. .bmap = ext4_bmap,
  1601. .invalidatepage = ext4_invalidatepage,
  1602. .releasepage = ext4_releasepage,
  1603. .direct_IO = ext4_direct_IO,
  1604. .migratepage = buffer_migrate_page,
  1605. };
  1606. static const struct address_space_operations ext4_writeback_aops = {
  1607. .readpage = ext4_readpage,
  1608. .readpages = ext4_readpages,
  1609. .writepage = ext4_writeback_writepage,
  1610. .sync_page = block_sync_page,
  1611. .write_begin = ext4_write_begin,
  1612. .write_end = ext4_writeback_write_end,
  1613. .bmap = ext4_bmap,
  1614. .invalidatepage = ext4_invalidatepage,
  1615. .releasepage = ext4_releasepage,
  1616. .direct_IO = ext4_direct_IO,
  1617. .migratepage = buffer_migrate_page,
  1618. };
  1619. static const struct address_space_operations ext4_journalled_aops = {
  1620. .readpage = ext4_readpage,
  1621. .readpages = ext4_readpages,
  1622. .writepage = ext4_journalled_writepage,
  1623. .sync_page = block_sync_page,
  1624. .write_begin = ext4_write_begin,
  1625. .write_end = ext4_journalled_write_end,
  1626. .set_page_dirty = ext4_journalled_set_page_dirty,
  1627. .bmap = ext4_bmap,
  1628. .invalidatepage = ext4_invalidatepage,
  1629. .releasepage = ext4_releasepage,
  1630. };
  1631. void ext4_set_aops(struct inode *inode)
  1632. {
  1633. if (ext4_should_order_data(inode))
  1634. inode->i_mapping->a_ops = &ext4_ordered_aops;
  1635. else if (ext4_should_writeback_data(inode))
  1636. inode->i_mapping->a_ops = &ext4_writeback_aops;
  1637. else
  1638. inode->i_mapping->a_ops = &ext4_journalled_aops;
  1639. }
  1640. /*
  1641. * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
  1642. * up to the end of the block which corresponds to `from'.
  1643. * This required during truncate. We need to physically zero the tail end
  1644. * of that block so it doesn't yield old data if the file is later grown.
  1645. */
  1646. int ext4_block_truncate_page(handle_t *handle, struct page *page,
  1647. struct address_space *mapping, loff_t from)
  1648. {
  1649. ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
  1650. unsigned offset = from & (PAGE_CACHE_SIZE-1);
  1651. unsigned blocksize, length, pos;
  1652. ext4_lblk_t iblock;
  1653. struct inode *inode = mapping->host;
  1654. struct buffer_head *bh;
  1655. int err = 0;
  1656. blocksize = inode->i_sb->s_blocksize;
  1657. length = blocksize - (offset & (blocksize - 1));
  1658. iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
  1659. /*
  1660. * For "nobh" option, we can only work if we don't need to
  1661. * read-in the page - otherwise we create buffers to do the IO.
  1662. */
  1663. if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
  1664. ext4_should_writeback_data(inode) && PageUptodate(page)) {
  1665. zero_user_page(page, offset, length, KM_USER0);
  1666. set_page_dirty(page);
  1667. goto unlock;
  1668. }
  1669. if (!page_has_buffers(page))
  1670. create_empty_buffers(page, blocksize, 0);
  1671. /* Find the buffer that contains "offset" */
  1672. bh = page_buffers(page);
  1673. pos = blocksize;
  1674. while (offset >= pos) {
  1675. bh = bh->b_this_page;
  1676. iblock++;
  1677. pos += blocksize;
  1678. }
  1679. err = 0;
  1680. if (buffer_freed(bh)) {
  1681. BUFFER_TRACE(bh, "freed: skip");
  1682. goto unlock;
  1683. }
  1684. if (!buffer_mapped(bh)) {
  1685. BUFFER_TRACE(bh, "unmapped");
  1686. ext4_get_block(inode, iblock, bh, 0);
  1687. /* unmapped? It's a hole - nothing to do */
  1688. if (!buffer_mapped(bh)) {
  1689. BUFFER_TRACE(bh, "still unmapped");
  1690. goto unlock;
  1691. }
  1692. }
  1693. /* Ok, it's mapped. Make sure it's up-to-date */
  1694. if (PageUptodate(page))
  1695. set_buffer_uptodate(bh);
  1696. if (!buffer_uptodate(bh)) {
  1697. err = -EIO;
  1698. ll_rw_block(READ, 1, &bh);
  1699. wait_on_buffer(bh);
  1700. /* Uhhuh. Read error. Complain and punt. */
  1701. if (!buffer_uptodate(bh))
  1702. goto unlock;
  1703. }
  1704. if (ext4_should_journal_data(inode)) {
  1705. BUFFER_TRACE(bh, "get write access");
  1706. err = ext4_journal_get_write_access(handle, bh);
  1707. if (err)
  1708. goto unlock;
  1709. }
  1710. zero_user_page(page, offset, length, KM_USER0);
  1711. BUFFER_TRACE(bh, "zeroed end of block");
  1712. err = 0;
  1713. if (ext4_should_journal_data(inode)) {
  1714. err = ext4_journal_dirty_metadata(handle, bh);
  1715. } else {
  1716. if (ext4_should_order_data(inode))
  1717. err = ext4_journal_dirty_data(handle, bh);
  1718. mark_buffer_dirty(bh);
  1719. }
  1720. unlock:
  1721. unlock_page(page);
  1722. page_cache_release(page);
  1723. return err;
  1724. }
  1725. /*
  1726. * Probably it should be a library function... search for first non-zero word
  1727. * or memcmp with zero_page, whatever is better for particular architecture.
  1728. * Linus?
  1729. */
  1730. static inline int all_zeroes(__le32 *p, __le32 *q)
  1731. {
  1732. while (p < q)
  1733. if (*p++)
  1734. return 0;
  1735. return 1;
  1736. }
  1737. /**
  1738. * ext4_find_shared - find the indirect blocks for partial truncation.
  1739. * @inode: inode in question
  1740. * @depth: depth of the affected branch
  1741. * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
  1742. * @chain: place to store the pointers to partial indirect blocks
  1743. * @top: place to the (detached) top of branch
  1744. *
  1745. * This is a helper function used by ext4_truncate().
  1746. *
  1747. * When we do truncate() we may have to clean the ends of several
  1748. * indirect blocks but leave the blocks themselves alive. Block is
  1749. * partially truncated if some data below the new i_size is refered
  1750. * from it (and it is on the path to the first completely truncated
  1751. * data block, indeed). We have to free the top of that path along
  1752. * with everything to the right of the path. Since no allocation
  1753. * past the truncation point is possible until ext4_truncate()
  1754. * finishes, we may safely do the latter, but top of branch may
  1755. * require special attention - pageout below the truncation point
  1756. * might try to populate it.
  1757. *
  1758. * We atomically detach the top of branch from the tree, store the
  1759. * block number of its root in *@top, pointers to buffer_heads of
  1760. * partially truncated blocks - in @chain[].bh and pointers to
  1761. * their last elements that should not be removed - in
  1762. * @chain[].p. Return value is the pointer to last filled element
  1763. * of @chain.
  1764. *
  1765. * The work left to caller to do the actual freeing of subtrees:
  1766. * a) free the subtree starting from *@top
  1767. * b) free the subtrees whose roots are stored in
  1768. * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
  1769. * c) free the subtrees growing from the inode past the @chain[0].
  1770. * (no partially truncated stuff there). */
  1771. static Indirect *ext4_find_shared(struct inode *inode, int depth,
  1772. ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
  1773. {
  1774. Indirect *partial, *p;
  1775. int k, err;
  1776. *top = 0;
  1777. /* Make k index the deepest non-null offest + 1 */
  1778. for (k = depth; k > 1 && !offsets[k-1]; k--)
  1779. ;
  1780. partial = ext4_get_branch(inode, k, offsets, chain, &err);
  1781. /* Writer: pointers */
  1782. if (!partial)
  1783. partial = chain + k-1;
  1784. /*
  1785. * If the branch acquired continuation since we've looked at it -
  1786. * fine, it should all survive and (new) top doesn't belong to us.
  1787. */
  1788. if (!partial->key && *partial->p)
  1789. /* Writer: end */
  1790. goto no_top;
  1791. for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
  1792. ;
  1793. /*
  1794. * OK, we've found the last block that must survive. The rest of our
  1795. * branch should be detached before unlocking. However, if that rest
  1796. * of branch is all ours and does not grow immediately from the inode
  1797. * it's easier to cheat and just decrement partial->p.
  1798. */
  1799. if (p == chain + k - 1 && p > chain) {
  1800. p->p--;
  1801. } else {
  1802. *top = *p->p;
  1803. /* Nope, don't do this in ext4. Must leave the tree intact */
  1804. #if 0
  1805. *p->p = 0;
  1806. #endif
  1807. }
  1808. /* Writer: end */
  1809. while(partial > p) {
  1810. brelse(partial->bh);
  1811. partial--;
  1812. }
  1813. no_top:
  1814. return partial;
  1815. }
  1816. /*
  1817. * Zero a number of block pointers in either an inode or an indirect block.
  1818. * If we restart the transaction we must again get write access to the
  1819. * indirect block for further modification.
  1820. *
  1821. * We release `count' blocks on disk, but (last - first) may be greater
  1822. * than `count' because there can be holes in there.
  1823. */
  1824. static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
  1825. struct buffer_head *bh, ext4_fsblk_t block_to_free,
  1826. unsigned long count, __le32 *first, __le32 *last)
  1827. {
  1828. __le32 *p;
  1829. if (try_to_extend_transaction(handle, inode)) {
  1830. if (bh) {
  1831. BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
  1832. ext4_journal_dirty_metadata(handle, bh);
  1833. }
  1834. ext4_mark_inode_dirty(handle, inode);
  1835. ext4_journal_test_restart(handle, inode);
  1836. if (bh) {
  1837. BUFFER_TRACE(bh, "retaking write access");
  1838. ext4_journal_get_write_access(handle, bh);
  1839. }
  1840. }
  1841. /*
  1842. * Any buffers which are on the journal will be in memory. We find
  1843. * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
  1844. * on them. We've already detached each block from the file, so
  1845. * bforget() in jbd2_journal_forget() should be safe.
  1846. *
  1847. * AKPM: turn on bforget in jbd2_journal_forget()!!!
  1848. */
  1849. for (p = first; p < last; p++) {
  1850. u32 nr = le32_to_cpu(*p);
  1851. if (nr) {
  1852. struct buffer_head *tbh;
  1853. *p = 0;
  1854. tbh = sb_find_get_block(inode->i_sb, nr);
  1855. ext4_forget(handle, 0, inode, tbh, nr);
  1856. }
  1857. }
  1858. ext4_free_blocks(handle, inode, block_to_free, count);
  1859. }
  1860. /**
  1861. * ext4_free_data - free a list of data blocks
  1862. * @handle: handle for this transaction
  1863. * @inode: inode we are dealing with
  1864. * @this_bh: indirect buffer_head which contains *@first and *@last
  1865. * @first: array of block numbers
  1866. * @last: points immediately past the end of array
  1867. *
  1868. * We are freeing all blocks refered from that array (numbers are stored as
  1869. * little-endian 32-bit) and updating @inode->i_blocks appropriately.
  1870. *
  1871. * We accumulate contiguous runs of blocks to free. Conveniently, if these
  1872. * blocks are contiguous then releasing them at one time will only affect one
  1873. * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
  1874. * actually use a lot of journal space.
  1875. *
  1876. * @this_bh will be %NULL if @first and @last point into the inode's direct
  1877. * block pointers.
  1878. */
  1879. static void ext4_free_data(handle_t *handle, struct inode *inode,
  1880. struct buffer_head *this_bh,
  1881. __le32 *first, __le32 *last)
  1882. {
  1883. ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
  1884. unsigned long count = 0; /* Number of blocks in the run */
  1885. __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
  1886. corresponding to
  1887. block_to_free */
  1888. ext4_fsblk_t nr; /* Current block # */
  1889. __le32 *p; /* Pointer into inode/ind
  1890. for current block */
  1891. int err;
  1892. if (this_bh) { /* For indirect block */
  1893. BUFFER_TRACE(this_bh, "get_write_access");
  1894. err = ext4_journal_get_write_access(handle, this_bh);
  1895. /* Important: if we can't update the indirect pointers
  1896. * to the blocks, we can't free them. */
  1897. if (err)
  1898. return;
  1899. }
  1900. for (p = first; p < last; p++) {
  1901. nr = le32_to_cpu(*p);
  1902. if (nr) {
  1903. /* accumulate blocks to free if they're contiguous */
  1904. if (count == 0) {
  1905. block_to_free = nr;
  1906. block_to_free_p = p;
  1907. count = 1;
  1908. } else if (nr == block_to_free + count) {
  1909. count++;
  1910. } else {
  1911. ext4_clear_blocks(handle, inode, this_bh,
  1912. block_to_free,
  1913. count, block_to_free_p, p);
  1914. block_to_free = nr;
  1915. block_to_free_p = p;
  1916. count = 1;
  1917. }
  1918. }
  1919. }
  1920. if (count > 0)
  1921. ext4_clear_blocks(handle, inode, this_bh, block_to_free,
  1922. count, block_to_free_p, p);
  1923. if (this_bh) {
  1924. BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
  1925. ext4_journal_dirty_metadata(handle, this_bh);
  1926. }
  1927. }
  1928. /**
  1929. * ext4_free_branches - free an array of branches
  1930. * @handle: JBD handle for this transaction
  1931. * @inode: inode we are dealing with
  1932. * @parent_bh: the buffer_head which contains *@first and *@last
  1933. * @first: array of block numbers
  1934. * @last: pointer immediately past the end of array
  1935. * @depth: depth of the branches to free
  1936. *
  1937. * We are freeing all blocks refered from these branches (numbers are
  1938. * stored as little-endian 32-bit) and updating @inode->i_blocks
  1939. * appropriately.
  1940. */
  1941. static void ext4_free_branches(handle_t *handle, struct inode *inode,
  1942. struct buffer_head *parent_bh,
  1943. __le32 *first, __le32 *last, int depth)
  1944. {
  1945. ext4_fsblk_t nr;
  1946. __le32 *p;
  1947. if (is_handle_aborted(handle))
  1948. return;
  1949. if (depth--) {
  1950. struct buffer_head *bh;
  1951. int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
  1952. p = last;
  1953. while (--p >= first) {
  1954. nr = le32_to_cpu(*p);
  1955. if (!nr)
  1956. continue; /* A hole */
  1957. /* Go read the buffer for the next level down */
  1958. bh = sb_bread(inode->i_sb, nr);
  1959. /*
  1960. * A read failure? Report error and clear slot
  1961. * (should be rare).
  1962. */
  1963. if (!bh) {
  1964. ext4_error(inode->i_sb, "ext4_free_branches",
  1965. "Read failure, inode=%lu, block=%llu",
  1966. inode->i_ino, nr);
  1967. continue;
  1968. }
  1969. /* This zaps the entire block. Bottom up. */
  1970. BUFFER_TRACE(bh, "free child branches");
  1971. ext4_free_branches(handle, inode, bh,
  1972. (__le32*)bh->b_data,
  1973. (__le32*)bh->b_data + addr_per_block,
  1974. depth);
  1975. /*
  1976. * We've probably journalled the indirect block several
  1977. * times during the truncate. But it's no longer
  1978. * needed and we now drop it from the transaction via
  1979. * jbd2_journal_revoke().
  1980. *
  1981. * That's easy if it's exclusively part of this
  1982. * transaction. But if it's part of the committing
  1983. * transaction then jbd2_journal_forget() will simply
  1984. * brelse() it. That means that if the underlying
  1985. * block is reallocated in ext4_get_block(),
  1986. * unmap_underlying_metadata() will find this block
  1987. * and will try to get rid of it. damn, damn.
  1988. *
  1989. * If this block has already been committed to the
  1990. * journal, a revoke record will be written. And
  1991. * revoke records must be emitted *before* clearing
  1992. * this block's bit in the bitmaps.
  1993. */
  1994. ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
  1995. /*
  1996. * Everything below this this pointer has been
  1997. * released. Now let this top-of-subtree go.
  1998. *
  1999. * We want the freeing of this indirect block to be
  2000. * atomic in the journal with the updating of the
  2001. * bitmap block which owns it. So make some room in
  2002. * the journal.
  2003. *
  2004. * We zero the parent pointer *after* freeing its
  2005. * pointee in the bitmaps, so if extend_transaction()
  2006. * for some reason fails to put the bitmap changes and
  2007. * the release into the same transaction, recovery
  2008. * will merely complain about releasing a free block,
  2009. * rather than leaking blocks.
  2010. */
  2011. if (is_handle_aborted(handle))
  2012. return;
  2013. if (try_to_extend_transaction(handle, inode)) {
  2014. ext4_mark_inode_dirty(handle, inode);
  2015. ext4_journal_test_restart(handle, inode);
  2016. }
  2017. ext4_free_blocks(handle, inode, nr, 1);
  2018. if (parent_bh) {
  2019. /*
  2020. * The block which we have just freed is
  2021. * pointed to by an indirect block: journal it
  2022. */
  2023. BUFFER_TRACE(parent_bh, "get_write_access");
  2024. if (!ext4_journal_get_write_access(handle,
  2025. parent_bh)){
  2026. *p = 0;
  2027. BUFFER_TRACE(parent_bh,
  2028. "call ext4_journal_dirty_metadata");
  2029. ext4_journal_dirty_metadata(handle,
  2030. parent_bh);
  2031. }
  2032. }
  2033. }
  2034. } else {
  2035. /* We have reached the bottom of the tree. */
  2036. BUFFER_TRACE(parent_bh, "free data blocks");
  2037. ext4_free_data(handle, inode, parent_bh, first, last);
  2038. }
  2039. }
  2040. /*
  2041. * ext4_truncate()
  2042. *
  2043. * We block out ext4_get_block() block instantiations across the entire
  2044. * transaction, and VFS/VM ensures that ext4_truncate() cannot run
  2045. * simultaneously on behalf of the same inode.
  2046. *
  2047. * As we work through the truncate and commmit bits of it to the journal there
  2048. * is one core, guiding principle: the file's tree must always be consistent on
  2049. * disk. We must be able to restart the truncate after a crash.
  2050. *
  2051. * The file's tree may be transiently inconsistent in memory (although it
  2052. * probably isn't), but whenever we close off and commit a journal transaction,
  2053. * the contents of (the filesystem + the journal) must be consistent and
  2054. * restartable. It's pretty simple, really: bottom up, right to left (although
  2055. * left-to-right works OK too).
  2056. *
  2057. * Note that at recovery time, journal replay occurs *before* the restart of
  2058. * truncate against the orphan inode list.
  2059. *
  2060. * The committed inode has the new, desired i_size (which is the same as
  2061. * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
  2062. * that this inode's truncate did not complete and it will again call
  2063. * ext4_truncate() to have another go. So there will be instantiated blocks
  2064. * to the right of the truncation point in a crashed ext4 filesystem. But
  2065. * that's fine - as long as they are linked from the inode, the post-crash
  2066. * ext4_truncate() run will find them and release them.
  2067. */
  2068. void ext4_truncate(struct inode *inode)
  2069. {
  2070. handle_t *handle;
  2071. struct ext4_inode_info *ei = EXT4_I(inode);
  2072. __le32 *i_data = ei->i_data;
  2073. int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
  2074. struct address_space *mapping = inode->i_mapping;
  2075. ext4_lblk_t offsets[4];
  2076. Indirect chain[4];
  2077. Indirect *partial;
  2078. __le32 nr = 0;
  2079. int n;
  2080. ext4_lblk_t last_block;
  2081. unsigned blocksize = inode->i_sb->s_blocksize;
  2082. struct page *page;
  2083. if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
  2084. S_ISLNK(inode->i_mode)))
  2085. return;
  2086. if (ext4_inode_is_fast_symlink(inode))
  2087. return;
  2088. if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
  2089. return;
  2090. /*
  2091. * We have to lock the EOF page here, because lock_page() nests
  2092. * outside jbd2_journal_start().
  2093. */
  2094. if ((inode->i_size & (blocksize - 1)) == 0) {
  2095. /* Block boundary? Nothing to do */
  2096. page = NULL;
  2097. } else {
  2098. page = grab_cache_page(mapping,
  2099. inode->i_size >> PAGE_CACHE_SHIFT);
  2100. if (!page)
  2101. return;
  2102. }
  2103. if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
  2104. ext4_ext_truncate(inode, page);
  2105. return;
  2106. }
  2107. handle = start_transaction(inode);
  2108. if (IS_ERR(handle)) {
  2109. if (page) {
  2110. clear_highpage(page);
  2111. flush_dcache_page(page);
  2112. unlock_page(page);
  2113. page_cache_release(page);
  2114. }
  2115. return; /* AKPM: return what? */
  2116. }
  2117. last_block = (inode->i_size + blocksize-1)
  2118. >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
  2119. if (page)
  2120. ext4_block_truncate_page(handle, page, mapping, inode->i_size);
  2121. n = ext4_block_to_path(inode, last_block, offsets, NULL);
  2122. if (n == 0)
  2123. goto out_stop; /* error */
  2124. /*
  2125. * OK. This truncate is going to happen. We add the inode to the
  2126. * orphan list, so that if this truncate spans multiple transactions,
  2127. * and we crash, we will resume the truncate when the filesystem
  2128. * recovers. It also marks the inode dirty, to catch the new size.
  2129. *
  2130. * Implication: the file must always be in a sane, consistent
  2131. * truncatable state while each transaction commits.
  2132. */
  2133. if (ext4_orphan_add(handle, inode))
  2134. goto out_stop;
  2135. /*
  2136. * The orphan list entry will now protect us from any crash which
  2137. * occurs before the truncate completes, so it is now safe to propagate
  2138. * the new, shorter inode size (held for now in i_size) into the
  2139. * on-disk inode. We do this via i_disksize, which is the value which
  2140. * ext4 *really* writes onto the disk inode.
  2141. */
  2142. ei->i_disksize = inode->i_size;
  2143. /*
  2144. * From here we block out all ext4_get_block() callers who want to
  2145. * modify the block allocation tree.
  2146. */
  2147. mutex_lock(&ei->truncate_mutex);
  2148. if (n == 1) { /* direct blocks */
  2149. ext4_free_data(handle, inode, NULL, i_data+offsets[0],
  2150. i_data + EXT4_NDIR_BLOCKS);
  2151. goto do_indirects;
  2152. }
  2153. partial = ext4_find_shared(inode, n, offsets, chain, &nr);
  2154. /* Kill the top of shared branch (not detached) */
  2155. if (nr) {
  2156. if (partial == chain) {
  2157. /* Shared branch grows from the inode */
  2158. ext4_free_branches(handle, inode, NULL,
  2159. &nr, &nr+1, (chain+n-1) - partial);
  2160. *partial->p = 0;
  2161. /*
  2162. * We mark the inode dirty prior to restart,
  2163. * and prior to stop. No need for it here.
  2164. */
  2165. } else {
  2166. /* Shared branch grows from an indirect block */
  2167. BUFFER_TRACE(partial->bh, "get_write_access");
  2168. ext4_free_branches(handle, inode, partial->bh,
  2169. partial->p,
  2170. partial->p+1, (chain+n-1) - partial);
  2171. }
  2172. }
  2173. /* Clear the ends of indirect blocks on the shared branch */
  2174. while (partial > chain) {
  2175. ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
  2176. (__le32*)partial->bh->b_data+addr_per_block,
  2177. (chain+n-1) - partial);
  2178. BUFFER_TRACE(partial->bh, "call brelse");
  2179. brelse (partial->bh);
  2180. partial--;
  2181. }
  2182. do_indirects:
  2183. /* Kill the remaining (whole) subtrees */
  2184. switch (offsets[0]) {
  2185. default:
  2186. nr = i_data[EXT4_IND_BLOCK];
  2187. if (nr) {
  2188. ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
  2189. i_data[EXT4_IND_BLOCK] = 0;
  2190. }
  2191. case EXT4_IND_BLOCK:
  2192. nr = i_data[EXT4_DIND_BLOCK];
  2193. if (nr) {
  2194. ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
  2195. i_data[EXT4_DIND_BLOCK] = 0;
  2196. }
  2197. case EXT4_DIND_BLOCK:
  2198. nr = i_data[EXT4_TIND_BLOCK];
  2199. if (nr) {
  2200. ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
  2201. i_data[EXT4_TIND_BLOCK] = 0;
  2202. }
  2203. case EXT4_TIND_BLOCK:
  2204. ;
  2205. }
  2206. ext4_discard_reservation(inode);
  2207. mutex_unlock(&ei->truncate_mutex);
  2208. inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
  2209. ext4_mark_inode_dirty(handle, inode);
  2210. /*
  2211. * In a multi-transaction truncate, we only make the final transaction
  2212. * synchronous
  2213. */
  2214. if (IS_SYNC(inode))
  2215. handle->h_sync = 1;
  2216. out_stop:
  2217. /*
  2218. * If this was a simple ftruncate(), and the file will remain alive
  2219. * then we need to clear up the orphan record which we created above.
  2220. * However, if this was a real unlink then we were called by
  2221. * ext4_delete_inode(), and we allow that function to clean up the
  2222. * orphan info for us.
  2223. */
  2224. if (inode->i_nlink)
  2225. ext4_orphan_del(handle, inode);
  2226. ext4_journal_stop(handle);
  2227. }
  2228. static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb,
  2229. unsigned long ino, struct ext4_iloc *iloc)
  2230. {
  2231. unsigned long desc, group_desc;
  2232. ext4_group_t block_group;
  2233. unsigned long offset;
  2234. ext4_fsblk_t block;
  2235. struct buffer_head *bh;
  2236. struct ext4_group_desc * gdp;
  2237. if (!ext4_valid_inum(sb, ino)) {
  2238. /*
  2239. * This error is already checked for in namei.c unless we are
  2240. * looking at an NFS filehandle, in which case no error
  2241. * report is needed
  2242. */
  2243. return 0;
  2244. }
  2245. block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
  2246. if (block_group >= EXT4_SB(sb)->s_groups_count) {
  2247. ext4_error(sb,"ext4_get_inode_block","group >= groups count");
  2248. return 0;
  2249. }
  2250. smp_rmb();
  2251. group_desc = block_group >> EXT4_DESC_PER_BLOCK_BITS(sb);
  2252. desc = block_group & (EXT4_DESC_PER_BLOCK(sb) - 1);
  2253. bh = EXT4_SB(sb)->s_group_desc[group_desc];
  2254. if (!bh) {
  2255. ext4_error (sb, "ext4_get_inode_block",
  2256. "Descriptor not loaded");
  2257. return 0;
  2258. }
  2259. gdp = (struct ext4_group_desc *)((__u8 *)bh->b_data +
  2260. desc * EXT4_DESC_SIZE(sb));
  2261. /*
  2262. * Figure out the offset within the block group inode table
  2263. */
  2264. offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) *
  2265. EXT4_INODE_SIZE(sb);
  2266. block = ext4_inode_table(sb, gdp) +
  2267. (offset >> EXT4_BLOCK_SIZE_BITS(sb));
  2268. iloc->block_group = block_group;
  2269. iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1);
  2270. return block;
  2271. }
  2272. /*
  2273. * ext4_get_inode_loc returns with an extra refcount against the inode's
  2274. * underlying buffer_head on success. If 'in_mem' is true, we have all
  2275. * data in memory that is needed to recreate the on-disk version of this
  2276. * inode.
  2277. */
  2278. static int __ext4_get_inode_loc(struct inode *inode,
  2279. struct ext4_iloc *iloc, int in_mem)
  2280. {
  2281. ext4_fsblk_t block;
  2282. struct buffer_head *bh;
  2283. block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc);
  2284. if (!block)
  2285. return -EIO;
  2286. bh = sb_getblk(inode->i_sb, block);
  2287. if (!bh) {
  2288. ext4_error (inode->i_sb, "ext4_get_inode_loc",
  2289. "unable to read inode block - "
  2290. "inode=%lu, block=%llu",
  2291. inode->i_ino, block);
  2292. return -EIO;
  2293. }
  2294. if (!buffer_uptodate(bh)) {
  2295. lock_buffer(bh);
  2296. if (buffer_uptodate(bh)) {
  2297. /* someone brought it uptodate while we waited */
  2298. unlock_buffer(bh);
  2299. goto has_buffer;
  2300. }
  2301. /*
  2302. * If we have all information of the inode in memory and this
  2303. * is the only valid inode in the block, we need not read the
  2304. * block.
  2305. */
  2306. if (in_mem) {
  2307. struct buffer_head *bitmap_bh;
  2308. struct ext4_group_desc *desc;
  2309. int inodes_per_buffer;
  2310. int inode_offset, i;
  2311. ext4_group_t block_group;
  2312. int start;
  2313. block_group = (inode->i_ino - 1) /
  2314. EXT4_INODES_PER_GROUP(inode->i_sb);
  2315. inodes_per_buffer = bh->b_size /
  2316. EXT4_INODE_SIZE(inode->i_sb);
  2317. inode_offset = ((inode->i_ino - 1) %
  2318. EXT4_INODES_PER_GROUP(inode->i_sb));
  2319. start = inode_offset & ~(inodes_per_buffer - 1);
  2320. /* Is the inode bitmap in cache? */
  2321. desc = ext4_get_group_desc(inode->i_sb,
  2322. block_group, NULL);
  2323. if (!desc)
  2324. goto make_io;
  2325. bitmap_bh = sb_getblk(inode->i_sb,
  2326. ext4_inode_bitmap(inode->i_sb, desc));
  2327. if (!bitmap_bh)
  2328. goto make_io;
  2329. /*
  2330. * If the inode bitmap isn't in cache then the
  2331. * optimisation may end up performing two reads instead
  2332. * of one, so skip it.
  2333. */
  2334. if (!buffer_uptodate(bitmap_bh)) {
  2335. brelse(bitmap_bh);
  2336. goto make_io;
  2337. }
  2338. for (i = start; i < start + inodes_per_buffer; i++) {
  2339. if (i == inode_offset)
  2340. continue;
  2341. if (ext4_test_bit(i, bitmap_bh->b_data))
  2342. break;
  2343. }
  2344. brelse(bitmap_bh);
  2345. if (i == start + inodes_per_buffer) {
  2346. /* all other inodes are free, so skip I/O */
  2347. memset(bh->b_data, 0, bh->b_size);
  2348. set_buffer_uptodate(bh);
  2349. unlock_buffer(bh);
  2350. goto has_buffer;
  2351. }
  2352. }
  2353. make_io:
  2354. /*
  2355. * There are other valid inodes in the buffer, this inode
  2356. * has in-inode xattrs, or we don't have this inode in memory.
  2357. * Read the block from disk.
  2358. */
  2359. get_bh(bh);
  2360. bh->b_end_io = end_buffer_read_sync;
  2361. submit_bh(READ_META, bh);
  2362. wait_on_buffer(bh);
  2363. if (!buffer_uptodate(bh)) {
  2364. ext4_error(inode->i_sb, "ext4_get_inode_loc",
  2365. "unable to read inode block - "
  2366. "inode=%lu, block=%llu",
  2367. inode->i_ino, block);
  2368. brelse(bh);
  2369. return -EIO;
  2370. }
  2371. }
  2372. has_buffer:
  2373. iloc->bh = bh;
  2374. return 0;
  2375. }
  2376. int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
  2377. {
  2378. /* We have all inode data except xattrs in memory here. */
  2379. return __ext4_get_inode_loc(inode, iloc,
  2380. !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
  2381. }
  2382. void ext4_set_inode_flags(struct inode *inode)
  2383. {
  2384. unsigned int flags = EXT4_I(inode)->i_flags;
  2385. inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
  2386. if (flags & EXT4_SYNC_FL)
  2387. inode->i_flags |= S_SYNC;
  2388. if (flags & EXT4_APPEND_FL)
  2389. inode->i_flags |= S_APPEND;
  2390. if (flags & EXT4_IMMUTABLE_FL)
  2391. inode->i_flags |= S_IMMUTABLE;
  2392. if (flags & EXT4_NOATIME_FL)
  2393. inode->i_flags |= S_NOATIME;
  2394. if (flags & EXT4_DIRSYNC_FL)
  2395. inode->i_flags |= S_DIRSYNC;
  2396. }
  2397. /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
  2398. void ext4_get_inode_flags(struct ext4_inode_info *ei)
  2399. {
  2400. unsigned int flags = ei->vfs_inode.i_flags;
  2401. ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
  2402. EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
  2403. if (flags & S_SYNC)
  2404. ei->i_flags |= EXT4_SYNC_FL;
  2405. if (flags & S_APPEND)
  2406. ei->i_flags |= EXT4_APPEND_FL;
  2407. if (flags & S_IMMUTABLE)
  2408. ei->i_flags |= EXT4_IMMUTABLE_FL;
  2409. if (flags & S_NOATIME)
  2410. ei->i_flags |= EXT4_NOATIME_FL;
  2411. if (flags & S_DIRSYNC)
  2412. ei->i_flags |= EXT4_DIRSYNC_FL;
  2413. }
  2414. static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
  2415. struct ext4_inode_info *ei)
  2416. {
  2417. blkcnt_t i_blocks ;
  2418. struct inode *inode = &(ei->vfs_inode);
  2419. struct super_block *sb = inode->i_sb;
  2420. if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
  2421. EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
  2422. /* we are using combined 48 bit field */
  2423. i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
  2424. le32_to_cpu(raw_inode->i_blocks_lo);
  2425. if (ei->i_flags & EXT4_HUGE_FILE_FL) {
  2426. /* i_blocks represent file system block size */
  2427. return i_blocks << (inode->i_blkbits - 9);
  2428. } else {
  2429. return i_blocks;
  2430. }
  2431. } else {
  2432. return le32_to_cpu(raw_inode->i_blocks_lo);
  2433. }
  2434. }
  2435. void ext4_read_inode(struct inode * inode)
  2436. {
  2437. struct ext4_iloc iloc;
  2438. struct ext4_inode *raw_inode;
  2439. struct ext4_inode_info *ei = EXT4_I(inode);
  2440. struct buffer_head *bh;
  2441. int block;
  2442. #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
  2443. ei->i_acl = EXT4_ACL_NOT_CACHED;
  2444. ei->i_default_acl = EXT4_ACL_NOT_CACHED;
  2445. #endif
  2446. ei->i_block_alloc_info = NULL;
  2447. if (__ext4_get_inode_loc(inode, &iloc, 0))
  2448. goto bad_inode;
  2449. bh = iloc.bh;
  2450. raw_inode = ext4_raw_inode(&iloc);
  2451. inode->i_mode = le16_to_cpu(raw_inode->i_mode);
  2452. inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
  2453. inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
  2454. if(!(test_opt (inode->i_sb, NO_UID32))) {
  2455. inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
  2456. inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
  2457. }
  2458. inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
  2459. ei->i_state = 0;
  2460. ei->i_dir_start_lookup = 0;
  2461. ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
  2462. /* We now have enough fields to check if the inode was active or not.
  2463. * This is needed because nfsd might try to access dead inodes
  2464. * the test is that same one that e2fsck uses
  2465. * NeilBrown 1999oct15
  2466. */
  2467. if (inode->i_nlink == 0) {
  2468. if (inode->i_mode == 0 ||
  2469. !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
  2470. /* this inode is deleted */
  2471. brelse (bh);
  2472. goto bad_inode;
  2473. }
  2474. /* The only unlinked inodes we let through here have
  2475. * valid i_mode and are being read by the orphan
  2476. * recovery code: that's fine, we're about to complete
  2477. * the process of deleting those. */
  2478. }
  2479. ei->i_flags = le32_to_cpu(raw_inode->i_flags);
  2480. inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
  2481. ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
  2482. if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
  2483. cpu_to_le32(EXT4_OS_HURD)) {
  2484. ei->i_file_acl |=
  2485. ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
  2486. }
  2487. inode->i_size = ext4_isize(raw_inode);
  2488. ei->i_disksize = inode->i_size;
  2489. inode->i_generation = le32_to_cpu(raw_inode->i_generation);
  2490. ei->i_block_group = iloc.block_group;
  2491. /*
  2492. * NOTE! The in-memory inode i_data array is in little-endian order
  2493. * even on big-endian machines: we do NOT byteswap the block numbers!
  2494. */
  2495. for (block = 0; block < EXT4_N_BLOCKS; block++)
  2496. ei->i_data[block] = raw_inode->i_block[block];
  2497. INIT_LIST_HEAD(&ei->i_orphan);
  2498. if (inode->i_ino >= EXT4_FIRST_INO(inode->i_sb) + 1 &&
  2499. EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
  2500. /*
  2501. * When mke2fs creates big inodes it does not zero out
  2502. * the unused bytes above EXT4_GOOD_OLD_INODE_SIZE,
  2503. * so ignore those first few inodes.
  2504. */
  2505. ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
  2506. if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
  2507. EXT4_INODE_SIZE(inode->i_sb)) {
  2508. brelse (bh);
  2509. goto bad_inode;
  2510. }
  2511. if (ei->i_extra_isize == 0) {
  2512. /* The extra space is currently unused. Use it. */
  2513. ei->i_extra_isize = sizeof(struct ext4_inode) -
  2514. EXT4_GOOD_OLD_INODE_SIZE;
  2515. } else {
  2516. __le32 *magic = (void *)raw_inode +
  2517. EXT4_GOOD_OLD_INODE_SIZE +
  2518. ei->i_extra_isize;
  2519. if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
  2520. ei->i_state |= EXT4_STATE_XATTR;
  2521. }
  2522. } else
  2523. ei->i_extra_isize = 0;
  2524. EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
  2525. EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
  2526. EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
  2527. EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
  2528. if (S_ISREG(inode->i_mode)) {
  2529. inode->i_op = &ext4_file_inode_operations;
  2530. inode->i_fop = &ext4_file_operations;
  2531. ext4_set_aops(inode);
  2532. } else if (S_ISDIR(inode->i_mode)) {
  2533. inode->i_op = &ext4_dir_inode_operations;
  2534. inode->i_fop = &ext4_dir_operations;
  2535. } else if (S_ISLNK(inode->i_mode)) {
  2536. if (ext4_inode_is_fast_symlink(inode))
  2537. inode->i_op = &ext4_fast_symlink_inode_operations;
  2538. else {
  2539. inode->i_op = &ext4_symlink_inode_operations;
  2540. ext4_set_aops(inode);
  2541. }
  2542. } else {
  2543. inode->i_op = &ext4_special_inode_operations;
  2544. if (raw_inode->i_block[0])
  2545. init_special_inode(inode, inode->i_mode,
  2546. old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
  2547. else
  2548. init_special_inode(inode, inode->i_mode,
  2549. new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
  2550. }
  2551. brelse (iloc.bh);
  2552. ext4_set_inode_flags(inode);
  2553. return;
  2554. bad_inode:
  2555. make_bad_inode(inode);
  2556. return;
  2557. }
  2558. static int ext4_inode_blocks_set(handle_t *handle,
  2559. struct ext4_inode *raw_inode,
  2560. struct ext4_inode_info *ei)
  2561. {
  2562. struct inode *inode = &(ei->vfs_inode);
  2563. u64 i_blocks = inode->i_blocks;
  2564. struct super_block *sb = inode->i_sb;
  2565. int err = 0;
  2566. if (i_blocks <= ~0U) {
  2567. /*
  2568. * i_blocks can be represnted in a 32 bit variable
  2569. * as multiple of 512 bytes
  2570. */
  2571. raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
  2572. raw_inode->i_blocks_high = 0;
  2573. ei->i_flags &= ~EXT4_HUGE_FILE_FL;
  2574. } else if (i_blocks <= 0xffffffffffffULL) {
  2575. /*
  2576. * i_blocks can be represented in a 48 bit variable
  2577. * as multiple of 512 bytes
  2578. */
  2579. err = ext4_update_rocompat_feature(handle, sb,
  2580. EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
  2581. if (err)
  2582. goto err_out;
  2583. /* i_block is stored in the split 48 bit fields */
  2584. raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
  2585. raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
  2586. ei->i_flags &= ~EXT4_HUGE_FILE_FL;
  2587. } else {
  2588. /*
  2589. * i_blocks should be represented in a 48 bit variable
  2590. * as multiple of file system block size
  2591. */
  2592. err = ext4_update_rocompat_feature(handle, sb,
  2593. EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
  2594. if (err)
  2595. goto err_out;
  2596. ei->i_flags |= EXT4_HUGE_FILE_FL;
  2597. /* i_block is stored in file system block size */
  2598. i_blocks = i_blocks >> (inode->i_blkbits - 9);
  2599. raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
  2600. raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
  2601. }
  2602. err_out:
  2603. return err;
  2604. }
  2605. /*
  2606. * Post the struct inode info into an on-disk inode location in the
  2607. * buffer-cache. This gobbles the caller's reference to the
  2608. * buffer_head in the inode location struct.
  2609. *
  2610. * The caller must have write access to iloc->bh.
  2611. */
  2612. static int ext4_do_update_inode(handle_t *handle,
  2613. struct inode *inode,
  2614. struct ext4_iloc *iloc)
  2615. {
  2616. struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
  2617. struct ext4_inode_info *ei = EXT4_I(inode);
  2618. struct buffer_head *bh = iloc->bh;
  2619. int err = 0, rc, block;
  2620. /* For fields not not tracking in the in-memory inode,
  2621. * initialise them to zero for new inodes. */
  2622. if (ei->i_state & EXT4_STATE_NEW)
  2623. memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
  2624. ext4_get_inode_flags(ei);
  2625. raw_inode->i_mode = cpu_to_le16(inode->i_mode);
  2626. if(!(test_opt(inode->i_sb, NO_UID32))) {
  2627. raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
  2628. raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
  2629. /*
  2630. * Fix up interoperability with old kernels. Otherwise, old inodes get
  2631. * re-used with the upper 16 bits of the uid/gid intact
  2632. */
  2633. if(!ei->i_dtime) {
  2634. raw_inode->i_uid_high =
  2635. cpu_to_le16(high_16_bits(inode->i_uid));
  2636. raw_inode->i_gid_high =
  2637. cpu_to_le16(high_16_bits(inode->i_gid));
  2638. } else {
  2639. raw_inode->i_uid_high = 0;
  2640. raw_inode->i_gid_high = 0;
  2641. }
  2642. } else {
  2643. raw_inode->i_uid_low =
  2644. cpu_to_le16(fs_high2lowuid(inode->i_uid));
  2645. raw_inode->i_gid_low =
  2646. cpu_to_le16(fs_high2lowgid(inode->i_gid));
  2647. raw_inode->i_uid_high = 0;
  2648. raw_inode->i_gid_high = 0;
  2649. }
  2650. raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
  2651. EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
  2652. EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
  2653. EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
  2654. EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
  2655. if (ext4_inode_blocks_set(handle, raw_inode, ei))
  2656. goto out_brelse;
  2657. raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
  2658. raw_inode->i_flags = cpu_to_le32(ei->i_flags);
  2659. if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
  2660. cpu_to_le32(EXT4_OS_HURD))
  2661. raw_inode->i_file_acl_high =
  2662. cpu_to_le16(ei->i_file_acl >> 32);
  2663. raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
  2664. ext4_isize_set(raw_inode, ei->i_disksize);
  2665. if (ei->i_disksize > 0x7fffffffULL) {
  2666. struct super_block *sb = inode->i_sb;
  2667. if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
  2668. EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
  2669. EXT4_SB(sb)->s_es->s_rev_level ==
  2670. cpu_to_le32(EXT4_GOOD_OLD_REV)) {
  2671. /* If this is the first large file
  2672. * created, add a flag to the superblock.
  2673. */
  2674. err = ext4_journal_get_write_access(handle,
  2675. EXT4_SB(sb)->s_sbh);
  2676. if (err)
  2677. goto out_brelse;
  2678. ext4_update_dynamic_rev(sb);
  2679. EXT4_SET_RO_COMPAT_FEATURE(sb,
  2680. EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
  2681. sb->s_dirt = 1;
  2682. handle->h_sync = 1;
  2683. err = ext4_journal_dirty_metadata(handle,
  2684. EXT4_SB(sb)->s_sbh);
  2685. }
  2686. }
  2687. raw_inode->i_generation = cpu_to_le32(inode->i_generation);
  2688. if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
  2689. if (old_valid_dev(inode->i_rdev)) {
  2690. raw_inode->i_block[0] =
  2691. cpu_to_le32(old_encode_dev(inode->i_rdev));
  2692. raw_inode->i_block[1] = 0;
  2693. } else {
  2694. raw_inode->i_block[0] = 0;
  2695. raw_inode->i_block[1] =
  2696. cpu_to_le32(new_encode_dev(inode->i_rdev));
  2697. raw_inode->i_block[2] = 0;
  2698. }
  2699. } else for (block = 0; block < EXT4_N_BLOCKS; block++)
  2700. raw_inode->i_block[block] = ei->i_data[block];
  2701. if (ei->i_extra_isize)
  2702. raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
  2703. BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
  2704. rc = ext4_journal_dirty_metadata(handle, bh);
  2705. if (!err)
  2706. err = rc;
  2707. ei->i_state &= ~EXT4_STATE_NEW;
  2708. out_brelse:
  2709. brelse (bh);
  2710. ext4_std_error(inode->i_sb, err);
  2711. return err;
  2712. }
  2713. /*
  2714. * ext4_write_inode()
  2715. *
  2716. * We are called from a few places:
  2717. *
  2718. * - Within generic_file_write() for O_SYNC files.
  2719. * Here, there will be no transaction running. We wait for any running
  2720. * trasnaction to commit.
  2721. *
  2722. * - Within sys_sync(), kupdate and such.
  2723. * We wait on commit, if tol to.
  2724. *
  2725. * - Within prune_icache() (PF_MEMALLOC == true)
  2726. * Here we simply return. We can't afford to block kswapd on the
  2727. * journal commit.
  2728. *
  2729. * In all cases it is actually safe for us to return without doing anything,
  2730. * because the inode has been copied into a raw inode buffer in
  2731. * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
  2732. * knfsd.
  2733. *
  2734. * Note that we are absolutely dependent upon all inode dirtiers doing the
  2735. * right thing: they *must* call mark_inode_dirty() after dirtying info in
  2736. * which we are interested.
  2737. *
  2738. * It would be a bug for them to not do this. The code:
  2739. *
  2740. * mark_inode_dirty(inode)
  2741. * stuff();
  2742. * inode->i_size = expr;
  2743. *
  2744. * is in error because a kswapd-driven write_inode() could occur while
  2745. * `stuff()' is running, and the new i_size will be lost. Plus the inode
  2746. * will no longer be on the superblock's dirty inode list.
  2747. */
  2748. int ext4_write_inode(struct inode *inode, int wait)
  2749. {
  2750. if (current->flags & PF_MEMALLOC)
  2751. return 0;
  2752. if (ext4_journal_current_handle()) {
  2753. jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
  2754. dump_stack();
  2755. return -EIO;
  2756. }
  2757. if (!wait)
  2758. return 0;
  2759. return ext4_force_commit(inode->i_sb);
  2760. }
  2761. /*
  2762. * ext4_setattr()
  2763. *
  2764. * Called from notify_change.
  2765. *
  2766. * We want to trap VFS attempts to truncate the file as soon as
  2767. * possible. In particular, we want to make sure that when the VFS
  2768. * shrinks i_size, we put the inode on the orphan list and modify
  2769. * i_disksize immediately, so that during the subsequent flushing of
  2770. * dirty pages and freeing of disk blocks, we can guarantee that any
  2771. * commit will leave the blocks being flushed in an unused state on
  2772. * disk. (On recovery, the inode will get truncated and the blocks will
  2773. * be freed, so we have a strong guarantee that no future commit will
  2774. * leave these blocks visible to the user.)
  2775. *
  2776. * Called with inode->sem down.
  2777. */
  2778. int ext4_setattr(struct dentry *dentry, struct iattr *attr)
  2779. {
  2780. struct inode *inode = dentry->d_inode;
  2781. int error, rc = 0;
  2782. const unsigned int ia_valid = attr->ia_valid;
  2783. error = inode_change_ok(inode, attr);
  2784. if (error)
  2785. return error;
  2786. if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
  2787. (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
  2788. handle_t *handle;
  2789. /* (user+group)*(old+new) structure, inode write (sb,
  2790. * inode block, ? - but truncate inode update has it) */
  2791. handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
  2792. EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
  2793. if (IS_ERR(handle)) {
  2794. error = PTR_ERR(handle);
  2795. goto err_out;
  2796. }
  2797. error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
  2798. if (error) {
  2799. ext4_journal_stop(handle);
  2800. return error;
  2801. }
  2802. /* Update corresponding info in inode so that everything is in
  2803. * one transaction */
  2804. if (attr->ia_valid & ATTR_UID)
  2805. inode->i_uid = attr->ia_uid;
  2806. if (attr->ia_valid & ATTR_GID)
  2807. inode->i_gid = attr->ia_gid;
  2808. error = ext4_mark_inode_dirty(handle, inode);
  2809. ext4_journal_stop(handle);
  2810. }
  2811. if (attr->ia_valid & ATTR_SIZE) {
  2812. if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
  2813. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  2814. if (attr->ia_size > sbi->s_bitmap_maxbytes) {
  2815. error = -EFBIG;
  2816. goto err_out;
  2817. }
  2818. }
  2819. }
  2820. if (S_ISREG(inode->i_mode) &&
  2821. attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
  2822. handle_t *handle;
  2823. handle = ext4_journal_start(inode, 3);
  2824. if (IS_ERR(handle)) {
  2825. error = PTR_ERR(handle);
  2826. goto err_out;
  2827. }
  2828. error = ext4_orphan_add(handle, inode);
  2829. EXT4_I(inode)->i_disksize = attr->ia_size;
  2830. rc = ext4_mark_inode_dirty(handle, inode);
  2831. if (!error)
  2832. error = rc;
  2833. ext4_journal_stop(handle);
  2834. }
  2835. rc = inode_setattr(inode, attr);
  2836. /* If inode_setattr's call to ext4_truncate failed to get a
  2837. * transaction handle at all, we need to clean up the in-core
  2838. * orphan list manually. */
  2839. if (inode->i_nlink)
  2840. ext4_orphan_del(NULL, inode);
  2841. if (!rc && (ia_valid & ATTR_MODE))
  2842. rc = ext4_acl_chmod(inode);
  2843. err_out:
  2844. ext4_std_error(inode->i_sb, error);
  2845. if (!error)
  2846. error = rc;
  2847. return error;
  2848. }
  2849. /*
  2850. * How many blocks doth make a writepage()?
  2851. *
  2852. * With N blocks per page, it may be:
  2853. * N data blocks
  2854. * 2 indirect block
  2855. * 2 dindirect
  2856. * 1 tindirect
  2857. * N+5 bitmap blocks (from the above)
  2858. * N+5 group descriptor summary blocks
  2859. * 1 inode block
  2860. * 1 superblock.
  2861. * 2 * EXT4_SINGLEDATA_TRANS_BLOCKS for the quote files
  2862. *
  2863. * 3 * (N + 5) + 2 + 2 * EXT4_SINGLEDATA_TRANS_BLOCKS
  2864. *
  2865. * With ordered or writeback data it's the same, less the N data blocks.
  2866. *
  2867. * If the inode's direct blocks can hold an integral number of pages then a
  2868. * page cannot straddle two indirect blocks, and we can only touch one indirect
  2869. * and dindirect block, and the "5" above becomes "3".
  2870. *
  2871. * This still overestimates under most circumstances. If we were to pass the
  2872. * start and end offsets in here as well we could do block_to_path() on each
  2873. * block and work out the exact number of indirects which are touched. Pah.
  2874. */
  2875. int ext4_writepage_trans_blocks(struct inode *inode)
  2876. {
  2877. int bpp = ext4_journal_blocks_per_page(inode);
  2878. int indirects = (EXT4_NDIR_BLOCKS % bpp) ? 5 : 3;
  2879. int ret;
  2880. if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
  2881. return ext4_ext_writepage_trans_blocks(inode, bpp);
  2882. if (ext4_should_journal_data(inode))
  2883. ret = 3 * (bpp + indirects) + 2;
  2884. else
  2885. ret = 2 * (bpp + indirects) + 2;
  2886. #ifdef CONFIG_QUOTA
  2887. /* We know that structure was already allocated during DQUOT_INIT so
  2888. * we will be updating only the data blocks + inodes */
  2889. ret += 2*EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb);
  2890. #endif
  2891. return ret;
  2892. }
  2893. /*
  2894. * The caller must have previously called ext4_reserve_inode_write().
  2895. * Give this, we know that the caller already has write access to iloc->bh.
  2896. */
  2897. int ext4_mark_iloc_dirty(handle_t *handle,
  2898. struct inode *inode, struct ext4_iloc *iloc)
  2899. {
  2900. int err = 0;
  2901. /* the do_update_inode consumes one bh->b_count */
  2902. get_bh(iloc->bh);
  2903. /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
  2904. err = ext4_do_update_inode(handle, inode, iloc);
  2905. put_bh(iloc->bh);
  2906. return err;
  2907. }
  2908. /*
  2909. * On success, We end up with an outstanding reference count against
  2910. * iloc->bh. This _must_ be cleaned up later.
  2911. */
  2912. int
  2913. ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
  2914. struct ext4_iloc *iloc)
  2915. {
  2916. int err = 0;
  2917. if (handle) {
  2918. err = ext4_get_inode_loc(inode, iloc);
  2919. if (!err) {
  2920. BUFFER_TRACE(iloc->bh, "get_write_access");
  2921. err = ext4_journal_get_write_access(handle, iloc->bh);
  2922. if (err) {
  2923. brelse(iloc->bh);
  2924. iloc->bh = NULL;
  2925. }
  2926. }
  2927. }
  2928. ext4_std_error(inode->i_sb, err);
  2929. return err;
  2930. }
  2931. /*
  2932. * Expand an inode by new_extra_isize bytes.
  2933. * Returns 0 on success or negative error number on failure.
  2934. */
  2935. static int ext4_expand_extra_isize(struct inode *inode,
  2936. unsigned int new_extra_isize,
  2937. struct ext4_iloc iloc,
  2938. handle_t *handle)
  2939. {
  2940. struct ext4_inode *raw_inode;
  2941. struct ext4_xattr_ibody_header *header;
  2942. struct ext4_xattr_entry *entry;
  2943. if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
  2944. return 0;
  2945. raw_inode = ext4_raw_inode(&iloc);
  2946. header = IHDR(inode, raw_inode);
  2947. entry = IFIRST(header);
  2948. /* No extended attributes present */
  2949. if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
  2950. header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
  2951. memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
  2952. new_extra_isize);
  2953. EXT4_I(inode)->i_extra_isize = new_extra_isize;
  2954. return 0;
  2955. }
  2956. /* try to expand with EAs present */
  2957. return ext4_expand_extra_isize_ea(inode, new_extra_isize,
  2958. raw_inode, handle);
  2959. }
  2960. /*
  2961. * What we do here is to mark the in-core inode as clean with respect to inode
  2962. * dirtiness (it may still be data-dirty).
  2963. * This means that the in-core inode may be reaped by prune_icache
  2964. * without having to perform any I/O. This is a very good thing,
  2965. * because *any* task may call prune_icache - even ones which
  2966. * have a transaction open against a different journal.
  2967. *
  2968. * Is this cheating? Not really. Sure, we haven't written the
  2969. * inode out, but prune_icache isn't a user-visible syncing function.
  2970. * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
  2971. * we start and wait on commits.
  2972. *
  2973. * Is this efficient/effective? Well, we're being nice to the system
  2974. * by cleaning up our inodes proactively so they can be reaped
  2975. * without I/O. But we are potentially leaving up to five seconds'
  2976. * worth of inodes floating about which prune_icache wants us to
  2977. * write out. One way to fix that would be to get prune_icache()
  2978. * to do a write_super() to free up some memory. It has the desired
  2979. * effect.
  2980. */
  2981. int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
  2982. {
  2983. struct ext4_iloc iloc;
  2984. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  2985. static unsigned int mnt_count;
  2986. int err, ret;
  2987. might_sleep();
  2988. err = ext4_reserve_inode_write(handle, inode, &iloc);
  2989. if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
  2990. !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
  2991. /*
  2992. * We need extra buffer credits since we may write into EA block
  2993. * with this same handle. If journal_extend fails, then it will
  2994. * only result in a minor loss of functionality for that inode.
  2995. * If this is felt to be critical, then e2fsck should be run to
  2996. * force a large enough s_min_extra_isize.
  2997. */
  2998. if ((jbd2_journal_extend(handle,
  2999. EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
  3000. ret = ext4_expand_extra_isize(inode,
  3001. sbi->s_want_extra_isize,
  3002. iloc, handle);
  3003. if (ret) {
  3004. EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
  3005. if (mnt_count !=
  3006. le16_to_cpu(sbi->s_es->s_mnt_count)) {
  3007. ext4_warning(inode->i_sb, __FUNCTION__,
  3008. "Unable to expand inode %lu. Delete"
  3009. " some EAs or run e2fsck.",
  3010. inode->i_ino);
  3011. mnt_count =
  3012. le16_to_cpu(sbi->s_es->s_mnt_count);
  3013. }
  3014. }
  3015. }
  3016. }
  3017. if (!err)
  3018. err = ext4_mark_iloc_dirty(handle, inode, &iloc);
  3019. return err;
  3020. }
  3021. /*
  3022. * ext4_dirty_inode() is called from __mark_inode_dirty()
  3023. *
  3024. * We're really interested in the case where a file is being extended.
  3025. * i_size has been changed by generic_commit_write() and we thus need
  3026. * to include the updated inode in the current transaction.
  3027. *
  3028. * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
  3029. * are allocated to the file.
  3030. *
  3031. * If the inode is marked synchronous, we don't honour that here - doing
  3032. * so would cause a commit on atime updates, which we don't bother doing.
  3033. * We handle synchronous inodes at the highest possible level.
  3034. */
  3035. void ext4_dirty_inode(struct inode *inode)
  3036. {
  3037. handle_t *current_handle = ext4_journal_current_handle();
  3038. handle_t *handle;
  3039. handle = ext4_journal_start(inode, 2);
  3040. if (IS_ERR(handle))
  3041. goto out;
  3042. if (current_handle &&
  3043. current_handle->h_transaction != handle->h_transaction) {
  3044. /* This task has a transaction open against a different fs */
  3045. printk(KERN_EMERG "%s: transactions do not match!\n",
  3046. __FUNCTION__);
  3047. } else {
  3048. jbd_debug(5, "marking dirty. outer handle=%p\n",
  3049. current_handle);
  3050. ext4_mark_inode_dirty(handle, inode);
  3051. }
  3052. ext4_journal_stop(handle);
  3053. out:
  3054. return;
  3055. }
  3056. #if 0
  3057. /*
  3058. * Bind an inode's backing buffer_head into this transaction, to prevent
  3059. * it from being flushed to disk early. Unlike
  3060. * ext4_reserve_inode_write, this leaves behind no bh reference and
  3061. * returns no iloc structure, so the caller needs to repeat the iloc
  3062. * lookup to mark the inode dirty later.
  3063. */
  3064. static int ext4_pin_inode(handle_t *handle, struct inode *inode)
  3065. {
  3066. struct ext4_iloc iloc;
  3067. int err = 0;
  3068. if (handle) {
  3069. err = ext4_get_inode_loc(inode, &iloc);
  3070. if (!err) {
  3071. BUFFER_TRACE(iloc.bh, "get_write_access");
  3072. err = jbd2_journal_get_write_access(handle, iloc.bh);
  3073. if (!err)
  3074. err = ext4_journal_dirty_metadata(handle,
  3075. iloc.bh);
  3076. brelse(iloc.bh);
  3077. }
  3078. }
  3079. ext4_std_error(inode->i_sb, err);
  3080. return err;
  3081. }
  3082. #endif
  3083. int ext4_change_inode_journal_flag(struct inode *inode, int val)
  3084. {
  3085. journal_t *journal;
  3086. handle_t *handle;
  3087. int err;
  3088. /*
  3089. * We have to be very careful here: changing a data block's
  3090. * journaling status dynamically is dangerous. If we write a
  3091. * data block to the journal, change the status and then delete
  3092. * that block, we risk forgetting to revoke the old log record
  3093. * from the journal and so a subsequent replay can corrupt data.
  3094. * So, first we make sure that the journal is empty and that
  3095. * nobody is changing anything.
  3096. */
  3097. journal = EXT4_JOURNAL(inode);
  3098. if (is_journal_aborted(journal))
  3099. return -EROFS;
  3100. jbd2_journal_lock_updates(journal);
  3101. jbd2_journal_flush(journal);
  3102. /*
  3103. * OK, there are no updates running now, and all cached data is
  3104. * synced to disk. We are now in a completely consistent state
  3105. * which doesn't have anything in the journal, and we know that
  3106. * no filesystem updates are running, so it is safe to modify
  3107. * the inode's in-core data-journaling state flag now.
  3108. */
  3109. if (val)
  3110. EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
  3111. else
  3112. EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
  3113. ext4_set_aops(inode);
  3114. jbd2_journal_unlock_updates(journal);
  3115. /* Finally we can mark the inode as dirty. */
  3116. handle = ext4_journal_start(inode, 1);
  3117. if (IS_ERR(handle))
  3118. return PTR_ERR(handle);
  3119. err = ext4_mark_inode_dirty(handle, inode);
  3120. handle->h_sync = 1;
  3121. ext4_journal_stop(handle);
  3122. ext4_std_error(inode->i_sb, err);
  3123. return err;
  3124. }