sky2.c 93 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543
  1. /*
  2. * New driver for Marvell Yukon 2 chipset.
  3. * Based on earlier sk98lin, and skge driver.
  4. *
  5. * This driver intentionally does not support all the features
  6. * of the original driver such as link fail-over and link management because
  7. * those should be done at higher levels.
  8. *
  9. * Copyright (C) 2005 Stephen Hemminger <shemminger@osdl.org>
  10. *
  11. * This program is free software; you can redistribute it and/or modify
  12. * it under the terms of the GNU General Public License as published by
  13. * the Free Software Foundation; either version 2 of the License, or
  14. * (at your option) any later version.
  15. *
  16. * This program is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  19. * GNU General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU General Public License
  22. * along with this program; if not, write to the Free Software
  23. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  24. */
  25. #include <linux/crc32.h>
  26. #include <linux/kernel.h>
  27. #include <linux/version.h>
  28. #include <linux/module.h>
  29. #include <linux/netdevice.h>
  30. #include <linux/dma-mapping.h>
  31. #include <linux/etherdevice.h>
  32. #include <linux/ethtool.h>
  33. #include <linux/pci.h>
  34. #include <linux/ip.h>
  35. #include <linux/tcp.h>
  36. #include <linux/in.h>
  37. #include <linux/delay.h>
  38. #include <linux/workqueue.h>
  39. #include <linux/if_vlan.h>
  40. #include <linux/prefetch.h>
  41. #include <linux/mii.h>
  42. #include <asm/irq.h>
  43. #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
  44. #define SKY2_VLAN_TAG_USED 1
  45. #endif
  46. #include "sky2.h"
  47. #define DRV_NAME "sky2"
  48. #define DRV_VERSION "1.7"
  49. #define PFX DRV_NAME " "
  50. /*
  51. * The Yukon II chipset takes 64 bit command blocks (called list elements)
  52. * that are organized into three (receive, transmit, status) different rings
  53. * similar to Tigon3. A transmit can require several elements;
  54. * a receive requires one (or two if using 64 bit dma).
  55. */
  56. #define RX_LE_SIZE 512
  57. #define RX_LE_BYTES (RX_LE_SIZE*sizeof(struct sky2_rx_le))
  58. #define RX_MAX_PENDING (RX_LE_SIZE/2 - 2)
  59. #define RX_DEF_PENDING RX_MAX_PENDING
  60. #define RX_SKB_ALIGN 8
  61. #define RX_BUF_WRITE 16
  62. #define TX_RING_SIZE 512
  63. #define TX_DEF_PENDING (TX_RING_SIZE - 1)
  64. #define TX_MIN_PENDING 64
  65. #define MAX_SKB_TX_LE (4 + (sizeof(dma_addr_t)/sizeof(u32))*MAX_SKB_FRAGS)
  66. #define STATUS_RING_SIZE 2048 /* 2 ports * (TX + 2*RX) */
  67. #define STATUS_LE_BYTES (STATUS_RING_SIZE*sizeof(struct sky2_status_le))
  68. #define ETH_JUMBO_MTU 9000
  69. #define TX_WATCHDOG (5 * HZ)
  70. #define NAPI_WEIGHT 64
  71. #define PHY_RETRIES 1000
  72. #define RING_NEXT(x,s) (((x)+1) & ((s)-1))
  73. static const u32 default_msg =
  74. NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK
  75. | NETIF_MSG_TIMER | NETIF_MSG_TX_ERR | NETIF_MSG_RX_ERR
  76. | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN;
  77. static int debug = -1; /* defaults above */
  78. module_param(debug, int, 0);
  79. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  80. static int copybreak __read_mostly = 256;
  81. module_param(copybreak, int, 0);
  82. MODULE_PARM_DESC(copybreak, "Receive copy threshold");
  83. static int disable_msi = 0;
  84. module_param(disable_msi, int, 0);
  85. MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
  86. static int idle_timeout = 100;
  87. module_param(idle_timeout, int, 0);
  88. MODULE_PARM_DESC(idle_timeout, "Idle timeout workaround for lost interrupts (ms)");
  89. static const struct pci_device_id sky2_id_table[] = {
  90. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x9000) },
  91. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x9E00) },
  92. { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b00) }, /* DGE-560T */
  93. { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4001) }, /* DGE-550SX */
  94. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4340) },
  95. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4341) },
  96. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4342) },
  97. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4343) },
  98. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4344) },
  99. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4345) },
  100. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4346) },
  101. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4347) },
  102. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4350) },
  103. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4351) },
  104. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4352) },
  105. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4353) },
  106. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4360) },
  107. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4361) },
  108. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4362) },
  109. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4363) },
  110. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4364) },
  111. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4365) },
  112. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4366) },
  113. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4367) },
  114. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4368) },
  115. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4369) },
  116. { 0 }
  117. };
  118. MODULE_DEVICE_TABLE(pci, sky2_id_table);
  119. /* Avoid conditionals by using array */
  120. static const unsigned txqaddr[] = { Q_XA1, Q_XA2 };
  121. static const unsigned rxqaddr[] = { Q_R1, Q_R2 };
  122. static const u32 portirq_msk[] = { Y2_IS_PORT_1, Y2_IS_PORT_2 };
  123. /* This driver supports yukon2 chipset only */
  124. static const char *yukon2_name[] = {
  125. "XL", /* 0xb3 */
  126. "EC Ultra", /* 0xb4 */
  127. "UNKNOWN", /* 0xb5 */
  128. "EC", /* 0xb6 */
  129. "FE", /* 0xb7 */
  130. };
  131. /* Access to external PHY */
  132. static int gm_phy_write(struct sky2_hw *hw, unsigned port, u16 reg, u16 val)
  133. {
  134. int i;
  135. gma_write16(hw, port, GM_SMI_DATA, val);
  136. gma_write16(hw, port, GM_SMI_CTRL,
  137. GM_SMI_CT_PHY_AD(PHY_ADDR_MARV) | GM_SMI_CT_REG_AD(reg));
  138. for (i = 0; i < PHY_RETRIES; i++) {
  139. if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
  140. return 0;
  141. udelay(1);
  142. }
  143. printk(KERN_WARNING PFX "%s: phy write timeout\n", hw->dev[port]->name);
  144. return -ETIMEDOUT;
  145. }
  146. static int __gm_phy_read(struct sky2_hw *hw, unsigned port, u16 reg, u16 *val)
  147. {
  148. int i;
  149. gma_write16(hw, port, GM_SMI_CTRL, GM_SMI_CT_PHY_AD(PHY_ADDR_MARV)
  150. | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
  151. for (i = 0; i < PHY_RETRIES; i++) {
  152. if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL) {
  153. *val = gma_read16(hw, port, GM_SMI_DATA);
  154. return 0;
  155. }
  156. udelay(1);
  157. }
  158. return -ETIMEDOUT;
  159. }
  160. static u16 gm_phy_read(struct sky2_hw *hw, unsigned port, u16 reg)
  161. {
  162. u16 v;
  163. if (__gm_phy_read(hw, port, reg, &v) != 0)
  164. printk(KERN_WARNING PFX "%s: phy read timeout\n", hw->dev[port]->name);
  165. return v;
  166. }
  167. static void sky2_set_power_state(struct sky2_hw *hw, pci_power_t state)
  168. {
  169. u16 power_control;
  170. int vaux;
  171. pr_debug("sky2_set_power_state %d\n", state);
  172. sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  173. power_control = sky2_pci_read16(hw, hw->pm_cap + PCI_PM_PMC);
  174. vaux = (sky2_read16(hw, B0_CTST) & Y2_VAUX_AVAIL) &&
  175. (power_control & PCI_PM_CAP_PME_D3cold);
  176. power_control = sky2_pci_read16(hw, hw->pm_cap + PCI_PM_CTRL);
  177. power_control |= PCI_PM_CTRL_PME_STATUS;
  178. power_control &= ~(PCI_PM_CTRL_STATE_MASK);
  179. switch (state) {
  180. case PCI_D0:
  181. /* switch power to VCC (WA for VAUX problem) */
  182. sky2_write8(hw, B0_POWER_CTRL,
  183. PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
  184. /* disable Core Clock Division, */
  185. sky2_write32(hw, B2_Y2_CLK_CTRL, Y2_CLK_DIV_DIS);
  186. if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev > 1)
  187. /* enable bits are inverted */
  188. sky2_write8(hw, B2_Y2_CLK_GATE,
  189. Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
  190. Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
  191. Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS);
  192. else
  193. sky2_write8(hw, B2_Y2_CLK_GATE, 0);
  194. if (hw->chip_id == CHIP_ID_YUKON_EC_U) {
  195. u32 reg1;
  196. sky2_pci_write32(hw, PCI_DEV_REG3, 0);
  197. reg1 = sky2_pci_read32(hw, PCI_DEV_REG4);
  198. reg1 &= P_ASPM_CONTROL_MSK;
  199. sky2_pci_write32(hw, PCI_DEV_REG4, reg1);
  200. sky2_pci_write32(hw, PCI_DEV_REG5, 0);
  201. }
  202. break;
  203. case PCI_D3hot:
  204. case PCI_D3cold:
  205. if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev > 1)
  206. sky2_write8(hw, B2_Y2_CLK_GATE, 0);
  207. else
  208. /* enable bits are inverted */
  209. sky2_write8(hw, B2_Y2_CLK_GATE,
  210. Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
  211. Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
  212. Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS);
  213. /* switch power to VAUX */
  214. if (vaux && state != PCI_D3cold)
  215. sky2_write8(hw, B0_POWER_CTRL,
  216. (PC_VAUX_ENA | PC_VCC_ENA |
  217. PC_VAUX_ON | PC_VCC_OFF));
  218. break;
  219. default:
  220. printk(KERN_ERR PFX "Unknown power state %d\n", state);
  221. }
  222. sky2_pci_write16(hw, hw->pm_cap + PCI_PM_CTRL, power_control);
  223. sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  224. }
  225. static void sky2_gmac_reset(struct sky2_hw *hw, unsigned port)
  226. {
  227. u16 reg;
  228. /* disable all GMAC IRQ's */
  229. sky2_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
  230. /* disable PHY IRQs */
  231. gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);
  232. gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
  233. gma_write16(hw, port, GM_MC_ADDR_H2, 0);
  234. gma_write16(hw, port, GM_MC_ADDR_H3, 0);
  235. gma_write16(hw, port, GM_MC_ADDR_H4, 0);
  236. reg = gma_read16(hw, port, GM_RX_CTRL);
  237. reg |= GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA;
  238. gma_write16(hw, port, GM_RX_CTRL, reg);
  239. }
  240. static void sky2_phy_init(struct sky2_hw *hw, unsigned port)
  241. {
  242. struct sky2_port *sky2 = netdev_priv(hw->dev[port]);
  243. u16 ctrl, ct1000, adv, pg, ledctrl, ledover, reg;
  244. if (sky2->autoneg == AUTONEG_ENABLE &&
  245. !(hw->chip_id == CHIP_ID_YUKON_XL || hw->chip_id == CHIP_ID_YUKON_EC_U)) {
  246. u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
  247. ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
  248. PHY_M_EC_MAC_S_MSK);
  249. ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
  250. if (hw->chip_id == CHIP_ID_YUKON_EC)
  251. ectrl |= PHY_M_EC_DSC_2(2) | PHY_M_EC_DOWN_S_ENA;
  252. else
  253. ectrl |= PHY_M_EC_M_DSC(2) | PHY_M_EC_S_DSC(3);
  254. gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
  255. }
  256. ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
  257. if (sky2_is_copper(hw)) {
  258. if (hw->chip_id == CHIP_ID_YUKON_FE) {
  259. /* enable automatic crossover */
  260. ctrl |= PHY_M_PC_MDI_XMODE(PHY_M_PC_ENA_AUTO) >> 1;
  261. } else {
  262. /* disable energy detect */
  263. ctrl &= ~PHY_M_PC_EN_DET_MSK;
  264. /* enable automatic crossover */
  265. ctrl |= PHY_M_PC_MDI_XMODE(PHY_M_PC_ENA_AUTO);
  266. if (sky2->autoneg == AUTONEG_ENABLE &&
  267. (hw->chip_id == CHIP_ID_YUKON_XL || hw->chip_id == CHIP_ID_YUKON_EC_U)) {
  268. ctrl &= ~PHY_M_PC_DSC_MSK;
  269. ctrl |= PHY_M_PC_DSC(2) | PHY_M_PC_DOWN_S_ENA;
  270. }
  271. }
  272. } else {
  273. /* workaround for deviation #4.88 (CRC errors) */
  274. /* disable Automatic Crossover */
  275. ctrl &= ~PHY_M_PC_MDIX_MSK;
  276. }
  277. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
  278. /* special setup for PHY 88E1112 Fiber */
  279. if (hw->chip_id == CHIP_ID_YUKON_XL && !sky2_is_copper(hw)) {
  280. pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
  281. /* Fiber: select 1000BASE-X only mode MAC Specific Ctrl Reg. */
  282. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 2);
  283. ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
  284. ctrl &= ~PHY_M_MAC_MD_MSK;
  285. ctrl |= PHY_M_MAC_MODE_SEL(PHY_M_MAC_MD_1000BX);
  286. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
  287. if (hw->pmd_type == 'P') {
  288. /* select page 1 to access Fiber registers */
  289. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 1);
  290. /* for SFP-module set SIGDET polarity to low */
  291. ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
  292. ctrl |= PHY_M_FIB_SIGD_POL;
  293. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  294. }
  295. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
  296. }
  297. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  298. if (sky2->autoneg == AUTONEG_DISABLE)
  299. ctrl &= ~PHY_CT_ANE;
  300. else
  301. ctrl |= PHY_CT_ANE;
  302. ctrl |= PHY_CT_RESET;
  303. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  304. ctrl = 0;
  305. ct1000 = 0;
  306. adv = PHY_AN_CSMA;
  307. reg = 0;
  308. if (sky2->autoneg == AUTONEG_ENABLE) {
  309. if (sky2_is_copper(hw)) {
  310. if (sky2->advertising & ADVERTISED_1000baseT_Full)
  311. ct1000 |= PHY_M_1000C_AFD;
  312. if (sky2->advertising & ADVERTISED_1000baseT_Half)
  313. ct1000 |= PHY_M_1000C_AHD;
  314. if (sky2->advertising & ADVERTISED_100baseT_Full)
  315. adv |= PHY_M_AN_100_FD;
  316. if (sky2->advertising & ADVERTISED_100baseT_Half)
  317. adv |= PHY_M_AN_100_HD;
  318. if (sky2->advertising & ADVERTISED_10baseT_Full)
  319. adv |= PHY_M_AN_10_FD;
  320. if (sky2->advertising & ADVERTISED_10baseT_Half)
  321. adv |= PHY_M_AN_10_HD;
  322. } else { /* special defines for FIBER (88E1040S only) */
  323. if (sky2->advertising & ADVERTISED_1000baseT_Full)
  324. adv |= PHY_M_AN_1000X_AFD;
  325. if (sky2->advertising & ADVERTISED_1000baseT_Half)
  326. adv |= PHY_M_AN_1000X_AHD;
  327. }
  328. /* Set Flow-control capabilities */
  329. if (sky2->tx_pause && sky2->rx_pause)
  330. adv |= PHY_AN_PAUSE_CAP; /* symmetric */
  331. else if (sky2->rx_pause && !sky2->tx_pause)
  332. adv |= PHY_AN_PAUSE_ASYM | PHY_AN_PAUSE_CAP;
  333. else if (!sky2->rx_pause && sky2->tx_pause)
  334. adv |= PHY_AN_PAUSE_ASYM; /* local */
  335. /* Restart Auto-negotiation */
  336. ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
  337. } else {
  338. /* forced speed/duplex settings */
  339. ct1000 = PHY_M_1000C_MSE;
  340. /* Disable auto update for duplex flow control and speed */
  341. reg |= GM_GPCR_AU_ALL_DIS;
  342. switch (sky2->speed) {
  343. case SPEED_1000:
  344. ctrl |= PHY_CT_SP1000;
  345. reg |= GM_GPCR_SPEED_1000;
  346. break;
  347. case SPEED_100:
  348. ctrl |= PHY_CT_SP100;
  349. reg |= GM_GPCR_SPEED_100;
  350. break;
  351. }
  352. if (sky2->duplex == DUPLEX_FULL) {
  353. reg |= GM_GPCR_DUP_FULL;
  354. ctrl |= PHY_CT_DUP_MD;
  355. } else if (sky2->speed != SPEED_1000 && hw->chip_id != CHIP_ID_YUKON_EC_U) {
  356. /* Turn off flow control for 10/100mbps */
  357. sky2->rx_pause = 0;
  358. sky2->tx_pause = 0;
  359. }
  360. if (!sky2->rx_pause)
  361. reg |= GM_GPCR_FC_RX_DIS;
  362. if (!sky2->tx_pause)
  363. reg |= GM_GPCR_FC_TX_DIS;
  364. /* Forward pause packets to GMAC? */
  365. if (sky2->tx_pause || sky2->rx_pause)
  366. sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
  367. else
  368. sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  369. ctrl |= PHY_CT_RESET;
  370. }
  371. gma_write16(hw, port, GM_GP_CTRL, reg);
  372. if (hw->chip_id != CHIP_ID_YUKON_FE)
  373. gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
  374. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
  375. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  376. /* Setup Phy LED's */
  377. ledctrl = PHY_M_LED_PULS_DUR(PULS_170MS);
  378. ledover = 0;
  379. switch (hw->chip_id) {
  380. case CHIP_ID_YUKON_FE:
  381. /* on 88E3082 these bits are at 11..9 (shifted left) */
  382. ledctrl |= PHY_M_LED_BLINK_RT(BLINK_84MS) << 1;
  383. ctrl = gm_phy_read(hw, port, PHY_MARV_FE_LED_PAR);
  384. /* delete ACT LED control bits */
  385. ctrl &= ~PHY_M_FELP_LED1_MSK;
  386. /* change ACT LED control to blink mode */
  387. ctrl |= PHY_M_FELP_LED1_CTRL(LED_PAR_CTRL_ACT_BL);
  388. gm_phy_write(hw, port, PHY_MARV_FE_LED_PAR, ctrl);
  389. break;
  390. case CHIP_ID_YUKON_XL:
  391. pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
  392. /* select page 3 to access LED control register */
  393. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3);
  394. /* set LED Function Control register */
  395. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL,
  396. (PHY_M_LEDC_LOS_CTRL(1) | /* LINK/ACT */
  397. PHY_M_LEDC_INIT_CTRL(7) | /* 10 Mbps */
  398. PHY_M_LEDC_STA1_CTRL(7) | /* 100 Mbps */
  399. PHY_M_LEDC_STA0_CTRL(7))); /* 1000 Mbps */
  400. /* set Polarity Control register */
  401. gm_phy_write(hw, port, PHY_MARV_PHY_STAT,
  402. (PHY_M_POLC_LS1_P_MIX(4) |
  403. PHY_M_POLC_IS0_P_MIX(4) |
  404. PHY_M_POLC_LOS_CTRL(2) |
  405. PHY_M_POLC_INIT_CTRL(2) |
  406. PHY_M_POLC_STA1_CTRL(2) |
  407. PHY_M_POLC_STA0_CTRL(2)));
  408. /* restore page register */
  409. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
  410. break;
  411. case CHIP_ID_YUKON_EC_U:
  412. pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
  413. /* select page 3 to access LED control register */
  414. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3);
  415. /* set LED Function Control register */
  416. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL,
  417. (PHY_M_LEDC_LOS_CTRL(1) | /* LINK/ACT */
  418. PHY_M_LEDC_INIT_CTRL(8) | /* 10 Mbps */
  419. PHY_M_LEDC_STA1_CTRL(7) | /* 100 Mbps */
  420. PHY_M_LEDC_STA0_CTRL(7)));/* 1000 Mbps */
  421. /* set Blink Rate in LED Timer Control Register */
  422. gm_phy_write(hw, port, PHY_MARV_INT_MASK,
  423. ledctrl | PHY_M_LED_BLINK_RT(BLINK_84MS));
  424. /* restore page register */
  425. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
  426. break;
  427. default:
  428. /* set Tx LED (LED_TX) to blink mode on Rx OR Tx activity */
  429. ledctrl |= PHY_M_LED_BLINK_RT(BLINK_84MS) | PHY_M_LEDC_TX_CTRL;
  430. /* turn off the Rx LED (LED_RX) */
  431. ledover |= PHY_M_LED_MO_RX(MO_LED_OFF);
  432. }
  433. if (hw->chip_id == CHIP_ID_YUKON_EC_U && hw->chip_rev == CHIP_REV_YU_EC_A1) {
  434. /* apply fixes in PHY AFE */
  435. pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
  436. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 255);
  437. /* increase differential signal amplitude in 10BASE-T */
  438. gm_phy_write(hw, port, 0x18, 0xaa99);
  439. gm_phy_write(hw, port, 0x17, 0x2011);
  440. /* fix for IEEE A/B Symmetry failure in 1000BASE-T */
  441. gm_phy_write(hw, port, 0x18, 0xa204);
  442. gm_phy_write(hw, port, 0x17, 0x2002);
  443. /* set page register to 0 */
  444. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
  445. } else {
  446. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, ledctrl);
  447. if (sky2->autoneg == AUTONEG_DISABLE || sky2->speed == SPEED_100) {
  448. /* turn on 100 Mbps LED (LED_LINK100) */
  449. ledover |= PHY_M_LED_MO_100(MO_LED_ON);
  450. }
  451. if (ledover)
  452. gm_phy_write(hw, port, PHY_MARV_LED_OVER, ledover);
  453. }
  454. /* Enable phy interrupt on auto-negotiation complete (or link up) */
  455. if (sky2->autoneg == AUTONEG_ENABLE)
  456. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_COMPL);
  457. else
  458. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_DEF_MSK);
  459. }
  460. static void sky2_phy_power(struct sky2_hw *hw, unsigned port, int onoff)
  461. {
  462. u32 reg1;
  463. static const u32 phy_power[]
  464. = { PCI_Y2_PHY1_POWD, PCI_Y2_PHY2_POWD };
  465. /* looks like this XL is back asswards .. */
  466. if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev > 1)
  467. onoff = !onoff;
  468. reg1 = sky2_pci_read32(hw, PCI_DEV_REG1);
  469. if (onoff)
  470. /* Turn off phy power saving */
  471. reg1 &= ~phy_power[port];
  472. else
  473. reg1 |= phy_power[port];
  474. sky2_pci_write32(hw, PCI_DEV_REG1, reg1);
  475. sky2_pci_read32(hw, PCI_DEV_REG1);
  476. udelay(100);
  477. }
  478. /* Force a renegotiation */
  479. static void sky2_phy_reinit(struct sky2_port *sky2)
  480. {
  481. spin_lock_bh(&sky2->phy_lock);
  482. sky2_phy_init(sky2->hw, sky2->port);
  483. spin_unlock_bh(&sky2->phy_lock);
  484. }
  485. static void sky2_mac_init(struct sky2_hw *hw, unsigned port)
  486. {
  487. struct sky2_port *sky2 = netdev_priv(hw->dev[port]);
  488. u16 reg;
  489. int i;
  490. const u8 *addr = hw->dev[port]->dev_addr;
  491. sky2_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
  492. sky2_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_CLR|GPC_ENA_PAUSE);
  493. sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR);
  494. if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev == 0 && port == 1) {
  495. /* WA DEV_472 -- looks like crossed wires on port 2 */
  496. /* clear GMAC 1 Control reset */
  497. sky2_write8(hw, SK_REG(0, GMAC_CTRL), GMC_RST_CLR);
  498. do {
  499. sky2_write8(hw, SK_REG(1, GMAC_CTRL), GMC_RST_SET);
  500. sky2_write8(hw, SK_REG(1, GMAC_CTRL), GMC_RST_CLR);
  501. } while (gm_phy_read(hw, 1, PHY_MARV_ID0) != PHY_MARV_ID0_VAL ||
  502. gm_phy_read(hw, 1, PHY_MARV_ID1) != PHY_MARV_ID1_Y2 ||
  503. gm_phy_read(hw, 1, PHY_MARV_INT_MASK) != 0);
  504. }
  505. sky2_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
  506. /* Enable Transmit FIFO Underrun */
  507. sky2_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
  508. spin_lock_bh(&sky2->phy_lock);
  509. sky2_phy_init(hw, port);
  510. spin_unlock_bh(&sky2->phy_lock);
  511. /* MIB clear */
  512. reg = gma_read16(hw, port, GM_PHY_ADDR);
  513. gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
  514. for (i = GM_MIB_CNT_BASE; i <= GM_MIB_CNT_END; i += 4)
  515. gma_read16(hw, port, i);
  516. gma_write16(hw, port, GM_PHY_ADDR, reg);
  517. /* transmit control */
  518. gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
  519. /* receive control reg: unicast + multicast + no FCS */
  520. gma_write16(hw, port, GM_RX_CTRL,
  521. GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
  522. /* transmit flow control */
  523. gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
  524. /* transmit parameter */
  525. gma_write16(hw, port, GM_TX_PARAM,
  526. TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
  527. TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
  528. TX_IPG_JAM_DATA(TX_IPG_JAM_DEF) |
  529. TX_BACK_OFF_LIM(TX_BOF_LIM_DEF));
  530. /* serial mode register */
  531. reg = DATA_BLIND_VAL(DATA_BLIND_DEF) |
  532. GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
  533. if (hw->dev[port]->mtu > ETH_DATA_LEN)
  534. reg |= GM_SMOD_JUMBO_ENA;
  535. gma_write16(hw, port, GM_SERIAL_MODE, reg);
  536. /* virtual address for data */
  537. gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
  538. /* physical address: used for pause frames */
  539. gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
  540. /* ignore counter overflows */
  541. gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
  542. gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
  543. gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
  544. /* Configure Rx MAC FIFO */
  545. sky2_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
  546. sky2_write32(hw, SK_REG(port, RX_GMF_CTRL_T),
  547. GMF_OPER_ON | GMF_RX_F_FL_ON);
  548. /* Flush Rx MAC FIFO on any flow control or error */
  549. sky2_write16(hw, SK_REG(port, RX_GMF_FL_MSK), GMR_FS_ANY_ERR);
  550. /* Set threshold to 0xa (64 bytes)
  551. * ASF disabled so no need to do WA dev #4.30
  552. */
  553. sky2_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF);
  554. /* Configure Tx MAC FIFO */
  555. sky2_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
  556. sky2_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
  557. if (hw->chip_id == CHIP_ID_YUKON_EC_U) {
  558. sky2_write8(hw, SK_REG(port, RX_GMF_LP_THR), 768/8);
  559. sky2_write8(hw, SK_REG(port, RX_GMF_UP_THR), 1024/8);
  560. if (hw->dev[port]->mtu > ETH_DATA_LEN) {
  561. /* set Tx GMAC FIFO Almost Empty Threshold */
  562. sky2_write32(hw, SK_REG(port, TX_GMF_AE_THR), 0x180);
  563. /* Disable Store & Forward mode for TX */
  564. sky2_write32(hw, SK_REG(port, TX_GMF_CTRL_T), TX_STFW_DIS);
  565. }
  566. }
  567. }
  568. /* Assign Ram Buffer allocation.
  569. * start and end are in units of 4k bytes
  570. * ram registers are in units of 64bit words
  571. */
  572. static void sky2_ramset(struct sky2_hw *hw, u16 q, u8 startk, u8 endk)
  573. {
  574. u32 start, end;
  575. start = startk * 4096/8;
  576. end = (endk * 4096/8) - 1;
  577. sky2_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
  578. sky2_write32(hw, RB_ADDR(q, RB_START), start);
  579. sky2_write32(hw, RB_ADDR(q, RB_END), end);
  580. sky2_write32(hw, RB_ADDR(q, RB_WP), start);
  581. sky2_write32(hw, RB_ADDR(q, RB_RP), start);
  582. if (q == Q_R1 || q == Q_R2) {
  583. u32 space = (endk - startk) * 4096/8;
  584. u32 tp = space - space/4;
  585. /* On receive queue's set the thresholds
  586. * give receiver priority when > 3/4 full
  587. * send pause when down to 2K
  588. */
  589. sky2_write32(hw, RB_ADDR(q, RB_RX_UTHP), tp);
  590. sky2_write32(hw, RB_ADDR(q, RB_RX_LTHP), space/2);
  591. tp = space - 2048/8;
  592. sky2_write32(hw, RB_ADDR(q, RB_RX_UTPP), tp);
  593. sky2_write32(hw, RB_ADDR(q, RB_RX_LTPP), space/4);
  594. } else {
  595. /* Enable store & forward on Tx queue's because
  596. * Tx FIFO is only 1K on Yukon
  597. */
  598. sky2_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
  599. }
  600. sky2_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
  601. sky2_read8(hw, RB_ADDR(q, RB_CTRL));
  602. }
  603. /* Setup Bus Memory Interface */
  604. static void sky2_qset(struct sky2_hw *hw, u16 q)
  605. {
  606. sky2_write32(hw, Q_ADDR(q, Q_CSR), BMU_CLR_RESET);
  607. sky2_write32(hw, Q_ADDR(q, Q_CSR), BMU_OPER_INIT);
  608. sky2_write32(hw, Q_ADDR(q, Q_CSR), BMU_FIFO_OP_ON);
  609. sky2_write32(hw, Q_ADDR(q, Q_WM), BMU_WM_DEFAULT);
  610. }
  611. /* Setup prefetch unit registers. This is the interface between
  612. * hardware and driver list elements
  613. */
  614. static void sky2_prefetch_init(struct sky2_hw *hw, u32 qaddr,
  615. u64 addr, u32 last)
  616. {
  617. sky2_write32(hw, Y2_QADDR(qaddr, PREF_UNIT_CTRL), PREF_UNIT_RST_SET);
  618. sky2_write32(hw, Y2_QADDR(qaddr, PREF_UNIT_CTRL), PREF_UNIT_RST_CLR);
  619. sky2_write32(hw, Y2_QADDR(qaddr, PREF_UNIT_ADDR_HI), addr >> 32);
  620. sky2_write32(hw, Y2_QADDR(qaddr, PREF_UNIT_ADDR_LO), (u32) addr);
  621. sky2_write16(hw, Y2_QADDR(qaddr, PREF_UNIT_LAST_IDX), last);
  622. sky2_write32(hw, Y2_QADDR(qaddr, PREF_UNIT_CTRL), PREF_UNIT_OP_ON);
  623. sky2_read32(hw, Y2_QADDR(qaddr, PREF_UNIT_CTRL));
  624. }
  625. static inline struct sky2_tx_le *get_tx_le(struct sky2_port *sky2)
  626. {
  627. struct sky2_tx_le *le = sky2->tx_le + sky2->tx_prod;
  628. sky2->tx_prod = RING_NEXT(sky2->tx_prod, TX_RING_SIZE);
  629. return le;
  630. }
  631. /* Update chip's next pointer */
  632. static inline void sky2_put_idx(struct sky2_hw *hw, unsigned q, u16 idx)
  633. {
  634. q = Y2_QADDR(q, PREF_UNIT_PUT_IDX);
  635. wmb();
  636. sky2_write16(hw, q, idx);
  637. sky2_read16(hw, q);
  638. }
  639. static inline struct sky2_rx_le *sky2_next_rx(struct sky2_port *sky2)
  640. {
  641. struct sky2_rx_le *le = sky2->rx_le + sky2->rx_put;
  642. sky2->rx_put = RING_NEXT(sky2->rx_put, RX_LE_SIZE);
  643. return le;
  644. }
  645. /* Return high part of DMA address (could be 32 or 64 bit) */
  646. static inline u32 high32(dma_addr_t a)
  647. {
  648. return sizeof(a) > sizeof(u32) ? (a >> 16) >> 16 : 0;
  649. }
  650. /* Build description to hardware about buffer */
  651. static void sky2_rx_add(struct sky2_port *sky2, dma_addr_t map)
  652. {
  653. struct sky2_rx_le *le;
  654. u32 hi = high32(map);
  655. u16 len = sky2->rx_bufsize;
  656. if (sky2->rx_addr64 != hi) {
  657. le = sky2_next_rx(sky2);
  658. le->addr = cpu_to_le32(hi);
  659. le->ctrl = 0;
  660. le->opcode = OP_ADDR64 | HW_OWNER;
  661. sky2->rx_addr64 = high32(map + len);
  662. }
  663. le = sky2_next_rx(sky2);
  664. le->addr = cpu_to_le32((u32) map);
  665. le->length = cpu_to_le16(len);
  666. le->ctrl = 0;
  667. le->opcode = OP_PACKET | HW_OWNER;
  668. }
  669. /* Tell chip where to start receive checksum.
  670. * Actually has two checksums, but set both same to avoid possible byte
  671. * order problems.
  672. */
  673. static void rx_set_checksum(struct sky2_port *sky2)
  674. {
  675. struct sky2_rx_le *le;
  676. le = sky2_next_rx(sky2);
  677. le->addr = cpu_to_le32((ETH_HLEN << 16) | ETH_HLEN);
  678. le->ctrl = 0;
  679. le->opcode = OP_TCPSTART | HW_OWNER;
  680. sky2_write32(sky2->hw,
  681. Q_ADDR(rxqaddr[sky2->port], Q_CSR),
  682. sky2->rx_csum ? BMU_ENA_RX_CHKSUM : BMU_DIS_RX_CHKSUM);
  683. }
  684. /*
  685. * The RX Stop command will not work for Yukon-2 if the BMU does not
  686. * reach the end of packet and since we can't make sure that we have
  687. * incoming data, we must reset the BMU while it is not doing a DMA
  688. * transfer. Since it is possible that the RX path is still active,
  689. * the RX RAM buffer will be stopped first, so any possible incoming
  690. * data will not trigger a DMA. After the RAM buffer is stopped, the
  691. * BMU is polled until any DMA in progress is ended and only then it
  692. * will be reset.
  693. */
  694. static void sky2_rx_stop(struct sky2_port *sky2)
  695. {
  696. struct sky2_hw *hw = sky2->hw;
  697. unsigned rxq = rxqaddr[sky2->port];
  698. int i;
  699. /* disable the RAM Buffer receive queue */
  700. sky2_write8(hw, RB_ADDR(rxq, RB_CTRL), RB_DIS_OP_MD);
  701. for (i = 0; i < 0xffff; i++)
  702. if (sky2_read8(hw, RB_ADDR(rxq, Q_RSL))
  703. == sky2_read8(hw, RB_ADDR(rxq, Q_RL)))
  704. goto stopped;
  705. printk(KERN_WARNING PFX "%s: receiver stop failed\n",
  706. sky2->netdev->name);
  707. stopped:
  708. sky2_write32(hw, Q_ADDR(rxq, Q_CSR), BMU_RST_SET | BMU_FIFO_RST);
  709. /* reset the Rx prefetch unit */
  710. sky2_write32(hw, Y2_QADDR(rxq, PREF_UNIT_CTRL), PREF_UNIT_RST_SET);
  711. }
  712. /* Clean out receive buffer area, assumes receiver hardware stopped */
  713. static void sky2_rx_clean(struct sky2_port *sky2)
  714. {
  715. unsigned i;
  716. memset(sky2->rx_le, 0, RX_LE_BYTES);
  717. for (i = 0; i < sky2->rx_pending; i++) {
  718. struct ring_info *re = sky2->rx_ring + i;
  719. if (re->skb) {
  720. pci_unmap_single(sky2->hw->pdev,
  721. re->mapaddr, sky2->rx_bufsize,
  722. PCI_DMA_FROMDEVICE);
  723. kfree_skb(re->skb);
  724. re->skb = NULL;
  725. }
  726. }
  727. }
  728. /* Basic MII support */
  729. static int sky2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  730. {
  731. struct mii_ioctl_data *data = if_mii(ifr);
  732. struct sky2_port *sky2 = netdev_priv(dev);
  733. struct sky2_hw *hw = sky2->hw;
  734. int err = -EOPNOTSUPP;
  735. if (!netif_running(dev))
  736. return -ENODEV; /* Phy still in reset */
  737. switch (cmd) {
  738. case SIOCGMIIPHY:
  739. data->phy_id = PHY_ADDR_MARV;
  740. /* fallthru */
  741. case SIOCGMIIREG: {
  742. u16 val = 0;
  743. spin_lock_bh(&sky2->phy_lock);
  744. err = __gm_phy_read(hw, sky2->port, data->reg_num & 0x1f, &val);
  745. spin_unlock_bh(&sky2->phy_lock);
  746. data->val_out = val;
  747. break;
  748. }
  749. case SIOCSMIIREG:
  750. if (!capable(CAP_NET_ADMIN))
  751. return -EPERM;
  752. spin_lock_bh(&sky2->phy_lock);
  753. err = gm_phy_write(hw, sky2->port, data->reg_num & 0x1f,
  754. data->val_in);
  755. spin_unlock_bh(&sky2->phy_lock);
  756. break;
  757. }
  758. return err;
  759. }
  760. #ifdef SKY2_VLAN_TAG_USED
  761. static void sky2_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
  762. {
  763. struct sky2_port *sky2 = netdev_priv(dev);
  764. struct sky2_hw *hw = sky2->hw;
  765. u16 port = sky2->port;
  766. spin_lock_bh(&sky2->tx_lock);
  767. sky2_write32(hw, SK_REG(port, RX_GMF_CTRL_T), RX_VLAN_STRIP_ON);
  768. sky2_write32(hw, SK_REG(port, TX_GMF_CTRL_T), TX_VLAN_TAG_ON);
  769. sky2->vlgrp = grp;
  770. spin_unlock_bh(&sky2->tx_lock);
  771. }
  772. static void sky2_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
  773. {
  774. struct sky2_port *sky2 = netdev_priv(dev);
  775. struct sky2_hw *hw = sky2->hw;
  776. u16 port = sky2->port;
  777. spin_lock_bh(&sky2->tx_lock);
  778. sky2_write32(hw, SK_REG(port, RX_GMF_CTRL_T), RX_VLAN_STRIP_OFF);
  779. sky2_write32(hw, SK_REG(port, TX_GMF_CTRL_T), TX_VLAN_TAG_OFF);
  780. if (sky2->vlgrp)
  781. sky2->vlgrp->vlan_devices[vid] = NULL;
  782. spin_unlock_bh(&sky2->tx_lock);
  783. }
  784. #endif
  785. /*
  786. * It appears the hardware has a bug in the FIFO logic that
  787. * cause it to hang if the FIFO gets overrun and the receive buffer
  788. * is not 64 byte aligned. The buffer returned from netdev_alloc_skb is
  789. * aligned except if slab debugging is enabled.
  790. */
  791. static inline struct sk_buff *sky2_alloc_skb(struct net_device *dev,
  792. unsigned int length,
  793. gfp_t gfp_mask)
  794. {
  795. struct sk_buff *skb;
  796. skb = __netdev_alloc_skb(dev, length + RX_SKB_ALIGN, gfp_mask);
  797. if (likely(skb)) {
  798. unsigned long p = (unsigned long) skb->data;
  799. skb_reserve(skb, ALIGN(p, RX_SKB_ALIGN) - p);
  800. }
  801. return skb;
  802. }
  803. /*
  804. * Allocate and setup receiver buffer pool.
  805. * In case of 64 bit dma, there are 2X as many list elements
  806. * available as ring entries
  807. * and need to reserve one list element so we don't wrap around.
  808. */
  809. static int sky2_rx_start(struct sky2_port *sky2)
  810. {
  811. struct sky2_hw *hw = sky2->hw;
  812. unsigned rxq = rxqaddr[sky2->port];
  813. int i;
  814. unsigned thresh;
  815. sky2->rx_put = sky2->rx_next = 0;
  816. sky2_qset(hw, rxq);
  817. if (hw->chip_id == CHIP_ID_YUKON_EC_U && hw->chip_rev >= 2) {
  818. /* MAC Rx RAM Read is controlled by hardware */
  819. sky2_write32(hw, Q_ADDR(rxq, Q_F), F_M_RX_RAM_DIS);
  820. }
  821. sky2_prefetch_init(hw, rxq, sky2->rx_le_map, RX_LE_SIZE - 1);
  822. rx_set_checksum(sky2);
  823. for (i = 0; i < sky2->rx_pending; i++) {
  824. struct ring_info *re = sky2->rx_ring + i;
  825. re->skb = sky2_alloc_skb(sky2->netdev, sky2->rx_bufsize,
  826. GFP_KERNEL);
  827. if (!re->skb)
  828. goto nomem;
  829. re->mapaddr = pci_map_single(hw->pdev, re->skb->data,
  830. sky2->rx_bufsize, PCI_DMA_FROMDEVICE);
  831. sky2_rx_add(sky2, re->mapaddr);
  832. }
  833. /*
  834. * The receiver hangs if it receives frames larger than the
  835. * packet buffer. As a workaround, truncate oversize frames, but
  836. * the register is limited to 9 bits, so if you do frames > 2052
  837. * you better get the MTU right!
  838. */
  839. thresh = (sky2->rx_bufsize - 8) / sizeof(u32);
  840. if (thresh > 0x1ff)
  841. sky2_write32(hw, SK_REG(sky2->port, RX_GMF_CTRL_T), RX_TRUNC_OFF);
  842. else {
  843. sky2_write16(hw, SK_REG(sky2->port, RX_GMF_TR_THR), thresh);
  844. sky2_write32(hw, SK_REG(sky2->port, RX_GMF_CTRL_T), RX_TRUNC_ON);
  845. }
  846. /* Tell chip about available buffers */
  847. sky2_write16(hw, Y2_QADDR(rxq, PREF_UNIT_PUT_IDX), sky2->rx_put);
  848. return 0;
  849. nomem:
  850. sky2_rx_clean(sky2);
  851. return -ENOMEM;
  852. }
  853. /* Bring up network interface. */
  854. static int sky2_up(struct net_device *dev)
  855. {
  856. struct sky2_port *sky2 = netdev_priv(dev);
  857. struct sky2_hw *hw = sky2->hw;
  858. unsigned port = sky2->port;
  859. u32 ramsize, rxspace, imask;
  860. int cap, err = -ENOMEM;
  861. struct net_device *otherdev = hw->dev[sky2->port^1];
  862. /*
  863. * On dual port PCI-X card, there is an problem where status
  864. * can be received out of order due to split transactions
  865. */
  866. if (otherdev && netif_running(otherdev) &&
  867. (cap = pci_find_capability(hw->pdev, PCI_CAP_ID_PCIX))) {
  868. struct sky2_port *osky2 = netdev_priv(otherdev);
  869. u16 cmd;
  870. cmd = sky2_pci_read16(hw, cap + PCI_X_CMD);
  871. cmd &= ~PCI_X_CMD_MAX_SPLIT;
  872. sky2_pci_write16(hw, cap + PCI_X_CMD, cmd);
  873. sky2->rx_csum = 0;
  874. osky2->rx_csum = 0;
  875. }
  876. if (netif_msg_ifup(sky2))
  877. printk(KERN_INFO PFX "%s: enabling interface\n", dev->name);
  878. /* must be power of 2 */
  879. sky2->tx_le = pci_alloc_consistent(hw->pdev,
  880. TX_RING_SIZE *
  881. sizeof(struct sky2_tx_le),
  882. &sky2->tx_le_map);
  883. if (!sky2->tx_le)
  884. goto err_out;
  885. sky2->tx_ring = kcalloc(TX_RING_SIZE, sizeof(struct tx_ring_info),
  886. GFP_KERNEL);
  887. if (!sky2->tx_ring)
  888. goto err_out;
  889. sky2->tx_prod = sky2->tx_cons = 0;
  890. sky2->rx_le = pci_alloc_consistent(hw->pdev, RX_LE_BYTES,
  891. &sky2->rx_le_map);
  892. if (!sky2->rx_le)
  893. goto err_out;
  894. memset(sky2->rx_le, 0, RX_LE_BYTES);
  895. sky2->rx_ring = kcalloc(sky2->rx_pending, sizeof(struct ring_info),
  896. GFP_KERNEL);
  897. if (!sky2->rx_ring)
  898. goto err_out;
  899. sky2_phy_power(hw, port, 1);
  900. sky2_mac_init(hw, port);
  901. /* Determine available ram buffer space (in 4K blocks).
  902. * Note: not sure about the FE setting below yet
  903. */
  904. if (hw->chip_id == CHIP_ID_YUKON_FE)
  905. ramsize = 4;
  906. else
  907. ramsize = sky2_read8(hw, B2_E_0);
  908. /* Give transmitter one third (rounded up) */
  909. rxspace = ramsize - (ramsize + 2) / 3;
  910. sky2_ramset(hw, rxqaddr[port], 0, rxspace);
  911. sky2_ramset(hw, txqaddr[port], rxspace, ramsize);
  912. /* Make sure SyncQ is disabled */
  913. sky2_write8(hw, RB_ADDR(port == 0 ? Q_XS1 : Q_XS2, RB_CTRL),
  914. RB_RST_SET);
  915. sky2_qset(hw, txqaddr[port]);
  916. /* Set almost empty threshold */
  917. if (hw->chip_id == CHIP_ID_YUKON_EC_U && hw->chip_rev == 1)
  918. sky2_write16(hw, Q_ADDR(txqaddr[port], Q_AL), 0x1a0);
  919. sky2_prefetch_init(hw, txqaddr[port], sky2->tx_le_map,
  920. TX_RING_SIZE - 1);
  921. err = sky2_rx_start(sky2);
  922. if (err)
  923. goto err_out;
  924. /* Enable interrupts from phy/mac for port */
  925. imask = sky2_read32(hw, B0_IMSK);
  926. imask |= portirq_msk[port];
  927. sky2_write32(hw, B0_IMSK, imask);
  928. return 0;
  929. err_out:
  930. if (sky2->rx_le) {
  931. pci_free_consistent(hw->pdev, RX_LE_BYTES,
  932. sky2->rx_le, sky2->rx_le_map);
  933. sky2->rx_le = NULL;
  934. }
  935. if (sky2->tx_le) {
  936. pci_free_consistent(hw->pdev,
  937. TX_RING_SIZE * sizeof(struct sky2_tx_le),
  938. sky2->tx_le, sky2->tx_le_map);
  939. sky2->tx_le = NULL;
  940. }
  941. kfree(sky2->tx_ring);
  942. kfree(sky2->rx_ring);
  943. sky2->tx_ring = NULL;
  944. sky2->rx_ring = NULL;
  945. return err;
  946. }
  947. /* Modular subtraction in ring */
  948. static inline int tx_dist(unsigned tail, unsigned head)
  949. {
  950. return (head - tail) & (TX_RING_SIZE - 1);
  951. }
  952. /* Number of list elements available for next tx */
  953. static inline int tx_avail(const struct sky2_port *sky2)
  954. {
  955. return sky2->tx_pending - tx_dist(sky2->tx_cons, sky2->tx_prod);
  956. }
  957. /* Estimate of number of transmit list elements required */
  958. static unsigned tx_le_req(const struct sk_buff *skb)
  959. {
  960. unsigned count;
  961. count = sizeof(dma_addr_t) / sizeof(u32);
  962. count += skb_shinfo(skb)->nr_frags * count;
  963. if (skb_is_gso(skb))
  964. ++count;
  965. if (skb->ip_summed == CHECKSUM_PARTIAL)
  966. ++count;
  967. return count;
  968. }
  969. /*
  970. * Put one packet in ring for transmit.
  971. * A single packet can generate multiple list elements, and
  972. * the number of ring elements will probably be less than the number
  973. * of list elements used.
  974. *
  975. * No BH disabling for tx_lock here (like tg3)
  976. */
  977. static int sky2_xmit_frame(struct sk_buff *skb, struct net_device *dev)
  978. {
  979. struct sky2_port *sky2 = netdev_priv(dev);
  980. struct sky2_hw *hw = sky2->hw;
  981. struct sky2_tx_le *le = NULL;
  982. struct tx_ring_info *re;
  983. unsigned i, len;
  984. dma_addr_t mapping;
  985. u32 addr64;
  986. u16 mss;
  987. u8 ctrl;
  988. /* No BH disabling for tx_lock here. We are running in BH disabled
  989. * context and TX reclaim runs via poll inside of a software
  990. * interrupt, and no related locks in IRQ processing.
  991. */
  992. if (!spin_trylock(&sky2->tx_lock))
  993. return NETDEV_TX_LOCKED;
  994. if (unlikely(tx_avail(sky2) < tx_le_req(skb))) {
  995. /* There is a known but harmless race with lockless tx
  996. * and netif_stop_queue.
  997. */
  998. if (!netif_queue_stopped(dev)) {
  999. netif_stop_queue(dev);
  1000. if (net_ratelimit())
  1001. printk(KERN_WARNING PFX "%s: ring full when queue awake!\n",
  1002. dev->name);
  1003. }
  1004. spin_unlock(&sky2->tx_lock);
  1005. return NETDEV_TX_BUSY;
  1006. }
  1007. if (unlikely(netif_msg_tx_queued(sky2)))
  1008. printk(KERN_DEBUG "%s: tx queued, slot %u, len %d\n",
  1009. dev->name, sky2->tx_prod, skb->len);
  1010. len = skb_headlen(skb);
  1011. mapping = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
  1012. addr64 = high32(mapping);
  1013. re = sky2->tx_ring + sky2->tx_prod;
  1014. /* Send high bits if changed or crosses boundary */
  1015. if (addr64 != sky2->tx_addr64 || high32(mapping + len) != sky2->tx_addr64) {
  1016. le = get_tx_le(sky2);
  1017. le->addr = cpu_to_le32(addr64);
  1018. le->ctrl = 0;
  1019. le->opcode = OP_ADDR64 | HW_OWNER;
  1020. sky2->tx_addr64 = high32(mapping + len);
  1021. }
  1022. /* Check for TCP Segmentation Offload */
  1023. mss = skb_shinfo(skb)->gso_size;
  1024. if (mss != 0) {
  1025. mss += ((skb->h.th->doff - 5) * 4); /* TCP options */
  1026. mss += (skb->nh.iph->ihl * 4) + sizeof(struct tcphdr);
  1027. mss += ETH_HLEN;
  1028. if (mss != sky2->tx_last_mss) {
  1029. le = get_tx_le(sky2);
  1030. le->addr = cpu_to_le32(mss);
  1031. le->opcode = OP_LRGLEN | HW_OWNER;
  1032. le->ctrl = 0;
  1033. sky2->tx_last_mss = mss;
  1034. }
  1035. }
  1036. ctrl = 0;
  1037. #ifdef SKY2_VLAN_TAG_USED
  1038. /* Add VLAN tag, can piggyback on LRGLEN or ADDR64 */
  1039. if (sky2->vlgrp && vlan_tx_tag_present(skb)) {
  1040. if (!le) {
  1041. le = get_tx_le(sky2);
  1042. le->addr = 0;
  1043. le->opcode = OP_VLAN|HW_OWNER;
  1044. le->ctrl = 0;
  1045. } else
  1046. le->opcode |= OP_VLAN;
  1047. le->length = cpu_to_be16(vlan_tx_tag_get(skb));
  1048. ctrl |= INS_VLAN;
  1049. }
  1050. #endif
  1051. /* Handle TCP checksum offload */
  1052. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  1053. unsigned offset = skb->h.raw - skb->data;
  1054. u32 tcpsum;
  1055. tcpsum = offset << 16; /* sum start */
  1056. tcpsum |= offset + skb->csum; /* sum write */
  1057. ctrl = CALSUM | WR_SUM | INIT_SUM | LOCK_SUM;
  1058. if (skb->nh.iph->protocol == IPPROTO_UDP)
  1059. ctrl |= UDPTCP;
  1060. if (tcpsum != sky2->tx_tcpsum) {
  1061. sky2->tx_tcpsum = tcpsum;
  1062. le = get_tx_le(sky2);
  1063. le->addr = cpu_to_le32(tcpsum);
  1064. le->length = 0; /* initial checksum value */
  1065. le->ctrl = 1; /* one packet */
  1066. le->opcode = OP_TCPLISW | HW_OWNER;
  1067. }
  1068. }
  1069. le = get_tx_le(sky2);
  1070. le->addr = cpu_to_le32((u32) mapping);
  1071. le->length = cpu_to_le16(len);
  1072. le->ctrl = ctrl;
  1073. le->opcode = mss ? (OP_LARGESEND | HW_OWNER) : (OP_PACKET | HW_OWNER);
  1074. /* Record the transmit mapping info */
  1075. re->skb = skb;
  1076. pci_unmap_addr_set(re, mapaddr, mapping);
  1077. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  1078. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1079. struct tx_ring_info *fre;
  1080. mapping = pci_map_page(hw->pdev, frag->page, frag->page_offset,
  1081. frag->size, PCI_DMA_TODEVICE);
  1082. addr64 = high32(mapping);
  1083. if (addr64 != sky2->tx_addr64) {
  1084. le = get_tx_le(sky2);
  1085. le->addr = cpu_to_le32(addr64);
  1086. le->ctrl = 0;
  1087. le->opcode = OP_ADDR64 | HW_OWNER;
  1088. sky2->tx_addr64 = addr64;
  1089. }
  1090. le = get_tx_le(sky2);
  1091. le->addr = cpu_to_le32((u32) mapping);
  1092. le->length = cpu_to_le16(frag->size);
  1093. le->ctrl = ctrl;
  1094. le->opcode = OP_BUFFER | HW_OWNER;
  1095. fre = sky2->tx_ring
  1096. + RING_NEXT((re - sky2->tx_ring) + i, TX_RING_SIZE);
  1097. pci_unmap_addr_set(fre, mapaddr, mapping);
  1098. }
  1099. re->idx = sky2->tx_prod;
  1100. le->ctrl |= EOP;
  1101. if (tx_avail(sky2) <= MAX_SKB_TX_LE)
  1102. netif_stop_queue(dev);
  1103. sky2_put_idx(hw, txqaddr[sky2->port], sky2->tx_prod);
  1104. spin_unlock(&sky2->tx_lock);
  1105. dev->trans_start = jiffies;
  1106. return NETDEV_TX_OK;
  1107. }
  1108. /*
  1109. * Free ring elements from starting at tx_cons until "done"
  1110. *
  1111. * NB: the hardware will tell us about partial completion of multi-part
  1112. * buffers; these are deferred until completion.
  1113. */
  1114. static void sky2_tx_complete(struct sky2_port *sky2, u16 done)
  1115. {
  1116. struct net_device *dev = sky2->netdev;
  1117. struct pci_dev *pdev = sky2->hw->pdev;
  1118. u16 nxt, put;
  1119. unsigned i;
  1120. BUG_ON(done >= TX_RING_SIZE);
  1121. if (unlikely(netif_msg_tx_done(sky2)))
  1122. printk(KERN_DEBUG "%s: tx done, up to %u\n",
  1123. dev->name, done);
  1124. for (put = sky2->tx_cons; put != done; put = nxt) {
  1125. struct tx_ring_info *re = sky2->tx_ring + put;
  1126. struct sk_buff *skb = re->skb;
  1127. nxt = re->idx;
  1128. BUG_ON(nxt >= TX_RING_SIZE);
  1129. prefetch(sky2->tx_ring + nxt);
  1130. /* Check for partial status */
  1131. if (tx_dist(put, done) < tx_dist(put, nxt))
  1132. break;
  1133. skb = re->skb;
  1134. pci_unmap_single(pdev, pci_unmap_addr(re, mapaddr),
  1135. skb_headlen(skb), PCI_DMA_TODEVICE);
  1136. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  1137. struct tx_ring_info *fre;
  1138. fre = sky2->tx_ring + RING_NEXT(put + i, TX_RING_SIZE);
  1139. pci_unmap_page(pdev, pci_unmap_addr(fre, mapaddr),
  1140. skb_shinfo(skb)->frags[i].size,
  1141. PCI_DMA_TODEVICE);
  1142. }
  1143. dev_kfree_skb(skb);
  1144. }
  1145. sky2->tx_cons = put;
  1146. if (tx_avail(sky2) > MAX_SKB_TX_LE + 4)
  1147. netif_wake_queue(dev);
  1148. }
  1149. /* Cleanup all untransmitted buffers, assume transmitter not running */
  1150. static void sky2_tx_clean(struct sky2_port *sky2)
  1151. {
  1152. spin_lock_bh(&sky2->tx_lock);
  1153. sky2_tx_complete(sky2, sky2->tx_prod);
  1154. spin_unlock_bh(&sky2->tx_lock);
  1155. }
  1156. /* Network shutdown */
  1157. static int sky2_down(struct net_device *dev)
  1158. {
  1159. struct sky2_port *sky2 = netdev_priv(dev);
  1160. struct sky2_hw *hw = sky2->hw;
  1161. unsigned port = sky2->port;
  1162. u16 ctrl;
  1163. u32 imask;
  1164. /* Never really got started! */
  1165. if (!sky2->tx_le)
  1166. return 0;
  1167. if (netif_msg_ifdown(sky2))
  1168. printk(KERN_INFO PFX "%s: disabling interface\n", dev->name);
  1169. /* Stop more packets from being queued */
  1170. netif_stop_queue(dev);
  1171. sky2_gmac_reset(hw, port);
  1172. /* Stop transmitter */
  1173. sky2_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), BMU_STOP);
  1174. sky2_read32(hw, Q_ADDR(txqaddr[port], Q_CSR));
  1175. sky2_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
  1176. RB_RST_SET | RB_DIS_OP_MD);
  1177. ctrl = gma_read16(hw, port, GM_GP_CTRL);
  1178. ctrl &= ~(GM_GPCR_TX_ENA | GM_GPCR_RX_ENA);
  1179. gma_write16(hw, port, GM_GP_CTRL, ctrl);
  1180. sky2_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
  1181. /* Workaround shared GMAC reset */
  1182. if (!(hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev == 0
  1183. && port == 0 && hw->dev[1] && netif_running(hw->dev[1])))
  1184. sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
  1185. /* Disable Force Sync bit and Enable Alloc bit */
  1186. sky2_write8(hw, SK_REG(port, TXA_CTRL),
  1187. TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
  1188. /* Stop Interval Timer and Limit Counter of Tx Arbiter */
  1189. sky2_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
  1190. sky2_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
  1191. /* Reset the PCI FIFO of the async Tx queue */
  1192. sky2_write32(hw, Q_ADDR(txqaddr[port], Q_CSR),
  1193. BMU_RST_SET | BMU_FIFO_RST);
  1194. /* Reset the Tx prefetch units */
  1195. sky2_write32(hw, Y2_QADDR(txqaddr[port], PREF_UNIT_CTRL),
  1196. PREF_UNIT_RST_SET);
  1197. sky2_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
  1198. sky2_rx_stop(sky2);
  1199. sky2_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
  1200. sky2_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
  1201. /* Disable port IRQ */
  1202. imask = sky2_read32(hw, B0_IMSK);
  1203. imask &= ~portirq_msk[port];
  1204. sky2_write32(hw, B0_IMSK, imask);
  1205. sky2_phy_power(hw, port, 0);
  1206. /* turn off LED's */
  1207. sky2_write16(hw, B0_Y2LED, LED_STAT_OFF);
  1208. synchronize_irq(hw->pdev->irq);
  1209. sky2_tx_clean(sky2);
  1210. sky2_rx_clean(sky2);
  1211. pci_free_consistent(hw->pdev, RX_LE_BYTES,
  1212. sky2->rx_le, sky2->rx_le_map);
  1213. kfree(sky2->rx_ring);
  1214. pci_free_consistent(hw->pdev,
  1215. TX_RING_SIZE * sizeof(struct sky2_tx_le),
  1216. sky2->tx_le, sky2->tx_le_map);
  1217. kfree(sky2->tx_ring);
  1218. sky2->tx_le = NULL;
  1219. sky2->rx_le = NULL;
  1220. sky2->rx_ring = NULL;
  1221. sky2->tx_ring = NULL;
  1222. return 0;
  1223. }
  1224. static u16 sky2_phy_speed(const struct sky2_hw *hw, u16 aux)
  1225. {
  1226. if (!sky2_is_copper(hw))
  1227. return SPEED_1000;
  1228. if (hw->chip_id == CHIP_ID_YUKON_FE)
  1229. return (aux & PHY_M_PS_SPEED_100) ? SPEED_100 : SPEED_10;
  1230. switch (aux & PHY_M_PS_SPEED_MSK) {
  1231. case PHY_M_PS_SPEED_1000:
  1232. return SPEED_1000;
  1233. case PHY_M_PS_SPEED_100:
  1234. return SPEED_100;
  1235. default:
  1236. return SPEED_10;
  1237. }
  1238. }
  1239. static void sky2_link_up(struct sky2_port *sky2)
  1240. {
  1241. struct sky2_hw *hw = sky2->hw;
  1242. unsigned port = sky2->port;
  1243. u16 reg;
  1244. /* enable Rx/Tx */
  1245. reg = gma_read16(hw, port, GM_GP_CTRL);
  1246. reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
  1247. gma_write16(hw, port, GM_GP_CTRL, reg);
  1248. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_DEF_MSK);
  1249. netif_carrier_on(sky2->netdev);
  1250. netif_wake_queue(sky2->netdev);
  1251. /* Turn on link LED */
  1252. sky2_write8(hw, SK_REG(port, LNK_LED_REG),
  1253. LINKLED_ON | LINKLED_BLINK_OFF | LINKLED_LINKSYNC_OFF);
  1254. if (hw->chip_id == CHIP_ID_YUKON_XL || hw->chip_id == CHIP_ID_YUKON_EC_U) {
  1255. u16 pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
  1256. u16 led = PHY_M_LEDC_LOS_CTRL(1); /* link active */
  1257. switch(sky2->speed) {
  1258. case SPEED_10:
  1259. led |= PHY_M_LEDC_INIT_CTRL(7);
  1260. break;
  1261. case SPEED_100:
  1262. led |= PHY_M_LEDC_STA1_CTRL(7);
  1263. break;
  1264. case SPEED_1000:
  1265. led |= PHY_M_LEDC_STA0_CTRL(7);
  1266. break;
  1267. }
  1268. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3);
  1269. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, led);
  1270. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
  1271. }
  1272. if (netif_msg_link(sky2))
  1273. printk(KERN_INFO PFX
  1274. "%s: Link is up at %d Mbps, %s duplex, flow control %s\n",
  1275. sky2->netdev->name, sky2->speed,
  1276. sky2->duplex == DUPLEX_FULL ? "full" : "half",
  1277. (sky2->tx_pause && sky2->rx_pause) ? "both" :
  1278. sky2->tx_pause ? "tx" : sky2->rx_pause ? "rx" : "none");
  1279. }
  1280. static void sky2_link_down(struct sky2_port *sky2)
  1281. {
  1282. struct sky2_hw *hw = sky2->hw;
  1283. unsigned port = sky2->port;
  1284. u16 reg;
  1285. gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);
  1286. reg = gma_read16(hw, port, GM_GP_CTRL);
  1287. reg &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
  1288. gma_write16(hw, port, GM_GP_CTRL, reg);
  1289. if (sky2->rx_pause && !sky2->tx_pause) {
  1290. /* restore Asymmetric Pause bit */
  1291. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
  1292. gm_phy_read(hw, port, PHY_MARV_AUNE_ADV)
  1293. | PHY_M_AN_ASP);
  1294. }
  1295. netif_carrier_off(sky2->netdev);
  1296. netif_stop_queue(sky2->netdev);
  1297. /* Turn on link LED */
  1298. sky2_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
  1299. if (netif_msg_link(sky2))
  1300. printk(KERN_INFO PFX "%s: Link is down.\n", sky2->netdev->name);
  1301. sky2_phy_init(hw, port);
  1302. }
  1303. static int sky2_autoneg_done(struct sky2_port *sky2, u16 aux)
  1304. {
  1305. struct sky2_hw *hw = sky2->hw;
  1306. unsigned port = sky2->port;
  1307. u16 lpa;
  1308. lpa = gm_phy_read(hw, port, PHY_MARV_AUNE_LP);
  1309. if (lpa & PHY_M_AN_RF) {
  1310. printk(KERN_ERR PFX "%s: remote fault", sky2->netdev->name);
  1311. return -1;
  1312. }
  1313. if (!(aux & PHY_M_PS_SPDUP_RES)) {
  1314. printk(KERN_ERR PFX "%s: speed/duplex mismatch",
  1315. sky2->netdev->name);
  1316. return -1;
  1317. }
  1318. sky2->speed = sky2_phy_speed(hw, aux);
  1319. if (sky2->speed == SPEED_1000) {
  1320. u16 ctl2 = gm_phy_read(hw, port, PHY_MARV_1000T_CTRL);
  1321. u16 lpa2 = gm_phy_read(hw, port, PHY_MARV_1000T_STAT);
  1322. if (lpa2 & PHY_B_1000S_MSF) {
  1323. printk(KERN_ERR PFX "%s: master/slave fault",
  1324. sky2->netdev->name);
  1325. return -1;
  1326. }
  1327. if ((ctl2 & PHY_M_1000C_AFD) && (lpa2 & PHY_B_1000S_LP_FD))
  1328. sky2->duplex = DUPLEX_FULL;
  1329. else
  1330. sky2->duplex = DUPLEX_HALF;
  1331. } else {
  1332. u16 adv = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV);
  1333. if ((aux & adv) & PHY_AN_FULL)
  1334. sky2->duplex = DUPLEX_FULL;
  1335. else
  1336. sky2->duplex = DUPLEX_HALF;
  1337. }
  1338. /* Pause bits are offset (9..8) */
  1339. if (hw->chip_id == CHIP_ID_YUKON_XL || hw->chip_id == CHIP_ID_YUKON_EC_U)
  1340. aux >>= 6;
  1341. sky2->rx_pause = (aux & PHY_M_PS_RX_P_EN) != 0;
  1342. sky2->tx_pause = (aux & PHY_M_PS_TX_P_EN) != 0;
  1343. if (sky2->duplex == DUPLEX_HALF && sky2->speed != SPEED_1000
  1344. && hw->chip_id != CHIP_ID_YUKON_EC_U)
  1345. sky2->rx_pause = sky2->tx_pause = 0;
  1346. if (sky2->rx_pause || sky2->tx_pause)
  1347. sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
  1348. else
  1349. sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  1350. return 0;
  1351. }
  1352. /* Interrupt from PHY */
  1353. static void sky2_phy_intr(struct sky2_hw *hw, unsigned port)
  1354. {
  1355. struct net_device *dev = hw->dev[port];
  1356. struct sky2_port *sky2 = netdev_priv(dev);
  1357. u16 istatus, phystat;
  1358. spin_lock(&sky2->phy_lock);
  1359. istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
  1360. phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
  1361. if (!netif_running(dev))
  1362. goto out;
  1363. if (netif_msg_intr(sky2))
  1364. printk(KERN_INFO PFX "%s: phy interrupt status 0x%x 0x%x\n",
  1365. sky2->netdev->name, istatus, phystat);
  1366. if (sky2->autoneg == AUTONEG_ENABLE && (istatus & PHY_M_IS_AN_COMPL)) {
  1367. if (sky2_autoneg_done(sky2, phystat) == 0)
  1368. sky2_link_up(sky2);
  1369. goto out;
  1370. }
  1371. if (istatus & PHY_M_IS_LSP_CHANGE)
  1372. sky2->speed = sky2_phy_speed(hw, phystat);
  1373. if (istatus & PHY_M_IS_DUP_CHANGE)
  1374. sky2->duplex =
  1375. (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
  1376. if (istatus & PHY_M_IS_LST_CHANGE) {
  1377. if (phystat & PHY_M_PS_LINK_UP)
  1378. sky2_link_up(sky2);
  1379. else
  1380. sky2_link_down(sky2);
  1381. }
  1382. out:
  1383. spin_unlock(&sky2->phy_lock);
  1384. }
  1385. /* Transmit timeout is only called if we are running, carries is up
  1386. * and tx queue is full (stopped).
  1387. */
  1388. static void sky2_tx_timeout(struct net_device *dev)
  1389. {
  1390. struct sky2_port *sky2 = netdev_priv(dev);
  1391. struct sky2_hw *hw = sky2->hw;
  1392. unsigned txq = txqaddr[sky2->port];
  1393. u16 report, done;
  1394. if (netif_msg_timer(sky2))
  1395. printk(KERN_ERR PFX "%s: tx timeout\n", dev->name);
  1396. report = sky2_read16(hw, sky2->port == 0 ? STAT_TXA1_RIDX : STAT_TXA2_RIDX);
  1397. done = sky2_read16(hw, Q_ADDR(txq, Q_DONE));
  1398. printk(KERN_DEBUG PFX "%s: transmit ring %u .. %u report=%u done=%u\n",
  1399. dev->name,
  1400. sky2->tx_cons, sky2->tx_prod, report, done);
  1401. if (report != done) {
  1402. printk(KERN_INFO PFX "status burst pending (irq moderation?)\n");
  1403. sky2_write8(hw, STAT_TX_TIMER_CTRL, TIM_STOP);
  1404. sky2_write8(hw, STAT_TX_TIMER_CTRL, TIM_START);
  1405. } else if (report != sky2->tx_cons) {
  1406. printk(KERN_INFO PFX "status report lost?\n");
  1407. spin_lock_bh(&sky2->tx_lock);
  1408. sky2_tx_complete(sky2, report);
  1409. spin_unlock_bh(&sky2->tx_lock);
  1410. } else {
  1411. printk(KERN_INFO PFX "hardware hung? flushing\n");
  1412. sky2_write32(hw, Q_ADDR(txq, Q_CSR), BMU_STOP);
  1413. sky2_write32(hw, Y2_QADDR(txq, PREF_UNIT_CTRL), PREF_UNIT_RST_SET);
  1414. sky2_tx_clean(sky2);
  1415. sky2_qset(hw, txq);
  1416. sky2_prefetch_init(hw, txq, sky2->tx_le_map, TX_RING_SIZE - 1);
  1417. }
  1418. }
  1419. /* Want receive buffer size to be multiple of 64 bits
  1420. * and incl room for vlan and truncation
  1421. */
  1422. static inline unsigned sky2_buf_size(int mtu)
  1423. {
  1424. return ALIGN(mtu + ETH_HLEN + VLAN_HLEN, 8) + 8;
  1425. }
  1426. static int sky2_change_mtu(struct net_device *dev, int new_mtu)
  1427. {
  1428. struct sky2_port *sky2 = netdev_priv(dev);
  1429. struct sky2_hw *hw = sky2->hw;
  1430. int err;
  1431. u16 ctl, mode;
  1432. u32 imask;
  1433. if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
  1434. return -EINVAL;
  1435. if (hw->chip_id == CHIP_ID_YUKON_EC_U && new_mtu > ETH_DATA_LEN)
  1436. return -EINVAL;
  1437. if (!netif_running(dev)) {
  1438. dev->mtu = new_mtu;
  1439. return 0;
  1440. }
  1441. imask = sky2_read32(hw, B0_IMSK);
  1442. sky2_write32(hw, B0_IMSK, 0);
  1443. dev->trans_start = jiffies; /* prevent tx timeout */
  1444. netif_stop_queue(dev);
  1445. netif_poll_disable(hw->dev[0]);
  1446. synchronize_irq(hw->pdev->irq);
  1447. ctl = gma_read16(hw, sky2->port, GM_GP_CTRL);
  1448. gma_write16(hw, sky2->port, GM_GP_CTRL, ctl & ~GM_GPCR_RX_ENA);
  1449. sky2_rx_stop(sky2);
  1450. sky2_rx_clean(sky2);
  1451. dev->mtu = new_mtu;
  1452. sky2->rx_bufsize = sky2_buf_size(new_mtu);
  1453. mode = DATA_BLIND_VAL(DATA_BLIND_DEF) |
  1454. GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
  1455. if (dev->mtu > ETH_DATA_LEN)
  1456. mode |= GM_SMOD_JUMBO_ENA;
  1457. gma_write16(hw, sky2->port, GM_SERIAL_MODE, mode);
  1458. sky2_write8(hw, RB_ADDR(rxqaddr[sky2->port], RB_CTRL), RB_ENA_OP_MD);
  1459. err = sky2_rx_start(sky2);
  1460. sky2_write32(hw, B0_IMSK, imask);
  1461. if (err)
  1462. dev_close(dev);
  1463. else {
  1464. gma_write16(hw, sky2->port, GM_GP_CTRL, ctl);
  1465. netif_poll_enable(hw->dev[0]);
  1466. netif_wake_queue(dev);
  1467. }
  1468. return err;
  1469. }
  1470. /*
  1471. * Receive one packet.
  1472. * For small packets or errors, just reuse existing skb.
  1473. * For larger packets, get new buffer.
  1474. */
  1475. static struct sk_buff *sky2_receive(struct net_device *dev,
  1476. u16 length, u32 status)
  1477. {
  1478. struct sky2_port *sky2 = netdev_priv(dev);
  1479. struct ring_info *re = sky2->rx_ring + sky2->rx_next;
  1480. struct sk_buff *skb = NULL;
  1481. if (unlikely(netif_msg_rx_status(sky2)))
  1482. printk(KERN_DEBUG PFX "%s: rx slot %u status 0x%x len %d\n",
  1483. dev->name, sky2->rx_next, status, length);
  1484. sky2->rx_next = (sky2->rx_next + 1) % sky2->rx_pending;
  1485. prefetch(sky2->rx_ring + sky2->rx_next);
  1486. if (status & GMR_FS_ANY_ERR)
  1487. goto error;
  1488. if (!(status & GMR_FS_RX_OK))
  1489. goto resubmit;
  1490. if (length > dev->mtu + ETH_HLEN)
  1491. goto oversize;
  1492. if (length < copybreak) {
  1493. skb = netdev_alloc_skb(dev, length + 2);
  1494. if (!skb)
  1495. goto resubmit;
  1496. skb_reserve(skb, 2);
  1497. pci_dma_sync_single_for_cpu(sky2->hw->pdev, re->mapaddr,
  1498. length, PCI_DMA_FROMDEVICE);
  1499. memcpy(skb->data, re->skb->data, length);
  1500. skb->ip_summed = re->skb->ip_summed;
  1501. skb->csum = re->skb->csum;
  1502. pci_dma_sync_single_for_device(sky2->hw->pdev, re->mapaddr,
  1503. length, PCI_DMA_FROMDEVICE);
  1504. } else {
  1505. struct sk_buff *nskb;
  1506. nskb = sky2_alloc_skb(dev, sky2->rx_bufsize, GFP_ATOMIC);
  1507. if (!nskb)
  1508. goto resubmit;
  1509. skb = re->skb;
  1510. re->skb = nskb;
  1511. pci_unmap_single(sky2->hw->pdev, re->mapaddr,
  1512. sky2->rx_bufsize, PCI_DMA_FROMDEVICE);
  1513. prefetch(skb->data);
  1514. re->mapaddr = pci_map_single(sky2->hw->pdev, nskb->data,
  1515. sky2->rx_bufsize, PCI_DMA_FROMDEVICE);
  1516. }
  1517. skb_put(skb, length);
  1518. resubmit:
  1519. re->skb->ip_summed = CHECKSUM_NONE;
  1520. sky2_rx_add(sky2, re->mapaddr);
  1521. return skb;
  1522. oversize:
  1523. ++sky2->net_stats.rx_over_errors;
  1524. goto resubmit;
  1525. error:
  1526. ++sky2->net_stats.rx_errors;
  1527. if (netif_msg_rx_err(sky2) && net_ratelimit())
  1528. printk(KERN_INFO PFX "%s: rx error, status 0x%x length %d\n",
  1529. dev->name, status, length);
  1530. if (status & (GMR_FS_LONG_ERR | GMR_FS_UN_SIZE))
  1531. sky2->net_stats.rx_length_errors++;
  1532. if (status & GMR_FS_FRAGMENT)
  1533. sky2->net_stats.rx_frame_errors++;
  1534. if (status & GMR_FS_CRC_ERR)
  1535. sky2->net_stats.rx_crc_errors++;
  1536. if (status & GMR_FS_RX_FF_OV)
  1537. sky2->net_stats.rx_fifo_errors++;
  1538. goto resubmit;
  1539. }
  1540. /* Transmit complete */
  1541. static inline void sky2_tx_done(struct net_device *dev, u16 last)
  1542. {
  1543. struct sky2_port *sky2 = netdev_priv(dev);
  1544. if (netif_running(dev)) {
  1545. spin_lock(&sky2->tx_lock);
  1546. sky2_tx_complete(sky2, last);
  1547. spin_unlock(&sky2->tx_lock);
  1548. }
  1549. }
  1550. /* Process status response ring */
  1551. static int sky2_status_intr(struct sky2_hw *hw, int to_do)
  1552. {
  1553. struct sky2_port *sky2;
  1554. int work_done = 0;
  1555. unsigned buf_write[2] = { 0, 0 };
  1556. u16 hwidx = sky2_read16(hw, STAT_PUT_IDX);
  1557. rmb();
  1558. while (hw->st_idx != hwidx) {
  1559. struct sky2_status_le *le = hw->st_le + hw->st_idx;
  1560. struct net_device *dev;
  1561. struct sk_buff *skb;
  1562. u32 status;
  1563. u16 length;
  1564. hw->st_idx = RING_NEXT(hw->st_idx, STATUS_RING_SIZE);
  1565. BUG_ON(le->link >= 2);
  1566. dev = hw->dev[le->link];
  1567. sky2 = netdev_priv(dev);
  1568. length = le16_to_cpu(le->length);
  1569. status = le32_to_cpu(le->status);
  1570. switch (le->opcode & ~HW_OWNER) {
  1571. case OP_RXSTAT:
  1572. skb = sky2_receive(dev, length, status);
  1573. if (!skb)
  1574. break;
  1575. skb->protocol = eth_type_trans(skb, dev);
  1576. dev->last_rx = jiffies;
  1577. #ifdef SKY2_VLAN_TAG_USED
  1578. if (sky2->vlgrp && (status & GMR_FS_VLAN)) {
  1579. vlan_hwaccel_receive_skb(skb,
  1580. sky2->vlgrp,
  1581. be16_to_cpu(sky2->rx_tag));
  1582. } else
  1583. #endif
  1584. netif_receive_skb(skb);
  1585. /* Update receiver after 16 frames */
  1586. if (++buf_write[le->link] == RX_BUF_WRITE) {
  1587. sky2_put_idx(hw, rxqaddr[le->link],
  1588. sky2->rx_put);
  1589. buf_write[le->link] = 0;
  1590. }
  1591. /* Stop after net poll weight */
  1592. if (++work_done >= to_do)
  1593. goto exit_loop;
  1594. break;
  1595. #ifdef SKY2_VLAN_TAG_USED
  1596. case OP_RXVLAN:
  1597. sky2->rx_tag = length;
  1598. break;
  1599. case OP_RXCHKSVLAN:
  1600. sky2->rx_tag = length;
  1601. /* fall through */
  1602. #endif
  1603. case OP_RXCHKS:
  1604. skb = sky2->rx_ring[sky2->rx_next].skb;
  1605. skb->ip_summed = CHECKSUM_COMPLETE;
  1606. skb->csum = status & 0xffff;
  1607. break;
  1608. case OP_TXINDEXLE:
  1609. /* TX index reports status for both ports */
  1610. BUILD_BUG_ON(TX_RING_SIZE > 0x1000);
  1611. sky2_tx_done(hw->dev[0], status & 0xfff);
  1612. if (hw->dev[1])
  1613. sky2_tx_done(hw->dev[1],
  1614. ((status >> 24) & 0xff)
  1615. | (u16)(length & 0xf) << 8);
  1616. break;
  1617. default:
  1618. if (net_ratelimit())
  1619. printk(KERN_WARNING PFX
  1620. "unknown status opcode 0x%x\n", le->opcode);
  1621. goto exit_loop;
  1622. }
  1623. }
  1624. /* Fully processed status ring so clear irq */
  1625. sky2_write32(hw, STAT_CTRL, SC_STAT_CLR_IRQ);
  1626. exit_loop:
  1627. if (buf_write[0]) {
  1628. sky2 = netdev_priv(hw->dev[0]);
  1629. sky2_put_idx(hw, Q_R1, sky2->rx_put);
  1630. }
  1631. if (buf_write[1]) {
  1632. sky2 = netdev_priv(hw->dev[1]);
  1633. sky2_put_idx(hw, Q_R2, sky2->rx_put);
  1634. }
  1635. return work_done;
  1636. }
  1637. static void sky2_hw_error(struct sky2_hw *hw, unsigned port, u32 status)
  1638. {
  1639. struct net_device *dev = hw->dev[port];
  1640. if (net_ratelimit())
  1641. printk(KERN_INFO PFX "%s: hw error interrupt status 0x%x\n",
  1642. dev->name, status);
  1643. if (status & Y2_IS_PAR_RD1) {
  1644. if (net_ratelimit())
  1645. printk(KERN_ERR PFX "%s: ram data read parity error\n",
  1646. dev->name);
  1647. /* Clear IRQ */
  1648. sky2_write16(hw, RAM_BUFFER(port, B3_RI_CTRL), RI_CLR_RD_PERR);
  1649. }
  1650. if (status & Y2_IS_PAR_WR1) {
  1651. if (net_ratelimit())
  1652. printk(KERN_ERR PFX "%s: ram data write parity error\n",
  1653. dev->name);
  1654. sky2_write16(hw, RAM_BUFFER(port, B3_RI_CTRL), RI_CLR_WR_PERR);
  1655. }
  1656. if (status & Y2_IS_PAR_MAC1) {
  1657. if (net_ratelimit())
  1658. printk(KERN_ERR PFX "%s: MAC parity error\n", dev->name);
  1659. sky2_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_PE);
  1660. }
  1661. if (status & Y2_IS_PAR_RX1) {
  1662. if (net_ratelimit())
  1663. printk(KERN_ERR PFX "%s: RX parity error\n", dev->name);
  1664. sky2_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), BMU_CLR_IRQ_PAR);
  1665. }
  1666. if (status & Y2_IS_TCP_TXA1) {
  1667. if (net_ratelimit())
  1668. printk(KERN_ERR PFX "%s: TCP segmentation error\n",
  1669. dev->name);
  1670. sky2_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), BMU_CLR_IRQ_TCP);
  1671. }
  1672. }
  1673. static void sky2_hw_intr(struct sky2_hw *hw)
  1674. {
  1675. u32 status = sky2_read32(hw, B0_HWE_ISRC);
  1676. if (status & Y2_IS_TIST_OV)
  1677. sky2_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
  1678. if (status & (Y2_IS_MST_ERR | Y2_IS_IRQ_STAT)) {
  1679. u16 pci_err;
  1680. pci_err = sky2_pci_read16(hw, PCI_STATUS);
  1681. if (net_ratelimit())
  1682. printk(KERN_ERR PFX "%s: pci hw error (0x%x)\n",
  1683. pci_name(hw->pdev), pci_err);
  1684. sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  1685. sky2_pci_write16(hw, PCI_STATUS,
  1686. pci_err | PCI_STATUS_ERROR_BITS);
  1687. sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  1688. }
  1689. if (status & Y2_IS_PCI_EXP) {
  1690. /* PCI-Express uncorrectable Error occurred */
  1691. u32 pex_err;
  1692. pex_err = sky2_pci_read32(hw,
  1693. hw->err_cap + PCI_ERR_UNCOR_STATUS);
  1694. if (net_ratelimit())
  1695. printk(KERN_ERR PFX "%s: pci express error (0x%x)\n",
  1696. pci_name(hw->pdev), pex_err);
  1697. /* clear the interrupt */
  1698. sky2_write32(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  1699. sky2_pci_write32(hw,
  1700. hw->err_cap + PCI_ERR_UNCOR_STATUS,
  1701. 0xffffffffUL);
  1702. sky2_write32(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  1703. /* In case of fatal error mask off to keep from getting stuck */
  1704. if (pex_err & (PCI_ERR_UNC_POISON_TLP | PCI_ERR_UNC_FCP
  1705. | PCI_ERR_UNC_DLP)) {
  1706. u32 hwmsk = sky2_read32(hw, B0_HWE_IMSK);
  1707. hwmsk &= ~Y2_IS_PCI_EXP;
  1708. sky2_write32(hw, B0_HWE_IMSK, hwmsk);
  1709. }
  1710. }
  1711. if (status & Y2_HWE_L1_MASK)
  1712. sky2_hw_error(hw, 0, status);
  1713. status >>= 8;
  1714. if (status & Y2_HWE_L1_MASK)
  1715. sky2_hw_error(hw, 1, status);
  1716. }
  1717. static void sky2_mac_intr(struct sky2_hw *hw, unsigned port)
  1718. {
  1719. struct net_device *dev = hw->dev[port];
  1720. struct sky2_port *sky2 = netdev_priv(dev);
  1721. u8 status = sky2_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
  1722. if (netif_msg_intr(sky2))
  1723. printk(KERN_INFO PFX "%s: mac interrupt status 0x%x\n",
  1724. dev->name, status);
  1725. if (status & GM_IS_RX_FF_OR) {
  1726. ++sky2->net_stats.rx_fifo_errors;
  1727. sky2_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
  1728. }
  1729. if (status & GM_IS_TX_FF_UR) {
  1730. ++sky2->net_stats.tx_fifo_errors;
  1731. sky2_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
  1732. }
  1733. }
  1734. /* This should never happen it is a fatal situation */
  1735. static void sky2_descriptor_error(struct sky2_hw *hw, unsigned port,
  1736. const char *rxtx, u32 mask)
  1737. {
  1738. struct net_device *dev = hw->dev[port];
  1739. struct sky2_port *sky2 = netdev_priv(dev);
  1740. u32 imask;
  1741. printk(KERN_ERR PFX "%s: %s descriptor error (hardware problem)\n",
  1742. dev ? dev->name : "<not registered>", rxtx);
  1743. imask = sky2_read32(hw, B0_IMSK);
  1744. imask &= ~mask;
  1745. sky2_write32(hw, B0_IMSK, imask);
  1746. if (dev) {
  1747. spin_lock(&sky2->phy_lock);
  1748. sky2_link_down(sky2);
  1749. spin_unlock(&sky2->phy_lock);
  1750. }
  1751. }
  1752. /* If idle then force a fake soft NAPI poll once a second
  1753. * to work around cases where sharing an edge triggered interrupt.
  1754. */
  1755. static inline void sky2_idle_start(struct sky2_hw *hw)
  1756. {
  1757. if (idle_timeout > 0)
  1758. mod_timer(&hw->idle_timer,
  1759. jiffies + msecs_to_jiffies(idle_timeout));
  1760. }
  1761. static void sky2_idle(unsigned long arg)
  1762. {
  1763. struct sky2_hw *hw = (struct sky2_hw *) arg;
  1764. struct net_device *dev = hw->dev[0];
  1765. if (__netif_rx_schedule_prep(dev))
  1766. __netif_rx_schedule(dev);
  1767. mod_timer(&hw->idle_timer, jiffies + msecs_to_jiffies(idle_timeout));
  1768. }
  1769. static int sky2_poll(struct net_device *dev0, int *budget)
  1770. {
  1771. struct sky2_hw *hw = ((struct sky2_port *) netdev_priv(dev0))->hw;
  1772. int work_limit = min(dev0->quota, *budget);
  1773. int work_done = 0;
  1774. u32 status = sky2_read32(hw, B0_Y2_SP_EISR);
  1775. if (status & Y2_IS_HW_ERR)
  1776. sky2_hw_intr(hw);
  1777. if (status & Y2_IS_IRQ_PHY1)
  1778. sky2_phy_intr(hw, 0);
  1779. if (status & Y2_IS_IRQ_PHY2)
  1780. sky2_phy_intr(hw, 1);
  1781. if (status & Y2_IS_IRQ_MAC1)
  1782. sky2_mac_intr(hw, 0);
  1783. if (status & Y2_IS_IRQ_MAC2)
  1784. sky2_mac_intr(hw, 1);
  1785. if (status & Y2_IS_CHK_RX1)
  1786. sky2_descriptor_error(hw, 0, "receive", Y2_IS_CHK_RX1);
  1787. if (status & Y2_IS_CHK_RX2)
  1788. sky2_descriptor_error(hw, 1, "receive", Y2_IS_CHK_RX2);
  1789. if (status & Y2_IS_CHK_TXA1)
  1790. sky2_descriptor_error(hw, 0, "transmit", Y2_IS_CHK_TXA1);
  1791. if (status & Y2_IS_CHK_TXA2)
  1792. sky2_descriptor_error(hw, 1, "transmit", Y2_IS_CHK_TXA2);
  1793. work_done = sky2_status_intr(hw, work_limit);
  1794. if (work_done < work_limit) {
  1795. netif_rx_complete(dev0);
  1796. sky2_read32(hw, B0_Y2_SP_LISR);
  1797. return 0;
  1798. } else {
  1799. *budget -= work_done;
  1800. dev0->quota -= work_done;
  1801. return 1;
  1802. }
  1803. }
  1804. static irqreturn_t sky2_intr(int irq, void *dev_id, struct pt_regs *regs)
  1805. {
  1806. struct sky2_hw *hw = dev_id;
  1807. struct net_device *dev0 = hw->dev[0];
  1808. u32 status;
  1809. /* Reading this mask interrupts as side effect */
  1810. status = sky2_read32(hw, B0_Y2_SP_ISRC2);
  1811. if (status == 0 || status == ~0)
  1812. return IRQ_NONE;
  1813. prefetch(&hw->st_le[hw->st_idx]);
  1814. if (likely(__netif_rx_schedule_prep(dev0)))
  1815. __netif_rx_schedule(dev0);
  1816. return IRQ_HANDLED;
  1817. }
  1818. #ifdef CONFIG_NET_POLL_CONTROLLER
  1819. static void sky2_netpoll(struct net_device *dev)
  1820. {
  1821. struct sky2_port *sky2 = netdev_priv(dev);
  1822. struct net_device *dev0 = sky2->hw->dev[0];
  1823. if (netif_running(dev) && __netif_rx_schedule_prep(dev0))
  1824. __netif_rx_schedule(dev0);
  1825. }
  1826. #endif
  1827. /* Chip internal frequency for clock calculations */
  1828. static inline u32 sky2_mhz(const struct sky2_hw *hw)
  1829. {
  1830. switch (hw->chip_id) {
  1831. case CHIP_ID_YUKON_EC:
  1832. case CHIP_ID_YUKON_EC_U:
  1833. return 125; /* 125 Mhz */
  1834. case CHIP_ID_YUKON_FE:
  1835. return 100; /* 100 Mhz */
  1836. default: /* YUKON_XL */
  1837. return 156; /* 156 Mhz */
  1838. }
  1839. }
  1840. static inline u32 sky2_us2clk(const struct sky2_hw *hw, u32 us)
  1841. {
  1842. return sky2_mhz(hw) * us;
  1843. }
  1844. static inline u32 sky2_clk2us(const struct sky2_hw *hw, u32 clk)
  1845. {
  1846. return clk / sky2_mhz(hw);
  1847. }
  1848. static int sky2_reset(struct sky2_hw *hw)
  1849. {
  1850. u16 status;
  1851. u8 t8;
  1852. int i;
  1853. u32 msk;
  1854. sky2_write8(hw, B0_CTST, CS_RST_CLR);
  1855. hw->chip_id = sky2_read8(hw, B2_CHIP_ID);
  1856. if (hw->chip_id < CHIP_ID_YUKON_XL || hw->chip_id > CHIP_ID_YUKON_FE) {
  1857. printk(KERN_ERR PFX "%s: unsupported chip type 0x%x\n",
  1858. pci_name(hw->pdev), hw->chip_id);
  1859. return -EOPNOTSUPP;
  1860. }
  1861. hw->chip_rev = (sky2_read8(hw, B2_MAC_CFG) & CFG_CHIP_R_MSK) >> 4;
  1862. /* This rev is really old, and requires untested workarounds */
  1863. if (hw->chip_id == CHIP_ID_YUKON_EC && hw->chip_rev == CHIP_REV_YU_EC_A1) {
  1864. printk(KERN_ERR PFX "%s: unsupported revision Yukon-%s (0x%x) rev %d\n",
  1865. pci_name(hw->pdev), yukon2_name[hw->chip_id - CHIP_ID_YUKON_XL],
  1866. hw->chip_id, hw->chip_rev);
  1867. return -EOPNOTSUPP;
  1868. }
  1869. /* disable ASF */
  1870. if (hw->chip_id <= CHIP_ID_YUKON_EC) {
  1871. sky2_write8(hw, B28_Y2_ASF_STAT_CMD, Y2_ASF_RESET);
  1872. sky2_write16(hw, B0_CTST, Y2_ASF_DISABLE);
  1873. }
  1874. /* do a SW reset */
  1875. sky2_write8(hw, B0_CTST, CS_RST_SET);
  1876. sky2_write8(hw, B0_CTST, CS_RST_CLR);
  1877. /* clear PCI errors, if any */
  1878. status = sky2_pci_read16(hw, PCI_STATUS);
  1879. sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  1880. sky2_pci_write16(hw, PCI_STATUS, status | PCI_STATUS_ERROR_BITS);
  1881. sky2_write8(hw, B0_CTST, CS_MRST_CLR);
  1882. /* clear any PEX errors */
  1883. if (pci_find_capability(hw->pdev, PCI_CAP_ID_EXP)) {
  1884. hw->err_cap = pci_find_ext_capability(hw->pdev, PCI_EXT_CAP_ID_ERR);
  1885. if (hw->err_cap)
  1886. sky2_pci_write32(hw,
  1887. hw->err_cap + PCI_ERR_UNCOR_STATUS,
  1888. 0xffffffffUL);
  1889. }
  1890. hw->pmd_type = sky2_read8(hw, B2_PMD_TYP);
  1891. hw->ports = 1;
  1892. t8 = sky2_read8(hw, B2_Y2_HW_RES);
  1893. if ((t8 & CFG_DUAL_MAC_MSK) == CFG_DUAL_MAC_MSK) {
  1894. if (!(sky2_read8(hw, B2_Y2_CLK_GATE) & Y2_STATUS_LNK2_INAC))
  1895. ++hw->ports;
  1896. }
  1897. sky2_set_power_state(hw, PCI_D0);
  1898. for (i = 0; i < hw->ports; i++) {
  1899. sky2_write8(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
  1900. sky2_write8(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
  1901. }
  1902. sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  1903. /* Clear I2C IRQ noise */
  1904. sky2_write32(hw, B2_I2C_IRQ, 1);
  1905. /* turn off hardware timer (unused) */
  1906. sky2_write8(hw, B2_TI_CTRL, TIM_STOP);
  1907. sky2_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
  1908. sky2_write8(hw, B0_Y2LED, LED_STAT_ON);
  1909. /* Turn off descriptor polling */
  1910. sky2_write32(hw, B28_DPT_CTRL, DPT_STOP);
  1911. /* Turn off receive timestamp */
  1912. sky2_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_STOP);
  1913. sky2_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
  1914. /* enable the Tx Arbiters */
  1915. for (i = 0; i < hw->ports; i++)
  1916. sky2_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
  1917. /* Initialize ram interface */
  1918. for (i = 0; i < hw->ports; i++) {
  1919. sky2_write8(hw, RAM_BUFFER(i, B3_RI_CTRL), RI_RST_CLR);
  1920. sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_R1), SK_RI_TO_53);
  1921. sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_XA1), SK_RI_TO_53);
  1922. sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_XS1), SK_RI_TO_53);
  1923. sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_R1), SK_RI_TO_53);
  1924. sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_XA1), SK_RI_TO_53);
  1925. sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_XS1), SK_RI_TO_53);
  1926. sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_R2), SK_RI_TO_53);
  1927. sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_XA2), SK_RI_TO_53);
  1928. sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_XS2), SK_RI_TO_53);
  1929. sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_R2), SK_RI_TO_53);
  1930. sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_XA2), SK_RI_TO_53);
  1931. sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_XS2), SK_RI_TO_53);
  1932. }
  1933. msk = Y2_HWE_ALL_MASK;
  1934. if (!hw->err_cap)
  1935. msk &= ~Y2_IS_PCI_EXP;
  1936. sky2_write32(hw, B0_HWE_IMSK, msk);
  1937. for (i = 0; i < hw->ports; i++)
  1938. sky2_gmac_reset(hw, i);
  1939. memset(hw->st_le, 0, STATUS_LE_BYTES);
  1940. hw->st_idx = 0;
  1941. sky2_write32(hw, STAT_CTRL, SC_STAT_RST_SET);
  1942. sky2_write32(hw, STAT_CTRL, SC_STAT_RST_CLR);
  1943. sky2_write32(hw, STAT_LIST_ADDR_LO, hw->st_dma);
  1944. sky2_write32(hw, STAT_LIST_ADDR_HI, (u64) hw->st_dma >> 32);
  1945. /* Set the list last index */
  1946. sky2_write16(hw, STAT_LAST_IDX, STATUS_RING_SIZE - 1);
  1947. sky2_write16(hw, STAT_TX_IDX_TH, 10);
  1948. sky2_write8(hw, STAT_FIFO_WM, 16);
  1949. /* set Status-FIFO ISR watermark */
  1950. if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev == 0)
  1951. sky2_write8(hw, STAT_FIFO_ISR_WM, 4);
  1952. else
  1953. sky2_write8(hw, STAT_FIFO_ISR_WM, 16);
  1954. sky2_write32(hw, STAT_TX_TIMER_INI, sky2_us2clk(hw, 1000));
  1955. sky2_write32(hw, STAT_ISR_TIMER_INI, sky2_us2clk(hw, 20));
  1956. sky2_write32(hw, STAT_LEV_TIMER_INI, sky2_us2clk(hw, 100));
  1957. /* enable status unit */
  1958. sky2_write32(hw, STAT_CTRL, SC_STAT_OP_ON);
  1959. sky2_write8(hw, STAT_TX_TIMER_CTRL, TIM_START);
  1960. sky2_write8(hw, STAT_LEV_TIMER_CTRL, TIM_START);
  1961. sky2_write8(hw, STAT_ISR_TIMER_CTRL, TIM_START);
  1962. return 0;
  1963. }
  1964. static u32 sky2_supported_modes(const struct sky2_hw *hw)
  1965. {
  1966. if (sky2_is_copper(hw)) {
  1967. u32 modes = SUPPORTED_10baseT_Half
  1968. | SUPPORTED_10baseT_Full
  1969. | SUPPORTED_100baseT_Half
  1970. | SUPPORTED_100baseT_Full
  1971. | SUPPORTED_Autoneg | SUPPORTED_TP;
  1972. if (hw->chip_id != CHIP_ID_YUKON_FE)
  1973. modes |= SUPPORTED_1000baseT_Half
  1974. | SUPPORTED_1000baseT_Full;
  1975. return modes;
  1976. } else
  1977. return SUPPORTED_1000baseT_Half
  1978. | SUPPORTED_1000baseT_Full
  1979. | SUPPORTED_Autoneg
  1980. | SUPPORTED_FIBRE;
  1981. }
  1982. static int sky2_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  1983. {
  1984. struct sky2_port *sky2 = netdev_priv(dev);
  1985. struct sky2_hw *hw = sky2->hw;
  1986. ecmd->transceiver = XCVR_INTERNAL;
  1987. ecmd->supported = sky2_supported_modes(hw);
  1988. ecmd->phy_address = PHY_ADDR_MARV;
  1989. if (sky2_is_copper(hw)) {
  1990. ecmd->supported = SUPPORTED_10baseT_Half
  1991. | SUPPORTED_10baseT_Full
  1992. | SUPPORTED_100baseT_Half
  1993. | SUPPORTED_100baseT_Full
  1994. | SUPPORTED_1000baseT_Half
  1995. | SUPPORTED_1000baseT_Full
  1996. | SUPPORTED_Autoneg | SUPPORTED_TP;
  1997. ecmd->port = PORT_TP;
  1998. ecmd->speed = sky2->speed;
  1999. } else {
  2000. ecmd->speed = SPEED_1000;
  2001. ecmd->port = PORT_FIBRE;
  2002. }
  2003. ecmd->advertising = sky2->advertising;
  2004. ecmd->autoneg = sky2->autoneg;
  2005. ecmd->duplex = sky2->duplex;
  2006. return 0;
  2007. }
  2008. static int sky2_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  2009. {
  2010. struct sky2_port *sky2 = netdev_priv(dev);
  2011. const struct sky2_hw *hw = sky2->hw;
  2012. u32 supported = sky2_supported_modes(hw);
  2013. if (ecmd->autoneg == AUTONEG_ENABLE) {
  2014. ecmd->advertising = supported;
  2015. sky2->duplex = -1;
  2016. sky2->speed = -1;
  2017. } else {
  2018. u32 setting;
  2019. switch (ecmd->speed) {
  2020. case SPEED_1000:
  2021. if (ecmd->duplex == DUPLEX_FULL)
  2022. setting = SUPPORTED_1000baseT_Full;
  2023. else if (ecmd->duplex == DUPLEX_HALF)
  2024. setting = SUPPORTED_1000baseT_Half;
  2025. else
  2026. return -EINVAL;
  2027. break;
  2028. case SPEED_100:
  2029. if (ecmd->duplex == DUPLEX_FULL)
  2030. setting = SUPPORTED_100baseT_Full;
  2031. else if (ecmd->duplex == DUPLEX_HALF)
  2032. setting = SUPPORTED_100baseT_Half;
  2033. else
  2034. return -EINVAL;
  2035. break;
  2036. case SPEED_10:
  2037. if (ecmd->duplex == DUPLEX_FULL)
  2038. setting = SUPPORTED_10baseT_Full;
  2039. else if (ecmd->duplex == DUPLEX_HALF)
  2040. setting = SUPPORTED_10baseT_Half;
  2041. else
  2042. return -EINVAL;
  2043. break;
  2044. default:
  2045. return -EINVAL;
  2046. }
  2047. if ((setting & supported) == 0)
  2048. return -EINVAL;
  2049. sky2->speed = ecmd->speed;
  2050. sky2->duplex = ecmd->duplex;
  2051. }
  2052. sky2->autoneg = ecmd->autoneg;
  2053. sky2->advertising = ecmd->advertising;
  2054. if (netif_running(dev))
  2055. sky2_phy_reinit(sky2);
  2056. return 0;
  2057. }
  2058. static void sky2_get_drvinfo(struct net_device *dev,
  2059. struct ethtool_drvinfo *info)
  2060. {
  2061. struct sky2_port *sky2 = netdev_priv(dev);
  2062. strcpy(info->driver, DRV_NAME);
  2063. strcpy(info->version, DRV_VERSION);
  2064. strcpy(info->fw_version, "N/A");
  2065. strcpy(info->bus_info, pci_name(sky2->hw->pdev));
  2066. }
  2067. static const struct sky2_stat {
  2068. char name[ETH_GSTRING_LEN];
  2069. u16 offset;
  2070. } sky2_stats[] = {
  2071. { "tx_bytes", GM_TXO_OK_HI },
  2072. { "rx_bytes", GM_RXO_OK_HI },
  2073. { "tx_broadcast", GM_TXF_BC_OK },
  2074. { "rx_broadcast", GM_RXF_BC_OK },
  2075. { "tx_multicast", GM_TXF_MC_OK },
  2076. { "rx_multicast", GM_RXF_MC_OK },
  2077. { "tx_unicast", GM_TXF_UC_OK },
  2078. { "rx_unicast", GM_RXF_UC_OK },
  2079. { "tx_mac_pause", GM_TXF_MPAUSE },
  2080. { "rx_mac_pause", GM_RXF_MPAUSE },
  2081. { "collisions", GM_TXF_COL },
  2082. { "late_collision",GM_TXF_LAT_COL },
  2083. { "aborted", GM_TXF_ABO_COL },
  2084. { "single_collisions", GM_TXF_SNG_COL },
  2085. { "multi_collisions", GM_TXF_MUL_COL },
  2086. { "rx_short", GM_RXF_SHT },
  2087. { "rx_runt", GM_RXE_FRAG },
  2088. { "rx_64_byte_packets", GM_RXF_64B },
  2089. { "rx_65_to_127_byte_packets", GM_RXF_127B },
  2090. { "rx_128_to_255_byte_packets", GM_RXF_255B },
  2091. { "rx_256_to_511_byte_packets", GM_RXF_511B },
  2092. { "rx_512_to_1023_byte_packets", GM_RXF_1023B },
  2093. { "rx_1024_to_1518_byte_packets", GM_RXF_1518B },
  2094. { "rx_1518_to_max_byte_packets", GM_RXF_MAX_SZ },
  2095. { "rx_too_long", GM_RXF_LNG_ERR },
  2096. { "rx_fifo_overflow", GM_RXE_FIFO_OV },
  2097. { "rx_jabber", GM_RXF_JAB_PKT },
  2098. { "rx_fcs_error", GM_RXF_FCS_ERR },
  2099. { "tx_64_byte_packets", GM_TXF_64B },
  2100. { "tx_65_to_127_byte_packets", GM_TXF_127B },
  2101. { "tx_128_to_255_byte_packets", GM_TXF_255B },
  2102. { "tx_256_to_511_byte_packets", GM_TXF_511B },
  2103. { "tx_512_to_1023_byte_packets", GM_TXF_1023B },
  2104. { "tx_1024_to_1518_byte_packets", GM_TXF_1518B },
  2105. { "tx_1519_to_max_byte_packets", GM_TXF_MAX_SZ },
  2106. { "tx_fifo_underrun", GM_TXE_FIFO_UR },
  2107. };
  2108. static u32 sky2_get_rx_csum(struct net_device *dev)
  2109. {
  2110. struct sky2_port *sky2 = netdev_priv(dev);
  2111. return sky2->rx_csum;
  2112. }
  2113. static int sky2_set_rx_csum(struct net_device *dev, u32 data)
  2114. {
  2115. struct sky2_port *sky2 = netdev_priv(dev);
  2116. sky2->rx_csum = data;
  2117. sky2_write32(sky2->hw, Q_ADDR(rxqaddr[sky2->port], Q_CSR),
  2118. data ? BMU_ENA_RX_CHKSUM : BMU_DIS_RX_CHKSUM);
  2119. return 0;
  2120. }
  2121. static u32 sky2_get_msglevel(struct net_device *netdev)
  2122. {
  2123. struct sky2_port *sky2 = netdev_priv(netdev);
  2124. return sky2->msg_enable;
  2125. }
  2126. static int sky2_nway_reset(struct net_device *dev)
  2127. {
  2128. struct sky2_port *sky2 = netdev_priv(dev);
  2129. if (sky2->autoneg != AUTONEG_ENABLE)
  2130. return -EINVAL;
  2131. sky2_phy_reinit(sky2);
  2132. return 0;
  2133. }
  2134. static void sky2_phy_stats(struct sky2_port *sky2, u64 * data, unsigned count)
  2135. {
  2136. struct sky2_hw *hw = sky2->hw;
  2137. unsigned port = sky2->port;
  2138. int i;
  2139. data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
  2140. | (u64) gma_read32(hw, port, GM_TXO_OK_LO);
  2141. data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
  2142. | (u64) gma_read32(hw, port, GM_RXO_OK_LO);
  2143. for (i = 2; i < count; i++)
  2144. data[i] = (u64) gma_read32(hw, port, sky2_stats[i].offset);
  2145. }
  2146. static void sky2_set_msglevel(struct net_device *netdev, u32 value)
  2147. {
  2148. struct sky2_port *sky2 = netdev_priv(netdev);
  2149. sky2->msg_enable = value;
  2150. }
  2151. static int sky2_get_stats_count(struct net_device *dev)
  2152. {
  2153. return ARRAY_SIZE(sky2_stats);
  2154. }
  2155. static void sky2_get_ethtool_stats(struct net_device *dev,
  2156. struct ethtool_stats *stats, u64 * data)
  2157. {
  2158. struct sky2_port *sky2 = netdev_priv(dev);
  2159. sky2_phy_stats(sky2, data, ARRAY_SIZE(sky2_stats));
  2160. }
  2161. static void sky2_get_strings(struct net_device *dev, u32 stringset, u8 * data)
  2162. {
  2163. int i;
  2164. switch (stringset) {
  2165. case ETH_SS_STATS:
  2166. for (i = 0; i < ARRAY_SIZE(sky2_stats); i++)
  2167. memcpy(data + i * ETH_GSTRING_LEN,
  2168. sky2_stats[i].name, ETH_GSTRING_LEN);
  2169. break;
  2170. }
  2171. }
  2172. /* Use hardware MIB variables for critical path statistics and
  2173. * transmit feedback not reported at interrupt.
  2174. * Other errors are accounted for in interrupt handler.
  2175. */
  2176. static struct net_device_stats *sky2_get_stats(struct net_device *dev)
  2177. {
  2178. struct sky2_port *sky2 = netdev_priv(dev);
  2179. u64 data[13];
  2180. sky2_phy_stats(sky2, data, ARRAY_SIZE(data));
  2181. sky2->net_stats.tx_bytes = data[0];
  2182. sky2->net_stats.rx_bytes = data[1];
  2183. sky2->net_stats.tx_packets = data[2] + data[4] + data[6];
  2184. sky2->net_stats.rx_packets = data[3] + data[5] + data[7];
  2185. sky2->net_stats.multicast = data[3] + data[5];
  2186. sky2->net_stats.collisions = data[10];
  2187. sky2->net_stats.tx_aborted_errors = data[12];
  2188. return &sky2->net_stats;
  2189. }
  2190. static int sky2_set_mac_address(struct net_device *dev, void *p)
  2191. {
  2192. struct sky2_port *sky2 = netdev_priv(dev);
  2193. struct sky2_hw *hw = sky2->hw;
  2194. unsigned port = sky2->port;
  2195. const struct sockaddr *addr = p;
  2196. if (!is_valid_ether_addr(addr->sa_data))
  2197. return -EADDRNOTAVAIL;
  2198. memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
  2199. memcpy_toio(hw->regs + B2_MAC_1 + port * 8,
  2200. dev->dev_addr, ETH_ALEN);
  2201. memcpy_toio(hw->regs + B2_MAC_2 + port * 8,
  2202. dev->dev_addr, ETH_ALEN);
  2203. /* virtual address for data */
  2204. gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
  2205. /* physical address: used for pause frames */
  2206. gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
  2207. return 0;
  2208. }
  2209. static void sky2_set_multicast(struct net_device *dev)
  2210. {
  2211. struct sky2_port *sky2 = netdev_priv(dev);
  2212. struct sky2_hw *hw = sky2->hw;
  2213. unsigned port = sky2->port;
  2214. struct dev_mc_list *list = dev->mc_list;
  2215. u16 reg;
  2216. u8 filter[8];
  2217. memset(filter, 0, sizeof(filter));
  2218. reg = gma_read16(hw, port, GM_RX_CTRL);
  2219. reg |= GM_RXCR_UCF_ENA;
  2220. if (dev->flags & IFF_PROMISC) /* promiscuous */
  2221. reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
  2222. else if ((dev->flags & IFF_ALLMULTI) || dev->mc_count > 16) /* all multicast */
  2223. memset(filter, 0xff, sizeof(filter));
  2224. else if (dev->mc_count == 0) /* no multicast */
  2225. reg &= ~GM_RXCR_MCF_ENA;
  2226. else {
  2227. int i;
  2228. reg |= GM_RXCR_MCF_ENA;
  2229. for (i = 0; list && i < dev->mc_count; i++, list = list->next) {
  2230. u32 bit = ether_crc(ETH_ALEN, list->dmi_addr) & 0x3f;
  2231. filter[bit / 8] |= 1 << (bit % 8);
  2232. }
  2233. }
  2234. gma_write16(hw, port, GM_MC_ADDR_H1,
  2235. (u16) filter[0] | ((u16) filter[1] << 8));
  2236. gma_write16(hw, port, GM_MC_ADDR_H2,
  2237. (u16) filter[2] | ((u16) filter[3] << 8));
  2238. gma_write16(hw, port, GM_MC_ADDR_H3,
  2239. (u16) filter[4] | ((u16) filter[5] << 8));
  2240. gma_write16(hw, port, GM_MC_ADDR_H4,
  2241. (u16) filter[6] | ((u16) filter[7] << 8));
  2242. gma_write16(hw, port, GM_RX_CTRL, reg);
  2243. }
  2244. /* Can have one global because blinking is controlled by
  2245. * ethtool and that is always under RTNL mutex
  2246. */
  2247. static void sky2_led(struct sky2_hw *hw, unsigned port, int on)
  2248. {
  2249. u16 pg;
  2250. switch (hw->chip_id) {
  2251. case CHIP_ID_YUKON_XL:
  2252. pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
  2253. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3);
  2254. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL,
  2255. on ? (PHY_M_LEDC_LOS_CTRL(1) |
  2256. PHY_M_LEDC_INIT_CTRL(7) |
  2257. PHY_M_LEDC_STA1_CTRL(7) |
  2258. PHY_M_LEDC_STA0_CTRL(7))
  2259. : 0);
  2260. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
  2261. break;
  2262. default:
  2263. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
  2264. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  2265. on ? PHY_M_LED_MO_DUP(MO_LED_ON) |
  2266. PHY_M_LED_MO_10(MO_LED_ON) |
  2267. PHY_M_LED_MO_100(MO_LED_ON) |
  2268. PHY_M_LED_MO_1000(MO_LED_ON) |
  2269. PHY_M_LED_MO_RX(MO_LED_ON)
  2270. : PHY_M_LED_MO_DUP(MO_LED_OFF) |
  2271. PHY_M_LED_MO_10(MO_LED_OFF) |
  2272. PHY_M_LED_MO_100(MO_LED_OFF) |
  2273. PHY_M_LED_MO_1000(MO_LED_OFF) |
  2274. PHY_M_LED_MO_RX(MO_LED_OFF));
  2275. }
  2276. }
  2277. /* blink LED's for finding board */
  2278. static int sky2_phys_id(struct net_device *dev, u32 data)
  2279. {
  2280. struct sky2_port *sky2 = netdev_priv(dev);
  2281. struct sky2_hw *hw = sky2->hw;
  2282. unsigned port = sky2->port;
  2283. u16 ledctrl, ledover = 0;
  2284. long ms;
  2285. int interrupted;
  2286. int onoff = 1;
  2287. if (!data || data > (u32) (MAX_SCHEDULE_TIMEOUT / HZ))
  2288. ms = jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT);
  2289. else
  2290. ms = data * 1000;
  2291. /* save initial values */
  2292. spin_lock_bh(&sky2->phy_lock);
  2293. if (hw->chip_id == CHIP_ID_YUKON_XL) {
  2294. u16 pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
  2295. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3);
  2296. ledctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
  2297. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
  2298. } else {
  2299. ledctrl = gm_phy_read(hw, port, PHY_MARV_LED_CTRL);
  2300. ledover = gm_phy_read(hw, port, PHY_MARV_LED_OVER);
  2301. }
  2302. interrupted = 0;
  2303. while (!interrupted && ms > 0) {
  2304. sky2_led(hw, port, onoff);
  2305. onoff = !onoff;
  2306. spin_unlock_bh(&sky2->phy_lock);
  2307. interrupted = msleep_interruptible(250);
  2308. spin_lock_bh(&sky2->phy_lock);
  2309. ms -= 250;
  2310. }
  2311. /* resume regularly scheduled programming */
  2312. if (hw->chip_id == CHIP_ID_YUKON_XL) {
  2313. u16 pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
  2314. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3);
  2315. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ledctrl);
  2316. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
  2317. } else {
  2318. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, ledctrl);
  2319. gm_phy_write(hw, port, PHY_MARV_LED_OVER, ledover);
  2320. }
  2321. spin_unlock_bh(&sky2->phy_lock);
  2322. return 0;
  2323. }
  2324. static void sky2_get_pauseparam(struct net_device *dev,
  2325. struct ethtool_pauseparam *ecmd)
  2326. {
  2327. struct sky2_port *sky2 = netdev_priv(dev);
  2328. ecmd->tx_pause = sky2->tx_pause;
  2329. ecmd->rx_pause = sky2->rx_pause;
  2330. ecmd->autoneg = sky2->autoneg;
  2331. }
  2332. static int sky2_set_pauseparam(struct net_device *dev,
  2333. struct ethtool_pauseparam *ecmd)
  2334. {
  2335. struct sky2_port *sky2 = netdev_priv(dev);
  2336. sky2->autoneg = ecmd->autoneg;
  2337. sky2->tx_pause = ecmd->tx_pause != 0;
  2338. sky2->rx_pause = ecmd->rx_pause != 0;
  2339. sky2_phy_reinit(sky2);
  2340. return 0;
  2341. }
  2342. static int sky2_get_coalesce(struct net_device *dev,
  2343. struct ethtool_coalesce *ecmd)
  2344. {
  2345. struct sky2_port *sky2 = netdev_priv(dev);
  2346. struct sky2_hw *hw = sky2->hw;
  2347. if (sky2_read8(hw, STAT_TX_TIMER_CTRL) == TIM_STOP)
  2348. ecmd->tx_coalesce_usecs = 0;
  2349. else {
  2350. u32 clks = sky2_read32(hw, STAT_TX_TIMER_INI);
  2351. ecmd->tx_coalesce_usecs = sky2_clk2us(hw, clks);
  2352. }
  2353. ecmd->tx_max_coalesced_frames = sky2_read16(hw, STAT_TX_IDX_TH);
  2354. if (sky2_read8(hw, STAT_LEV_TIMER_CTRL) == TIM_STOP)
  2355. ecmd->rx_coalesce_usecs = 0;
  2356. else {
  2357. u32 clks = sky2_read32(hw, STAT_LEV_TIMER_INI);
  2358. ecmd->rx_coalesce_usecs = sky2_clk2us(hw, clks);
  2359. }
  2360. ecmd->rx_max_coalesced_frames = sky2_read8(hw, STAT_FIFO_WM);
  2361. if (sky2_read8(hw, STAT_ISR_TIMER_CTRL) == TIM_STOP)
  2362. ecmd->rx_coalesce_usecs_irq = 0;
  2363. else {
  2364. u32 clks = sky2_read32(hw, STAT_ISR_TIMER_INI);
  2365. ecmd->rx_coalesce_usecs_irq = sky2_clk2us(hw, clks);
  2366. }
  2367. ecmd->rx_max_coalesced_frames_irq = sky2_read8(hw, STAT_FIFO_ISR_WM);
  2368. return 0;
  2369. }
  2370. /* Note: this affect both ports */
  2371. static int sky2_set_coalesce(struct net_device *dev,
  2372. struct ethtool_coalesce *ecmd)
  2373. {
  2374. struct sky2_port *sky2 = netdev_priv(dev);
  2375. struct sky2_hw *hw = sky2->hw;
  2376. const u32 tmax = sky2_clk2us(hw, 0x0ffffff);
  2377. if (ecmd->tx_coalesce_usecs > tmax ||
  2378. ecmd->rx_coalesce_usecs > tmax ||
  2379. ecmd->rx_coalesce_usecs_irq > tmax)
  2380. return -EINVAL;
  2381. if (ecmd->tx_max_coalesced_frames >= TX_RING_SIZE-1)
  2382. return -EINVAL;
  2383. if (ecmd->rx_max_coalesced_frames > RX_MAX_PENDING)
  2384. return -EINVAL;
  2385. if (ecmd->rx_max_coalesced_frames_irq >RX_MAX_PENDING)
  2386. return -EINVAL;
  2387. if (ecmd->tx_coalesce_usecs == 0)
  2388. sky2_write8(hw, STAT_TX_TIMER_CTRL, TIM_STOP);
  2389. else {
  2390. sky2_write32(hw, STAT_TX_TIMER_INI,
  2391. sky2_us2clk(hw, ecmd->tx_coalesce_usecs));
  2392. sky2_write8(hw, STAT_TX_TIMER_CTRL, TIM_START);
  2393. }
  2394. sky2_write16(hw, STAT_TX_IDX_TH, ecmd->tx_max_coalesced_frames);
  2395. if (ecmd->rx_coalesce_usecs == 0)
  2396. sky2_write8(hw, STAT_LEV_TIMER_CTRL, TIM_STOP);
  2397. else {
  2398. sky2_write32(hw, STAT_LEV_TIMER_INI,
  2399. sky2_us2clk(hw, ecmd->rx_coalesce_usecs));
  2400. sky2_write8(hw, STAT_LEV_TIMER_CTRL, TIM_START);
  2401. }
  2402. sky2_write8(hw, STAT_FIFO_WM, ecmd->rx_max_coalesced_frames);
  2403. if (ecmd->rx_coalesce_usecs_irq == 0)
  2404. sky2_write8(hw, STAT_ISR_TIMER_CTRL, TIM_STOP);
  2405. else {
  2406. sky2_write32(hw, STAT_ISR_TIMER_INI,
  2407. sky2_us2clk(hw, ecmd->rx_coalesce_usecs_irq));
  2408. sky2_write8(hw, STAT_ISR_TIMER_CTRL, TIM_START);
  2409. }
  2410. sky2_write8(hw, STAT_FIFO_ISR_WM, ecmd->rx_max_coalesced_frames_irq);
  2411. return 0;
  2412. }
  2413. static void sky2_get_ringparam(struct net_device *dev,
  2414. struct ethtool_ringparam *ering)
  2415. {
  2416. struct sky2_port *sky2 = netdev_priv(dev);
  2417. ering->rx_max_pending = RX_MAX_PENDING;
  2418. ering->rx_mini_max_pending = 0;
  2419. ering->rx_jumbo_max_pending = 0;
  2420. ering->tx_max_pending = TX_RING_SIZE - 1;
  2421. ering->rx_pending = sky2->rx_pending;
  2422. ering->rx_mini_pending = 0;
  2423. ering->rx_jumbo_pending = 0;
  2424. ering->tx_pending = sky2->tx_pending;
  2425. }
  2426. static int sky2_set_ringparam(struct net_device *dev,
  2427. struct ethtool_ringparam *ering)
  2428. {
  2429. struct sky2_port *sky2 = netdev_priv(dev);
  2430. int err = 0;
  2431. if (ering->rx_pending > RX_MAX_PENDING ||
  2432. ering->rx_pending < 8 ||
  2433. ering->tx_pending < MAX_SKB_TX_LE ||
  2434. ering->tx_pending > TX_RING_SIZE - 1)
  2435. return -EINVAL;
  2436. if (netif_running(dev))
  2437. sky2_down(dev);
  2438. sky2->rx_pending = ering->rx_pending;
  2439. sky2->tx_pending = ering->tx_pending;
  2440. if (netif_running(dev)) {
  2441. err = sky2_up(dev);
  2442. if (err)
  2443. dev_close(dev);
  2444. else
  2445. sky2_set_multicast(dev);
  2446. }
  2447. return err;
  2448. }
  2449. static int sky2_get_regs_len(struct net_device *dev)
  2450. {
  2451. return 0x4000;
  2452. }
  2453. /*
  2454. * Returns copy of control register region
  2455. * Note: access to the RAM address register set will cause timeouts.
  2456. */
  2457. static void sky2_get_regs(struct net_device *dev, struct ethtool_regs *regs,
  2458. void *p)
  2459. {
  2460. const struct sky2_port *sky2 = netdev_priv(dev);
  2461. const void __iomem *io = sky2->hw->regs;
  2462. BUG_ON(regs->len < B3_RI_WTO_R1);
  2463. regs->version = 1;
  2464. memset(p, 0, regs->len);
  2465. memcpy_fromio(p, io, B3_RAM_ADDR);
  2466. memcpy_fromio(p + B3_RI_WTO_R1,
  2467. io + B3_RI_WTO_R1,
  2468. regs->len - B3_RI_WTO_R1);
  2469. }
  2470. static const struct ethtool_ops sky2_ethtool_ops = {
  2471. .get_settings = sky2_get_settings,
  2472. .set_settings = sky2_set_settings,
  2473. .get_drvinfo = sky2_get_drvinfo,
  2474. .get_msglevel = sky2_get_msglevel,
  2475. .set_msglevel = sky2_set_msglevel,
  2476. .nway_reset = sky2_nway_reset,
  2477. .get_regs_len = sky2_get_regs_len,
  2478. .get_regs = sky2_get_regs,
  2479. .get_link = ethtool_op_get_link,
  2480. .get_sg = ethtool_op_get_sg,
  2481. .set_sg = ethtool_op_set_sg,
  2482. .get_tx_csum = ethtool_op_get_tx_csum,
  2483. .set_tx_csum = ethtool_op_set_tx_csum,
  2484. .get_tso = ethtool_op_get_tso,
  2485. .set_tso = ethtool_op_set_tso,
  2486. .get_rx_csum = sky2_get_rx_csum,
  2487. .set_rx_csum = sky2_set_rx_csum,
  2488. .get_strings = sky2_get_strings,
  2489. .get_coalesce = sky2_get_coalesce,
  2490. .set_coalesce = sky2_set_coalesce,
  2491. .get_ringparam = sky2_get_ringparam,
  2492. .set_ringparam = sky2_set_ringparam,
  2493. .get_pauseparam = sky2_get_pauseparam,
  2494. .set_pauseparam = sky2_set_pauseparam,
  2495. .phys_id = sky2_phys_id,
  2496. .get_stats_count = sky2_get_stats_count,
  2497. .get_ethtool_stats = sky2_get_ethtool_stats,
  2498. .get_perm_addr = ethtool_op_get_perm_addr,
  2499. };
  2500. /* Initialize network device */
  2501. static __devinit struct net_device *sky2_init_netdev(struct sky2_hw *hw,
  2502. unsigned port, int highmem)
  2503. {
  2504. struct sky2_port *sky2;
  2505. struct net_device *dev = alloc_etherdev(sizeof(*sky2));
  2506. if (!dev) {
  2507. printk(KERN_ERR "sky2 etherdev alloc failed");
  2508. return NULL;
  2509. }
  2510. SET_MODULE_OWNER(dev);
  2511. SET_NETDEV_DEV(dev, &hw->pdev->dev);
  2512. dev->irq = hw->pdev->irq;
  2513. dev->open = sky2_up;
  2514. dev->stop = sky2_down;
  2515. dev->do_ioctl = sky2_ioctl;
  2516. dev->hard_start_xmit = sky2_xmit_frame;
  2517. dev->get_stats = sky2_get_stats;
  2518. dev->set_multicast_list = sky2_set_multicast;
  2519. dev->set_mac_address = sky2_set_mac_address;
  2520. dev->change_mtu = sky2_change_mtu;
  2521. SET_ETHTOOL_OPS(dev, &sky2_ethtool_ops);
  2522. dev->tx_timeout = sky2_tx_timeout;
  2523. dev->watchdog_timeo = TX_WATCHDOG;
  2524. if (port == 0)
  2525. dev->poll = sky2_poll;
  2526. dev->weight = NAPI_WEIGHT;
  2527. #ifdef CONFIG_NET_POLL_CONTROLLER
  2528. dev->poll_controller = sky2_netpoll;
  2529. #endif
  2530. sky2 = netdev_priv(dev);
  2531. sky2->netdev = dev;
  2532. sky2->hw = hw;
  2533. sky2->msg_enable = netif_msg_init(debug, default_msg);
  2534. spin_lock_init(&sky2->tx_lock);
  2535. /* Auto speed and flow control */
  2536. sky2->autoneg = AUTONEG_ENABLE;
  2537. sky2->tx_pause = 1;
  2538. sky2->rx_pause = 1;
  2539. sky2->duplex = -1;
  2540. sky2->speed = -1;
  2541. sky2->advertising = sky2_supported_modes(hw);
  2542. sky2->rx_csum = 1;
  2543. spin_lock_init(&sky2->phy_lock);
  2544. sky2->tx_pending = TX_DEF_PENDING;
  2545. sky2->rx_pending = RX_DEF_PENDING;
  2546. sky2->rx_bufsize = sky2_buf_size(ETH_DATA_LEN);
  2547. hw->dev[port] = dev;
  2548. sky2->port = port;
  2549. dev->features |= NETIF_F_LLTX;
  2550. if (hw->chip_id != CHIP_ID_YUKON_EC_U)
  2551. dev->features |= NETIF_F_TSO;
  2552. if (highmem)
  2553. dev->features |= NETIF_F_HIGHDMA;
  2554. dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
  2555. #ifdef SKY2_VLAN_TAG_USED
  2556. dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
  2557. dev->vlan_rx_register = sky2_vlan_rx_register;
  2558. dev->vlan_rx_kill_vid = sky2_vlan_rx_kill_vid;
  2559. #endif
  2560. /* read the mac address */
  2561. memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port * 8, ETH_ALEN);
  2562. memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
  2563. /* device is off until link detection */
  2564. netif_carrier_off(dev);
  2565. netif_stop_queue(dev);
  2566. return dev;
  2567. }
  2568. static void __devinit sky2_show_addr(struct net_device *dev)
  2569. {
  2570. const struct sky2_port *sky2 = netdev_priv(dev);
  2571. if (netif_msg_probe(sky2))
  2572. printk(KERN_INFO PFX "%s: addr %02x:%02x:%02x:%02x:%02x:%02x\n",
  2573. dev->name,
  2574. dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
  2575. dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
  2576. }
  2577. /* Handle software interrupt used during MSI test */
  2578. static irqreturn_t __devinit sky2_test_intr(int irq, void *dev_id,
  2579. struct pt_regs *regs)
  2580. {
  2581. struct sky2_hw *hw = dev_id;
  2582. u32 status = sky2_read32(hw, B0_Y2_SP_ISRC2);
  2583. if (status == 0)
  2584. return IRQ_NONE;
  2585. if (status & Y2_IS_IRQ_SW) {
  2586. hw->msi_detected = 1;
  2587. wake_up(&hw->msi_wait);
  2588. sky2_write8(hw, B0_CTST, CS_CL_SW_IRQ);
  2589. }
  2590. sky2_write32(hw, B0_Y2_SP_ICR, 2);
  2591. return IRQ_HANDLED;
  2592. }
  2593. /* Test interrupt path by forcing a a software IRQ */
  2594. static int __devinit sky2_test_msi(struct sky2_hw *hw)
  2595. {
  2596. struct pci_dev *pdev = hw->pdev;
  2597. int err;
  2598. init_waitqueue_head (&hw->msi_wait);
  2599. sky2_write32(hw, B0_IMSK, Y2_IS_IRQ_SW);
  2600. err = request_irq(pdev->irq, sky2_test_intr, IRQF_SHARED, DRV_NAME, hw);
  2601. if (err) {
  2602. printk(KERN_ERR PFX "%s: cannot assign irq %d\n",
  2603. pci_name(pdev), pdev->irq);
  2604. return err;
  2605. }
  2606. sky2_write8(hw, B0_CTST, CS_ST_SW_IRQ);
  2607. sky2_read8(hw, B0_CTST);
  2608. wait_event_timeout(hw->msi_wait, hw->msi_detected, HZ/10);
  2609. if (!hw->msi_detected) {
  2610. /* MSI test failed, go back to INTx mode */
  2611. printk(KERN_WARNING PFX "%s: No interrupt was generated using MSI, "
  2612. "switching to INTx mode. Please report this failure to "
  2613. "the PCI maintainer and include system chipset information.\n",
  2614. pci_name(pdev));
  2615. err = -EOPNOTSUPP;
  2616. sky2_write8(hw, B0_CTST, CS_CL_SW_IRQ);
  2617. }
  2618. sky2_write32(hw, B0_IMSK, 0);
  2619. free_irq(pdev->irq, hw);
  2620. return err;
  2621. }
  2622. static int __devinit sky2_probe(struct pci_dev *pdev,
  2623. const struct pci_device_id *ent)
  2624. {
  2625. struct net_device *dev, *dev1 = NULL;
  2626. struct sky2_hw *hw;
  2627. int err, pm_cap, using_dac = 0;
  2628. err = pci_enable_device(pdev);
  2629. if (err) {
  2630. printk(KERN_ERR PFX "%s cannot enable PCI device\n",
  2631. pci_name(pdev));
  2632. goto err_out;
  2633. }
  2634. err = pci_request_regions(pdev, DRV_NAME);
  2635. if (err) {
  2636. printk(KERN_ERR PFX "%s cannot obtain PCI resources\n",
  2637. pci_name(pdev));
  2638. goto err_out;
  2639. }
  2640. pci_set_master(pdev);
  2641. /* Find power-management capability. */
  2642. pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
  2643. if (pm_cap == 0) {
  2644. printk(KERN_ERR PFX "Cannot find PowerManagement capability, "
  2645. "aborting.\n");
  2646. err = -EIO;
  2647. goto err_out_free_regions;
  2648. }
  2649. if (sizeof(dma_addr_t) > sizeof(u32) &&
  2650. !(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK))) {
  2651. using_dac = 1;
  2652. err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
  2653. if (err < 0) {
  2654. printk(KERN_ERR PFX "%s unable to obtain 64 bit DMA "
  2655. "for consistent allocations\n", pci_name(pdev));
  2656. goto err_out_free_regions;
  2657. }
  2658. } else {
  2659. err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
  2660. if (err) {
  2661. printk(KERN_ERR PFX "%s no usable DMA configuration\n",
  2662. pci_name(pdev));
  2663. goto err_out_free_regions;
  2664. }
  2665. }
  2666. err = -ENOMEM;
  2667. hw = kzalloc(sizeof(*hw), GFP_KERNEL);
  2668. if (!hw) {
  2669. printk(KERN_ERR PFX "%s: cannot allocate hardware struct\n",
  2670. pci_name(pdev));
  2671. goto err_out_free_regions;
  2672. }
  2673. hw->pdev = pdev;
  2674. hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
  2675. if (!hw->regs) {
  2676. printk(KERN_ERR PFX "%s: cannot map device registers\n",
  2677. pci_name(pdev));
  2678. goto err_out_free_hw;
  2679. }
  2680. hw->pm_cap = pm_cap;
  2681. #ifdef __BIG_ENDIAN
  2682. /* The sk98lin vendor driver uses hardware byte swapping but
  2683. * this driver uses software swapping.
  2684. */
  2685. {
  2686. u32 reg;
  2687. reg = sky2_pci_read32(hw, PCI_DEV_REG2);
  2688. reg &= ~PCI_REV_DESC;
  2689. sky2_pci_write32(hw, PCI_DEV_REG2, reg);
  2690. }
  2691. #endif
  2692. /* ring for status responses */
  2693. hw->st_le = pci_alloc_consistent(hw->pdev, STATUS_LE_BYTES,
  2694. &hw->st_dma);
  2695. if (!hw->st_le)
  2696. goto err_out_iounmap;
  2697. err = sky2_reset(hw);
  2698. if (err)
  2699. goto err_out_iounmap;
  2700. printk(KERN_INFO PFX "v%s addr 0x%llx irq %d Yukon-%s (0x%x) rev %d\n",
  2701. DRV_VERSION, (unsigned long long)pci_resource_start(pdev, 0),
  2702. pdev->irq, yukon2_name[hw->chip_id - CHIP_ID_YUKON_XL],
  2703. hw->chip_id, hw->chip_rev);
  2704. dev = sky2_init_netdev(hw, 0, using_dac);
  2705. if (!dev)
  2706. goto err_out_free_pci;
  2707. err = register_netdev(dev);
  2708. if (err) {
  2709. printk(KERN_ERR PFX "%s: cannot register net device\n",
  2710. pci_name(pdev));
  2711. goto err_out_free_netdev;
  2712. }
  2713. sky2_show_addr(dev);
  2714. if (hw->ports > 1 && (dev1 = sky2_init_netdev(hw, 1, using_dac))) {
  2715. if (register_netdev(dev1) == 0)
  2716. sky2_show_addr(dev1);
  2717. else {
  2718. /* Failure to register second port need not be fatal */
  2719. printk(KERN_WARNING PFX
  2720. "register of second port failed\n");
  2721. hw->dev[1] = NULL;
  2722. free_netdev(dev1);
  2723. }
  2724. }
  2725. if (!disable_msi && pci_enable_msi(pdev) == 0) {
  2726. err = sky2_test_msi(hw);
  2727. if (err == -EOPNOTSUPP)
  2728. pci_disable_msi(pdev);
  2729. else if (err)
  2730. goto err_out_unregister;
  2731. }
  2732. err = request_irq(pdev->irq, sky2_intr, IRQF_SHARED, DRV_NAME, hw);
  2733. if (err) {
  2734. printk(KERN_ERR PFX "%s: cannot assign irq %d\n",
  2735. pci_name(pdev), pdev->irq);
  2736. goto err_out_unregister;
  2737. }
  2738. sky2_write32(hw, B0_IMSK, Y2_IS_BASE);
  2739. setup_timer(&hw->idle_timer, sky2_idle, (unsigned long) hw);
  2740. sky2_idle_start(hw);
  2741. pci_set_drvdata(pdev, hw);
  2742. return 0;
  2743. err_out_unregister:
  2744. pci_disable_msi(pdev);
  2745. if (dev1) {
  2746. unregister_netdev(dev1);
  2747. free_netdev(dev1);
  2748. }
  2749. unregister_netdev(dev);
  2750. err_out_free_netdev:
  2751. free_netdev(dev);
  2752. err_out_free_pci:
  2753. sky2_write8(hw, B0_CTST, CS_RST_SET);
  2754. pci_free_consistent(hw->pdev, STATUS_LE_BYTES, hw->st_le, hw->st_dma);
  2755. err_out_iounmap:
  2756. iounmap(hw->regs);
  2757. err_out_free_hw:
  2758. kfree(hw);
  2759. err_out_free_regions:
  2760. pci_release_regions(pdev);
  2761. pci_disable_device(pdev);
  2762. err_out:
  2763. return err;
  2764. }
  2765. static void __devexit sky2_remove(struct pci_dev *pdev)
  2766. {
  2767. struct sky2_hw *hw = pci_get_drvdata(pdev);
  2768. struct net_device *dev0, *dev1;
  2769. if (!hw)
  2770. return;
  2771. del_timer_sync(&hw->idle_timer);
  2772. sky2_write32(hw, B0_IMSK, 0);
  2773. synchronize_irq(hw->pdev->irq);
  2774. dev0 = hw->dev[0];
  2775. dev1 = hw->dev[1];
  2776. if (dev1)
  2777. unregister_netdev(dev1);
  2778. unregister_netdev(dev0);
  2779. sky2_set_power_state(hw, PCI_D3hot);
  2780. sky2_write16(hw, B0_Y2LED, LED_STAT_OFF);
  2781. sky2_write8(hw, B0_CTST, CS_RST_SET);
  2782. sky2_read8(hw, B0_CTST);
  2783. free_irq(pdev->irq, hw);
  2784. pci_disable_msi(pdev);
  2785. pci_free_consistent(pdev, STATUS_LE_BYTES, hw->st_le, hw->st_dma);
  2786. pci_release_regions(pdev);
  2787. pci_disable_device(pdev);
  2788. if (dev1)
  2789. free_netdev(dev1);
  2790. free_netdev(dev0);
  2791. iounmap(hw->regs);
  2792. kfree(hw);
  2793. pci_set_drvdata(pdev, NULL);
  2794. }
  2795. #ifdef CONFIG_PM
  2796. static int sky2_suspend(struct pci_dev *pdev, pm_message_t state)
  2797. {
  2798. struct sky2_hw *hw = pci_get_drvdata(pdev);
  2799. int i;
  2800. pci_power_t pstate = pci_choose_state(pdev, state);
  2801. if (!(pstate == PCI_D3hot || pstate == PCI_D3cold))
  2802. return -EINVAL;
  2803. del_timer_sync(&hw->idle_timer);
  2804. netif_poll_disable(hw->dev[0]);
  2805. for (i = 0; i < hw->ports; i++) {
  2806. struct net_device *dev = hw->dev[i];
  2807. if (netif_running(dev)) {
  2808. sky2_down(dev);
  2809. netif_device_detach(dev);
  2810. }
  2811. }
  2812. sky2_write32(hw, B0_IMSK, 0);
  2813. pci_save_state(pdev);
  2814. sky2_set_power_state(hw, pstate);
  2815. return 0;
  2816. }
  2817. static int sky2_resume(struct pci_dev *pdev)
  2818. {
  2819. struct sky2_hw *hw = pci_get_drvdata(pdev);
  2820. int i, err;
  2821. pci_restore_state(pdev);
  2822. pci_enable_wake(pdev, PCI_D0, 0);
  2823. sky2_set_power_state(hw, PCI_D0);
  2824. err = sky2_reset(hw);
  2825. if (err)
  2826. goto out;
  2827. sky2_write32(hw, B0_IMSK, Y2_IS_BASE);
  2828. for (i = 0; i < hw->ports; i++) {
  2829. struct net_device *dev = hw->dev[i];
  2830. if (netif_running(dev)) {
  2831. netif_device_attach(dev);
  2832. err = sky2_up(dev);
  2833. if (err) {
  2834. printk(KERN_ERR PFX "%s: could not up: %d\n",
  2835. dev->name, err);
  2836. dev_close(dev);
  2837. goto out;
  2838. }
  2839. }
  2840. }
  2841. netif_poll_enable(hw->dev[0]);
  2842. sky2_idle_start(hw);
  2843. out:
  2844. return err;
  2845. }
  2846. #endif
  2847. static struct pci_driver sky2_driver = {
  2848. .name = DRV_NAME,
  2849. .id_table = sky2_id_table,
  2850. .probe = sky2_probe,
  2851. .remove = __devexit_p(sky2_remove),
  2852. #ifdef CONFIG_PM
  2853. .suspend = sky2_suspend,
  2854. .resume = sky2_resume,
  2855. #endif
  2856. };
  2857. static int __init sky2_init_module(void)
  2858. {
  2859. return pci_register_driver(&sky2_driver);
  2860. }
  2861. static void __exit sky2_cleanup_module(void)
  2862. {
  2863. pci_unregister_driver(&sky2_driver);
  2864. }
  2865. module_init(sky2_init_module);
  2866. module_exit(sky2_cleanup_module);
  2867. MODULE_DESCRIPTION("Marvell Yukon 2 Gigabit Ethernet driver");
  2868. MODULE_AUTHOR("Stephen Hemminger <shemminger@osdl.org>");
  2869. MODULE_LICENSE("GPL");
  2870. MODULE_VERSION(DRV_VERSION);